ASTContext.cpp revision 34db84fdb092f89ea3678a0792074a5b9253829a
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
89    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
90      return NULL;
91  }
92
93  // TODO: handle comments for function parameters properly.
94  if (isa<ParmVarDecl>(D))
95    return NULL;
96
97  // TODO: we could look up template parameter documentation in the template
98  // documentation.
99  if (isa<TemplateTypeParmDecl>(D) ||
100      isa<NonTypeTemplateParmDecl>(D) ||
101      isa<TemplateTemplateParmDecl>(D))
102    return NULL;
103
104  ArrayRef<RawComment *> RawComments = Comments.getComments();
105
106  // If there are no comments anywhere, we won't find anything.
107  if (RawComments.empty())
108    return NULL;
109
110  // Find declaration location.
111  // For Objective-C declarations we generally don't expect to have multiple
112  // declarators, thus use declaration starting location as the "declaration
113  // location".
114  // For all other declarations multiple declarators are used quite frequently,
115  // so we use the location of the identifier as the "declaration location".
116  SourceLocation DeclLoc;
117  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
118      isa<ObjCPropertyDecl>(D) ||
119      isa<RedeclarableTemplateDecl>(D) ||
120      isa<ClassTemplateSpecializationDecl>(D))
121    DeclLoc = D->getLocStart();
122  else
123    DeclLoc = D->getLocation();
124
125  // If the declaration doesn't map directly to a location in a file, we
126  // can't find the comment.
127  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
128    return NULL;
129
130  // Find the comment that occurs just after this declaration.
131  ArrayRef<RawComment *>::iterator Comment;
132  {
133    // When searching for comments during parsing, the comment we are looking
134    // for is usually among the last two comments we parsed -- check them
135    // first.
136    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
137    BeforeThanCompare<RawComment> Compare(SourceMgr);
138    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
139    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
140    if (!Found && RawComments.size() >= 2) {
141      MaybeBeforeDecl--;
142      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
143    }
144
145    if (Found) {
146      Comment = MaybeBeforeDecl + 1;
147      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
148                                         &CommentAtDeclLoc, Compare));
149    } else {
150      // Slow path.
151      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
152                                 &CommentAtDeclLoc, Compare);
153    }
154  }
155
156  // Decompose the location for the declaration and find the beginning of the
157  // file buffer.
158  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
159
160  // First check whether we have a trailing comment.
161  if (Comment != RawComments.end() &&
162      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
163      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
164    std::pair<FileID, unsigned> CommentBeginDecomp
165      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
166    // Check that Doxygen trailing comment comes after the declaration, starts
167    // on the same line and in the same file as the declaration.
168    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
169        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
170          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
171                                     CommentBeginDecomp.second)) {
172      return *Comment;
173    }
174  }
175
176  // The comment just after the declaration was not a trailing comment.
177  // Let's look at the previous comment.
178  if (Comment == RawComments.begin())
179    return NULL;
180  --Comment;
181
182  // Check that we actually have a non-member Doxygen comment.
183  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
184    return NULL;
185
186  // Decompose the end of the comment.
187  std::pair<FileID, unsigned> CommentEndDecomp
188    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
189
190  // If the comment and the declaration aren't in the same file, then they
191  // aren't related.
192  if (DeclLocDecomp.first != CommentEndDecomp.first)
193    return NULL;
194
195  // Get the corresponding buffer.
196  bool Invalid = false;
197  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
198                                               &Invalid).data();
199  if (Invalid)
200    return NULL;
201
202  // Extract text between the comment and declaration.
203  StringRef Text(Buffer + CommentEndDecomp.second,
204                 DeclLocDecomp.second - CommentEndDecomp.second);
205
206  // There should be no other declarations or preprocessor directives between
207  // comment and declaration.
208  if (Text.find_first_of(",;{}#@") != StringRef::npos)
209    return NULL;
210
211  return *Comment;
212}
213
214namespace {
215/// If we have a 'templated' declaration for a template, adjust 'D' to
216/// refer to the actual template.
217/// If we have an implicit instantiation, adjust 'D' to refer to template.
218const Decl *adjustDeclToTemplate(const Decl *D) {
219  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
220    // Is this function declaration part of a function template?
221    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
222      return FTD;
223
224    // Nothing to do if function is not an implicit instantiation.
225    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
226      return D;
227
228    // Function is an implicit instantiation of a function template?
229    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
230      return FTD;
231
232    // Function is instantiated from a member definition of a class template?
233    if (const FunctionDecl *MemberDecl =
234            FD->getInstantiatedFromMemberFunction())
235      return MemberDecl;
236
237    return D;
238  }
239  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
240    // Static data member is instantiated from a member definition of a class
241    // template?
242    if (VD->isStaticDataMember())
243      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
244        return MemberDecl;
245
246    return D;
247  }
248  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
249    // Is this class declaration part of a class template?
250    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
251      return CTD;
252
253    // Class is an implicit instantiation of a class template or partial
254    // specialization?
255    if (const ClassTemplateSpecializationDecl *CTSD =
256            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
257      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
258        return D;
259      llvm::PointerUnion<ClassTemplateDecl *,
260                         ClassTemplatePartialSpecializationDecl *>
261          PU = CTSD->getSpecializedTemplateOrPartial();
262      return PU.is<ClassTemplateDecl*>() ?
263          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
264          static_cast<const Decl*>(
265              PU.get<ClassTemplatePartialSpecializationDecl *>());
266    }
267
268    // Class is instantiated from a member definition of a class template?
269    if (const MemberSpecializationInfo *Info =
270                   CRD->getMemberSpecializationInfo())
271      return Info->getInstantiatedFrom();
272
273    return D;
274  }
275  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
276    // Enum is instantiated from a member definition of a class template?
277    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
278      return MemberDecl;
279
280    return D;
281  }
282  // FIXME: Adjust alias templates?
283  return D;
284}
285} // unnamed namespace
286
287const RawComment *ASTContext::getRawCommentForAnyRedecl(
288                                                const Decl *D,
289                                                const Decl **OriginalDecl) const {
290  D = adjustDeclToTemplate(D);
291
292  // Check whether we have cached a comment for this declaration already.
293  {
294    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
295        RedeclComments.find(D);
296    if (Pos != RedeclComments.end()) {
297      const RawCommentAndCacheFlags &Raw = Pos->second;
298      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
299        if (OriginalDecl)
300          *OriginalDecl = Raw.getOriginalDecl();
301        return Raw.getRaw();
302      }
303    }
304  }
305
306  // Search for comments attached to declarations in the redeclaration chain.
307  const RawComment *RC = NULL;
308  const Decl *OriginalDeclForRC = NULL;
309  for (Decl::redecl_iterator I = D->redecls_begin(),
310                             E = D->redecls_end();
311       I != E; ++I) {
312    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
313        RedeclComments.find(*I);
314    if (Pos != RedeclComments.end()) {
315      const RawCommentAndCacheFlags &Raw = Pos->second;
316      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
317        RC = Raw.getRaw();
318        OriginalDeclForRC = Raw.getOriginalDecl();
319        break;
320      }
321    } else {
322      RC = getRawCommentForDeclNoCache(*I);
323      OriginalDeclForRC = *I;
324      RawCommentAndCacheFlags Raw;
325      if (RC) {
326        Raw.setRaw(RC);
327        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
328      } else
329        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
330      Raw.setOriginalDecl(*I);
331      RedeclComments[*I] = Raw;
332      if (RC)
333        break;
334    }
335  }
336
337  // If we found a comment, it should be a documentation comment.
338  assert(!RC || RC->isDocumentation());
339
340  if (OriginalDecl)
341    *OriginalDecl = OriginalDeclForRC;
342
343  // Update cache for every declaration in the redeclaration chain.
344  RawCommentAndCacheFlags Raw;
345  Raw.setRaw(RC);
346  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
347  Raw.setOriginalDecl(OriginalDeclForRC);
348
349  for (Decl::redecl_iterator I = D->redecls_begin(),
350                             E = D->redecls_end();
351       I != E; ++I) {
352    RawCommentAndCacheFlags &R = RedeclComments[*I];
353    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
354      R = Raw;
355  }
356
357  return RC;
358}
359
360static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
361                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
362  const DeclContext *DC = ObjCMethod->getDeclContext();
363  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
364    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
365    if (!ID)
366      return;
367    // Add redeclared method here.
368    for (const ObjCCategoryDecl *ClsExtDecl = ID->getFirstClassExtension();
369         ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
370      if (ObjCMethodDecl *RedeclaredMethod =
371            ClsExtDecl->getMethod(ObjCMethod->getSelector(),
372                                  ObjCMethod->isInstanceMethod()))
373        Redeclared.push_back(RedeclaredMethod);
374    }
375  }
376}
377
378comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
379                                                    const Decl *D) const {
380  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
381  ThisDeclInfo->CommentDecl = D;
382  ThisDeclInfo->IsFilled = false;
383  ThisDeclInfo->fill();
384  ThisDeclInfo->CommentDecl = FC->getDecl();
385  comments::FullComment *CFC =
386    new (*this) comments::FullComment(FC->getBlocks(),
387                                      ThisDeclInfo);
388  return CFC;
389
390}
391
392comments::FullComment *ASTContext::getCommentForDecl(
393                                              const Decl *D,
394                                              const Preprocessor *PP) const {
395  D = adjustDeclToTemplate(D);
396
397  const Decl *Canonical = D->getCanonicalDecl();
398  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
399      ParsedComments.find(Canonical);
400
401  if (Pos != ParsedComments.end()) {
402    if (Canonical != D) {
403      comments::FullComment *FC = Pos->second;
404      comments::FullComment *CFC = cloneFullComment(FC, D);
405      return CFC;
406    }
407    return Pos->second;
408  }
409
410  const Decl *OriginalDecl;
411
412  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
413  if (!RC) {
414    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
415      SmallVector<const NamedDecl*, 8> Overridden;
416      if (const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D))
417        addRedeclaredMethods(OMD, Overridden);
418      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
419      for (unsigned i = 0, e = Overridden.size(); i < e; i++) {
420        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) {
421          comments::FullComment *CFC = cloneFullComment(FC, D);
422          return CFC;
423        }
424      }
425    }
426    return NULL;
427  }
428
429  // If the RawComment was attached to other redeclaration of this Decl, we
430  // should parse the comment in context of that other Decl.  This is important
431  // because comments can contain references to parameter names which can be
432  // different across redeclarations.
433  if (D != OriginalDecl)
434    return getCommentForDecl(OriginalDecl, PP);
435
436  comments::FullComment *FC = RC->parse(*this, PP, D);
437  ParsedComments[Canonical] = FC;
438  return FC;
439}
440
441void
442ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
443                                               TemplateTemplateParmDecl *Parm) {
444  ID.AddInteger(Parm->getDepth());
445  ID.AddInteger(Parm->getPosition());
446  ID.AddBoolean(Parm->isParameterPack());
447
448  TemplateParameterList *Params = Parm->getTemplateParameters();
449  ID.AddInteger(Params->size());
450  for (TemplateParameterList::const_iterator P = Params->begin(),
451                                          PEnd = Params->end();
452       P != PEnd; ++P) {
453    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
454      ID.AddInteger(0);
455      ID.AddBoolean(TTP->isParameterPack());
456      continue;
457    }
458
459    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
460      ID.AddInteger(1);
461      ID.AddBoolean(NTTP->isParameterPack());
462      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
463      if (NTTP->isExpandedParameterPack()) {
464        ID.AddBoolean(true);
465        ID.AddInteger(NTTP->getNumExpansionTypes());
466        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
467          QualType T = NTTP->getExpansionType(I);
468          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
469        }
470      } else
471        ID.AddBoolean(false);
472      continue;
473    }
474
475    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
476    ID.AddInteger(2);
477    Profile(ID, TTP);
478  }
479}
480
481TemplateTemplateParmDecl *
482ASTContext::getCanonicalTemplateTemplateParmDecl(
483                                          TemplateTemplateParmDecl *TTP) const {
484  // Check if we already have a canonical template template parameter.
485  llvm::FoldingSetNodeID ID;
486  CanonicalTemplateTemplateParm::Profile(ID, TTP);
487  void *InsertPos = 0;
488  CanonicalTemplateTemplateParm *Canonical
489    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
490  if (Canonical)
491    return Canonical->getParam();
492
493  // Build a canonical template parameter list.
494  TemplateParameterList *Params = TTP->getTemplateParameters();
495  SmallVector<NamedDecl *, 4> CanonParams;
496  CanonParams.reserve(Params->size());
497  for (TemplateParameterList::const_iterator P = Params->begin(),
498                                          PEnd = Params->end();
499       P != PEnd; ++P) {
500    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
501      CanonParams.push_back(
502                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
503                                               SourceLocation(),
504                                               SourceLocation(),
505                                               TTP->getDepth(),
506                                               TTP->getIndex(), 0, false,
507                                               TTP->isParameterPack()));
508    else if (NonTypeTemplateParmDecl *NTTP
509             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
510      QualType T = getCanonicalType(NTTP->getType());
511      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
512      NonTypeTemplateParmDecl *Param;
513      if (NTTP->isExpandedParameterPack()) {
514        SmallVector<QualType, 2> ExpandedTypes;
515        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
516        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
517          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
518          ExpandedTInfos.push_back(
519                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
520        }
521
522        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
523                                                SourceLocation(),
524                                                SourceLocation(),
525                                                NTTP->getDepth(),
526                                                NTTP->getPosition(), 0,
527                                                T,
528                                                TInfo,
529                                                ExpandedTypes.data(),
530                                                ExpandedTypes.size(),
531                                                ExpandedTInfos.data());
532      } else {
533        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
534                                                SourceLocation(),
535                                                SourceLocation(),
536                                                NTTP->getDepth(),
537                                                NTTP->getPosition(), 0,
538                                                T,
539                                                NTTP->isParameterPack(),
540                                                TInfo);
541      }
542      CanonParams.push_back(Param);
543
544    } else
545      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
546                                           cast<TemplateTemplateParmDecl>(*P)));
547  }
548
549  TemplateTemplateParmDecl *CanonTTP
550    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
551                                       SourceLocation(), TTP->getDepth(),
552                                       TTP->getPosition(),
553                                       TTP->isParameterPack(),
554                                       0,
555                         TemplateParameterList::Create(*this, SourceLocation(),
556                                                       SourceLocation(),
557                                                       CanonParams.data(),
558                                                       CanonParams.size(),
559                                                       SourceLocation()));
560
561  // Get the new insert position for the node we care about.
562  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
563  assert(Canonical == 0 && "Shouldn't be in the map!");
564  (void)Canonical;
565
566  // Create the canonical template template parameter entry.
567  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
568  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
569  return CanonTTP;
570}
571
572CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
573  if (!LangOpts.CPlusPlus) return 0;
574
575  switch (T.getCXXABI()) {
576  case CXXABI_ARM:
577    return CreateARMCXXABI(*this);
578  case CXXABI_Itanium:
579    return CreateItaniumCXXABI(*this);
580  case CXXABI_Microsoft:
581    return CreateMicrosoftCXXABI(*this);
582  }
583  llvm_unreachable("Invalid CXXABI type!");
584}
585
586static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
587                                             const LangOptions &LOpts) {
588  if (LOpts.FakeAddressSpaceMap) {
589    // The fake address space map must have a distinct entry for each
590    // language-specific address space.
591    static const unsigned FakeAddrSpaceMap[] = {
592      1, // opencl_global
593      2, // opencl_local
594      3, // opencl_constant
595      4, // cuda_device
596      5, // cuda_constant
597      6  // cuda_shared
598    };
599    return &FakeAddrSpaceMap;
600  } else {
601    return &T.getAddressSpaceMap();
602  }
603}
604
605ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
606                       const TargetInfo *t,
607                       IdentifierTable &idents, SelectorTable &sels,
608                       Builtin::Context &builtins,
609                       unsigned size_reserve,
610                       bool DelayInitialization)
611  : FunctionProtoTypes(this_()),
612    TemplateSpecializationTypes(this_()),
613    DependentTemplateSpecializationTypes(this_()),
614    SubstTemplateTemplateParmPacks(this_()),
615    GlobalNestedNameSpecifier(0),
616    Int128Decl(0), UInt128Decl(0),
617    BuiltinVaListDecl(0),
618    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
619    BOOLDecl(0),
620    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
621    FILEDecl(0),
622    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
623    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
624    cudaConfigureCallDecl(0),
625    NullTypeSourceInfo(QualType()),
626    FirstLocalImport(), LastLocalImport(),
627    SourceMgr(SM), LangOpts(LOpts),
628    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
629    Idents(idents), Selectors(sels),
630    BuiltinInfo(builtins),
631    DeclarationNames(*this),
632    ExternalSource(0), Listener(0),
633    Comments(SM), CommentsLoaded(false),
634    CommentCommandTraits(BumpAlloc),
635    LastSDM(0, 0),
636    UniqueBlockByRefTypeID(0)
637{
638  if (size_reserve > 0) Types.reserve(size_reserve);
639  TUDecl = TranslationUnitDecl::Create(*this);
640
641  if (!DelayInitialization) {
642    assert(t && "No target supplied for ASTContext initialization");
643    InitBuiltinTypes(*t);
644  }
645}
646
647ASTContext::~ASTContext() {
648  // Release the DenseMaps associated with DeclContext objects.
649  // FIXME: Is this the ideal solution?
650  ReleaseDeclContextMaps();
651
652  // Call all of the deallocation functions.
653  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
654    Deallocations[I].first(Deallocations[I].second);
655
656  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
657  // because they can contain DenseMaps.
658  for (llvm::DenseMap<const ObjCContainerDecl*,
659       const ASTRecordLayout*>::iterator
660       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
661    // Increment in loop to prevent using deallocated memory.
662    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
663      R->Destroy(*this);
664
665  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
666       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
667    // Increment in loop to prevent using deallocated memory.
668    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
669      R->Destroy(*this);
670  }
671
672  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
673                                                    AEnd = DeclAttrs.end();
674       A != AEnd; ++A)
675    A->second->~AttrVec();
676}
677
678void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
679  Deallocations.push_back(std::make_pair(Callback, Data));
680}
681
682void
683ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
684  ExternalSource.reset(Source.take());
685}
686
687void ASTContext::PrintStats() const {
688  llvm::errs() << "\n*** AST Context Stats:\n";
689  llvm::errs() << "  " << Types.size() << " types total.\n";
690
691  unsigned counts[] = {
692#define TYPE(Name, Parent) 0,
693#define ABSTRACT_TYPE(Name, Parent)
694#include "clang/AST/TypeNodes.def"
695    0 // Extra
696  };
697
698  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
699    Type *T = Types[i];
700    counts[(unsigned)T->getTypeClass()]++;
701  }
702
703  unsigned Idx = 0;
704  unsigned TotalBytes = 0;
705#define TYPE(Name, Parent)                                              \
706  if (counts[Idx])                                                      \
707    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
708                 << " types\n";                                         \
709  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
710  ++Idx;
711#define ABSTRACT_TYPE(Name, Parent)
712#include "clang/AST/TypeNodes.def"
713
714  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
715
716  // Implicit special member functions.
717  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
718               << NumImplicitDefaultConstructors
719               << " implicit default constructors created\n";
720  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
721               << NumImplicitCopyConstructors
722               << " implicit copy constructors created\n";
723  if (getLangOpts().CPlusPlus)
724    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
725                 << NumImplicitMoveConstructors
726                 << " implicit move constructors created\n";
727  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
728               << NumImplicitCopyAssignmentOperators
729               << " implicit copy assignment operators created\n";
730  if (getLangOpts().CPlusPlus)
731    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
732                 << NumImplicitMoveAssignmentOperators
733                 << " implicit move assignment operators created\n";
734  llvm::errs() << NumImplicitDestructorsDeclared << "/"
735               << NumImplicitDestructors
736               << " implicit destructors created\n";
737
738  if (ExternalSource.get()) {
739    llvm::errs() << "\n";
740    ExternalSource->PrintStats();
741  }
742
743  BumpAlloc.PrintStats();
744}
745
746TypedefDecl *ASTContext::getInt128Decl() const {
747  if (!Int128Decl) {
748    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
749    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
750                                     getTranslationUnitDecl(),
751                                     SourceLocation(),
752                                     SourceLocation(),
753                                     &Idents.get("__int128_t"),
754                                     TInfo);
755  }
756
757  return Int128Decl;
758}
759
760TypedefDecl *ASTContext::getUInt128Decl() const {
761  if (!UInt128Decl) {
762    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
763    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
764                                     getTranslationUnitDecl(),
765                                     SourceLocation(),
766                                     SourceLocation(),
767                                     &Idents.get("__uint128_t"),
768                                     TInfo);
769  }
770
771  return UInt128Decl;
772}
773
774void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
775  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
776  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
777  Types.push_back(Ty);
778}
779
780void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
781  assert((!this->Target || this->Target == &Target) &&
782         "Incorrect target reinitialization");
783  assert(VoidTy.isNull() && "Context reinitialized?");
784
785  this->Target = &Target;
786
787  ABI.reset(createCXXABI(Target));
788  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
789
790  // C99 6.2.5p19.
791  InitBuiltinType(VoidTy,              BuiltinType::Void);
792
793  // C99 6.2.5p2.
794  InitBuiltinType(BoolTy,              BuiltinType::Bool);
795  // C99 6.2.5p3.
796  if (LangOpts.CharIsSigned)
797    InitBuiltinType(CharTy,            BuiltinType::Char_S);
798  else
799    InitBuiltinType(CharTy,            BuiltinType::Char_U);
800  // C99 6.2.5p4.
801  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
802  InitBuiltinType(ShortTy,             BuiltinType::Short);
803  InitBuiltinType(IntTy,               BuiltinType::Int);
804  InitBuiltinType(LongTy,              BuiltinType::Long);
805  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
806
807  // C99 6.2.5p6.
808  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
809  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
810  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
811  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
812  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
813
814  // C99 6.2.5p10.
815  InitBuiltinType(FloatTy,             BuiltinType::Float);
816  InitBuiltinType(DoubleTy,            BuiltinType::Double);
817  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
818
819  // GNU extension, 128-bit integers.
820  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
821  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
822
823  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
824    if (TargetInfo::isTypeSigned(Target.getWCharType()))
825      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
826    else  // -fshort-wchar makes wchar_t be unsigned.
827      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
828  } else // C99 (or C++ using -fno-wchar)
829    WCharTy = getFromTargetType(Target.getWCharType());
830
831  WIntTy = getFromTargetType(Target.getWIntType());
832
833  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
834    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
835  else // C99
836    Char16Ty = getFromTargetType(Target.getChar16Type());
837
838  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
839    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
840  else // C99
841    Char32Ty = getFromTargetType(Target.getChar32Type());
842
843  // Placeholder type for type-dependent expressions whose type is
844  // completely unknown. No code should ever check a type against
845  // DependentTy and users should never see it; however, it is here to
846  // help diagnose failures to properly check for type-dependent
847  // expressions.
848  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
849
850  // Placeholder type for functions.
851  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
852
853  // Placeholder type for bound members.
854  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
855
856  // Placeholder type for pseudo-objects.
857  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
858
859  // "any" type; useful for debugger-like clients.
860  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
861
862  // Placeholder type for unbridged ARC casts.
863  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
864
865  // Placeholder type for builtin functions.
866  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
867
868  // C99 6.2.5p11.
869  FloatComplexTy      = getComplexType(FloatTy);
870  DoubleComplexTy     = getComplexType(DoubleTy);
871  LongDoubleComplexTy = getComplexType(LongDoubleTy);
872
873  // Builtin types for 'id', 'Class', and 'SEL'.
874  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
875  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
876  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
877
878  // Builtin type for __objc_yes and __objc_no
879  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
880                       SignedCharTy : BoolTy);
881
882  ObjCConstantStringType = QualType();
883
884  // void * type
885  VoidPtrTy = getPointerType(VoidTy);
886
887  // nullptr type (C++0x 2.14.7)
888  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
889
890  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
891  InitBuiltinType(HalfTy, BuiltinType::Half);
892
893  // Builtin type used to help define __builtin_va_list.
894  VaListTagTy = QualType();
895}
896
897DiagnosticsEngine &ASTContext::getDiagnostics() const {
898  return SourceMgr.getDiagnostics();
899}
900
901AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
902  AttrVec *&Result = DeclAttrs[D];
903  if (!Result) {
904    void *Mem = Allocate(sizeof(AttrVec));
905    Result = new (Mem) AttrVec;
906  }
907
908  return *Result;
909}
910
911/// \brief Erase the attributes corresponding to the given declaration.
912void ASTContext::eraseDeclAttrs(const Decl *D) {
913  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
914  if (Pos != DeclAttrs.end()) {
915    Pos->second->~AttrVec();
916    DeclAttrs.erase(Pos);
917  }
918}
919
920MemberSpecializationInfo *
921ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
922  assert(Var->isStaticDataMember() && "Not a static data member");
923  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
924    = InstantiatedFromStaticDataMember.find(Var);
925  if (Pos == InstantiatedFromStaticDataMember.end())
926    return 0;
927
928  return Pos->second;
929}
930
931void
932ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
933                                                TemplateSpecializationKind TSK,
934                                          SourceLocation PointOfInstantiation) {
935  assert(Inst->isStaticDataMember() && "Not a static data member");
936  assert(Tmpl->isStaticDataMember() && "Not a static data member");
937  assert(!InstantiatedFromStaticDataMember[Inst] &&
938         "Already noted what static data member was instantiated from");
939  InstantiatedFromStaticDataMember[Inst]
940    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
941}
942
943FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
944                                                     const FunctionDecl *FD){
945  assert(FD && "Specialization is 0");
946  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
947    = ClassScopeSpecializationPattern.find(FD);
948  if (Pos == ClassScopeSpecializationPattern.end())
949    return 0;
950
951  return Pos->second;
952}
953
954void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
955                                        FunctionDecl *Pattern) {
956  assert(FD && "Specialization is 0");
957  assert(Pattern && "Class scope specialization pattern is 0");
958  ClassScopeSpecializationPattern[FD] = Pattern;
959}
960
961NamedDecl *
962ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
963  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
964    = InstantiatedFromUsingDecl.find(UUD);
965  if (Pos == InstantiatedFromUsingDecl.end())
966    return 0;
967
968  return Pos->second;
969}
970
971void
972ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
973  assert((isa<UsingDecl>(Pattern) ||
974          isa<UnresolvedUsingValueDecl>(Pattern) ||
975          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
976         "pattern decl is not a using decl");
977  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
978  InstantiatedFromUsingDecl[Inst] = Pattern;
979}
980
981UsingShadowDecl *
982ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
983  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
984    = InstantiatedFromUsingShadowDecl.find(Inst);
985  if (Pos == InstantiatedFromUsingShadowDecl.end())
986    return 0;
987
988  return Pos->second;
989}
990
991void
992ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
993                                               UsingShadowDecl *Pattern) {
994  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
995  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
996}
997
998FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
999  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1000    = InstantiatedFromUnnamedFieldDecl.find(Field);
1001  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1002    return 0;
1003
1004  return Pos->second;
1005}
1006
1007void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1008                                                     FieldDecl *Tmpl) {
1009  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1010  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1011  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1012         "Already noted what unnamed field was instantiated from");
1013
1014  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1015}
1016
1017bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1018                                    const FieldDecl *LastFD) const {
1019  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1020          FD->getBitWidthValue(*this) == 0);
1021}
1022
1023bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1024                                             const FieldDecl *LastFD) const {
1025  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1026          FD->getBitWidthValue(*this) == 0 &&
1027          LastFD->getBitWidthValue(*this) != 0);
1028}
1029
1030bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1031                                         const FieldDecl *LastFD) const {
1032  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1033          FD->getBitWidthValue(*this) &&
1034          LastFD->getBitWidthValue(*this));
1035}
1036
1037bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1038                                         const FieldDecl *LastFD) const {
1039  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1040          LastFD->getBitWidthValue(*this));
1041}
1042
1043bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1044                                             const FieldDecl *LastFD) const {
1045  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1046          FD->getBitWidthValue(*this));
1047}
1048
1049ASTContext::overridden_cxx_method_iterator
1050ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1051  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1052    = OverriddenMethods.find(Method->getCanonicalDecl());
1053  if (Pos == OverriddenMethods.end())
1054    return 0;
1055
1056  return Pos->second.begin();
1057}
1058
1059ASTContext::overridden_cxx_method_iterator
1060ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1061  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1062    = OverriddenMethods.find(Method->getCanonicalDecl());
1063  if (Pos == OverriddenMethods.end())
1064    return 0;
1065
1066  return Pos->second.end();
1067}
1068
1069unsigned
1070ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1071  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1072    = OverriddenMethods.find(Method->getCanonicalDecl());
1073  if (Pos == OverriddenMethods.end())
1074    return 0;
1075
1076  return Pos->second.size();
1077}
1078
1079void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1080                                     const CXXMethodDecl *Overridden) {
1081  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1082  OverriddenMethods[Method].push_back(Overridden);
1083}
1084
1085void ASTContext::getOverriddenMethods(
1086                      const NamedDecl *D,
1087                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1088  assert(D);
1089
1090  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1091    Overridden.append(CXXMethod->begin_overridden_methods(),
1092                      CXXMethod->end_overridden_methods());
1093    return;
1094  }
1095
1096  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1097  if (!Method)
1098    return;
1099
1100  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1101  Method->getOverriddenMethods(OverDecls);
1102  Overridden.append(OverDecls.begin(), OverDecls.end());
1103}
1104
1105void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1106  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1107  assert(!Import->isFromASTFile() && "Non-local import declaration");
1108  if (!FirstLocalImport) {
1109    FirstLocalImport = Import;
1110    LastLocalImport = Import;
1111    return;
1112  }
1113
1114  LastLocalImport->NextLocalImport = Import;
1115  LastLocalImport = Import;
1116}
1117
1118//===----------------------------------------------------------------------===//
1119//                         Type Sizing and Analysis
1120//===----------------------------------------------------------------------===//
1121
1122/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1123/// scalar floating point type.
1124const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1125  const BuiltinType *BT = T->getAs<BuiltinType>();
1126  assert(BT && "Not a floating point type!");
1127  switch (BT->getKind()) {
1128  default: llvm_unreachable("Not a floating point type!");
1129  case BuiltinType::Half:       return Target->getHalfFormat();
1130  case BuiltinType::Float:      return Target->getFloatFormat();
1131  case BuiltinType::Double:     return Target->getDoubleFormat();
1132  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1133  }
1134}
1135
1136/// getDeclAlign - Return a conservative estimate of the alignment of the
1137/// specified decl.  Note that bitfields do not have a valid alignment, so
1138/// this method will assert on them.
1139/// If @p RefAsPointee, references are treated like their underlying type
1140/// (for alignof), else they're treated like pointers (for CodeGen).
1141CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1142  unsigned Align = Target->getCharWidth();
1143
1144  bool UseAlignAttrOnly = false;
1145  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1146    Align = AlignFromAttr;
1147
1148    // __attribute__((aligned)) can increase or decrease alignment
1149    // *except* on a struct or struct member, where it only increases
1150    // alignment unless 'packed' is also specified.
1151    //
1152    // It is an error for alignas to decrease alignment, so we can
1153    // ignore that possibility;  Sema should diagnose it.
1154    if (isa<FieldDecl>(D)) {
1155      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1156        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1157    } else {
1158      UseAlignAttrOnly = true;
1159    }
1160  }
1161  else if (isa<FieldDecl>(D))
1162      UseAlignAttrOnly =
1163        D->hasAttr<PackedAttr>() ||
1164        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1165
1166  // If we're using the align attribute only, just ignore everything
1167  // else about the declaration and its type.
1168  if (UseAlignAttrOnly) {
1169    // do nothing
1170
1171  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1172    QualType T = VD->getType();
1173    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1174      if (RefAsPointee)
1175        T = RT->getPointeeType();
1176      else
1177        T = getPointerType(RT->getPointeeType());
1178    }
1179    if (!T->isIncompleteType() && !T->isFunctionType()) {
1180      // Adjust alignments of declarations with array type by the
1181      // large-array alignment on the target.
1182      unsigned MinWidth = Target->getLargeArrayMinWidth();
1183      const ArrayType *arrayType;
1184      if (MinWidth && (arrayType = getAsArrayType(T))) {
1185        if (isa<VariableArrayType>(arrayType))
1186          Align = std::max(Align, Target->getLargeArrayAlign());
1187        else if (isa<ConstantArrayType>(arrayType) &&
1188                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1189          Align = std::max(Align, Target->getLargeArrayAlign());
1190
1191        // Walk through any array types while we're at it.
1192        T = getBaseElementType(arrayType);
1193      }
1194      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1195    }
1196
1197    // Fields can be subject to extra alignment constraints, like if
1198    // the field is packed, the struct is packed, or the struct has a
1199    // a max-field-alignment constraint (#pragma pack).  So calculate
1200    // the actual alignment of the field within the struct, and then
1201    // (as we're expected to) constrain that by the alignment of the type.
1202    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1203      // So calculate the alignment of the field.
1204      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1205
1206      // Start with the record's overall alignment.
1207      unsigned fieldAlign = toBits(layout.getAlignment());
1208
1209      // Use the GCD of that and the offset within the record.
1210      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1211      if (offset > 0) {
1212        // Alignment is always a power of 2, so the GCD will be a power of 2,
1213        // which means we get to do this crazy thing instead of Euclid's.
1214        uint64_t lowBitOfOffset = offset & (~offset + 1);
1215        if (lowBitOfOffset < fieldAlign)
1216          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1217      }
1218
1219      Align = std::min(Align, fieldAlign);
1220    }
1221  }
1222
1223  return toCharUnitsFromBits(Align);
1224}
1225
1226// getTypeInfoDataSizeInChars - Return the size of a type, in
1227// chars. If the type is a record, its data size is returned.  This is
1228// the size of the memcpy that's performed when assigning this type
1229// using a trivial copy/move assignment operator.
1230std::pair<CharUnits, CharUnits>
1231ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1232  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1233
1234  // In C++, objects can sometimes be allocated into the tail padding
1235  // of a base-class subobject.  We decide whether that's possible
1236  // during class layout, so here we can just trust the layout results.
1237  if (getLangOpts().CPlusPlus) {
1238    if (const RecordType *RT = T->getAs<RecordType>()) {
1239      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1240      sizeAndAlign.first = layout.getDataSize();
1241    }
1242  }
1243
1244  return sizeAndAlign;
1245}
1246
1247std::pair<CharUnits, CharUnits>
1248ASTContext::getTypeInfoInChars(const Type *T) const {
1249  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1250  return std::make_pair(toCharUnitsFromBits(Info.first),
1251                        toCharUnitsFromBits(Info.second));
1252}
1253
1254std::pair<CharUnits, CharUnits>
1255ASTContext::getTypeInfoInChars(QualType T) const {
1256  return getTypeInfoInChars(T.getTypePtr());
1257}
1258
1259std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1260  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1261  if (it != MemoizedTypeInfo.end())
1262    return it->second;
1263
1264  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1265  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1266  return Info;
1267}
1268
1269/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1270/// method does not work on incomplete types.
1271///
1272/// FIXME: Pointers into different addr spaces could have different sizes and
1273/// alignment requirements: getPointerInfo should take an AddrSpace, this
1274/// should take a QualType, &c.
1275std::pair<uint64_t, unsigned>
1276ASTContext::getTypeInfoImpl(const Type *T) const {
1277  uint64_t Width=0;
1278  unsigned Align=8;
1279  switch (T->getTypeClass()) {
1280#define TYPE(Class, Base)
1281#define ABSTRACT_TYPE(Class, Base)
1282#define NON_CANONICAL_TYPE(Class, Base)
1283#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1284#include "clang/AST/TypeNodes.def"
1285    llvm_unreachable("Should not see dependent types");
1286
1287  case Type::FunctionNoProto:
1288  case Type::FunctionProto:
1289    // GCC extension: alignof(function) = 32 bits
1290    Width = 0;
1291    Align = 32;
1292    break;
1293
1294  case Type::IncompleteArray:
1295  case Type::VariableArray:
1296    Width = 0;
1297    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1298    break;
1299
1300  case Type::ConstantArray: {
1301    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1302
1303    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1304    uint64_t Size = CAT->getSize().getZExtValue();
1305    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1306           "Overflow in array type bit size evaluation");
1307    Width = EltInfo.first*Size;
1308    Align = EltInfo.second;
1309    Width = llvm::RoundUpToAlignment(Width, Align);
1310    break;
1311  }
1312  case Type::ExtVector:
1313  case Type::Vector: {
1314    const VectorType *VT = cast<VectorType>(T);
1315    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1316    Width = EltInfo.first*VT->getNumElements();
1317    Align = Width;
1318    // If the alignment is not a power of 2, round up to the next power of 2.
1319    // This happens for non-power-of-2 length vectors.
1320    if (Align & (Align-1)) {
1321      Align = llvm::NextPowerOf2(Align);
1322      Width = llvm::RoundUpToAlignment(Width, Align);
1323    }
1324    // Adjust the alignment based on the target max.
1325    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1326    if (TargetVectorAlign && TargetVectorAlign < Align)
1327      Align = TargetVectorAlign;
1328    break;
1329  }
1330
1331  case Type::Builtin:
1332    switch (cast<BuiltinType>(T)->getKind()) {
1333    default: llvm_unreachable("Unknown builtin type!");
1334    case BuiltinType::Void:
1335      // GCC extension: alignof(void) = 8 bits.
1336      Width = 0;
1337      Align = 8;
1338      break;
1339
1340    case BuiltinType::Bool:
1341      Width = Target->getBoolWidth();
1342      Align = Target->getBoolAlign();
1343      break;
1344    case BuiltinType::Char_S:
1345    case BuiltinType::Char_U:
1346    case BuiltinType::UChar:
1347    case BuiltinType::SChar:
1348      Width = Target->getCharWidth();
1349      Align = Target->getCharAlign();
1350      break;
1351    case BuiltinType::WChar_S:
1352    case BuiltinType::WChar_U:
1353      Width = Target->getWCharWidth();
1354      Align = Target->getWCharAlign();
1355      break;
1356    case BuiltinType::Char16:
1357      Width = Target->getChar16Width();
1358      Align = Target->getChar16Align();
1359      break;
1360    case BuiltinType::Char32:
1361      Width = Target->getChar32Width();
1362      Align = Target->getChar32Align();
1363      break;
1364    case BuiltinType::UShort:
1365    case BuiltinType::Short:
1366      Width = Target->getShortWidth();
1367      Align = Target->getShortAlign();
1368      break;
1369    case BuiltinType::UInt:
1370    case BuiltinType::Int:
1371      Width = Target->getIntWidth();
1372      Align = Target->getIntAlign();
1373      break;
1374    case BuiltinType::ULong:
1375    case BuiltinType::Long:
1376      Width = Target->getLongWidth();
1377      Align = Target->getLongAlign();
1378      break;
1379    case BuiltinType::ULongLong:
1380    case BuiltinType::LongLong:
1381      Width = Target->getLongLongWidth();
1382      Align = Target->getLongLongAlign();
1383      break;
1384    case BuiltinType::Int128:
1385    case BuiltinType::UInt128:
1386      Width = 128;
1387      Align = 128; // int128_t is 128-bit aligned on all targets.
1388      break;
1389    case BuiltinType::Half:
1390      Width = Target->getHalfWidth();
1391      Align = Target->getHalfAlign();
1392      break;
1393    case BuiltinType::Float:
1394      Width = Target->getFloatWidth();
1395      Align = Target->getFloatAlign();
1396      break;
1397    case BuiltinType::Double:
1398      Width = Target->getDoubleWidth();
1399      Align = Target->getDoubleAlign();
1400      break;
1401    case BuiltinType::LongDouble:
1402      Width = Target->getLongDoubleWidth();
1403      Align = Target->getLongDoubleAlign();
1404      break;
1405    case BuiltinType::NullPtr:
1406      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1407      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1408      break;
1409    case BuiltinType::ObjCId:
1410    case BuiltinType::ObjCClass:
1411    case BuiltinType::ObjCSel:
1412      Width = Target->getPointerWidth(0);
1413      Align = Target->getPointerAlign(0);
1414      break;
1415    }
1416    break;
1417  case Type::ObjCObjectPointer:
1418    Width = Target->getPointerWidth(0);
1419    Align = Target->getPointerAlign(0);
1420    break;
1421  case Type::BlockPointer: {
1422    unsigned AS = getTargetAddressSpace(
1423        cast<BlockPointerType>(T)->getPointeeType());
1424    Width = Target->getPointerWidth(AS);
1425    Align = Target->getPointerAlign(AS);
1426    break;
1427  }
1428  case Type::LValueReference:
1429  case Type::RValueReference: {
1430    // alignof and sizeof should never enter this code path here, so we go
1431    // the pointer route.
1432    unsigned AS = getTargetAddressSpace(
1433        cast<ReferenceType>(T)->getPointeeType());
1434    Width = Target->getPointerWidth(AS);
1435    Align = Target->getPointerAlign(AS);
1436    break;
1437  }
1438  case Type::Pointer: {
1439    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1440    Width = Target->getPointerWidth(AS);
1441    Align = Target->getPointerAlign(AS);
1442    break;
1443  }
1444  case Type::MemberPointer: {
1445    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1446    std::pair<uint64_t, unsigned> PtrDiffInfo =
1447      getTypeInfo(getPointerDiffType());
1448    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1449    Align = PtrDiffInfo.second;
1450    break;
1451  }
1452  case Type::Complex: {
1453    // Complex types have the same alignment as their elements, but twice the
1454    // size.
1455    std::pair<uint64_t, unsigned> EltInfo =
1456      getTypeInfo(cast<ComplexType>(T)->getElementType());
1457    Width = EltInfo.first*2;
1458    Align = EltInfo.second;
1459    break;
1460  }
1461  case Type::ObjCObject:
1462    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1463  case Type::ObjCInterface: {
1464    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1465    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1466    Width = toBits(Layout.getSize());
1467    Align = toBits(Layout.getAlignment());
1468    break;
1469  }
1470  case Type::Record:
1471  case Type::Enum: {
1472    const TagType *TT = cast<TagType>(T);
1473
1474    if (TT->getDecl()->isInvalidDecl()) {
1475      Width = 8;
1476      Align = 8;
1477      break;
1478    }
1479
1480    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1481      return getTypeInfo(ET->getDecl()->getIntegerType());
1482
1483    const RecordType *RT = cast<RecordType>(TT);
1484    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1485    Width = toBits(Layout.getSize());
1486    Align = toBits(Layout.getAlignment());
1487    break;
1488  }
1489
1490  case Type::SubstTemplateTypeParm:
1491    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1492                       getReplacementType().getTypePtr());
1493
1494  case Type::Auto: {
1495    const AutoType *A = cast<AutoType>(T);
1496    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1497    return getTypeInfo(A->getDeducedType().getTypePtr());
1498  }
1499
1500  case Type::Paren:
1501    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1502
1503  case Type::Typedef: {
1504    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1505    std::pair<uint64_t, unsigned> Info
1506      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1507    // If the typedef has an aligned attribute on it, it overrides any computed
1508    // alignment we have.  This violates the GCC documentation (which says that
1509    // attribute(aligned) can only round up) but matches its implementation.
1510    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1511      Align = AttrAlign;
1512    else
1513      Align = Info.second;
1514    Width = Info.first;
1515    break;
1516  }
1517
1518  case Type::TypeOfExpr:
1519    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1520                         .getTypePtr());
1521
1522  case Type::TypeOf:
1523    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1524
1525  case Type::Decltype:
1526    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1527                        .getTypePtr());
1528
1529  case Type::UnaryTransform:
1530    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1531
1532  case Type::Elaborated:
1533    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1534
1535  case Type::Attributed:
1536    return getTypeInfo(
1537                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1538
1539  case Type::TemplateSpecialization: {
1540    assert(getCanonicalType(T) != T &&
1541           "Cannot request the size of a dependent type");
1542    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1543    // A type alias template specialization may refer to a typedef with the
1544    // aligned attribute on it.
1545    if (TST->isTypeAlias())
1546      return getTypeInfo(TST->getAliasedType().getTypePtr());
1547    else
1548      return getTypeInfo(getCanonicalType(T));
1549  }
1550
1551  case Type::Atomic: {
1552    std::pair<uint64_t, unsigned> Info
1553      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1554    Width = Info.first;
1555    Align = Info.second;
1556    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1557        llvm::isPowerOf2_64(Width)) {
1558      // We can potentially perform lock-free atomic operations for this
1559      // type; promote the alignment appropriately.
1560      // FIXME: We could potentially promote the width here as well...
1561      // is that worthwhile?  (Non-struct atomic types generally have
1562      // power-of-two size anyway, but structs might not.  Requires a bit
1563      // of implementation work to make sure we zero out the extra bits.)
1564      Align = static_cast<unsigned>(Width);
1565    }
1566  }
1567
1568  }
1569
1570  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1571  return std::make_pair(Width, Align);
1572}
1573
1574/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1575CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1576  return CharUnits::fromQuantity(BitSize / getCharWidth());
1577}
1578
1579/// toBits - Convert a size in characters to a size in characters.
1580int64_t ASTContext::toBits(CharUnits CharSize) const {
1581  return CharSize.getQuantity() * getCharWidth();
1582}
1583
1584/// getTypeSizeInChars - Return the size of the specified type, in characters.
1585/// This method does not work on incomplete types.
1586CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1587  return toCharUnitsFromBits(getTypeSize(T));
1588}
1589CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1590  return toCharUnitsFromBits(getTypeSize(T));
1591}
1592
1593/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1594/// characters. This method does not work on incomplete types.
1595CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1596  return toCharUnitsFromBits(getTypeAlign(T));
1597}
1598CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1599  return toCharUnitsFromBits(getTypeAlign(T));
1600}
1601
1602/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1603/// type for the current target in bits.  This can be different than the ABI
1604/// alignment in cases where it is beneficial for performance to overalign
1605/// a data type.
1606unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1607  unsigned ABIAlign = getTypeAlign(T);
1608
1609  // Double and long long should be naturally aligned if possible.
1610  if (const ComplexType* CT = T->getAs<ComplexType>())
1611    T = CT->getElementType().getTypePtr();
1612  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1613      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1614      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1615    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1616
1617  return ABIAlign;
1618}
1619
1620/// DeepCollectObjCIvars -
1621/// This routine first collects all declared, but not synthesized, ivars in
1622/// super class and then collects all ivars, including those synthesized for
1623/// current class. This routine is used for implementation of current class
1624/// when all ivars, declared and synthesized are known.
1625///
1626void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1627                                      bool leafClass,
1628                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1629  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1630    DeepCollectObjCIvars(SuperClass, false, Ivars);
1631  if (!leafClass) {
1632    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1633         E = OI->ivar_end(); I != E; ++I)
1634      Ivars.push_back(*I);
1635  } else {
1636    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1637    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1638         Iv= Iv->getNextIvar())
1639      Ivars.push_back(Iv);
1640  }
1641}
1642
1643/// CollectInheritedProtocols - Collect all protocols in current class and
1644/// those inherited by it.
1645void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1646                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1647  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1648    // We can use protocol_iterator here instead of
1649    // all_referenced_protocol_iterator since we are walking all categories.
1650    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1651         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1652      ObjCProtocolDecl *Proto = (*P);
1653      Protocols.insert(Proto->getCanonicalDecl());
1654      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1655           PE = Proto->protocol_end(); P != PE; ++P) {
1656        Protocols.insert((*P)->getCanonicalDecl());
1657        CollectInheritedProtocols(*P, Protocols);
1658      }
1659    }
1660
1661    // Categories of this Interface.
1662    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1663         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1664      CollectInheritedProtocols(CDeclChain, Protocols);
1665    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1666      while (SD) {
1667        CollectInheritedProtocols(SD, Protocols);
1668        SD = SD->getSuperClass();
1669      }
1670  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1671    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1672         PE = OC->protocol_end(); P != PE; ++P) {
1673      ObjCProtocolDecl *Proto = (*P);
1674      Protocols.insert(Proto->getCanonicalDecl());
1675      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1676           PE = Proto->protocol_end(); P != PE; ++P)
1677        CollectInheritedProtocols(*P, Protocols);
1678    }
1679  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1680    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1681         PE = OP->protocol_end(); P != PE; ++P) {
1682      ObjCProtocolDecl *Proto = (*P);
1683      Protocols.insert(Proto->getCanonicalDecl());
1684      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1685           PE = Proto->protocol_end(); P != PE; ++P)
1686        CollectInheritedProtocols(*P, Protocols);
1687    }
1688  }
1689}
1690
1691unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1692  unsigned count = 0;
1693  // Count ivars declared in class extension.
1694  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1695       CDecl = CDecl->getNextClassExtension())
1696    count += CDecl->ivar_size();
1697
1698  // Count ivar defined in this class's implementation.  This
1699  // includes synthesized ivars.
1700  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1701    count += ImplDecl->ivar_size();
1702
1703  return count;
1704}
1705
1706bool ASTContext::isSentinelNullExpr(const Expr *E) {
1707  if (!E)
1708    return false;
1709
1710  // nullptr_t is always treated as null.
1711  if (E->getType()->isNullPtrType()) return true;
1712
1713  if (E->getType()->isAnyPointerType() &&
1714      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1715                                                Expr::NPC_ValueDependentIsNull))
1716    return true;
1717
1718  // Unfortunately, __null has type 'int'.
1719  if (isa<GNUNullExpr>(E)) return true;
1720
1721  return false;
1722}
1723
1724/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1725ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1726  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1727    I = ObjCImpls.find(D);
1728  if (I != ObjCImpls.end())
1729    return cast<ObjCImplementationDecl>(I->second);
1730  return 0;
1731}
1732/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1733ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1734  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1735    I = ObjCImpls.find(D);
1736  if (I != ObjCImpls.end())
1737    return cast<ObjCCategoryImplDecl>(I->second);
1738  return 0;
1739}
1740
1741/// \brief Set the implementation of ObjCInterfaceDecl.
1742void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1743                           ObjCImplementationDecl *ImplD) {
1744  assert(IFaceD && ImplD && "Passed null params");
1745  ObjCImpls[IFaceD] = ImplD;
1746}
1747/// \brief Set the implementation of ObjCCategoryDecl.
1748void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1749                           ObjCCategoryImplDecl *ImplD) {
1750  assert(CatD && ImplD && "Passed null params");
1751  ObjCImpls[CatD] = ImplD;
1752}
1753
1754ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1755  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1756    return ID;
1757  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1758    return CD->getClassInterface();
1759  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1760    return IMD->getClassInterface();
1761
1762  return 0;
1763}
1764
1765/// \brief Get the copy initialization expression of VarDecl,or NULL if
1766/// none exists.
1767Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1768  assert(VD && "Passed null params");
1769  assert(VD->hasAttr<BlocksAttr>() &&
1770         "getBlockVarCopyInits - not __block var");
1771  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1772    I = BlockVarCopyInits.find(VD);
1773  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1774}
1775
1776/// \brief Set the copy inialization expression of a block var decl.
1777void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1778  assert(VD && Init && "Passed null params");
1779  assert(VD->hasAttr<BlocksAttr>() &&
1780         "setBlockVarCopyInits - not __block var");
1781  BlockVarCopyInits[VD] = Init;
1782}
1783
1784TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1785                                                 unsigned DataSize) const {
1786  if (!DataSize)
1787    DataSize = TypeLoc::getFullDataSizeForType(T);
1788  else
1789    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1790           "incorrect data size provided to CreateTypeSourceInfo!");
1791
1792  TypeSourceInfo *TInfo =
1793    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1794  new (TInfo) TypeSourceInfo(T);
1795  return TInfo;
1796}
1797
1798TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1799                                                     SourceLocation L) const {
1800  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1801  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1802  return DI;
1803}
1804
1805const ASTRecordLayout &
1806ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1807  return getObjCLayout(D, 0);
1808}
1809
1810const ASTRecordLayout &
1811ASTContext::getASTObjCImplementationLayout(
1812                                        const ObjCImplementationDecl *D) const {
1813  return getObjCLayout(D->getClassInterface(), D);
1814}
1815
1816//===----------------------------------------------------------------------===//
1817//                   Type creation/memoization methods
1818//===----------------------------------------------------------------------===//
1819
1820QualType
1821ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1822  unsigned fastQuals = quals.getFastQualifiers();
1823  quals.removeFastQualifiers();
1824
1825  // Check if we've already instantiated this type.
1826  llvm::FoldingSetNodeID ID;
1827  ExtQuals::Profile(ID, baseType, quals);
1828  void *insertPos = 0;
1829  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1830    assert(eq->getQualifiers() == quals);
1831    return QualType(eq, fastQuals);
1832  }
1833
1834  // If the base type is not canonical, make the appropriate canonical type.
1835  QualType canon;
1836  if (!baseType->isCanonicalUnqualified()) {
1837    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1838    canonSplit.Quals.addConsistentQualifiers(quals);
1839    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1840
1841    // Re-find the insert position.
1842    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1843  }
1844
1845  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1846  ExtQualNodes.InsertNode(eq, insertPos);
1847  return QualType(eq, fastQuals);
1848}
1849
1850QualType
1851ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1852  QualType CanT = getCanonicalType(T);
1853  if (CanT.getAddressSpace() == AddressSpace)
1854    return T;
1855
1856  // If we are composing extended qualifiers together, merge together
1857  // into one ExtQuals node.
1858  QualifierCollector Quals;
1859  const Type *TypeNode = Quals.strip(T);
1860
1861  // If this type already has an address space specified, it cannot get
1862  // another one.
1863  assert(!Quals.hasAddressSpace() &&
1864         "Type cannot be in multiple addr spaces!");
1865  Quals.addAddressSpace(AddressSpace);
1866
1867  return getExtQualType(TypeNode, Quals);
1868}
1869
1870QualType ASTContext::getObjCGCQualType(QualType T,
1871                                       Qualifiers::GC GCAttr) const {
1872  QualType CanT = getCanonicalType(T);
1873  if (CanT.getObjCGCAttr() == GCAttr)
1874    return T;
1875
1876  if (const PointerType *ptr = T->getAs<PointerType>()) {
1877    QualType Pointee = ptr->getPointeeType();
1878    if (Pointee->isAnyPointerType()) {
1879      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1880      return getPointerType(ResultType);
1881    }
1882  }
1883
1884  // If we are composing extended qualifiers together, merge together
1885  // into one ExtQuals node.
1886  QualifierCollector Quals;
1887  const Type *TypeNode = Quals.strip(T);
1888
1889  // If this type already has an ObjCGC specified, it cannot get
1890  // another one.
1891  assert(!Quals.hasObjCGCAttr() &&
1892         "Type cannot have multiple ObjCGCs!");
1893  Quals.addObjCGCAttr(GCAttr);
1894
1895  return getExtQualType(TypeNode, Quals);
1896}
1897
1898const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1899                                                   FunctionType::ExtInfo Info) {
1900  if (T->getExtInfo() == Info)
1901    return T;
1902
1903  QualType Result;
1904  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1905    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1906  } else {
1907    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1908    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1909    EPI.ExtInfo = Info;
1910    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1911                             FPT->getNumArgs(), EPI);
1912  }
1913
1914  return cast<FunctionType>(Result.getTypePtr());
1915}
1916
1917/// getComplexType - Return the uniqued reference to the type for a complex
1918/// number with the specified element type.
1919QualType ASTContext::getComplexType(QualType T) const {
1920  // Unique pointers, to guarantee there is only one pointer of a particular
1921  // structure.
1922  llvm::FoldingSetNodeID ID;
1923  ComplexType::Profile(ID, T);
1924
1925  void *InsertPos = 0;
1926  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1927    return QualType(CT, 0);
1928
1929  // If the pointee type isn't canonical, this won't be a canonical type either,
1930  // so fill in the canonical type field.
1931  QualType Canonical;
1932  if (!T.isCanonical()) {
1933    Canonical = getComplexType(getCanonicalType(T));
1934
1935    // Get the new insert position for the node we care about.
1936    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1937    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1938  }
1939  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1940  Types.push_back(New);
1941  ComplexTypes.InsertNode(New, InsertPos);
1942  return QualType(New, 0);
1943}
1944
1945/// getPointerType - Return the uniqued reference to the type for a pointer to
1946/// the specified type.
1947QualType ASTContext::getPointerType(QualType T) const {
1948  // Unique pointers, to guarantee there is only one pointer of a particular
1949  // structure.
1950  llvm::FoldingSetNodeID ID;
1951  PointerType::Profile(ID, T);
1952
1953  void *InsertPos = 0;
1954  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1955    return QualType(PT, 0);
1956
1957  // If the pointee type isn't canonical, this won't be a canonical type either,
1958  // so fill in the canonical type field.
1959  QualType Canonical;
1960  if (!T.isCanonical()) {
1961    Canonical = getPointerType(getCanonicalType(T));
1962
1963    // Get the new insert position for the node we care about.
1964    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1965    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1966  }
1967  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1968  Types.push_back(New);
1969  PointerTypes.InsertNode(New, InsertPos);
1970  return QualType(New, 0);
1971}
1972
1973/// getBlockPointerType - Return the uniqued reference to the type for
1974/// a pointer to the specified block.
1975QualType ASTContext::getBlockPointerType(QualType T) const {
1976  assert(T->isFunctionType() && "block of function types only");
1977  // Unique pointers, to guarantee there is only one block of a particular
1978  // structure.
1979  llvm::FoldingSetNodeID ID;
1980  BlockPointerType::Profile(ID, T);
1981
1982  void *InsertPos = 0;
1983  if (BlockPointerType *PT =
1984        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1985    return QualType(PT, 0);
1986
1987  // If the block pointee type isn't canonical, this won't be a canonical
1988  // type either so fill in the canonical type field.
1989  QualType Canonical;
1990  if (!T.isCanonical()) {
1991    Canonical = getBlockPointerType(getCanonicalType(T));
1992
1993    // Get the new insert position for the node we care about.
1994    BlockPointerType *NewIP =
1995      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1996    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1997  }
1998  BlockPointerType *New
1999    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2000  Types.push_back(New);
2001  BlockPointerTypes.InsertNode(New, InsertPos);
2002  return QualType(New, 0);
2003}
2004
2005/// getLValueReferenceType - Return the uniqued reference to the type for an
2006/// lvalue reference to the specified type.
2007QualType
2008ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2009  assert(getCanonicalType(T) != OverloadTy &&
2010         "Unresolved overloaded function type");
2011
2012  // Unique pointers, to guarantee there is only one pointer of a particular
2013  // structure.
2014  llvm::FoldingSetNodeID ID;
2015  ReferenceType::Profile(ID, T, SpelledAsLValue);
2016
2017  void *InsertPos = 0;
2018  if (LValueReferenceType *RT =
2019        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2020    return QualType(RT, 0);
2021
2022  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2023
2024  // If the referencee type isn't canonical, this won't be a canonical type
2025  // either, so fill in the canonical type field.
2026  QualType Canonical;
2027  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2028    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2029    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2030
2031    // Get the new insert position for the node we care about.
2032    LValueReferenceType *NewIP =
2033      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2034    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2035  }
2036
2037  LValueReferenceType *New
2038    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2039                                                     SpelledAsLValue);
2040  Types.push_back(New);
2041  LValueReferenceTypes.InsertNode(New, InsertPos);
2042
2043  return QualType(New, 0);
2044}
2045
2046/// getRValueReferenceType - Return the uniqued reference to the type for an
2047/// rvalue reference to the specified type.
2048QualType ASTContext::getRValueReferenceType(QualType T) const {
2049  // Unique pointers, to guarantee there is only one pointer of a particular
2050  // structure.
2051  llvm::FoldingSetNodeID ID;
2052  ReferenceType::Profile(ID, T, false);
2053
2054  void *InsertPos = 0;
2055  if (RValueReferenceType *RT =
2056        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2057    return QualType(RT, 0);
2058
2059  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2060
2061  // If the referencee type isn't canonical, this won't be a canonical type
2062  // either, so fill in the canonical type field.
2063  QualType Canonical;
2064  if (InnerRef || !T.isCanonical()) {
2065    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2066    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2067
2068    // Get the new insert position for the node we care about.
2069    RValueReferenceType *NewIP =
2070      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2071    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2072  }
2073
2074  RValueReferenceType *New
2075    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2076  Types.push_back(New);
2077  RValueReferenceTypes.InsertNode(New, InsertPos);
2078  return QualType(New, 0);
2079}
2080
2081/// getMemberPointerType - Return the uniqued reference to the type for a
2082/// member pointer to the specified type, in the specified class.
2083QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2084  // Unique pointers, to guarantee there is only one pointer of a particular
2085  // structure.
2086  llvm::FoldingSetNodeID ID;
2087  MemberPointerType::Profile(ID, T, Cls);
2088
2089  void *InsertPos = 0;
2090  if (MemberPointerType *PT =
2091      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2092    return QualType(PT, 0);
2093
2094  // If the pointee or class type isn't canonical, this won't be a canonical
2095  // type either, so fill in the canonical type field.
2096  QualType Canonical;
2097  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2098    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2099
2100    // Get the new insert position for the node we care about.
2101    MemberPointerType *NewIP =
2102      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2103    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2104  }
2105  MemberPointerType *New
2106    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2107  Types.push_back(New);
2108  MemberPointerTypes.InsertNode(New, InsertPos);
2109  return QualType(New, 0);
2110}
2111
2112/// getConstantArrayType - Return the unique reference to the type for an
2113/// array of the specified element type.
2114QualType ASTContext::getConstantArrayType(QualType EltTy,
2115                                          const llvm::APInt &ArySizeIn,
2116                                          ArrayType::ArraySizeModifier ASM,
2117                                          unsigned IndexTypeQuals) const {
2118  assert((EltTy->isDependentType() ||
2119          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2120         "Constant array of VLAs is illegal!");
2121
2122  // Convert the array size into a canonical width matching the pointer size for
2123  // the target.
2124  llvm::APInt ArySize(ArySizeIn);
2125  ArySize =
2126    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2127
2128  llvm::FoldingSetNodeID ID;
2129  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2130
2131  void *InsertPos = 0;
2132  if (ConstantArrayType *ATP =
2133      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2134    return QualType(ATP, 0);
2135
2136  // If the element type isn't canonical or has qualifiers, this won't
2137  // be a canonical type either, so fill in the canonical type field.
2138  QualType Canon;
2139  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2140    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2141    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2142                                 ASM, IndexTypeQuals);
2143    Canon = getQualifiedType(Canon, canonSplit.Quals);
2144
2145    // Get the new insert position for the node we care about.
2146    ConstantArrayType *NewIP =
2147      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2148    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2149  }
2150
2151  ConstantArrayType *New = new(*this,TypeAlignment)
2152    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2153  ConstantArrayTypes.InsertNode(New, InsertPos);
2154  Types.push_back(New);
2155  return QualType(New, 0);
2156}
2157
2158/// getVariableArrayDecayedType - Turns the given type, which may be
2159/// variably-modified, into the corresponding type with all the known
2160/// sizes replaced with [*].
2161QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2162  // Vastly most common case.
2163  if (!type->isVariablyModifiedType()) return type;
2164
2165  QualType result;
2166
2167  SplitQualType split = type.getSplitDesugaredType();
2168  const Type *ty = split.Ty;
2169  switch (ty->getTypeClass()) {
2170#define TYPE(Class, Base)
2171#define ABSTRACT_TYPE(Class, Base)
2172#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2173#include "clang/AST/TypeNodes.def"
2174    llvm_unreachable("didn't desugar past all non-canonical types?");
2175
2176  // These types should never be variably-modified.
2177  case Type::Builtin:
2178  case Type::Complex:
2179  case Type::Vector:
2180  case Type::ExtVector:
2181  case Type::DependentSizedExtVector:
2182  case Type::ObjCObject:
2183  case Type::ObjCInterface:
2184  case Type::ObjCObjectPointer:
2185  case Type::Record:
2186  case Type::Enum:
2187  case Type::UnresolvedUsing:
2188  case Type::TypeOfExpr:
2189  case Type::TypeOf:
2190  case Type::Decltype:
2191  case Type::UnaryTransform:
2192  case Type::DependentName:
2193  case Type::InjectedClassName:
2194  case Type::TemplateSpecialization:
2195  case Type::DependentTemplateSpecialization:
2196  case Type::TemplateTypeParm:
2197  case Type::SubstTemplateTypeParmPack:
2198  case Type::Auto:
2199  case Type::PackExpansion:
2200    llvm_unreachable("type should never be variably-modified");
2201
2202  // These types can be variably-modified but should never need to
2203  // further decay.
2204  case Type::FunctionNoProto:
2205  case Type::FunctionProto:
2206  case Type::BlockPointer:
2207  case Type::MemberPointer:
2208    return type;
2209
2210  // These types can be variably-modified.  All these modifications
2211  // preserve structure except as noted by comments.
2212  // TODO: if we ever care about optimizing VLAs, there are no-op
2213  // optimizations available here.
2214  case Type::Pointer:
2215    result = getPointerType(getVariableArrayDecayedType(
2216                              cast<PointerType>(ty)->getPointeeType()));
2217    break;
2218
2219  case Type::LValueReference: {
2220    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2221    result = getLValueReferenceType(
2222                 getVariableArrayDecayedType(lv->getPointeeType()),
2223                                    lv->isSpelledAsLValue());
2224    break;
2225  }
2226
2227  case Type::RValueReference: {
2228    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2229    result = getRValueReferenceType(
2230                 getVariableArrayDecayedType(lv->getPointeeType()));
2231    break;
2232  }
2233
2234  case Type::Atomic: {
2235    const AtomicType *at = cast<AtomicType>(ty);
2236    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2237    break;
2238  }
2239
2240  case Type::ConstantArray: {
2241    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2242    result = getConstantArrayType(
2243                 getVariableArrayDecayedType(cat->getElementType()),
2244                                  cat->getSize(),
2245                                  cat->getSizeModifier(),
2246                                  cat->getIndexTypeCVRQualifiers());
2247    break;
2248  }
2249
2250  case Type::DependentSizedArray: {
2251    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2252    result = getDependentSizedArrayType(
2253                 getVariableArrayDecayedType(dat->getElementType()),
2254                                        dat->getSizeExpr(),
2255                                        dat->getSizeModifier(),
2256                                        dat->getIndexTypeCVRQualifiers(),
2257                                        dat->getBracketsRange());
2258    break;
2259  }
2260
2261  // Turn incomplete types into [*] types.
2262  case Type::IncompleteArray: {
2263    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2264    result = getVariableArrayType(
2265                 getVariableArrayDecayedType(iat->getElementType()),
2266                                  /*size*/ 0,
2267                                  ArrayType::Normal,
2268                                  iat->getIndexTypeCVRQualifiers(),
2269                                  SourceRange());
2270    break;
2271  }
2272
2273  // Turn VLA types into [*] types.
2274  case Type::VariableArray: {
2275    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2276    result = getVariableArrayType(
2277                 getVariableArrayDecayedType(vat->getElementType()),
2278                                  /*size*/ 0,
2279                                  ArrayType::Star,
2280                                  vat->getIndexTypeCVRQualifiers(),
2281                                  vat->getBracketsRange());
2282    break;
2283  }
2284  }
2285
2286  // Apply the top-level qualifiers from the original.
2287  return getQualifiedType(result, split.Quals);
2288}
2289
2290/// getVariableArrayType - Returns a non-unique reference to the type for a
2291/// variable array of the specified element type.
2292QualType ASTContext::getVariableArrayType(QualType EltTy,
2293                                          Expr *NumElts,
2294                                          ArrayType::ArraySizeModifier ASM,
2295                                          unsigned IndexTypeQuals,
2296                                          SourceRange Brackets) const {
2297  // Since we don't unique expressions, it isn't possible to unique VLA's
2298  // that have an expression provided for their size.
2299  QualType Canon;
2300
2301  // Be sure to pull qualifiers off the element type.
2302  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2303    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2304    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2305                                 IndexTypeQuals, Brackets);
2306    Canon = getQualifiedType(Canon, canonSplit.Quals);
2307  }
2308
2309  VariableArrayType *New = new(*this, TypeAlignment)
2310    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2311
2312  VariableArrayTypes.push_back(New);
2313  Types.push_back(New);
2314  return QualType(New, 0);
2315}
2316
2317/// getDependentSizedArrayType - Returns a non-unique reference to
2318/// the type for a dependently-sized array of the specified element
2319/// type.
2320QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2321                                                Expr *numElements,
2322                                                ArrayType::ArraySizeModifier ASM,
2323                                                unsigned elementTypeQuals,
2324                                                SourceRange brackets) const {
2325  assert((!numElements || numElements->isTypeDependent() ||
2326          numElements->isValueDependent()) &&
2327         "Size must be type- or value-dependent!");
2328
2329  // Dependently-sized array types that do not have a specified number
2330  // of elements will have their sizes deduced from a dependent
2331  // initializer.  We do no canonicalization here at all, which is okay
2332  // because they can't be used in most locations.
2333  if (!numElements) {
2334    DependentSizedArrayType *newType
2335      = new (*this, TypeAlignment)
2336          DependentSizedArrayType(*this, elementType, QualType(),
2337                                  numElements, ASM, elementTypeQuals,
2338                                  brackets);
2339    Types.push_back(newType);
2340    return QualType(newType, 0);
2341  }
2342
2343  // Otherwise, we actually build a new type every time, but we
2344  // also build a canonical type.
2345
2346  SplitQualType canonElementType = getCanonicalType(elementType).split();
2347
2348  void *insertPos = 0;
2349  llvm::FoldingSetNodeID ID;
2350  DependentSizedArrayType::Profile(ID, *this,
2351                                   QualType(canonElementType.Ty, 0),
2352                                   ASM, elementTypeQuals, numElements);
2353
2354  // Look for an existing type with these properties.
2355  DependentSizedArrayType *canonTy =
2356    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2357
2358  // If we don't have one, build one.
2359  if (!canonTy) {
2360    canonTy = new (*this, TypeAlignment)
2361      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2362                              QualType(), numElements, ASM, elementTypeQuals,
2363                              brackets);
2364    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2365    Types.push_back(canonTy);
2366  }
2367
2368  // Apply qualifiers from the element type to the array.
2369  QualType canon = getQualifiedType(QualType(canonTy,0),
2370                                    canonElementType.Quals);
2371
2372  // If we didn't need extra canonicalization for the element type,
2373  // then just use that as our result.
2374  if (QualType(canonElementType.Ty, 0) == elementType)
2375    return canon;
2376
2377  // Otherwise, we need to build a type which follows the spelling
2378  // of the element type.
2379  DependentSizedArrayType *sugaredType
2380    = new (*this, TypeAlignment)
2381        DependentSizedArrayType(*this, elementType, canon, numElements,
2382                                ASM, elementTypeQuals, brackets);
2383  Types.push_back(sugaredType);
2384  return QualType(sugaredType, 0);
2385}
2386
2387QualType ASTContext::getIncompleteArrayType(QualType elementType,
2388                                            ArrayType::ArraySizeModifier ASM,
2389                                            unsigned elementTypeQuals) const {
2390  llvm::FoldingSetNodeID ID;
2391  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2392
2393  void *insertPos = 0;
2394  if (IncompleteArrayType *iat =
2395       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2396    return QualType(iat, 0);
2397
2398  // If the element type isn't canonical, this won't be a canonical type
2399  // either, so fill in the canonical type field.  We also have to pull
2400  // qualifiers off the element type.
2401  QualType canon;
2402
2403  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2404    SplitQualType canonSplit = getCanonicalType(elementType).split();
2405    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2406                                   ASM, elementTypeQuals);
2407    canon = getQualifiedType(canon, canonSplit.Quals);
2408
2409    // Get the new insert position for the node we care about.
2410    IncompleteArrayType *existing =
2411      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2412    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2413  }
2414
2415  IncompleteArrayType *newType = new (*this, TypeAlignment)
2416    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2417
2418  IncompleteArrayTypes.InsertNode(newType, insertPos);
2419  Types.push_back(newType);
2420  return QualType(newType, 0);
2421}
2422
2423/// getVectorType - Return the unique reference to a vector type of
2424/// the specified element type and size. VectorType must be a built-in type.
2425QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2426                                   VectorType::VectorKind VecKind) const {
2427  assert(vecType->isBuiltinType());
2428
2429  // Check if we've already instantiated a vector of this type.
2430  llvm::FoldingSetNodeID ID;
2431  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2432
2433  void *InsertPos = 0;
2434  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2435    return QualType(VTP, 0);
2436
2437  // If the element type isn't canonical, this won't be a canonical type either,
2438  // so fill in the canonical type field.
2439  QualType Canonical;
2440  if (!vecType.isCanonical()) {
2441    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2442
2443    // Get the new insert position for the node we care about.
2444    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2445    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2446  }
2447  VectorType *New = new (*this, TypeAlignment)
2448    VectorType(vecType, NumElts, Canonical, VecKind);
2449  VectorTypes.InsertNode(New, InsertPos);
2450  Types.push_back(New);
2451  return QualType(New, 0);
2452}
2453
2454/// getExtVectorType - Return the unique reference to an extended vector type of
2455/// the specified element type and size. VectorType must be a built-in type.
2456QualType
2457ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2458  assert(vecType->isBuiltinType() || vecType->isDependentType());
2459
2460  // Check if we've already instantiated a vector of this type.
2461  llvm::FoldingSetNodeID ID;
2462  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2463                      VectorType::GenericVector);
2464  void *InsertPos = 0;
2465  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2466    return QualType(VTP, 0);
2467
2468  // If the element type isn't canonical, this won't be a canonical type either,
2469  // so fill in the canonical type field.
2470  QualType Canonical;
2471  if (!vecType.isCanonical()) {
2472    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2473
2474    // Get the new insert position for the node we care about.
2475    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2476    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2477  }
2478  ExtVectorType *New = new (*this, TypeAlignment)
2479    ExtVectorType(vecType, NumElts, Canonical);
2480  VectorTypes.InsertNode(New, InsertPos);
2481  Types.push_back(New);
2482  return QualType(New, 0);
2483}
2484
2485QualType
2486ASTContext::getDependentSizedExtVectorType(QualType vecType,
2487                                           Expr *SizeExpr,
2488                                           SourceLocation AttrLoc) const {
2489  llvm::FoldingSetNodeID ID;
2490  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2491                                       SizeExpr);
2492
2493  void *InsertPos = 0;
2494  DependentSizedExtVectorType *Canon
2495    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2496  DependentSizedExtVectorType *New;
2497  if (Canon) {
2498    // We already have a canonical version of this array type; use it as
2499    // the canonical type for a newly-built type.
2500    New = new (*this, TypeAlignment)
2501      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2502                                  SizeExpr, AttrLoc);
2503  } else {
2504    QualType CanonVecTy = getCanonicalType(vecType);
2505    if (CanonVecTy == vecType) {
2506      New = new (*this, TypeAlignment)
2507        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2508                                    AttrLoc);
2509
2510      DependentSizedExtVectorType *CanonCheck
2511        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2512      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2513      (void)CanonCheck;
2514      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2515    } else {
2516      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2517                                                      SourceLocation());
2518      New = new (*this, TypeAlignment)
2519        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2520    }
2521  }
2522
2523  Types.push_back(New);
2524  return QualType(New, 0);
2525}
2526
2527/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2528///
2529QualType
2530ASTContext::getFunctionNoProtoType(QualType ResultTy,
2531                                   const FunctionType::ExtInfo &Info) const {
2532  const CallingConv DefaultCC = Info.getCC();
2533  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2534                               CC_X86StdCall : DefaultCC;
2535  // Unique functions, to guarantee there is only one function of a particular
2536  // structure.
2537  llvm::FoldingSetNodeID ID;
2538  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2539
2540  void *InsertPos = 0;
2541  if (FunctionNoProtoType *FT =
2542        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2543    return QualType(FT, 0);
2544
2545  QualType Canonical;
2546  if (!ResultTy.isCanonical() ||
2547      getCanonicalCallConv(CallConv) != CallConv) {
2548    Canonical =
2549      getFunctionNoProtoType(getCanonicalType(ResultTy),
2550                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2551
2552    // Get the new insert position for the node we care about.
2553    FunctionNoProtoType *NewIP =
2554      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2555    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2556  }
2557
2558  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2559  FunctionNoProtoType *New = new (*this, TypeAlignment)
2560    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2561  Types.push_back(New);
2562  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2563  return QualType(New, 0);
2564}
2565
2566/// getFunctionType - Return a normal function type with a typed argument
2567/// list.  isVariadic indicates whether the argument list includes '...'.
2568QualType
2569ASTContext::getFunctionType(QualType ResultTy,
2570                            const QualType *ArgArray, unsigned NumArgs,
2571                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2572  // Unique functions, to guarantee there is only one function of a particular
2573  // structure.
2574  llvm::FoldingSetNodeID ID;
2575  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2576
2577  void *InsertPos = 0;
2578  if (FunctionProtoType *FTP =
2579        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2580    return QualType(FTP, 0);
2581
2582  // Determine whether the type being created is already canonical or not.
2583  bool isCanonical =
2584    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2585    !EPI.HasTrailingReturn;
2586  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2587    if (!ArgArray[i].isCanonicalAsParam())
2588      isCanonical = false;
2589
2590  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2591  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2592                               CC_X86StdCall : DefaultCC;
2593
2594  // If this type isn't canonical, get the canonical version of it.
2595  // The exception spec is not part of the canonical type.
2596  QualType Canonical;
2597  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2598    SmallVector<QualType, 16> CanonicalArgs;
2599    CanonicalArgs.reserve(NumArgs);
2600    for (unsigned i = 0; i != NumArgs; ++i)
2601      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2602
2603    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2604    CanonicalEPI.HasTrailingReturn = false;
2605    CanonicalEPI.ExceptionSpecType = EST_None;
2606    CanonicalEPI.NumExceptions = 0;
2607    CanonicalEPI.ExtInfo
2608      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2609
2610    Canonical = getFunctionType(getCanonicalType(ResultTy),
2611                                CanonicalArgs.data(), NumArgs,
2612                                CanonicalEPI);
2613
2614    // Get the new insert position for the node we care about.
2615    FunctionProtoType *NewIP =
2616      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2617    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2618  }
2619
2620  // FunctionProtoType objects are allocated with extra bytes after
2621  // them for three variable size arrays at the end:
2622  //  - parameter types
2623  //  - exception types
2624  //  - consumed-arguments flags
2625  // Instead of the exception types, there could be a noexcept
2626  // expression, or information used to resolve the exception
2627  // specification.
2628  size_t Size = sizeof(FunctionProtoType) +
2629                NumArgs * sizeof(QualType);
2630  if (EPI.ExceptionSpecType == EST_Dynamic) {
2631    Size += EPI.NumExceptions * sizeof(QualType);
2632  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2633    Size += sizeof(Expr*);
2634  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2635    Size += 2 * sizeof(FunctionDecl*);
2636  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2637    Size += sizeof(FunctionDecl*);
2638  }
2639  if (EPI.ConsumedArguments)
2640    Size += NumArgs * sizeof(bool);
2641
2642  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2643  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2644  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2645  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2646  Types.push_back(FTP);
2647  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2648  return QualType(FTP, 0);
2649}
2650
2651#ifndef NDEBUG
2652static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2653  if (!isa<CXXRecordDecl>(D)) return false;
2654  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2655  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2656    return true;
2657  if (RD->getDescribedClassTemplate() &&
2658      !isa<ClassTemplateSpecializationDecl>(RD))
2659    return true;
2660  return false;
2661}
2662#endif
2663
2664/// getInjectedClassNameType - Return the unique reference to the
2665/// injected class name type for the specified templated declaration.
2666QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2667                                              QualType TST) const {
2668  assert(NeedsInjectedClassNameType(Decl));
2669  if (Decl->TypeForDecl) {
2670    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2671  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2672    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2673    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2674    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2675  } else {
2676    Type *newType =
2677      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2678    Decl->TypeForDecl = newType;
2679    Types.push_back(newType);
2680  }
2681  return QualType(Decl->TypeForDecl, 0);
2682}
2683
2684/// getTypeDeclType - Return the unique reference to the type for the
2685/// specified type declaration.
2686QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2687  assert(Decl && "Passed null for Decl param");
2688  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2689
2690  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2691    return getTypedefType(Typedef);
2692
2693  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2694         "Template type parameter types are always available.");
2695
2696  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2697    assert(!Record->getPreviousDecl() &&
2698           "struct/union has previous declaration");
2699    assert(!NeedsInjectedClassNameType(Record));
2700    return getRecordType(Record);
2701  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2702    assert(!Enum->getPreviousDecl() &&
2703           "enum has previous declaration");
2704    return getEnumType(Enum);
2705  } else if (const UnresolvedUsingTypenameDecl *Using =
2706               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2707    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2708    Decl->TypeForDecl = newType;
2709    Types.push_back(newType);
2710  } else
2711    llvm_unreachable("TypeDecl without a type?");
2712
2713  return QualType(Decl->TypeForDecl, 0);
2714}
2715
2716/// getTypedefType - Return the unique reference to the type for the
2717/// specified typedef name decl.
2718QualType
2719ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2720                           QualType Canonical) const {
2721  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2722
2723  if (Canonical.isNull())
2724    Canonical = getCanonicalType(Decl->getUnderlyingType());
2725  TypedefType *newType = new(*this, TypeAlignment)
2726    TypedefType(Type::Typedef, Decl, Canonical);
2727  Decl->TypeForDecl = newType;
2728  Types.push_back(newType);
2729  return QualType(newType, 0);
2730}
2731
2732QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2733  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2734
2735  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2736    if (PrevDecl->TypeForDecl)
2737      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2738
2739  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2740  Decl->TypeForDecl = newType;
2741  Types.push_back(newType);
2742  return QualType(newType, 0);
2743}
2744
2745QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2746  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2747
2748  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2749    if (PrevDecl->TypeForDecl)
2750      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2751
2752  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2753  Decl->TypeForDecl = newType;
2754  Types.push_back(newType);
2755  return QualType(newType, 0);
2756}
2757
2758QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2759                                       QualType modifiedType,
2760                                       QualType equivalentType) {
2761  llvm::FoldingSetNodeID id;
2762  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2763
2764  void *insertPos = 0;
2765  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2766  if (type) return QualType(type, 0);
2767
2768  QualType canon = getCanonicalType(equivalentType);
2769  type = new (*this, TypeAlignment)
2770           AttributedType(canon, attrKind, modifiedType, equivalentType);
2771
2772  Types.push_back(type);
2773  AttributedTypes.InsertNode(type, insertPos);
2774
2775  return QualType(type, 0);
2776}
2777
2778
2779/// \brief Retrieve a substitution-result type.
2780QualType
2781ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2782                                         QualType Replacement) const {
2783  assert(Replacement.isCanonical()
2784         && "replacement types must always be canonical");
2785
2786  llvm::FoldingSetNodeID ID;
2787  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2788  void *InsertPos = 0;
2789  SubstTemplateTypeParmType *SubstParm
2790    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2791
2792  if (!SubstParm) {
2793    SubstParm = new (*this, TypeAlignment)
2794      SubstTemplateTypeParmType(Parm, Replacement);
2795    Types.push_back(SubstParm);
2796    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2797  }
2798
2799  return QualType(SubstParm, 0);
2800}
2801
2802/// \brief Retrieve a
2803QualType ASTContext::getSubstTemplateTypeParmPackType(
2804                                          const TemplateTypeParmType *Parm,
2805                                              const TemplateArgument &ArgPack) {
2806#ifndef NDEBUG
2807  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2808                                    PEnd = ArgPack.pack_end();
2809       P != PEnd; ++P) {
2810    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2811    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2812  }
2813#endif
2814
2815  llvm::FoldingSetNodeID ID;
2816  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2817  void *InsertPos = 0;
2818  if (SubstTemplateTypeParmPackType *SubstParm
2819        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2820    return QualType(SubstParm, 0);
2821
2822  QualType Canon;
2823  if (!Parm->isCanonicalUnqualified()) {
2824    Canon = getCanonicalType(QualType(Parm, 0));
2825    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2826                                             ArgPack);
2827    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2828  }
2829
2830  SubstTemplateTypeParmPackType *SubstParm
2831    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2832                                                               ArgPack);
2833  Types.push_back(SubstParm);
2834  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2835  return QualType(SubstParm, 0);
2836}
2837
2838/// \brief Retrieve the template type parameter type for a template
2839/// parameter or parameter pack with the given depth, index, and (optionally)
2840/// name.
2841QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2842                                             bool ParameterPack,
2843                                             TemplateTypeParmDecl *TTPDecl) const {
2844  llvm::FoldingSetNodeID ID;
2845  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2846  void *InsertPos = 0;
2847  TemplateTypeParmType *TypeParm
2848    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2849
2850  if (TypeParm)
2851    return QualType(TypeParm, 0);
2852
2853  if (TTPDecl) {
2854    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2855    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2856
2857    TemplateTypeParmType *TypeCheck
2858      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2859    assert(!TypeCheck && "Template type parameter canonical type broken");
2860    (void)TypeCheck;
2861  } else
2862    TypeParm = new (*this, TypeAlignment)
2863      TemplateTypeParmType(Depth, Index, ParameterPack);
2864
2865  Types.push_back(TypeParm);
2866  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2867
2868  return QualType(TypeParm, 0);
2869}
2870
2871TypeSourceInfo *
2872ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2873                                              SourceLocation NameLoc,
2874                                        const TemplateArgumentListInfo &Args,
2875                                              QualType Underlying) const {
2876  assert(!Name.getAsDependentTemplateName() &&
2877         "No dependent template names here!");
2878  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2879
2880  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2881  TemplateSpecializationTypeLoc TL
2882    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2883  TL.setTemplateKeywordLoc(SourceLocation());
2884  TL.setTemplateNameLoc(NameLoc);
2885  TL.setLAngleLoc(Args.getLAngleLoc());
2886  TL.setRAngleLoc(Args.getRAngleLoc());
2887  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2888    TL.setArgLocInfo(i, Args[i].getLocInfo());
2889  return DI;
2890}
2891
2892QualType
2893ASTContext::getTemplateSpecializationType(TemplateName Template,
2894                                          const TemplateArgumentListInfo &Args,
2895                                          QualType Underlying) const {
2896  assert(!Template.getAsDependentTemplateName() &&
2897         "No dependent template names here!");
2898
2899  unsigned NumArgs = Args.size();
2900
2901  SmallVector<TemplateArgument, 4> ArgVec;
2902  ArgVec.reserve(NumArgs);
2903  for (unsigned i = 0; i != NumArgs; ++i)
2904    ArgVec.push_back(Args[i].getArgument());
2905
2906  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2907                                       Underlying);
2908}
2909
2910#ifndef NDEBUG
2911static bool hasAnyPackExpansions(const TemplateArgument *Args,
2912                                 unsigned NumArgs) {
2913  for (unsigned I = 0; I != NumArgs; ++I)
2914    if (Args[I].isPackExpansion())
2915      return true;
2916
2917  return true;
2918}
2919#endif
2920
2921QualType
2922ASTContext::getTemplateSpecializationType(TemplateName Template,
2923                                          const TemplateArgument *Args,
2924                                          unsigned NumArgs,
2925                                          QualType Underlying) const {
2926  assert(!Template.getAsDependentTemplateName() &&
2927         "No dependent template names here!");
2928  // Look through qualified template names.
2929  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2930    Template = TemplateName(QTN->getTemplateDecl());
2931
2932  bool IsTypeAlias =
2933    Template.getAsTemplateDecl() &&
2934    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2935  QualType CanonType;
2936  if (!Underlying.isNull())
2937    CanonType = getCanonicalType(Underlying);
2938  else {
2939    // We can get here with an alias template when the specialization contains
2940    // a pack expansion that does not match up with a parameter pack.
2941    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2942           "Caller must compute aliased type");
2943    IsTypeAlias = false;
2944    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2945                                                       NumArgs);
2946  }
2947
2948  // Allocate the (non-canonical) template specialization type, but don't
2949  // try to unique it: these types typically have location information that
2950  // we don't unique and don't want to lose.
2951  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2952                       sizeof(TemplateArgument) * NumArgs +
2953                       (IsTypeAlias? sizeof(QualType) : 0),
2954                       TypeAlignment);
2955  TemplateSpecializationType *Spec
2956    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2957                                         IsTypeAlias ? Underlying : QualType());
2958
2959  Types.push_back(Spec);
2960  return QualType(Spec, 0);
2961}
2962
2963QualType
2964ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2965                                                   const TemplateArgument *Args,
2966                                                   unsigned NumArgs) const {
2967  assert(!Template.getAsDependentTemplateName() &&
2968         "No dependent template names here!");
2969
2970  // Look through qualified template names.
2971  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2972    Template = TemplateName(QTN->getTemplateDecl());
2973
2974  // Build the canonical template specialization type.
2975  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2976  SmallVector<TemplateArgument, 4> CanonArgs;
2977  CanonArgs.reserve(NumArgs);
2978  for (unsigned I = 0; I != NumArgs; ++I)
2979    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2980
2981  // Determine whether this canonical template specialization type already
2982  // exists.
2983  llvm::FoldingSetNodeID ID;
2984  TemplateSpecializationType::Profile(ID, CanonTemplate,
2985                                      CanonArgs.data(), NumArgs, *this);
2986
2987  void *InsertPos = 0;
2988  TemplateSpecializationType *Spec
2989    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2990
2991  if (!Spec) {
2992    // Allocate a new canonical template specialization type.
2993    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2994                          sizeof(TemplateArgument) * NumArgs),
2995                         TypeAlignment);
2996    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2997                                                CanonArgs.data(), NumArgs,
2998                                                QualType(), QualType());
2999    Types.push_back(Spec);
3000    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3001  }
3002
3003  assert(Spec->isDependentType() &&
3004         "Non-dependent template-id type must have a canonical type");
3005  return QualType(Spec, 0);
3006}
3007
3008QualType
3009ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3010                              NestedNameSpecifier *NNS,
3011                              QualType NamedType) const {
3012  llvm::FoldingSetNodeID ID;
3013  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3014
3015  void *InsertPos = 0;
3016  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3017  if (T)
3018    return QualType(T, 0);
3019
3020  QualType Canon = NamedType;
3021  if (!Canon.isCanonical()) {
3022    Canon = getCanonicalType(NamedType);
3023    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3024    assert(!CheckT && "Elaborated canonical type broken");
3025    (void)CheckT;
3026  }
3027
3028  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3029  Types.push_back(T);
3030  ElaboratedTypes.InsertNode(T, InsertPos);
3031  return QualType(T, 0);
3032}
3033
3034QualType
3035ASTContext::getParenType(QualType InnerType) const {
3036  llvm::FoldingSetNodeID ID;
3037  ParenType::Profile(ID, InnerType);
3038
3039  void *InsertPos = 0;
3040  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3041  if (T)
3042    return QualType(T, 0);
3043
3044  QualType Canon = InnerType;
3045  if (!Canon.isCanonical()) {
3046    Canon = getCanonicalType(InnerType);
3047    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3048    assert(!CheckT && "Paren canonical type broken");
3049    (void)CheckT;
3050  }
3051
3052  T = new (*this) ParenType(InnerType, Canon);
3053  Types.push_back(T);
3054  ParenTypes.InsertNode(T, InsertPos);
3055  return QualType(T, 0);
3056}
3057
3058QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3059                                          NestedNameSpecifier *NNS,
3060                                          const IdentifierInfo *Name,
3061                                          QualType Canon) const {
3062  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3063
3064  if (Canon.isNull()) {
3065    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3066    ElaboratedTypeKeyword CanonKeyword = Keyword;
3067    if (Keyword == ETK_None)
3068      CanonKeyword = ETK_Typename;
3069
3070    if (CanonNNS != NNS || CanonKeyword != Keyword)
3071      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3072  }
3073
3074  llvm::FoldingSetNodeID ID;
3075  DependentNameType::Profile(ID, Keyword, NNS, Name);
3076
3077  void *InsertPos = 0;
3078  DependentNameType *T
3079    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3080  if (T)
3081    return QualType(T, 0);
3082
3083  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3084  Types.push_back(T);
3085  DependentNameTypes.InsertNode(T, InsertPos);
3086  return QualType(T, 0);
3087}
3088
3089QualType
3090ASTContext::getDependentTemplateSpecializationType(
3091                                 ElaboratedTypeKeyword Keyword,
3092                                 NestedNameSpecifier *NNS,
3093                                 const IdentifierInfo *Name,
3094                                 const TemplateArgumentListInfo &Args) const {
3095  // TODO: avoid this copy
3096  SmallVector<TemplateArgument, 16> ArgCopy;
3097  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3098    ArgCopy.push_back(Args[I].getArgument());
3099  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3100                                                ArgCopy.size(),
3101                                                ArgCopy.data());
3102}
3103
3104QualType
3105ASTContext::getDependentTemplateSpecializationType(
3106                                 ElaboratedTypeKeyword Keyword,
3107                                 NestedNameSpecifier *NNS,
3108                                 const IdentifierInfo *Name,
3109                                 unsigned NumArgs,
3110                                 const TemplateArgument *Args) const {
3111  assert((!NNS || NNS->isDependent()) &&
3112         "nested-name-specifier must be dependent");
3113
3114  llvm::FoldingSetNodeID ID;
3115  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3116                                               Name, NumArgs, Args);
3117
3118  void *InsertPos = 0;
3119  DependentTemplateSpecializationType *T
3120    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3121  if (T)
3122    return QualType(T, 0);
3123
3124  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3125
3126  ElaboratedTypeKeyword CanonKeyword = Keyword;
3127  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3128
3129  bool AnyNonCanonArgs = false;
3130  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3131  for (unsigned I = 0; I != NumArgs; ++I) {
3132    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3133    if (!CanonArgs[I].structurallyEquals(Args[I]))
3134      AnyNonCanonArgs = true;
3135  }
3136
3137  QualType Canon;
3138  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3139    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3140                                                   Name, NumArgs,
3141                                                   CanonArgs.data());
3142
3143    // Find the insert position again.
3144    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3145  }
3146
3147  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3148                        sizeof(TemplateArgument) * NumArgs),
3149                       TypeAlignment);
3150  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3151                                                    Name, NumArgs, Args, Canon);
3152  Types.push_back(T);
3153  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3154  return QualType(T, 0);
3155}
3156
3157QualType ASTContext::getPackExpansionType(QualType Pattern,
3158                                      llvm::Optional<unsigned> NumExpansions) {
3159  llvm::FoldingSetNodeID ID;
3160  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3161
3162  assert(Pattern->containsUnexpandedParameterPack() &&
3163         "Pack expansions must expand one or more parameter packs");
3164  void *InsertPos = 0;
3165  PackExpansionType *T
3166    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3167  if (T)
3168    return QualType(T, 0);
3169
3170  QualType Canon;
3171  if (!Pattern.isCanonical()) {
3172    Canon = getCanonicalType(Pattern);
3173    // The canonical type might not contain an unexpanded parameter pack, if it
3174    // contains an alias template specialization which ignores one of its
3175    // parameters.
3176    if (Canon->containsUnexpandedParameterPack()) {
3177      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3178
3179      // Find the insert position again, in case we inserted an element into
3180      // PackExpansionTypes and invalidated our insert position.
3181      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3182    }
3183  }
3184
3185  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3186  Types.push_back(T);
3187  PackExpansionTypes.InsertNode(T, InsertPos);
3188  return QualType(T, 0);
3189}
3190
3191/// CmpProtocolNames - Comparison predicate for sorting protocols
3192/// alphabetically.
3193static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3194                            const ObjCProtocolDecl *RHS) {
3195  return LHS->getDeclName() < RHS->getDeclName();
3196}
3197
3198static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3199                                unsigned NumProtocols) {
3200  if (NumProtocols == 0) return true;
3201
3202  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3203    return false;
3204
3205  for (unsigned i = 1; i != NumProtocols; ++i)
3206    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3207        Protocols[i]->getCanonicalDecl() != Protocols[i])
3208      return false;
3209  return true;
3210}
3211
3212static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3213                                   unsigned &NumProtocols) {
3214  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3215
3216  // Sort protocols, keyed by name.
3217  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3218
3219  // Canonicalize.
3220  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3221    Protocols[I] = Protocols[I]->getCanonicalDecl();
3222
3223  // Remove duplicates.
3224  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3225  NumProtocols = ProtocolsEnd-Protocols;
3226}
3227
3228QualType ASTContext::getObjCObjectType(QualType BaseType,
3229                                       ObjCProtocolDecl * const *Protocols,
3230                                       unsigned NumProtocols) const {
3231  // If the base type is an interface and there aren't any protocols
3232  // to add, then the interface type will do just fine.
3233  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3234    return BaseType;
3235
3236  // Look in the folding set for an existing type.
3237  llvm::FoldingSetNodeID ID;
3238  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3239  void *InsertPos = 0;
3240  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3241    return QualType(QT, 0);
3242
3243  // Build the canonical type, which has the canonical base type and
3244  // a sorted-and-uniqued list of protocols.
3245  QualType Canonical;
3246  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3247  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3248    if (!ProtocolsSorted) {
3249      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3250                                                     Protocols + NumProtocols);
3251      unsigned UniqueCount = NumProtocols;
3252
3253      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3254      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3255                                    &Sorted[0], UniqueCount);
3256    } else {
3257      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3258                                    Protocols, NumProtocols);
3259    }
3260
3261    // Regenerate InsertPos.
3262    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3263  }
3264
3265  unsigned Size = sizeof(ObjCObjectTypeImpl);
3266  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3267  void *Mem = Allocate(Size, TypeAlignment);
3268  ObjCObjectTypeImpl *T =
3269    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3270
3271  Types.push_back(T);
3272  ObjCObjectTypes.InsertNode(T, InsertPos);
3273  return QualType(T, 0);
3274}
3275
3276/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3277/// the given object type.
3278QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3279  llvm::FoldingSetNodeID ID;
3280  ObjCObjectPointerType::Profile(ID, ObjectT);
3281
3282  void *InsertPos = 0;
3283  if (ObjCObjectPointerType *QT =
3284              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3285    return QualType(QT, 0);
3286
3287  // Find the canonical object type.
3288  QualType Canonical;
3289  if (!ObjectT.isCanonical()) {
3290    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3291
3292    // Regenerate InsertPos.
3293    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3294  }
3295
3296  // No match.
3297  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3298  ObjCObjectPointerType *QType =
3299    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3300
3301  Types.push_back(QType);
3302  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3303  return QualType(QType, 0);
3304}
3305
3306/// getObjCInterfaceType - Return the unique reference to the type for the
3307/// specified ObjC interface decl. The list of protocols is optional.
3308QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3309                                          ObjCInterfaceDecl *PrevDecl) const {
3310  if (Decl->TypeForDecl)
3311    return QualType(Decl->TypeForDecl, 0);
3312
3313  if (PrevDecl) {
3314    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3315    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3316    return QualType(PrevDecl->TypeForDecl, 0);
3317  }
3318
3319  // Prefer the definition, if there is one.
3320  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3321    Decl = Def;
3322
3323  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3324  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3325  Decl->TypeForDecl = T;
3326  Types.push_back(T);
3327  return QualType(T, 0);
3328}
3329
3330/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3331/// TypeOfExprType AST's (since expression's are never shared). For example,
3332/// multiple declarations that refer to "typeof(x)" all contain different
3333/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3334/// on canonical type's (which are always unique).
3335QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3336  TypeOfExprType *toe;
3337  if (tofExpr->isTypeDependent()) {
3338    llvm::FoldingSetNodeID ID;
3339    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3340
3341    void *InsertPos = 0;
3342    DependentTypeOfExprType *Canon
3343      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3344    if (Canon) {
3345      // We already have a "canonical" version of an identical, dependent
3346      // typeof(expr) type. Use that as our canonical type.
3347      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3348                                          QualType((TypeOfExprType*)Canon, 0));
3349    } else {
3350      // Build a new, canonical typeof(expr) type.
3351      Canon
3352        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3353      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3354      toe = Canon;
3355    }
3356  } else {
3357    QualType Canonical = getCanonicalType(tofExpr->getType());
3358    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3359  }
3360  Types.push_back(toe);
3361  return QualType(toe, 0);
3362}
3363
3364/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3365/// TypeOfType AST's. The only motivation to unique these nodes would be
3366/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3367/// an issue. This doesn't effect the type checker, since it operates
3368/// on canonical type's (which are always unique).
3369QualType ASTContext::getTypeOfType(QualType tofType) const {
3370  QualType Canonical = getCanonicalType(tofType);
3371  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3372  Types.push_back(tot);
3373  return QualType(tot, 0);
3374}
3375
3376
3377/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3378/// DecltypeType AST's. The only motivation to unique these nodes would be
3379/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3380/// an issue. This doesn't effect the type checker, since it operates
3381/// on canonical types (which are always unique).
3382QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3383  DecltypeType *dt;
3384
3385  // C++0x [temp.type]p2:
3386  //   If an expression e involves a template parameter, decltype(e) denotes a
3387  //   unique dependent type. Two such decltype-specifiers refer to the same
3388  //   type only if their expressions are equivalent (14.5.6.1).
3389  if (e->isInstantiationDependent()) {
3390    llvm::FoldingSetNodeID ID;
3391    DependentDecltypeType::Profile(ID, *this, e);
3392
3393    void *InsertPos = 0;
3394    DependentDecltypeType *Canon
3395      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3396    if (Canon) {
3397      // We already have a "canonical" version of an equivalent, dependent
3398      // decltype type. Use that as our canonical type.
3399      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3400                                       QualType((DecltypeType*)Canon, 0));
3401    } else {
3402      // Build a new, canonical typeof(expr) type.
3403      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3404      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3405      dt = Canon;
3406    }
3407  } else {
3408    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3409                                      getCanonicalType(UnderlyingType));
3410  }
3411  Types.push_back(dt);
3412  return QualType(dt, 0);
3413}
3414
3415/// getUnaryTransformationType - We don't unique these, since the memory
3416/// savings are minimal and these are rare.
3417QualType ASTContext::getUnaryTransformType(QualType BaseType,
3418                                           QualType UnderlyingType,
3419                                           UnaryTransformType::UTTKind Kind)
3420    const {
3421  UnaryTransformType *Ty =
3422    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3423                                                   Kind,
3424                                 UnderlyingType->isDependentType() ?
3425                                 QualType() : getCanonicalType(UnderlyingType));
3426  Types.push_back(Ty);
3427  return QualType(Ty, 0);
3428}
3429
3430/// getAutoType - We only unique auto types after they've been deduced.
3431QualType ASTContext::getAutoType(QualType DeducedType) const {
3432  void *InsertPos = 0;
3433  if (!DeducedType.isNull()) {
3434    // Look in the folding set for an existing type.
3435    llvm::FoldingSetNodeID ID;
3436    AutoType::Profile(ID, DeducedType);
3437    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3438      return QualType(AT, 0);
3439  }
3440
3441  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3442  Types.push_back(AT);
3443  if (InsertPos)
3444    AutoTypes.InsertNode(AT, InsertPos);
3445  return QualType(AT, 0);
3446}
3447
3448/// getAtomicType - Return the uniqued reference to the atomic type for
3449/// the given value type.
3450QualType ASTContext::getAtomicType(QualType T) const {
3451  // Unique pointers, to guarantee there is only one pointer of a particular
3452  // structure.
3453  llvm::FoldingSetNodeID ID;
3454  AtomicType::Profile(ID, T);
3455
3456  void *InsertPos = 0;
3457  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3458    return QualType(AT, 0);
3459
3460  // If the atomic value type isn't canonical, this won't be a canonical type
3461  // either, so fill in the canonical type field.
3462  QualType Canonical;
3463  if (!T.isCanonical()) {
3464    Canonical = getAtomicType(getCanonicalType(T));
3465
3466    // Get the new insert position for the node we care about.
3467    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3468    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3469  }
3470  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3471  Types.push_back(New);
3472  AtomicTypes.InsertNode(New, InsertPos);
3473  return QualType(New, 0);
3474}
3475
3476/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3477QualType ASTContext::getAutoDeductType() const {
3478  if (AutoDeductTy.isNull())
3479    AutoDeductTy = getAutoType(QualType());
3480  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3481  return AutoDeductTy;
3482}
3483
3484/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3485QualType ASTContext::getAutoRRefDeductType() const {
3486  if (AutoRRefDeductTy.isNull())
3487    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3488  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3489  return AutoRRefDeductTy;
3490}
3491
3492/// getTagDeclType - Return the unique reference to the type for the
3493/// specified TagDecl (struct/union/class/enum) decl.
3494QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3495  assert (Decl);
3496  // FIXME: What is the design on getTagDeclType when it requires casting
3497  // away const?  mutable?
3498  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3499}
3500
3501/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3502/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3503/// needs to agree with the definition in <stddef.h>.
3504CanQualType ASTContext::getSizeType() const {
3505  return getFromTargetType(Target->getSizeType());
3506}
3507
3508/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3509CanQualType ASTContext::getIntMaxType() const {
3510  return getFromTargetType(Target->getIntMaxType());
3511}
3512
3513/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3514CanQualType ASTContext::getUIntMaxType() const {
3515  return getFromTargetType(Target->getUIntMaxType());
3516}
3517
3518/// getSignedWCharType - Return the type of "signed wchar_t".
3519/// Used when in C++, as a GCC extension.
3520QualType ASTContext::getSignedWCharType() const {
3521  // FIXME: derive from "Target" ?
3522  return WCharTy;
3523}
3524
3525/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3526/// Used when in C++, as a GCC extension.
3527QualType ASTContext::getUnsignedWCharType() const {
3528  // FIXME: derive from "Target" ?
3529  return UnsignedIntTy;
3530}
3531
3532/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3533/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3534QualType ASTContext::getPointerDiffType() const {
3535  return getFromTargetType(Target->getPtrDiffType(0));
3536}
3537
3538/// \brief Return the unique type for "pid_t" defined in
3539/// <sys/types.h>. We need this to compute the correct type for vfork().
3540QualType ASTContext::getProcessIDType() const {
3541  return getFromTargetType(Target->getProcessIDType());
3542}
3543
3544//===----------------------------------------------------------------------===//
3545//                              Type Operators
3546//===----------------------------------------------------------------------===//
3547
3548CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3549  // Push qualifiers into arrays, and then discard any remaining
3550  // qualifiers.
3551  T = getCanonicalType(T);
3552  T = getVariableArrayDecayedType(T);
3553  const Type *Ty = T.getTypePtr();
3554  QualType Result;
3555  if (isa<ArrayType>(Ty)) {
3556    Result = getArrayDecayedType(QualType(Ty,0));
3557  } else if (isa<FunctionType>(Ty)) {
3558    Result = getPointerType(QualType(Ty, 0));
3559  } else {
3560    Result = QualType(Ty, 0);
3561  }
3562
3563  return CanQualType::CreateUnsafe(Result);
3564}
3565
3566QualType ASTContext::getUnqualifiedArrayType(QualType type,
3567                                             Qualifiers &quals) {
3568  SplitQualType splitType = type.getSplitUnqualifiedType();
3569
3570  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3571  // the unqualified desugared type and then drops it on the floor.
3572  // We then have to strip that sugar back off with
3573  // getUnqualifiedDesugaredType(), which is silly.
3574  const ArrayType *AT =
3575    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3576
3577  // If we don't have an array, just use the results in splitType.
3578  if (!AT) {
3579    quals = splitType.Quals;
3580    return QualType(splitType.Ty, 0);
3581  }
3582
3583  // Otherwise, recurse on the array's element type.
3584  QualType elementType = AT->getElementType();
3585  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3586
3587  // If that didn't change the element type, AT has no qualifiers, so we
3588  // can just use the results in splitType.
3589  if (elementType == unqualElementType) {
3590    assert(quals.empty()); // from the recursive call
3591    quals = splitType.Quals;
3592    return QualType(splitType.Ty, 0);
3593  }
3594
3595  // Otherwise, add in the qualifiers from the outermost type, then
3596  // build the type back up.
3597  quals.addConsistentQualifiers(splitType.Quals);
3598
3599  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3600    return getConstantArrayType(unqualElementType, CAT->getSize(),
3601                                CAT->getSizeModifier(), 0);
3602  }
3603
3604  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3605    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3606  }
3607
3608  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3609    return getVariableArrayType(unqualElementType,
3610                                VAT->getSizeExpr(),
3611                                VAT->getSizeModifier(),
3612                                VAT->getIndexTypeCVRQualifiers(),
3613                                VAT->getBracketsRange());
3614  }
3615
3616  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3617  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3618                                    DSAT->getSizeModifier(), 0,
3619                                    SourceRange());
3620}
3621
3622/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3623/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3624/// they point to and return true. If T1 and T2 aren't pointer types
3625/// or pointer-to-member types, or if they are not similar at this
3626/// level, returns false and leaves T1 and T2 unchanged. Top-level
3627/// qualifiers on T1 and T2 are ignored. This function will typically
3628/// be called in a loop that successively "unwraps" pointer and
3629/// pointer-to-member types to compare them at each level.
3630bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3631  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3632                    *T2PtrType = T2->getAs<PointerType>();
3633  if (T1PtrType && T2PtrType) {
3634    T1 = T1PtrType->getPointeeType();
3635    T2 = T2PtrType->getPointeeType();
3636    return true;
3637  }
3638
3639  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3640                          *T2MPType = T2->getAs<MemberPointerType>();
3641  if (T1MPType && T2MPType &&
3642      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3643                             QualType(T2MPType->getClass(), 0))) {
3644    T1 = T1MPType->getPointeeType();
3645    T2 = T2MPType->getPointeeType();
3646    return true;
3647  }
3648
3649  if (getLangOpts().ObjC1) {
3650    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3651                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3652    if (T1OPType && T2OPType) {
3653      T1 = T1OPType->getPointeeType();
3654      T2 = T2OPType->getPointeeType();
3655      return true;
3656    }
3657  }
3658
3659  // FIXME: Block pointers, too?
3660
3661  return false;
3662}
3663
3664DeclarationNameInfo
3665ASTContext::getNameForTemplate(TemplateName Name,
3666                               SourceLocation NameLoc) const {
3667  switch (Name.getKind()) {
3668  case TemplateName::QualifiedTemplate:
3669  case TemplateName::Template:
3670    // DNInfo work in progress: CHECKME: what about DNLoc?
3671    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3672                               NameLoc);
3673
3674  case TemplateName::OverloadedTemplate: {
3675    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3676    // DNInfo work in progress: CHECKME: what about DNLoc?
3677    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3678  }
3679
3680  case TemplateName::DependentTemplate: {
3681    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3682    DeclarationName DName;
3683    if (DTN->isIdentifier()) {
3684      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3685      return DeclarationNameInfo(DName, NameLoc);
3686    } else {
3687      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3688      // DNInfo work in progress: FIXME: source locations?
3689      DeclarationNameLoc DNLoc;
3690      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3691      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3692      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3693    }
3694  }
3695
3696  case TemplateName::SubstTemplateTemplateParm: {
3697    SubstTemplateTemplateParmStorage *subst
3698      = Name.getAsSubstTemplateTemplateParm();
3699    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3700                               NameLoc);
3701  }
3702
3703  case TemplateName::SubstTemplateTemplateParmPack: {
3704    SubstTemplateTemplateParmPackStorage *subst
3705      = Name.getAsSubstTemplateTemplateParmPack();
3706    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3707                               NameLoc);
3708  }
3709  }
3710
3711  llvm_unreachable("bad template name kind!");
3712}
3713
3714TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3715  switch (Name.getKind()) {
3716  case TemplateName::QualifiedTemplate:
3717  case TemplateName::Template: {
3718    TemplateDecl *Template = Name.getAsTemplateDecl();
3719    if (TemplateTemplateParmDecl *TTP
3720          = dyn_cast<TemplateTemplateParmDecl>(Template))
3721      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3722
3723    // The canonical template name is the canonical template declaration.
3724    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3725  }
3726
3727  case TemplateName::OverloadedTemplate:
3728    llvm_unreachable("cannot canonicalize overloaded template");
3729
3730  case TemplateName::DependentTemplate: {
3731    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3732    assert(DTN && "Non-dependent template names must refer to template decls.");
3733    return DTN->CanonicalTemplateName;
3734  }
3735
3736  case TemplateName::SubstTemplateTemplateParm: {
3737    SubstTemplateTemplateParmStorage *subst
3738      = Name.getAsSubstTemplateTemplateParm();
3739    return getCanonicalTemplateName(subst->getReplacement());
3740  }
3741
3742  case TemplateName::SubstTemplateTemplateParmPack: {
3743    SubstTemplateTemplateParmPackStorage *subst
3744                                  = Name.getAsSubstTemplateTemplateParmPack();
3745    TemplateTemplateParmDecl *canonParameter
3746      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3747    TemplateArgument canonArgPack
3748      = getCanonicalTemplateArgument(subst->getArgumentPack());
3749    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3750  }
3751  }
3752
3753  llvm_unreachable("bad template name!");
3754}
3755
3756bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3757  X = getCanonicalTemplateName(X);
3758  Y = getCanonicalTemplateName(Y);
3759  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3760}
3761
3762TemplateArgument
3763ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3764  switch (Arg.getKind()) {
3765    case TemplateArgument::Null:
3766      return Arg;
3767
3768    case TemplateArgument::Expression:
3769      return Arg;
3770
3771    case TemplateArgument::Declaration: {
3772      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3773      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3774    }
3775
3776    case TemplateArgument::NullPtr:
3777      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3778                              /*isNullPtr*/true);
3779
3780    case TemplateArgument::Template:
3781      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3782
3783    case TemplateArgument::TemplateExpansion:
3784      return TemplateArgument(getCanonicalTemplateName(
3785                                         Arg.getAsTemplateOrTemplatePattern()),
3786                              Arg.getNumTemplateExpansions());
3787
3788    case TemplateArgument::Integral:
3789      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3790
3791    case TemplateArgument::Type:
3792      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3793
3794    case TemplateArgument::Pack: {
3795      if (Arg.pack_size() == 0)
3796        return Arg;
3797
3798      TemplateArgument *CanonArgs
3799        = new (*this) TemplateArgument[Arg.pack_size()];
3800      unsigned Idx = 0;
3801      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3802                                        AEnd = Arg.pack_end();
3803           A != AEnd; (void)++A, ++Idx)
3804        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3805
3806      return TemplateArgument(CanonArgs, Arg.pack_size());
3807    }
3808  }
3809
3810  // Silence GCC warning
3811  llvm_unreachable("Unhandled template argument kind");
3812}
3813
3814NestedNameSpecifier *
3815ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3816  if (!NNS)
3817    return 0;
3818
3819  switch (NNS->getKind()) {
3820  case NestedNameSpecifier::Identifier:
3821    // Canonicalize the prefix but keep the identifier the same.
3822    return NestedNameSpecifier::Create(*this,
3823                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3824                                       NNS->getAsIdentifier());
3825
3826  case NestedNameSpecifier::Namespace:
3827    // A namespace is canonical; build a nested-name-specifier with
3828    // this namespace and no prefix.
3829    return NestedNameSpecifier::Create(*this, 0,
3830                                 NNS->getAsNamespace()->getOriginalNamespace());
3831
3832  case NestedNameSpecifier::NamespaceAlias:
3833    // A namespace is canonical; build a nested-name-specifier with
3834    // this namespace and no prefix.
3835    return NestedNameSpecifier::Create(*this, 0,
3836                                    NNS->getAsNamespaceAlias()->getNamespace()
3837                                                      ->getOriginalNamespace());
3838
3839  case NestedNameSpecifier::TypeSpec:
3840  case NestedNameSpecifier::TypeSpecWithTemplate: {
3841    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3842
3843    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3844    // break it apart into its prefix and identifier, then reconsititute those
3845    // as the canonical nested-name-specifier. This is required to canonicalize
3846    // a dependent nested-name-specifier involving typedefs of dependent-name
3847    // types, e.g.,
3848    //   typedef typename T::type T1;
3849    //   typedef typename T1::type T2;
3850    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3851      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3852                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3853
3854    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3855    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3856    // first place?
3857    return NestedNameSpecifier::Create(*this, 0, false,
3858                                       const_cast<Type*>(T.getTypePtr()));
3859  }
3860
3861  case NestedNameSpecifier::Global:
3862    // The global specifier is canonical and unique.
3863    return NNS;
3864  }
3865
3866  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3867}
3868
3869
3870const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3871  // Handle the non-qualified case efficiently.
3872  if (!T.hasLocalQualifiers()) {
3873    // Handle the common positive case fast.
3874    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3875      return AT;
3876  }
3877
3878  // Handle the common negative case fast.
3879  if (!isa<ArrayType>(T.getCanonicalType()))
3880    return 0;
3881
3882  // Apply any qualifiers from the array type to the element type.  This
3883  // implements C99 6.7.3p8: "If the specification of an array type includes
3884  // any type qualifiers, the element type is so qualified, not the array type."
3885
3886  // If we get here, we either have type qualifiers on the type, or we have
3887  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3888  // we must propagate them down into the element type.
3889
3890  SplitQualType split = T.getSplitDesugaredType();
3891  Qualifiers qs = split.Quals;
3892
3893  // If we have a simple case, just return now.
3894  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3895  if (ATy == 0 || qs.empty())
3896    return ATy;
3897
3898  // Otherwise, we have an array and we have qualifiers on it.  Push the
3899  // qualifiers into the array element type and return a new array type.
3900  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3901
3902  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3903    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3904                                                CAT->getSizeModifier(),
3905                                           CAT->getIndexTypeCVRQualifiers()));
3906  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3907    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3908                                                  IAT->getSizeModifier(),
3909                                           IAT->getIndexTypeCVRQualifiers()));
3910
3911  if (const DependentSizedArrayType *DSAT
3912        = dyn_cast<DependentSizedArrayType>(ATy))
3913    return cast<ArrayType>(
3914                     getDependentSizedArrayType(NewEltTy,
3915                                                DSAT->getSizeExpr(),
3916                                                DSAT->getSizeModifier(),
3917                                              DSAT->getIndexTypeCVRQualifiers(),
3918                                                DSAT->getBracketsRange()));
3919
3920  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3921  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3922                                              VAT->getSizeExpr(),
3923                                              VAT->getSizeModifier(),
3924                                              VAT->getIndexTypeCVRQualifiers(),
3925                                              VAT->getBracketsRange()));
3926}
3927
3928QualType ASTContext::getAdjustedParameterType(QualType T) const {
3929  // C99 6.7.5.3p7:
3930  //   A declaration of a parameter as "array of type" shall be
3931  //   adjusted to "qualified pointer to type", where the type
3932  //   qualifiers (if any) are those specified within the [ and ] of
3933  //   the array type derivation.
3934  if (T->isArrayType())
3935    return getArrayDecayedType(T);
3936
3937  // C99 6.7.5.3p8:
3938  //   A declaration of a parameter as "function returning type"
3939  //   shall be adjusted to "pointer to function returning type", as
3940  //   in 6.3.2.1.
3941  if (T->isFunctionType())
3942    return getPointerType(T);
3943
3944  return T;
3945}
3946
3947QualType ASTContext::getSignatureParameterType(QualType T) const {
3948  T = getVariableArrayDecayedType(T);
3949  T = getAdjustedParameterType(T);
3950  return T.getUnqualifiedType();
3951}
3952
3953/// getArrayDecayedType - Return the properly qualified result of decaying the
3954/// specified array type to a pointer.  This operation is non-trivial when
3955/// handling typedefs etc.  The canonical type of "T" must be an array type,
3956/// this returns a pointer to a properly qualified element of the array.
3957///
3958/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3959QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3960  // Get the element type with 'getAsArrayType' so that we don't lose any
3961  // typedefs in the element type of the array.  This also handles propagation
3962  // of type qualifiers from the array type into the element type if present
3963  // (C99 6.7.3p8).
3964  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3965  assert(PrettyArrayType && "Not an array type!");
3966
3967  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3968
3969  // int x[restrict 4] ->  int *restrict
3970  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3971}
3972
3973QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3974  return getBaseElementType(array->getElementType());
3975}
3976
3977QualType ASTContext::getBaseElementType(QualType type) const {
3978  Qualifiers qs;
3979  while (true) {
3980    SplitQualType split = type.getSplitDesugaredType();
3981    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3982    if (!array) break;
3983
3984    type = array->getElementType();
3985    qs.addConsistentQualifiers(split.Quals);
3986  }
3987
3988  return getQualifiedType(type, qs);
3989}
3990
3991/// getConstantArrayElementCount - Returns number of constant array elements.
3992uint64_t
3993ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3994  uint64_t ElementCount = 1;
3995  do {
3996    ElementCount *= CA->getSize().getZExtValue();
3997    CA = dyn_cast_or_null<ConstantArrayType>(
3998      CA->getElementType()->getAsArrayTypeUnsafe());
3999  } while (CA);
4000  return ElementCount;
4001}
4002
4003/// getFloatingRank - Return a relative rank for floating point types.
4004/// This routine will assert if passed a built-in type that isn't a float.
4005static FloatingRank getFloatingRank(QualType T) {
4006  if (const ComplexType *CT = T->getAs<ComplexType>())
4007    return getFloatingRank(CT->getElementType());
4008
4009  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4010  switch (T->getAs<BuiltinType>()->getKind()) {
4011  default: llvm_unreachable("getFloatingRank(): not a floating type");
4012  case BuiltinType::Half:       return HalfRank;
4013  case BuiltinType::Float:      return FloatRank;
4014  case BuiltinType::Double:     return DoubleRank;
4015  case BuiltinType::LongDouble: return LongDoubleRank;
4016  }
4017}
4018
4019/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4020/// point or a complex type (based on typeDomain/typeSize).
4021/// 'typeDomain' is a real floating point or complex type.
4022/// 'typeSize' is a real floating point or complex type.
4023QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4024                                                       QualType Domain) const {
4025  FloatingRank EltRank = getFloatingRank(Size);
4026  if (Domain->isComplexType()) {
4027    switch (EltRank) {
4028    case HalfRank: llvm_unreachable("Complex half is not supported");
4029    case FloatRank:      return FloatComplexTy;
4030    case DoubleRank:     return DoubleComplexTy;
4031    case LongDoubleRank: return LongDoubleComplexTy;
4032    }
4033  }
4034
4035  assert(Domain->isRealFloatingType() && "Unknown domain!");
4036  switch (EltRank) {
4037  case HalfRank: llvm_unreachable("Half ranks are not valid here");
4038  case FloatRank:      return FloatTy;
4039  case DoubleRank:     return DoubleTy;
4040  case LongDoubleRank: return LongDoubleTy;
4041  }
4042  llvm_unreachable("getFloatingRank(): illegal value for rank");
4043}
4044
4045/// getFloatingTypeOrder - Compare the rank of the two specified floating
4046/// point types, ignoring the domain of the type (i.e. 'double' ==
4047/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4048/// LHS < RHS, return -1.
4049int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4050  FloatingRank LHSR = getFloatingRank(LHS);
4051  FloatingRank RHSR = getFloatingRank(RHS);
4052
4053  if (LHSR == RHSR)
4054    return 0;
4055  if (LHSR > RHSR)
4056    return 1;
4057  return -1;
4058}
4059
4060/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4061/// routine will assert if passed a built-in type that isn't an integer or enum,
4062/// or if it is not canonicalized.
4063unsigned ASTContext::getIntegerRank(const Type *T) const {
4064  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4065
4066  switch (cast<BuiltinType>(T)->getKind()) {
4067  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4068  case BuiltinType::Bool:
4069    return 1 + (getIntWidth(BoolTy) << 3);
4070  case BuiltinType::Char_S:
4071  case BuiltinType::Char_U:
4072  case BuiltinType::SChar:
4073  case BuiltinType::UChar:
4074    return 2 + (getIntWidth(CharTy) << 3);
4075  case BuiltinType::Short:
4076  case BuiltinType::UShort:
4077    return 3 + (getIntWidth(ShortTy) << 3);
4078  case BuiltinType::Int:
4079  case BuiltinType::UInt:
4080    return 4 + (getIntWidth(IntTy) << 3);
4081  case BuiltinType::Long:
4082  case BuiltinType::ULong:
4083    return 5 + (getIntWidth(LongTy) << 3);
4084  case BuiltinType::LongLong:
4085  case BuiltinType::ULongLong:
4086    return 6 + (getIntWidth(LongLongTy) << 3);
4087  case BuiltinType::Int128:
4088  case BuiltinType::UInt128:
4089    return 7 + (getIntWidth(Int128Ty) << 3);
4090  }
4091}
4092
4093/// \brief Whether this is a promotable bitfield reference according
4094/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4095///
4096/// \returns the type this bit-field will promote to, or NULL if no
4097/// promotion occurs.
4098QualType ASTContext::isPromotableBitField(Expr *E) const {
4099  if (E->isTypeDependent() || E->isValueDependent())
4100    return QualType();
4101
4102  FieldDecl *Field = E->getBitField();
4103  if (!Field)
4104    return QualType();
4105
4106  QualType FT = Field->getType();
4107
4108  uint64_t BitWidth = Field->getBitWidthValue(*this);
4109  uint64_t IntSize = getTypeSize(IntTy);
4110  // GCC extension compatibility: if the bit-field size is less than or equal
4111  // to the size of int, it gets promoted no matter what its type is.
4112  // For instance, unsigned long bf : 4 gets promoted to signed int.
4113  if (BitWidth < IntSize)
4114    return IntTy;
4115
4116  if (BitWidth == IntSize)
4117    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4118
4119  // Types bigger than int are not subject to promotions, and therefore act
4120  // like the base type.
4121  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4122  // is ridiculous.
4123  return QualType();
4124}
4125
4126/// getPromotedIntegerType - Returns the type that Promotable will
4127/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4128/// integer type.
4129QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4130  assert(!Promotable.isNull());
4131  assert(Promotable->isPromotableIntegerType());
4132  if (const EnumType *ET = Promotable->getAs<EnumType>())
4133    return ET->getDecl()->getPromotionType();
4134
4135  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4136    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4137    // (3.9.1) can be converted to a prvalue of the first of the following
4138    // types that can represent all the values of its underlying type:
4139    // int, unsigned int, long int, unsigned long int, long long int, or
4140    // unsigned long long int [...]
4141    // FIXME: Is there some better way to compute this?
4142    if (BT->getKind() == BuiltinType::WChar_S ||
4143        BT->getKind() == BuiltinType::WChar_U ||
4144        BT->getKind() == BuiltinType::Char16 ||
4145        BT->getKind() == BuiltinType::Char32) {
4146      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4147      uint64_t FromSize = getTypeSize(BT);
4148      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4149                                  LongLongTy, UnsignedLongLongTy };
4150      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4151        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4152        if (FromSize < ToSize ||
4153            (FromSize == ToSize &&
4154             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4155          return PromoteTypes[Idx];
4156      }
4157      llvm_unreachable("char type should fit into long long");
4158    }
4159  }
4160
4161  // At this point, we should have a signed or unsigned integer type.
4162  if (Promotable->isSignedIntegerType())
4163    return IntTy;
4164  uint64_t PromotableSize = getIntWidth(Promotable);
4165  uint64_t IntSize = getIntWidth(IntTy);
4166  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4167  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4168}
4169
4170/// \brief Recurses in pointer/array types until it finds an objc retainable
4171/// type and returns its ownership.
4172Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4173  while (!T.isNull()) {
4174    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4175      return T.getObjCLifetime();
4176    if (T->isArrayType())
4177      T = getBaseElementType(T);
4178    else if (const PointerType *PT = T->getAs<PointerType>())
4179      T = PT->getPointeeType();
4180    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4181      T = RT->getPointeeType();
4182    else
4183      break;
4184  }
4185
4186  return Qualifiers::OCL_None;
4187}
4188
4189/// getIntegerTypeOrder - Returns the highest ranked integer type:
4190/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4191/// LHS < RHS, return -1.
4192int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4193  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4194  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4195  if (LHSC == RHSC) return 0;
4196
4197  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4198  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4199
4200  unsigned LHSRank = getIntegerRank(LHSC);
4201  unsigned RHSRank = getIntegerRank(RHSC);
4202
4203  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4204    if (LHSRank == RHSRank) return 0;
4205    return LHSRank > RHSRank ? 1 : -1;
4206  }
4207
4208  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4209  if (LHSUnsigned) {
4210    // If the unsigned [LHS] type is larger, return it.
4211    if (LHSRank >= RHSRank)
4212      return 1;
4213
4214    // If the signed type can represent all values of the unsigned type, it
4215    // wins.  Because we are dealing with 2's complement and types that are
4216    // powers of two larger than each other, this is always safe.
4217    return -1;
4218  }
4219
4220  // If the unsigned [RHS] type is larger, return it.
4221  if (RHSRank >= LHSRank)
4222    return -1;
4223
4224  // If the signed type can represent all values of the unsigned type, it
4225  // wins.  Because we are dealing with 2's complement and types that are
4226  // powers of two larger than each other, this is always safe.
4227  return 1;
4228}
4229
4230static RecordDecl *
4231CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4232                 DeclContext *DC, IdentifierInfo *Id) {
4233  SourceLocation Loc;
4234  if (Ctx.getLangOpts().CPlusPlus)
4235    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4236  else
4237    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4238}
4239
4240// getCFConstantStringType - Return the type used for constant CFStrings.
4241QualType ASTContext::getCFConstantStringType() const {
4242  if (!CFConstantStringTypeDecl) {
4243    CFConstantStringTypeDecl =
4244      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4245                       &Idents.get("NSConstantString"));
4246    CFConstantStringTypeDecl->startDefinition();
4247
4248    QualType FieldTypes[4];
4249
4250    // const int *isa;
4251    FieldTypes[0] = getPointerType(IntTy.withConst());
4252    // int flags;
4253    FieldTypes[1] = IntTy;
4254    // const char *str;
4255    FieldTypes[2] = getPointerType(CharTy.withConst());
4256    // long length;
4257    FieldTypes[3] = LongTy;
4258
4259    // Create fields
4260    for (unsigned i = 0; i < 4; ++i) {
4261      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4262                                           SourceLocation(),
4263                                           SourceLocation(), 0,
4264                                           FieldTypes[i], /*TInfo=*/0,
4265                                           /*BitWidth=*/0,
4266                                           /*Mutable=*/false,
4267                                           ICIS_NoInit);
4268      Field->setAccess(AS_public);
4269      CFConstantStringTypeDecl->addDecl(Field);
4270    }
4271
4272    CFConstantStringTypeDecl->completeDefinition();
4273  }
4274
4275  return getTagDeclType(CFConstantStringTypeDecl);
4276}
4277
4278void ASTContext::setCFConstantStringType(QualType T) {
4279  const RecordType *Rec = T->getAs<RecordType>();
4280  assert(Rec && "Invalid CFConstantStringType");
4281  CFConstantStringTypeDecl = Rec->getDecl();
4282}
4283
4284QualType ASTContext::getBlockDescriptorType() const {
4285  if (BlockDescriptorType)
4286    return getTagDeclType(BlockDescriptorType);
4287
4288  RecordDecl *T;
4289  // FIXME: Needs the FlagAppleBlock bit.
4290  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4291                       &Idents.get("__block_descriptor"));
4292  T->startDefinition();
4293
4294  QualType FieldTypes[] = {
4295    UnsignedLongTy,
4296    UnsignedLongTy,
4297  };
4298
4299  const char *FieldNames[] = {
4300    "reserved",
4301    "Size"
4302  };
4303
4304  for (size_t i = 0; i < 2; ++i) {
4305    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4306                                         SourceLocation(),
4307                                         &Idents.get(FieldNames[i]),
4308                                         FieldTypes[i], /*TInfo=*/0,
4309                                         /*BitWidth=*/0,
4310                                         /*Mutable=*/false,
4311                                         ICIS_NoInit);
4312    Field->setAccess(AS_public);
4313    T->addDecl(Field);
4314  }
4315
4316  T->completeDefinition();
4317
4318  BlockDescriptorType = T;
4319
4320  return getTagDeclType(BlockDescriptorType);
4321}
4322
4323QualType ASTContext::getBlockDescriptorExtendedType() const {
4324  if (BlockDescriptorExtendedType)
4325    return getTagDeclType(BlockDescriptorExtendedType);
4326
4327  RecordDecl *T;
4328  // FIXME: Needs the FlagAppleBlock bit.
4329  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4330                       &Idents.get("__block_descriptor_withcopydispose"));
4331  T->startDefinition();
4332
4333  QualType FieldTypes[] = {
4334    UnsignedLongTy,
4335    UnsignedLongTy,
4336    getPointerType(VoidPtrTy),
4337    getPointerType(VoidPtrTy)
4338  };
4339
4340  const char *FieldNames[] = {
4341    "reserved",
4342    "Size",
4343    "CopyFuncPtr",
4344    "DestroyFuncPtr"
4345  };
4346
4347  for (size_t i = 0; i < 4; ++i) {
4348    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4349                                         SourceLocation(),
4350                                         &Idents.get(FieldNames[i]),
4351                                         FieldTypes[i], /*TInfo=*/0,
4352                                         /*BitWidth=*/0,
4353                                         /*Mutable=*/false,
4354                                         ICIS_NoInit);
4355    Field->setAccess(AS_public);
4356    T->addDecl(Field);
4357  }
4358
4359  T->completeDefinition();
4360
4361  BlockDescriptorExtendedType = T;
4362
4363  return getTagDeclType(BlockDescriptorExtendedType);
4364}
4365
4366/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4367/// requires copy/dispose. Note that this must match the logic
4368/// in buildByrefHelpers.
4369bool ASTContext::BlockRequiresCopying(QualType Ty,
4370                                      const VarDecl *D) {
4371  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4372    const Expr *copyExpr = getBlockVarCopyInits(D);
4373    if (!copyExpr && record->hasTrivialDestructor()) return false;
4374
4375    return true;
4376  }
4377
4378  if (!Ty->isObjCRetainableType()) return false;
4379
4380  Qualifiers qs = Ty.getQualifiers();
4381
4382  // If we have lifetime, that dominates.
4383  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4384    assert(getLangOpts().ObjCAutoRefCount);
4385
4386    switch (lifetime) {
4387      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4388
4389      // These are just bits as far as the runtime is concerned.
4390      case Qualifiers::OCL_ExplicitNone:
4391      case Qualifiers::OCL_Autoreleasing:
4392        return false;
4393
4394      // Tell the runtime that this is ARC __weak, called by the
4395      // byref routines.
4396      case Qualifiers::OCL_Weak:
4397      // ARC __strong __block variables need to be retained.
4398      case Qualifiers::OCL_Strong:
4399        return true;
4400    }
4401    llvm_unreachable("fell out of lifetime switch!");
4402  }
4403  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4404          Ty->isObjCObjectPointerType());
4405}
4406
4407bool ASTContext::getByrefLifetime(QualType Ty,
4408                              Qualifiers::ObjCLifetime &LifeTime,
4409                              bool &HasByrefExtendedLayout) const {
4410
4411  if (!getLangOpts().ObjC1 ||
4412      getLangOpts().getGC() != LangOptions::NonGC)
4413    return false;
4414
4415  HasByrefExtendedLayout = false;
4416  if (Ty->isRecordType()) {
4417    HasByrefExtendedLayout = true;
4418    LifeTime = Qualifiers::OCL_None;
4419  }
4420  else if (getLangOpts().ObjCAutoRefCount)
4421    LifeTime = Ty.getObjCLifetime();
4422  // MRR.
4423  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4424    LifeTime = Qualifiers::OCL_ExplicitNone;
4425  else
4426    LifeTime = Qualifiers::OCL_None;
4427  return true;
4428}
4429
4430TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4431  if (!ObjCInstanceTypeDecl)
4432    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4433                                               getTranslationUnitDecl(),
4434                                               SourceLocation(),
4435                                               SourceLocation(),
4436                                               &Idents.get("instancetype"),
4437                                     getTrivialTypeSourceInfo(getObjCIdType()));
4438  return ObjCInstanceTypeDecl;
4439}
4440
4441// This returns true if a type has been typedefed to BOOL:
4442// typedef <type> BOOL;
4443static bool isTypeTypedefedAsBOOL(QualType T) {
4444  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4445    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4446      return II->isStr("BOOL");
4447
4448  return false;
4449}
4450
4451/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4452/// purpose.
4453CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4454  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4455    return CharUnits::Zero();
4456
4457  CharUnits sz = getTypeSizeInChars(type);
4458
4459  // Make all integer and enum types at least as large as an int
4460  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4461    sz = std::max(sz, getTypeSizeInChars(IntTy));
4462  // Treat arrays as pointers, since that's how they're passed in.
4463  else if (type->isArrayType())
4464    sz = getTypeSizeInChars(VoidPtrTy);
4465  return sz;
4466}
4467
4468static inline
4469std::string charUnitsToString(const CharUnits &CU) {
4470  return llvm::itostr(CU.getQuantity());
4471}
4472
4473/// getObjCEncodingForBlock - Return the encoded type for this block
4474/// declaration.
4475std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4476  std::string S;
4477
4478  const BlockDecl *Decl = Expr->getBlockDecl();
4479  QualType BlockTy =
4480      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4481  // Encode result type.
4482  if (getLangOpts().EncodeExtendedBlockSig)
4483    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4484                            BlockTy->getAs<FunctionType>()->getResultType(),
4485                            S, true /*Extended*/);
4486  else
4487    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4488                           S);
4489  // Compute size of all parameters.
4490  // Start with computing size of a pointer in number of bytes.
4491  // FIXME: There might(should) be a better way of doing this computation!
4492  SourceLocation Loc;
4493  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4494  CharUnits ParmOffset = PtrSize;
4495  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4496       E = Decl->param_end(); PI != E; ++PI) {
4497    QualType PType = (*PI)->getType();
4498    CharUnits sz = getObjCEncodingTypeSize(PType);
4499    if (sz.isZero())
4500      continue;
4501    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4502    ParmOffset += sz;
4503  }
4504  // Size of the argument frame
4505  S += charUnitsToString(ParmOffset);
4506  // Block pointer and offset.
4507  S += "@?0";
4508
4509  // Argument types.
4510  ParmOffset = PtrSize;
4511  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4512       Decl->param_end(); PI != E; ++PI) {
4513    ParmVarDecl *PVDecl = *PI;
4514    QualType PType = PVDecl->getOriginalType();
4515    if (const ArrayType *AT =
4516          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4517      // Use array's original type only if it has known number of
4518      // elements.
4519      if (!isa<ConstantArrayType>(AT))
4520        PType = PVDecl->getType();
4521    } else if (PType->isFunctionType())
4522      PType = PVDecl->getType();
4523    if (getLangOpts().EncodeExtendedBlockSig)
4524      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4525                                      S, true /*Extended*/);
4526    else
4527      getObjCEncodingForType(PType, S);
4528    S += charUnitsToString(ParmOffset);
4529    ParmOffset += getObjCEncodingTypeSize(PType);
4530  }
4531
4532  return S;
4533}
4534
4535bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4536                                                std::string& S) {
4537  // Encode result type.
4538  getObjCEncodingForType(Decl->getResultType(), S);
4539  CharUnits ParmOffset;
4540  // Compute size of all parameters.
4541  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4542       E = Decl->param_end(); PI != E; ++PI) {
4543    QualType PType = (*PI)->getType();
4544    CharUnits sz = getObjCEncodingTypeSize(PType);
4545    if (sz.isZero())
4546      continue;
4547
4548    assert (sz.isPositive() &&
4549        "getObjCEncodingForFunctionDecl - Incomplete param type");
4550    ParmOffset += sz;
4551  }
4552  S += charUnitsToString(ParmOffset);
4553  ParmOffset = CharUnits::Zero();
4554
4555  // Argument types.
4556  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4557       E = Decl->param_end(); PI != E; ++PI) {
4558    ParmVarDecl *PVDecl = *PI;
4559    QualType PType = PVDecl->getOriginalType();
4560    if (const ArrayType *AT =
4561          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4562      // Use array's original type only if it has known number of
4563      // elements.
4564      if (!isa<ConstantArrayType>(AT))
4565        PType = PVDecl->getType();
4566    } else if (PType->isFunctionType())
4567      PType = PVDecl->getType();
4568    getObjCEncodingForType(PType, S);
4569    S += charUnitsToString(ParmOffset);
4570    ParmOffset += getObjCEncodingTypeSize(PType);
4571  }
4572
4573  return false;
4574}
4575
4576/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4577/// method parameter or return type. If Extended, include class names and
4578/// block object types.
4579void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4580                                                   QualType T, std::string& S,
4581                                                   bool Extended) const {
4582  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4583  getObjCEncodingForTypeQualifier(QT, S);
4584  // Encode parameter type.
4585  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4586                             true     /*OutermostType*/,
4587                             false    /*EncodingProperty*/,
4588                             false    /*StructField*/,
4589                             Extended /*EncodeBlockParameters*/,
4590                             Extended /*EncodeClassNames*/);
4591}
4592
4593/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4594/// declaration.
4595bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4596                                              std::string& S,
4597                                              bool Extended) const {
4598  // FIXME: This is not very efficient.
4599  // Encode return type.
4600  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4601                                    Decl->getResultType(), S, Extended);
4602  // Compute size of all parameters.
4603  // Start with computing size of a pointer in number of bytes.
4604  // FIXME: There might(should) be a better way of doing this computation!
4605  SourceLocation Loc;
4606  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4607  // The first two arguments (self and _cmd) are pointers; account for
4608  // their size.
4609  CharUnits ParmOffset = 2 * PtrSize;
4610  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4611       E = Decl->sel_param_end(); PI != E; ++PI) {
4612    QualType PType = (*PI)->getType();
4613    CharUnits sz = getObjCEncodingTypeSize(PType);
4614    if (sz.isZero())
4615      continue;
4616
4617    assert (sz.isPositive() &&
4618        "getObjCEncodingForMethodDecl - Incomplete param type");
4619    ParmOffset += sz;
4620  }
4621  S += charUnitsToString(ParmOffset);
4622  S += "@0:";
4623  S += charUnitsToString(PtrSize);
4624
4625  // Argument types.
4626  ParmOffset = 2 * PtrSize;
4627  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4628       E = Decl->sel_param_end(); PI != E; ++PI) {
4629    const ParmVarDecl *PVDecl = *PI;
4630    QualType PType = PVDecl->getOriginalType();
4631    if (const ArrayType *AT =
4632          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4633      // Use array's original type only if it has known number of
4634      // elements.
4635      if (!isa<ConstantArrayType>(AT))
4636        PType = PVDecl->getType();
4637    } else if (PType->isFunctionType())
4638      PType = PVDecl->getType();
4639    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4640                                      PType, S, Extended);
4641    S += charUnitsToString(ParmOffset);
4642    ParmOffset += getObjCEncodingTypeSize(PType);
4643  }
4644
4645  return false;
4646}
4647
4648/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4649/// property declaration. If non-NULL, Container must be either an
4650/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4651/// NULL when getting encodings for protocol properties.
4652/// Property attributes are stored as a comma-delimited C string. The simple
4653/// attributes readonly and bycopy are encoded as single characters. The
4654/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4655/// encoded as single characters, followed by an identifier. Property types
4656/// are also encoded as a parametrized attribute. The characters used to encode
4657/// these attributes are defined by the following enumeration:
4658/// @code
4659/// enum PropertyAttributes {
4660/// kPropertyReadOnly = 'R',   // property is read-only.
4661/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4662/// kPropertyByref = '&',  // property is a reference to the value last assigned
4663/// kPropertyDynamic = 'D',    // property is dynamic
4664/// kPropertyGetter = 'G',     // followed by getter selector name
4665/// kPropertySetter = 'S',     // followed by setter selector name
4666/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4667/// kPropertyType = 'T'              // followed by old-style type encoding.
4668/// kPropertyWeak = 'W'              // 'weak' property
4669/// kPropertyStrong = 'P'            // property GC'able
4670/// kPropertyNonAtomic = 'N'         // property non-atomic
4671/// };
4672/// @endcode
4673void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4674                                                const Decl *Container,
4675                                                std::string& S) const {
4676  // Collect information from the property implementation decl(s).
4677  bool Dynamic = false;
4678  ObjCPropertyImplDecl *SynthesizePID = 0;
4679
4680  // FIXME: Duplicated code due to poor abstraction.
4681  if (Container) {
4682    if (const ObjCCategoryImplDecl *CID =
4683        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4684      for (ObjCCategoryImplDecl::propimpl_iterator
4685             i = CID->propimpl_begin(), e = CID->propimpl_end();
4686           i != e; ++i) {
4687        ObjCPropertyImplDecl *PID = *i;
4688        if (PID->getPropertyDecl() == PD) {
4689          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4690            Dynamic = true;
4691          } else {
4692            SynthesizePID = PID;
4693          }
4694        }
4695      }
4696    } else {
4697      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4698      for (ObjCCategoryImplDecl::propimpl_iterator
4699             i = OID->propimpl_begin(), e = OID->propimpl_end();
4700           i != e; ++i) {
4701        ObjCPropertyImplDecl *PID = *i;
4702        if (PID->getPropertyDecl() == PD) {
4703          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4704            Dynamic = true;
4705          } else {
4706            SynthesizePID = PID;
4707          }
4708        }
4709      }
4710    }
4711  }
4712
4713  // FIXME: This is not very efficient.
4714  S = "T";
4715
4716  // Encode result type.
4717  // GCC has some special rules regarding encoding of properties which
4718  // closely resembles encoding of ivars.
4719  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4720                             true /* outermost type */,
4721                             true /* encoding for property */);
4722
4723  if (PD->isReadOnly()) {
4724    S += ",R";
4725  } else {
4726    switch (PD->getSetterKind()) {
4727    case ObjCPropertyDecl::Assign: break;
4728    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4729    case ObjCPropertyDecl::Retain: S += ",&"; break;
4730    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4731    }
4732  }
4733
4734  // It really isn't clear at all what this means, since properties
4735  // are "dynamic by default".
4736  if (Dynamic)
4737    S += ",D";
4738
4739  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4740    S += ",N";
4741
4742  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4743    S += ",G";
4744    S += PD->getGetterName().getAsString();
4745  }
4746
4747  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4748    S += ",S";
4749    S += PD->getSetterName().getAsString();
4750  }
4751
4752  if (SynthesizePID) {
4753    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4754    S += ",V";
4755    S += OID->getNameAsString();
4756  }
4757
4758  // FIXME: OBJCGC: weak & strong
4759}
4760
4761/// getLegacyIntegralTypeEncoding -
4762/// Another legacy compatibility encoding: 32-bit longs are encoded as
4763/// 'l' or 'L' , but not always.  For typedefs, we need to use
4764/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4765///
4766void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4767  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4768    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4769      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4770        PointeeTy = UnsignedIntTy;
4771      else
4772        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4773          PointeeTy = IntTy;
4774    }
4775  }
4776}
4777
4778void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4779                                        const FieldDecl *Field) const {
4780  // We follow the behavior of gcc, expanding structures which are
4781  // directly pointed to, and expanding embedded structures. Note that
4782  // these rules are sufficient to prevent recursive encoding of the
4783  // same type.
4784  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4785                             true /* outermost type */);
4786}
4787
4788static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4789    switch (T->getAs<BuiltinType>()->getKind()) {
4790    default: llvm_unreachable("Unhandled builtin type kind");
4791    case BuiltinType::Void:       return 'v';
4792    case BuiltinType::Bool:       return 'B';
4793    case BuiltinType::Char_U:
4794    case BuiltinType::UChar:      return 'C';
4795    case BuiltinType::UShort:     return 'S';
4796    case BuiltinType::UInt:       return 'I';
4797    case BuiltinType::ULong:
4798        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4799    case BuiltinType::UInt128:    return 'T';
4800    case BuiltinType::ULongLong:  return 'Q';
4801    case BuiltinType::Char_S:
4802    case BuiltinType::SChar:      return 'c';
4803    case BuiltinType::Short:      return 's';
4804    case BuiltinType::WChar_S:
4805    case BuiltinType::WChar_U:
4806    case BuiltinType::Int:        return 'i';
4807    case BuiltinType::Long:
4808      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4809    case BuiltinType::LongLong:   return 'q';
4810    case BuiltinType::Int128:     return 't';
4811    case BuiltinType::Float:      return 'f';
4812    case BuiltinType::Double:     return 'd';
4813    case BuiltinType::LongDouble: return 'D';
4814    }
4815}
4816
4817static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4818  EnumDecl *Enum = ET->getDecl();
4819
4820  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4821  if (!Enum->isFixed())
4822    return 'i';
4823
4824  // The encoding of a fixed enum type matches its fixed underlying type.
4825  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4826}
4827
4828static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4829                           QualType T, const FieldDecl *FD) {
4830  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4831  S += 'b';
4832  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4833  // The GNU runtime requires more information; bitfields are encoded as b,
4834  // then the offset (in bits) of the first element, then the type of the
4835  // bitfield, then the size in bits.  For example, in this structure:
4836  //
4837  // struct
4838  // {
4839  //    int integer;
4840  //    int flags:2;
4841  // };
4842  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4843  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4844  // information is not especially sensible, but we're stuck with it for
4845  // compatibility with GCC, although providing it breaks anything that
4846  // actually uses runtime introspection and wants to work on both runtimes...
4847  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4848    const RecordDecl *RD = FD->getParent();
4849    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4850    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4851    if (const EnumType *ET = T->getAs<EnumType>())
4852      S += ObjCEncodingForEnumType(Ctx, ET);
4853    else
4854      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4855  }
4856  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4857}
4858
4859// FIXME: Use SmallString for accumulating string.
4860void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4861                                            bool ExpandPointedToStructures,
4862                                            bool ExpandStructures,
4863                                            const FieldDecl *FD,
4864                                            bool OutermostType,
4865                                            bool EncodingProperty,
4866                                            bool StructField,
4867                                            bool EncodeBlockParameters,
4868                                            bool EncodeClassNames) const {
4869  if (T->getAs<BuiltinType>()) {
4870    if (FD && FD->isBitField())
4871      return EncodeBitField(this, S, T, FD);
4872    S += ObjCEncodingForPrimitiveKind(this, T);
4873    return;
4874  }
4875
4876  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4877    S += 'j';
4878    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4879                               false);
4880    return;
4881  }
4882
4883  // encoding for pointer or r3eference types.
4884  QualType PointeeTy;
4885  if (const PointerType *PT = T->getAs<PointerType>()) {
4886    if (PT->isObjCSelType()) {
4887      S += ':';
4888      return;
4889    }
4890    PointeeTy = PT->getPointeeType();
4891  }
4892  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4893    PointeeTy = RT->getPointeeType();
4894  if (!PointeeTy.isNull()) {
4895    bool isReadOnly = false;
4896    // For historical/compatibility reasons, the read-only qualifier of the
4897    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4898    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4899    // Also, do not emit the 'r' for anything but the outermost type!
4900    if (isa<TypedefType>(T.getTypePtr())) {
4901      if (OutermostType && T.isConstQualified()) {
4902        isReadOnly = true;
4903        S += 'r';
4904      }
4905    } else if (OutermostType) {
4906      QualType P = PointeeTy;
4907      while (P->getAs<PointerType>())
4908        P = P->getAs<PointerType>()->getPointeeType();
4909      if (P.isConstQualified()) {
4910        isReadOnly = true;
4911        S += 'r';
4912      }
4913    }
4914    if (isReadOnly) {
4915      // Another legacy compatibility encoding. Some ObjC qualifier and type
4916      // combinations need to be rearranged.
4917      // Rewrite "in const" from "nr" to "rn"
4918      if (StringRef(S).endswith("nr"))
4919        S.replace(S.end()-2, S.end(), "rn");
4920    }
4921
4922    if (PointeeTy->isCharType()) {
4923      // char pointer types should be encoded as '*' unless it is a
4924      // type that has been typedef'd to 'BOOL'.
4925      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4926        S += '*';
4927        return;
4928      }
4929    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4930      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4931      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4932        S += '#';
4933        return;
4934      }
4935      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4936      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4937        S += '@';
4938        return;
4939      }
4940      // fall through...
4941    }
4942    S += '^';
4943    getLegacyIntegralTypeEncoding(PointeeTy);
4944
4945    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4946                               NULL);
4947    return;
4948  }
4949
4950  if (const ArrayType *AT =
4951      // Ignore type qualifiers etc.
4952        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4953    if (isa<IncompleteArrayType>(AT) && !StructField) {
4954      // Incomplete arrays are encoded as a pointer to the array element.
4955      S += '^';
4956
4957      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4958                                 false, ExpandStructures, FD);
4959    } else {
4960      S += '[';
4961
4962      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4963        if (getTypeSize(CAT->getElementType()) == 0)
4964          S += '0';
4965        else
4966          S += llvm::utostr(CAT->getSize().getZExtValue());
4967      } else {
4968        //Variable length arrays are encoded as a regular array with 0 elements.
4969        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4970               "Unknown array type!");
4971        S += '0';
4972      }
4973
4974      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4975                                 false, ExpandStructures, FD);
4976      S += ']';
4977    }
4978    return;
4979  }
4980
4981  if (T->getAs<FunctionType>()) {
4982    S += '?';
4983    return;
4984  }
4985
4986  if (const RecordType *RTy = T->getAs<RecordType>()) {
4987    RecordDecl *RDecl = RTy->getDecl();
4988    S += RDecl->isUnion() ? '(' : '{';
4989    // Anonymous structures print as '?'
4990    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4991      S += II->getName();
4992      if (ClassTemplateSpecializationDecl *Spec
4993          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4994        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4995        std::string TemplateArgsStr
4996          = TemplateSpecializationType::PrintTemplateArgumentList(
4997                                            TemplateArgs.data(),
4998                                            TemplateArgs.size(),
4999                                            (*this).getPrintingPolicy());
5000
5001        S += TemplateArgsStr;
5002      }
5003    } else {
5004      S += '?';
5005    }
5006    if (ExpandStructures) {
5007      S += '=';
5008      if (!RDecl->isUnion()) {
5009        getObjCEncodingForStructureImpl(RDecl, S, FD);
5010      } else {
5011        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5012                                     FieldEnd = RDecl->field_end();
5013             Field != FieldEnd; ++Field) {
5014          if (FD) {
5015            S += '"';
5016            S += Field->getNameAsString();
5017            S += '"';
5018          }
5019
5020          // Special case bit-fields.
5021          if (Field->isBitField()) {
5022            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5023                                       *Field);
5024          } else {
5025            QualType qt = Field->getType();
5026            getLegacyIntegralTypeEncoding(qt);
5027            getObjCEncodingForTypeImpl(qt, S, false, true,
5028                                       FD, /*OutermostType*/false,
5029                                       /*EncodingProperty*/false,
5030                                       /*StructField*/true);
5031          }
5032        }
5033      }
5034    }
5035    S += RDecl->isUnion() ? ')' : '}';
5036    return;
5037  }
5038
5039  if (const EnumType *ET = T->getAs<EnumType>()) {
5040    if (FD && FD->isBitField())
5041      EncodeBitField(this, S, T, FD);
5042    else
5043      S += ObjCEncodingForEnumType(this, ET);
5044    return;
5045  }
5046
5047  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
5048    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5049    if (EncodeBlockParameters) {
5050      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
5051
5052      S += '<';
5053      // Block return type
5054      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5055                                 ExpandPointedToStructures, ExpandStructures,
5056                                 FD,
5057                                 false /* OutermostType */,
5058                                 EncodingProperty,
5059                                 false /* StructField */,
5060                                 EncodeBlockParameters,
5061                                 EncodeClassNames);
5062      // Block self
5063      S += "@?";
5064      // Block parameters
5065      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5066        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5067               E = FPT->arg_type_end(); I && (I != E); ++I) {
5068          getObjCEncodingForTypeImpl(*I, S,
5069                                     ExpandPointedToStructures,
5070                                     ExpandStructures,
5071                                     FD,
5072                                     false /* OutermostType */,
5073                                     EncodingProperty,
5074                                     false /* StructField */,
5075                                     EncodeBlockParameters,
5076                                     EncodeClassNames);
5077        }
5078      }
5079      S += '>';
5080    }
5081    return;
5082  }
5083
5084  // Ignore protocol qualifiers when mangling at this level.
5085  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
5086    T = OT->getBaseType();
5087
5088  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
5089    // @encode(class_name)
5090    ObjCInterfaceDecl *OI = OIT->getDecl();
5091    S += '{';
5092    const IdentifierInfo *II = OI->getIdentifier();
5093    S += II->getName();
5094    S += '=';
5095    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5096    DeepCollectObjCIvars(OI, true, Ivars);
5097    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5098      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5099      if (Field->isBitField())
5100        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5101      else
5102        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
5103    }
5104    S += '}';
5105    return;
5106  }
5107
5108  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
5109    if (OPT->isObjCIdType()) {
5110      S += '@';
5111      return;
5112    }
5113
5114    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5115      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5116      // Since this is a binary compatibility issue, need to consult with runtime
5117      // folks. Fortunately, this is a *very* obsure construct.
5118      S += '#';
5119      return;
5120    }
5121
5122    if (OPT->isObjCQualifiedIdType()) {
5123      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5124                                 ExpandPointedToStructures,
5125                                 ExpandStructures, FD);
5126      if (FD || EncodingProperty || EncodeClassNames) {
5127        // Note that we do extended encoding of protocol qualifer list
5128        // Only when doing ivar or property encoding.
5129        S += '"';
5130        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5131             E = OPT->qual_end(); I != E; ++I) {
5132          S += '<';
5133          S += (*I)->getNameAsString();
5134          S += '>';
5135        }
5136        S += '"';
5137      }
5138      return;
5139    }
5140
5141    QualType PointeeTy = OPT->getPointeeType();
5142    if (!EncodingProperty &&
5143        isa<TypedefType>(PointeeTy.getTypePtr())) {
5144      // Another historical/compatibility reason.
5145      // We encode the underlying type which comes out as
5146      // {...};
5147      S += '^';
5148      getObjCEncodingForTypeImpl(PointeeTy, S,
5149                                 false, ExpandPointedToStructures,
5150                                 NULL);
5151      return;
5152    }
5153
5154    S += '@';
5155    if (OPT->getInterfaceDecl() &&
5156        (FD || EncodingProperty || EncodeClassNames)) {
5157      S += '"';
5158      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5159      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5160           E = OPT->qual_end(); I != E; ++I) {
5161        S += '<';
5162        S += (*I)->getNameAsString();
5163        S += '>';
5164      }
5165      S += '"';
5166    }
5167    return;
5168  }
5169
5170  // gcc just blithely ignores member pointers.
5171  // TODO: maybe there should be a mangling for these
5172  if (T->getAs<MemberPointerType>())
5173    return;
5174
5175  if (T->isVectorType()) {
5176    // This matches gcc's encoding, even though technically it is
5177    // insufficient.
5178    // FIXME. We should do a better job than gcc.
5179    return;
5180  }
5181
5182  llvm_unreachable("@encode for type not implemented!");
5183}
5184
5185void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5186                                                 std::string &S,
5187                                                 const FieldDecl *FD,
5188                                                 bool includeVBases) const {
5189  assert(RDecl && "Expected non-null RecordDecl");
5190  assert(!RDecl->isUnion() && "Should not be called for unions");
5191  if (!RDecl->getDefinition())
5192    return;
5193
5194  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5195  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5196  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5197
5198  if (CXXRec) {
5199    for (CXXRecordDecl::base_class_iterator
5200           BI = CXXRec->bases_begin(),
5201           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5202      if (!BI->isVirtual()) {
5203        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5204        if (base->isEmpty())
5205          continue;
5206        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5207        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5208                                  std::make_pair(offs, base));
5209      }
5210    }
5211  }
5212
5213  unsigned i = 0;
5214  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5215                               FieldEnd = RDecl->field_end();
5216       Field != FieldEnd; ++Field, ++i) {
5217    uint64_t offs = layout.getFieldOffset(i);
5218    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5219                              std::make_pair(offs, *Field));
5220  }
5221
5222  if (CXXRec && includeVBases) {
5223    for (CXXRecordDecl::base_class_iterator
5224           BI = CXXRec->vbases_begin(),
5225           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5226      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5227      if (base->isEmpty())
5228        continue;
5229      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5230      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5231        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5232                                  std::make_pair(offs, base));
5233    }
5234  }
5235
5236  CharUnits size;
5237  if (CXXRec) {
5238    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5239  } else {
5240    size = layout.getSize();
5241  }
5242
5243  uint64_t CurOffs = 0;
5244  std::multimap<uint64_t, NamedDecl *>::iterator
5245    CurLayObj = FieldOrBaseOffsets.begin();
5246
5247  if (CXXRec && CXXRec->isDynamicClass() &&
5248      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5249    if (FD) {
5250      S += "\"_vptr$";
5251      std::string recname = CXXRec->getNameAsString();
5252      if (recname.empty()) recname = "?";
5253      S += recname;
5254      S += '"';
5255    }
5256    S += "^^?";
5257    CurOffs += getTypeSize(VoidPtrTy);
5258  }
5259
5260  if (!RDecl->hasFlexibleArrayMember()) {
5261    // Mark the end of the structure.
5262    uint64_t offs = toBits(size);
5263    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5264                              std::make_pair(offs, (NamedDecl*)0));
5265  }
5266
5267  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5268    assert(CurOffs <= CurLayObj->first);
5269
5270    if (CurOffs < CurLayObj->first) {
5271      uint64_t padding = CurLayObj->first - CurOffs;
5272      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5273      // packing/alignment of members is different that normal, in which case
5274      // the encoding will be out-of-sync with the real layout.
5275      // If the runtime switches to just consider the size of types without
5276      // taking into account alignment, we could make padding explicit in the
5277      // encoding (e.g. using arrays of chars). The encoding strings would be
5278      // longer then though.
5279      CurOffs += padding;
5280    }
5281
5282    NamedDecl *dcl = CurLayObj->second;
5283    if (dcl == 0)
5284      break; // reached end of structure.
5285
5286    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5287      // We expand the bases without their virtual bases since those are going
5288      // in the initial structure. Note that this differs from gcc which
5289      // expands virtual bases each time one is encountered in the hierarchy,
5290      // making the encoding type bigger than it really is.
5291      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5292      assert(!base->isEmpty());
5293      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5294    } else {
5295      FieldDecl *field = cast<FieldDecl>(dcl);
5296      if (FD) {
5297        S += '"';
5298        S += field->getNameAsString();
5299        S += '"';
5300      }
5301
5302      if (field->isBitField()) {
5303        EncodeBitField(this, S, field->getType(), field);
5304        CurOffs += field->getBitWidthValue(*this);
5305      } else {
5306        QualType qt = field->getType();
5307        getLegacyIntegralTypeEncoding(qt);
5308        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5309                                   /*OutermostType*/false,
5310                                   /*EncodingProperty*/false,
5311                                   /*StructField*/true);
5312        CurOffs += getTypeSize(field->getType());
5313      }
5314    }
5315  }
5316}
5317
5318void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5319                                                 std::string& S) const {
5320  if (QT & Decl::OBJC_TQ_In)
5321    S += 'n';
5322  if (QT & Decl::OBJC_TQ_Inout)
5323    S += 'N';
5324  if (QT & Decl::OBJC_TQ_Out)
5325    S += 'o';
5326  if (QT & Decl::OBJC_TQ_Bycopy)
5327    S += 'O';
5328  if (QT & Decl::OBJC_TQ_Byref)
5329    S += 'R';
5330  if (QT & Decl::OBJC_TQ_Oneway)
5331    S += 'V';
5332}
5333
5334TypedefDecl *ASTContext::getObjCIdDecl() const {
5335  if (!ObjCIdDecl) {
5336    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5337    T = getObjCObjectPointerType(T);
5338    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5339    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5340                                     getTranslationUnitDecl(),
5341                                     SourceLocation(), SourceLocation(),
5342                                     &Idents.get("id"), IdInfo);
5343  }
5344
5345  return ObjCIdDecl;
5346}
5347
5348TypedefDecl *ASTContext::getObjCSelDecl() const {
5349  if (!ObjCSelDecl) {
5350    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5351    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5352    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5353                                      getTranslationUnitDecl(),
5354                                      SourceLocation(), SourceLocation(),
5355                                      &Idents.get("SEL"), SelInfo);
5356  }
5357  return ObjCSelDecl;
5358}
5359
5360TypedefDecl *ASTContext::getObjCClassDecl() const {
5361  if (!ObjCClassDecl) {
5362    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5363    T = getObjCObjectPointerType(T);
5364    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5365    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5366                                        getTranslationUnitDecl(),
5367                                        SourceLocation(), SourceLocation(),
5368                                        &Idents.get("Class"), ClassInfo);
5369  }
5370
5371  return ObjCClassDecl;
5372}
5373
5374ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5375  if (!ObjCProtocolClassDecl) {
5376    ObjCProtocolClassDecl
5377      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5378                                  SourceLocation(),
5379                                  &Idents.get("Protocol"),
5380                                  /*PrevDecl=*/0,
5381                                  SourceLocation(), true);
5382  }
5383
5384  return ObjCProtocolClassDecl;
5385}
5386
5387//===----------------------------------------------------------------------===//
5388// __builtin_va_list Construction Functions
5389//===----------------------------------------------------------------------===//
5390
5391static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5392  // typedef char* __builtin_va_list;
5393  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5394  TypeSourceInfo *TInfo
5395    = Context->getTrivialTypeSourceInfo(CharPtrType);
5396
5397  TypedefDecl *VaListTypeDecl
5398    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5399                          Context->getTranslationUnitDecl(),
5400                          SourceLocation(), SourceLocation(),
5401                          &Context->Idents.get("__builtin_va_list"),
5402                          TInfo);
5403  return VaListTypeDecl;
5404}
5405
5406static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5407  // typedef void* __builtin_va_list;
5408  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5409  TypeSourceInfo *TInfo
5410    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5411
5412  TypedefDecl *VaListTypeDecl
5413    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5414                          Context->getTranslationUnitDecl(),
5415                          SourceLocation(), SourceLocation(),
5416                          &Context->Idents.get("__builtin_va_list"),
5417                          TInfo);
5418  return VaListTypeDecl;
5419}
5420
5421static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5422  // typedef struct __va_list_tag {
5423  RecordDecl *VaListTagDecl;
5424
5425  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5426                                   Context->getTranslationUnitDecl(),
5427                                   &Context->Idents.get("__va_list_tag"));
5428  VaListTagDecl->startDefinition();
5429
5430  const size_t NumFields = 5;
5431  QualType FieldTypes[NumFields];
5432  const char *FieldNames[NumFields];
5433
5434  //   unsigned char gpr;
5435  FieldTypes[0] = Context->UnsignedCharTy;
5436  FieldNames[0] = "gpr";
5437
5438  //   unsigned char fpr;
5439  FieldTypes[1] = Context->UnsignedCharTy;
5440  FieldNames[1] = "fpr";
5441
5442  //   unsigned short reserved;
5443  FieldTypes[2] = Context->UnsignedShortTy;
5444  FieldNames[2] = "reserved";
5445
5446  //   void* overflow_arg_area;
5447  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5448  FieldNames[3] = "overflow_arg_area";
5449
5450  //   void* reg_save_area;
5451  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5452  FieldNames[4] = "reg_save_area";
5453
5454  // Create fields
5455  for (unsigned i = 0; i < NumFields; ++i) {
5456    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5457                                         SourceLocation(),
5458                                         SourceLocation(),
5459                                         &Context->Idents.get(FieldNames[i]),
5460                                         FieldTypes[i], /*TInfo=*/0,
5461                                         /*BitWidth=*/0,
5462                                         /*Mutable=*/false,
5463                                         ICIS_NoInit);
5464    Field->setAccess(AS_public);
5465    VaListTagDecl->addDecl(Field);
5466  }
5467  VaListTagDecl->completeDefinition();
5468  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5469  Context->VaListTagTy = VaListTagType;
5470
5471  // } __va_list_tag;
5472  TypedefDecl *VaListTagTypedefDecl
5473    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5474                          Context->getTranslationUnitDecl(),
5475                          SourceLocation(), SourceLocation(),
5476                          &Context->Idents.get("__va_list_tag"),
5477                          Context->getTrivialTypeSourceInfo(VaListTagType));
5478  QualType VaListTagTypedefType =
5479    Context->getTypedefType(VaListTagTypedefDecl);
5480
5481  // typedef __va_list_tag __builtin_va_list[1];
5482  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5483  QualType VaListTagArrayType
5484    = Context->getConstantArrayType(VaListTagTypedefType,
5485                                    Size, ArrayType::Normal, 0);
5486  TypeSourceInfo *TInfo
5487    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5488  TypedefDecl *VaListTypedefDecl
5489    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5490                          Context->getTranslationUnitDecl(),
5491                          SourceLocation(), SourceLocation(),
5492                          &Context->Idents.get("__builtin_va_list"),
5493                          TInfo);
5494
5495  return VaListTypedefDecl;
5496}
5497
5498static TypedefDecl *
5499CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5500  // typedef struct __va_list_tag {
5501  RecordDecl *VaListTagDecl;
5502  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5503                                   Context->getTranslationUnitDecl(),
5504                                   &Context->Idents.get("__va_list_tag"));
5505  VaListTagDecl->startDefinition();
5506
5507  const size_t NumFields = 4;
5508  QualType FieldTypes[NumFields];
5509  const char *FieldNames[NumFields];
5510
5511  //   unsigned gp_offset;
5512  FieldTypes[0] = Context->UnsignedIntTy;
5513  FieldNames[0] = "gp_offset";
5514
5515  //   unsigned fp_offset;
5516  FieldTypes[1] = Context->UnsignedIntTy;
5517  FieldNames[1] = "fp_offset";
5518
5519  //   void* overflow_arg_area;
5520  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5521  FieldNames[2] = "overflow_arg_area";
5522
5523  //   void* reg_save_area;
5524  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5525  FieldNames[3] = "reg_save_area";
5526
5527  // Create fields
5528  for (unsigned i = 0; i < NumFields; ++i) {
5529    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5530                                         VaListTagDecl,
5531                                         SourceLocation(),
5532                                         SourceLocation(),
5533                                         &Context->Idents.get(FieldNames[i]),
5534                                         FieldTypes[i], /*TInfo=*/0,
5535                                         /*BitWidth=*/0,
5536                                         /*Mutable=*/false,
5537                                         ICIS_NoInit);
5538    Field->setAccess(AS_public);
5539    VaListTagDecl->addDecl(Field);
5540  }
5541  VaListTagDecl->completeDefinition();
5542  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5543  Context->VaListTagTy = VaListTagType;
5544
5545  // } __va_list_tag;
5546  TypedefDecl *VaListTagTypedefDecl
5547    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5548                          Context->getTranslationUnitDecl(),
5549                          SourceLocation(), SourceLocation(),
5550                          &Context->Idents.get("__va_list_tag"),
5551                          Context->getTrivialTypeSourceInfo(VaListTagType));
5552  QualType VaListTagTypedefType =
5553    Context->getTypedefType(VaListTagTypedefDecl);
5554
5555  // typedef __va_list_tag __builtin_va_list[1];
5556  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5557  QualType VaListTagArrayType
5558    = Context->getConstantArrayType(VaListTagTypedefType,
5559                                      Size, ArrayType::Normal,0);
5560  TypeSourceInfo *TInfo
5561    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5562  TypedefDecl *VaListTypedefDecl
5563    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5564                          Context->getTranslationUnitDecl(),
5565                          SourceLocation(), SourceLocation(),
5566                          &Context->Idents.get("__builtin_va_list"),
5567                          TInfo);
5568
5569  return VaListTypedefDecl;
5570}
5571
5572static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5573  // typedef int __builtin_va_list[4];
5574  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5575  QualType IntArrayType
5576    = Context->getConstantArrayType(Context->IntTy,
5577				    Size, ArrayType::Normal, 0);
5578  TypedefDecl *VaListTypedefDecl
5579    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5580                          Context->getTranslationUnitDecl(),
5581                          SourceLocation(), SourceLocation(),
5582                          &Context->Idents.get("__builtin_va_list"),
5583                          Context->getTrivialTypeSourceInfo(IntArrayType));
5584
5585  return VaListTypedefDecl;
5586}
5587
5588static TypedefDecl *
5589CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5590  RecordDecl *VaListDecl;
5591  if (Context->getLangOpts().CPlusPlus) {
5592    // namespace std { struct __va_list {
5593    NamespaceDecl *NS;
5594    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5595                               Context->getTranslationUnitDecl(),
5596                               /*Inline*/false, SourceLocation(),
5597                               SourceLocation(), &Context->Idents.get("std"),
5598                               /*PrevDecl*/0);
5599
5600    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5601                                       Context->getTranslationUnitDecl(),
5602                                       SourceLocation(), SourceLocation(),
5603                                       &Context->Idents.get("__va_list"));
5604
5605    VaListDecl->setDeclContext(NS);
5606
5607  } else {
5608    // struct __va_list {
5609    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5610                                  Context->getTranslationUnitDecl(),
5611                                  &Context->Idents.get("__va_list"));
5612  }
5613
5614  VaListDecl->startDefinition();
5615
5616  // void * __ap;
5617  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5618                                       VaListDecl,
5619                                       SourceLocation(),
5620                                       SourceLocation(),
5621                                       &Context->Idents.get("__ap"),
5622                                       Context->getPointerType(Context->VoidTy),
5623                                       /*TInfo=*/0,
5624                                       /*BitWidth=*/0,
5625                                       /*Mutable=*/false,
5626                                       ICIS_NoInit);
5627  Field->setAccess(AS_public);
5628  VaListDecl->addDecl(Field);
5629
5630  // };
5631  VaListDecl->completeDefinition();
5632
5633  // typedef struct __va_list __builtin_va_list;
5634  TypeSourceInfo *TInfo
5635    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5636
5637  TypedefDecl *VaListTypeDecl
5638    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5639                          Context->getTranslationUnitDecl(),
5640                          SourceLocation(), SourceLocation(),
5641                          &Context->Idents.get("__builtin_va_list"),
5642                          TInfo);
5643
5644  return VaListTypeDecl;
5645}
5646
5647static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5648                                     TargetInfo::BuiltinVaListKind Kind) {
5649  switch (Kind) {
5650  case TargetInfo::CharPtrBuiltinVaList:
5651    return CreateCharPtrBuiltinVaListDecl(Context);
5652  case TargetInfo::VoidPtrBuiltinVaList:
5653    return CreateVoidPtrBuiltinVaListDecl(Context);
5654  case TargetInfo::PowerABIBuiltinVaList:
5655    return CreatePowerABIBuiltinVaListDecl(Context);
5656  case TargetInfo::X86_64ABIBuiltinVaList:
5657    return CreateX86_64ABIBuiltinVaListDecl(Context);
5658  case TargetInfo::PNaClABIBuiltinVaList:
5659    return CreatePNaClABIBuiltinVaListDecl(Context);
5660  case TargetInfo::AAPCSABIBuiltinVaList:
5661    return CreateAAPCSABIBuiltinVaListDecl(Context);
5662  }
5663
5664  llvm_unreachable("Unhandled __builtin_va_list type kind");
5665}
5666
5667TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5668  if (!BuiltinVaListDecl)
5669    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5670
5671  return BuiltinVaListDecl;
5672}
5673
5674QualType ASTContext::getVaListTagType() const {
5675  // Force the creation of VaListTagTy by building the __builtin_va_list
5676  // declaration.
5677  if (VaListTagTy.isNull())
5678    (void) getBuiltinVaListDecl();
5679
5680  return VaListTagTy;
5681}
5682
5683void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5684  assert(ObjCConstantStringType.isNull() &&
5685         "'NSConstantString' type already set!");
5686
5687  ObjCConstantStringType = getObjCInterfaceType(Decl);
5688}
5689
5690/// \brief Retrieve the template name that corresponds to a non-empty
5691/// lookup.
5692TemplateName
5693ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5694                                      UnresolvedSetIterator End) const {
5695  unsigned size = End - Begin;
5696  assert(size > 1 && "set is not overloaded!");
5697
5698  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5699                          size * sizeof(FunctionTemplateDecl*));
5700  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5701
5702  NamedDecl **Storage = OT->getStorage();
5703  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5704    NamedDecl *D = *I;
5705    assert(isa<FunctionTemplateDecl>(D) ||
5706           (isa<UsingShadowDecl>(D) &&
5707            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5708    *Storage++ = D;
5709  }
5710
5711  return TemplateName(OT);
5712}
5713
5714/// \brief Retrieve the template name that represents a qualified
5715/// template name such as \c std::vector.
5716TemplateName
5717ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5718                                     bool TemplateKeyword,
5719                                     TemplateDecl *Template) const {
5720  assert(NNS && "Missing nested-name-specifier in qualified template name");
5721
5722  // FIXME: Canonicalization?
5723  llvm::FoldingSetNodeID ID;
5724  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5725
5726  void *InsertPos = 0;
5727  QualifiedTemplateName *QTN =
5728    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5729  if (!QTN) {
5730    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5731        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5732    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5733  }
5734
5735  return TemplateName(QTN);
5736}
5737
5738/// \brief Retrieve the template name that represents a dependent
5739/// template name such as \c MetaFun::template apply.
5740TemplateName
5741ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5742                                     const IdentifierInfo *Name) const {
5743  assert((!NNS || NNS->isDependent()) &&
5744         "Nested name specifier must be dependent");
5745
5746  llvm::FoldingSetNodeID ID;
5747  DependentTemplateName::Profile(ID, NNS, Name);
5748
5749  void *InsertPos = 0;
5750  DependentTemplateName *QTN =
5751    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5752
5753  if (QTN)
5754    return TemplateName(QTN);
5755
5756  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5757  if (CanonNNS == NNS) {
5758    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5759        DependentTemplateName(NNS, Name);
5760  } else {
5761    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5762    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5763        DependentTemplateName(NNS, Name, Canon);
5764    DependentTemplateName *CheckQTN =
5765      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5766    assert(!CheckQTN && "Dependent type name canonicalization broken");
5767    (void)CheckQTN;
5768  }
5769
5770  DependentTemplateNames.InsertNode(QTN, InsertPos);
5771  return TemplateName(QTN);
5772}
5773
5774/// \brief Retrieve the template name that represents a dependent
5775/// template name such as \c MetaFun::template operator+.
5776TemplateName
5777ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5778                                     OverloadedOperatorKind Operator) const {
5779  assert((!NNS || NNS->isDependent()) &&
5780         "Nested name specifier must be dependent");
5781
5782  llvm::FoldingSetNodeID ID;
5783  DependentTemplateName::Profile(ID, NNS, Operator);
5784
5785  void *InsertPos = 0;
5786  DependentTemplateName *QTN
5787    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5788
5789  if (QTN)
5790    return TemplateName(QTN);
5791
5792  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5793  if (CanonNNS == NNS) {
5794    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5795        DependentTemplateName(NNS, Operator);
5796  } else {
5797    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5798    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5799        DependentTemplateName(NNS, Operator, Canon);
5800
5801    DependentTemplateName *CheckQTN
5802      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5803    assert(!CheckQTN && "Dependent template name canonicalization broken");
5804    (void)CheckQTN;
5805  }
5806
5807  DependentTemplateNames.InsertNode(QTN, InsertPos);
5808  return TemplateName(QTN);
5809}
5810
5811TemplateName
5812ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5813                                         TemplateName replacement) const {
5814  llvm::FoldingSetNodeID ID;
5815  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5816
5817  void *insertPos = 0;
5818  SubstTemplateTemplateParmStorage *subst
5819    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5820
5821  if (!subst) {
5822    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5823    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5824  }
5825
5826  return TemplateName(subst);
5827}
5828
5829TemplateName
5830ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5831                                       const TemplateArgument &ArgPack) const {
5832  ASTContext &Self = const_cast<ASTContext &>(*this);
5833  llvm::FoldingSetNodeID ID;
5834  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5835
5836  void *InsertPos = 0;
5837  SubstTemplateTemplateParmPackStorage *Subst
5838    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5839
5840  if (!Subst) {
5841    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5842                                                           ArgPack.pack_size(),
5843                                                         ArgPack.pack_begin());
5844    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5845  }
5846
5847  return TemplateName(Subst);
5848}
5849
5850/// getFromTargetType - Given one of the integer types provided by
5851/// TargetInfo, produce the corresponding type. The unsigned @p Type
5852/// is actually a value of type @c TargetInfo::IntType.
5853CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5854  switch (Type) {
5855  case TargetInfo::NoInt: return CanQualType();
5856  case TargetInfo::SignedShort: return ShortTy;
5857  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5858  case TargetInfo::SignedInt: return IntTy;
5859  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5860  case TargetInfo::SignedLong: return LongTy;
5861  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5862  case TargetInfo::SignedLongLong: return LongLongTy;
5863  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5864  }
5865
5866  llvm_unreachable("Unhandled TargetInfo::IntType value");
5867}
5868
5869//===----------------------------------------------------------------------===//
5870//                        Type Predicates.
5871//===----------------------------------------------------------------------===//
5872
5873/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5874/// garbage collection attribute.
5875///
5876Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5877  if (getLangOpts().getGC() == LangOptions::NonGC)
5878    return Qualifiers::GCNone;
5879
5880  assert(getLangOpts().ObjC1);
5881  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5882
5883  // Default behaviour under objective-C's gc is for ObjC pointers
5884  // (or pointers to them) be treated as though they were declared
5885  // as __strong.
5886  if (GCAttrs == Qualifiers::GCNone) {
5887    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5888      return Qualifiers::Strong;
5889    else if (Ty->isPointerType())
5890      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5891  } else {
5892    // It's not valid to set GC attributes on anything that isn't a
5893    // pointer.
5894#ifndef NDEBUG
5895    QualType CT = Ty->getCanonicalTypeInternal();
5896    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5897      CT = AT->getElementType();
5898    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5899#endif
5900  }
5901  return GCAttrs;
5902}
5903
5904//===----------------------------------------------------------------------===//
5905//                        Type Compatibility Testing
5906//===----------------------------------------------------------------------===//
5907
5908/// areCompatVectorTypes - Return true if the two specified vector types are
5909/// compatible.
5910static bool areCompatVectorTypes(const VectorType *LHS,
5911                                 const VectorType *RHS) {
5912  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5913  return LHS->getElementType() == RHS->getElementType() &&
5914         LHS->getNumElements() == RHS->getNumElements();
5915}
5916
5917bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5918                                          QualType SecondVec) {
5919  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5920  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5921
5922  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5923    return true;
5924
5925  // Treat Neon vector types and most AltiVec vector types as if they are the
5926  // equivalent GCC vector types.
5927  const VectorType *First = FirstVec->getAs<VectorType>();
5928  const VectorType *Second = SecondVec->getAs<VectorType>();
5929  if (First->getNumElements() == Second->getNumElements() &&
5930      hasSameType(First->getElementType(), Second->getElementType()) &&
5931      First->getVectorKind() != VectorType::AltiVecPixel &&
5932      First->getVectorKind() != VectorType::AltiVecBool &&
5933      Second->getVectorKind() != VectorType::AltiVecPixel &&
5934      Second->getVectorKind() != VectorType::AltiVecBool)
5935    return true;
5936
5937  return false;
5938}
5939
5940//===----------------------------------------------------------------------===//
5941// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5942//===----------------------------------------------------------------------===//
5943
5944/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5945/// inheritance hierarchy of 'rProto'.
5946bool
5947ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5948                                           ObjCProtocolDecl *rProto) const {
5949  if (declaresSameEntity(lProto, rProto))
5950    return true;
5951  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5952       E = rProto->protocol_end(); PI != E; ++PI)
5953    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5954      return true;
5955  return false;
5956}
5957
5958/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
5959/// return true if lhs's protocols conform to rhs's protocol; false
5960/// otherwise.
5961bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5962  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5963    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5964  return false;
5965}
5966
5967/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
5968/// Class<pr1, ...>.
5969bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5970                                                      QualType rhs) {
5971  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5972  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5973  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5974
5975  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5976       E = lhsQID->qual_end(); I != E; ++I) {
5977    bool match = false;
5978    ObjCProtocolDecl *lhsProto = *I;
5979    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5980         E = rhsOPT->qual_end(); J != E; ++J) {
5981      ObjCProtocolDecl *rhsProto = *J;
5982      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5983        match = true;
5984        break;
5985      }
5986    }
5987    if (!match)
5988      return false;
5989  }
5990  return true;
5991}
5992
5993/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5994/// ObjCQualifiedIDType.
5995bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5996                                                   bool compare) {
5997  // Allow id<P..> and an 'id' or void* type in all cases.
5998  if (lhs->isVoidPointerType() ||
5999      lhs->isObjCIdType() || lhs->isObjCClassType())
6000    return true;
6001  else if (rhs->isVoidPointerType() ||
6002           rhs->isObjCIdType() || rhs->isObjCClassType())
6003    return true;
6004
6005  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6006    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6007
6008    if (!rhsOPT) return false;
6009
6010    if (rhsOPT->qual_empty()) {
6011      // If the RHS is a unqualified interface pointer "NSString*",
6012      // make sure we check the class hierarchy.
6013      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6014        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6015             E = lhsQID->qual_end(); I != E; ++I) {
6016          // when comparing an id<P> on lhs with a static type on rhs,
6017          // see if static class implements all of id's protocols, directly or
6018          // through its super class and categories.
6019          if (!rhsID->ClassImplementsProtocol(*I, true))
6020            return false;
6021        }
6022      }
6023      // If there are no qualifiers and no interface, we have an 'id'.
6024      return true;
6025    }
6026    // Both the right and left sides have qualifiers.
6027    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6028         E = lhsQID->qual_end(); I != E; ++I) {
6029      ObjCProtocolDecl *lhsProto = *I;
6030      bool match = false;
6031
6032      // when comparing an id<P> on lhs with a static type on rhs,
6033      // see if static class implements all of id's protocols, directly or
6034      // through its super class and categories.
6035      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6036           E = rhsOPT->qual_end(); J != E; ++J) {
6037        ObjCProtocolDecl *rhsProto = *J;
6038        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6039            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6040          match = true;
6041          break;
6042        }
6043      }
6044      // If the RHS is a qualified interface pointer "NSString<P>*",
6045      // make sure we check the class hierarchy.
6046      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6047        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6048             E = lhsQID->qual_end(); I != E; ++I) {
6049          // when comparing an id<P> on lhs with a static type on rhs,
6050          // see if static class implements all of id's protocols, directly or
6051          // through its super class and categories.
6052          if (rhsID->ClassImplementsProtocol(*I, true)) {
6053            match = true;
6054            break;
6055          }
6056        }
6057      }
6058      if (!match)
6059        return false;
6060    }
6061
6062    return true;
6063  }
6064
6065  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6066  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6067
6068  if (const ObjCObjectPointerType *lhsOPT =
6069        lhs->getAsObjCInterfacePointerType()) {
6070    // If both the right and left sides have qualifiers.
6071    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6072         E = lhsOPT->qual_end(); I != E; ++I) {
6073      ObjCProtocolDecl *lhsProto = *I;
6074      bool match = false;
6075
6076      // when comparing an id<P> on rhs with a static type on lhs,
6077      // see if static class implements all of id's protocols, directly or
6078      // through its super class and categories.
6079      // First, lhs protocols in the qualifier list must be found, direct
6080      // or indirect in rhs's qualifier list or it is a mismatch.
6081      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6082           E = rhsQID->qual_end(); J != E; ++J) {
6083        ObjCProtocolDecl *rhsProto = *J;
6084        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6085            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6086          match = true;
6087          break;
6088        }
6089      }
6090      if (!match)
6091        return false;
6092    }
6093
6094    // Static class's protocols, or its super class or category protocols
6095    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6096    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6097      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6098      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6099      // This is rather dubious but matches gcc's behavior. If lhs has
6100      // no type qualifier and its class has no static protocol(s)
6101      // assume that it is mismatch.
6102      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6103        return false;
6104      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6105           LHSInheritedProtocols.begin(),
6106           E = LHSInheritedProtocols.end(); I != E; ++I) {
6107        bool match = false;
6108        ObjCProtocolDecl *lhsProto = (*I);
6109        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6110             E = rhsQID->qual_end(); J != E; ++J) {
6111          ObjCProtocolDecl *rhsProto = *J;
6112          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6113              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6114            match = true;
6115            break;
6116          }
6117        }
6118        if (!match)
6119          return false;
6120      }
6121    }
6122    return true;
6123  }
6124  return false;
6125}
6126
6127/// canAssignObjCInterfaces - Return true if the two interface types are
6128/// compatible for assignment from RHS to LHS.  This handles validation of any
6129/// protocol qualifiers on the LHS or RHS.
6130///
6131bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6132                                         const ObjCObjectPointerType *RHSOPT) {
6133  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6134  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6135
6136  // If either type represents the built-in 'id' or 'Class' types, return true.
6137  if (LHS->isObjCUnqualifiedIdOrClass() ||
6138      RHS->isObjCUnqualifiedIdOrClass())
6139    return true;
6140
6141  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6142    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6143                                             QualType(RHSOPT,0),
6144                                             false);
6145
6146  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6147    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6148                                                QualType(RHSOPT,0));
6149
6150  // If we have 2 user-defined types, fall into that path.
6151  if (LHS->getInterface() && RHS->getInterface())
6152    return canAssignObjCInterfaces(LHS, RHS);
6153
6154  return false;
6155}
6156
6157/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6158/// for providing type-safety for objective-c pointers used to pass/return
6159/// arguments in block literals. When passed as arguments, passing 'A*' where
6160/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6161/// not OK. For the return type, the opposite is not OK.
6162bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6163                                         const ObjCObjectPointerType *LHSOPT,
6164                                         const ObjCObjectPointerType *RHSOPT,
6165                                         bool BlockReturnType) {
6166  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6167    return true;
6168
6169  if (LHSOPT->isObjCBuiltinType()) {
6170    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6171  }
6172
6173  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6174    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6175                                             QualType(RHSOPT,0),
6176                                             false);
6177
6178  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6179  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6180  if (LHS && RHS)  { // We have 2 user-defined types.
6181    if (LHS != RHS) {
6182      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6183        return BlockReturnType;
6184      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6185        return !BlockReturnType;
6186    }
6187    else
6188      return true;
6189  }
6190  return false;
6191}
6192
6193/// getIntersectionOfProtocols - This routine finds the intersection of set
6194/// of protocols inherited from two distinct objective-c pointer objects.
6195/// It is used to build composite qualifier list of the composite type of
6196/// the conditional expression involving two objective-c pointer objects.
6197static
6198void getIntersectionOfProtocols(ASTContext &Context,
6199                                const ObjCObjectPointerType *LHSOPT,
6200                                const ObjCObjectPointerType *RHSOPT,
6201      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6202
6203  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6204  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6205  assert(LHS->getInterface() && "LHS must have an interface base");
6206  assert(RHS->getInterface() && "RHS must have an interface base");
6207
6208  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6209  unsigned LHSNumProtocols = LHS->getNumProtocols();
6210  if (LHSNumProtocols > 0)
6211    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6212  else {
6213    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6214    Context.CollectInheritedProtocols(LHS->getInterface(),
6215                                      LHSInheritedProtocols);
6216    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6217                                LHSInheritedProtocols.end());
6218  }
6219
6220  unsigned RHSNumProtocols = RHS->getNumProtocols();
6221  if (RHSNumProtocols > 0) {
6222    ObjCProtocolDecl **RHSProtocols =
6223      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6224    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6225      if (InheritedProtocolSet.count(RHSProtocols[i]))
6226        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6227  } else {
6228    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6229    Context.CollectInheritedProtocols(RHS->getInterface(),
6230                                      RHSInheritedProtocols);
6231    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6232         RHSInheritedProtocols.begin(),
6233         E = RHSInheritedProtocols.end(); I != E; ++I)
6234      if (InheritedProtocolSet.count((*I)))
6235        IntersectionOfProtocols.push_back((*I));
6236  }
6237}
6238
6239/// areCommonBaseCompatible - Returns common base class of the two classes if
6240/// one found. Note that this is O'2 algorithm. But it will be called as the
6241/// last type comparison in a ?-exp of ObjC pointer types before a
6242/// warning is issued. So, its invokation is extremely rare.
6243QualType ASTContext::areCommonBaseCompatible(
6244                                          const ObjCObjectPointerType *Lptr,
6245                                          const ObjCObjectPointerType *Rptr) {
6246  const ObjCObjectType *LHS = Lptr->getObjectType();
6247  const ObjCObjectType *RHS = Rptr->getObjectType();
6248  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6249  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6250  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6251    return QualType();
6252
6253  do {
6254    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6255    if (canAssignObjCInterfaces(LHS, RHS)) {
6256      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6257      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6258
6259      QualType Result = QualType(LHS, 0);
6260      if (!Protocols.empty())
6261        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6262      Result = getObjCObjectPointerType(Result);
6263      return Result;
6264    }
6265  } while ((LDecl = LDecl->getSuperClass()));
6266
6267  return QualType();
6268}
6269
6270bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6271                                         const ObjCObjectType *RHS) {
6272  assert(LHS->getInterface() && "LHS is not an interface type");
6273  assert(RHS->getInterface() && "RHS is not an interface type");
6274
6275  // Verify that the base decls are compatible: the RHS must be a subclass of
6276  // the LHS.
6277  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6278    return false;
6279
6280  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6281  // protocol qualified at all, then we are good.
6282  if (LHS->getNumProtocols() == 0)
6283    return true;
6284
6285  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6286  // more detailed analysis is required.
6287  if (RHS->getNumProtocols() == 0) {
6288    // OK, if LHS is a superclass of RHS *and*
6289    // this superclass is assignment compatible with LHS.
6290    // false otherwise.
6291    bool IsSuperClass =
6292      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6293    if (IsSuperClass) {
6294      // OK if conversion of LHS to SuperClass results in narrowing of types
6295      // ; i.e., SuperClass may implement at least one of the protocols
6296      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6297      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6298      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6299      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6300      // If super class has no protocols, it is not a match.
6301      if (SuperClassInheritedProtocols.empty())
6302        return false;
6303
6304      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6305           LHSPE = LHS->qual_end();
6306           LHSPI != LHSPE; LHSPI++) {
6307        bool SuperImplementsProtocol = false;
6308        ObjCProtocolDecl *LHSProto = (*LHSPI);
6309
6310        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6311             SuperClassInheritedProtocols.begin(),
6312             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6313          ObjCProtocolDecl *SuperClassProto = (*I);
6314          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6315            SuperImplementsProtocol = true;
6316            break;
6317          }
6318        }
6319        if (!SuperImplementsProtocol)
6320          return false;
6321      }
6322      return true;
6323    }
6324    return false;
6325  }
6326
6327  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6328                                     LHSPE = LHS->qual_end();
6329       LHSPI != LHSPE; LHSPI++) {
6330    bool RHSImplementsProtocol = false;
6331
6332    // If the RHS doesn't implement the protocol on the left, the types
6333    // are incompatible.
6334    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6335                                       RHSPE = RHS->qual_end();
6336         RHSPI != RHSPE; RHSPI++) {
6337      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6338        RHSImplementsProtocol = true;
6339        break;
6340      }
6341    }
6342    // FIXME: For better diagnostics, consider passing back the protocol name.
6343    if (!RHSImplementsProtocol)
6344      return false;
6345  }
6346  // The RHS implements all protocols listed on the LHS.
6347  return true;
6348}
6349
6350bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6351  // get the "pointed to" types
6352  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6353  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6354
6355  if (!LHSOPT || !RHSOPT)
6356    return false;
6357
6358  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6359         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6360}
6361
6362bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6363  return canAssignObjCInterfaces(
6364                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6365                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6366}
6367
6368/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6369/// both shall have the identically qualified version of a compatible type.
6370/// C99 6.2.7p1: Two types have compatible types if their types are the
6371/// same. See 6.7.[2,3,5] for additional rules.
6372bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6373                                    bool CompareUnqualified) {
6374  if (getLangOpts().CPlusPlus)
6375    return hasSameType(LHS, RHS);
6376
6377  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6378}
6379
6380bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6381  return typesAreCompatible(LHS, RHS);
6382}
6383
6384bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6385  return !mergeTypes(LHS, RHS, true).isNull();
6386}
6387
6388/// mergeTransparentUnionType - if T is a transparent union type and a member
6389/// of T is compatible with SubType, return the merged type, else return
6390/// QualType()
6391QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6392                                               bool OfBlockPointer,
6393                                               bool Unqualified) {
6394  if (const RecordType *UT = T->getAsUnionType()) {
6395    RecordDecl *UD = UT->getDecl();
6396    if (UD->hasAttr<TransparentUnionAttr>()) {
6397      for (RecordDecl::field_iterator it = UD->field_begin(),
6398           itend = UD->field_end(); it != itend; ++it) {
6399        QualType ET = it->getType().getUnqualifiedType();
6400        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6401        if (!MT.isNull())
6402          return MT;
6403      }
6404    }
6405  }
6406
6407  return QualType();
6408}
6409
6410/// mergeFunctionArgumentTypes - merge two types which appear as function
6411/// argument types
6412QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6413                                                bool OfBlockPointer,
6414                                                bool Unqualified) {
6415  // GNU extension: two types are compatible if they appear as a function
6416  // argument, one of the types is a transparent union type and the other
6417  // type is compatible with a union member
6418  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6419                                              Unqualified);
6420  if (!lmerge.isNull())
6421    return lmerge;
6422
6423  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6424                                              Unqualified);
6425  if (!rmerge.isNull())
6426    return rmerge;
6427
6428  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6429}
6430
6431QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6432                                        bool OfBlockPointer,
6433                                        bool Unqualified) {
6434  const FunctionType *lbase = lhs->getAs<FunctionType>();
6435  const FunctionType *rbase = rhs->getAs<FunctionType>();
6436  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6437  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6438  bool allLTypes = true;
6439  bool allRTypes = true;
6440
6441  // Check return type
6442  QualType retType;
6443  if (OfBlockPointer) {
6444    QualType RHS = rbase->getResultType();
6445    QualType LHS = lbase->getResultType();
6446    bool UnqualifiedResult = Unqualified;
6447    if (!UnqualifiedResult)
6448      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6449    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6450  }
6451  else
6452    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6453                         Unqualified);
6454  if (retType.isNull()) return QualType();
6455
6456  if (Unqualified)
6457    retType = retType.getUnqualifiedType();
6458
6459  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6460  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6461  if (Unqualified) {
6462    LRetType = LRetType.getUnqualifiedType();
6463    RRetType = RRetType.getUnqualifiedType();
6464  }
6465
6466  if (getCanonicalType(retType) != LRetType)
6467    allLTypes = false;
6468  if (getCanonicalType(retType) != RRetType)
6469    allRTypes = false;
6470
6471  // FIXME: double check this
6472  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6473  //                           rbase->getRegParmAttr() != 0 &&
6474  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6475  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6476  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6477
6478  // Compatible functions must have compatible calling conventions
6479  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6480    return QualType();
6481
6482  // Regparm is part of the calling convention.
6483  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6484    return QualType();
6485  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6486    return QualType();
6487
6488  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6489    return QualType();
6490
6491  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6492  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6493
6494  if (lbaseInfo.getNoReturn() != NoReturn)
6495    allLTypes = false;
6496  if (rbaseInfo.getNoReturn() != NoReturn)
6497    allRTypes = false;
6498
6499  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6500
6501  if (lproto && rproto) { // two C99 style function prototypes
6502    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6503           "C++ shouldn't be here");
6504    unsigned lproto_nargs = lproto->getNumArgs();
6505    unsigned rproto_nargs = rproto->getNumArgs();
6506
6507    // Compatible functions must have the same number of arguments
6508    if (lproto_nargs != rproto_nargs)
6509      return QualType();
6510
6511    // Variadic and non-variadic functions aren't compatible
6512    if (lproto->isVariadic() != rproto->isVariadic())
6513      return QualType();
6514
6515    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6516      return QualType();
6517
6518    if (LangOpts.ObjCAutoRefCount &&
6519        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6520      return QualType();
6521
6522    // Check argument compatibility
6523    SmallVector<QualType, 10> types;
6524    for (unsigned i = 0; i < lproto_nargs; i++) {
6525      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6526      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6527      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6528                                                    OfBlockPointer,
6529                                                    Unqualified);
6530      if (argtype.isNull()) return QualType();
6531
6532      if (Unqualified)
6533        argtype = argtype.getUnqualifiedType();
6534
6535      types.push_back(argtype);
6536      if (Unqualified) {
6537        largtype = largtype.getUnqualifiedType();
6538        rargtype = rargtype.getUnqualifiedType();
6539      }
6540
6541      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6542        allLTypes = false;
6543      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6544        allRTypes = false;
6545    }
6546
6547    if (allLTypes) return lhs;
6548    if (allRTypes) return rhs;
6549
6550    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6551    EPI.ExtInfo = einfo;
6552    return getFunctionType(retType, types.begin(), types.size(), EPI);
6553  }
6554
6555  if (lproto) allRTypes = false;
6556  if (rproto) allLTypes = false;
6557
6558  const FunctionProtoType *proto = lproto ? lproto : rproto;
6559  if (proto) {
6560    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6561    if (proto->isVariadic()) return QualType();
6562    // Check that the types are compatible with the types that
6563    // would result from default argument promotions (C99 6.7.5.3p15).
6564    // The only types actually affected are promotable integer
6565    // types and floats, which would be passed as a different
6566    // type depending on whether the prototype is visible.
6567    unsigned proto_nargs = proto->getNumArgs();
6568    for (unsigned i = 0; i < proto_nargs; ++i) {
6569      QualType argTy = proto->getArgType(i);
6570
6571      // Look at the converted type of enum types, since that is the type used
6572      // to pass enum values.
6573      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6574        argTy = Enum->getDecl()->getIntegerType();
6575        if (argTy.isNull())
6576          return QualType();
6577      }
6578
6579      if (argTy->isPromotableIntegerType() ||
6580          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6581        return QualType();
6582    }
6583
6584    if (allLTypes) return lhs;
6585    if (allRTypes) return rhs;
6586
6587    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6588    EPI.ExtInfo = einfo;
6589    return getFunctionType(retType, proto->arg_type_begin(),
6590                           proto->getNumArgs(), EPI);
6591  }
6592
6593  if (allLTypes) return lhs;
6594  if (allRTypes) return rhs;
6595  return getFunctionNoProtoType(retType, einfo);
6596}
6597
6598QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6599                                bool OfBlockPointer,
6600                                bool Unqualified, bool BlockReturnType) {
6601  // C++ [expr]: If an expression initially has the type "reference to T", the
6602  // type is adjusted to "T" prior to any further analysis, the expression
6603  // designates the object or function denoted by the reference, and the
6604  // expression is an lvalue unless the reference is an rvalue reference and
6605  // the expression is a function call (possibly inside parentheses).
6606  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6607  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6608
6609  if (Unqualified) {
6610    LHS = LHS.getUnqualifiedType();
6611    RHS = RHS.getUnqualifiedType();
6612  }
6613
6614  QualType LHSCan = getCanonicalType(LHS),
6615           RHSCan = getCanonicalType(RHS);
6616
6617  // If two types are identical, they are compatible.
6618  if (LHSCan == RHSCan)
6619    return LHS;
6620
6621  // If the qualifiers are different, the types aren't compatible... mostly.
6622  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6623  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6624  if (LQuals != RQuals) {
6625    // If any of these qualifiers are different, we have a type
6626    // mismatch.
6627    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6628        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6629        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6630      return QualType();
6631
6632    // Exactly one GC qualifier difference is allowed: __strong is
6633    // okay if the other type has no GC qualifier but is an Objective
6634    // C object pointer (i.e. implicitly strong by default).  We fix
6635    // this by pretending that the unqualified type was actually
6636    // qualified __strong.
6637    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6638    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6639    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6640
6641    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6642      return QualType();
6643
6644    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6645      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6646    }
6647    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6648      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6649    }
6650    return QualType();
6651  }
6652
6653  // Okay, qualifiers are equal.
6654
6655  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6656  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6657
6658  // We want to consider the two function types to be the same for these
6659  // comparisons, just force one to the other.
6660  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6661  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6662
6663  // Same as above for arrays
6664  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6665    LHSClass = Type::ConstantArray;
6666  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6667    RHSClass = Type::ConstantArray;
6668
6669  // ObjCInterfaces are just specialized ObjCObjects.
6670  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6671  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6672
6673  // Canonicalize ExtVector -> Vector.
6674  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6675  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6676
6677  // If the canonical type classes don't match.
6678  if (LHSClass != RHSClass) {
6679    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6680    // a signed integer type, or an unsigned integer type.
6681    // Compatibility is based on the underlying type, not the promotion
6682    // type.
6683    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6684      QualType TINT = ETy->getDecl()->getIntegerType();
6685      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6686        return RHS;
6687    }
6688    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6689      QualType TINT = ETy->getDecl()->getIntegerType();
6690      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6691        return LHS;
6692    }
6693    // allow block pointer type to match an 'id' type.
6694    if (OfBlockPointer && !BlockReturnType) {
6695       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6696         return LHS;
6697      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6698        return RHS;
6699    }
6700
6701    return QualType();
6702  }
6703
6704  // The canonical type classes match.
6705  switch (LHSClass) {
6706#define TYPE(Class, Base)
6707#define ABSTRACT_TYPE(Class, Base)
6708#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6709#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6710#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6711#include "clang/AST/TypeNodes.def"
6712    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6713
6714  case Type::LValueReference:
6715  case Type::RValueReference:
6716  case Type::MemberPointer:
6717    llvm_unreachable("C++ should never be in mergeTypes");
6718
6719  case Type::ObjCInterface:
6720  case Type::IncompleteArray:
6721  case Type::VariableArray:
6722  case Type::FunctionProto:
6723  case Type::ExtVector:
6724    llvm_unreachable("Types are eliminated above");
6725
6726  case Type::Pointer:
6727  {
6728    // Merge two pointer types, while trying to preserve typedef info
6729    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6730    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6731    if (Unqualified) {
6732      LHSPointee = LHSPointee.getUnqualifiedType();
6733      RHSPointee = RHSPointee.getUnqualifiedType();
6734    }
6735    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6736                                     Unqualified);
6737    if (ResultType.isNull()) return QualType();
6738    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6739      return LHS;
6740    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6741      return RHS;
6742    return getPointerType(ResultType);
6743  }
6744  case Type::BlockPointer:
6745  {
6746    // Merge two block pointer types, while trying to preserve typedef info
6747    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6748    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6749    if (Unqualified) {
6750      LHSPointee = LHSPointee.getUnqualifiedType();
6751      RHSPointee = RHSPointee.getUnqualifiedType();
6752    }
6753    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6754                                     Unqualified);
6755    if (ResultType.isNull()) return QualType();
6756    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6757      return LHS;
6758    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6759      return RHS;
6760    return getBlockPointerType(ResultType);
6761  }
6762  case Type::Atomic:
6763  {
6764    // Merge two pointer types, while trying to preserve typedef info
6765    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6766    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6767    if (Unqualified) {
6768      LHSValue = LHSValue.getUnqualifiedType();
6769      RHSValue = RHSValue.getUnqualifiedType();
6770    }
6771    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6772                                     Unqualified);
6773    if (ResultType.isNull()) return QualType();
6774    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6775      return LHS;
6776    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6777      return RHS;
6778    return getAtomicType(ResultType);
6779  }
6780  case Type::ConstantArray:
6781  {
6782    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6783    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6784    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6785      return QualType();
6786
6787    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6788    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6789    if (Unqualified) {
6790      LHSElem = LHSElem.getUnqualifiedType();
6791      RHSElem = RHSElem.getUnqualifiedType();
6792    }
6793
6794    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6795    if (ResultType.isNull()) return QualType();
6796    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6797      return LHS;
6798    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6799      return RHS;
6800    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6801                                          ArrayType::ArraySizeModifier(), 0);
6802    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6803                                          ArrayType::ArraySizeModifier(), 0);
6804    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6805    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6806    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6807      return LHS;
6808    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6809      return RHS;
6810    if (LVAT) {
6811      // FIXME: This isn't correct! But tricky to implement because
6812      // the array's size has to be the size of LHS, but the type
6813      // has to be different.
6814      return LHS;
6815    }
6816    if (RVAT) {
6817      // FIXME: This isn't correct! But tricky to implement because
6818      // the array's size has to be the size of RHS, but the type
6819      // has to be different.
6820      return RHS;
6821    }
6822    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6823    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6824    return getIncompleteArrayType(ResultType,
6825                                  ArrayType::ArraySizeModifier(), 0);
6826  }
6827  case Type::FunctionNoProto:
6828    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6829  case Type::Record:
6830  case Type::Enum:
6831    return QualType();
6832  case Type::Builtin:
6833    // Only exactly equal builtin types are compatible, which is tested above.
6834    return QualType();
6835  case Type::Complex:
6836    // Distinct complex types are incompatible.
6837    return QualType();
6838  case Type::Vector:
6839    // FIXME: The merged type should be an ExtVector!
6840    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6841                             RHSCan->getAs<VectorType>()))
6842      return LHS;
6843    return QualType();
6844  case Type::ObjCObject: {
6845    // Check if the types are assignment compatible.
6846    // FIXME: This should be type compatibility, e.g. whether
6847    // "LHS x; RHS x;" at global scope is legal.
6848    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6849    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6850    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6851      return LHS;
6852
6853    return QualType();
6854  }
6855  case Type::ObjCObjectPointer: {
6856    if (OfBlockPointer) {
6857      if (canAssignObjCInterfacesInBlockPointer(
6858                                          LHS->getAs<ObjCObjectPointerType>(),
6859                                          RHS->getAs<ObjCObjectPointerType>(),
6860                                          BlockReturnType))
6861        return LHS;
6862      return QualType();
6863    }
6864    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6865                                RHS->getAs<ObjCObjectPointerType>()))
6866      return LHS;
6867
6868    return QualType();
6869  }
6870  }
6871
6872  llvm_unreachable("Invalid Type::Class!");
6873}
6874
6875bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6876                   const FunctionProtoType *FromFunctionType,
6877                   const FunctionProtoType *ToFunctionType) {
6878  if (FromFunctionType->hasAnyConsumedArgs() !=
6879      ToFunctionType->hasAnyConsumedArgs())
6880    return false;
6881  FunctionProtoType::ExtProtoInfo FromEPI =
6882    FromFunctionType->getExtProtoInfo();
6883  FunctionProtoType::ExtProtoInfo ToEPI =
6884    ToFunctionType->getExtProtoInfo();
6885  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6886    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6887         ArgIdx != NumArgs; ++ArgIdx)  {
6888      if (FromEPI.ConsumedArguments[ArgIdx] !=
6889          ToEPI.ConsumedArguments[ArgIdx])
6890        return false;
6891    }
6892  return true;
6893}
6894
6895/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6896/// 'RHS' attributes and returns the merged version; including for function
6897/// return types.
6898QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6899  QualType LHSCan = getCanonicalType(LHS),
6900  RHSCan = getCanonicalType(RHS);
6901  // If two types are identical, they are compatible.
6902  if (LHSCan == RHSCan)
6903    return LHS;
6904  if (RHSCan->isFunctionType()) {
6905    if (!LHSCan->isFunctionType())
6906      return QualType();
6907    QualType OldReturnType =
6908      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6909    QualType NewReturnType =
6910      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6911    QualType ResReturnType =
6912      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6913    if (ResReturnType.isNull())
6914      return QualType();
6915    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6916      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6917      // In either case, use OldReturnType to build the new function type.
6918      const FunctionType *F = LHS->getAs<FunctionType>();
6919      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6920        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6921        EPI.ExtInfo = getFunctionExtInfo(LHS);
6922        QualType ResultType
6923          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6924                            FPT->getNumArgs(), EPI);
6925        return ResultType;
6926      }
6927    }
6928    return QualType();
6929  }
6930
6931  // If the qualifiers are different, the types can still be merged.
6932  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6933  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6934  if (LQuals != RQuals) {
6935    // If any of these qualifiers are different, we have a type mismatch.
6936    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6937        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6938      return QualType();
6939
6940    // Exactly one GC qualifier difference is allowed: __strong is
6941    // okay if the other type has no GC qualifier but is an Objective
6942    // C object pointer (i.e. implicitly strong by default).  We fix
6943    // this by pretending that the unqualified type was actually
6944    // qualified __strong.
6945    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6946    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6947    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6948
6949    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6950      return QualType();
6951
6952    if (GC_L == Qualifiers::Strong)
6953      return LHS;
6954    if (GC_R == Qualifiers::Strong)
6955      return RHS;
6956    return QualType();
6957  }
6958
6959  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6960    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6961    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6962    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6963    if (ResQT == LHSBaseQT)
6964      return LHS;
6965    if (ResQT == RHSBaseQT)
6966      return RHS;
6967  }
6968  return QualType();
6969}
6970
6971//===----------------------------------------------------------------------===//
6972//                         Integer Predicates
6973//===----------------------------------------------------------------------===//
6974
6975unsigned ASTContext::getIntWidth(QualType T) const {
6976  if (const EnumType *ET = dyn_cast<EnumType>(T))
6977    T = ET->getDecl()->getIntegerType();
6978  if (T->isBooleanType())
6979    return 1;
6980  // For builtin types, just use the standard type sizing method
6981  return (unsigned)getTypeSize(T);
6982}
6983
6984QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
6985  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6986
6987  // Turn <4 x signed int> -> <4 x unsigned int>
6988  if (const VectorType *VTy = T->getAs<VectorType>())
6989    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6990                         VTy->getNumElements(), VTy->getVectorKind());
6991
6992  // For enums, we return the unsigned version of the base type.
6993  if (const EnumType *ETy = T->getAs<EnumType>())
6994    T = ETy->getDecl()->getIntegerType();
6995
6996  const BuiltinType *BTy = T->getAs<BuiltinType>();
6997  assert(BTy && "Unexpected signed integer type");
6998  switch (BTy->getKind()) {
6999  case BuiltinType::Char_S:
7000  case BuiltinType::SChar:
7001    return UnsignedCharTy;
7002  case BuiltinType::Short:
7003    return UnsignedShortTy;
7004  case BuiltinType::Int:
7005    return UnsignedIntTy;
7006  case BuiltinType::Long:
7007    return UnsignedLongTy;
7008  case BuiltinType::LongLong:
7009    return UnsignedLongLongTy;
7010  case BuiltinType::Int128:
7011    return UnsignedInt128Ty;
7012  default:
7013    llvm_unreachable("Unexpected signed integer type");
7014  }
7015}
7016
7017ASTMutationListener::~ASTMutationListener() { }
7018
7019
7020//===----------------------------------------------------------------------===//
7021//                          Builtin Type Computation
7022//===----------------------------------------------------------------------===//
7023
7024/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7025/// pointer over the consumed characters.  This returns the resultant type.  If
7026/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7027/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7028/// a vector of "i*".
7029///
7030/// RequiresICE is filled in on return to indicate whether the value is required
7031/// to be an Integer Constant Expression.
7032static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7033                                  ASTContext::GetBuiltinTypeError &Error,
7034                                  bool &RequiresICE,
7035                                  bool AllowTypeModifiers) {
7036  // Modifiers.
7037  int HowLong = 0;
7038  bool Signed = false, Unsigned = false;
7039  RequiresICE = false;
7040
7041  // Read the prefixed modifiers first.
7042  bool Done = false;
7043  while (!Done) {
7044    switch (*Str++) {
7045    default: Done = true; --Str; break;
7046    case 'I':
7047      RequiresICE = true;
7048      break;
7049    case 'S':
7050      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7051      assert(!Signed && "Can't use 'S' modifier multiple times!");
7052      Signed = true;
7053      break;
7054    case 'U':
7055      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7056      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7057      Unsigned = true;
7058      break;
7059    case 'L':
7060      assert(HowLong <= 2 && "Can't have LLLL modifier");
7061      ++HowLong;
7062      break;
7063    }
7064  }
7065
7066  QualType Type;
7067
7068  // Read the base type.
7069  switch (*Str++) {
7070  default: llvm_unreachable("Unknown builtin type letter!");
7071  case 'v':
7072    assert(HowLong == 0 && !Signed && !Unsigned &&
7073           "Bad modifiers used with 'v'!");
7074    Type = Context.VoidTy;
7075    break;
7076  case 'f':
7077    assert(HowLong == 0 && !Signed && !Unsigned &&
7078           "Bad modifiers used with 'f'!");
7079    Type = Context.FloatTy;
7080    break;
7081  case 'd':
7082    assert(HowLong < 2 && !Signed && !Unsigned &&
7083           "Bad modifiers used with 'd'!");
7084    if (HowLong)
7085      Type = Context.LongDoubleTy;
7086    else
7087      Type = Context.DoubleTy;
7088    break;
7089  case 's':
7090    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7091    if (Unsigned)
7092      Type = Context.UnsignedShortTy;
7093    else
7094      Type = Context.ShortTy;
7095    break;
7096  case 'i':
7097    if (HowLong == 3)
7098      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7099    else if (HowLong == 2)
7100      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7101    else if (HowLong == 1)
7102      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7103    else
7104      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7105    break;
7106  case 'c':
7107    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7108    if (Signed)
7109      Type = Context.SignedCharTy;
7110    else if (Unsigned)
7111      Type = Context.UnsignedCharTy;
7112    else
7113      Type = Context.CharTy;
7114    break;
7115  case 'b': // boolean
7116    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7117    Type = Context.BoolTy;
7118    break;
7119  case 'z':  // size_t.
7120    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7121    Type = Context.getSizeType();
7122    break;
7123  case 'F':
7124    Type = Context.getCFConstantStringType();
7125    break;
7126  case 'G':
7127    Type = Context.getObjCIdType();
7128    break;
7129  case 'H':
7130    Type = Context.getObjCSelType();
7131    break;
7132  case 'a':
7133    Type = Context.getBuiltinVaListType();
7134    assert(!Type.isNull() && "builtin va list type not initialized!");
7135    break;
7136  case 'A':
7137    // This is a "reference" to a va_list; however, what exactly
7138    // this means depends on how va_list is defined. There are two
7139    // different kinds of va_list: ones passed by value, and ones
7140    // passed by reference.  An example of a by-value va_list is
7141    // x86, where va_list is a char*. An example of by-ref va_list
7142    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7143    // we want this argument to be a char*&; for x86-64, we want
7144    // it to be a __va_list_tag*.
7145    Type = Context.getBuiltinVaListType();
7146    assert(!Type.isNull() && "builtin va list type not initialized!");
7147    if (Type->isArrayType())
7148      Type = Context.getArrayDecayedType(Type);
7149    else
7150      Type = Context.getLValueReferenceType(Type);
7151    break;
7152  case 'V': {
7153    char *End;
7154    unsigned NumElements = strtoul(Str, &End, 10);
7155    assert(End != Str && "Missing vector size");
7156    Str = End;
7157
7158    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7159                                             RequiresICE, false);
7160    assert(!RequiresICE && "Can't require vector ICE");
7161
7162    // TODO: No way to make AltiVec vectors in builtins yet.
7163    Type = Context.getVectorType(ElementType, NumElements,
7164                                 VectorType::GenericVector);
7165    break;
7166  }
7167  case 'E': {
7168    char *End;
7169
7170    unsigned NumElements = strtoul(Str, &End, 10);
7171    assert(End != Str && "Missing vector size");
7172
7173    Str = End;
7174
7175    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7176                                             false);
7177    Type = Context.getExtVectorType(ElementType, NumElements);
7178    break;
7179  }
7180  case 'X': {
7181    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7182                                             false);
7183    assert(!RequiresICE && "Can't require complex ICE");
7184    Type = Context.getComplexType(ElementType);
7185    break;
7186  }
7187  case 'Y' : {
7188    Type = Context.getPointerDiffType();
7189    break;
7190  }
7191  case 'P':
7192    Type = Context.getFILEType();
7193    if (Type.isNull()) {
7194      Error = ASTContext::GE_Missing_stdio;
7195      return QualType();
7196    }
7197    break;
7198  case 'J':
7199    if (Signed)
7200      Type = Context.getsigjmp_bufType();
7201    else
7202      Type = Context.getjmp_bufType();
7203
7204    if (Type.isNull()) {
7205      Error = ASTContext::GE_Missing_setjmp;
7206      return QualType();
7207    }
7208    break;
7209  case 'K':
7210    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7211    Type = Context.getucontext_tType();
7212
7213    if (Type.isNull()) {
7214      Error = ASTContext::GE_Missing_ucontext;
7215      return QualType();
7216    }
7217    break;
7218  case 'p':
7219    Type = Context.getProcessIDType();
7220    break;
7221  }
7222
7223  // If there are modifiers and if we're allowed to parse them, go for it.
7224  Done = !AllowTypeModifiers;
7225  while (!Done) {
7226    switch (char c = *Str++) {
7227    default: Done = true; --Str; break;
7228    case '*':
7229    case '&': {
7230      // Both pointers and references can have their pointee types
7231      // qualified with an address space.
7232      char *End;
7233      unsigned AddrSpace = strtoul(Str, &End, 10);
7234      if (End != Str && AddrSpace != 0) {
7235        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7236        Str = End;
7237      }
7238      if (c == '*')
7239        Type = Context.getPointerType(Type);
7240      else
7241        Type = Context.getLValueReferenceType(Type);
7242      break;
7243    }
7244    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7245    case 'C':
7246      Type = Type.withConst();
7247      break;
7248    case 'D':
7249      Type = Context.getVolatileType(Type);
7250      break;
7251    case 'R':
7252      Type = Type.withRestrict();
7253      break;
7254    }
7255  }
7256
7257  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7258         "Integer constant 'I' type must be an integer");
7259
7260  return Type;
7261}
7262
7263/// GetBuiltinType - Return the type for the specified builtin.
7264QualType ASTContext::GetBuiltinType(unsigned Id,
7265                                    GetBuiltinTypeError &Error,
7266                                    unsigned *IntegerConstantArgs) const {
7267  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7268
7269  SmallVector<QualType, 8> ArgTypes;
7270
7271  bool RequiresICE = false;
7272  Error = GE_None;
7273  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7274                                       RequiresICE, true);
7275  if (Error != GE_None)
7276    return QualType();
7277
7278  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7279
7280  while (TypeStr[0] && TypeStr[0] != '.') {
7281    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7282    if (Error != GE_None)
7283      return QualType();
7284
7285    // If this argument is required to be an IntegerConstantExpression and the
7286    // caller cares, fill in the bitmask we return.
7287    if (RequiresICE && IntegerConstantArgs)
7288      *IntegerConstantArgs |= 1 << ArgTypes.size();
7289
7290    // Do array -> pointer decay.  The builtin should use the decayed type.
7291    if (Ty->isArrayType())
7292      Ty = getArrayDecayedType(Ty);
7293
7294    ArgTypes.push_back(Ty);
7295  }
7296
7297  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7298         "'.' should only occur at end of builtin type list!");
7299
7300  FunctionType::ExtInfo EI;
7301  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7302
7303  bool Variadic = (TypeStr[0] == '.');
7304
7305  // We really shouldn't be making a no-proto type here, especially in C++.
7306  if (ArgTypes.empty() && Variadic)
7307    return getFunctionNoProtoType(ResType, EI);
7308
7309  FunctionProtoType::ExtProtoInfo EPI;
7310  EPI.ExtInfo = EI;
7311  EPI.Variadic = Variadic;
7312
7313  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
7314}
7315
7316GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7317  GVALinkage External = GVA_StrongExternal;
7318
7319  Linkage L = FD->getLinkage();
7320  switch (L) {
7321  case NoLinkage:
7322  case InternalLinkage:
7323  case UniqueExternalLinkage:
7324    return GVA_Internal;
7325
7326  case ExternalLinkage:
7327    switch (FD->getTemplateSpecializationKind()) {
7328    case TSK_Undeclared:
7329    case TSK_ExplicitSpecialization:
7330      External = GVA_StrongExternal;
7331      break;
7332
7333    case TSK_ExplicitInstantiationDefinition:
7334      return GVA_ExplicitTemplateInstantiation;
7335
7336    case TSK_ExplicitInstantiationDeclaration:
7337    case TSK_ImplicitInstantiation:
7338      External = GVA_TemplateInstantiation;
7339      break;
7340    }
7341  }
7342
7343  if (!FD->isInlined())
7344    return External;
7345
7346  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7347    // GNU or C99 inline semantics. Determine whether this symbol should be
7348    // externally visible.
7349    if (FD->isInlineDefinitionExternallyVisible())
7350      return External;
7351
7352    // C99 inline semantics, where the symbol is not externally visible.
7353    return GVA_C99Inline;
7354  }
7355
7356  // C++0x [temp.explicit]p9:
7357  //   [ Note: The intent is that an inline function that is the subject of
7358  //   an explicit instantiation declaration will still be implicitly
7359  //   instantiated when used so that the body can be considered for
7360  //   inlining, but that no out-of-line copy of the inline function would be
7361  //   generated in the translation unit. -- end note ]
7362  if (FD->getTemplateSpecializationKind()
7363                                       == TSK_ExplicitInstantiationDeclaration)
7364    return GVA_C99Inline;
7365
7366  return GVA_CXXInline;
7367}
7368
7369GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7370  // If this is a static data member, compute the kind of template
7371  // specialization. Otherwise, this variable is not part of a
7372  // template.
7373  TemplateSpecializationKind TSK = TSK_Undeclared;
7374  if (VD->isStaticDataMember())
7375    TSK = VD->getTemplateSpecializationKind();
7376
7377  Linkage L = VD->getLinkage();
7378  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
7379      VD->getType()->getLinkage() == UniqueExternalLinkage)
7380    L = UniqueExternalLinkage;
7381
7382  switch (L) {
7383  case NoLinkage:
7384  case InternalLinkage:
7385  case UniqueExternalLinkage:
7386    return GVA_Internal;
7387
7388  case ExternalLinkage:
7389    switch (TSK) {
7390    case TSK_Undeclared:
7391    case TSK_ExplicitSpecialization:
7392      return GVA_StrongExternal;
7393
7394    case TSK_ExplicitInstantiationDeclaration:
7395      llvm_unreachable("Variable should not be instantiated");
7396      // Fall through to treat this like any other instantiation.
7397
7398    case TSK_ExplicitInstantiationDefinition:
7399      return GVA_ExplicitTemplateInstantiation;
7400
7401    case TSK_ImplicitInstantiation:
7402      return GVA_TemplateInstantiation;
7403    }
7404  }
7405
7406  llvm_unreachable("Invalid Linkage!");
7407}
7408
7409bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7410  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7411    if (!VD->isFileVarDecl())
7412      return false;
7413  } else if (!isa<FunctionDecl>(D))
7414    return false;
7415
7416  // Weak references don't produce any output by themselves.
7417  if (D->hasAttr<WeakRefAttr>())
7418    return false;
7419
7420  // Aliases and used decls are required.
7421  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7422    return true;
7423
7424  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7425    // Forward declarations aren't required.
7426    if (!FD->doesThisDeclarationHaveABody())
7427      return FD->doesDeclarationForceExternallyVisibleDefinition();
7428
7429    // Constructors and destructors are required.
7430    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7431      return true;
7432
7433    // The key function for a class is required.
7434    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7435      const CXXRecordDecl *RD = MD->getParent();
7436      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7437        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7438        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7439          return true;
7440      }
7441    }
7442
7443    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7444
7445    // static, static inline, always_inline, and extern inline functions can
7446    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7447    // Implicit template instantiations can also be deferred in C++.
7448    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7449        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7450      return false;
7451    return true;
7452  }
7453
7454  const VarDecl *VD = cast<VarDecl>(D);
7455  assert(VD->isFileVarDecl() && "Expected file scoped var");
7456
7457  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7458    return false;
7459
7460  // Variables that can be needed in other TUs are required.
7461  GVALinkage L = GetGVALinkageForVariable(VD);
7462  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7463    return true;
7464
7465  // Variables that have destruction with side-effects are required.
7466  if (VD->getType().isDestructedType())
7467    return true;
7468
7469  // Variables that have initialization with side-effects are required.
7470  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7471    return true;
7472
7473  return false;
7474}
7475
7476CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7477  // Pass through to the C++ ABI object
7478  return ABI->getDefaultMethodCallConv(isVariadic);
7479}
7480
7481CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7482  if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
7483    return CC_Default;
7484  return CC;
7485}
7486
7487bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7488  // Pass through to the C++ ABI object
7489  return ABI->isNearlyEmpty(RD);
7490}
7491
7492MangleContext *ASTContext::createMangleContext() {
7493  switch (Target->getCXXABI()) {
7494  case CXXABI_ARM:
7495  case CXXABI_Itanium:
7496    return createItaniumMangleContext(*this, getDiagnostics());
7497  case CXXABI_Microsoft:
7498    return createMicrosoftMangleContext(*this, getDiagnostics());
7499  }
7500  llvm_unreachable("Unsupported ABI");
7501}
7502
7503CXXABI::~CXXABI() {}
7504
7505size_t ASTContext::getSideTableAllocatedMemory() const {
7506  return ASTRecordLayouts.getMemorySize()
7507    + llvm::capacity_in_bytes(ObjCLayouts)
7508    + llvm::capacity_in_bytes(KeyFunctions)
7509    + llvm::capacity_in_bytes(ObjCImpls)
7510    + llvm::capacity_in_bytes(BlockVarCopyInits)
7511    + llvm::capacity_in_bytes(DeclAttrs)
7512    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7513    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7514    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7515    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7516    + llvm::capacity_in_bytes(OverriddenMethods)
7517    + llvm::capacity_in_bytes(Types)
7518    + llvm::capacity_in_bytes(VariableArrayTypes)
7519    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7520}
7521
7522void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7523  // FIXME: This mangling should be applied to function local classes too
7524  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7525      !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
7526    return;
7527
7528  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7529    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7530  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7531}
7532
7533int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7534  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7535    UnnamedMangleNumbers.find(Tag);
7536  return I != UnnamedMangleNumbers.end() ? I->second : -1;
7537}
7538
7539unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7540  CXXRecordDecl *Lambda = CallOperator->getParent();
7541  return LambdaMangleContexts[Lambda->getDeclContext()]
7542           .getManglingNumber(CallOperator);
7543}
7544
7545
7546void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7547  ParamIndices[D] = index;
7548}
7549
7550unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7551  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7552  assert(I != ParamIndices.end() &&
7553         "ParmIndices lacks entry set by ParmVarDecl");
7554  return I->second;
7555}
7556