ASTContext.cpp revision 38eb1e161f602ee810dfb8a5a0d8462572f22689
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/CommentCommandTraits.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/TypeLoc.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExternalASTSource.h"
24#include "clang/AST/ASTMutationListener.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/Mangle.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Support/Capacity.h"
35#include "CXXABI.h"
36#include <map>
37
38using namespace clang;
39
40unsigned ASTContext::NumImplicitDefaultConstructors;
41unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
42unsigned ASTContext::NumImplicitCopyConstructors;
43unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
44unsigned ASTContext::NumImplicitMoveConstructors;
45unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
46unsigned ASTContext::NumImplicitCopyAssignmentOperators;
47unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
48unsigned ASTContext::NumImplicitMoveAssignmentOperators;
49unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitDestructors;
51unsigned ASTContext::NumImplicitDestructorsDeclared;
52
53enum FloatingRank {
54  HalfRank, FloatRank, DoubleRank, LongDoubleRank
55};
56
57RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
58  if (!CommentsLoaded && ExternalSource) {
59    ExternalSource->ReadComments();
60    CommentsLoaded = true;
61  }
62
63  assert(D);
64
65  // User can not attach documentation to implicit declarations.
66  if (D->isImplicit())
67    return NULL;
68
69  // User can not attach documentation to implicit instantiations.
70  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
71    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
72      return NULL;
73  }
74
75  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
76    if (VD->isStaticDataMember() &&
77        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
78      return NULL;
79  }
80
81  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
82    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
83      return NULL;
84  }
85
86  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
87    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
88      return NULL;
89  }
90
91  // TODO: handle comments for function parameters properly.
92  if (isa<ParmVarDecl>(D))
93    return NULL;
94
95  // TODO: we could look up template parameter documentation in the template
96  // documentation.
97  if (isa<TemplateTypeParmDecl>(D) ||
98      isa<NonTypeTemplateParmDecl>(D) ||
99      isa<TemplateTemplateParmDecl>(D))
100    return NULL;
101
102  ArrayRef<RawComment *> RawComments = Comments.getComments();
103
104  // If there are no comments anywhere, we won't find anything.
105  if (RawComments.empty())
106    return NULL;
107
108  // Find declaration location.
109  // For Objective-C declarations we generally don't expect to have multiple
110  // declarators, thus use declaration starting location as the "declaration
111  // location".
112  // For all other declarations multiple declarators are used quite frequently,
113  // so we use the location of the identifier as the "declaration location".
114  SourceLocation DeclLoc;
115  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
116      isa<ObjCPropertyDecl>(D) ||
117      isa<RedeclarableTemplateDecl>(D) ||
118      isa<ClassTemplateSpecializationDecl>(D))
119    DeclLoc = D->getLocStart();
120  else
121    DeclLoc = D->getLocation();
122
123  // If the declaration doesn't map directly to a location in a file, we
124  // can't find the comment.
125  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
126    return NULL;
127
128  // Find the comment that occurs just after this declaration.
129  ArrayRef<RawComment *>::iterator Comment;
130  {
131    // When searching for comments during parsing, the comment we are looking
132    // for is usually among the last two comments we parsed -- check them
133    // first.
134    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
135    BeforeThanCompare<RawComment> Compare(SourceMgr);
136    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
137    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
138    if (!Found && RawComments.size() >= 2) {
139      MaybeBeforeDecl--;
140      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
141    }
142
143    if (Found) {
144      Comment = MaybeBeforeDecl + 1;
145      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
146                                         &CommentAtDeclLoc, Compare));
147    } else {
148      // Slow path.
149      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
150                                 &CommentAtDeclLoc, Compare);
151    }
152  }
153
154  // Decompose the location for the declaration and find the beginning of the
155  // file buffer.
156  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
157
158  // First check whether we have a trailing comment.
159  if (Comment != RawComments.end() &&
160      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
161      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
162    std::pair<FileID, unsigned> CommentBeginDecomp
163      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
164    // Check that Doxygen trailing comment comes after the declaration, starts
165    // on the same line and in the same file as the declaration.
166    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
167        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
168          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
169                                     CommentBeginDecomp.second)) {
170      return *Comment;
171    }
172  }
173
174  // The comment just after the declaration was not a trailing comment.
175  // Let's look at the previous comment.
176  if (Comment == RawComments.begin())
177    return NULL;
178  --Comment;
179
180  // Check that we actually have a non-member Doxygen comment.
181  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
182    return NULL;
183
184  // Decompose the end of the comment.
185  std::pair<FileID, unsigned> CommentEndDecomp
186    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
187
188  // If the comment and the declaration aren't in the same file, then they
189  // aren't related.
190  if (DeclLocDecomp.first != CommentEndDecomp.first)
191    return NULL;
192
193  // Get the corresponding buffer.
194  bool Invalid = false;
195  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
196                                               &Invalid).data();
197  if (Invalid)
198    return NULL;
199
200  // Extract text between the comment and declaration.
201  StringRef Text(Buffer + CommentEndDecomp.second,
202                 DeclLocDecomp.second - CommentEndDecomp.second);
203
204  // There should be no other declarations or preprocessor directives between
205  // comment and declaration.
206  if (Text.find_first_of(",;{}#@") != StringRef::npos)
207    return NULL;
208
209  return *Comment;
210}
211
212namespace {
213/// If we have a 'templated' declaration for a template, adjust 'D' to
214/// refer to the actual template.
215/// If we have an implicit instantiation, adjust 'D' to refer to template.
216const Decl *adjustDeclToTemplate(const Decl *D) {
217  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
218    // Is this function declaration part of a function template?
219    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
220      return FTD;
221
222    // Nothing to do if function is not an implicit instantiation.
223    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
224      return D;
225
226    // Function is an implicit instantiation of a function template?
227    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
228      return FTD;
229
230    // Function is instantiated from a member definition of a class template?
231    if (const FunctionDecl *MemberDecl =
232            FD->getInstantiatedFromMemberFunction())
233      return MemberDecl;
234
235    return D;
236  }
237  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
238    // Static data member is instantiated from a member definition of a class
239    // template?
240    if (VD->isStaticDataMember())
241      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
242        return MemberDecl;
243
244    return D;
245  }
246  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
247    // Is this class declaration part of a class template?
248    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
249      return CTD;
250
251    // Class is an implicit instantiation of a class template or partial
252    // specialization?
253    if (const ClassTemplateSpecializationDecl *CTSD =
254            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
255      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
256        return D;
257      llvm::PointerUnion<ClassTemplateDecl *,
258                         ClassTemplatePartialSpecializationDecl *>
259          PU = CTSD->getSpecializedTemplateOrPartial();
260      return PU.is<ClassTemplateDecl*>() ?
261          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
262          static_cast<const Decl*>(
263              PU.get<ClassTemplatePartialSpecializationDecl *>());
264    }
265
266    // Class is instantiated from a member definition of a class template?
267    if (const MemberSpecializationInfo *Info =
268                   CRD->getMemberSpecializationInfo())
269      return Info->getInstantiatedFrom();
270
271    return D;
272  }
273  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
274    // Enum is instantiated from a member definition of a class template?
275    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
276      return MemberDecl;
277
278    return D;
279  }
280  // FIXME: Adjust alias templates?
281  return D;
282}
283} // unnamed namespace
284
285const RawComment *ASTContext::getRawCommentForAnyRedecl(
286                                                const Decl *D,
287                                                const Decl **OriginalDecl) const {
288  D = adjustDeclToTemplate(D);
289
290  // Check whether we have cached a comment for this declaration already.
291  {
292    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
293        RedeclComments.find(D);
294    if (Pos != RedeclComments.end()) {
295      const RawCommentAndCacheFlags &Raw = Pos->second;
296      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
297        if (OriginalDecl)
298          *OriginalDecl = Raw.getOriginalDecl();
299        return Raw.getRaw();
300      }
301    }
302  }
303
304  // Search for comments attached to declarations in the redeclaration chain.
305  const RawComment *RC = NULL;
306  const Decl *OriginalDeclForRC = NULL;
307  for (Decl::redecl_iterator I = D->redecls_begin(),
308                             E = D->redecls_end();
309       I != E; ++I) {
310    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
311        RedeclComments.find(*I);
312    if (Pos != RedeclComments.end()) {
313      const RawCommentAndCacheFlags &Raw = Pos->second;
314      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
315        RC = Raw.getRaw();
316        OriginalDeclForRC = Raw.getOriginalDecl();
317        break;
318      }
319    } else {
320      RC = getRawCommentForDeclNoCache(*I);
321      OriginalDeclForRC = *I;
322      RawCommentAndCacheFlags Raw;
323      if (RC) {
324        Raw.setRaw(RC);
325        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
326      } else
327        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
328      Raw.setOriginalDecl(*I);
329      RedeclComments[*I] = Raw;
330      if (RC)
331        break;
332    }
333  }
334
335  // If we found a comment, it should be a documentation comment.
336  assert(!RC || RC->isDocumentation());
337
338  if (OriginalDecl)
339    *OriginalDecl = OriginalDeclForRC;
340
341  // Update cache for every declaration in the redeclaration chain.
342  RawCommentAndCacheFlags Raw;
343  Raw.setRaw(RC);
344  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
345  Raw.setOriginalDecl(OriginalDeclForRC);
346
347  for (Decl::redecl_iterator I = D->redecls_begin(),
348                             E = D->redecls_end();
349       I != E; ++I) {
350    RawCommentAndCacheFlags &R = RedeclComments[*I];
351    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
352      R = Raw;
353  }
354
355  return RC;
356}
357
358comments::FullComment *ASTContext::getCommentForDecl(
359                                              const Decl *D,
360                                              const Preprocessor *PP) const {
361  D = adjustDeclToTemplate(D);
362  const Decl *Canonical = D->getCanonicalDecl();
363  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
364      ParsedComments.find(Canonical);
365  if (Pos != ParsedComments.end())
366    return Pos->second;
367
368  const Decl *OriginalDecl;
369  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
370  if (!RC)
371    return NULL;
372
373  // If the RawComment was attached to other redeclaration of this Decl, we
374  // should parse the comment in context of that other Decl.  This is important
375  // because comments can contain references to parameter names which can be
376  // different across redeclarations.
377  if (D != OriginalDecl)
378    return getCommentForDecl(OriginalDecl, PP);
379
380  comments::FullComment *FC = RC->parse(*this, PP, D);
381  ParsedComments[Canonical] = FC;
382  return FC;
383}
384
385void
386ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
387                                               TemplateTemplateParmDecl *Parm) {
388  ID.AddInteger(Parm->getDepth());
389  ID.AddInteger(Parm->getPosition());
390  ID.AddBoolean(Parm->isParameterPack());
391
392  TemplateParameterList *Params = Parm->getTemplateParameters();
393  ID.AddInteger(Params->size());
394  for (TemplateParameterList::const_iterator P = Params->begin(),
395                                          PEnd = Params->end();
396       P != PEnd; ++P) {
397    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
398      ID.AddInteger(0);
399      ID.AddBoolean(TTP->isParameterPack());
400      continue;
401    }
402
403    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
404      ID.AddInteger(1);
405      ID.AddBoolean(NTTP->isParameterPack());
406      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
407      if (NTTP->isExpandedParameterPack()) {
408        ID.AddBoolean(true);
409        ID.AddInteger(NTTP->getNumExpansionTypes());
410        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
411          QualType T = NTTP->getExpansionType(I);
412          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
413        }
414      } else
415        ID.AddBoolean(false);
416      continue;
417    }
418
419    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
420    ID.AddInteger(2);
421    Profile(ID, TTP);
422  }
423}
424
425TemplateTemplateParmDecl *
426ASTContext::getCanonicalTemplateTemplateParmDecl(
427                                          TemplateTemplateParmDecl *TTP) const {
428  // Check if we already have a canonical template template parameter.
429  llvm::FoldingSetNodeID ID;
430  CanonicalTemplateTemplateParm::Profile(ID, TTP);
431  void *InsertPos = 0;
432  CanonicalTemplateTemplateParm *Canonical
433    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
434  if (Canonical)
435    return Canonical->getParam();
436
437  // Build a canonical template parameter list.
438  TemplateParameterList *Params = TTP->getTemplateParameters();
439  SmallVector<NamedDecl *, 4> CanonParams;
440  CanonParams.reserve(Params->size());
441  for (TemplateParameterList::const_iterator P = Params->begin(),
442                                          PEnd = Params->end();
443       P != PEnd; ++P) {
444    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
445      CanonParams.push_back(
446                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
447                                               SourceLocation(),
448                                               SourceLocation(),
449                                               TTP->getDepth(),
450                                               TTP->getIndex(), 0, false,
451                                               TTP->isParameterPack()));
452    else if (NonTypeTemplateParmDecl *NTTP
453             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
454      QualType T = getCanonicalType(NTTP->getType());
455      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
456      NonTypeTemplateParmDecl *Param;
457      if (NTTP->isExpandedParameterPack()) {
458        SmallVector<QualType, 2> ExpandedTypes;
459        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
460        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
461          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
462          ExpandedTInfos.push_back(
463                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
464        }
465
466        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
467                                                SourceLocation(),
468                                                SourceLocation(),
469                                                NTTP->getDepth(),
470                                                NTTP->getPosition(), 0,
471                                                T,
472                                                TInfo,
473                                                ExpandedTypes.data(),
474                                                ExpandedTypes.size(),
475                                                ExpandedTInfos.data());
476      } else {
477        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
478                                                SourceLocation(),
479                                                SourceLocation(),
480                                                NTTP->getDepth(),
481                                                NTTP->getPosition(), 0,
482                                                T,
483                                                NTTP->isParameterPack(),
484                                                TInfo);
485      }
486      CanonParams.push_back(Param);
487
488    } else
489      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
490                                           cast<TemplateTemplateParmDecl>(*P)));
491  }
492
493  TemplateTemplateParmDecl *CanonTTP
494    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
495                                       SourceLocation(), TTP->getDepth(),
496                                       TTP->getPosition(),
497                                       TTP->isParameterPack(),
498                                       0,
499                         TemplateParameterList::Create(*this, SourceLocation(),
500                                                       SourceLocation(),
501                                                       CanonParams.data(),
502                                                       CanonParams.size(),
503                                                       SourceLocation()));
504
505  // Get the new insert position for the node we care about.
506  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
507  assert(Canonical == 0 && "Shouldn't be in the map!");
508  (void)Canonical;
509
510  // Create the canonical template template parameter entry.
511  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
512  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
513  return CanonTTP;
514}
515
516CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
517  if (!LangOpts.CPlusPlus) return 0;
518
519  switch (T.getCXXABI()) {
520  case CXXABI_ARM:
521    return CreateARMCXXABI(*this);
522  case CXXABI_Itanium:
523    return CreateItaniumCXXABI(*this);
524  case CXXABI_Microsoft:
525    return CreateMicrosoftCXXABI(*this);
526  }
527  llvm_unreachable("Invalid CXXABI type!");
528}
529
530static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
531                                             const LangOptions &LOpts) {
532  if (LOpts.FakeAddressSpaceMap) {
533    // The fake address space map must have a distinct entry for each
534    // language-specific address space.
535    static const unsigned FakeAddrSpaceMap[] = {
536      1, // opencl_global
537      2, // opencl_local
538      3, // opencl_constant
539      4, // cuda_device
540      5, // cuda_constant
541      6  // cuda_shared
542    };
543    return &FakeAddrSpaceMap;
544  } else {
545    return &T.getAddressSpaceMap();
546  }
547}
548
549ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
550                       const TargetInfo *t,
551                       IdentifierTable &idents, SelectorTable &sels,
552                       Builtin::Context &builtins,
553                       unsigned size_reserve,
554                       bool DelayInitialization)
555  : FunctionProtoTypes(this_()),
556    TemplateSpecializationTypes(this_()),
557    DependentTemplateSpecializationTypes(this_()),
558    SubstTemplateTemplateParmPacks(this_()),
559    GlobalNestedNameSpecifier(0),
560    Int128Decl(0), UInt128Decl(0),
561    BuiltinVaListDecl(0),
562    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
563    BOOLDecl(0),
564    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
565    FILEDecl(0),
566    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
567    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
568    cudaConfigureCallDecl(0),
569    NullTypeSourceInfo(QualType()),
570    FirstLocalImport(), LastLocalImport(),
571    SourceMgr(SM), LangOpts(LOpts),
572    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
573    Idents(idents), Selectors(sels),
574    BuiltinInfo(builtins),
575    DeclarationNames(*this),
576    ExternalSource(0), Listener(0),
577    Comments(SM), CommentsLoaded(false),
578    CommentCommandTraits(BumpAlloc),
579    LastSDM(0, 0),
580    UniqueBlockByRefTypeID(0)
581{
582  if (size_reserve > 0) Types.reserve(size_reserve);
583  TUDecl = TranslationUnitDecl::Create(*this);
584
585  if (!DelayInitialization) {
586    assert(t && "No target supplied for ASTContext initialization");
587    InitBuiltinTypes(*t);
588  }
589}
590
591ASTContext::~ASTContext() {
592  // Release the DenseMaps associated with DeclContext objects.
593  // FIXME: Is this the ideal solution?
594  ReleaseDeclContextMaps();
595
596  // Call all of the deallocation functions.
597  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
598    Deallocations[I].first(Deallocations[I].second);
599
600  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
601  // because they can contain DenseMaps.
602  for (llvm::DenseMap<const ObjCContainerDecl*,
603       const ASTRecordLayout*>::iterator
604       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
605    // Increment in loop to prevent using deallocated memory.
606    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
607      R->Destroy(*this);
608
609  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
610       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
611    // Increment in loop to prevent using deallocated memory.
612    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
613      R->Destroy(*this);
614  }
615
616  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
617                                                    AEnd = DeclAttrs.end();
618       A != AEnd; ++A)
619    A->second->~AttrVec();
620}
621
622void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
623  Deallocations.push_back(std::make_pair(Callback, Data));
624}
625
626void
627ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
628  ExternalSource.reset(Source.take());
629}
630
631void ASTContext::PrintStats() const {
632  llvm::errs() << "\n*** AST Context Stats:\n";
633  llvm::errs() << "  " << Types.size() << " types total.\n";
634
635  unsigned counts[] = {
636#define TYPE(Name, Parent) 0,
637#define ABSTRACT_TYPE(Name, Parent)
638#include "clang/AST/TypeNodes.def"
639    0 // Extra
640  };
641
642  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
643    Type *T = Types[i];
644    counts[(unsigned)T->getTypeClass()]++;
645  }
646
647  unsigned Idx = 0;
648  unsigned TotalBytes = 0;
649#define TYPE(Name, Parent)                                              \
650  if (counts[Idx])                                                      \
651    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
652                 << " types\n";                                         \
653  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
654  ++Idx;
655#define ABSTRACT_TYPE(Name, Parent)
656#include "clang/AST/TypeNodes.def"
657
658  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
659
660  // Implicit special member functions.
661  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
662               << NumImplicitDefaultConstructors
663               << " implicit default constructors created\n";
664  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
665               << NumImplicitCopyConstructors
666               << " implicit copy constructors created\n";
667  if (getLangOpts().CPlusPlus)
668    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
669                 << NumImplicitMoveConstructors
670                 << " implicit move constructors created\n";
671  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
672               << NumImplicitCopyAssignmentOperators
673               << " implicit copy assignment operators created\n";
674  if (getLangOpts().CPlusPlus)
675    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
676                 << NumImplicitMoveAssignmentOperators
677                 << " implicit move assignment operators created\n";
678  llvm::errs() << NumImplicitDestructorsDeclared << "/"
679               << NumImplicitDestructors
680               << " implicit destructors created\n";
681
682  if (ExternalSource.get()) {
683    llvm::errs() << "\n";
684    ExternalSource->PrintStats();
685  }
686
687  BumpAlloc.PrintStats();
688}
689
690TypedefDecl *ASTContext::getInt128Decl() const {
691  if (!Int128Decl) {
692    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
693    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
694                                     getTranslationUnitDecl(),
695                                     SourceLocation(),
696                                     SourceLocation(),
697                                     &Idents.get("__int128_t"),
698                                     TInfo);
699  }
700
701  return Int128Decl;
702}
703
704TypedefDecl *ASTContext::getUInt128Decl() const {
705  if (!UInt128Decl) {
706    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
707    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
708                                     getTranslationUnitDecl(),
709                                     SourceLocation(),
710                                     SourceLocation(),
711                                     &Idents.get("__uint128_t"),
712                                     TInfo);
713  }
714
715  return UInt128Decl;
716}
717
718void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
719  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
720  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
721  Types.push_back(Ty);
722}
723
724void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
725  assert((!this->Target || this->Target == &Target) &&
726         "Incorrect target reinitialization");
727  assert(VoidTy.isNull() && "Context reinitialized?");
728
729  this->Target = &Target;
730
731  ABI.reset(createCXXABI(Target));
732  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
733
734  // C99 6.2.5p19.
735  InitBuiltinType(VoidTy,              BuiltinType::Void);
736
737  // C99 6.2.5p2.
738  InitBuiltinType(BoolTy,              BuiltinType::Bool);
739  // C99 6.2.5p3.
740  if (LangOpts.CharIsSigned)
741    InitBuiltinType(CharTy,            BuiltinType::Char_S);
742  else
743    InitBuiltinType(CharTy,            BuiltinType::Char_U);
744  // C99 6.2.5p4.
745  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
746  InitBuiltinType(ShortTy,             BuiltinType::Short);
747  InitBuiltinType(IntTy,               BuiltinType::Int);
748  InitBuiltinType(LongTy,              BuiltinType::Long);
749  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
750
751  // C99 6.2.5p6.
752  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
753  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
754  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
755  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
756  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
757
758  // C99 6.2.5p10.
759  InitBuiltinType(FloatTy,             BuiltinType::Float);
760  InitBuiltinType(DoubleTy,            BuiltinType::Double);
761  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
762
763  // GNU extension, 128-bit integers.
764  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
765  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
766
767  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
768    if (TargetInfo::isTypeSigned(Target.getWCharType()))
769      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
770    else  // -fshort-wchar makes wchar_t be unsigned.
771      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
772  } else // C99 (or C++ using -fno-wchar)
773    WCharTy = getFromTargetType(Target.getWCharType());
774
775  WIntTy = getFromTargetType(Target.getWIntType());
776
777  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
778    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
779  else // C99
780    Char16Ty = getFromTargetType(Target.getChar16Type());
781
782  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
783    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
784  else // C99
785    Char32Ty = getFromTargetType(Target.getChar32Type());
786
787  // Placeholder type for type-dependent expressions whose type is
788  // completely unknown. No code should ever check a type against
789  // DependentTy and users should never see it; however, it is here to
790  // help diagnose failures to properly check for type-dependent
791  // expressions.
792  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
793
794  // Placeholder type for functions.
795  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
796
797  // Placeholder type for bound members.
798  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
799
800  // Placeholder type for pseudo-objects.
801  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
802
803  // "any" type; useful for debugger-like clients.
804  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
805
806  // Placeholder type for unbridged ARC casts.
807  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
808
809  // Placeholder type for builtin functions.
810  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
811
812  // C99 6.2.5p11.
813  FloatComplexTy      = getComplexType(FloatTy);
814  DoubleComplexTy     = getComplexType(DoubleTy);
815  LongDoubleComplexTy = getComplexType(LongDoubleTy);
816
817  // Builtin types for 'id', 'Class', and 'SEL'.
818  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
819  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
820  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
821
822  // Builtin type for __objc_yes and __objc_no
823  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
824                       SignedCharTy : BoolTy);
825
826  ObjCConstantStringType = QualType();
827
828  // void * type
829  VoidPtrTy = getPointerType(VoidTy);
830
831  // nullptr type (C++0x 2.14.7)
832  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
833
834  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
835  InitBuiltinType(HalfTy, BuiltinType::Half);
836
837  // Builtin type used to help define __builtin_va_list.
838  VaListTagTy = QualType();
839}
840
841DiagnosticsEngine &ASTContext::getDiagnostics() const {
842  return SourceMgr.getDiagnostics();
843}
844
845AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
846  AttrVec *&Result = DeclAttrs[D];
847  if (!Result) {
848    void *Mem = Allocate(sizeof(AttrVec));
849    Result = new (Mem) AttrVec;
850  }
851
852  return *Result;
853}
854
855/// \brief Erase the attributes corresponding to the given declaration.
856void ASTContext::eraseDeclAttrs(const Decl *D) {
857  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
858  if (Pos != DeclAttrs.end()) {
859    Pos->second->~AttrVec();
860    DeclAttrs.erase(Pos);
861  }
862}
863
864MemberSpecializationInfo *
865ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
866  assert(Var->isStaticDataMember() && "Not a static data member");
867  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
868    = InstantiatedFromStaticDataMember.find(Var);
869  if (Pos == InstantiatedFromStaticDataMember.end())
870    return 0;
871
872  return Pos->second;
873}
874
875void
876ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
877                                                TemplateSpecializationKind TSK,
878                                          SourceLocation PointOfInstantiation) {
879  assert(Inst->isStaticDataMember() && "Not a static data member");
880  assert(Tmpl->isStaticDataMember() && "Not a static data member");
881  assert(!InstantiatedFromStaticDataMember[Inst] &&
882         "Already noted what static data member was instantiated from");
883  InstantiatedFromStaticDataMember[Inst]
884    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
885}
886
887FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
888                                                     const FunctionDecl *FD){
889  assert(FD && "Specialization is 0");
890  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
891    = ClassScopeSpecializationPattern.find(FD);
892  if (Pos == ClassScopeSpecializationPattern.end())
893    return 0;
894
895  return Pos->second;
896}
897
898void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
899                                        FunctionDecl *Pattern) {
900  assert(FD && "Specialization is 0");
901  assert(Pattern && "Class scope specialization pattern is 0");
902  ClassScopeSpecializationPattern[FD] = Pattern;
903}
904
905NamedDecl *
906ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
907  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
908    = InstantiatedFromUsingDecl.find(UUD);
909  if (Pos == InstantiatedFromUsingDecl.end())
910    return 0;
911
912  return Pos->second;
913}
914
915void
916ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
917  assert((isa<UsingDecl>(Pattern) ||
918          isa<UnresolvedUsingValueDecl>(Pattern) ||
919          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
920         "pattern decl is not a using decl");
921  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
922  InstantiatedFromUsingDecl[Inst] = Pattern;
923}
924
925UsingShadowDecl *
926ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
927  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
928    = InstantiatedFromUsingShadowDecl.find(Inst);
929  if (Pos == InstantiatedFromUsingShadowDecl.end())
930    return 0;
931
932  return Pos->second;
933}
934
935void
936ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
937                                               UsingShadowDecl *Pattern) {
938  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
939  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
940}
941
942FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
943  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
944    = InstantiatedFromUnnamedFieldDecl.find(Field);
945  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
946    return 0;
947
948  return Pos->second;
949}
950
951void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
952                                                     FieldDecl *Tmpl) {
953  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
954  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
955  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
956         "Already noted what unnamed field was instantiated from");
957
958  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
959}
960
961bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
962                                    const FieldDecl *LastFD) const {
963  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
964          FD->getBitWidthValue(*this) == 0);
965}
966
967bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
968                                             const FieldDecl *LastFD) const {
969  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
970          FD->getBitWidthValue(*this) == 0 &&
971          LastFD->getBitWidthValue(*this) != 0);
972}
973
974bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
975                                         const FieldDecl *LastFD) const {
976  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
977          FD->getBitWidthValue(*this) &&
978          LastFD->getBitWidthValue(*this));
979}
980
981bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
982                                         const FieldDecl *LastFD) const {
983  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
984          LastFD->getBitWidthValue(*this));
985}
986
987bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
988                                             const FieldDecl *LastFD) const {
989  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
990          FD->getBitWidthValue(*this));
991}
992
993ASTContext::overridden_cxx_method_iterator
994ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
995  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
996    = OverriddenMethods.find(Method->getCanonicalDecl());
997  if (Pos == OverriddenMethods.end())
998    return 0;
999
1000  return Pos->second.begin();
1001}
1002
1003ASTContext::overridden_cxx_method_iterator
1004ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1005  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1006    = OverriddenMethods.find(Method->getCanonicalDecl());
1007  if (Pos == OverriddenMethods.end())
1008    return 0;
1009
1010  return Pos->second.end();
1011}
1012
1013unsigned
1014ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1015  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1016    = OverriddenMethods.find(Method->getCanonicalDecl());
1017  if (Pos == OverriddenMethods.end())
1018    return 0;
1019
1020  return Pos->second.size();
1021}
1022
1023void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1024                                     const CXXMethodDecl *Overridden) {
1025  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1026  OverriddenMethods[Method].push_back(Overridden);
1027}
1028
1029void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1030  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1031  assert(!Import->isFromASTFile() && "Non-local import declaration");
1032  if (!FirstLocalImport) {
1033    FirstLocalImport = Import;
1034    LastLocalImport = Import;
1035    return;
1036  }
1037
1038  LastLocalImport->NextLocalImport = Import;
1039  LastLocalImport = Import;
1040}
1041
1042//===----------------------------------------------------------------------===//
1043//                         Type Sizing and Analysis
1044//===----------------------------------------------------------------------===//
1045
1046/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1047/// scalar floating point type.
1048const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1049  const BuiltinType *BT = T->getAs<BuiltinType>();
1050  assert(BT && "Not a floating point type!");
1051  switch (BT->getKind()) {
1052  default: llvm_unreachable("Not a floating point type!");
1053  case BuiltinType::Half:       return Target->getHalfFormat();
1054  case BuiltinType::Float:      return Target->getFloatFormat();
1055  case BuiltinType::Double:     return Target->getDoubleFormat();
1056  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1057  }
1058}
1059
1060/// getDeclAlign - Return a conservative estimate of the alignment of the
1061/// specified decl.  Note that bitfields do not have a valid alignment, so
1062/// this method will assert on them.
1063/// If @p RefAsPointee, references are treated like their underlying type
1064/// (for alignof), else they're treated like pointers (for CodeGen).
1065CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1066  unsigned Align = Target->getCharWidth();
1067
1068  bool UseAlignAttrOnly = false;
1069  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1070    Align = AlignFromAttr;
1071
1072    // __attribute__((aligned)) can increase or decrease alignment
1073    // *except* on a struct or struct member, where it only increases
1074    // alignment unless 'packed' is also specified.
1075    //
1076    // It is an error for alignas to decrease alignment, so we can
1077    // ignore that possibility;  Sema should diagnose it.
1078    if (isa<FieldDecl>(D)) {
1079      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1080        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1081    } else {
1082      UseAlignAttrOnly = true;
1083    }
1084  }
1085  else if (isa<FieldDecl>(D))
1086      UseAlignAttrOnly =
1087        D->hasAttr<PackedAttr>() ||
1088        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1089
1090  // If we're using the align attribute only, just ignore everything
1091  // else about the declaration and its type.
1092  if (UseAlignAttrOnly) {
1093    // do nothing
1094
1095  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1096    QualType T = VD->getType();
1097    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1098      if (RefAsPointee)
1099        T = RT->getPointeeType();
1100      else
1101        T = getPointerType(RT->getPointeeType());
1102    }
1103    if (!T->isIncompleteType() && !T->isFunctionType()) {
1104      // Adjust alignments of declarations with array type by the
1105      // large-array alignment on the target.
1106      unsigned MinWidth = Target->getLargeArrayMinWidth();
1107      const ArrayType *arrayType;
1108      if (MinWidth && (arrayType = getAsArrayType(T))) {
1109        if (isa<VariableArrayType>(arrayType))
1110          Align = std::max(Align, Target->getLargeArrayAlign());
1111        else if (isa<ConstantArrayType>(arrayType) &&
1112                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1113          Align = std::max(Align, Target->getLargeArrayAlign());
1114
1115        // Walk through any array types while we're at it.
1116        T = getBaseElementType(arrayType);
1117      }
1118      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1119    }
1120
1121    // Fields can be subject to extra alignment constraints, like if
1122    // the field is packed, the struct is packed, or the struct has a
1123    // a max-field-alignment constraint (#pragma pack).  So calculate
1124    // the actual alignment of the field within the struct, and then
1125    // (as we're expected to) constrain that by the alignment of the type.
1126    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1127      // So calculate the alignment of the field.
1128      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1129
1130      // Start with the record's overall alignment.
1131      unsigned fieldAlign = toBits(layout.getAlignment());
1132
1133      // Use the GCD of that and the offset within the record.
1134      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1135      if (offset > 0) {
1136        // Alignment is always a power of 2, so the GCD will be a power of 2,
1137        // which means we get to do this crazy thing instead of Euclid's.
1138        uint64_t lowBitOfOffset = offset & (~offset + 1);
1139        if (lowBitOfOffset < fieldAlign)
1140          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1141      }
1142
1143      Align = std::min(Align, fieldAlign);
1144    }
1145  }
1146
1147  return toCharUnitsFromBits(Align);
1148}
1149
1150// getTypeInfoDataSizeInChars - Return the size of a type, in
1151// chars. If the type is a record, its data size is returned.  This is
1152// the size of the memcpy that's performed when assigning this type
1153// using a trivial copy/move assignment operator.
1154std::pair<CharUnits, CharUnits>
1155ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1156  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1157
1158  // In C++, objects can sometimes be allocated into the tail padding
1159  // of a base-class subobject.  We decide whether that's possible
1160  // during class layout, so here we can just trust the layout results.
1161  if (getLangOpts().CPlusPlus) {
1162    if (const RecordType *RT = T->getAs<RecordType>()) {
1163      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1164      sizeAndAlign.first = layout.getDataSize();
1165    }
1166  }
1167
1168  return sizeAndAlign;
1169}
1170
1171std::pair<CharUnits, CharUnits>
1172ASTContext::getTypeInfoInChars(const Type *T) const {
1173  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1174  return std::make_pair(toCharUnitsFromBits(Info.first),
1175                        toCharUnitsFromBits(Info.second));
1176}
1177
1178std::pair<CharUnits, CharUnits>
1179ASTContext::getTypeInfoInChars(QualType T) const {
1180  return getTypeInfoInChars(T.getTypePtr());
1181}
1182
1183std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1184  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1185  if (it != MemoizedTypeInfo.end())
1186    return it->second;
1187
1188  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1189  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1190  return Info;
1191}
1192
1193/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1194/// method does not work on incomplete types.
1195///
1196/// FIXME: Pointers into different addr spaces could have different sizes and
1197/// alignment requirements: getPointerInfo should take an AddrSpace, this
1198/// should take a QualType, &c.
1199std::pair<uint64_t, unsigned>
1200ASTContext::getTypeInfoImpl(const Type *T) const {
1201  uint64_t Width=0;
1202  unsigned Align=8;
1203  switch (T->getTypeClass()) {
1204#define TYPE(Class, Base)
1205#define ABSTRACT_TYPE(Class, Base)
1206#define NON_CANONICAL_TYPE(Class, Base)
1207#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1208#include "clang/AST/TypeNodes.def"
1209    llvm_unreachable("Should not see dependent types");
1210
1211  case Type::FunctionNoProto:
1212  case Type::FunctionProto:
1213    // GCC extension: alignof(function) = 32 bits
1214    Width = 0;
1215    Align = 32;
1216    break;
1217
1218  case Type::IncompleteArray:
1219  case Type::VariableArray:
1220    Width = 0;
1221    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1222    break;
1223
1224  case Type::ConstantArray: {
1225    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1226
1227    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1228    uint64_t Size = CAT->getSize().getZExtValue();
1229    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1230           "Overflow in array type bit size evaluation");
1231    Width = EltInfo.first*Size;
1232    Align = EltInfo.second;
1233    Width = llvm::RoundUpToAlignment(Width, Align);
1234    break;
1235  }
1236  case Type::ExtVector:
1237  case Type::Vector: {
1238    const VectorType *VT = cast<VectorType>(T);
1239    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1240    Width = EltInfo.first*VT->getNumElements();
1241    Align = Width;
1242    // If the alignment is not a power of 2, round up to the next power of 2.
1243    // This happens for non-power-of-2 length vectors.
1244    if (Align & (Align-1)) {
1245      Align = llvm::NextPowerOf2(Align);
1246      Width = llvm::RoundUpToAlignment(Width, Align);
1247    }
1248    // Adjust the alignment based on the target max.
1249    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1250    if (TargetVectorAlign && TargetVectorAlign < Align)
1251      Align = TargetVectorAlign;
1252    break;
1253  }
1254
1255  case Type::Builtin:
1256    switch (cast<BuiltinType>(T)->getKind()) {
1257    default: llvm_unreachable("Unknown builtin type!");
1258    case BuiltinType::Void:
1259      // GCC extension: alignof(void) = 8 bits.
1260      Width = 0;
1261      Align = 8;
1262      break;
1263
1264    case BuiltinType::Bool:
1265      Width = Target->getBoolWidth();
1266      Align = Target->getBoolAlign();
1267      break;
1268    case BuiltinType::Char_S:
1269    case BuiltinType::Char_U:
1270    case BuiltinType::UChar:
1271    case BuiltinType::SChar:
1272      Width = Target->getCharWidth();
1273      Align = Target->getCharAlign();
1274      break;
1275    case BuiltinType::WChar_S:
1276    case BuiltinType::WChar_U:
1277      Width = Target->getWCharWidth();
1278      Align = Target->getWCharAlign();
1279      break;
1280    case BuiltinType::Char16:
1281      Width = Target->getChar16Width();
1282      Align = Target->getChar16Align();
1283      break;
1284    case BuiltinType::Char32:
1285      Width = Target->getChar32Width();
1286      Align = Target->getChar32Align();
1287      break;
1288    case BuiltinType::UShort:
1289    case BuiltinType::Short:
1290      Width = Target->getShortWidth();
1291      Align = Target->getShortAlign();
1292      break;
1293    case BuiltinType::UInt:
1294    case BuiltinType::Int:
1295      Width = Target->getIntWidth();
1296      Align = Target->getIntAlign();
1297      break;
1298    case BuiltinType::ULong:
1299    case BuiltinType::Long:
1300      Width = Target->getLongWidth();
1301      Align = Target->getLongAlign();
1302      break;
1303    case BuiltinType::ULongLong:
1304    case BuiltinType::LongLong:
1305      Width = Target->getLongLongWidth();
1306      Align = Target->getLongLongAlign();
1307      break;
1308    case BuiltinType::Int128:
1309    case BuiltinType::UInt128:
1310      Width = 128;
1311      Align = 128; // int128_t is 128-bit aligned on all targets.
1312      break;
1313    case BuiltinType::Half:
1314      Width = Target->getHalfWidth();
1315      Align = Target->getHalfAlign();
1316      break;
1317    case BuiltinType::Float:
1318      Width = Target->getFloatWidth();
1319      Align = Target->getFloatAlign();
1320      break;
1321    case BuiltinType::Double:
1322      Width = Target->getDoubleWidth();
1323      Align = Target->getDoubleAlign();
1324      break;
1325    case BuiltinType::LongDouble:
1326      Width = Target->getLongDoubleWidth();
1327      Align = Target->getLongDoubleAlign();
1328      break;
1329    case BuiltinType::NullPtr:
1330      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1331      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1332      break;
1333    case BuiltinType::ObjCId:
1334    case BuiltinType::ObjCClass:
1335    case BuiltinType::ObjCSel:
1336      Width = Target->getPointerWidth(0);
1337      Align = Target->getPointerAlign(0);
1338      break;
1339    }
1340    break;
1341  case Type::ObjCObjectPointer:
1342    Width = Target->getPointerWidth(0);
1343    Align = Target->getPointerAlign(0);
1344    break;
1345  case Type::BlockPointer: {
1346    unsigned AS = getTargetAddressSpace(
1347        cast<BlockPointerType>(T)->getPointeeType());
1348    Width = Target->getPointerWidth(AS);
1349    Align = Target->getPointerAlign(AS);
1350    break;
1351  }
1352  case Type::LValueReference:
1353  case Type::RValueReference: {
1354    // alignof and sizeof should never enter this code path here, so we go
1355    // the pointer route.
1356    unsigned AS = getTargetAddressSpace(
1357        cast<ReferenceType>(T)->getPointeeType());
1358    Width = Target->getPointerWidth(AS);
1359    Align = Target->getPointerAlign(AS);
1360    break;
1361  }
1362  case Type::Pointer: {
1363    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1364    Width = Target->getPointerWidth(AS);
1365    Align = Target->getPointerAlign(AS);
1366    break;
1367  }
1368  case Type::MemberPointer: {
1369    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1370    std::pair<uint64_t, unsigned> PtrDiffInfo =
1371      getTypeInfo(getPointerDiffType());
1372    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1373    Align = PtrDiffInfo.second;
1374    break;
1375  }
1376  case Type::Complex: {
1377    // Complex types have the same alignment as their elements, but twice the
1378    // size.
1379    std::pair<uint64_t, unsigned> EltInfo =
1380      getTypeInfo(cast<ComplexType>(T)->getElementType());
1381    Width = EltInfo.first*2;
1382    Align = EltInfo.second;
1383    break;
1384  }
1385  case Type::ObjCObject:
1386    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1387  case Type::ObjCInterface: {
1388    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1389    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1390    Width = toBits(Layout.getSize());
1391    Align = toBits(Layout.getAlignment());
1392    break;
1393  }
1394  case Type::Record:
1395  case Type::Enum: {
1396    const TagType *TT = cast<TagType>(T);
1397
1398    if (TT->getDecl()->isInvalidDecl()) {
1399      Width = 8;
1400      Align = 8;
1401      break;
1402    }
1403
1404    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1405      return getTypeInfo(ET->getDecl()->getIntegerType());
1406
1407    const RecordType *RT = cast<RecordType>(TT);
1408    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1409    Width = toBits(Layout.getSize());
1410    Align = toBits(Layout.getAlignment());
1411    break;
1412  }
1413
1414  case Type::SubstTemplateTypeParm:
1415    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1416                       getReplacementType().getTypePtr());
1417
1418  case Type::Auto: {
1419    const AutoType *A = cast<AutoType>(T);
1420    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1421    return getTypeInfo(A->getDeducedType().getTypePtr());
1422  }
1423
1424  case Type::Paren:
1425    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1426
1427  case Type::Typedef: {
1428    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1429    std::pair<uint64_t, unsigned> Info
1430      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1431    // If the typedef has an aligned attribute on it, it overrides any computed
1432    // alignment we have.  This violates the GCC documentation (which says that
1433    // attribute(aligned) can only round up) but matches its implementation.
1434    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1435      Align = AttrAlign;
1436    else
1437      Align = Info.second;
1438    Width = Info.first;
1439    break;
1440  }
1441
1442  case Type::TypeOfExpr:
1443    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1444                         .getTypePtr());
1445
1446  case Type::TypeOf:
1447    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1448
1449  case Type::Decltype:
1450    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1451                        .getTypePtr());
1452
1453  case Type::UnaryTransform:
1454    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1455
1456  case Type::Elaborated:
1457    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1458
1459  case Type::Attributed:
1460    return getTypeInfo(
1461                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1462
1463  case Type::TemplateSpecialization: {
1464    assert(getCanonicalType(T) != T &&
1465           "Cannot request the size of a dependent type");
1466    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1467    // A type alias template specialization may refer to a typedef with the
1468    // aligned attribute on it.
1469    if (TST->isTypeAlias())
1470      return getTypeInfo(TST->getAliasedType().getTypePtr());
1471    else
1472      return getTypeInfo(getCanonicalType(T));
1473  }
1474
1475  case Type::Atomic: {
1476    std::pair<uint64_t, unsigned> Info
1477      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1478    Width = Info.first;
1479    Align = Info.second;
1480    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1481        llvm::isPowerOf2_64(Width)) {
1482      // We can potentially perform lock-free atomic operations for this
1483      // type; promote the alignment appropriately.
1484      // FIXME: We could potentially promote the width here as well...
1485      // is that worthwhile?  (Non-struct atomic types generally have
1486      // power-of-two size anyway, but structs might not.  Requires a bit
1487      // of implementation work to make sure we zero out the extra bits.)
1488      Align = static_cast<unsigned>(Width);
1489    }
1490  }
1491
1492  }
1493
1494  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1495  return std::make_pair(Width, Align);
1496}
1497
1498/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1499CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1500  return CharUnits::fromQuantity(BitSize / getCharWidth());
1501}
1502
1503/// toBits - Convert a size in characters to a size in characters.
1504int64_t ASTContext::toBits(CharUnits CharSize) const {
1505  return CharSize.getQuantity() * getCharWidth();
1506}
1507
1508/// getTypeSizeInChars - Return the size of the specified type, in characters.
1509/// This method does not work on incomplete types.
1510CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1511  return toCharUnitsFromBits(getTypeSize(T));
1512}
1513CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1514  return toCharUnitsFromBits(getTypeSize(T));
1515}
1516
1517/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1518/// characters. This method does not work on incomplete types.
1519CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1520  return toCharUnitsFromBits(getTypeAlign(T));
1521}
1522CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1523  return toCharUnitsFromBits(getTypeAlign(T));
1524}
1525
1526/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1527/// type for the current target in bits.  This can be different than the ABI
1528/// alignment in cases where it is beneficial for performance to overalign
1529/// a data type.
1530unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1531  unsigned ABIAlign = getTypeAlign(T);
1532
1533  // Double and long long should be naturally aligned if possible.
1534  if (const ComplexType* CT = T->getAs<ComplexType>())
1535    T = CT->getElementType().getTypePtr();
1536  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1537      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1538      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1539    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1540
1541  return ABIAlign;
1542}
1543
1544/// DeepCollectObjCIvars -
1545/// This routine first collects all declared, but not synthesized, ivars in
1546/// super class and then collects all ivars, including those synthesized for
1547/// current class. This routine is used for implementation of current class
1548/// when all ivars, declared and synthesized are known.
1549///
1550void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1551                                      bool leafClass,
1552                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1553  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1554    DeepCollectObjCIvars(SuperClass, false, Ivars);
1555  if (!leafClass) {
1556    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1557         E = OI->ivar_end(); I != E; ++I)
1558      Ivars.push_back(*I);
1559  } else {
1560    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1561    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1562         Iv= Iv->getNextIvar())
1563      Ivars.push_back(Iv);
1564  }
1565}
1566
1567/// CollectInheritedProtocols - Collect all protocols in current class and
1568/// those inherited by it.
1569void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1570                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1571  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1572    // We can use protocol_iterator here instead of
1573    // all_referenced_protocol_iterator since we are walking all categories.
1574    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1575         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1576      ObjCProtocolDecl *Proto = (*P);
1577      Protocols.insert(Proto->getCanonicalDecl());
1578      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1579           PE = Proto->protocol_end(); P != PE; ++P) {
1580        Protocols.insert((*P)->getCanonicalDecl());
1581        CollectInheritedProtocols(*P, Protocols);
1582      }
1583    }
1584
1585    // Categories of this Interface.
1586    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1587         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1588      CollectInheritedProtocols(CDeclChain, Protocols);
1589    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1590      while (SD) {
1591        CollectInheritedProtocols(SD, Protocols);
1592        SD = SD->getSuperClass();
1593      }
1594  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1595    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1596         PE = OC->protocol_end(); P != PE; ++P) {
1597      ObjCProtocolDecl *Proto = (*P);
1598      Protocols.insert(Proto->getCanonicalDecl());
1599      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1600           PE = Proto->protocol_end(); P != PE; ++P)
1601        CollectInheritedProtocols(*P, Protocols);
1602    }
1603  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1604    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1605         PE = OP->protocol_end(); P != PE; ++P) {
1606      ObjCProtocolDecl *Proto = (*P);
1607      Protocols.insert(Proto->getCanonicalDecl());
1608      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1609           PE = Proto->protocol_end(); P != PE; ++P)
1610        CollectInheritedProtocols(*P, Protocols);
1611    }
1612  }
1613}
1614
1615unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1616  unsigned count = 0;
1617  // Count ivars declared in class extension.
1618  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1619       CDecl = CDecl->getNextClassExtension())
1620    count += CDecl->ivar_size();
1621
1622  // Count ivar defined in this class's implementation.  This
1623  // includes synthesized ivars.
1624  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1625    count += ImplDecl->ivar_size();
1626
1627  return count;
1628}
1629
1630bool ASTContext::isSentinelNullExpr(const Expr *E) {
1631  if (!E)
1632    return false;
1633
1634  // nullptr_t is always treated as null.
1635  if (E->getType()->isNullPtrType()) return true;
1636
1637  if (E->getType()->isAnyPointerType() &&
1638      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1639                                                Expr::NPC_ValueDependentIsNull))
1640    return true;
1641
1642  // Unfortunately, __null has type 'int'.
1643  if (isa<GNUNullExpr>(E)) return true;
1644
1645  return false;
1646}
1647
1648/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1649ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1650  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1651    I = ObjCImpls.find(D);
1652  if (I != ObjCImpls.end())
1653    return cast<ObjCImplementationDecl>(I->second);
1654  return 0;
1655}
1656/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1657ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1658  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1659    I = ObjCImpls.find(D);
1660  if (I != ObjCImpls.end())
1661    return cast<ObjCCategoryImplDecl>(I->second);
1662  return 0;
1663}
1664
1665/// \brief Set the implementation of ObjCInterfaceDecl.
1666void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1667                           ObjCImplementationDecl *ImplD) {
1668  assert(IFaceD && ImplD && "Passed null params");
1669  ObjCImpls[IFaceD] = ImplD;
1670}
1671/// \brief Set the implementation of ObjCCategoryDecl.
1672void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1673                           ObjCCategoryImplDecl *ImplD) {
1674  assert(CatD && ImplD && "Passed null params");
1675  ObjCImpls[CatD] = ImplD;
1676}
1677
1678ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1679  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1680    return ID;
1681  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1682    return CD->getClassInterface();
1683  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1684    return IMD->getClassInterface();
1685
1686  return 0;
1687}
1688
1689/// \brief Get the copy initialization expression of VarDecl,or NULL if
1690/// none exists.
1691Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1692  assert(VD && "Passed null params");
1693  assert(VD->hasAttr<BlocksAttr>() &&
1694         "getBlockVarCopyInits - not __block var");
1695  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1696    I = BlockVarCopyInits.find(VD);
1697  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1698}
1699
1700/// \brief Set the copy inialization expression of a block var decl.
1701void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1702  assert(VD && Init && "Passed null params");
1703  assert(VD->hasAttr<BlocksAttr>() &&
1704         "setBlockVarCopyInits - not __block var");
1705  BlockVarCopyInits[VD] = Init;
1706}
1707
1708TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1709                                                 unsigned DataSize) const {
1710  if (!DataSize)
1711    DataSize = TypeLoc::getFullDataSizeForType(T);
1712  else
1713    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1714           "incorrect data size provided to CreateTypeSourceInfo!");
1715
1716  TypeSourceInfo *TInfo =
1717    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1718  new (TInfo) TypeSourceInfo(T);
1719  return TInfo;
1720}
1721
1722TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1723                                                     SourceLocation L) const {
1724  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1725  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1726  return DI;
1727}
1728
1729const ASTRecordLayout &
1730ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1731  return getObjCLayout(D, 0);
1732}
1733
1734const ASTRecordLayout &
1735ASTContext::getASTObjCImplementationLayout(
1736                                        const ObjCImplementationDecl *D) const {
1737  return getObjCLayout(D->getClassInterface(), D);
1738}
1739
1740//===----------------------------------------------------------------------===//
1741//                   Type creation/memoization methods
1742//===----------------------------------------------------------------------===//
1743
1744QualType
1745ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1746  unsigned fastQuals = quals.getFastQualifiers();
1747  quals.removeFastQualifiers();
1748
1749  // Check if we've already instantiated this type.
1750  llvm::FoldingSetNodeID ID;
1751  ExtQuals::Profile(ID, baseType, quals);
1752  void *insertPos = 0;
1753  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1754    assert(eq->getQualifiers() == quals);
1755    return QualType(eq, fastQuals);
1756  }
1757
1758  // If the base type is not canonical, make the appropriate canonical type.
1759  QualType canon;
1760  if (!baseType->isCanonicalUnqualified()) {
1761    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1762    canonSplit.Quals.addConsistentQualifiers(quals);
1763    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1764
1765    // Re-find the insert position.
1766    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1767  }
1768
1769  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1770  ExtQualNodes.InsertNode(eq, insertPos);
1771  return QualType(eq, fastQuals);
1772}
1773
1774QualType
1775ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1776  QualType CanT = getCanonicalType(T);
1777  if (CanT.getAddressSpace() == AddressSpace)
1778    return T;
1779
1780  // If we are composing extended qualifiers together, merge together
1781  // into one ExtQuals node.
1782  QualifierCollector Quals;
1783  const Type *TypeNode = Quals.strip(T);
1784
1785  // If this type already has an address space specified, it cannot get
1786  // another one.
1787  assert(!Quals.hasAddressSpace() &&
1788         "Type cannot be in multiple addr spaces!");
1789  Quals.addAddressSpace(AddressSpace);
1790
1791  return getExtQualType(TypeNode, Quals);
1792}
1793
1794QualType ASTContext::getObjCGCQualType(QualType T,
1795                                       Qualifiers::GC GCAttr) const {
1796  QualType CanT = getCanonicalType(T);
1797  if (CanT.getObjCGCAttr() == GCAttr)
1798    return T;
1799
1800  if (const PointerType *ptr = T->getAs<PointerType>()) {
1801    QualType Pointee = ptr->getPointeeType();
1802    if (Pointee->isAnyPointerType()) {
1803      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1804      return getPointerType(ResultType);
1805    }
1806  }
1807
1808  // If we are composing extended qualifiers together, merge together
1809  // into one ExtQuals node.
1810  QualifierCollector Quals;
1811  const Type *TypeNode = Quals.strip(T);
1812
1813  // If this type already has an ObjCGC specified, it cannot get
1814  // another one.
1815  assert(!Quals.hasObjCGCAttr() &&
1816         "Type cannot have multiple ObjCGCs!");
1817  Quals.addObjCGCAttr(GCAttr);
1818
1819  return getExtQualType(TypeNode, Quals);
1820}
1821
1822const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1823                                                   FunctionType::ExtInfo Info) {
1824  if (T->getExtInfo() == Info)
1825    return T;
1826
1827  QualType Result;
1828  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1829    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1830  } else {
1831    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1832    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1833    EPI.ExtInfo = Info;
1834    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1835                             FPT->getNumArgs(), EPI);
1836  }
1837
1838  return cast<FunctionType>(Result.getTypePtr());
1839}
1840
1841/// getComplexType - Return the uniqued reference to the type for a complex
1842/// number with the specified element type.
1843QualType ASTContext::getComplexType(QualType T) const {
1844  // Unique pointers, to guarantee there is only one pointer of a particular
1845  // structure.
1846  llvm::FoldingSetNodeID ID;
1847  ComplexType::Profile(ID, T);
1848
1849  void *InsertPos = 0;
1850  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1851    return QualType(CT, 0);
1852
1853  // If the pointee type isn't canonical, this won't be a canonical type either,
1854  // so fill in the canonical type field.
1855  QualType Canonical;
1856  if (!T.isCanonical()) {
1857    Canonical = getComplexType(getCanonicalType(T));
1858
1859    // Get the new insert position for the node we care about.
1860    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1861    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1862  }
1863  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1864  Types.push_back(New);
1865  ComplexTypes.InsertNode(New, InsertPos);
1866  return QualType(New, 0);
1867}
1868
1869/// getPointerType - Return the uniqued reference to the type for a pointer to
1870/// the specified type.
1871QualType ASTContext::getPointerType(QualType T) const {
1872  // Unique pointers, to guarantee there is only one pointer of a particular
1873  // structure.
1874  llvm::FoldingSetNodeID ID;
1875  PointerType::Profile(ID, T);
1876
1877  void *InsertPos = 0;
1878  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1879    return QualType(PT, 0);
1880
1881  // If the pointee type isn't canonical, this won't be a canonical type either,
1882  // so fill in the canonical type field.
1883  QualType Canonical;
1884  if (!T.isCanonical()) {
1885    Canonical = getPointerType(getCanonicalType(T));
1886
1887    // Get the new insert position for the node we care about.
1888    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1889    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1890  }
1891  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1892  Types.push_back(New);
1893  PointerTypes.InsertNode(New, InsertPos);
1894  return QualType(New, 0);
1895}
1896
1897/// getBlockPointerType - Return the uniqued reference to the type for
1898/// a pointer to the specified block.
1899QualType ASTContext::getBlockPointerType(QualType T) const {
1900  assert(T->isFunctionType() && "block of function types only");
1901  // Unique pointers, to guarantee there is only one block of a particular
1902  // structure.
1903  llvm::FoldingSetNodeID ID;
1904  BlockPointerType::Profile(ID, T);
1905
1906  void *InsertPos = 0;
1907  if (BlockPointerType *PT =
1908        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1909    return QualType(PT, 0);
1910
1911  // If the block pointee type isn't canonical, this won't be a canonical
1912  // type either so fill in the canonical type field.
1913  QualType Canonical;
1914  if (!T.isCanonical()) {
1915    Canonical = getBlockPointerType(getCanonicalType(T));
1916
1917    // Get the new insert position for the node we care about.
1918    BlockPointerType *NewIP =
1919      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1920    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1921  }
1922  BlockPointerType *New
1923    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1924  Types.push_back(New);
1925  BlockPointerTypes.InsertNode(New, InsertPos);
1926  return QualType(New, 0);
1927}
1928
1929/// getLValueReferenceType - Return the uniqued reference to the type for an
1930/// lvalue reference to the specified type.
1931QualType
1932ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1933  assert(getCanonicalType(T) != OverloadTy &&
1934         "Unresolved overloaded function type");
1935
1936  // Unique pointers, to guarantee there is only one pointer of a particular
1937  // structure.
1938  llvm::FoldingSetNodeID ID;
1939  ReferenceType::Profile(ID, T, SpelledAsLValue);
1940
1941  void *InsertPos = 0;
1942  if (LValueReferenceType *RT =
1943        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1944    return QualType(RT, 0);
1945
1946  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1947
1948  // If the referencee type isn't canonical, this won't be a canonical type
1949  // either, so fill in the canonical type field.
1950  QualType Canonical;
1951  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1952    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1953    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1954
1955    // Get the new insert position for the node we care about.
1956    LValueReferenceType *NewIP =
1957      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1958    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1959  }
1960
1961  LValueReferenceType *New
1962    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1963                                                     SpelledAsLValue);
1964  Types.push_back(New);
1965  LValueReferenceTypes.InsertNode(New, InsertPos);
1966
1967  return QualType(New, 0);
1968}
1969
1970/// getRValueReferenceType - Return the uniqued reference to the type for an
1971/// rvalue reference to the specified type.
1972QualType ASTContext::getRValueReferenceType(QualType T) const {
1973  // Unique pointers, to guarantee there is only one pointer of a particular
1974  // structure.
1975  llvm::FoldingSetNodeID ID;
1976  ReferenceType::Profile(ID, T, false);
1977
1978  void *InsertPos = 0;
1979  if (RValueReferenceType *RT =
1980        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1981    return QualType(RT, 0);
1982
1983  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1984
1985  // If the referencee type isn't canonical, this won't be a canonical type
1986  // either, so fill in the canonical type field.
1987  QualType Canonical;
1988  if (InnerRef || !T.isCanonical()) {
1989    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1990    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1991
1992    // Get the new insert position for the node we care about.
1993    RValueReferenceType *NewIP =
1994      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1995    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1996  }
1997
1998  RValueReferenceType *New
1999    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2000  Types.push_back(New);
2001  RValueReferenceTypes.InsertNode(New, InsertPos);
2002  return QualType(New, 0);
2003}
2004
2005/// getMemberPointerType - Return the uniqued reference to the type for a
2006/// member pointer to the specified type, in the specified class.
2007QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2008  // Unique pointers, to guarantee there is only one pointer of a particular
2009  // structure.
2010  llvm::FoldingSetNodeID ID;
2011  MemberPointerType::Profile(ID, T, Cls);
2012
2013  void *InsertPos = 0;
2014  if (MemberPointerType *PT =
2015      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2016    return QualType(PT, 0);
2017
2018  // If the pointee or class type isn't canonical, this won't be a canonical
2019  // type either, so fill in the canonical type field.
2020  QualType Canonical;
2021  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2022    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2023
2024    // Get the new insert position for the node we care about.
2025    MemberPointerType *NewIP =
2026      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2027    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2028  }
2029  MemberPointerType *New
2030    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2031  Types.push_back(New);
2032  MemberPointerTypes.InsertNode(New, InsertPos);
2033  return QualType(New, 0);
2034}
2035
2036/// getConstantArrayType - Return the unique reference to the type for an
2037/// array of the specified element type.
2038QualType ASTContext::getConstantArrayType(QualType EltTy,
2039                                          const llvm::APInt &ArySizeIn,
2040                                          ArrayType::ArraySizeModifier ASM,
2041                                          unsigned IndexTypeQuals) const {
2042  assert((EltTy->isDependentType() ||
2043          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2044         "Constant array of VLAs is illegal!");
2045
2046  // Convert the array size into a canonical width matching the pointer size for
2047  // the target.
2048  llvm::APInt ArySize(ArySizeIn);
2049  ArySize =
2050    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2051
2052  llvm::FoldingSetNodeID ID;
2053  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2054
2055  void *InsertPos = 0;
2056  if (ConstantArrayType *ATP =
2057      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2058    return QualType(ATP, 0);
2059
2060  // If the element type isn't canonical or has qualifiers, this won't
2061  // be a canonical type either, so fill in the canonical type field.
2062  QualType Canon;
2063  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2064    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2065    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2066                                 ASM, IndexTypeQuals);
2067    Canon = getQualifiedType(Canon, canonSplit.Quals);
2068
2069    // Get the new insert position for the node we care about.
2070    ConstantArrayType *NewIP =
2071      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2072    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2073  }
2074
2075  ConstantArrayType *New = new(*this,TypeAlignment)
2076    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2077  ConstantArrayTypes.InsertNode(New, InsertPos);
2078  Types.push_back(New);
2079  return QualType(New, 0);
2080}
2081
2082/// getVariableArrayDecayedType - Turns the given type, which may be
2083/// variably-modified, into the corresponding type with all the known
2084/// sizes replaced with [*].
2085QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2086  // Vastly most common case.
2087  if (!type->isVariablyModifiedType()) return type;
2088
2089  QualType result;
2090
2091  SplitQualType split = type.getSplitDesugaredType();
2092  const Type *ty = split.Ty;
2093  switch (ty->getTypeClass()) {
2094#define TYPE(Class, Base)
2095#define ABSTRACT_TYPE(Class, Base)
2096#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2097#include "clang/AST/TypeNodes.def"
2098    llvm_unreachable("didn't desugar past all non-canonical types?");
2099
2100  // These types should never be variably-modified.
2101  case Type::Builtin:
2102  case Type::Complex:
2103  case Type::Vector:
2104  case Type::ExtVector:
2105  case Type::DependentSizedExtVector:
2106  case Type::ObjCObject:
2107  case Type::ObjCInterface:
2108  case Type::ObjCObjectPointer:
2109  case Type::Record:
2110  case Type::Enum:
2111  case Type::UnresolvedUsing:
2112  case Type::TypeOfExpr:
2113  case Type::TypeOf:
2114  case Type::Decltype:
2115  case Type::UnaryTransform:
2116  case Type::DependentName:
2117  case Type::InjectedClassName:
2118  case Type::TemplateSpecialization:
2119  case Type::DependentTemplateSpecialization:
2120  case Type::TemplateTypeParm:
2121  case Type::SubstTemplateTypeParmPack:
2122  case Type::Auto:
2123  case Type::PackExpansion:
2124    llvm_unreachable("type should never be variably-modified");
2125
2126  // These types can be variably-modified but should never need to
2127  // further decay.
2128  case Type::FunctionNoProto:
2129  case Type::FunctionProto:
2130  case Type::BlockPointer:
2131  case Type::MemberPointer:
2132    return type;
2133
2134  // These types can be variably-modified.  All these modifications
2135  // preserve structure except as noted by comments.
2136  // TODO: if we ever care about optimizing VLAs, there are no-op
2137  // optimizations available here.
2138  case Type::Pointer:
2139    result = getPointerType(getVariableArrayDecayedType(
2140                              cast<PointerType>(ty)->getPointeeType()));
2141    break;
2142
2143  case Type::LValueReference: {
2144    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2145    result = getLValueReferenceType(
2146                 getVariableArrayDecayedType(lv->getPointeeType()),
2147                                    lv->isSpelledAsLValue());
2148    break;
2149  }
2150
2151  case Type::RValueReference: {
2152    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2153    result = getRValueReferenceType(
2154                 getVariableArrayDecayedType(lv->getPointeeType()));
2155    break;
2156  }
2157
2158  case Type::Atomic: {
2159    const AtomicType *at = cast<AtomicType>(ty);
2160    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2161    break;
2162  }
2163
2164  case Type::ConstantArray: {
2165    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2166    result = getConstantArrayType(
2167                 getVariableArrayDecayedType(cat->getElementType()),
2168                                  cat->getSize(),
2169                                  cat->getSizeModifier(),
2170                                  cat->getIndexTypeCVRQualifiers());
2171    break;
2172  }
2173
2174  case Type::DependentSizedArray: {
2175    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2176    result = getDependentSizedArrayType(
2177                 getVariableArrayDecayedType(dat->getElementType()),
2178                                        dat->getSizeExpr(),
2179                                        dat->getSizeModifier(),
2180                                        dat->getIndexTypeCVRQualifiers(),
2181                                        dat->getBracketsRange());
2182    break;
2183  }
2184
2185  // Turn incomplete types into [*] types.
2186  case Type::IncompleteArray: {
2187    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2188    result = getVariableArrayType(
2189                 getVariableArrayDecayedType(iat->getElementType()),
2190                                  /*size*/ 0,
2191                                  ArrayType::Normal,
2192                                  iat->getIndexTypeCVRQualifiers(),
2193                                  SourceRange());
2194    break;
2195  }
2196
2197  // Turn VLA types into [*] types.
2198  case Type::VariableArray: {
2199    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2200    result = getVariableArrayType(
2201                 getVariableArrayDecayedType(vat->getElementType()),
2202                                  /*size*/ 0,
2203                                  ArrayType::Star,
2204                                  vat->getIndexTypeCVRQualifiers(),
2205                                  vat->getBracketsRange());
2206    break;
2207  }
2208  }
2209
2210  // Apply the top-level qualifiers from the original.
2211  return getQualifiedType(result, split.Quals);
2212}
2213
2214/// getVariableArrayType - Returns a non-unique reference to the type for a
2215/// variable array of the specified element type.
2216QualType ASTContext::getVariableArrayType(QualType EltTy,
2217                                          Expr *NumElts,
2218                                          ArrayType::ArraySizeModifier ASM,
2219                                          unsigned IndexTypeQuals,
2220                                          SourceRange Brackets) const {
2221  // Since we don't unique expressions, it isn't possible to unique VLA's
2222  // that have an expression provided for their size.
2223  QualType Canon;
2224
2225  // Be sure to pull qualifiers off the element type.
2226  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2227    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2228    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2229                                 IndexTypeQuals, Brackets);
2230    Canon = getQualifiedType(Canon, canonSplit.Quals);
2231  }
2232
2233  VariableArrayType *New = new(*this, TypeAlignment)
2234    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2235
2236  VariableArrayTypes.push_back(New);
2237  Types.push_back(New);
2238  return QualType(New, 0);
2239}
2240
2241/// getDependentSizedArrayType - Returns a non-unique reference to
2242/// the type for a dependently-sized array of the specified element
2243/// type.
2244QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2245                                                Expr *numElements,
2246                                                ArrayType::ArraySizeModifier ASM,
2247                                                unsigned elementTypeQuals,
2248                                                SourceRange brackets) const {
2249  assert((!numElements || numElements->isTypeDependent() ||
2250          numElements->isValueDependent()) &&
2251         "Size must be type- or value-dependent!");
2252
2253  // Dependently-sized array types that do not have a specified number
2254  // of elements will have their sizes deduced from a dependent
2255  // initializer.  We do no canonicalization here at all, which is okay
2256  // because they can't be used in most locations.
2257  if (!numElements) {
2258    DependentSizedArrayType *newType
2259      = new (*this, TypeAlignment)
2260          DependentSizedArrayType(*this, elementType, QualType(),
2261                                  numElements, ASM, elementTypeQuals,
2262                                  brackets);
2263    Types.push_back(newType);
2264    return QualType(newType, 0);
2265  }
2266
2267  // Otherwise, we actually build a new type every time, but we
2268  // also build a canonical type.
2269
2270  SplitQualType canonElementType = getCanonicalType(elementType).split();
2271
2272  void *insertPos = 0;
2273  llvm::FoldingSetNodeID ID;
2274  DependentSizedArrayType::Profile(ID, *this,
2275                                   QualType(canonElementType.Ty, 0),
2276                                   ASM, elementTypeQuals, numElements);
2277
2278  // Look for an existing type with these properties.
2279  DependentSizedArrayType *canonTy =
2280    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2281
2282  // If we don't have one, build one.
2283  if (!canonTy) {
2284    canonTy = new (*this, TypeAlignment)
2285      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2286                              QualType(), numElements, ASM, elementTypeQuals,
2287                              brackets);
2288    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2289    Types.push_back(canonTy);
2290  }
2291
2292  // Apply qualifiers from the element type to the array.
2293  QualType canon = getQualifiedType(QualType(canonTy,0),
2294                                    canonElementType.Quals);
2295
2296  // If we didn't need extra canonicalization for the element type,
2297  // then just use that as our result.
2298  if (QualType(canonElementType.Ty, 0) == elementType)
2299    return canon;
2300
2301  // Otherwise, we need to build a type which follows the spelling
2302  // of the element type.
2303  DependentSizedArrayType *sugaredType
2304    = new (*this, TypeAlignment)
2305        DependentSizedArrayType(*this, elementType, canon, numElements,
2306                                ASM, elementTypeQuals, brackets);
2307  Types.push_back(sugaredType);
2308  return QualType(sugaredType, 0);
2309}
2310
2311QualType ASTContext::getIncompleteArrayType(QualType elementType,
2312                                            ArrayType::ArraySizeModifier ASM,
2313                                            unsigned elementTypeQuals) const {
2314  llvm::FoldingSetNodeID ID;
2315  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2316
2317  void *insertPos = 0;
2318  if (IncompleteArrayType *iat =
2319       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2320    return QualType(iat, 0);
2321
2322  // If the element type isn't canonical, this won't be a canonical type
2323  // either, so fill in the canonical type field.  We also have to pull
2324  // qualifiers off the element type.
2325  QualType canon;
2326
2327  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2328    SplitQualType canonSplit = getCanonicalType(elementType).split();
2329    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2330                                   ASM, elementTypeQuals);
2331    canon = getQualifiedType(canon, canonSplit.Quals);
2332
2333    // Get the new insert position for the node we care about.
2334    IncompleteArrayType *existing =
2335      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2336    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2337  }
2338
2339  IncompleteArrayType *newType = new (*this, TypeAlignment)
2340    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2341
2342  IncompleteArrayTypes.InsertNode(newType, insertPos);
2343  Types.push_back(newType);
2344  return QualType(newType, 0);
2345}
2346
2347/// getVectorType - Return the unique reference to a vector type of
2348/// the specified element type and size. VectorType must be a built-in type.
2349QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2350                                   VectorType::VectorKind VecKind) const {
2351  assert(vecType->isBuiltinType());
2352
2353  // Check if we've already instantiated a vector of this type.
2354  llvm::FoldingSetNodeID ID;
2355  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2356
2357  void *InsertPos = 0;
2358  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2359    return QualType(VTP, 0);
2360
2361  // If the element type isn't canonical, this won't be a canonical type either,
2362  // so fill in the canonical type field.
2363  QualType Canonical;
2364  if (!vecType.isCanonical()) {
2365    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2366
2367    // Get the new insert position for the node we care about.
2368    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2369    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2370  }
2371  VectorType *New = new (*this, TypeAlignment)
2372    VectorType(vecType, NumElts, Canonical, VecKind);
2373  VectorTypes.InsertNode(New, InsertPos);
2374  Types.push_back(New);
2375  return QualType(New, 0);
2376}
2377
2378/// getExtVectorType - Return the unique reference to an extended vector type of
2379/// the specified element type and size. VectorType must be a built-in type.
2380QualType
2381ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2382  assert(vecType->isBuiltinType() || vecType->isDependentType());
2383
2384  // Check if we've already instantiated a vector of this type.
2385  llvm::FoldingSetNodeID ID;
2386  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2387                      VectorType::GenericVector);
2388  void *InsertPos = 0;
2389  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2390    return QualType(VTP, 0);
2391
2392  // If the element type isn't canonical, this won't be a canonical type either,
2393  // so fill in the canonical type field.
2394  QualType Canonical;
2395  if (!vecType.isCanonical()) {
2396    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2397
2398    // Get the new insert position for the node we care about.
2399    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2400    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2401  }
2402  ExtVectorType *New = new (*this, TypeAlignment)
2403    ExtVectorType(vecType, NumElts, Canonical);
2404  VectorTypes.InsertNode(New, InsertPos);
2405  Types.push_back(New);
2406  return QualType(New, 0);
2407}
2408
2409QualType
2410ASTContext::getDependentSizedExtVectorType(QualType vecType,
2411                                           Expr *SizeExpr,
2412                                           SourceLocation AttrLoc) const {
2413  llvm::FoldingSetNodeID ID;
2414  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2415                                       SizeExpr);
2416
2417  void *InsertPos = 0;
2418  DependentSizedExtVectorType *Canon
2419    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2420  DependentSizedExtVectorType *New;
2421  if (Canon) {
2422    // We already have a canonical version of this array type; use it as
2423    // the canonical type for a newly-built type.
2424    New = new (*this, TypeAlignment)
2425      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2426                                  SizeExpr, AttrLoc);
2427  } else {
2428    QualType CanonVecTy = getCanonicalType(vecType);
2429    if (CanonVecTy == vecType) {
2430      New = new (*this, TypeAlignment)
2431        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2432                                    AttrLoc);
2433
2434      DependentSizedExtVectorType *CanonCheck
2435        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2436      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2437      (void)CanonCheck;
2438      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2439    } else {
2440      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2441                                                      SourceLocation());
2442      New = new (*this, TypeAlignment)
2443        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2444    }
2445  }
2446
2447  Types.push_back(New);
2448  return QualType(New, 0);
2449}
2450
2451/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2452///
2453QualType
2454ASTContext::getFunctionNoProtoType(QualType ResultTy,
2455                                   const FunctionType::ExtInfo &Info) const {
2456  const CallingConv DefaultCC = Info.getCC();
2457  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2458                               CC_X86StdCall : DefaultCC;
2459  // Unique functions, to guarantee there is only one function of a particular
2460  // structure.
2461  llvm::FoldingSetNodeID ID;
2462  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2463
2464  void *InsertPos = 0;
2465  if (FunctionNoProtoType *FT =
2466        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2467    return QualType(FT, 0);
2468
2469  QualType Canonical;
2470  if (!ResultTy.isCanonical() ||
2471      getCanonicalCallConv(CallConv) != CallConv) {
2472    Canonical =
2473      getFunctionNoProtoType(getCanonicalType(ResultTy),
2474                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2475
2476    // Get the new insert position for the node we care about.
2477    FunctionNoProtoType *NewIP =
2478      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2479    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2480  }
2481
2482  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2483  FunctionNoProtoType *New = new (*this, TypeAlignment)
2484    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2485  Types.push_back(New);
2486  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2487  return QualType(New, 0);
2488}
2489
2490/// getFunctionType - Return a normal function type with a typed argument
2491/// list.  isVariadic indicates whether the argument list includes '...'.
2492QualType
2493ASTContext::getFunctionType(QualType ResultTy,
2494                            const QualType *ArgArray, unsigned NumArgs,
2495                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2496  // Unique functions, to guarantee there is only one function of a particular
2497  // structure.
2498  llvm::FoldingSetNodeID ID;
2499  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2500
2501  void *InsertPos = 0;
2502  if (FunctionProtoType *FTP =
2503        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2504    return QualType(FTP, 0);
2505
2506  // Determine whether the type being created is already canonical or not.
2507  bool isCanonical =
2508    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2509    !EPI.HasTrailingReturn;
2510  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2511    if (!ArgArray[i].isCanonicalAsParam())
2512      isCanonical = false;
2513
2514  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2515  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2516                               CC_X86StdCall : DefaultCC;
2517
2518  // If this type isn't canonical, get the canonical version of it.
2519  // The exception spec is not part of the canonical type.
2520  QualType Canonical;
2521  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2522    SmallVector<QualType, 16> CanonicalArgs;
2523    CanonicalArgs.reserve(NumArgs);
2524    for (unsigned i = 0; i != NumArgs; ++i)
2525      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2526
2527    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2528    CanonicalEPI.HasTrailingReturn = false;
2529    CanonicalEPI.ExceptionSpecType = EST_None;
2530    CanonicalEPI.NumExceptions = 0;
2531    CanonicalEPI.ExtInfo
2532      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2533
2534    Canonical = getFunctionType(getCanonicalType(ResultTy),
2535                                CanonicalArgs.data(), NumArgs,
2536                                CanonicalEPI);
2537
2538    // Get the new insert position for the node we care about.
2539    FunctionProtoType *NewIP =
2540      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2541    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2542  }
2543
2544  // FunctionProtoType objects are allocated with extra bytes after
2545  // them for three variable size arrays at the end:
2546  //  - parameter types
2547  //  - exception types
2548  //  - consumed-arguments flags
2549  // Instead of the exception types, there could be a noexcept
2550  // expression, or information used to resolve the exception
2551  // specification.
2552  size_t Size = sizeof(FunctionProtoType) +
2553                NumArgs * sizeof(QualType);
2554  if (EPI.ExceptionSpecType == EST_Dynamic) {
2555    Size += EPI.NumExceptions * sizeof(QualType);
2556  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2557    Size += sizeof(Expr*);
2558  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2559    Size += 2 * sizeof(FunctionDecl*);
2560  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2561    Size += sizeof(FunctionDecl*);
2562  }
2563  if (EPI.ConsumedArguments)
2564    Size += NumArgs * sizeof(bool);
2565
2566  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2567  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2568  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2569  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2570  Types.push_back(FTP);
2571  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2572  return QualType(FTP, 0);
2573}
2574
2575#ifndef NDEBUG
2576static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2577  if (!isa<CXXRecordDecl>(D)) return false;
2578  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2579  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2580    return true;
2581  if (RD->getDescribedClassTemplate() &&
2582      !isa<ClassTemplateSpecializationDecl>(RD))
2583    return true;
2584  return false;
2585}
2586#endif
2587
2588/// getInjectedClassNameType - Return the unique reference to the
2589/// injected class name type for the specified templated declaration.
2590QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2591                                              QualType TST) const {
2592  assert(NeedsInjectedClassNameType(Decl));
2593  if (Decl->TypeForDecl) {
2594    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2595  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2596    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2597    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2598    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2599  } else {
2600    Type *newType =
2601      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2602    Decl->TypeForDecl = newType;
2603    Types.push_back(newType);
2604  }
2605  return QualType(Decl->TypeForDecl, 0);
2606}
2607
2608/// getTypeDeclType - Return the unique reference to the type for the
2609/// specified type declaration.
2610QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2611  assert(Decl && "Passed null for Decl param");
2612  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2613
2614  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2615    return getTypedefType(Typedef);
2616
2617  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2618         "Template type parameter types are always available.");
2619
2620  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2621    assert(!Record->getPreviousDecl() &&
2622           "struct/union has previous declaration");
2623    assert(!NeedsInjectedClassNameType(Record));
2624    return getRecordType(Record);
2625  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2626    assert(!Enum->getPreviousDecl() &&
2627           "enum has previous declaration");
2628    return getEnumType(Enum);
2629  } else if (const UnresolvedUsingTypenameDecl *Using =
2630               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2631    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2632    Decl->TypeForDecl = newType;
2633    Types.push_back(newType);
2634  } else
2635    llvm_unreachable("TypeDecl without a type?");
2636
2637  return QualType(Decl->TypeForDecl, 0);
2638}
2639
2640/// getTypedefType - Return the unique reference to the type for the
2641/// specified typedef name decl.
2642QualType
2643ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2644                           QualType Canonical) const {
2645  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2646
2647  if (Canonical.isNull())
2648    Canonical = getCanonicalType(Decl->getUnderlyingType());
2649  TypedefType *newType = new(*this, TypeAlignment)
2650    TypedefType(Type::Typedef, Decl, Canonical);
2651  Decl->TypeForDecl = newType;
2652  Types.push_back(newType);
2653  return QualType(newType, 0);
2654}
2655
2656QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2657  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2658
2659  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2660    if (PrevDecl->TypeForDecl)
2661      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2662
2663  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2664  Decl->TypeForDecl = newType;
2665  Types.push_back(newType);
2666  return QualType(newType, 0);
2667}
2668
2669QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2670  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2671
2672  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2673    if (PrevDecl->TypeForDecl)
2674      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2675
2676  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2677  Decl->TypeForDecl = newType;
2678  Types.push_back(newType);
2679  return QualType(newType, 0);
2680}
2681
2682QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2683                                       QualType modifiedType,
2684                                       QualType equivalentType) {
2685  llvm::FoldingSetNodeID id;
2686  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2687
2688  void *insertPos = 0;
2689  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2690  if (type) return QualType(type, 0);
2691
2692  QualType canon = getCanonicalType(equivalentType);
2693  type = new (*this, TypeAlignment)
2694           AttributedType(canon, attrKind, modifiedType, equivalentType);
2695
2696  Types.push_back(type);
2697  AttributedTypes.InsertNode(type, insertPos);
2698
2699  return QualType(type, 0);
2700}
2701
2702
2703/// \brief Retrieve a substitution-result type.
2704QualType
2705ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2706                                         QualType Replacement) const {
2707  assert(Replacement.isCanonical()
2708         && "replacement types must always be canonical");
2709
2710  llvm::FoldingSetNodeID ID;
2711  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2712  void *InsertPos = 0;
2713  SubstTemplateTypeParmType *SubstParm
2714    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2715
2716  if (!SubstParm) {
2717    SubstParm = new (*this, TypeAlignment)
2718      SubstTemplateTypeParmType(Parm, Replacement);
2719    Types.push_back(SubstParm);
2720    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2721  }
2722
2723  return QualType(SubstParm, 0);
2724}
2725
2726/// \brief Retrieve a
2727QualType ASTContext::getSubstTemplateTypeParmPackType(
2728                                          const TemplateTypeParmType *Parm,
2729                                              const TemplateArgument &ArgPack) {
2730#ifndef NDEBUG
2731  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2732                                    PEnd = ArgPack.pack_end();
2733       P != PEnd; ++P) {
2734    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2735    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2736  }
2737#endif
2738
2739  llvm::FoldingSetNodeID ID;
2740  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2741  void *InsertPos = 0;
2742  if (SubstTemplateTypeParmPackType *SubstParm
2743        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2744    return QualType(SubstParm, 0);
2745
2746  QualType Canon;
2747  if (!Parm->isCanonicalUnqualified()) {
2748    Canon = getCanonicalType(QualType(Parm, 0));
2749    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2750                                             ArgPack);
2751    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2752  }
2753
2754  SubstTemplateTypeParmPackType *SubstParm
2755    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2756                                                               ArgPack);
2757  Types.push_back(SubstParm);
2758  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2759  return QualType(SubstParm, 0);
2760}
2761
2762/// \brief Retrieve the template type parameter type for a template
2763/// parameter or parameter pack with the given depth, index, and (optionally)
2764/// name.
2765QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2766                                             bool ParameterPack,
2767                                             TemplateTypeParmDecl *TTPDecl) const {
2768  llvm::FoldingSetNodeID ID;
2769  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2770  void *InsertPos = 0;
2771  TemplateTypeParmType *TypeParm
2772    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2773
2774  if (TypeParm)
2775    return QualType(TypeParm, 0);
2776
2777  if (TTPDecl) {
2778    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2779    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2780
2781    TemplateTypeParmType *TypeCheck
2782      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2783    assert(!TypeCheck && "Template type parameter canonical type broken");
2784    (void)TypeCheck;
2785  } else
2786    TypeParm = new (*this, TypeAlignment)
2787      TemplateTypeParmType(Depth, Index, ParameterPack);
2788
2789  Types.push_back(TypeParm);
2790  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2791
2792  return QualType(TypeParm, 0);
2793}
2794
2795TypeSourceInfo *
2796ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2797                                              SourceLocation NameLoc,
2798                                        const TemplateArgumentListInfo &Args,
2799                                              QualType Underlying) const {
2800  assert(!Name.getAsDependentTemplateName() &&
2801         "No dependent template names here!");
2802  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2803
2804  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2805  TemplateSpecializationTypeLoc TL
2806    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2807  TL.setTemplateKeywordLoc(SourceLocation());
2808  TL.setTemplateNameLoc(NameLoc);
2809  TL.setLAngleLoc(Args.getLAngleLoc());
2810  TL.setRAngleLoc(Args.getRAngleLoc());
2811  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2812    TL.setArgLocInfo(i, Args[i].getLocInfo());
2813  return DI;
2814}
2815
2816QualType
2817ASTContext::getTemplateSpecializationType(TemplateName Template,
2818                                          const TemplateArgumentListInfo &Args,
2819                                          QualType Underlying) const {
2820  assert(!Template.getAsDependentTemplateName() &&
2821         "No dependent template names here!");
2822
2823  unsigned NumArgs = Args.size();
2824
2825  SmallVector<TemplateArgument, 4> ArgVec;
2826  ArgVec.reserve(NumArgs);
2827  for (unsigned i = 0; i != NumArgs; ++i)
2828    ArgVec.push_back(Args[i].getArgument());
2829
2830  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2831                                       Underlying);
2832}
2833
2834#ifndef NDEBUG
2835static bool hasAnyPackExpansions(const TemplateArgument *Args,
2836                                 unsigned NumArgs) {
2837  for (unsigned I = 0; I != NumArgs; ++I)
2838    if (Args[I].isPackExpansion())
2839      return true;
2840
2841  return true;
2842}
2843#endif
2844
2845QualType
2846ASTContext::getTemplateSpecializationType(TemplateName Template,
2847                                          const TemplateArgument *Args,
2848                                          unsigned NumArgs,
2849                                          QualType Underlying) const {
2850  assert(!Template.getAsDependentTemplateName() &&
2851         "No dependent template names here!");
2852  // Look through qualified template names.
2853  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2854    Template = TemplateName(QTN->getTemplateDecl());
2855
2856  bool IsTypeAlias =
2857    Template.getAsTemplateDecl() &&
2858    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2859  QualType CanonType;
2860  if (!Underlying.isNull())
2861    CanonType = getCanonicalType(Underlying);
2862  else {
2863    // We can get here with an alias template when the specialization contains
2864    // a pack expansion that does not match up with a parameter pack.
2865    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2866           "Caller must compute aliased type");
2867    IsTypeAlias = false;
2868    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2869                                                       NumArgs);
2870  }
2871
2872  // Allocate the (non-canonical) template specialization type, but don't
2873  // try to unique it: these types typically have location information that
2874  // we don't unique and don't want to lose.
2875  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2876                       sizeof(TemplateArgument) * NumArgs +
2877                       (IsTypeAlias? sizeof(QualType) : 0),
2878                       TypeAlignment);
2879  TemplateSpecializationType *Spec
2880    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2881                                         IsTypeAlias ? Underlying : QualType());
2882
2883  Types.push_back(Spec);
2884  return QualType(Spec, 0);
2885}
2886
2887QualType
2888ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2889                                                   const TemplateArgument *Args,
2890                                                   unsigned NumArgs) const {
2891  assert(!Template.getAsDependentTemplateName() &&
2892         "No dependent template names here!");
2893
2894  // Look through qualified template names.
2895  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2896    Template = TemplateName(QTN->getTemplateDecl());
2897
2898  // Build the canonical template specialization type.
2899  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2900  SmallVector<TemplateArgument, 4> CanonArgs;
2901  CanonArgs.reserve(NumArgs);
2902  for (unsigned I = 0; I != NumArgs; ++I)
2903    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2904
2905  // Determine whether this canonical template specialization type already
2906  // exists.
2907  llvm::FoldingSetNodeID ID;
2908  TemplateSpecializationType::Profile(ID, CanonTemplate,
2909                                      CanonArgs.data(), NumArgs, *this);
2910
2911  void *InsertPos = 0;
2912  TemplateSpecializationType *Spec
2913    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2914
2915  if (!Spec) {
2916    // Allocate a new canonical template specialization type.
2917    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2918                          sizeof(TemplateArgument) * NumArgs),
2919                         TypeAlignment);
2920    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2921                                                CanonArgs.data(), NumArgs,
2922                                                QualType(), QualType());
2923    Types.push_back(Spec);
2924    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2925  }
2926
2927  assert(Spec->isDependentType() &&
2928         "Non-dependent template-id type must have a canonical type");
2929  return QualType(Spec, 0);
2930}
2931
2932QualType
2933ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2934                              NestedNameSpecifier *NNS,
2935                              QualType NamedType) const {
2936  llvm::FoldingSetNodeID ID;
2937  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2938
2939  void *InsertPos = 0;
2940  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2941  if (T)
2942    return QualType(T, 0);
2943
2944  QualType Canon = NamedType;
2945  if (!Canon.isCanonical()) {
2946    Canon = getCanonicalType(NamedType);
2947    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2948    assert(!CheckT && "Elaborated canonical type broken");
2949    (void)CheckT;
2950  }
2951
2952  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2953  Types.push_back(T);
2954  ElaboratedTypes.InsertNode(T, InsertPos);
2955  return QualType(T, 0);
2956}
2957
2958QualType
2959ASTContext::getParenType(QualType InnerType) const {
2960  llvm::FoldingSetNodeID ID;
2961  ParenType::Profile(ID, InnerType);
2962
2963  void *InsertPos = 0;
2964  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2965  if (T)
2966    return QualType(T, 0);
2967
2968  QualType Canon = InnerType;
2969  if (!Canon.isCanonical()) {
2970    Canon = getCanonicalType(InnerType);
2971    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2972    assert(!CheckT && "Paren canonical type broken");
2973    (void)CheckT;
2974  }
2975
2976  T = new (*this) ParenType(InnerType, Canon);
2977  Types.push_back(T);
2978  ParenTypes.InsertNode(T, InsertPos);
2979  return QualType(T, 0);
2980}
2981
2982QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2983                                          NestedNameSpecifier *NNS,
2984                                          const IdentifierInfo *Name,
2985                                          QualType Canon) const {
2986  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2987
2988  if (Canon.isNull()) {
2989    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2990    ElaboratedTypeKeyword CanonKeyword = Keyword;
2991    if (Keyword == ETK_None)
2992      CanonKeyword = ETK_Typename;
2993
2994    if (CanonNNS != NNS || CanonKeyword != Keyword)
2995      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2996  }
2997
2998  llvm::FoldingSetNodeID ID;
2999  DependentNameType::Profile(ID, Keyword, NNS, Name);
3000
3001  void *InsertPos = 0;
3002  DependentNameType *T
3003    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3004  if (T)
3005    return QualType(T, 0);
3006
3007  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3008  Types.push_back(T);
3009  DependentNameTypes.InsertNode(T, InsertPos);
3010  return QualType(T, 0);
3011}
3012
3013QualType
3014ASTContext::getDependentTemplateSpecializationType(
3015                                 ElaboratedTypeKeyword Keyword,
3016                                 NestedNameSpecifier *NNS,
3017                                 const IdentifierInfo *Name,
3018                                 const TemplateArgumentListInfo &Args) const {
3019  // TODO: avoid this copy
3020  SmallVector<TemplateArgument, 16> ArgCopy;
3021  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3022    ArgCopy.push_back(Args[I].getArgument());
3023  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3024                                                ArgCopy.size(),
3025                                                ArgCopy.data());
3026}
3027
3028QualType
3029ASTContext::getDependentTemplateSpecializationType(
3030                                 ElaboratedTypeKeyword Keyword,
3031                                 NestedNameSpecifier *NNS,
3032                                 const IdentifierInfo *Name,
3033                                 unsigned NumArgs,
3034                                 const TemplateArgument *Args) const {
3035  assert((!NNS || NNS->isDependent()) &&
3036         "nested-name-specifier must be dependent");
3037
3038  llvm::FoldingSetNodeID ID;
3039  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3040                                               Name, NumArgs, Args);
3041
3042  void *InsertPos = 0;
3043  DependentTemplateSpecializationType *T
3044    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3045  if (T)
3046    return QualType(T, 0);
3047
3048  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3049
3050  ElaboratedTypeKeyword CanonKeyword = Keyword;
3051  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3052
3053  bool AnyNonCanonArgs = false;
3054  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3055  for (unsigned I = 0; I != NumArgs; ++I) {
3056    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3057    if (!CanonArgs[I].structurallyEquals(Args[I]))
3058      AnyNonCanonArgs = true;
3059  }
3060
3061  QualType Canon;
3062  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3063    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3064                                                   Name, NumArgs,
3065                                                   CanonArgs.data());
3066
3067    // Find the insert position again.
3068    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3069  }
3070
3071  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3072                        sizeof(TemplateArgument) * NumArgs),
3073                       TypeAlignment);
3074  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3075                                                    Name, NumArgs, Args, Canon);
3076  Types.push_back(T);
3077  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3078  return QualType(T, 0);
3079}
3080
3081QualType ASTContext::getPackExpansionType(QualType Pattern,
3082                                      llvm::Optional<unsigned> NumExpansions) {
3083  llvm::FoldingSetNodeID ID;
3084  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3085
3086  assert(Pattern->containsUnexpandedParameterPack() &&
3087         "Pack expansions must expand one or more parameter packs");
3088  void *InsertPos = 0;
3089  PackExpansionType *T
3090    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3091  if (T)
3092    return QualType(T, 0);
3093
3094  QualType Canon;
3095  if (!Pattern.isCanonical()) {
3096    Canon = getCanonicalType(Pattern);
3097    // The canonical type might not contain an unexpanded parameter pack, if it
3098    // contains an alias template specialization which ignores one of its
3099    // parameters.
3100    if (Canon->containsUnexpandedParameterPack()) {
3101      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3102
3103      // Find the insert position again, in case we inserted an element into
3104      // PackExpansionTypes and invalidated our insert position.
3105      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3106    }
3107  }
3108
3109  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3110  Types.push_back(T);
3111  PackExpansionTypes.InsertNode(T, InsertPos);
3112  return QualType(T, 0);
3113}
3114
3115/// CmpProtocolNames - Comparison predicate for sorting protocols
3116/// alphabetically.
3117static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3118                            const ObjCProtocolDecl *RHS) {
3119  return LHS->getDeclName() < RHS->getDeclName();
3120}
3121
3122static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3123                                unsigned NumProtocols) {
3124  if (NumProtocols == 0) return true;
3125
3126  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3127    return false;
3128
3129  for (unsigned i = 1; i != NumProtocols; ++i)
3130    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3131        Protocols[i]->getCanonicalDecl() != Protocols[i])
3132      return false;
3133  return true;
3134}
3135
3136static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3137                                   unsigned &NumProtocols) {
3138  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3139
3140  // Sort protocols, keyed by name.
3141  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3142
3143  // Canonicalize.
3144  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3145    Protocols[I] = Protocols[I]->getCanonicalDecl();
3146
3147  // Remove duplicates.
3148  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3149  NumProtocols = ProtocolsEnd-Protocols;
3150}
3151
3152QualType ASTContext::getObjCObjectType(QualType BaseType,
3153                                       ObjCProtocolDecl * const *Protocols,
3154                                       unsigned NumProtocols) const {
3155  // If the base type is an interface and there aren't any protocols
3156  // to add, then the interface type will do just fine.
3157  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3158    return BaseType;
3159
3160  // Look in the folding set for an existing type.
3161  llvm::FoldingSetNodeID ID;
3162  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3163  void *InsertPos = 0;
3164  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3165    return QualType(QT, 0);
3166
3167  // Build the canonical type, which has the canonical base type and
3168  // a sorted-and-uniqued list of protocols.
3169  QualType Canonical;
3170  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3171  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3172    if (!ProtocolsSorted) {
3173      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3174                                                     Protocols + NumProtocols);
3175      unsigned UniqueCount = NumProtocols;
3176
3177      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3178      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3179                                    &Sorted[0], UniqueCount);
3180    } else {
3181      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3182                                    Protocols, NumProtocols);
3183    }
3184
3185    // Regenerate InsertPos.
3186    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3187  }
3188
3189  unsigned Size = sizeof(ObjCObjectTypeImpl);
3190  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3191  void *Mem = Allocate(Size, TypeAlignment);
3192  ObjCObjectTypeImpl *T =
3193    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3194
3195  Types.push_back(T);
3196  ObjCObjectTypes.InsertNode(T, InsertPos);
3197  return QualType(T, 0);
3198}
3199
3200/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3201/// the given object type.
3202QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3203  llvm::FoldingSetNodeID ID;
3204  ObjCObjectPointerType::Profile(ID, ObjectT);
3205
3206  void *InsertPos = 0;
3207  if (ObjCObjectPointerType *QT =
3208              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3209    return QualType(QT, 0);
3210
3211  // Find the canonical object type.
3212  QualType Canonical;
3213  if (!ObjectT.isCanonical()) {
3214    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3215
3216    // Regenerate InsertPos.
3217    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3218  }
3219
3220  // No match.
3221  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3222  ObjCObjectPointerType *QType =
3223    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3224
3225  Types.push_back(QType);
3226  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3227  return QualType(QType, 0);
3228}
3229
3230/// getObjCInterfaceType - Return the unique reference to the type for the
3231/// specified ObjC interface decl. The list of protocols is optional.
3232QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3233                                          ObjCInterfaceDecl *PrevDecl) const {
3234  if (Decl->TypeForDecl)
3235    return QualType(Decl->TypeForDecl, 0);
3236
3237  if (PrevDecl) {
3238    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3239    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3240    return QualType(PrevDecl->TypeForDecl, 0);
3241  }
3242
3243  // Prefer the definition, if there is one.
3244  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3245    Decl = Def;
3246
3247  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3248  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3249  Decl->TypeForDecl = T;
3250  Types.push_back(T);
3251  return QualType(T, 0);
3252}
3253
3254/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3255/// TypeOfExprType AST's (since expression's are never shared). For example,
3256/// multiple declarations that refer to "typeof(x)" all contain different
3257/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3258/// on canonical type's (which are always unique).
3259QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3260  TypeOfExprType *toe;
3261  if (tofExpr->isTypeDependent()) {
3262    llvm::FoldingSetNodeID ID;
3263    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3264
3265    void *InsertPos = 0;
3266    DependentTypeOfExprType *Canon
3267      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3268    if (Canon) {
3269      // We already have a "canonical" version of an identical, dependent
3270      // typeof(expr) type. Use that as our canonical type.
3271      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3272                                          QualType((TypeOfExprType*)Canon, 0));
3273    } else {
3274      // Build a new, canonical typeof(expr) type.
3275      Canon
3276        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3277      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3278      toe = Canon;
3279    }
3280  } else {
3281    QualType Canonical = getCanonicalType(tofExpr->getType());
3282    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3283  }
3284  Types.push_back(toe);
3285  return QualType(toe, 0);
3286}
3287
3288/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3289/// TypeOfType AST's. The only motivation to unique these nodes would be
3290/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3291/// an issue. This doesn't effect the type checker, since it operates
3292/// on canonical type's (which are always unique).
3293QualType ASTContext::getTypeOfType(QualType tofType) const {
3294  QualType Canonical = getCanonicalType(tofType);
3295  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3296  Types.push_back(tot);
3297  return QualType(tot, 0);
3298}
3299
3300
3301/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3302/// DecltypeType AST's. The only motivation to unique these nodes would be
3303/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3304/// an issue. This doesn't effect the type checker, since it operates
3305/// on canonical types (which are always unique).
3306QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3307  DecltypeType *dt;
3308
3309  // C++0x [temp.type]p2:
3310  //   If an expression e involves a template parameter, decltype(e) denotes a
3311  //   unique dependent type. Two such decltype-specifiers refer to the same
3312  //   type only if their expressions are equivalent (14.5.6.1).
3313  if (e->isInstantiationDependent()) {
3314    llvm::FoldingSetNodeID ID;
3315    DependentDecltypeType::Profile(ID, *this, e);
3316
3317    void *InsertPos = 0;
3318    DependentDecltypeType *Canon
3319      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3320    if (Canon) {
3321      // We already have a "canonical" version of an equivalent, dependent
3322      // decltype type. Use that as our canonical type.
3323      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3324                                       QualType((DecltypeType*)Canon, 0));
3325    } else {
3326      // Build a new, canonical typeof(expr) type.
3327      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3328      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3329      dt = Canon;
3330    }
3331  } else {
3332    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3333                                      getCanonicalType(UnderlyingType));
3334  }
3335  Types.push_back(dt);
3336  return QualType(dt, 0);
3337}
3338
3339/// getUnaryTransformationType - We don't unique these, since the memory
3340/// savings are minimal and these are rare.
3341QualType ASTContext::getUnaryTransformType(QualType BaseType,
3342                                           QualType UnderlyingType,
3343                                           UnaryTransformType::UTTKind Kind)
3344    const {
3345  UnaryTransformType *Ty =
3346    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3347                                                   Kind,
3348                                 UnderlyingType->isDependentType() ?
3349                                 QualType() : getCanonicalType(UnderlyingType));
3350  Types.push_back(Ty);
3351  return QualType(Ty, 0);
3352}
3353
3354/// getAutoType - We only unique auto types after they've been deduced.
3355QualType ASTContext::getAutoType(QualType DeducedType) const {
3356  void *InsertPos = 0;
3357  if (!DeducedType.isNull()) {
3358    // Look in the folding set for an existing type.
3359    llvm::FoldingSetNodeID ID;
3360    AutoType::Profile(ID, DeducedType);
3361    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3362      return QualType(AT, 0);
3363  }
3364
3365  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3366  Types.push_back(AT);
3367  if (InsertPos)
3368    AutoTypes.InsertNode(AT, InsertPos);
3369  return QualType(AT, 0);
3370}
3371
3372/// getAtomicType - Return the uniqued reference to the atomic type for
3373/// the given value type.
3374QualType ASTContext::getAtomicType(QualType T) const {
3375  // Unique pointers, to guarantee there is only one pointer of a particular
3376  // structure.
3377  llvm::FoldingSetNodeID ID;
3378  AtomicType::Profile(ID, T);
3379
3380  void *InsertPos = 0;
3381  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3382    return QualType(AT, 0);
3383
3384  // If the atomic value type isn't canonical, this won't be a canonical type
3385  // either, so fill in the canonical type field.
3386  QualType Canonical;
3387  if (!T.isCanonical()) {
3388    Canonical = getAtomicType(getCanonicalType(T));
3389
3390    // Get the new insert position for the node we care about.
3391    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3392    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3393  }
3394  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3395  Types.push_back(New);
3396  AtomicTypes.InsertNode(New, InsertPos);
3397  return QualType(New, 0);
3398}
3399
3400/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3401QualType ASTContext::getAutoDeductType() const {
3402  if (AutoDeductTy.isNull())
3403    AutoDeductTy = getAutoType(QualType());
3404  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3405  return AutoDeductTy;
3406}
3407
3408/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3409QualType ASTContext::getAutoRRefDeductType() const {
3410  if (AutoRRefDeductTy.isNull())
3411    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3412  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3413  return AutoRRefDeductTy;
3414}
3415
3416/// getTagDeclType - Return the unique reference to the type for the
3417/// specified TagDecl (struct/union/class/enum) decl.
3418QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3419  assert (Decl);
3420  // FIXME: What is the design on getTagDeclType when it requires casting
3421  // away const?  mutable?
3422  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3423}
3424
3425/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3426/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3427/// needs to agree with the definition in <stddef.h>.
3428CanQualType ASTContext::getSizeType() const {
3429  return getFromTargetType(Target->getSizeType());
3430}
3431
3432/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3433CanQualType ASTContext::getIntMaxType() const {
3434  return getFromTargetType(Target->getIntMaxType());
3435}
3436
3437/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3438CanQualType ASTContext::getUIntMaxType() const {
3439  return getFromTargetType(Target->getUIntMaxType());
3440}
3441
3442/// getSignedWCharType - Return the type of "signed wchar_t".
3443/// Used when in C++, as a GCC extension.
3444QualType ASTContext::getSignedWCharType() const {
3445  // FIXME: derive from "Target" ?
3446  return WCharTy;
3447}
3448
3449/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3450/// Used when in C++, as a GCC extension.
3451QualType ASTContext::getUnsignedWCharType() const {
3452  // FIXME: derive from "Target" ?
3453  return UnsignedIntTy;
3454}
3455
3456/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3457/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3458QualType ASTContext::getPointerDiffType() const {
3459  return getFromTargetType(Target->getPtrDiffType(0));
3460}
3461
3462//===----------------------------------------------------------------------===//
3463//                              Type Operators
3464//===----------------------------------------------------------------------===//
3465
3466CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3467  // Push qualifiers into arrays, and then discard any remaining
3468  // qualifiers.
3469  T = getCanonicalType(T);
3470  T = getVariableArrayDecayedType(T);
3471  const Type *Ty = T.getTypePtr();
3472  QualType Result;
3473  if (isa<ArrayType>(Ty)) {
3474    Result = getArrayDecayedType(QualType(Ty,0));
3475  } else if (isa<FunctionType>(Ty)) {
3476    Result = getPointerType(QualType(Ty, 0));
3477  } else {
3478    Result = QualType(Ty, 0);
3479  }
3480
3481  return CanQualType::CreateUnsafe(Result);
3482}
3483
3484QualType ASTContext::getUnqualifiedArrayType(QualType type,
3485                                             Qualifiers &quals) {
3486  SplitQualType splitType = type.getSplitUnqualifiedType();
3487
3488  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3489  // the unqualified desugared type and then drops it on the floor.
3490  // We then have to strip that sugar back off with
3491  // getUnqualifiedDesugaredType(), which is silly.
3492  const ArrayType *AT =
3493    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3494
3495  // If we don't have an array, just use the results in splitType.
3496  if (!AT) {
3497    quals = splitType.Quals;
3498    return QualType(splitType.Ty, 0);
3499  }
3500
3501  // Otherwise, recurse on the array's element type.
3502  QualType elementType = AT->getElementType();
3503  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3504
3505  // If that didn't change the element type, AT has no qualifiers, so we
3506  // can just use the results in splitType.
3507  if (elementType == unqualElementType) {
3508    assert(quals.empty()); // from the recursive call
3509    quals = splitType.Quals;
3510    return QualType(splitType.Ty, 0);
3511  }
3512
3513  // Otherwise, add in the qualifiers from the outermost type, then
3514  // build the type back up.
3515  quals.addConsistentQualifiers(splitType.Quals);
3516
3517  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3518    return getConstantArrayType(unqualElementType, CAT->getSize(),
3519                                CAT->getSizeModifier(), 0);
3520  }
3521
3522  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3523    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3524  }
3525
3526  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3527    return getVariableArrayType(unqualElementType,
3528                                VAT->getSizeExpr(),
3529                                VAT->getSizeModifier(),
3530                                VAT->getIndexTypeCVRQualifiers(),
3531                                VAT->getBracketsRange());
3532  }
3533
3534  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3535  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3536                                    DSAT->getSizeModifier(), 0,
3537                                    SourceRange());
3538}
3539
3540/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3541/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3542/// they point to and return true. If T1 and T2 aren't pointer types
3543/// or pointer-to-member types, or if they are not similar at this
3544/// level, returns false and leaves T1 and T2 unchanged. Top-level
3545/// qualifiers on T1 and T2 are ignored. This function will typically
3546/// be called in a loop that successively "unwraps" pointer and
3547/// pointer-to-member types to compare them at each level.
3548bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3549  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3550                    *T2PtrType = T2->getAs<PointerType>();
3551  if (T1PtrType && T2PtrType) {
3552    T1 = T1PtrType->getPointeeType();
3553    T2 = T2PtrType->getPointeeType();
3554    return true;
3555  }
3556
3557  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3558                          *T2MPType = T2->getAs<MemberPointerType>();
3559  if (T1MPType && T2MPType &&
3560      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3561                             QualType(T2MPType->getClass(), 0))) {
3562    T1 = T1MPType->getPointeeType();
3563    T2 = T2MPType->getPointeeType();
3564    return true;
3565  }
3566
3567  if (getLangOpts().ObjC1) {
3568    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3569                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3570    if (T1OPType && T2OPType) {
3571      T1 = T1OPType->getPointeeType();
3572      T2 = T2OPType->getPointeeType();
3573      return true;
3574    }
3575  }
3576
3577  // FIXME: Block pointers, too?
3578
3579  return false;
3580}
3581
3582DeclarationNameInfo
3583ASTContext::getNameForTemplate(TemplateName Name,
3584                               SourceLocation NameLoc) const {
3585  switch (Name.getKind()) {
3586  case TemplateName::QualifiedTemplate:
3587  case TemplateName::Template:
3588    // DNInfo work in progress: CHECKME: what about DNLoc?
3589    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3590                               NameLoc);
3591
3592  case TemplateName::OverloadedTemplate: {
3593    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3594    // DNInfo work in progress: CHECKME: what about DNLoc?
3595    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3596  }
3597
3598  case TemplateName::DependentTemplate: {
3599    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3600    DeclarationName DName;
3601    if (DTN->isIdentifier()) {
3602      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3603      return DeclarationNameInfo(DName, NameLoc);
3604    } else {
3605      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3606      // DNInfo work in progress: FIXME: source locations?
3607      DeclarationNameLoc DNLoc;
3608      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3609      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3610      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3611    }
3612  }
3613
3614  case TemplateName::SubstTemplateTemplateParm: {
3615    SubstTemplateTemplateParmStorage *subst
3616      = Name.getAsSubstTemplateTemplateParm();
3617    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3618                               NameLoc);
3619  }
3620
3621  case TemplateName::SubstTemplateTemplateParmPack: {
3622    SubstTemplateTemplateParmPackStorage *subst
3623      = Name.getAsSubstTemplateTemplateParmPack();
3624    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3625                               NameLoc);
3626  }
3627  }
3628
3629  llvm_unreachable("bad template name kind!");
3630}
3631
3632TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3633  switch (Name.getKind()) {
3634  case TemplateName::QualifiedTemplate:
3635  case TemplateName::Template: {
3636    TemplateDecl *Template = Name.getAsTemplateDecl();
3637    if (TemplateTemplateParmDecl *TTP
3638          = dyn_cast<TemplateTemplateParmDecl>(Template))
3639      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3640
3641    // The canonical template name is the canonical template declaration.
3642    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3643  }
3644
3645  case TemplateName::OverloadedTemplate:
3646    llvm_unreachable("cannot canonicalize overloaded template");
3647
3648  case TemplateName::DependentTemplate: {
3649    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3650    assert(DTN && "Non-dependent template names must refer to template decls.");
3651    return DTN->CanonicalTemplateName;
3652  }
3653
3654  case TemplateName::SubstTemplateTemplateParm: {
3655    SubstTemplateTemplateParmStorage *subst
3656      = Name.getAsSubstTemplateTemplateParm();
3657    return getCanonicalTemplateName(subst->getReplacement());
3658  }
3659
3660  case TemplateName::SubstTemplateTemplateParmPack: {
3661    SubstTemplateTemplateParmPackStorage *subst
3662                                  = Name.getAsSubstTemplateTemplateParmPack();
3663    TemplateTemplateParmDecl *canonParameter
3664      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3665    TemplateArgument canonArgPack
3666      = getCanonicalTemplateArgument(subst->getArgumentPack());
3667    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3668  }
3669  }
3670
3671  llvm_unreachable("bad template name!");
3672}
3673
3674bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3675  X = getCanonicalTemplateName(X);
3676  Y = getCanonicalTemplateName(Y);
3677  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3678}
3679
3680TemplateArgument
3681ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3682  switch (Arg.getKind()) {
3683    case TemplateArgument::Null:
3684      return Arg;
3685
3686    case TemplateArgument::Expression:
3687      return Arg;
3688
3689    case TemplateArgument::Declaration: {
3690      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3691      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3692    }
3693
3694    case TemplateArgument::NullPtr:
3695      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3696                              /*isNullPtr*/true);
3697
3698    case TemplateArgument::Template:
3699      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3700
3701    case TemplateArgument::TemplateExpansion:
3702      return TemplateArgument(getCanonicalTemplateName(
3703                                         Arg.getAsTemplateOrTemplatePattern()),
3704                              Arg.getNumTemplateExpansions());
3705
3706    case TemplateArgument::Integral:
3707      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3708
3709    case TemplateArgument::Type:
3710      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3711
3712    case TemplateArgument::Pack: {
3713      if (Arg.pack_size() == 0)
3714        return Arg;
3715
3716      TemplateArgument *CanonArgs
3717        = new (*this) TemplateArgument[Arg.pack_size()];
3718      unsigned Idx = 0;
3719      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3720                                        AEnd = Arg.pack_end();
3721           A != AEnd; (void)++A, ++Idx)
3722        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3723
3724      return TemplateArgument(CanonArgs, Arg.pack_size());
3725    }
3726  }
3727
3728  // Silence GCC warning
3729  llvm_unreachable("Unhandled template argument kind");
3730}
3731
3732NestedNameSpecifier *
3733ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3734  if (!NNS)
3735    return 0;
3736
3737  switch (NNS->getKind()) {
3738  case NestedNameSpecifier::Identifier:
3739    // Canonicalize the prefix but keep the identifier the same.
3740    return NestedNameSpecifier::Create(*this,
3741                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3742                                       NNS->getAsIdentifier());
3743
3744  case NestedNameSpecifier::Namespace:
3745    // A namespace is canonical; build a nested-name-specifier with
3746    // this namespace and no prefix.
3747    return NestedNameSpecifier::Create(*this, 0,
3748                                 NNS->getAsNamespace()->getOriginalNamespace());
3749
3750  case NestedNameSpecifier::NamespaceAlias:
3751    // A namespace is canonical; build a nested-name-specifier with
3752    // this namespace and no prefix.
3753    return NestedNameSpecifier::Create(*this, 0,
3754                                    NNS->getAsNamespaceAlias()->getNamespace()
3755                                                      ->getOriginalNamespace());
3756
3757  case NestedNameSpecifier::TypeSpec:
3758  case NestedNameSpecifier::TypeSpecWithTemplate: {
3759    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3760
3761    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3762    // break it apart into its prefix and identifier, then reconsititute those
3763    // as the canonical nested-name-specifier. This is required to canonicalize
3764    // a dependent nested-name-specifier involving typedefs of dependent-name
3765    // types, e.g.,
3766    //   typedef typename T::type T1;
3767    //   typedef typename T1::type T2;
3768    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3769      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3770                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3771
3772    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3773    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3774    // first place?
3775    return NestedNameSpecifier::Create(*this, 0, false,
3776                                       const_cast<Type*>(T.getTypePtr()));
3777  }
3778
3779  case NestedNameSpecifier::Global:
3780    // The global specifier is canonical and unique.
3781    return NNS;
3782  }
3783
3784  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3785}
3786
3787
3788const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3789  // Handle the non-qualified case efficiently.
3790  if (!T.hasLocalQualifiers()) {
3791    // Handle the common positive case fast.
3792    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3793      return AT;
3794  }
3795
3796  // Handle the common negative case fast.
3797  if (!isa<ArrayType>(T.getCanonicalType()))
3798    return 0;
3799
3800  // Apply any qualifiers from the array type to the element type.  This
3801  // implements C99 6.7.3p8: "If the specification of an array type includes
3802  // any type qualifiers, the element type is so qualified, not the array type."
3803
3804  // If we get here, we either have type qualifiers on the type, or we have
3805  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3806  // we must propagate them down into the element type.
3807
3808  SplitQualType split = T.getSplitDesugaredType();
3809  Qualifiers qs = split.Quals;
3810
3811  // If we have a simple case, just return now.
3812  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3813  if (ATy == 0 || qs.empty())
3814    return ATy;
3815
3816  // Otherwise, we have an array and we have qualifiers on it.  Push the
3817  // qualifiers into the array element type and return a new array type.
3818  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3819
3820  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3821    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3822                                                CAT->getSizeModifier(),
3823                                           CAT->getIndexTypeCVRQualifiers()));
3824  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3825    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3826                                                  IAT->getSizeModifier(),
3827                                           IAT->getIndexTypeCVRQualifiers()));
3828
3829  if (const DependentSizedArrayType *DSAT
3830        = dyn_cast<DependentSizedArrayType>(ATy))
3831    return cast<ArrayType>(
3832                     getDependentSizedArrayType(NewEltTy,
3833                                                DSAT->getSizeExpr(),
3834                                                DSAT->getSizeModifier(),
3835                                              DSAT->getIndexTypeCVRQualifiers(),
3836                                                DSAT->getBracketsRange()));
3837
3838  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3839  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3840                                              VAT->getSizeExpr(),
3841                                              VAT->getSizeModifier(),
3842                                              VAT->getIndexTypeCVRQualifiers(),
3843                                              VAT->getBracketsRange()));
3844}
3845
3846QualType ASTContext::getAdjustedParameterType(QualType T) const {
3847  // C99 6.7.5.3p7:
3848  //   A declaration of a parameter as "array of type" shall be
3849  //   adjusted to "qualified pointer to type", where the type
3850  //   qualifiers (if any) are those specified within the [ and ] of
3851  //   the array type derivation.
3852  if (T->isArrayType())
3853    return getArrayDecayedType(T);
3854
3855  // C99 6.7.5.3p8:
3856  //   A declaration of a parameter as "function returning type"
3857  //   shall be adjusted to "pointer to function returning type", as
3858  //   in 6.3.2.1.
3859  if (T->isFunctionType())
3860    return getPointerType(T);
3861
3862  return T;
3863}
3864
3865QualType ASTContext::getSignatureParameterType(QualType T) const {
3866  T = getVariableArrayDecayedType(T);
3867  T = getAdjustedParameterType(T);
3868  return T.getUnqualifiedType();
3869}
3870
3871/// getArrayDecayedType - Return the properly qualified result of decaying the
3872/// specified array type to a pointer.  This operation is non-trivial when
3873/// handling typedefs etc.  The canonical type of "T" must be an array type,
3874/// this returns a pointer to a properly qualified element of the array.
3875///
3876/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3877QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3878  // Get the element type with 'getAsArrayType' so that we don't lose any
3879  // typedefs in the element type of the array.  This also handles propagation
3880  // of type qualifiers from the array type into the element type if present
3881  // (C99 6.7.3p8).
3882  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3883  assert(PrettyArrayType && "Not an array type!");
3884
3885  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3886
3887  // int x[restrict 4] ->  int *restrict
3888  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3889}
3890
3891QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3892  return getBaseElementType(array->getElementType());
3893}
3894
3895QualType ASTContext::getBaseElementType(QualType type) const {
3896  Qualifiers qs;
3897  while (true) {
3898    SplitQualType split = type.getSplitDesugaredType();
3899    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3900    if (!array) break;
3901
3902    type = array->getElementType();
3903    qs.addConsistentQualifiers(split.Quals);
3904  }
3905
3906  return getQualifiedType(type, qs);
3907}
3908
3909/// getConstantArrayElementCount - Returns number of constant array elements.
3910uint64_t
3911ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3912  uint64_t ElementCount = 1;
3913  do {
3914    ElementCount *= CA->getSize().getZExtValue();
3915    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3916  } while (CA);
3917  return ElementCount;
3918}
3919
3920/// getFloatingRank - Return a relative rank for floating point types.
3921/// This routine will assert if passed a built-in type that isn't a float.
3922static FloatingRank getFloatingRank(QualType T) {
3923  if (const ComplexType *CT = T->getAs<ComplexType>())
3924    return getFloatingRank(CT->getElementType());
3925
3926  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3927  switch (T->getAs<BuiltinType>()->getKind()) {
3928  default: llvm_unreachable("getFloatingRank(): not a floating type");
3929  case BuiltinType::Half:       return HalfRank;
3930  case BuiltinType::Float:      return FloatRank;
3931  case BuiltinType::Double:     return DoubleRank;
3932  case BuiltinType::LongDouble: return LongDoubleRank;
3933  }
3934}
3935
3936/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3937/// point or a complex type (based on typeDomain/typeSize).
3938/// 'typeDomain' is a real floating point or complex type.
3939/// 'typeSize' is a real floating point or complex type.
3940QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3941                                                       QualType Domain) const {
3942  FloatingRank EltRank = getFloatingRank(Size);
3943  if (Domain->isComplexType()) {
3944    switch (EltRank) {
3945    case HalfRank: llvm_unreachable("Complex half is not supported");
3946    case FloatRank:      return FloatComplexTy;
3947    case DoubleRank:     return DoubleComplexTy;
3948    case LongDoubleRank: return LongDoubleComplexTy;
3949    }
3950  }
3951
3952  assert(Domain->isRealFloatingType() && "Unknown domain!");
3953  switch (EltRank) {
3954  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3955  case FloatRank:      return FloatTy;
3956  case DoubleRank:     return DoubleTy;
3957  case LongDoubleRank: return LongDoubleTy;
3958  }
3959  llvm_unreachable("getFloatingRank(): illegal value for rank");
3960}
3961
3962/// getFloatingTypeOrder - Compare the rank of the two specified floating
3963/// point types, ignoring the domain of the type (i.e. 'double' ==
3964/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3965/// LHS < RHS, return -1.
3966int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3967  FloatingRank LHSR = getFloatingRank(LHS);
3968  FloatingRank RHSR = getFloatingRank(RHS);
3969
3970  if (LHSR == RHSR)
3971    return 0;
3972  if (LHSR > RHSR)
3973    return 1;
3974  return -1;
3975}
3976
3977/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3978/// routine will assert if passed a built-in type that isn't an integer or enum,
3979/// or if it is not canonicalized.
3980unsigned ASTContext::getIntegerRank(const Type *T) const {
3981  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3982
3983  switch (cast<BuiltinType>(T)->getKind()) {
3984  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3985  case BuiltinType::Bool:
3986    return 1 + (getIntWidth(BoolTy) << 3);
3987  case BuiltinType::Char_S:
3988  case BuiltinType::Char_U:
3989  case BuiltinType::SChar:
3990  case BuiltinType::UChar:
3991    return 2 + (getIntWidth(CharTy) << 3);
3992  case BuiltinType::Short:
3993  case BuiltinType::UShort:
3994    return 3 + (getIntWidth(ShortTy) << 3);
3995  case BuiltinType::Int:
3996  case BuiltinType::UInt:
3997    return 4 + (getIntWidth(IntTy) << 3);
3998  case BuiltinType::Long:
3999  case BuiltinType::ULong:
4000    return 5 + (getIntWidth(LongTy) << 3);
4001  case BuiltinType::LongLong:
4002  case BuiltinType::ULongLong:
4003    return 6 + (getIntWidth(LongLongTy) << 3);
4004  case BuiltinType::Int128:
4005  case BuiltinType::UInt128:
4006    return 7 + (getIntWidth(Int128Ty) << 3);
4007  }
4008}
4009
4010/// \brief Whether this is a promotable bitfield reference according
4011/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4012///
4013/// \returns the type this bit-field will promote to, or NULL if no
4014/// promotion occurs.
4015QualType ASTContext::isPromotableBitField(Expr *E) const {
4016  if (E->isTypeDependent() || E->isValueDependent())
4017    return QualType();
4018
4019  FieldDecl *Field = E->getBitField();
4020  if (!Field)
4021    return QualType();
4022
4023  QualType FT = Field->getType();
4024
4025  uint64_t BitWidth = Field->getBitWidthValue(*this);
4026  uint64_t IntSize = getTypeSize(IntTy);
4027  // GCC extension compatibility: if the bit-field size is less than or equal
4028  // to the size of int, it gets promoted no matter what its type is.
4029  // For instance, unsigned long bf : 4 gets promoted to signed int.
4030  if (BitWidth < IntSize)
4031    return IntTy;
4032
4033  if (BitWidth == IntSize)
4034    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4035
4036  // Types bigger than int are not subject to promotions, and therefore act
4037  // like the base type.
4038  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4039  // is ridiculous.
4040  return QualType();
4041}
4042
4043/// getPromotedIntegerType - Returns the type that Promotable will
4044/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4045/// integer type.
4046QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4047  assert(!Promotable.isNull());
4048  assert(Promotable->isPromotableIntegerType());
4049  if (const EnumType *ET = Promotable->getAs<EnumType>())
4050    return ET->getDecl()->getPromotionType();
4051
4052  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4053    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4054    // (3.9.1) can be converted to a prvalue of the first of the following
4055    // types that can represent all the values of its underlying type:
4056    // int, unsigned int, long int, unsigned long int, long long int, or
4057    // unsigned long long int [...]
4058    // FIXME: Is there some better way to compute this?
4059    if (BT->getKind() == BuiltinType::WChar_S ||
4060        BT->getKind() == BuiltinType::WChar_U ||
4061        BT->getKind() == BuiltinType::Char16 ||
4062        BT->getKind() == BuiltinType::Char32) {
4063      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4064      uint64_t FromSize = getTypeSize(BT);
4065      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4066                                  LongLongTy, UnsignedLongLongTy };
4067      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4068        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4069        if (FromSize < ToSize ||
4070            (FromSize == ToSize &&
4071             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4072          return PromoteTypes[Idx];
4073      }
4074      llvm_unreachable("char type should fit into long long");
4075    }
4076  }
4077
4078  // At this point, we should have a signed or unsigned integer type.
4079  if (Promotable->isSignedIntegerType())
4080    return IntTy;
4081  uint64_t PromotableSize = getTypeSize(Promotable);
4082  uint64_t IntSize = getTypeSize(IntTy);
4083  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4084  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4085}
4086
4087/// \brief Recurses in pointer/array types until it finds an objc retainable
4088/// type and returns its ownership.
4089Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4090  while (!T.isNull()) {
4091    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4092      return T.getObjCLifetime();
4093    if (T->isArrayType())
4094      T = getBaseElementType(T);
4095    else if (const PointerType *PT = T->getAs<PointerType>())
4096      T = PT->getPointeeType();
4097    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4098      T = RT->getPointeeType();
4099    else
4100      break;
4101  }
4102
4103  return Qualifiers::OCL_None;
4104}
4105
4106/// getIntegerTypeOrder - Returns the highest ranked integer type:
4107/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4108/// LHS < RHS, return -1.
4109int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4110  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4111  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4112  if (LHSC == RHSC) return 0;
4113
4114  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4115  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4116
4117  unsigned LHSRank = getIntegerRank(LHSC);
4118  unsigned RHSRank = getIntegerRank(RHSC);
4119
4120  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4121    if (LHSRank == RHSRank) return 0;
4122    return LHSRank > RHSRank ? 1 : -1;
4123  }
4124
4125  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4126  if (LHSUnsigned) {
4127    // If the unsigned [LHS] type is larger, return it.
4128    if (LHSRank >= RHSRank)
4129      return 1;
4130
4131    // If the signed type can represent all values of the unsigned type, it
4132    // wins.  Because we are dealing with 2's complement and types that are
4133    // powers of two larger than each other, this is always safe.
4134    return -1;
4135  }
4136
4137  // If the unsigned [RHS] type is larger, return it.
4138  if (RHSRank >= LHSRank)
4139    return -1;
4140
4141  // If the signed type can represent all values of the unsigned type, it
4142  // wins.  Because we are dealing with 2's complement and types that are
4143  // powers of two larger than each other, this is always safe.
4144  return 1;
4145}
4146
4147static RecordDecl *
4148CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4149                 DeclContext *DC, IdentifierInfo *Id) {
4150  SourceLocation Loc;
4151  if (Ctx.getLangOpts().CPlusPlus)
4152    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4153  else
4154    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4155}
4156
4157// getCFConstantStringType - Return the type used for constant CFStrings.
4158QualType ASTContext::getCFConstantStringType() const {
4159  if (!CFConstantStringTypeDecl) {
4160    CFConstantStringTypeDecl =
4161      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4162                       &Idents.get("NSConstantString"));
4163    CFConstantStringTypeDecl->startDefinition();
4164
4165    QualType FieldTypes[4];
4166
4167    // const int *isa;
4168    FieldTypes[0] = getPointerType(IntTy.withConst());
4169    // int flags;
4170    FieldTypes[1] = IntTy;
4171    // const char *str;
4172    FieldTypes[2] = getPointerType(CharTy.withConst());
4173    // long length;
4174    FieldTypes[3] = LongTy;
4175
4176    // Create fields
4177    for (unsigned i = 0; i < 4; ++i) {
4178      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4179                                           SourceLocation(),
4180                                           SourceLocation(), 0,
4181                                           FieldTypes[i], /*TInfo=*/0,
4182                                           /*BitWidth=*/0,
4183                                           /*Mutable=*/false,
4184                                           ICIS_NoInit);
4185      Field->setAccess(AS_public);
4186      CFConstantStringTypeDecl->addDecl(Field);
4187    }
4188
4189    CFConstantStringTypeDecl->completeDefinition();
4190  }
4191
4192  return getTagDeclType(CFConstantStringTypeDecl);
4193}
4194
4195void ASTContext::setCFConstantStringType(QualType T) {
4196  const RecordType *Rec = T->getAs<RecordType>();
4197  assert(Rec && "Invalid CFConstantStringType");
4198  CFConstantStringTypeDecl = Rec->getDecl();
4199}
4200
4201QualType ASTContext::getBlockDescriptorType() const {
4202  if (BlockDescriptorType)
4203    return getTagDeclType(BlockDescriptorType);
4204
4205  RecordDecl *T;
4206  // FIXME: Needs the FlagAppleBlock bit.
4207  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4208                       &Idents.get("__block_descriptor"));
4209  T->startDefinition();
4210
4211  QualType FieldTypes[] = {
4212    UnsignedLongTy,
4213    UnsignedLongTy,
4214  };
4215
4216  const char *FieldNames[] = {
4217    "reserved",
4218    "Size"
4219  };
4220
4221  for (size_t i = 0; i < 2; ++i) {
4222    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4223                                         SourceLocation(),
4224                                         &Idents.get(FieldNames[i]),
4225                                         FieldTypes[i], /*TInfo=*/0,
4226                                         /*BitWidth=*/0,
4227                                         /*Mutable=*/false,
4228                                         ICIS_NoInit);
4229    Field->setAccess(AS_public);
4230    T->addDecl(Field);
4231  }
4232
4233  T->completeDefinition();
4234
4235  BlockDescriptorType = T;
4236
4237  return getTagDeclType(BlockDescriptorType);
4238}
4239
4240QualType ASTContext::getBlockDescriptorExtendedType() const {
4241  if (BlockDescriptorExtendedType)
4242    return getTagDeclType(BlockDescriptorExtendedType);
4243
4244  RecordDecl *T;
4245  // FIXME: Needs the FlagAppleBlock bit.
4246  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4247                       &Idents.get("__block_descriptor_withcopydispose"));
4248  T->startDefinition();
4249
4250  QualType FieldTypes[] = {
4251    UnsignedLongTy,
4252    UnsignedLongTy,
4253    getPointerType(VoidPtrTy),
4254    getPointerType(VoidPtrTy)
4255  };
4256
4257  const char *FieldNames[] = {
4258    "reserved",
4259    "Size",
4260    "CopyFuncPtr",
4261    "DestroyFuncPtr"
4262  };
4263
4264  for (size_t i = 0; i < 4; ++i) {
4265    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4266                                         SourceLocation(),
4267                                         &Idents.get(FieldNames[i]),
4268                                         FieldTypes[i], /*TInfo=*/0,
4269                                         /*BitWidth=*/0,
4270                                         /*Mutable=*/false,
4271                                         ICIS_NoInit);
4272    Field->setAccess(AS_public);
4273    T->addDecl(Field);
4274  }
4275
4276  T->completeDefinition();
4277
4278  BlockDescriptorExtendedType = T;
4279
4280  return getTagDeclType(BlockDescriptorExtendedType);
4281}
4282
4283bool ASTContext::BlockRequiresCopying(QualType Ty) const {
4284  if (Ty->isObjCRetainableType())
4285    return true;
4286  if (getLangOpts().CPlusPlus) {
4287    if (const RecordType *RT = Ty->getAs<RecordType>()) {
4288      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4289      return RD->hasConstCopyConstructor();
4290
4291    }
4292  }
4293  return false;
4294}
4295
4296QualType
4297ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
4298  //  type = struct __Block_byref_1_X {
4299  //    void *__isa;
4300  //    struct __Block_byref_1_X *__forwarding;
4301  //    unsigned int __flags;
4302  //    unsigned int __size;
4303  //    void *__copy_helper;            // as needed
4304  //    void *__destroy_help            // as needed
4305  //    int X;
4306  //  } *
4307
4308  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
4309
4310  // FIXME: Move up
4311  SmallString<36> Name;
4312  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
4313                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
4314  RecordDecl *T;
4315  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
4316  T->startDefinition();
4317  QualType Int32Ty = IntTy;
4318  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
4319  QualType FieldTypes[] = {
4320    getPointerType(VoidPtrTy),
4321    getPointerType(getTagDeclType(T)),
4322    Int32Ty,
4323    Int32Ty,
4324    getPointerType(VoidPtrTy),
4325    getPointerType(VoidPtrTy),
4326    Ty
4327  };
4328
4329  StringRef FieldNames[] = {
4330    "__isa",
4331    "__forwarding",
4332    "__flags",
4333    "__size",
4334    "__copy_helper",
4335    "__destroy_helper",
4336    DeclName,
4337  };
4338
4339  for (size_t i = 0; i < 7; ++i) {
4340    if (!HasCopyAndDispose && i >=4 && i <= 5)
4341      continue;
4342    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4343                                         SourceLocation(),
4344                                         &Idents.get(FieldNames[i]),
4345                                         FieldTypes[i], /*TInfo=*/0,
4346                                         /*BitWidth=*/0, /*Mutable=*/false,
4347                                         ICIS_NoInit);
4348    Field->setAccess(AS_public);
4349    T->addDecl(Field);
4350  }
4351
4352  T->completeDefinition();
4353
4354  return getPointerType(getTagDeclType(T));
4355}
4356
4357TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4358  if (!ObjCInstanceTypeDecl)
4359    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4360                                               getTranslationUnitDecl(),
4361                                               SourceLocation(),
4362                                               SourceLocation(),
4363                                               &Idents.get("instancetype"),
4364                                     getTrivialTypeSourceInfo(getObjCIdType()));
4365  return ObjCInstanceTypeDecl;
4366}
4367
4368// This returns true if a type has been typedefed to BOOL:
4369// typedef <type> BOOL;
4370static bool isTypeTypedefedAsBOOL(QualType T) {
4371  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4372    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4373      return II->isStr("BOOL");
4374
4375  return false;
4376}
4377
4378/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4379/// purpose.
4380CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4381  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4382    return CharUnits::Zero();
4383
4384  CharUnits sz = getTypeSizeInChars(type);
4385
4386  // Make all integer and enum types at least as large as an int
4387  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4388    sz = std::max(sz, getTypeSizeInChars(IntTy));
4389  // Treat arrays as pointers, since that's how they're passed in.
4390  else if (type->isArrayType())
4391    sz = getTypeSizeInChars(VoidPtrTy);
4392  return sz;
4393}
4394
4395static inline
4396std::string charUnitsToString(const CharUnits &CU) {
4397  return llvm::itostr(CU.getQuantity());
4398}
4399
4400/// getObjCEncodingForBlock - Return the encoded type for this block
4401/// declaration.
4402std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4403  std::string S;
4404
4405  const BlockDecl *Decl = Expr->getBlockDecl();
4406  QualType BlockTy =
4407      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4408  // Encode result type.
4409  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4410  // Compute size of all parameters.
4411  // Start with computing size of a pointer in number of bytes.
4412  // FIXME: There might(should) be a better way of doing this computation!
4413  SourceLocation Loc;
4414  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4415  CharUnits ParmOffset = PtrSize;
4416  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4417       E = Decl->param_end(); PI != E; ++PI) {
4418    QualType PType = (*PI)->getType();
4419    CharUnits sz = getObjCEncodingTypeSize(PType);
4420    if (sz.isZero())
4421      continue;
4422    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4423    ParmOffset += sz;
4424  }
4425  // Size of the argument frame
4426  S += charUnitsToString(ParmOffset);
4427  // Block pointer and offset.
4428  S += "@?0";
4429
4430  // Argument types.
4431  ParmOffset = PtrSize;
4432  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4433       Decl->param_end(); PI != E; ++PI) {
4434    ParmVarDecl *PVDecl = *PI;
4435    QualType PType = PVDecl->getOriginalType();
4436    if (const ArrayType *AT =
4437          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4438      // Use array's original type only if it has known number of
4439      // elements.
4440      if (!isa<ConstantArrayType>(AT))
4441        PType = PVDecl->getType();
4442    } else if (PType->isFunctionType())
4443      PType = PVDecl->getType();
4444    getObjCEncodingForType(PType, S);
4445    S += charUnitsToString(ParmOffset);
4446    ParmOffset += getObjCEncodingTypeSize(PType);
4447  }
4448
4449  return S;
4450}
4451
4452bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4453                                                std::string& S) {
4454  // Encode result type.
4455  getObjCEncodingForType(Decl->getResultType(), S);
4456  CharUnits ParmOffset;
4457  // Compute size of all parameters.
4458  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4459       E = Decl->param_end(); PI != E; ++PI) {
4460    QualType PType = (*PI)->getType();
4461    CharUnits sz = getObjCEncodingTypeSize(PType);
4462    if (sz.isZero())
4463      continue;
4464
4465    assert (sz.isPositive() &&
4466        "getObjCEncodingForFunctionDecl - Incomplete param type");
4467    ParmOffset += sz;
4468  }
4469  S += charUnitsToString(ParmOffset);
4470  ParmOffset = CharUnits::Zero();
4471
4472  // Argument types.
4473  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4474       E = Decl->param_end(); PI != E; ++PI) {
4475    ParmVarDecl *PVDecl = *PI;
4476    QualType PType = PVDecl->getOriginalType();
4477    if (const ArrayType *AT =
4478          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4479      // Use array's original type only if it has known number of
4480      // elements.
4481      if (!isa<ConstantArrayType>(AT))
4482        PType = PVDecl->getType();
4483    } else if (PType->isFunctionType())
4484      PType = PVDecl->getType();
4485    getObjCEncodingForType(PType, S);
4486    S += charUnitsToString(ParmOffset);
4487    ParmOffset += getObjCEncodingTypeSize(PType);
4488  }
4489
4490  return false;
4491}
4492
4493/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4494/// method parameter or return type. If Extended, include class names and
4495/// block object types.
4496void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4497                                                   QualType T, std::string& S,
4498                                                   bool Extended) const {
4499  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4500  getObjCEncodingForTypeQualifier(QT, S);
4501  // Encode parameter type.
4502  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4503                             true     /*OutermostType*/,
4504                             false    /*EncodingProperty*/,
4505                             false    /*StructField*/,
4506                             Extended /*EncodeBlockParameters*/,
4507                             Extended /*EncodeClassNames*/);
4508}
4509
4510/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4511/// declaration.
4512bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4513                                              std::string& S,
4514                                              bool Extended) const {
4515  // FIXME: This is not very efficient.
4516  // Encode return type.
4517  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4518                                    Decl->getResultType(), S, Extended);
4519  // Compute size of all parameters.
4520  // Start with computing size of a pointer in number of bytes.
4521  // FIXME: There might(should) be a better way of doing this computation!
4522  SourceLocation Loc;
4523  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4524  // The first two arguments (self and _cmd) are pointers; account for
4525  // their size.
4526  CharUnits ParmOffset = 2 * PtrSize;
4527  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4528       E = Decl->sel_param_end(); PI != E; ++PI) {
4529    QualType PType = (*PI)->getType();
4530    CharUnits sz = getObjCEncodingTypeSize(PType);
4531    if (sz.isZero())
4532      continue;
4533
4534    assert (sz.isPositive() &&
4535        "getObjCEncodingForMethodDecl - Incomplete param type");
4536    ParmOffset += sz;
4537  }
4538  S += charUnitsToString(ParmOffset);
4539  S += "@0:";
4540  S += charUnitsToString(PtrSize);
4541
4542  // Argument types.
4543  ParmOffset = 2 * PtrSize;
4544  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4545       E = Decl->sel_param_end(); PI != E; ++PI) {
4546    const ParmVarDecl *PVDecl = *PI;
4547    QualType PType = PVDecl->getOriginalType();
4548    if (const ArrayType *AT =
4549          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4550      // Use array's original type only if it has known number of
4551      // elements.
4552      if (!isa<ConstantArrayType>(AT))
4553        PType = PVDecl->getType();
4554    } else if (PType->isFunctionType())
4555      PType = PVDecl->getType();
4556    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4557                                      PType, S, Extended);
4558    S += charUnitsToString(ParmOffset);
4559    ParmOffset += getObjCEncodingTypeSize(PType);
4560  }
4561
4562  return false;
4563}
4564
4565/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4566/// property declaration. If non-NULL, Container must be either an
4567/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4568/// NULL when getting encodings for protocol properties.
4569/// Property attributes are stored as a comma-delimited C string. The simple
4570/// attributes readonly and bycopy are encoded as single characters. The
4571/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4572/// encoded as single characters, followed by an identifier. Property types
4573/// are also encoded as a parametrized attribute. The characters used to encode
4574/// these attributes are defined by the following enumeration:
4575/// @code
4576/// enum PropertyAttributes {
4577/// kPropertyReadOnly = 'R',   // property is read-only.
4578/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4579/// kPropertyByref = '&',  // property is a reference to the value last assigned
4580/// kPropertyDynamic = 'D',    // property is dynamic
4581/// kPropertyGetter = 'G',     // followed by getter selector name
4582/// kPropertySetter = 'S',     // followed by setter selector name
4583/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4584/// kPropertyType = 'T'              // followed by old-style type encoding.
4585/// kPropertyWeak = 'W'              // 'weak' property
4586/// kPropertyStrong = 'P'            // property GC'able
4587/// kPropertyNonAtomic = 'N'         // property non-atomic
4588/// };
4589/// @endcode
4590void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4591                                                const Decl *Container,
4592                                                std::string& S) const {
4593  // Collect information from the property implementation decl(s).
4594  bool Dynamic = false;
4595  ObjCPropertyImplDecl *SynthesizePID = 0;
4596
4597  // FIXME: Duplicated code due to poor abstraction.
4598  if (Container) {
4599    if (const ObjCCategoryImplDecl *CID =
4600        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4601      for (ObjCCategoryImplDecl::propimpl_iterator
4602             i = CID->propimpl_begin(), e = CID->propimpl_end();
4603           i != e; ++i) {
4604        ObjCPropertyImplDecl *PID = *i;
4605        if (PID->getPropertyDecl() == PD) {
4606          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4607            Dynamic = true;
4608          } else {
4609            SynthesizePID = PID;
4610          }
4611        }
4612      }
4613    } else {
4614      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4615      for (ObjCCategoryImplDecl::propimpl_iterator
4616             i = OID->propimpl_begin(), e = OID->propimpl_end();
4617           i != e; ++i) {
4618        ObjCPropertyImplDecl *PID = *i;
4619        if (PID->getPropertyDecl() == PD) {
4620          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4621            Dynamic = true;
4622          } else {
4623            SynthesizePID = PID;
4624          }
4625        }
4626      }
4627    }
4628  }
4629
4630  // FIXME: This is not very efficient.
4631  S = "T";
4632
4633  // Encode result type.
4634  // GCC has some special rules regarding encoding of properties which
4635  // closely resembles encoding of ivars.
4636  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4637                             true /* outermost type */,
4638                             true /* encoding for property */);
4639
4640  if (PD->isReadOnly()) {
4641    S += ",R";
4642  } else {
4643    switch (PD->getSetterKind()) {
4644    case ObjCPropertyDecl::Assign: break;
4645    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4646    case ObjCPropertyDecl::Retain: S += ",&"; break;
4647    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4648    }
4649  }
4650
4651  // It really isn't clear at all what this means, since properties
4652  // are "dynamic by default".
4653  if (Dynamic)
4654    S += ",D";
4655
4656  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4657    S += ",N";
4658
4659  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4660    S += ",G";
4661    S += PD->getGetterName().getAsString();
4662  }
4663
4664  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4665    S += ",S";
4666    S += PD->getSetterName().getAsString();
4667  }
4668
4669  if (SynthesizePID) {
4670    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4671    S += ",V";
4672    S += OID->getNameAsString();
4673  }
4674
4675  // FIXME: OBJCGC: weak & strong
4676}
4677
4678/// getLegacyIntegralTypeEncoding -
4679/// Another legacy compatibility encoding: 32-bit longs are encoded as
4680/// 'l' or 'L' , but not always.  For typedefs, we need to use
4681/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4682///
4683void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4684  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4685    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4686      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4687        PointeeTy = UnsignedIntTy;
4688      else
4689        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4690          PointeeTy = IntTy;
4691    }
4692  }
4693}
4694
4695void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4696                                        const FieldDecl *Field) const {
4697  // We follow the behavior of gcc, expanding structures which are
4698  // directly pointed to, and expanding embedded structures. Note that
4699  // these rules are sufficient to prevent recursive encoding of the
4700  // same type.
4701  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4702                             true /* outermost type */);
4703}
4704
4705static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4706    switch (T->getAs<BuiltinType>()->getKind()) {
4707    default: llvm_unreachable("Unhandled builtin type kind");
4708    case BuiltinType::Void:       return 'v';
4709    case BuiltinType::Bool:       return 'B';
4710    case BuiltinType::Char_U:
4711    case BuiltinType::UChar:      return 'C';
4712    case BuiltinType::UShort:     return 'S';
4713    case BuiltinType::UInt:       return 'I';
4714    case BuiltinType::ULong:
4715        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4716    case BuiltinType::UInt128:    return 'T';
4717    case BuiltinType::ULongLong:  return 'Q';
4718    case BuiltinType::Char_S:
4719    case BuiltinType::SChar:      return 'c';
4720    case BuiltinType::Short:      return 's';
4721    case BuiltinType::WChar_S:
4722    case BuiltinType::WChar_U:
4723    case BuiltinType::Int:        return 'i';
4724    case BuiltinType::Long:
4725      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4726    case BuiltinType::LongLong:   return 'q';
4727    case BuiltinType::Int128:     return 't';
4728    case BuiltinType::Float:      return 'f';
4729    case BuiltinType::Double:     return 'd';
4730    case BuiltinType::LongDouble: return 'D';
4731    }
4732}
4733
4734static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4735  EnumDecl *Enum = ET->getDecl();
4736
4737  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4738  if (!Enum->isFixed())
4739    return 'i';
4740
4741  // The encoding of a fixed enum type matches its fixed underlying type.
4742  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4743}
4744
4745static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4746                           QualType T, const FieldDecl *FD) {
4747  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4748  S += 'b';
4749  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4750  // The GNU runtime requires more information; bitfields are encoded as b,
4751  // then the offset (in bits) of the first element, then the type of the
4752  // bitfield, then the size in bits.  For example, in this structure:
4753  //
4754  // struct
4755  // {
4756  //    int integer;
4757  //    int flags:2;
4758  // };
4759  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4760  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4761  // information is not especially sensible, but we're stuck with it for
4762  // compatibility with GCC, although providing it breaks anything that
4763  // actually uses runtime introspection and wants to work on both runtimes...
4764  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4765    const RecordDecl *RD = FD->getParent();
4766    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4767    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4768    if (const EnumType *ET = T->getAs<EnumType>())
4769      S += ObjCEncodingForEnumType(Ctx, ET);
4770    else
4771      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4772  }
4773  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4774}
4775
4776// FIXME: Use SmallString for accumulating string.
4777void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4778                                            bool ExpandPointedToStructures,
4779                                            bool ExpandStructures,
4780                                            const FieldDecl *FD,
4781                                            bool OutermostType,
4782                                            bool EncodingProperty,
4783                                            bool StructField,
4784                                            bool EncodeBlockParameters,
4785                                            bool EncodeClassNames) const {
4786  if (T->getAs<BuiltinType>()) {
4787    if (FD && FD->isBitField())
4788      return EncodeBitField(this, S, T, FD);
4789    S += ObjCEncodingForPrimitiveKind(this, T);
4790    return;
4791  }
4792
4793  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4794    S += 'j';
4795    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4796                               false);
4797    return;
4798  }
4799
4800  // encoding for pointer or r3eference types.
4801  QualType PointeeTy;
4802  if (const PointerType *PT = T->getAs<PointerType>()) {
4803    if (PT->isObjCSelType()) {
4804      S += ':';
4805      return;
4806    }
4807    PointeeTy = PT->getPointeeType();
4808  }
4809  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4810    PointeeTy = RT->getPointeeType();
4811  if (!PointeeTy.isNull()) {
4812    bool isReadOnly = false;
4813    // For historical/compatibility reasons, the read-only qualifier of the
4814    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4815    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4816    // Also, do not emit the 'r' for anything but the outermost type!
4817    if (isa<TypedefType>(T.getTypePtr())) {
4818      if (OutermostType && T.isConstQualified()) {
4819        isReadOnly = true;
4820        S += 'r';
4821      }
4822    } else if (OutermostType) {
4823      QualType P = PointeeTy;
4824      while (P->getAs<PointerType>())
4825        P = P->getAs<PointerType>()->getPointeeType();
4826      if (P.isConstQualified()) {
4827        isReadOnly = true;
4828        S += 'r';
4829      }
4830    }
4831    if (isReadOnly) {
4832      // Another legacy compatibility encoding. Some ObjC qualifier and type
4833      // combinations need to be rearranged.
4834      // Rewrite "in const" from "nr" to "rn"
4835      if (StringRef(S).endswith("nr"))
4836        S.replace(S.end()-2, S.end(), "rn");
4837    }
4838
4839    if (PointeeTy->isCharType()) {
4840      // char pointer types should be encoded as '*' unless it is a
4841      // type that has been typedef'd to 'BOOL'.
4842      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4843        S += '*';
4844        return;
4845      }
4846    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4847      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4848      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4849        S += '#';
4850        return;
4851      }
4852      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4853      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4854        S += '@';
4855        return;
4856      }
4857      // fall through...
4858    }
4859    S += '^';
4860    getLegacyIntegralTypeEncoding(PointeeTy);
4861
4862    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4863                               NULL);
4864    return;
4865  }
4866
4867  if (const ArrayType *AT =
4868      // Ignore type qualifiers etc.
4869        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4870    if (isa<IncompleteArrayType>(AT) && !StructField) {
4871      // Incomplete arrays are encoded as a pointer to the array element.
4872      S += '^';
4873
4874      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4875                                 false, ExpandStructures, FD);
4876    } else {
4877      S += '[';
4878
4879      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4880        if (getTypeSize(CAT->getElementType()) == 0)
4881          S += '0';
4882        else
4883          S += llvm::utostr(CAT->getSize().getZExtValue());
4884      } else {
4885        //Variable length arrays are encoded as a regular array with 0 elements.
4886        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4887               "Unknown array type!");
4888        S += '0';
4889      }
4890
4891      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4892                                 false, ExpandStructures, FD);
4893      S += ']';
4894    }
4895    return;
4896  }
4897
4898  if (T->getAs<FunctionType>()) {
4899    S += '?';
4900    return;
4901  }
4902
4903  if (const RecordType *RTy = T->getAs<RecordType>()) {
4904    RecordDecl *RDecl = RTy->getDecl();
4905    S += RDecl->isUnion() ? '(' : '{';
4906    // Anonymous structures print as '?'
4907    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4908      S += II->getName();
4909      if (ClassTemplateSpecializationDecl *Spec
4910          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4911        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4912        std::string TemplateArgsStr
4913          = TemplateSpecializationType::PrintTemplateArgumentList(
4914                                            TemplateArgs.data(),
4915                                            TemplateArgs.size(),
4916                                            (*this).getPrintingPolicy());
4917
4918        S += TemplateArgsStr;
4919      }
4920    } else {
4921      S += '?';
4922    }
4923    if (ExpandStructures) {
4924      S += '=';
4925      if (!RDecl->isUnion()) {
4926        getObjCEncodingForStructureImpl(RDecl, S, FD);
4927      } else {
4928        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4929                                     FieldEnd = RDecl->field_end();
4930             Field != FieldEnd; ++Field) {
4931          if (FD) {
4932            S += '"';
4933            S += Field->getNameAsString();
4934            S += '"';
4935          }
4936
4937          // Special case bit-fields.
4938          if (Field->isBitField()) {
4939            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4940                                       *Field);
4941          } else {
4942            QualType qt = Field->getType();
4943            getLegacyIntegralTypeEncoding(qt);
4944            getObjCEncodingForTypeImpl(qt, S, false, true,
4945                                       FD, /*OutermostType*/false,
4946                                       /*EncodingProperty*/false,
4947                                       /*StructField*/true);
4948          }
4949        }
4950      }
4951    }
4952    S += RDecl->isUnion() ? ')' : '}';
4953    return;
4954  }
4955
4956  if (const EnumType *ET = T->getAs<EnumType>()) {
4957    if (FD && FD->isBitField())
4958      EncodeBitField(this, S, T, FD);
4959    else
4960      S += ObjCEncodingForEnumType(this, ET);
4961    return;
4962  }
4963
4964  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4965    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4966    if (EncodeBlockParameters) {
4967      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4968
4969      S += '<';
4970      // Block return type
4971      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4972                                 ExpandPointedToStructures, ExpandStructures,
4973                                 FD,
4974                                 false /* OutermostType */,
4975                                 EncodingProperty,
4976                                 false /* StructField */,
4977                                 EncodeBlockParameters,
4978                                 EncodeClassNames);
4979      // Block self
4980      S += "@?";
4981      // Block parameters
4982      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4983        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4984               E = FPT->arg_type_end(); I && (I != E); ++I) {
4985          getObjCEncodingForTypeImpl(*I, S,
4986                                     ExpandPointedToStructures,
4987                                     ExpandStructures,
4988                                     FD,
4989                                     false /* OutermostType */,
4990                                     EncodingProperty,
4991                                     false /* StructField */,
4992                                     EncodeBlockParameters,
4993                                     EncodeClassNames);
4994        }
4995      }
4996      S += '>';
4997    }
4998    return;
4999  }
5000
5001  // Ignore protocol qualifiers when mangling at this level.
5002  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
5003    T = OT->getBaseType();
5004
5005  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
5006    // @encode(class_name)
5007    ObjCInterfaceDecl *OI = OIT->getDecl();
5008    S += '{';
5009    const IdentifierInfo *II = OI->getIdentifier();
5010    S += II->getName();
5011    S += '=';
5012    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5013    DeepCollectObjCIvars(OI, true, Ivars);
5014    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5015      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5016      if (Field->isBitField())
5017        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5018      else
5019        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
5020    }
5021    S += '}';
5022    return;
5023  }
5024
5025  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
5026    if (OPT->isObjCIdType()) {
5027      S += '@';
5028      return;
5029    }
5030
5031    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5032      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5033      // Since this is a binary compatibility issue, need to consult with runtime
5034      // folks. Fortunately, this is a *very* obsure construct.
5035      S += '#';
5036      return;
5037    }
5038
5039    if (OPT->isObjCQualifiedIdType()) {
5040      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5041                                 ExpandPointedToStructures,
5042                                 ExpandStructures, FD);
5043      if (FD || EncodingProperty || EncodeClassNames) {
5044        // Note that we do extended encoding of protocol qualifer list
5045        // Only when doing ivar or property encoding.
5046        S += '"';
5047        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5048             E = OPT->qual_end(); I != E; ++I) {
5049          S += '<';
5050          S += (*I)->getNameAsString();
5051          S += '>';
5052        }
5053        S += '"';
5054      }
5055      return;
5056    }
5057
5058    QualType PointeeTy = OPT->getPointeeType();
5059    if (!EncodingProperty &&
5060        isa<TypedefType>(PointeeTy.getTypePtr())) {
5061      // Another historical/compatibility reason.
5062      // We encode the underlying type which comes out as
5063      // {...};
5064      S += '^';
5065      getObjCEncodingForTypeImpl(PointeeTy, S,
5066                                 false, ExpandPointedToStructures,
5067                                 NULL);
5068      return;
5069    }
5070
5071    S += '@';
5072    if (OPT->getInterfaceDecl() &&
5073        (FD || EncodingProperty || EncodeClassNames)) {
5074      S += '"';
5075      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5076      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5077           E = OPT->qual_end(); I != E; ++I) {
5078        S += '<';
5079        S += (*I)->getNameAsString();
5080        S += '>';
5081      }
5082      S += '"';
5083    }
5084    return;
5085  }
5086
5087  // gcc just blithely ignores member pointers.
5088  // TODO: maybe there should be a mangling for these
5089  if (T->getAs<MemberPointerType>())
5090    return;
5091
5092  if (T->isVectorType()) {
5093    // This matches gcc's encoding, even though technically it is
5094    // insufficient.
5095    // FIXME. We should do a better job than gcc.
5096    return;
5097  }
5098
5099  llvm_unreachable("@encode for type not implemented!");
5100}
5101
5102void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5103                                                 std::string &S,
5104                                                 const FieldDecl *FD,
5105                                                 bool includeVBases) const {
5106  assert(RDecl && "Expected non-null RecordDecl");
5107  assert(!RDecl->isUnion() && "Should not be called for unions");
5108  if (!RDecl->getDefinition())
5109    return;
5110
5111  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5112  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5113  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5114
5115  if (CXXRec) {
5116    for (CXXRecordDecl::base_class_iterator
5117           BI = CXXRec->bases_begin(),
5118           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5119      if (!BI->isVirtual()) {
5120        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5121        if (base->isEmpty())
5122          continue;
5123        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5124        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5125                                  std::make_pair(offs, base));
5126      }
5127    }
5128  }
5129
5130  unsigned i = 0;
5131  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5132                               FieldEnd = RDecl->field_end();
5133       Field != FieldEnd; ++Field, ++i) {
5134    uint64_t offs = layout.getFieldOffset(i);
5135    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5136                              std::make_pair(offs, *Field));
5137  }
5138
5139  if (CXXRec && includeVBases) {
5140    for (CXXRecordDecl::base_class_iterator
5141           BI = CXXRec->vbases_begin(),
5142           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5143      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5144      if (base->isEmpty())
5145        continue;
5146      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5147      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5148        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5149                                  std::make_pair(offs, base));
5150    }
5151  }
5152
5153  CharUnits size;
5154  if (CXXRec) {
5155    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5156  } else {
5157    size = layout.getSize();
5158  }
5159
5160  uint64_t CurOffs = 0;
5161  std::multimap<uint64_t, NamedDecl *>::iterator
5162    CurLayObj = FieldOrBaseOffsets.begin();
5163
5164  if (CXXRec && CXXRec->isDynamicClass() &&
5165      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5166    if (FD) {
5167      S += "\"_vptr$";
5168      std::string recname = CXXRec->getNameAsString();
5169      if (recname.empty()) recname = "?";
5170      S += recname;
5171      S += '"';
5172    }
5173    S += "^^?";
5174    CurOffs += getTypeSize(VoidPtrTy);
5175  }
5176
5177  if (!RDecl->hasFlexibleArrayMember()) {
5178    // Mark the end of the structure.
5179    uint64_t offs = toBits(size);
5180    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5181                              std::make_pair(offs, (NamedDecl*)0));
5182  }
5183
5184  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5185    assert(CurOffs <= CurLayObj->first);
5186
5187    if (CurOffs < CurLayObj->first) {
5188      uint64_t padding = CurLayObj->first - CurOffs;
5189      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5190      // packing/alignment of members is different that normal, in which case
5191      // the encoding will be out-of-sync with the real layout.
5192      // If the runtime switches to just consider the size of types without
5193      // taking into account alignment, we could make padding explicit in the
5194      // encoding (e.g. using arrays of chars). The encoding strings would be
5195      // longer then though.
5196      CurOffs += padding;
5197    }
5198
5199    NamedDecl *dcl = CurLayObj->second;
5200    if (dcl == 0)
5201      break; // reached end of structure.
5202
5203    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5204      // We expand the bases without their virtual bases since those are going
5205      // in the initial structure. Note that this differs from gcc which
5206      // expands virtual bases each time one is encountered in the hierarchy,
5207      // making the encoding type bigger than it really is.
5208      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5209      assert(!base->isEmpty());
5210      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5211    } else {
5212      FieldDecl *field = cast<FieldDecl>(dcl);
5213      if (FD) {
5214        S += '"';
5215        S += field->getNameAsString();
5216        S += '"';
5217      }
5218
5219      if (field->isBitField()) {
5220        EncodeBitField(this, S, field->getType(), field);
5221        CurOffs += field->getBitWidthValue(*this);
5222      } else {
5223        QualType qt = field->getType();
5224        getLegacyIntegralTypeEncoding(qt);
5225        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5226                                   /*OutermostType*/false,
5227                                   /*EncodingProperty*/false,
5228                                   /*StructField*/true);
5229        CurOffs += getTypeSize(field->getType());
5230      }
5231    }
5232  }
5233}
5234
5235void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5236                                                 std::string& S) const {
5237  if (QT & Decl::OBJC_TQ_In)
5238    S += 'n';
5239  if (QT & Decl::OBJC_TQ_Inout)
5240    S += 'N';
5241  if (QT & Decl::OBJC_TQ_Out)
5242    S += 'o';
5243  if (QT & Decl::OBJC_TQ_Bycopy)
5244    S += 'O';
5245  if (QT & Decl::OBJC_TQ_Byref)
5246    S += 'R';
5247  if (QT & Decl::OBJC_TQ_Oneway)
5248    S += 'V';
5249}
5250
5251TypedefDecl *ASTContext::getObjCIdDecl() const {
5252  if (!ObjCIdDecl) {
5253    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5254    T = getObjCObjectPointerType(T);
5255    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5256    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5257                                     getTranslationUnitDecl(),
5258                                     SourceLocation(), SourceLocation(),
5259                                     &Idents.get("id"), IdInfo);
5260  }
5261
5262  return ObjCIdDecl;
5263}
5264
5265TypedefDecl *ASTContext::getObjCSelDecl() const {
5266  if (!ObjCSelDecl) {
5267    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5268    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5269    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5270                                      getTranslationUnitDecl(),
5271                                      SourceLocation(), SourceLocation(),
5272                                      &Idents.get("SEL"), SelInfo);
5273  }
5274  return ObjCSelDecl;
5275}
5276
5277TypedefDecl *ASTContext::getObjCClassDecl() const {
5278  if (!ObjCClassDecl) {
5279    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5280    T = getObjCObjectPointerType(T);
5281    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5282    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5283                                        getTranslationUnitDecl(),
5284                                        SourceLocation(), SourceLocation(),
5285                                        &Idents.get("Class"), ClassInfo);
5286  }
5287
5288  return ObjCClassDecl;
5289}
5290
5291ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5292  if (!ObjCProtocolClassDecl) {
5293    ObjCProtocolClassDecl
5294      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5295                                  SourceLocation(),
5296                                  &Idents.get("Protocol"),
5297                                  /*PrevDecl=*/0,
5298                                  SourceLocation(), true);
5299  }
5300
5301  return ObjCProtocolClassDecl;
5302}
5303
5304//===----------------------------------------------------------------------===//
5305// __builtin_va_list Construction Functions
5306//===----------------------------------------------------------------------===//
5307
5308static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5309  // typedef char* __builtin_va_list;
5310  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5311  TypeSourceInfo *TInfo
5312    = Context->getTrivialTypeSourceInfo(CharPtrType);
5313
5314  TypedefDecl *VaListTypeDecl
5315    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5316                          Context->getTranslationUnitDecl(),
5317                          SourceLocation(), SourceLocation(),
5318                          &Context->Idents.get("__builtin_va_list"),
5319                          TInfo);
5320  return VaListTypeDecl;
5321}
5322
5323static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5324  // typedef void* __builtin_va_list;
5325  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5326  TypeSourceInfo *TInfo
5327    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5328
5329  TypedefDecl *VaListTypeDecl
5330    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5331                          Context->getTranslationUnitDecl(),
5332                          SourceLocation(), SourceLocation(),
5333                          &Context->Idents.get("__builtin_va_list"),
5334                          TInfo);
5335  return VaListTypeDecl;
5336}
5337
5338static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5339  // typedef struct __va_list_tag {
5340  RecordDecl *VaListTagDecl;
5341
5342  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5343                                   Context->getTranslationUnitDecl(),
5344                                   &Context->Idents.get("__va_list_tag"));
5345  VaListTagDecl->startDefinition();
5346
5347  const size_t NumFields = 5;
5348  QualType FieldTypes[NumFields];
5349  const char *FieldNames[NumFields];
5350
5351  //   unsigned char gpr;
5352  FieldTypes[0] = Context->UnsignedCharTy;
5353  FieldNames[0] = "gpr";
5354
5355  //   unsigned char fpr;
5356  FieldTypes[1] = Context->UnsignedCharTy;
5357  FieldNames[1] = "fpr";
5358
5359  //   unsigned short reserved;
5360  FieldTypes[2] = Context->UnsignedShortTy;
5361  FieldNames[2] = "reserved";
5362
5363  //   void* overflow_arg_area;
5364  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5365  FieldNames[3] = "overflow_arg_area";
5366
5367  //   void* reg_save_area;
5368  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5369  FieldNames[4] = "reg_save_area";
5370
5371  // Create fields
5372  for (unsigned i = 0; i < NumFields; ++i) {
5373    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5374                                         SourceLocation(),
5375                                         SourceLocation(),
5376                                         &Context->Idents.get(FieldNames[i]),
5377                                         FieldTypes[i], /*TInfo=*/0,
5378                                         /*BitWidth=*/0,
5379                                         /*Mutable=*/false,
5380                                         ICIS_NoInit);
5381    Field->setAccess(AS_public);
5382    VaListTagDecl->addDecl(Field);
5383  }
5384  VaListTagDecl->completeDefinition();
5385  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5386  Context->VaListTagTy = VaListTagType;
5387
5388  // } __va_list_tag;
5389  TypedefDecl *VaListTagTypedefDecl
5390    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5391                          Context->getTranslationUnitDecl(),
5392                          SourceLocation(), SourceLocation(),
5393                          &Context->Idents.get("__va_list_tag"),
5394                          Context->getTrivialTypeSourceInfo(VaListTagType));
5395  QualType VaListTagTypedefType =
5396    Context->getTypedefType(VaListTagTypedefDecl);
5397
5398  // typedef __va_list_tag __builtin_va_list[1];
5399  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5400  QualType VaListTagArrayType
5401    = Context->getConstantArrayType(VaListTagTypedefType,
5402                                    Size, ArrayType::Normal, 0);
5403  TypeSourceInfo *TInfo
5404    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5405  TypedefDecl *VaListTypedefDecl
5406    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5407                          Context->getTranslationUnitDecl(),
5408                          SourceLocation(), SourceLocation(),
5409                          &Context->Idents.get("__builtin_va_list"),
5410                          TInfo);
5411
5412  return VaListTypedefDecl;
5413}
5414
5415static TypedefDecl *
5416CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5417  // typedef struct __va_list_tag {
5418  RecordDecl *VaListTagDecl;
5419  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5420                                   Context->getTranslationUnitDecl(),
5421                                   &Context->Idents.get("__va_list_tag"));
5422  VaListTagDecl->startDefinition();
5423
5424  const size_t NumFields = 4;
5425  QualType FieldTypes[NumFields];
5426  const char *FieldNames[NumFields];
5427
5428  //   unsigned gp_offset;
5429  FieldTypes[0] = Context->UnsignedIntTy;
5430  FieldNames[0] = "gp_offset";
5431
5432  //   unsigned fp_offset;
5433  FieldTypes[1] = Context->UnsignedIntTy;
5434  FieldNames[1] = "fp_offset";
5435
5436  //   void* overflow_arg_area;
5437  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5438  FieldNames[2] = "overflow_arg_area";
5439
5440  //   void* reg_save_area;
5441  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5442  FieldNames[3] = "reg_save_area";
5443
5444  // Create fields
5445  for (unsigned i = 0; i < NumFields; ++i) {
5446    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5447                                         VaListTagDecl,
5448                                         SourceLocation(),
5449                                         SourceLocation(),
5450                                         &Context->Idents.get(FieldNames[i]),
5451                                         FieldTypes[i], /*TInfo=*/0,
5452                                         /*BitWidth=*/0,
5453                                         /*Mutable=*/false,
5454                                         ICIS_NoInit);
5455    Field->setAccess(AS_public);
5456    VaListTagDecl->addDecl(Field);
5457  }
5458  VaListTagDecl->completeDefinition();
5459  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5460  Context->VaListTagTy = VaListTagType;
5461
5462  // } __va_list_tag;
5463  TypedefDecl *VaListTagTypedefDecl
5464    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5465                          Context->getTranslationUnitDecl(),
5466                          SourceLocation(), SourceLocation(),
5467                          &Context->Idents.get("__va_list_tag"),
5468                          Context->getTrivialTypeSourceInfo(VaListTagType));
5469  QualType VaListTagTypedefType =
5470    Context->getTypedefType(VaListTagTypedefDecl);
5471
5472  // typedef __va_list_tag __builtin_va_list[1];
5473  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5474  QualType VaListTagArrayType
5475    = Context->getConstantArrayType(VaListTagTypedefType,
5476                                      Size, ArrayType::Normal,0);
5477  TypeSourceInfo *TInfo
5478    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5479  TypedefDecl *VaListTypedefDecl
5480    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5481                          Context->getTranslationUnitDecl(),
5482                          SourceLocation(), SourceLocation(),
5483                          &Context->Idents.get("__builtin_va_list"),
5484                          TInfo);
5485
5486  return VaListTypedefDecl;
5487}
5488
5489static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5490  // typedef int __builtin_va_list[4];
5491  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5492  QualType IntArrayType
5493    = Context->getConstantArrayType(Context->IntTy,
5494				    Size, ArrayType::Normal, 0);
5495  TypedefDecl *VaListTypedefDecl
5496    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5497                          Context->getTranslationUnitDecl(),
5498                          SourceLocation(), SourceLocation(),
5499                          &Context->Idents.get("__builtin_va_list"),
5500                          Context->getTrivialTypeSourceInfo(IntArrayType));
5501
5502  return VaListTypedefDecl;
5503}
5504
5505static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5506                                     TargetInfo::BuiltinVaListKind Kind) {
5507  switch (Kind) {
5508  case TargetInfo::CharPtrBuiltinVaList:
5509    return CreateCharPtrBuiltinVaListDecl(Context);
5510  case TargetInfo::VoidPtrBuiltinVaList:
5511    return CreateVoidPtrBuiltinVaListDecl(Context);
5512  case TargetInfo::PowerABIBuiltinVaList:
5513    return CreatePowerABIBuiltinVaListDecl(Context);
5514  case TargetInfo::X86_64ABIBuiltinVaList:
5515    return CreateX86_64ABIBuiltinVaListDecl(Context);
5516  case TargetInfo::PNaClABIBuiltinVaList:
5517    return CreatePNaClABIBuiltinVaListDecl(Context);
5518  }
5519
5520  llvm_unreachable("Unhandled __builtin_va_list type kind");
5521}
5522
5523TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5524  if (!BuiltinVaListDecl)
5525    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5526
5527  return BuiltinVaListDecl;
5528}
5529
5530QualType ASTContext::getVaListTagType() const {
5531  // Force the creation of VaListTagTy by building the __builtin_va_list
5532  // declaration.
5533  if (VaListTagTy.isNull())
5534    (void) getBuiltinVaListDecl();
5535
5536  return VaListTagTy;
5537}
5538
5539void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5540  assert(ObjCConstantStringType.isNull() &&
5541         "'NSConstantString' type already set!");
5542
5543  ObjCConstantStringType = getObjCInterfaceType(Decl);
5544}
5545
5546/// \brief Retrieve the template name that corresponds to a non-empty
5547/// lookup.
5548TemplateName
5549ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5550                                      UnresolvedSetIterator End) const {
5551  unsigned size = End - Begin;
5552  assert(size > 1 && "set is not overloaded!");
5553
5554  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5555                          size * sizeof(FunctionTemplateDecl*));
5556  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5557
5558  NamedDecl **Storage = OT->getStorage();
5559  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5560    NamedDecl *D = *I;
5561    assert(isa<FunctionTemplateDecl>(D) ||
5562           (isa<UsingShadowDecl>(D) &&
5563            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5564    *Storage++ = D;
5565  }
5566
5567  return TemplateName(OT);
5568}
5569
5570/// \brief Retrieve the template name that represents a qualified
5571/// template name such as \c std::vector.
5572TemplateName
5573ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5574                                     bool TemplateKeyword,
5575                                     TemplateDecl *Template) const {
5576  assert(NNS && "Missing nested-name-specifier in qualified template name");
5577
5578  // FIXME: Canonicalization?
5579  llvm::FoldingSetNodeID ID;
5580  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5581
5582  void *InsertPos = 0;
5583  QualifiedTemplateName *QTN =
5584    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5585  if (!QTN) {
5586    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5587        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5588    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5589  }
5590
5591  return TemplateName(QTN);
5592}
5593
5594/// \brief Retrieve the template name that represents a dependent
5595/// template name such as \c MetaFun::template apply.
5596TemplateName
5597ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5598                                     const IdentifierInfo *Name) const {
5599  assert((!NNS || NNS->isDependent()) &&
5600         "Nested name specifier must be dependent");
5601
5602  llvm::FoldingSetNodeID ID;
5603  DependentTemplateName::Profile(ID, NNS, Name);
5604
5605  void *InsertPos = 0;
5606  DependentTemplateName *QTN =
5607    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5608
5609  if (QTN)
5610    return TemplateName(QTN);
5611
5612  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5613  if (CanonNNS == NNS) {
5614    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5615        DependentTemplateName(NNS, Name);
5616  } else {
5617    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5618    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5619        DependentTemplateName(NNS, Name, Canon);
5620    DependentTemplateName *CheckQTN =
5621      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5622    assert(!CheckQTN && "Dependent type name canonicalization broken");
5623    (void)CheckQTN;
5624  }
5625
5626  DependentTemplateNames.InsertNode(QTN, InsertPos);
5627  return TemplateName(QTN);
5628}
5629
5630/// \brief Retrieve the template name that represents a dependent
5631/// template name such as \c MetaFun::template operator+.
5632TemplateName
5633ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5634                                     OverloadedOperatorKind Operator) const {
5635  assert((!NNS || NNS->isDependent()) &&
5636         "Nested name specifier must be dependent");
5637
5638  llvm::FoldingSetNodeID ID;
5639  DependentTemplateName::Profile(ID, NNS, Operator);
5640
5641  void *InsertPos = 0;
5642  DependentTemplateName *QTN
5643    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5644
5645  if (QTN)
5646    return TemplateName(QTN);
5647
5648  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5649  if (CanonNNS == NNS) {
5650    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5651        DependentTemplateName(NNS, Operator);
5652  } else {
5653    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5654    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5655        DependentTemplateName(NNS, Operator, Canon);
5656
5657    DependentTemplateName *CheckQTN
5658      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5659    assert(!CheckQTN && "Dependent template name canonicalization broken");
5660    (void)CheckQTN;
5661  }
5662
5663  DependentTemplateNames.InsertNode(QTN, InsertPos);
5664  return TemplateName(QTN);
5665}
5666
5667TemplateName
5668ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5669                                         TemplateName replacement) const {
5670  llvm::FoldingSetNodeID ID;
5671  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5672
5673  void *insertPos = 0;
5674  SubstTemplateTemplateParmStorage *subst
5675    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5676
5677  if (!subst) {
5678    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5679    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5680  }
5681
5682  return TemplateName(subst);
5683}
5684
5685TemplateName
5686ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5687                                       const TemplateArgument &ArgPack) const {
5688  ASTContext &Self = const_cast<ASTContext &>(*this);
5689  llvm::FoldingSetNodeID ID;
5690  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5691
5692  void *InsertPos = 0;
5693  SubstTemplateTemplateParmPackStorage *Subst
5694    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5695
5696  if (!Subst) {
5697    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5698                                                           ArgPack.pack_size(),
5699                                                         ArgPack.pack_begin());
5700    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5701  }
5702
5703  return TemplateName(Subst);
5704}
5705
5706/// getFromTargetType - Given one of the integer types provided by
5707/// TargetInfo, produce the corresponding type. The unsigned @p Type
5708/// is actually a value of type @c TargetInfo::IntType.
5709CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5710  switch (Type) {
5711  case TargetInfo::NoInt: return CanQualType();
5712  case TargetInfo::SignedShort: return ShortTy;
5713  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5714  case TargetInfo::SignedInt: return IntTy;
5715  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5716  case TargetInfo::SignedLong: return LongTy;
5717  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5718  case TargetInfo::SignedLongLong: return LongLongTy;
5719  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5720  }
5721
5722  llvm_unreachable("Unhandled TargetInfo::IntType value");
5723}
5724
5725//===----------------------------------------------------------------------===//
5726//                        Type Predicates.
5727//===----------------------------------------------------------------------===//
5728
5729/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5730/// garbage collection attribute.
5731///
5732Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5733  if (getLangOpts().getGC() == LangOptions::NonGC)
5734    return Qualifiers::GCNone;
5735
5736  assert(getLangOpts().ObjC1);
5737  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5738
5739  // Default behaviour under objective-C's gc is for ObjC pointers
5740  // (or pointers to them) be treated as though they were declared
5741  // as __strong.
5742  if (GCAttrs == Qualifiers::GCNone) {
5743    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5744      return Qualifiers::Strong;
5745    else if (Ty->isPointerType())
5746      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5747  } else {
5748    // It's not valid to set GC attributes on anything that isn't a
5749    // pointer.
5750#ifndef NDEBUG
5751    QualType CT = Ty->getCanonicalTypeInternal();
5752    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5753      CT = AT->getElementType();
5754    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5755#endif
5756  }
5757  return GCAttrs;
5758}
5759
5760//===----------------------------------------------------------------------===//
5761//                        Type Compatibility Testing
5762//===----------------------------------------------------------------------===//
5763
5764/// areCompatVectorTypes - Return true if the two specified vector types are
5765/// compatible.
5766static bool areCompatVectorTypes(const VectorType *LHS,
5767                                 const VectorType *RHS) {
5768  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5769  return LHS->getElementType() == RHS->getElementType() &&
5770         LHS->getNumElements() == RHS->getNumElements();
5771}
5772
5773bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5774                                          QualType SecondVec) {
5775  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5776  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5777
5778  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5779    return true;
5780
5781  // Treat Neon vector types and most AltiVec vector types as if they are the
5782  // equivalent GCC vector types.
5783  const VectorType *First = FirstVec->getAs<VectorType>();
5784  const VectorType *Second = SecondVec->getAs<VectorType>();
5785  if (First->getNumElements() == Second->getNumElements() &&
5786      hasSameType(First->getElementType(), Second->getElementType()) &&
5787      First->getVectorKind() != VectorType::AltiVecPixel &&
5788      First->getVectorKind() != VectorType::AltiVecBool &&
5789      Second->getVectorKind() != VectorType::AltiVecPixel &&
5790      Second->getVectorKind() != VectorType::AltiVecBool)
5791    return true;
5792
5793  return false;
5794}
5795
5796//===----------------------------------------------------------------------===//
5797// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5798//===----------------------------------------------------------------------===//
5799
5800/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5801/// inheritance hierarchy of 'rProto'.
5802bool
5803ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5804                                           ObjCProtocolDecl *rProto) const {
5805  if (declaresSameEntity(lProto, rProto))
5806    return true;
5807  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5808       E = rProto->protocol_end(); PI != E; ++PI)
5809    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5810      return true;
5811  return false;
5812}
5813
5814/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
5815/// return true if lhs's protocols conform to rhs's protocol; false
5816/// otherwise.
5817bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5818  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5819    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5820  return false;
5821}
5822
5823/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
5824/// Class<pr1, ...>.
5825bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5826                                                      QualType rhs) {
5827  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5828  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5829  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5830
5831  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5832       E = lhsQID->qual_end(); I != E; ++I) {
5833    bool match = false;
5834    ObjCProtocolDecl *lhsProto = *I;
5835    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5836         E = rhsOPT->qual_end(); J != E; ++J) {
5837      ObjCProtocolDecl *rhsProto = *J;
5838      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5839        match = true;
5840        break;
5841      }
5842    }
5843    if (!match)
5844      return false;
5845  }
5846  return true;
5847}
5848
5849/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5850/// ObjCQualifiedIDType.
5851bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5852                                                   bool compare) {
5853  // Allow id<P..> and an 'id' or void* type in all cases.
5854  if (lhs->isVoidPointerType() ||
5855      lhs->isObjCIdType() || lhs->isObjCClassType())
5856    return true;
5857  else if (rhs->isVoidPointerType() ||
5858           rhs->isObjCIdType() || rhs->isObjCClassType())
5859    return true;
5860
5861  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5862    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5863
5864    if (!rhsOPT) return false;
5865
5866    if (rhsOPT->qual_empty()) {
5867      // If the RHS is a unqualified interface pointer "NSString*",
5868      // make sure we check the class hierarchy.
5869      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5870        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5871             E = lhsQID->qual_end(); I != E; ++I) {
5872          // when comparing an id<P> on lhs with a static type on rhs,
5873          // see if static class implements all of id's protocols, directly or
5874          // through its super class and categories.
5875          if (!rhsID->ClassImplementsProtocol(*I, true))
5876            return false;
5877        }
5878      }
5879      // If there are no qualifiers and no interface, we have an 'id'.
5880      return true;
5881    }
5882    // Both the right and left sides have qualifiers.
5883    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5884         E = lhsQID->qual_end(); I != E; ++I) {
5885      ObjCProtocolDecl *lhsProto = *I;
5886      bool match = false;
5887
5888      // when comparing an id<P> on lhs with a static type on rhs,
5889      // see if static class implements all of id's protocols, directly or
5890      // through its super class and categories.
5891      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5892           E = rhsOPT->qual_end(); J != E; ++J) {
5893        ObjCProtocolDecl *rhsProto = *J;
5894        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5895            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5896          match = true;
5897          break;
5898        }
5899      }
5900      // If the RHS is a qualified interface pointer "NSString<P>*",
5901      // make sure we check the class hierarchy.
5902      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5903        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5904             E = lhsQID->qual_end(); I != E; ++I) {
5905          // when comparing an id<P> on lhs with a static type on rhs,
5906          // see if static class implements all of id's protocols, directly or
5907          // through its super class and categories.
5908          if (rhsID->ClassImplementsProtocol(*I, true)) {
5909            match = true;
5910            break;
5911          }
5912        }
5913      }
5914      if (!match)
5915        return false;
5916    }
5917
5918    return true;
5919  }
5920
5921  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5922  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5923
5924  if (const ObjCObjectPointerType *lhsOPT =
5925        lhs->getAsObjCInterfacePointerType()) {
5926    // If both the right and left sides have qualifiers.
5927    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5928         E = lhsOPT->qual_end(); I != E; ++I) {
5929      ObjCProtocolDecl *lhsProto = *I;
5930      bool match = false;
5931
5932      // when comparing an id<P> on rhs with a static type on lhs,
5933      // see if static class implements all of id's protocols, directly or
5934      // through its super class and categories.
5935      // First, lhs protocols in the qualifier list must be found, direct
5936      // or indirect in rhs's qualifier list or it is a mismatch.
5937      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5938           E = rhsQID->qual_end(); J != E; ++J) {
5939        ObjCProtocolDecl *rhsProto = *J;
5940        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5941            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5942          match = true;
5943          break;
5944        }
5945      }
5946      if (!match)
5947        return false;
5948    }
5949
5950    // Static class's protocols, or its super class or category protocols
5951    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5952    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5953      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5954      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5955      // This is rather dubious but matches gcc's behavior. If lhs has
5956      // no type qualifier and its class has no static protocol(s)
5957      // assume that it is mismatch.
5958      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5959        return false;
5960      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5961           LHSInheritedProtocols.begin(),
5962           E = LHSInheritedProtocols.end(); I != E; ++I) {
5963        bool match = false;
5964        ObjCProtocolDecl *lhsProto = (*I);
5965        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5966             E = rhsQID->qual_end(); J != E; ++J) {
5967          ObjCProtocolDecl *rhsProto = *J;
5968          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5969              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5970            match = true;
5971            break;
5972          }
5973        }
5974        if (!match)
5975          return false;
5976      }
5977    }
5978    return true;
5979  }
5980  return false;
5981}
5982
5983/// canAssignObjCInterfaces - Return true if the two interface types are
5984/// compatible for assignment from RHS to LHS.  This handles validation of any
5985/// protocol qualifiers on the LHS or RHS.
5986///
5987bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5988                                         const ObjCObjectPointerType *RHSOPT) {
5989  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5990  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5991
5992  // If either type represents the built-in 'id' or 'Class' types, return true.
5993  if (LHS->isObjCUnqualifiedIdOrClass() ||
5994      RHS->isObjCUnqualifiedIdOrClass())
5995    return true;
5996
5997  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5998    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5999                                             QualType(RHSOPT,0),
6000                                             false);
6001
6002  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6003    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6004                                                QualType(RHSOPT,0));
6005
6006  // If we have 2 user-defined types, fall into that path.
6007  if (LHS->getInterface() && RHS->getInterface())
6008    return canAssignObjCInterfaces(LHS, RHS);
6009
6010  return false;
6011}
6012
6013/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6014/// for providing type-safety for objective-c pointers used to pass/return
6015/// arguments in block literals. When passed as arguments, passing 'A*' where
6016/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6017/// not OK. For the return type, the opposite is not OK.
6018bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6019                                         const ObjCObjectPointerType *LHSOPT,
6020                                         const ObjCObjectPointerType *RHSOPT,
6021                                         bool BlockReturnType) {
6022  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6023    return true;
6024
6025  if (LHSOPT->isObjCBuiltinType()) {
6026    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6027  }
6028
6029  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6030    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6031                                             QualType(RHSOPT,0),
6032                                             false);
6033
6034  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6035  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6036  if (LHS && RHS)  { // We have 2 user-defined types.
6037    if (LHS != RHS) {
6038      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6039        return BlockReturnType;
6040      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6041        return !BlockReturnType;
6042    }
6043    else
6044      return true;
6045  }
6046  return false;
6047}
6048
6049/// getIntersectionOfProtocols - This routine finds the intersection of set
6050/// of protocols inherited from two distinct objective-c pointer objects.
6051/// It is used to build composite qualifier list of the composite type of
6052/// the conditional expression involving two objective-c pointer objects.
6053static
6054void getIntersectionOfProtocols(ASTContext &Context,
6055                                const ObjCObjectPointerType *LHSOPT,
6056                                const ObjCObjectPointerType *RHSOPT,
6057      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6058
6059  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6060  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6061  assert(LHS->getInterface() && "LHS must have an interface base");
6062  assert(RHS->getInterface() && "RHS must have an interface base");
6063
6064  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6065  unsigned LHSNumProtocols = LHS->getNumProtocols();
6066  if (LHSNumProtocols > 0)
6067    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6068  else {
6069    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6070    Context.CollectInheritedProtocols(LHS->getInterface(),
6071                                      LHSInheritedProtocols);
6072    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6073                                LHSInheritedProtocols.end());
6074  }
6075
6076  unsigned RHSNumProtocols = RHS->getNumProtocols();
6077  if (RHSNumProtocols > 0) {
6078    ObjCProtocolDecl **RHSProtocols =
6079      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6080    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6081      if (InheritedProtocolSet.count(RHSProtocols[i]))
6082        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6083  } else {
6084    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6085    Context.CollectInheritedProtocols(RHS->getInterface(),
6086                                      RHSInheritedProtocols);
6087    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6088         RHSInheritedProtocols.begin(),
6089         E = RHSInheritedProtocols.end(); I != E; ++I)
6090      if (InheritedProtocolSet.count((*I)))
6091        IntersectionOfProtocols.push_back((*I));
6092  }
6093}
6094
6095/// areCommonBaseCompatible - Returns common base class of the two classes if
6096/// one found. Note that this is O'2 algorithm. But it will be called as the
6097/// last type comparison in a ?-exp of ObjC pointer types before a
6098/// warning is issued. So, its invokation is extremely rare.
6099QualType ASTContext::areCommonBaseCompatible(
6100                                          const ObjCObjectPointerType *Lptr,
6101                                          const ObjCObjectPointerType *Rptr) {
6102  const ObjCObjectType *LHS = Lptr->getObjectType();
6103  const ObjCObjectType *RHS = Rptr->getObjectType();
6104  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6105  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6106  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6107    return QualType();
6108
6109  do {
6110    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6111    if (canAssignObjCInterfaces(LHS, RHS)) {
6112      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6113      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6114
6115      QualType Result = QualType(LHS, 0);
6116      if (!Protocols.empty())
6117        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6118      Result = getObjCObjectPointerType(Result);
6119      return Result;
6120    }
6121  } while ((LDecl = LDecl->getSuperClass()));
6122
6123  return QualType();
6124}
6125
6126bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6127                                         const ObjCObjectType *RHS) {
6128  assert(LHS->getInterface() && "LHS is not an interface type");
6129  assert(RHS->getInterface() && "RHS is not an interface type");
6130
6131  // Verify that the base decls are compatible: the RHS must be a subclass of
6132  // the LHS.
6133  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6134    return false;
6135
6136  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6137  // protocol qualified at all, then we are good.
6138  if (LHS->getNumProtocols() == 0)
6139    return true;
6140
6141  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6142  // more detailed analysis is required.
6143  if (RHS->getNumProtocols() == 0) {
6144    // OK, if LHS is a superclass of RHS *and*
6145    // this superclass is assignment compatible with LHS.
6146    // false otherwise.
6147    bool IsSuperClass =
6148      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6149    if (IsSuperClass) {
6150      // OK if conversion of LHS to SuperClass results in narrowing of types
6151      // ; i.e., SuperClass may implement at least one of the protocols
6152      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6153      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6154      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6155      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6156      // If super class has no protocols, it is not a match.
6157      if (SuperClassInheritedProtocols.empty())
6158        return false;
6159
6160      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6161           LHSPE = LHS->qual_end();
6162           LHSPI != LHSPE; LHSPI++) {
6163        bool SuperImplementsProtocol = false;
6164        ObjCProtocolDecl *LHSProto = (*LHSPI);
6165
6166        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6167             SuperClassInheritedProtocols.begin(),
6168             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6169          ObjCProtocolDecl *SuperClassProto = (*I);
6170          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6171            SuperImplementsProtocol = true;
6172            break;
6173          }
6174        }
6175        if (!SuperImplementsProtocol)
6176          return false;
6177      }
6178      return true;
6179    }
6180    return false;
6181  }
6182
6183  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6184                                     LHSPE = LHS->qual_end();
6185       LHSPI != LHSPE; LHSPI++) {
6186    bool RHSImplementsProtocol = false;
6187
6188    // If the RHS doesn't implement the protocol on the left, the types
6189    // are incompatible.
6190    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6191                                       RHSPE = RHS->qual_end();
6192         RHSPI != RHSPE; RHSPI++) {
6193      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6194        RHSImplementsProtocol = true;
6195        break;
6196      }
6197    }
6198    // FIXME: For better diagnostics, consider passing back the protocol name.
6199    if (!RHSImplementsProtocol)
6200      return false;
6201  }
6202  // The RHS implements all protocols listed on the LHS.
6203  return true;
6204}
6205
6206bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6207  // get the "pointed to" types
6208  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6209  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6210
6211  if (!LHSOPT || !RHSOPT)
6212    return false;
6213
6214  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6215         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6216}
6217
6218bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6219  return canAssignObjCInterfaces(
6220                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6221                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6222}
6223
6224/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6225/// both shall have the identically qualified version of a compatible type.
6226/// C99 6.2.7p1: Two types have compatible types if their types are the
6227/// same. See 6.7.[2,3,5] for additional rules.
6228bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6229                                    bool CompareUnqualified) {
6230  if (getLangOpts().CPlusPlus)
6231    return hasSameType(LHS, RHS);
6232
6233  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6234}
6235
6236bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6237  return typesAreCompatible(LHS, RHS);
6238}
6239
6240bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6241  return !mergeTypes(LHS, RHS, true).isNull();
6242}
6243
6244/// mergeTransparentUnionType - if T is a transparent union type and a member
6245/// of T is compatible with SubType, return the merged type, else return
6246/// QualType()
6247QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6248                                               bool OfBlockPointer,
6249                                               bool Unqualified) {
6250  if (const RecordType *UT = T->getAsUnionType()) {
6251    RecordDecl *UD = UT->getDecl();
6252    if (UD->hasAttr<TransparentUnionAttr>()) {
6253      for (RecordDecl::field_iterator it = UD->field_begin(),
6254           itend = UD->field_end(); it != itend; ++it) {
6255        QualType ET = it->getType().getUnqualifiedType();
6256        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6257        if (!MT.isNull())
6258          return MT;
6259      }
6260    }
6261  }
6262
6263  return QualType();
6264}
6265
6266/// mergeFunctionArgumentTypes - merge two types which appear as function
6267/// argument types
6268QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6269                                                bool OfBlockPointer,
6270                                                bool Unqualified) {
6271  // GNU extension: two types are compatible if they appear as a function
6272  // argument, one of the types is a transparent union type and the other
6273  // type is compatible with a union member
6274  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6275                                              Unqualified);
6276  if (!lmerge.isNull())
6277    return lmerge;
6278
6279  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6280                                              Unqualified);
6281  if (!rmerge.isNull())
6282    return rmerge;
6283
6284  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6285}
6286
6287QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6288                                        bool OfBlockPointer,
6289                                        bool Unqualified) {
6290  const FunctionType *lbase = lhs->getAs<FunctionType>();
6291  const FunctionType *rbase = rhs->getAs<FunctionType>();
6292  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6293  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6294  bool allLTypes = true;
6295  bool allRTypes = true;
6296
6297  // Check return type
6298  QualType retType;
6299  if (OfBlockPointer) {
6300    QualType RHS = rbase->getResultType();
6301    QualType LHS = lbase->getResultType();
6302    bool UnqualifiedResult = Unqualified;
6303    if (!UnqualifiedResult)
6304      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6305    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6306  }
6307  else
6308    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6309                         Unqualified);
6310  if (retType.isNull()) return QualType();
6311
6312  if (Unqualified)
6313    retType = retType.getUnqualifiedType();
6314
6315  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6316  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6317  if (Unqualified) {
6318    LRetType = LRetType.getUnqualifiedType();
6319    RRetType = RRetType.getUnqualifiedType();
6320  }
6321
6322  if (getCanonicalType(retType) != LRetType)
6323    allLTypes = false;
6324  if (getCanonicalType(retType) != RRetType)
6325    allRTypes = false;
6326
6327  // FIXME: double check this
6328  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6329  //                           rbase->getRegParmAttr() != 0 &&
6330  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6331  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6332  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6333
6334  // Compatible functions must have compatible calling conventions
6335  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6336    return QualType();
6337
6338  // Regparm is part of the calling convention.
6339  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6340    return QualType();
6341  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6342    return QualType();
6343
6344  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6345    return QualType();
6346
6347  // functypes which return are preferred over those that do not.
6348  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
6349    allLTypes = false;
6350  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
6351    allRTypes = false;
6352  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6353  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6354
6355  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6356
6357  if (lproto && rproto) { // two C99 style function prototypes
6358    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6359           "C++ shouldn't be here");
6360    unsigned lproto_nargs = lproto->getNumArgs();
6361    unsigned rproto_nargs = rproto->getNumArgs();
6362
6363    // Compatible functions must have the same number of arguments
6364    if (lproto_nargs != rproto_nargs)
6365      return QualType();
6366
6367    // Variadic and non-variadic functions aren't compatible
6368    if (lproto->isVariadic() != rproto->isVariadic())
6369      return QualType();
6370
6371    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6372      return QualType();
6373
6374    if (LangOpts.ObjCAutoRefCount &&
6375        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6376      return QualType();
6377
6378    // Check argument compatibility
6379    SmallVector<QualType, 10> types;
6380    for (unsigned i = 0; i < lproto_nargs; i++) {
6381      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6382      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6383      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6384                                                    OfBlockPointer,
6385                                                    Unqualified);
6386      if (argtype.isNull()) return QualType();
6387
6388      if (Unqualified)
6389        argtype = argtype.getUnqualifiedType();
6390
6391      types.push_back(argtype);
6392      if (Unqualified) {
6393        largtype = largtype.getUnqualifiedType();
6394        rargtype = rargtype.getUnqualifiedType();
6395      }
6396
6397      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6398        allLTypes = false;
6399      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6400        allRTypes = false;
6401    }
6402
6403    if (allLTypes) return lhs;
6404    if (allRTypes) return rhs;
6405
6406    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6407    EPI.ExtInfo = einfo;
6408    return getFunctionType(retType, types.begin(), types.size(), EPI);
6409  }
6410
6411  if (lproto) allRTypes = false;
6412  if (rproto) allLTypes = false;
6413
6414  const FunctionProtoType *proto = lproto ? lproto : rproto;
6415  if (proto) {
6416    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6417    if (proto->isVariadic()) return QualType();
6418    // Check that the types are compatible with the types that
6419    // would result from default argument promotions (C99 6.7.5.3p15).
6420    // The only types actually affected are promotable integer
6421    // types and floats, which would be passed as a different
6422    // type depending on whether the prototype is visible.
6423    unsigned proto_nargs = proto->getNumArgs();
6424    for (unsigned i = 0; i < proto_nargs; ++i) {
6425      QualType argTy = proto->getArgType(i);
6426
6427      // Look at the converted type of enum types, since that is the type used
6428      // to pass enum values.
6429      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6430        argTy = Enum->getDecl()->getIntegerType();
6431        if (argTy.isNull())
6432          return QualType();
6433      }
6434
6435      if (argTy->isPromotableIntegerType() ||
6436          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6437        return QualType();
6438    }
6439
6440    if (allLTypes) return lhs;
6441    if (allRTypes) return rhs;
6442
6443    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6444    EPI.ExtInfo = einfo;
6445    return getFunctionType(retType, proto->arg_type_begin(),
6446                           proto->getNumArgs(), EPI);
6447  }
6448
6449  if (allLTypes) return lhs;
6450  if (allRTypes) return rhs;
6451  return getFunctionNoProtoType(retType, einfo);
6452}
6453
6454QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6455                                bool OfBlockPointer,
6456                                bool Unqualified, bool BlockReturnType) {
6457  // C++ [expr]: If an expression initially has the type "reference to T", the
6458  // type is adjusted to "T" prior to any further analysis, the expression
6459  // designates the object or function denoted by the reference, and the
6460  // expression is an lvalue unless the reference is an rvalue reference and
6461  // the expression is a function call (possibly inside parentheses).
6462  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6463  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6464
6465  if (Unqualified) {
6466    LHS = LHS.getUnqualifiedType();
6467    RHS = RHS.getUnqualifiedType();
6468  }
6469
6470  QualType LHSCan = getCanonicalType(LHS),
6471           RHSCan = getCanonicalType(RHS);
6472
6473  // If two types are identical, they are compatible.
6474  if (LHSCan == RHSCan)
6475    return LHS;
6476
6477  // If the qualifiers are different, the types aren't compatible... mostly.
6478  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6479  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6480  if (LQuals != RQuals) {
6481    // If any of these qualifiers are different, we have a type
6482    // mismatch.
6483    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6484        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6485        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6486      return QualType();
6487
6488    // Exactly one GC qualifier difference is allowed: __strong is
6489    // okay if the other type has no GC qualifier but is an Objective
6490    // C object pointer (i.e. implicitly strong by default).  We fix
6491    // this by pretending that the unqualified type was actually
6492    // qualified __strong.
6493    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6494    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6495    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6496
6497    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6498      return QualType();
6499
6500    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6501      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6502    }
6503    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6504      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6505    }
6506    return QualType();
6507  }
6508
6509  // Okay, qualifiers are equal.
6510
6511  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6512  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6513
6514  // We want to consider the two function types to be the same for these
6515  // comparisons, just force one to the other.
6516  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6517  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6518
6519  // Same as above for arrays
6520  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6521    LHSClass = Type::ConstantArray;
6522  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6523    RHSClass = Type::ConstantArray;
6524
6525  // ObjCInterfaces are just specialized ObjCObjects.
6526  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6527  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6528
6529  // Canonicalize ExtVector -> Vector.
6530  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6531  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6532
6533  // If the canonical type classes don't match.
6534  if (LHSClass != RHSClass) {
6535    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6536    // a signed integer type, or an unsigned integer type.
6537    // Compatibility is based on the underlying type, not the promotion
6538    // type.
6539    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6540      QualType TINT = ETy->getDecl()->getIntegerType();
6541      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6542        return RHS;
6543    }
6544    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6545      QualType TINT = ETy->getDecl()->getIntegerType();
6546      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6547        return LHS;
6548    }
6549    // allow block pointer type to match an 'id' type.
6550    if (OfBlockPointer && !BlockReturnType) {
6551       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6552         return LHS;
6553      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6554        return RHS;
6555    }
6556
6557    return QualType();
6558  }
6559
6560  // The canonical type classes match.
6561  switch (LHSClass) {
6562#define TYPE(Class, Base)
6563#define ABSTRACT_TYPE(Class, Base)
6564#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6565#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6566#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6567#include "clang/AST/TypeNodes.def"
6568    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6569
6570  case Type::LValueReference:
6571  case Type::RValueReference:
6572  case Type::MemberPointer:
6573    llvm_unreachable("C++ should never be in mergeTypes");
6574
6575  case Type::ObjCInterface:
6576  case Type::IncompleteArray:
6577  case Type::VariableArray:
6578  case Type::FunctionProto:
6579  case Type::ExtVector:
6580    llvm_unreachable("Types are eliminated above");
6581
6582  case Type::Pointer:
6583  {
6584    // Merge two pointer types, while trying to preserve typedef info
6585    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6586    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6587    if (Unqualified) {
6588      LHSPointee = LHSPointee.getUnqualifiedType();
6589      RHSPointee = RHSPointee.getUnqualifiedType();
6590    }
6591    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6592                                     Unqualified);
6593    if (ResultType.isNull()) return QualType();
6594    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6595      return LHS;
6596    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6597      return RHS;
6598    return getPointerType(ResultType);
6599  }
6600  case Type::BlockPointer:
6601  {
6602    // Merge two block pointer types, while trying to preserve typedef info
6603    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6604    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6605    if (Unqualified) {
6606      LHSPointee = LHSPointee.getUnqualifiedType();
6607      RHSPointee = RHSPointee.getUnqualifiedType();
6608    }
6609    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6610                                     Unqualified);
6611    if (ResultType.isNull()) return QualType();
6612    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6613      return LHS;
6614    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6615      return RHS;
6616    return getBlockPointerType(ResultType);
6617  }
6618  case Type::Atomic:
6619  {
6620    // Merge two pointer types, while trying to preserve typedef info
6621    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6622    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6623    if (Unqualified) {
6624      LHSValue = LHSValue.getUnqualifiedType();
6625      RHSValue = RHSValue.getUnqualifiedType();
6626    }
6627    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6628                                     Unqualified);
6629    if (ResultType.isNull()) return QualType();
6630    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6631      return LHS;
6632    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6633      return RHS;
6634    return getAtomicType(ResultType);
6635  }
6636  case Type::ConstantArray:
6637  {
6638    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6639    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6640    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6641      return QualType();
6642
6643    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6644    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6645    if (Unqualified) {
6646      LHSElem = LHSElem.getUnqualifiedType();
6647      RHSElem = RHSElem.getUnqualifiedType();
6648    }
6649
6650    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6651    if (ResultType.isNull()) return QualType();
6652    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6653      return LHS;
6654    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6655      return RHS;
6656    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6657                                          ArrayType::ArraySizeModifier(), 0);
6658    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6659                                          ArrayType::ArraySizeModifier(), 0);
6660    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6661    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6662    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6663      return LHS;
6664    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6665      return RHS;
6666    if (LVAT) {
6667      // FIXME: This isn't correct! But tricky to implement because
6668      // the array's size has to be the size of LHS, but the type
6669      // has to be different.
6670      return LHS;
6671    }
6672    if (RVAT) {
6673      // FIXME: This isn't correct! But tricky to implement because
6674      // the array's size has to be the size of RHS, but the type
6675      // has to be different.
6676      return RHS;
6677    }
6678    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6679    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6680    return getIncompleteArrayType(ResultType,
6681                                  ArrayType::ArraySizeModifier(), 0);
6682  }
6683  case Type::FunctionNoProto:
6684    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6685  case Type::Record:
6686  case Type::Enum:
6687    return QualType();
6688  case Type::Builtin:
6689    // Only exactly equal builtin types are compatible, which is tested above.
6690    return QualType();
6691  case Type::Complex:
6692    // Distinct complex types are incompatible.
6693    return QualType();
6694  case Type::Vector:
6695    // FIXME: The merged type should be an ExtVector!
6696    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6697                             RHSCan->getAs<VectorType>()))
6698      return LHS;
6699    return QualType();
6700  case Type::ObjCObject: {
6701    // Check if the types are assignment compatible.
6702    // FIXME: This should be type compatibility, e.g. whether
6703    // "LHS x; RHS x;" at global scope is legal.
6704    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6705    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6706    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6707      return LHS;
6708
6709    return QualType();
6710  }
6711  case Type::ObjCObjectPointer: {
6712    if (OfBlockPointer) {
6713      if (canAssignObjCInterfacesInBlockPointer(
6714                                          LHS->getAs<ObjCObjectPointerType>(),
6715                                          RHS->getAs<ObjCObjectPointerType>(),
6716                                          BlockReturnType))
6717        return LHS;
6718      return QualType();
6719    }
6720    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6721                                RHS->getAs<ObjCObjectPointerType>()))
6722      return LHS;
6723
6724    return QualType();
6725  }
6726  }
6727
6728  llvm_unreachable("Invalid Type::Class!");
6729}
6730
6731bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6732                   const FunctionProtoType *FromFunctionType,
6733                   const FunctionProtoType *ToFunctionType) {
6734  if (FromFunctionType->hasAnyConsumedArgs() !=
6735      ToFunctionType->hasAnyConsumedArgs())
6736    return false;
6737  FunctionProtoType::ExtProtoInfo FromEPI =
6738    FromFunctionType->getExtProtoInfo();
6739  FunctionProtoType::ExtProtoInfo ToEPI =
6740    ToFunctionType->getExtProtoInfo();
6741  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6742    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6743         ArgIdx != NumArgs; ++ArgIdx)  {
6744      if (FromEPI.ConsumedArguments[ArgIdx] !=
6745          ToEPI.ConsumedArguments[ArgIdx])
6746        return false;
6747    }
6748  return true;
6749}
6750
6751/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6752/// 'RHS' attributes and returns the merged version; including for function
6753/// return types.
6754QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6755  QualType LHSCan = getCanonicalType(LHS),
6756  RHSCan = getCanonicalType(RHS);
6757  // If two types are identical, they are compatible.
6758  if (LHSCan == RHSCan)
6759    return LHS;
6760  if (RHSCan->isFunctionType()) {
6761    if (!LHSCan->isFunctionType())
6762      return QualType();
6763    QualType OldReturnType =
6764      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6765    QualType NewReturnType =
6766      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6767    QualType ResReturnType =
6768      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6769    if (ResReturnType.isNull())
6770      return QualType();
6771    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6772      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6773      // In either case, use OldReturnType to build the new function type.
6774      const FunctionType *F = LHS->getAs<FunctionType>();
6775      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6776        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6777        EPI.ExtInfo = getFunctionExtInfo(LHS);
6778        QualType ResultType
6779          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6780                            FPT->getNumArgs(), EPI);
6781        return ResultType;
6782      }
6783    }
6784    return QualType();
6785  }
6786
6787  // If the qualifiers are different, the types can still be merged.
6788  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6789  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6790  if (LQuals != RQuals) {
6791    // If any of these qualifiers are different, we have a type mismatch.
6792    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6793        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6794      return QualType();
6795
6796    // Exactly one GC qualifier difference is allowed: __strong is
6797    // okay if the other type has no GC qualifier but is an Objective
6798    // C object pointer (i.e. implicitly strong by default).  We fix
6799    // this by pretending that the unqualified type was actually
6800    // qualified __strong.
6801    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6802    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6803    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6804
6805    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6806      return QualType();
6807
6808    if (GC_L == Qualifiers::Strong)
6809      return LHS;
6810    if (GC_R == Qualifiers::Strong)
6811      return RHS;
6812    return QualType();
6813  }
6814
6815  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6816    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6817    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6818    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6819    if (ResQT == LHSBaseQT)
6820      return LHS;
6821    if (ResQT == RHSBaseQT)
6822      return RHS;
6823  }
6824  return QualType();
6825}
6826
6827//===----------------------------------------------------------------------===//
6828//                         Integer Predicates
6829//===----------------------------------------------------------------------===//
6830
6831unsigned ASTContext::getIntWidth(QualType T) const {
6832  if (const EnumType *ET = dyn_cast<EnumType>(T))
6833    T = ET->getDecl()->getIntegerType();
6834  if (T->isBooleanType())
6835    return 1;
6836  // For builtin types, just use the standard type sizing method
6837  return (unsigned)getTypeSize(T);
6838}
6839
6840QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
6841  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6842
6843  // Turn <4 x signed int> -> <4 x unsigned int>
6844  if (const VectorType *VTy = T->getAs<VectorType>())
6845    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6846                         VTy->getNumElements(), VTy->getVectorKind());
6847
6848  // For enums, we return the unsigned version of the base type.
6849  if (const EnumType *ETy = T->getAs<EnumType>())
6850    T = ETy->getDecl()->getIntegerType();
6851
6852  const BuiltinType *BTy = T->getAs<BuiltinType>();
6853  assert(BTy && "Unexpected signed integer type");
6854  switch (BTy->getKind()) {
6855  case BuiltinType::Char_S:
6856  case BuiltinType::SChar:
6857    return UnsignedCharTy;
6858  case BuiltinType::Short:
6859    return UnsignedShortTy;
6860  case BuiltinType::Int:
6861    return UnsignedIntTy;
6862  case BuiltinType::Long:
6863    return UnsignedLongTy;
6864  case BuiltinType::LongLong:
6865    return UnsignedLongLongTy;
6866  case BuiltinType::Int128:
6867    return UnsignedInt128Ty;
6868  default:
6869    llvm_unreachable("Unexpected signed integer type");
6870  }
6871}
6872
6873ASTMutationListener::~ASTMutationListener() { }
6874
6875
6876//===----------------------------------------------------------------------===//
6877//                          Builtin Type Computation
6878//===----------------------------------------------------------------------===//
6879
6880/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6881/// pointer over the consumed characters.  This returns the resultant type.  If
6882/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6883/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6884/// a vector of "i*".
6885///
6886/// RequiresICE is filled in on return to indicate whether the value is required
6887/// to be an Integer Constant Expression.
6888static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6889                                  ASTContext::GetBuiltinTypeError &Error,
6890                                  bool &RequiresICE,
6891                                  bool AllowTypeModifiers) {
6892  // Modifiers.
6893  int HowLong = 0;
6894  bool Signed = false, Unsigned = false;
6895  RequiresICE = false;
6896
6897  // Read the prefixed modifiers first.
6898  bool Done = false;
6899  while (!Done) {
6900    switch (*Str++) {
6901    default: Done = true; --Str; break;
6902    case 'I':
6903      RequiresICE = true;
6904      break;
6905    case 'S':
6906      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6907      assert(!Signed && "Can't use 'S' modifier multiple times!");
6908      Signed = true;
6909      break;
6910    case 'U':
6911      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6912      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6913      Unsigned = true;
6914      break;
6915    case 'L':
6916      assert(HowLong <= 2 && "Can't have LLLL modifier");
6917      ++HowLong;
6918      break;
6919    }
6920  }
6921
6922  QualType Type;
6923
6924  // Read the base type.
6925  switch (*Str++) {
6926  default: llvm_unreachable("Unknown builtin type letter!");
6927  case 'v':
6928    assert(HowLong == 0 && !Signed && !Unsigned &&
6929           "Bad modifiers used with 'v'!");
6930    Type = Context.VoidTy;
6931    break;
6932  case 'f':
6933    assert(HowLong == 0 && !Signed && !Unsigned &&
6934           "Bad modifiers used with 'f'!");
6935    Type = Context.FloatTy;
6936    break;
6937  case 'd':
6938    assert(HowLong < 2 && !Signed && !Unsigned &&
6939           "Bad modifiers used with 'd'!");
6940    if (HowLong)
6941      Type = Context.LongDoubleTy;
6942    else
6943      Type = Context.DoubleTy;
6944    break;
6945  case 's':
6946    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6947    if (Unsigned)
6948      Type = Context.UnsignedShortTy;
6949    else
6950      Type = Context.ShortTy;
6951    break;
6952  case 'i':
6953    if (HowLong == 3)
6954      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6955    else if (HowLong == 2)
6956      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6957    else if (HowLong == 1)
6958      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6959    else
6960      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6961    break;
6962  case 'c':
6963    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6964    if (Signed)
6965      Type = Context.SignedCharTy;
6966    else if (Unsigned)
6967      Type = Context.UnsignedCharTy;
6968    else
6969      Type = Context.CharTy;
6970    break;
6971  case 'b': // boolean
6972    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6973    Type = Context.BoolTy;
6974    break;
6975  case 'z':  // size_t.
6976    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6977    Type = Context.getSizeType();
6978    break;
6979  case 'F':
6980    Type = Context.getCFConstantStringType();
6981    break;
6982  case 'G':
6983    Type = Context.getObjCIdType();
6984    break;
6985  case 'H':
6986    Type = Context.getObjCSelType();
6987    break;
6988  case 'a':
6989    Type = Context.getBuiltinVaListType();
6990    assert(!Type.isNull() && "builtin va list type not initialized!");
6991    break;
6992  case 'A':
6993    // This is a "reference" to a va_list; however, what exactly
6994    // this means depends on how va_list is defined. There are two
6995    // different kinds of va_list: ones passed by value, and ones
6996    // passed by reference.  An example of a by-value va_list is
6997    // x86, where va_list is a char*. An example of by-ref va_list
6998    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6999    // we want this argument to be a char*&; for x86-64, we want
7000    // it to be a __va_list_tag*.
7001    Type = Context.getBuiltinVaListType();
7002    assert(!Type.isNull() && "builtin va list type not initialized!");
7003    if (Type->isArrayType())
7004      Type = Context.getArrayDecayedType(Type);
7005    else
7006      Type = Context.getLValueReferenceType(Type);
7007    break;
7008  case 'V': {
7009    char *End;
7010    unsigned NumElements = strtoul(Str, &End, 10);
7011    assert(End != Str && "Missing vector size");
7012    Str = End;
7013
7014    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7015                                             RequiresICE, false);
7016    assert(!RequiresICE && "Can't require vector ICE");
7017
7018    // TODO: No way to make AltiVec vectors in builtins yet.
7019    Type = Context.getVectorType(ElementType, NumElements,
7020                                 VectorType::GenericVector);
7021    break;
7022  }
7023  case 'E': {
7024    char *End;
7025
7026    unsigned NumElements = strtoul(Str, &End, 10);
7027    assert(End != Str && "Missing vector size");
7028
7029    Str = End;
7030
7031    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7032                                             false);
7033    Type = Context.getExtVectorType(ElementType, NumElements);
7034    break;
7035  }
7036  case 'X': {
7037    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7038                                             false);
7039    assert(!RequiresICE && "Can't require complex ICE");
7040    Type = Context.getComplexType(ElementType);
7041    break;
7042  }
7043  case 'Y' : {
7044    Type = Context.getPointerDiffType();
7045    break;
7046  }
7047  case 'P':
7048    Type = Context.getFILEType();
7049    if (Type.isNull()) {
7050      Error = ASTContext::GE_Missing_stdio;
7051      return QualType();
7052    }
7053    break;
7054  case 'J':
7055    if (Signed)
7056      Type = Context.getsigjmp_bufType();
7057    else
7058      Type = Context.getjmp_bufType();
7059
7060    if (Type.isNull()) {
7061      Error = ASTContext::GE_Missing_setjmp;
7062      return QualType();
7063    }
7064    break;
7065  case 'K':
7066    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7067    Type = Context.getucontext_tType();
7068
7069    if (Type.isNull()) {
7070      Error = ASTContext::GE_Missing_ucontext;
7071      return QualType();
7072    }
7073    break;
7074  }
7075
7076  // If there are modifiers and if we're allowed to parse them, go for it.
7077  Done = !AllowTypeModifiers;
7078  while (!Done) {
7079    switch (char c = *Str++) {
7080    default: Done = true; --Str; break;
7081    case '*':
7082    case '&': {
7083      // Both pointers and references can have their pointee types
7084      // qualified with an address space.
7085      char *End;
7086      unsigned AddrSpace = strtoul(Str, &End, 10);
7087      if (End != Str && AddrSpace != 0) {
7088        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7089        Str = End;
7090      }
7091      if (c == '*')
7092        Type = Context.getPointerType(Type);
7093      else
7094        Type = Context.getLValueReferenceType(Type);
7095      break;
7096    }
7097    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7098    case 'C':
7099      Type = Type.withConst();
7100      break;
7101    case 'D':
7102      Type = Context.getVolatileType(Type);
7103      break;
7104    case 'R':
7105      Type = Type.withRestrict();
7106      break;
7107    }
7108  }
7109
7110  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7111         "Integer constant 'I' type must be an integer");
7112
7113  return Type;
7114}
7115
7116/// GetBuiltinType - Return the type for the specified builtin.
7117QualType ASTContext::GetBuiltinType(unsigned Id,
7118                                    GetBuiltinTypeError &Error,
7119                                    unsigned *IntegerConstantArgs) const {
7120  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7121
7122  SmallVector<QualType, 8> ArgTypes;
7123
7124  bool RequiresICE = false;
7125  Error = GE_None;
7126  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7127                                       RequiresICE, true);
7128  if (Error != GE_None)
7129    return QualType();
7130
7131  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7132
7133  while (TypeStr[0] && TypeStr[0] != '.') {
7134    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7135    if (Error != GE_None)
7136      return QualType();
7137
7138    // If this argument is required to be an IntegerConstantExpression and the
7139    // caller cares, fill in the bitmask we return.
7140    if (RequiresICE && IntegerConstantArgs)
7141      *IntegerConstantArgs |= 1 << ArgTypes.size();
7142
7143    // Do array -> pointer decay.  The builtin should use the decayed type.
7144    if (Ty->isArrayType())
7145      Ty = getArrayDecayedType(Ty);
7146
7147    ArgTypes.push_back(Ty);
7148  }
7149
7150  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7151         "'.' should only occur at end of builtin type list!");
7152
7153  FunctionType::ExtInfo EI;
7154  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7155
7156  bool Variadic = (TypeStr[0] == '.');
7157
7158  // We really shouldn't be making a no-proto type here, especially in C++.
7159  if (ArgTypes.empty() && Variadic)
7160    return getFunctionNoProtoType(ResType, EI);
7161
7162  FunctionProtoType::ExtProtoInfo EPI;
7163  EPI.ExtInfo = EI;
7164  EPI.Variadic = Variadic;
7165
7166  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
7167}
7168
7169GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7170  GVALinkage External = GVA_StrongExternal;
7171
7172  Linkage L = FD->getLinkage();
7173  switch (L) {
7174  case NoLinkage:
7175  case InternalLinkage:
7176  case UniqueExternalLinkage:
7177    return GVA_Internal;
7178
7179  case ExternalLinkage:
7180    switch (FD->getTemplateSpecializationKind()) {
7181    case TSK_Undeclared:
7182    case TSK_ExplicitSpecialization:
7183      External = GVA_StrongExternal;
7184      break;
7185
7186    case TSK_ExplicitInstantiationDefinition:
7187      return GVA_ExplicitTemplateInstantiation;
7188
7189    case TSK_ExplicitInstantiationDeclaration:
7190    case TSK_ImplicitInstantiation:
7191      External = GVA_TemplateInstantiation;
7192      break;
7193    }
7194  }
7195
7196  if (!FD->isInlined())
7197    return External;
7198
7199  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7200    // GNU or C99 inline semantics. Determine whether this symbol should be
7201    // externally visible.
7202    if (FD->isInlineDefinitionExternallyVisible())
7203      return External;
7204
7205    // C99 inline semantics, where the symbol is not externally visible.
7206    return GVA_C99Inline;
7207  }
7208
7209  // C++0x [temp.explicit]p9:
7210  //   [ Note: The intent is that an inline function that is the subject of
7211  //   an explicit instantiation declaration will still be implicitly
7212  //   instantiated when used so that the body can be considered for
7213  //   inlining, but that no out-of-line copy of the inline function would be
7214  //   generated in the translation unit. -- end note ]
7215  if (FD->getTemplateSpecializationKind()
7216                                       == TSK_ExplicitInstantiationDeclaration)
7217    return GVA_C99Inline;
7218
7219  return GVA_CXXInline;
7220}
7221
7222GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7223  // If this is a static data member, compute the kind of template
7224  // specialization. Otherwise, this variable is not part of a
7225  // template.
7226  TemplateSpecializationKind TSK = TSK_Undeclared;
7227  if (VD->isStaticDataMember())
7228    TSK = VD->getTemplateSpecializationKind();
7229
7230  Linkage L = VD->getLinkage();
7231  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
7232      VD->getType()->getLinkage() == UniqueExternalLinkage)
7233    L = UniqueExternalLinkage;
7234
7235  switch (L) {
7236  case NoLinkage:
7237  case InternalLinkage:
7238  case UniqueExternalLinkage:
7239    return GVA_Internal;
7240
7241  case ExternalLinkage:
7242    switch (TSK) {
7243    case TSK_Undeclared:
7244    case TSK_ExplicitSpecialization:
7245      return GVA_StrongExternal;
7246
7247    case TSK_ExplicitInstantiationDeclaration:
7248      llvm_unreachable("Variable should not be instantiated");
7249      // Fall through to treat this like any other instantiation.
7250
7251    case TSK_ExplicitInstantiationDefinition:
7252      return GVA_ExplicitTemplateInstantiation;
7253
7254    case TSK_ImplicitInstantiation:
7255      return GVA_TemplateInstantiation;
7256    }
7257  }
7258
7259  llvm_unreachable("Invalid Linkage!");
7260}
7261
7262bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7263  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7264    if (!VD->isFileVarDecl())
7265      return false;
7266  } else if (!isa<FunctionDecl>(D))
7267    return false;
7268
7269  // Weak references don't produce any output by themselves.
7270  if (D->hasAttr<WeakRefAttr>())
7271    return false;
7272
7273  // Aliases and used decls are required.
7274  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7275    return true;
7276
7277  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7278    // Forward declarations aren't required.
7279    if (!FD->doesThisDeclarationHaveABody())
7280      return FD->doesDeclarationForceExternallyVisibleDefinition();
7281
7282    // Constructors and destructors are required.
7283    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7284      return true;
7285
7286    // The key function for a class is required.
7287    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7288      const CXXRecordDecl *RD = MD->getParent();
7289      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7290        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7291        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7292          return true;
7293      }
7294    }
7295
7296    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7297
7298    // static, static inline, always_inline, and extern inline functions can
7299    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7300    // Implicit template instantiations can also be deferred in C++.
7301    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7302        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7303      return false;
7304    return true;
7305  }
7306
7307  const VarDecl *VD = cast<VarDecl>(D);
7308  assert(VD->isFileVarDecl() && "Expected file scoped var");
7309
7310  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7311    return false;
7312
7313  // Structs that have non-trivial constructors or destructors are required.
7314
7315  // FIXME: Handle references.
7316  // FIXME: Be more selective about which constructors we care about.
7317  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
7318    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
7319      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
7320                                   RD->hasTrivialCopyConstructor() &&
7321                                   RD->hasTrivialMoveConstructor() &&
7322                                   RD->hasTrivialDestructor()))
7323        return true;
7324    }
7325  }
7326
7327  GVALinkage L = GetGVALinkageForVariable(VD);
7328  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
7329    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
7330      return false;
7331  }
7332
7333  return true;
7334}
7335
7336CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7337  // Pass through to the C++ ABI object
7338  return ABI->getDefaultMethodCallConv(isVariadic);
7339}
7340
7341CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7342  if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
7343    return CC_Default;
7344  return CC;
7345}
7346
7347bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7348  // Pass through to the C++ ABI object
7349  return ABI->isNearlyEmpty(RD);
7350}
7351
7352MangleContext *ASTContext::createMangleContext() {
7353  switch (Target->getCXXABI()) {
7354  case CXXABI_ARM:
7355  case CXXABI_Itanium:
7356    return createItaniumMangleContext(*this, getDiagnostics());
7357  case CXXABI_Microsoft:
7358    return createMicrosoftMangleContext(*this, getDiagnostics());
7359  }
7360  llvm_unreachable("Unsupported ABI");
7361}
7362
7363CXXABI::~CXXABI() {}
7364
7365size_t ASTContext::getSideTableAllocatedMemory() const {
7366  return ASTRecordLayouts.getMemorySize()
7367    + llvm::capacity_in_bytes(ObjCLayouts)
7368    + llvm::capacity_in_bytes(KeyFunctions)
7369    + llvm::capacity_in_bytes(ObjCImpls)
7370    + llvm::capacity_in_bytes(BlockVarCopyInits)
7371    + llvm::capacity_in_bytes(DeclAttrs)
7372    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7373    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7374    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7375    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7376    + llvm::capacity_in_bytes(OverriddenMethods)
7377    + llvm::capacity_in_bytes(Types)
7378    + llvm::capacity_in_bytes(VariableArrayTypes)
7379    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7380}
7381
7382unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7383  CXXRecordDecl *Lambda = CallOperator->getParent();
7384  return LambdaMangleContexts[Lambda->getDeclContext()]
7385           .getManglingNumber(CallOperator);
7386}
7387
7388
7389void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7390  ParamIndices[D] = index;
7391}
7392
7393unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7394  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7395  assert(I != ParamIndices.end() &&
7396         "ParmIndices lacks entry set by ParmVarDecl");
7397  return I->second;
7398}
7399