ASTContext.cpp revision 41170b55ba635afb806394d44f2b7f1f6095df37
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
89    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
90      return NULL;
91  }
92
93  // TODO: handle comments for function parameters properly.
94  if (isa<ParmVarDecl>(D))
95    return NULL;
96
97  // TODO: we could look up template parameter documentation in the template
98  // documentation.
99  if (isa<TemplateTypeParmDecl>(D) ||
100      isa<NonTypeTemplateParmDecl>(D) ||
101      isa<TemplateTemplateParmDecl>(D))
102    return NULL;
103
104  ArrayRef<RawComment *> RawComments = Comments.getComments();
105
106  // If there are no comments anywhere, we won't find anything.
107  if (RawComments.empty())
108    return NULL;
109
110  // Find declaration location.
111  // For Objective-C declarations we generally don't expect to have multiple
112  // declarators, thus use declaration starting location as the "declaration
113  // location".
114  // For all other declarations multiple declarators are used quite frequently,
115  // so we use the location of the identifier as the "declaration location".
116  SourceLocation DeclLoc;
117  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
118      isa<ObjCPropertyDecl>(D) ||
119      isa<RedeclarableTemplateDecl>(D) ||
120      isa<ClassTemplateSpecializationDecl>(D))
121    DeclLoc = D->getLocStart();
122  else
123    DeclLoc = D->getLocation();
124
125  // If the declaration doesn't map directly to a location in a file, we
126  // can't find the comment.
127  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
128    return NULL;
129
130  // Find the comment that occurs just after this declaration.
131  ArrayRef<RawComment *>::iterator Comment;
132  {
133    // When searching for comments during parsing, the comment we are looking
134    // for is usually among the last two comments we parsed -- check them
135    // first.
136    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
137    BeforeThanCompare<RawComment> Compare(SourceMgr);
138    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
139    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
140    if (!Found && RawComments.size() >= 2) {
141      MaybeBeforeDecl--;
142      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
143    }
144
145    if (Found) {
146      Comment = MaybeBeforeDecl + 1;
147      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
148                                         &CommentAtDeclLoc, Compare));
149    } else {
150      // Slow path.
151      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
152                                 &CommentAtDeclLoc, Compare);
153    }
154  }
155
156  // Decompose the location for the declaration and find the beginning of the
157  // file buffer.
158  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
159
160  // First check whether we have a trailing comment.
161  if (Comment != RawComments.end() &&
162      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
163      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
164    std::pair<FileID, unsigned> CommentBeginDecomp
165      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
166    // Check that Doxygen trailing comment comes after the declaration, starts
167    // on the same line and in the same file as the declaration.
168    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
169        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
170          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
171                                     CommentBeginDecomp.second)) {
172      return *Comment;
173    }
174  }
175
176  // The comment just after the declaration was not a trailing comment.
177  // Let's look at the previous comment.
178  if (Comment == RawComments.begin())
179    return NULL;
180  --Comment;
181
182  // Check that we actually have a non-member Doxygen comment.
183  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
184    return NULL;
185
186  // Decompose the end of the comment.
187  std::pair<FileID, unsigned> CommentEndDecomp
188    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
189
190  // If the comment and the declaration aren't in the same file, then they
191  // aren't related.
192  if (DeclLocDecomp.first != CommentEndDecomp.first)
193    return NULL;
194
195  // Get the corresponding buffer.
196  bool Invalid = false;
197  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
198                                               &Invalid).data();
199  if (Invalid)
200    return NULL;
201
202  // Extract text between the comment and declaration.
203  StringRef Text(Buffer + CommentEndDecomp.second,
204                 DeclLocDecomp.second - CommentEndDecomp.second);
205
206  // There should be no other declarations or preprocessor directives between
207  // comment and declaration.
208  if (Text.find_first_of(",;{}#@") != StringRef::npos)
209    return NULL;
210
211  return *Comment;
212}
213
214namespace {
215/// If we have a 'templated' declaration for a template, adjust 'D' to
216/// refer to the actual template.
217/// If we have an implicit instantiation, adjust 'D' to refer to template.
218const Decl *adjustDeclToTemplate(const Decl *D) {
219  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
220    // Is this function declaration part of a function template?
221    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
222      return FTD;
223
224    // Nothing to do if function is not an implicit instantiation.
225    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
226      return D;
227
228    // Function is an implicit instantiation of a function template?
229    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
230      return FTD;
231
232    // Function is instantiated from a member definition of a class template?
233    if (const FunctionDecl *MemberDecl =
234            FD->getInstantiatedFromMemberFunction())
235      return MemberDecl;
236
237    return D;
238  }
239  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
240    // Static data member is instantiated from a member definition of a class
241    // template?
242    if (VD->isStaticDataMember())
243      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
244        return MemberDecl;
245
246    return D;
247  }
248  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
249    // Is this class declaration part of a class template?
250    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
251      return CTD;
252
253    // Class is an implicit instantiation of a class template or partial
254    // specialization?
255    if (const ClassTemplateSpecializationDecl *CTSD =
256            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
257      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
258        return D;
259      llvm::PointerUnion<ClassTemplateDecl *,
260                         ClassTemplatePartialSpecializationDecl *>
261          PU = CTSD->getSpecializedTemplateOrPartial();
262      return PU.is<ClassTemplateDecl*>() ?
263          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
264          static_cast<const Decl*>(
265              PU.get<ClassTemplatePartialSpecializationDecl *>());
266    }
267
268    // Class is instantiated from a member definition of a class template?
269    if (const MemberSpecializationInfo *Info =
270                   CRD->getMemberSpecializationInfo())
271      return Info->getInstantiatedFrom();
272
273    return D;
274  }
275  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
276    // Enum is instantiated from a member definition of a class template?
277    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
278      return MemberDecl;
279
280    return D;
281  }
282  // FIXME: Adjust alias templates?
283  return D;
284}
285} // unnamed namespace
286
287const RawComment *ASTContext::getRawCommentForAnyRedecl(
288                                                const Decl *D,
289                                                const Decl **OriginalDecl) const {
290  D = adjustDeclToTemplate(D);
291
292  // Check whether we have cached a comment for this declaration already.
293  {
294    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
295        RedeclComments.find(D);
296    if (Pos != RedeclComments.end()) {
297      const RawCommentAndCacheFlags &Raw = Pos->second;
298      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
299        if (OriginalDecl)
300          *OriginalDecl = Raw.getOriginalDecl();
301        return Raw.getRaw();
302      }
303    }
304  }
305
306  // Search for comments attached to declarations in the redeclaration chain.
307  const RawComment *RC = NULL;
308  const Decl *OriginalDeclForRC = NULL;
309  for (Decl::redecl_iterator I = D->redecls_begin(),
310                             E = D->redecls_end();
311       I != E; ++I) {
312    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
313        RedeclComments.find(*I);
314    if (Pos != RedeclComments.end()) {
315      const RawCommentAndCacheFlags &Raw = Pos->second;
316      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
317        RC = Raw.getRaw();
318        OriginalDeclForRC = Raw.getOriginalDecl();
319        break;
320      }
321    } else {
322      RC = getRawCommentForDeclNoCache(*I);
323      OriginalDeclForRC = *I;
324      RawCommentAndCacheFlags Raw;
325      if (RC) {
326        Raw.setRaw(RC);
327        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
328      } else
329        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
330      Raw.setOriginalDecl(*I);
331      RedeclComments[*I] = Raw;
332      if (RC)
333        break;
334    }
335  }
336
337  // If we found a comment, it should be a documentation comment.
338  assert(!RC || RC->isDocumentation());
339
340  if (OriginalDecl)
341    *OriginalDecl = OriginalDeclForRC;
342
343  // Update cache for every declaration in the redeclaration chain.
344  RawCommentAndCacheFlags Raw;
345  Raw.setRaw(RC);
346  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
347  Raw.setOriginalDecl(OriginalDeclForRC);
348
349  for (Decl::redecl_iterator I = D->redecls_begin(),
350                             E = D->redecls_end();
351       I != E; ++I) {
352    RawCommentAndCacheFlags &R = RedeclComments[*I];
353    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
354      R = Raw;
355  }
356
357  return RC;
358}
359
360static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
361                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
362  const DeclContext *DC = ObjCMethod->getDeclContext();
363  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
364    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
365    if (!ID)
366      return;
367    // Add redeclared method here.
368    for (ObjCInterfaceDecl::known_extensions_iterator
369           Ext = ID->known_extensions_begin(),
370           ExtEnd = ID->known_extensions_end();
371         Ext != ExtEnd; ++Ext) {
372      if (ObjCMethodDecl *RedeclaredMethod =
373            Ext->getMethod(ObjCMethod->getSelector(),
374                                  ObjCMethod->isInstanceMethod()))
375        Redeclared.push_back(RedeclaredMethod);
376    }
377  }
378}
379
380comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
381                                                    const Decl *D) const {
382  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
383  ThisDeclInfo->CommentDecl = D;
384  ThisDeclInfo->IsFilled = false;
385  ThisDeclInfo->fill();
386  ThisDeclInfo->CommentDecl = FC->getDecl();
387  comments::FullComment *CFC =
388    new (*this) comments::FullComment(FC->getBlocks(),
389                                      ThisDeclInfo);
390  return CFC;
391
392}
393
394comments::FullComment *ASTContext::getCommentForDecl(
395                                              const Decl *D,
396                                              const Preprocessor *PP) const {
397  D = adjustDeclToTemplate(D);
398
399  const Decl *Canonical = D->getCanonicalDecl();
400  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
401      ParsedComments.find(Canonical);
402
403  if (Pos != ParsedComments.end()) {
404    if (Canonical != D) {
405      comments::FullComment *FC = Pos->second;
406      comments::FullComment *CFC = cloneFullComment(FC, D);
407      return CFC;
408    }
409    return Pos->second;
410  }
411
412  const Decl *OriginalDecl;
413
414  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
415  if (!RC) {
416    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
417      SmallVector<const NamedDecl*, 8> Overridden;
418      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
419      if (OMD && OMD->isPropertyAccessor()) {
420        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) {
421          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) {
422            comments::FullComment *CFC = cloneFullComment(FC, D);
423            return CFC;
424          }
425        }
426      }
427      if (OMD)
428        addRedeclaredMethods(OMD, Overridden);
429      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
430      for (unsigned i = 0, e = Overridden.size(); i < e; i++) {
431        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) {
432          comments::FullComment *CFC = cloneFullComment(FC, D);
433          return CFC;
434        }
435      }
436    }
437    else if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
438      QualType QT = TD->getUnderlyingType();
439      if (const EnumType *ET = QT->getAs<EnumType>()) {
440        if (const EnumDecl *ED = ET->getDecl())
441          if (comments::FullComment *FC = getCommentForDecl(ED, PP)) {
442            comments::FullComment *CFC = cloneFullComment(FC, D);
443            return CFC;
444          }
445      }
446    }
447    return NULL;
448  }
449
450  // If the RawComment was attached to other redeclaration of this Decl, we
451  // should parse the comment in context of that other Decl.  This is important
452  // because comments can contain references to parameter names which can be
453  // different across redeclarations.
454  if (D != OriginalDecl)
455    return getCommentForDecl(OriginalDecl, PP);
456
457  comments::FullComment *FC = RC->parse(*this, PP, D);
458  ParsedComments[Canonical] = FC;
459  return FC;
460}
461
462void
463ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
464                                               TemplateTemplateParmDecl *Parm) {
465  ID.AddInteger(Parm->getDepth());
466  ID.AddInteger(Parm->getPosition());
467  ID.AddBoolean(Parm->isParameterPack());
468
469  TemplateParameterList *Params = Parm->getTemplateParameters();
470  ID.AddInteger(Params->size());
471  for (TemplateParameterList::const_iterator P = Params->begin(),
472                                          PEnd = Params->end();
473       P != PEnd; ++P) {
474    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
475      ID.AddInteger(0);
476      ID.AddBoolean(TTP->isParameterPack());
477      continue;
478    }
479
480    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
481      ID.AddInteger(1);
482      ID.AddBoolean(NTTP->isParameterPack());
483      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
484      if (NTTP->isExpandedParameterPack()) {
485        ID.AddBoolean(true);
486        ID.AddInteger(NTTP->getNumExpansionTypes());
487        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
488          QualType T = NTTP->getExpansionType(I);
489          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
490        }
491      } else
492        ID.AddBoolean(false);
493      continue;
494    }
495
496    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
497    ID.AddInteger(2);
498    Profile(ID, TTP);
499  }
500}
501
502TemplateTemplateParmDecl *
503ASTContext::getCanonicalTemplateTemplateParmDecl(
504                                          TemplateTemplateParmDecl *TTP) const {
505  // Check if we already have a canonical template template parameter.
506  llvm::FoldingSetNodeID ID;
507  CanonicalTemplateTemplateParm::Profile(ID, TTP);
508  void *InsertPos = 0;
509  CanonicalTemplateTemplateParm *Canonical
510    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
511  if (Canonical)
512    return Canonical->getParam();
513
514  // Build a canonical template parameter list.
515  TemplateParameterList *Params = TTP->getTemplateParameters();
516  SmallVector<NamedDecl *, 4> CanonParams;
517  CanonParams.reserve(Params->size());
518  for (TemplateParameterList::const_iterator P = Params->begin(),
519                                          PEnd = Params->end();
520       P != PEnd; ++P) {
521    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
522      CanonParams.push_back(
523                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
524                                               SourceLocation(),
525                                               SourceLocation(),
526                                               TTP->getDepth(),
527                                               TTP->getIndex(), 0, false,
528                                               TTP->isParameterPack()));
529    else if (NonTypeTemplateParmDecl *NTTP
530             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
531      QualType T = getCanonicalType(NTTP->getType());
532      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
533      NonTypeTemplateParmDecl *Param;
534      if (NTTP->isExpandedParameterPack()) {
535        SmallVector<QualType, 2> ExpandedTypes;
536        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
537        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
538          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
539          ExpandedTInfos.push_back(
540                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
541        }
542
543        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
544                                                SourceLocation(),
545                                                SourceLocation(),
546                                                NTTP->getDepth(),
547                                                NTTP->getPosition(), 0,
548                                                T,
549                                                TInfo,
550                                                ExpandedTypes.data(),
551                                                ExpandedTypes.size(),
552                                                ExpandedTInfos.data());
553      } else {
554        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
555                                                SourceLocation(),
556                                                SourceLocation(),
557                                                NTTP->getDepth(),
558                                                NTTP->getPosition(), 0,
559                                                T,
560                                                NTTP->isParameterPack(),
561                                                TInfo);
562      }
563      CanonParams.push_back(Param);
564
565    } else
566      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
567                                           cast<TemplateTemplateParmDecl>(*P)));
568  }
569
570  TemplateTemplateParmDecl *CanonTTP
571    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
572                                       SourceLocation(), TTP->getDepth(),
573                                       TTP->getPosition(),
574                                       TTP->isParameterPack(),
575                                       0,
576                         TemplateParameterList::Create(*this, SourceLocation(),
577                                                       SourceLocation(),
578                                                       CanonParams.data(),
579                                                       CanonParams.size(),
580                                                       SourceLocation()));
581
582  // Get the new insert position for the node we care about.
583  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
584  assert(Canonical == 0 && "Shouldn't be in the map!");
585  (void)Canonical;
586
587  // Create the canonical template template parameter entry.
588  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
589  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
590  return CanonTTP;
591}
592
593CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
594  if (!LangOpts.CPlusPlus) return 0;
595
596  switch (T.getCXXABI().getKind()) {
597  case TargetCXXABI::GenericARM:
598  case TargetCXXABI::iOS:
599    return CreateARMCXXABI(*this);
600  case TargetCXXABI::GenericItanium:
601    return CreateItaniumCXXABI(*this);
602  case TargetCXXABI::Microsoft:
603    return CreateMicrosoftCXXABI(*this);
604  }
605  llvm_unreachable("Invalid CXXABI type!");
606}
607
608static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
609                                             const LangOptions &LOpts) {
610  if (LOpts.FakeAddressSpaceMap) {
611    // The fake address space map must have a distinct entry for each
612    // language-specific address space.
613    static const unsigned FakeAddrSpaceMap[] = {
614      1, // opencl_global
615      2, // opencl_local
616      3, // opencl_constant
617      4, // cuda_device
618      5, // cuda_constant
619      6  // cuda_shared
620    };
621    return &FakeAddrSpaceMap;
622  } else {
623    return &T.getAddressSpaceMap();
624  }
625}
626
627ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
628                       const TargetInfo *t,
629                       IdentifierTable &idents, SelectorTable &sels,
630                       Builtin::Context &builtins,
631                       unsigned size_reserve,
632                       bool DelayInitialization)
633  : FunctionProtoTypes(this_()),
634    TemplateSpecializationTypes(this_()),
635    DependentTemplateSpecializationTypes(this_()),
636    SubstTemplateTemplateParmPacks(this_()),
637    GlobalNestedNameSpecifier(0),
638    Int128Decl(0), UInt128Decl(0),
639    BuiltinVaListDecl(0),
640    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
641    BOOLDecl(0),
642    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
643    FILEDecl(0),
644    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
645    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
646    cudaConfigureCallDecl(0),
647    NullTypeSourceInfo(QualType()),
648    FirstLocalImport(), LastLocalImport(),
649    SourceMgr(SM), LangOpts(LOpts),
650    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
651    Idents(idents), Selectors(sels),
652    BuiltinInfo(builtins),
653    DeclarationNames(*this),
654    ExternalSource(0), Listener(0),
655    Comments(SM), CommentsLoaded(false),
656    CommentCommandTraits(BumpAlloc),
657    LastSDM(0, 0),
658    UniqueBlockByRefTypeID(0)
659{
660  if (size_reserve > 0) Types.reserve(size_reserve);
661  TUDecl = TranslationUnitDecl::Create(*this);
662
663  if (!DelayInitialization) {
664    assert(t && "No target supplied for ASTContext initialization");
665    InitBuiltinTypes(*t);
666  }
667}
668
669ASTContext::~ASTContext() {
670  // Release the DenseMaps associated with DeclContext objects.
671  // FIXME: Is this the ideal solution?
672  ReleaseDeclContextMaps();
673
674  // Call all of the deallocation functions.
675  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
676    Deallocations[I].first(Deallocations[I].second);
677
678  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
679  // because they can contain DenseMaps.
680  for (llvm::DenseMap<const ObjCContainerDecl*,
681       const ASTRecordLayout*>::iterator
682       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
683    // Increment in loop to prevent using deallocated memory.
684    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
685      R->Destroy(*this);
686
687  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
688       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
689    // Increment in loop to prevent using deallocated memory.
690    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
691      R->Destroy(*this);
692  }
693
694  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
695                                                    AEnd = DeclAttrs.end();
696       A != AEnd; ++A)
697    A->second->~AttrVec();
698}
699
700void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
701  Deallocations.push_back(std::make_pair(Callback, Data));
702}
703
704void
705ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
706  ExternalSource.reset(Source.take());
707}
708
709void ASTContext::PrintStats() const {
710  llvm::errs() << "\n*** AST Context Stats:\n";
711  llvm::errs() << "  " << Types.size() << " types total.\n";
712
713  unsigned counts[] = {
714#define TYPE(Name, Parent) 0,
715#define ABSTRACT_TYPE(Name, Parent)
716#include "clang/AST/TypeNodes.def"
717    0 // Extra
718  };
719
720  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
721    Type *T = Types[i];
722    counts[(unsigned)T->getTypeClass()]++;
723  }
724
725  unsigned Idx = 0;
726  unsigned TotalBytes = 0;
727#define TYPE(Name, Parent)                                              \
728  if (counts[Idx])                                                      \
729    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
730                 << " types\n";                                         \
731  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
732  ++Idx;
733#define ABSTRACT_TYPE(Name, Parent)
734#include "clang/AST/TypeNodes.def"
735
736  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
737
738  // Implicit special member functions.
739  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
740               << NumImplicitDefaultConstructors
741               << " implicit default constructors created\n";
742  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
743               << NumImplicitCopyConstructors
744               << " implicit copy constructors created\n";
745  if (getLangOpts().CPlusPlus)
746    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
747                 << NumImplicitMoveConstructors
748                 << " implicit move constructors created\n";
749  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
750               << NumImplicitCopyAssignmentOperators
751               << " implicit copy assignment operators created\n";
752  if (getLangOpts().CPlusPlus)
753    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
754                 << NumImplicitMoveAssignmentOperators
755                 << " implicit move assignment operators created\n";
756  llvm::errs() << NumImplicitDestructorsDeclared << "/"
757               << NumImplicitDestructors
758               << " implicit destructors created\n";
759
760  if (ExternalSource.get()) {
761    llvm::errs() << "\n";
762    ExternalSource->PrintStats();
763  }
764
765  BumpAlloc.PrintStats();
766}
767
768TypedefDecl *ASTContext::getInt128Decl() const {
769  if (!Int128Decl) {
770    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
771    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
772                                     getTranslationUnitDecl(),
773                                     SourceLocation(),
774                                     SourceLocation(),
775                                     &Idents.get("__int128_t"),
776                                     TInfo);
777  }
778
779  return Int128Decl;
780}
781
782TypedefDecl *ASTContext::getUInt128Decl() const {
783  if (!UInt128Decl) {
784    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
785    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
786                                     getTranslationUnitDecl(),
787                                     SourceLocation(),
788                                     SourceLocation(),
789                                     &Idents.get("__uint128_t"),
790                                     TInfo);
791  }
792
793  return UInt128Decl;
794}
795
796void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
797  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
798  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
799  Types.push_back(Ty);
800}
801
802void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
803  assert((!this->Target || this->Target == &Target) &&
804         "Incorrect target reinitialization");
805  assert(VoidTy.isNull() && "Context reinitialized?");
806
807  this->Target = &Target;
808
809  ABI.reset(createCXXABI(Target));
810  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
811
812  // C99 6.2.5p19.
813  InitBuiltinType(VoidTy,              BuiltinType::Void);
814
815  // C99 6.2.5p2.
816  InitBuiltinType(BoolTy,              BuiltinType::Bool);
817  // C99 6.2.5p3.
818  if (LangOpts.CharIsSigned)
819    InitBuiltinType(CharTy,            BuiltinType::Char_S);
820  else
821    InitBuiltinType(CharTy,            BuiltinType::Char_U);
822  // C99 6.2.5p4.
823  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
824  InitBuiltinType(ShortTy,             BuiltinType::Short);
825  InitBuiltinType(IntTy,               BuiltinType::Int);
826  InitBuiltinType(LongTy,              BuiltinType::Long);
827  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
828
829  // C99 6.2.5p6.
830  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
831  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
832  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
833  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
834  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
835
836  // C99 6.2.5p10.
837  InitBuiltinType(FloatTy,             BuiltinType::Float);
838  InitBuiltinType(DoubleTy,            BuiltinType::Double);
839  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
840
841  // GNU extension, 128-bit integers.
842  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
843  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
844
845  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
846    if (TargetInfo::isTypeSigned(Target.getWCharType()))
847      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
848    else  // -fshort-wchar makes wchar_t be unsigned.
849      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
850  } else // C99 (or C++ using -fno-wchar)
851    WCharTy = getFromTargetType(Target.getWCharType());
852
853  WIntTy = getFromTargetType(Target.getWIntType());
854
855  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
856    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
857  else // C99
858    Char16Ty = getFromTargetType(Target.getChar16Type());
859
860  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
861    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
862  else // C99
863    Char32Ty = getFromTargetType(Target.getChar32Type());
864
865  // Placeholder type for type-dependent expressions whose type is
866  // completely unknown. No code should ever check a type against
867  // DependentTy and users should never see it; however, it is here to
868  // help diagnose failures to properly check for type-dependent
869  // expressions.
870  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
871
872  // Placeholder type for functions.
873  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
874
875  // Placeholder type for bound members.
876  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
877
878  // Placeholder type for pseudo-objects.
879  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
880
881  // "any" type; useful for debugger-like clients.
882  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
883
884  // Placeholder type for unbridged ARC casts.
885  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
886
887  // Placeholder type for builtin functions.
888  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
889
890  // C99 6.2.5p11.
891  FloatComplexTy      = getComplexType(FloatTy);
892  DoubleComplexTy     = getComplexType(DoubleTy);
893  LongDoubleComplexTy = getComplexType(LongDoubleTy);
894
895  // Builtin types for 'id', 'Class', and 'SEL'.
896  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
897  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
898  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
899
900  if (LangOpts.OpenCL) {
901    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
902    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
903    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
904    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
905    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
906    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
907
908    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
909  }
910
911  // Builtin type for __objc_yes and __objc_no
912  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
913                       SignedCharTy : BoolTy);
914
915  ObjCConstantStringType = QualType();
916
917  ObjCSuperType = QualType();
918
919  // void * type
920  VoidPtrTy = getPointerType(VoidTy);
921
922  // nullptr type (C++0x 2.14.7)
923  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
924
925  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
926  InitBuiltinType(HalfTy, BuiltinType::Half);
927
928  // Builtin type used to help define __builtin_va_list.
929  VaListTagTy = QualType();
930}
931
932DiagnosticsEngine &ASTContext::getDiagnostics() const {
933  return SourceMgr.getDiagnostics();
934}
935
936AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
937  AttrVec *&Result = DeclAttrs[D];
938  if (!Result) {
939    void *Mem = Allocate(sizeof(AttrVec));
940    Result = new (Mem) AttrVec;
941  }
942
943  return *Result;
944}
945
946/// \brief Erase the attributes corresponding to the given declaration.
947void ASTContext::eraseDeclAttrs(const Decl *D) {
948  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
949  if (Pos != DeclAttrs.end()) {
950    Pos->second->~AttrVec();
951    DeclAttrs.erase(Pos);
952  }
953}
954
955MemberSpecializationInfo *
956ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
957  assert(Var->isStaticDataMember() && "Not a static data member");
958  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
959    = InstantiatedFromStaticDataMember.find(Var);
960  if (Pos == InstantiatedFromStaticDataMember.end())
961    return 0;
962
963  return Pos->second;
964}
965
966void
967ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
968                                                TemplateSpecializationKind TSK,
969                                          SourceLocation PointOfInstantiation) {
970  assert(Inst->isStaticDataMember() && "Not a static data member");
971  assert(Tmpl->isStaticDataMember() && "Not a static data member");
972  assert(!InstantiatedFromStaticDataMember[Inst] &&
973         "Already noted what static data member was instantiated from");
974  InstantiatedFromStaticDataMember[Inst]
975    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
976}
977
978FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
979                                                     const FunctionDecl *FD){
980  assert(FD && "Specialization is 0");
981  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
982    = ClassScopeSpecializationPattern.find(FD);
983  if (Pos == ClassScopeSpecializationPattern.end())
984    return 0;
985
986  return Pos->second;
987}
988
989void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
990                                        FunctionDecl *Pattern) {
991  assert(FD && "Specialization is 0");
992  assert(Pattern && "Class scope specialization pattern is 0");
993  ClassScopeSpecializationPattern[FD] = Pattern;
994}
995
996NamedDecl *
997ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
998  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
999    = InstantiatedFromUsingDecl.find(UUD);
1000  if (Pos == InstantiatedFromUsingDecl.end())
1001    return 0;
1002
1003  return Pos->second;
1004}
1005
1006void
1007ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1008  assert((isa<UsingDecl>(Pattern) ||
1009          isa<UnresolvedUsingValueDecl>(Pattern) ||
1010          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1011         "pattern decl is not a using decl");
1012  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1013  InstantiatedFromUsingDecl[Inst] = Pattern;
1014}
1015
1016UsingShadowDecl *
1017ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1018  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1019    = InstantiatedFromUsingShadowDecl.find(Inst);
1020  if (Pos == InstantiatedFromUsingShadowDecl.end())
1021    return 0;
1022
1023  return Pos->second;
1024}
1025
1026void
1027ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1028                                               UsingShadowDecl *Pattern) {
1029  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1030  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1031}
1032
1033FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1034  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1035    = InstantiatedFromUnnamedFieldDecl.find(Field);
1036  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1037    return 0;
1038
1039  return Pos->second;
1040}
1041
1042void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1043                                                     FieldDecl *Tmpl) {
1044  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1045  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1046  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1047         "Already noted what unnamed field was instantiated from");
1048
1049  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1050}
1051
1052bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1053                                    const FieldDecl *LastFD) const {
1054  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1055          FD->getBitWidthValue(*this) == 0);
1056}
1057
1058bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1059                                             const FieldDecl *LastFD) const {
1060  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1061          FD->getBitWidthValue(*this) == 0 &&
1062          LastFD->getBitWidthValue(*this) != 0);
1063}
1064
1065bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1066                                         const FieldDecl *LastFD) const {
1067  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1068          FD->getBitWidthValue(*this) &&
1069          LastFD->getBitWidthValue(*this));
1070}
1071
1072bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1073                                         const FieldDecl *LastFD) const {
1074  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1075          LastFD->getBitWidthValue(*this));
1076}
1077
1078bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1079                                             const FieldDecl *LastFD) const {
1080  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1081          FD->getBitWidthValue(*this));
1082}
1083
1084ASTContext::overridden_cxx_method_iterator
1085ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1086  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1087    = OverriddenMethods.find(Method->getCanonicalDecl());
1088  if (Pos == OverriddenMethods.end())
1089    return 0;
1090
1091  return Pos->second.begin();
1092}
1093
1094ASTContext::overridden_cxx_method_iterator
1095ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1096  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1097    = OverriddenMethods.find(Method->getCanonicalDecl());
1098  if (Pos == OverriddenMethods.end())
1099    return 0;
1100
1101  return Pos->second.end();
1102}
1103
1104unsigned
1105ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1106  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1107    = OverriddenMethods.find(Method->getCanonicalDecl());
1108  if (Pos == OverriddenMethods.end())
1109    return 0;
1110
1111  return Pos->second.size();
1112}
1113
1114void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1115                                     const CXXMethodDecl *Overridden) {
1116  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1117  OverriddenMethods[Method].push_back(Overridden);
1118}
1119
1120void ASTContext::getOverriddenMethods(
1121                      const NamedDecl *D,
1122                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1123  assert(D);
1124
1125  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1126    Overridden.append(CXXMethod->begin_overridden_methods(),
1127                      CXXMethod->end_overridden_methods());
1128    return;
1129  }
1130
1131  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1132  if (!Method)
1133    return;
1134
1135  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1136  Method->getOverriddenMethods(OverDecls);
1137  Overridden.append(OverDecls.begin(), OverDecls.end());
1138}
1139
1140void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1141  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1142  assert(!Import->isFromASTFile() && "Non-local import declaration");
1143  if (!FirstLocalImport) {
1144    FirstLocalImport = Import;
1145    LastLocalImport = Import;
1146    return;
1147  }
1148
1149  LastLocalImport->NextLocalImport = Import;
1150  LastLocalImport = Import;
1151}
1152
1153//===----------------------------------------------------------------------===//
1154//                         Type Sizing and Analysis
1155//===----------------------------------------------------------------------===//
1156
1157/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1158/// scalar floating point type.
1159const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1160  const BuiltinType *BT = T->getAs<BuiltinType>();
1161  assert(BT && "Not a floating point type!");
1162  switch (BT->getKind()) {
1163  default: llvm_unreachable("Not a floating point type!");
1164  case BuiltinType::Half:       return Target->getHalfFormat();
1165  case BuiltinType::Float:      return Target->getFloatFormat();
1166  case BuiltinType::Double:     return Target->getDoubleFormat();
1167  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1168  }
1169}
1170
1171/// getDeclAlign - Return a conservative estimate of the alignment of the
1172/// specified decl.  Note that bitfields do not have a valid alignment, so
1173/// this method will assert on them.
1174/// If @p RefAsPointee, references are treated like their underlying type
1175/// (for alignof), else they're treated like pointers (for CodeGen).
1176CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1177  unsigned Align = Target->getCharWidth();
1178
1179  bool UseAlignAttrOnly = false;
1180  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1181    Align = AlignFromAttr;
1182
1183    // __attribute__((aligned)) can increase or decrease alignment
1184    // *except* on a struct or struct member, where it only increases
1185    // alignment unless 'packed' is also specified.
1186    //
1187    // It is an error for alignas to decrease alignment, so we can
1188    // ignore that possibility;  Sema should diagnose it.
1189    if (isa<FieldDecl>(D)) {
1190      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1191        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1192    } else {
1193      UseAlignAttrOnly = true;
1194    }
1195  }
1196  else if (isa<FieldDecl>(D))
1197      UseAlignAttrOnly =
1198        D->hasAttr<PackedAttr>() ||
1199        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1200
1201  // If we're using the align attribute only, just ignore everything
1202  // else about the declaration and its type.
1203  if (UseAlignAttrOnly) {
1204    // do nothing
1205
1206  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1207    QualType T = VD->getType();
1208    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1209      if (RefAsPointee)
1210        T = RT->getPointeeType();
1211      else
1212        T = getPointerType(RT->getPointeeType());
1213    }
1214    if (!T->isIncompleteType() && !T->isFunctionType()) {
1215      // Adjust alignments of declarations with array type by the
1216      // large-array alignment on the target.
1217      unsigned MinWidth = Target->getLargeArrayMinWidth();
1218      const ArrayType *arrayType;
1219      if (MinWidth && (arrayType = getAsArrayType(T))) {
1220        if (isa<VariableArrayType>(arrayType))
1221          Align = std::max(Align, Target->getLargeArrayAlign());
1222        else if (isa<ConstantArrayType>(arrayType) &&
1223                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1224          Align = std::max(Align, Target->getLargeArrayAlign());
1225
1226        // Walk through any array types while we're at it.
1227        T = getBaseElementType(arrayType);
1228      }
1229      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1230    }
1231
1232    // Fields can be subject to extra alignment constraints, like if
1233    // the field is packed, the struct is packed, or the struct has a
1234    // a max-field-alignment constraint (#pragma pack).  So calculate
1235    // the actual alignment of the field within the struct, and then
1236    // (as we're expected to) constrain that by the alignment of the type.
1237    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1238      // So calculate the alignment of the field.
1239      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1240
1241      // Start with the record's overall alignment.
1242      unsigned fieldAlign = toBits(layout.getAlignment());
1243
1244      // Use the GCD of that and the offset within the record.
1245      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1246      if (offset > 0) {
1247        // Alignment is always a power of 2, so the GCD will be a power of 2,
1248        // which means we get to do this crazy thing instead of Euclid's.
1249        uint64_t lowBitOfOffset = offset & (~offset + 1);
1250        if (lowBitOfOffset < fieldAlign)
1251          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1252      }
1253
1254      Align = std::min(Align, fieldAlign);
1255    }
1256  }
1257
1258  return toCharUnitsFromBits(Align);
1259}
1260
1261// getTypeInfoDataSizeInChars - Return the size of a type, in
1262// chars. If the type is a record, its data size is returned.  This is
1263// the size of the memcpy that's performed when assigning this type
1264// using a trivial copy/move assignment operator.
1265std::pair<CharUnits, CharUnits>
1266ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1267  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1268
1269  // In C++, objects can sometimes be allocated into the tail padding
1270  // of a base-class subobject.  We decide whether that's possible
1271  // during class layout, so here we can just trust the layout results.
1272  if (getLangOpts().CPlusPlus) {
1273    if (const RecordType *RT = T->getAs<RecordType>()) {
1274      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1275      sizeAndAlign.first = layout.getDataSize();
1276    }
1277  }
1278
1279  return sizeAndAlign;
1280}
1281
1282std::pair<CharUnits, CharUnits>
1283ASTContext::getTypeInfoInChars(const Type *T) const {
1284  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1285  return std::make_pair(toCharUnitsFromBits(Info.first),
1286                        toCharUnitsFromBits(Info.second));
1287}
1288
1289std::pair<CharUnits, CharUnits>
1290ASTContext::getTypeInfoInChars(QualType T) const {
1291  return getTypeInfoInChars(T.getTypePtr());
1292}
1293
1294std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1295  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1296  if (it != MemoizedTypeInfo.end())
1297    return it->second;
1298
1299  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1300  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1301  return Info;
1302}
1303
1304/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1305/// method does not work on incomplete types.
1306///
1307/// FIXME: Pointers into different addr spaces could have different sizes and
1308/// alignment requirements: getPointerInfo should take an AddrSpace, this
1309/// should take a QualType, &c.
1310std::pair<uint64_t, unsigned>
1311ASTContext::getTypeInfoImpl(const Type *T) const {
1312  uint64_t Width=0;
1313  unsigned Align=8;
1314  switch (T->getTypeClass()) {
1315#define TYPE(Class, Base)
1316#define ABSTRACT_TYPE(Class, Base)
1317#define NON_CANONICAL_TYPE(Class, Base)
1318#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1319#include "clang/AST/TypeNodes.def"
1320    llvm_unreachable("Should not see dependent types");
1321
1322  case Type::FunctionNoProto:
1323  case Type::FunctionProto:
1324    // GCC extension: alignof(function) = 32 bits
1325    Width = 0;
1326    Align = 32;
1327    break;
1328
1329  case Type::IncompleteArray:
1330  case Type::VariableArray:
1331    Width = 0;
1332    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1333    break;
1334
1335  case Type::ConstantArray: {
1336    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1337
1338    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1339    uint64_t Size = CAT->getSize().getZExtValue();
1340    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1341           "Overflow in array type bit size evaluation");
1342    Width = EltInfo.first*Size;
1343    Align = EltInfo.second;
1344    Width = llvm::RoundUpToAlignment(Width, Align);
1345    break;
1346  }
1347  case Type::ExtVector:
1348  case Type::Vector: {
1349    const VectorType *VT = cast<VectorType>(T);
1350    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1351    Width = EltInfo.first*VT->getNumElements();
1352    Align = Width;
1353    // If the alignment is not a power of 2, round up to the next power of 2.
1354    // This happens for non-power-of-2 length vectors.
1355    if (Align & (Align-1)) {
1356      Align = llvm::NextPowerOf2(Align);
1357      Width = llvm::RoundUpToAlignment(Width, Align);
1358    }
1359    // Adjust the alignment based on the target max.
1360    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1361    if (TargetVectorAlign && TargetVectorAlign < Align)
1362      Align = TargetVectorAlign;
1363    break;
1364  }
1365
1366  case Type::Builtin:
1367    switch (cast<BuiltinType>(T)->getKind()) {
1368    default: llvm_unreachable("Unknown builtin type!");
1369    case BuiltinType::Void:
1370      // GCC extension: alignof(void) = 8 bits.
1371      Width = 0;
1372      Align = 8;
1373      break;
1374
1375    case BuiltinType::Bool:
1376      Width = Target->getBoolWidth();
1377      Align = Target->getBoolAlign();
1378      break;
1379    case BuiltinType::Char_S:
1380    case BuiltinType::Char_U:
1381    case BuiltinType::UChar:
1382    case BuiltinType::SChar:
1383      Width = Target->getCharWidth();
1384      Align = Target->getCharAlign();
1385      break;
1386    case BuiltinType::WChar_S:
1387    case BuiltinType::WChar_U:
1388      Width = Target->getWCharWidth();
1389      Align = Target->getWCharAlign();
1390      break;
1391    case BuiltinType::Char16:
1392      Width = Target->getChar16Width();
1393      Align = Target->getChar16Align();
1394      break;
1395    case BuiltinType::Char32:
1396      Width = Target->getChar32Width();
1397      Align = Target->getChar32Align();
1398      break;
1399    case BuiltinType::UShort:
1400    case BuiltinType::Short:
1401      Width = Target->getShortWidth();
1402      Align = Target->getShortAlign();
1403      break;
1404    case BuiltinType::UInt:
1405    case BuiltinType::Int:
1406      Width = Target->getIntWidth();
1407      Align = Target->getIntAlign();
1408      break;
1409    case BuiltinType::ULong:
1410    case BuiltinType::Long:
1411      Width = Target->getLongWidth();
1412      Align = Target->getLongAlign();
1413      break;
1414    case BuiltinType::ULongLong:
1415    case BuiltinType::LongLong:
1416      Width = Target->getLongLongWidth();
1417      Align = Target->getLongLongAlign();
1418      break;
1419    case BuiltinType::Int128:
1420    case BuiltinType::UInt128:
1421      Width = 128;
1422      Align = 128; // int128_t is 128-bit aligned on all targets.
1423      break;
1424    case BuiltinType::Half:
1425      Width = Target->getHalfWidth();
1426      Align = Target->getHalfAlign();
1427      break;
1428    case BuiltinType::Float:
1429      Width = Target->getFloatWidth();
1430      Align = Target->getFloatAlign();
1431      break;
1432    case BuiltinType::Double:
1433      Width = Target->getDoubleWidth();
1434      Align = Target->getDoubleAlign();
1435      break;
1436    case BuiltinType::LongDouble:
1437      Width = Target->getLongDoubleWidth();
1438      Align = Target->getLongDoubleAlign();
1439      break;
1440    case BuiltinType::NullPtr:
1441      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1442      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1443      break;
1444    case BuiltinType::ObjCId:
1445    case BuiltinType::ObjCClass:
1446    case BuiltinType::ObjCSel:
1447      Width = Target->getPointerWidth(0);
1448      Align = Target->getPointerAlign(0);
1449      break;
1450    case BuiltinType::OCLEvent:
1451    case BuiltinType::OCLImage1d:
1452    case BuiltinType::OCLImage1dArray:
1453    case BuiltinType::OCLImage1dBuffer:
1454    case BuiltinType::OCLImage2d:
1455    case BuiltinType::OCLImage2dArray:
1456    case BuiltinType::OCLImage3d:
1457      // Currently these types are pointers to opaque types.
1458      Width = Target->getPointerWidth(0);
1459      Align = Target->getPointerAlign(0);
1460      break;
1461    }
1462    break;
1463  case Type::ObjCObjectPointer:
1464    Width = Target->getPointerWidth(0);
1465    Align = Target->getPointerAlign(0);
1466    break;
1467  case Type::BlockPointer: {
1468    unsigned AS = getTargetAddressSpace(
1469        cast<BlockPointerType>(T)->getPointeeType());
1470    Width = Target->getPointerWidth(AS);
1471    Align = Target->getPointerAlign(AS);
1472    break;
1473  }
1474  case Type::LValueReference:
1475  case Type::RValueReference: {
1476    // alignof and sizeof should never enter this code path here, so we go
1477    // the pointer route.
1478    unsigned AS = getTargetAddressSpace(
1479        cast<ReferenceType>(T)->getPointeeType());
1480    Width = Target->getPointerWidth(AS);
1481    Align = Target->getPointerAlign(AS);
1482    break;
1483  }
1484  case Type::Pointer: {
1485    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1486    Width = Target->getPointerWidth(AS);
1487    Align = Target->getPointerAlign(AS);
1488    break;
1489  }
1490  case Type::MemberPointer: {
1491    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1492    std::pair<uint64_t, unsigned> PtrDiffInfo =
1493      getTypeInfo(getPointerDiffType());
1494    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1495    Align = PtrDiffInfo.second;
1496    break;
1497  }
1498  case Type::Complex: {
1499    // Complex types have the same alignment as their elements, but twice the
1500    // size.
1501    std::pair<uint64_t, unsigned> EltInfo =
1502      getTypeInfo(cast<ComplexType>(T)->getElementType());
1503    Width = EltInfo.first*2;
1504    Align = EltInfo.second;
1505    break;
1506  }
1507  case Type::ObjCObject:
1508    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1509  case Type::ObjCInterface: {
1510    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1511    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1512    Width = toBits(Layout.getSize());
1513    Align = toBits(Layout.getAlignment());
1514    break;
1515  }
1516  case Type::Record:
1517  case Type::Enum: {
1518    const TagType *TT = cast<TagType>(T);
1519
1520    if (TT->getDecl()->isInvalidDecl()) {
1521      Width = 8;
1522      Align = 8;
1523      break;
1524    }
1525
1526    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1527      return getTypeInfo(ET->getDecl()->getIntegerType());
1528
1529    const RecordType *RT = cast<RecordType>(TT);
1530    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1531    Width = toBits(Layout.getSize());
1532    Align = toBits(Layout.getAlignment());
1533    break;
1534  }
1535
1536  case Type::SubstTemplateTypeParm:
1537    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1538                       getReplacementType().getTypePtr());
1539
1540  case Type::Auto: {
1541    const AutoType *A = cast<AutoType>(T);
1542    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1543    return getTypeInfo(A->getDeducedType().getTypePtr());
1544  }
1545
1546  case Type::Paren:
1547    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1548
1549  case Type::Typedef: {
1550    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1551    std::pair<uint64_t, unsigned> Info
1552      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1553    // If the typedef has an aligned attribute on it, it overrides any computed
1554    // alignment we have.  This violates the GCC documentation (which says that
1555    // attribute(aligned) can only round up) but matches its implementation.
1556    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1557      Align = AttrAlign;
1558    else
1559      Align = Info.second;
1560    Width = Info.first;
1561    break;
1562  }
1563
1564  case Type::TypeOfExpr:
1565    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1566                         .getTypePtr());
1567
1568  case Type::TypeOf:
1569    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1570
1571  case Type::Decltype:
1572    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1573                        .getTypePtr());
1574
1575  case Type::UnaryTransform:
1576    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1577
1578  case Type::Elaborated:
1579    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1580
1581  case Type::Attributed:
1582    return getTypeInfo(
1583                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1584
1585  case Type::TemplateSpecialization: {
1586    assert(getCanonicalType(T) != T &&
1587           "Cannot request the size of a dependent type");
1588    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1589    // A type alias template specialization may refer to a typedef with the
1590    // aligned attribute on it.
1591    if (TST->isTypeAlias())
1592      return getTypeInfo(TST->getAliasedType().getTypePtr());
1593    else
1594      return getTypeInfo(getCanonicalType(T));
1595  }
1596
1597  case Type::Atomic: {
1598    std::pair<uint64_t, unsigned> Info
1599      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1600    Width = Info.first;
1601    Align = Info.second;
1602    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1603        llvm::isPowerOf2_64(Width)) {
1604      // We can potentially perform lock-free atomic operations for this
1605      // type; promote the alignment appropriately.
1606      // FIXME: We could potentially promote the width here as well...
1607      // is that worthwhile?  (Non-struct atomic types generally have
1608      // power-of-two size anyway, but structs might not.  Requires a bit
1609      // of implementation work to make sure we zero out the extra bits.)
1610      Align = static_cast<unsigned>(Width);
1611    }
1612  }
1613
1614  }
1615
1616  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1617  return std::make_pair(Width, Align);
1618}
1619
1620/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1621CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1622  return CharUnits::fromQuantity(BitSize / getCharWidth());
1623}
1624
1625/// toBits - Convert a size in characters to a size in characters.
1626int64_t ASTContext::toBits(CharUnits CharSize) const {
1627  return CharSize.getQuantity() * getCharWidth();
1628}
1629
1630/// getTypeSizeInChars - Return the size of the specified type, in characters.
1631/// This method does not work on incomplete types.
1632CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1633  return toCharUnitsFromBits(getTypeSize(T));
1634}
1635CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1636  return toCharUnitsFromBits(getTypeSize(T));
1637}
1638
1639/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1640/// characters. This method does not work on incomplete types.
1641CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1642  return toCharUnitsFromBits(getTypeAlign(T));
1643}
1644CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1645  return toCharUnitsFromBits(getTypeAlign(T));
1646}
1647
1648/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1649/// type for the current target in bits.  This can be different than the ABI
1650/// alignment in cases where it is beneficial for performance to overalign
1651/// a data type.
1652unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1653  unsigned ABIAlign = getTypeAlign(T);
1654
1655  // Double and long long should be naturally aligned if possible.
1656  if (const ComplexType* CT = T->getAs<ComplexType>())
1657    T = CT->getElementType().getTypePtr();
1658  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1659      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1660      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1661    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1662
1663  return ABIAlign;
1664}
1665
1666/// DeepCollectObjCIvars -
1667/// This routine first collects all declared, but not synthesized, ivars in
1668/// super class and then collects all ivars, including those synthesized for
1669/// current class. This routine is used for implementation of current class
1670/// when all ivars, declared and synthesized are known.
1671///
1672void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1673                                      bool leafClass,
1674                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1675  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1676    DeepCollectObjCIvars(SuperClass, false, Ivars);
1677  if (!leafClass) {
1678    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1679         E = OI->ivar_end(); I != E; ++I)
1680      Ivars.push_back(*I);
1681  } else {
1682    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1683    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1684         Iv= Iv->getNextIvar())
1685      Ivars.push_back(Iv);
1686  }
1687}
1688
1689/// CollectInheritedProtocols - Collect all protocols in current class and
1690/// those inherited by it.
1691void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1692                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1693  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1694    // We can use protocol_iterator here instead of
1695    // all_referenced_protocol_iterator since we are walking all categories.
1696    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1697         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1698      ObjCProtocolDecl *Proto = (*P);
1699      Protocols.insert(Proto->getCanonicalDecl());
1700      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1701           PE = Proto->protocol_end(); P != PE; ++P) {
1702        Protocols.insert((*P)->getCanonicalDecl());
1703        CollectInheritedProtocols(*P, Protocols);
1704      }
1705    }
1706
1707    // Categories of this Interface.
1708    for (ObjCInterfaceDecl::visible_categories_iterator
1709           Cat = OI->visible_categories_begin(),
1710           CatEnd = OI->visible_categories_end();
1711         Cat != CatEnd; ++Cat) {
1712      CollectInheritedProtocols(*Cat, Protocols);
1713    }
1714
1715    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1716      while (SD) {
1717        CollectInheritedProtocols(SD, Protocols);
1718        SD = SD->getSuperClass();
1719      }
1720  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1721    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1722         PE = OC->protocol_end(); P != PE; ++P) {
1723      ObjCProtocolDecl *Proto = (*P);
1724      Protocols.insert(Proto->getCanonicalDecl());
1725      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1726           PE = Proto->protocol_end(); P != PE; ++P)
1727        CollectInheritedProtocols(*P, Protocols);
1728    }
1729  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1730    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1731         PE = OP->protocol_end(); P != PE; ++P) {
1732      ObjCProtocolDecl *Proto = (*P);
1733      Protocols.insert(Proto->getCanonicalDecl());
1734      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1735           PE = Proto->protocol_end(); P != PE; ++P)
1736        CollectInheritedProtocols(*P, Protocols);
1737    }
1738  }
1739}
1740
1741unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1742  unsigned count = 0;
1743  // Count ivars declared in class extension.
1744  for (ObjCInterfaceDecl::known_extensions_iterator
1745         Ext = OI->known_extensions_begin(),
1746         ExtEnd = OI->known_extensions_end();
1747       Ext != ExtEnd; ++Ext) {
1748    count += Ext->ivar_size();
1749  }
1750
1751  // Count ivar defined in this class's implementation.  This
1752  // includes synthesized ivars.
1753  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1754    count += ImplDecl->ivar_size();
1755
1756  return count;
1757}
1758
1759bool ASTContext::isSentinelNullExpr(const Expr *E) {
1760  if (!E)
1761    return false;
1762
1763  // nullptr_t is always treated as null.
1764  if (E->getType()->isNullPtrType()) return true;
1765
1766  if (E->getType()->isAnyPointerType() &&
1767      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1768                                                Expr::NPC_ValueDependentIsNull))
1769    return true;
1770
1771  // Unfortunately, __null has type 'int'.
1772  if (isa<GNUNullExpr>(E)) return true;
1773
1774  return false;
1775}
1776
1777/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1778ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1779  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1780    I = ObjCImpls.find(D);
1781  if (I != ObjCImpls.end())
1782    return cast<ObjCImplementationDecl>(I->second);
1783  return 0;
1784}
1785/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1786ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1787  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1788    I = ObjCImpls.find(D);
1789  if (I != ObjCImpls.end())
1790    return cast<ObjCCategoryImplDecl>(I->second);
1791  return 0;
1792}
1793
1794/// \brief Set the implementation of ObjCInterfaceDecl.
1795void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1796                           ObjCImplementationDecl *ImplD) {
1797  assert(IFaceD && ImplD && "Passed null params");
1798  ObjCImpls[IFaceD] = ImplD;
1799}
1800/// \brief Set the implementation of ObjCCategoryDecl.
1801void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1802                           ObjCCategoryImplDecl *ImplD) {
1803  assert(CatD && ImplD && "Passed null params");
1804  ObjCImpls[CatD] = ImplD;
1805}
1806
1807ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1808  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1809    return ID;
1810  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1811    return CD->getClassInterface();
1812  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1813    return IMD->getClassInterface();
1814
1815  return 0;
1816}
1817
1818/// \brief Get the copy initialization expression of VarDecl,or NULL if
1819/// none exists.
1820Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1821  assert(VD && "Passed null params");
1822  assert(VD->hasAttr<BlocksAttr>() &&
1823         "getBlockVarCopyInits - not __block var");
1824  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1825    I = BlockVarCopyInits.find(VD);
1826  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1827}
1828
1829/// \brief Set the copy inialization expression of a block var decl.
1830void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1831  assert(VD && Init && "Passed null params");
1832  assert(VD->hasAttr<BlocksAttr>() &&
1833         "setBlockVarCopyInits - not __block var");
1834  BlockVarCopyInits[VD] = Init;
1835}
1836
1837TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1838                                                 unsigned DataSize) const {
1839  if (!DataSize)
1840    DataSize = TypeLoc::getFullDataSizeForType(T);
1841  else
1842    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1843           "incorrect data size provided to CreateTypeSourceInfo!");
1844
1845  TypeSourceInfo *TInfo =
1846    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1847  new (TInfo) TypeSourceInfo(T);
1848  return TInfo;
1849}
1850
1851TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1852                                                     SourceLocation L) const {
1853  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1854  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1855  return DI;
1856}
1857
1858const ASTRecordLayout &
1859ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1860  return getObjCLayout(D, 0);
1861}
1862
1863const ASTRecordLayout &
1864ASTContext::getASTObjCImplementationLayout(
1865                                        const ObjCImplementationDecl *D) const {
1866  return getObjCLayout(D->getClassInterface(), D);
1867}
1868
1869//===----------------------------------------------------------------------===//
1870//                   Type creation/memoization methods
1871//===----------------------------------------------------------------------===//
1872
1873QualType
1874ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1875  unsigned fastQuals = quals.getFastQualifiers();
1876  quals.removeFastQualifiers();
1877
1878  // Check if we've already instantiated this type.
1879  llvm::FoldingSetNodeID ID;
1880  ExtQuals::Profile(ID, baseType, quals);
1881  void *insertPos = 0;
1882  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1883    assert(eq->getQualifiers() == quals);
1884    return QualType(eq, fastQuals);
1885  }
1886
1887  // If the base type is not canonical, make the appropriate canonical type.
1888  QualType canon;
1889  if (!baseType->isCanonicalUnqualified()) {
1890    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1891    canonSplit.Quals.addConsistentQualifiers(quals);
1892    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1893
1894    // Re-find the insert position.
1895    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1896  }
1897
1898  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1899  ExtQualNodes.InsertNode(eq, insertPos);
1900  return QualType(eq, fastQuals);
1901}
1902
1903QualType
1904ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1905  QualType CanT = getCanonicalType(T);
1906  if (CanT.getAddressSpace() == AddressSpace)
1907    return T;
1908
1909  // If we are composing extended qualifiers together, merge together
1910  // into one ExtQuals node.
1911  QualifierCollector Quals;
1912  const Type *TypeNode = Quals.strip(T);
1913
1914  // If this type already has an address space specified, it cannot get
1915  // another one.
1916  assert(!Quals.hasAddressSpace() &&
1917         "Type cannot be in multiple addr spaces!");
1918  Quals.addAddressSpace(AddressSpace);
1919
1920  return getExtQualType(TypeNode, Quals);
1921}
1922
1923QualType ASTContext::getObjCGCQualType(QualType T,
1924                                       Qualifiers::GC GCAttr) const {
1925  QualType CanT = getCanonicalType(T);
1926  if (CanT.getObjCGCAttr() == GCAttr)
1927    return T;
1928
1929  if (const PointerType *ptr = T->getAs<PointerType>()) {
1930    QualType Pointee = ptr->getPointeeType();
1931    if (Pointee->isAnyPointerType()) {
1932      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1933      return getPointerType(ResultType);
1934    }
1935  }
1936
1937  // If we are composing extended qualifiers together, merge together
1938  // into one ExtQuals node.
1939  QualifierCollector Quals;
1940  const Type *TypeNode = Quals.strip(T);
1941
1942  // If this type already has an ObjCGC specified, it cannot get
1943  // another one.
1944  assert(!Quals.hasObjCGCAttr() &&
1945         "Type cannot have multiple ObjCGCs!");
1946  Quals.addObjCGCAttr(GCAttr);
1947
1948  return getExtQualType(TypeNode, Quals);
1949}
1950
1951const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1952                                                   FunctionType::ExtInfo Info) {
1953  if (T->getExtInfo() == Info)
1954    return T;
1955
1956  QualType Result;
1957  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1958    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1959  } else {
1960    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1961    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1962    EPI.ExtInfo = Info;
1963    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1964                             FPT->getNumArgs(), EPI);
1965  }
1966
1967  return cast<FunctionType>(Result.getTypePtr());
1968}
1969
1970/// getComplexType - Return the uniqued reference to the type for a complex
1971/// number with the specified element type.
1972QualType ASTContext::getComplexType(QualType T) const {
1973  // Unique pointers, to guarantee there is only one pointer of a particular
1974  // structure.
1975  llvm::FoldingSetNodeID ID;
1976  ComplexType::Profile(ID, T);
1977
1978  void *InsertPos = 0;
1979  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1980    return QualType(CT, 0);
1981
1982  // If the pointee type isn't canonical, this won't be a canonical type either,
1983  // so fill in the canonical type field.
1984  QualType Canonical;
1985  if (!T.isCanonical()) {
1986    Canonical = getComplexType(getCanonicalType(T));
1987
1988    // Get the new insert position for the node we care about.
1989    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1990    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1991  }
1992  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1993  Types.push_back(New);
1994  ComplexTypes.InsertNode(New, InsertPos);
1995  return QualType(New, 0);
1996}
1997
1998/// getPointerType - Return the uniqued reference to the type for a pointer to
1999/// the specified type.
2000QualType ASTContext::getPointerType(QualType T) const {
2001  // Unique pointers, to guarantee there is only one pointer of a particular
2002  // structure.
2003  llvm::FoldingSetNodeID ID;
2004  PointerType::Profile(ID, T);
2005
2006  void *InsertPos = 0;
2007  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2008    return QualType(PT, 0);
2009
2010  // If the pointee type isn't canonical, this won't be a canonical type either,
2011  // so fill in the canonical type field.
2012  QualType Canonical;
2013  if (!T.isCanonical()) {
2014    Canonical = getPointerType(getCanonicalType(T));
2015
2016    // Get the new insert position for the node we care about.
2017    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2018    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2019  }
2020  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2021  Types.push_back(New);
2022  PointerTypes.InsertNode(New, InsertPos);
2023  return QualType(New, 0);
2024}
2025
2026/// getBlockPointerType - Return the uniqued reference to the type for
2027/// a pointer to the specified block.
2028QualType ASTContext::getBlockPointerType(QualType T) const {
2029  assert(T->isFunctionType() && "block of function types only");
2030  // Unique pointers, to guarantee there is only one block of a particular
2031  // structure.
2032  llvm::FoldingSetNodeID ID;
2033  BlockPointerType::Profile(ID, T);
2034
2035  void *InsertPos = 0;
2036  if (BlockPointerType *PT =
2037        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2038    return QualType(PT, 0);
2039
2040  // If the block pointee type isn't canonical, this won't be a canonical
2041  // type either so fill in the canonical type field.
2042  QualType Canonical;
2043  if (!T.isCanonical()) {
2044    Canonical = getBlockPointerType(getCanonicalType(T));
2045
2046    // Get the new insert position for the node we care about.
2047    BlockPointerType *NewIP =
2048      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2049    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2050  }
2051  BlockPointerType *New
2052    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2053  Types.push_back(New);
2054  BlockPointerTypes.InsertNode(New, InsertPos);
2055  return QualType(New, 0);
2056}
2057
2058/// getLValueReferenceType - Return the uniqued reference to the type for an
2059/// lvalue reference to the specified type.
2060QualType
2061ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2062  assert(getCanonicalType(T) != OverloadTy &&
2063         "Unresolved overloaded function type");
2064
2065  // Unique pointers, to guarantee there is only one pointer of a particular
2066  // structure.
2067  llvm::FoldingSetNodeID ID;
2068  ReferenceType::Profile(ID, T, SpelledAsLValue);
2069
2070  void *InsertPos = 0;
2071  if (LValueReferenceType *RT =
2072        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2073    return QualType(RT, 0);
2074
2075  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2076
2077  // If the referencee type isn't canonical, this won't be a canonical type
2078  // either, so fill in the canonical type field.
2079  QualType Canonical;
2080  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2081    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2082    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2083
2084    // Get the new insert position for the node we care about.
2085    LValueReferenceType *NewIP =
2086      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2087    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2088  }
2089
2090  LValueReferenceType *New
2091    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2092                                                     SpelledAsLValue);
2093  Types.push_back(New);
2094  LValueReferenceTypes.InsertNode(New, InsertPos);
2095
2096  return QualType(New, 0);
2097}
2098
2099/// getRValueReferenceType - Return the uniqued reference to the type for an
2100/// rvalue reference to the specified type.
2101QualType ASTContext::getRValueReferenceType(QualType T) const {
2102  // Unique pointers, to guarantee there is only one pointer of a particular
2103  // structure.
2104  llvm::FoldingSetNodeID ID;
2105  ReferenceType::Profile(ID, T, false);
2106
2107  void *InsertPos = 0;
2108  if (RValueReferenceType *RT =
2109        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2110    return QualType(RT, 0);
2111
2112  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2113
2114  // If the referencee type isn't canonical, this won't be a canonical type
2115  // either, so fill in the canonical type field.
2116  QualType Canonical;
2117  if (InnerRef || !T.isCanonical()) {
2118    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2119    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2120
2121    // Get the new insert position for the node we care about.
2122    RValueReferenceType *NewIP =
2123      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2124    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2125  }
2126
2127  RValueReferenceType *New
2128    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2129  Types.push_back(New);
2130  RValueReferenceTypes.InsertNode(New, InsertPos);
2131  return QualType(New, 0);
2132}
2133
2134/// getMemberPointerType - Return the uniqued reference to the type for a
2135/// member pointer to the specified type, in the specified class.
2136QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2137  // Unique pointers, to guarantee there is only one pointer of a particular
2138  // structure.
2139  llvm::FoldingSetNodeID ID;
2140  MemberPointerType::Profile(ID, T, Cls);
2141
2142  void *InsertPos = 0;
2143  if (MemberPointerType *PT =
2144      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2145    return QualType(PT, 0);
2146
2147  // If the pointee or class type isn't canonical, this won't be a canonical
2148  // type either, so fill in the canonical type field.
2149  QualType Canonical;
2150  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2151    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2152
2153    // Get the new insert position for the node we care about.
2154    MemberPointerType *NewIP =
2155      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2156    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2157  }
2158  MemberPointerType *New
2159    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2160  Types.push_back(New);
2161  MemberPointerTypes.InsertNode(New, InsertPos);
2162  return QualType(New, 0);
2163}
2164
2165/// getConstantArrayType - Return the unique reference to the type for an
2166/// array of the specified element type.
2167QualType ASTContext::getConstantArrayType(QualType EltTy,
2168                                          const llvm::APInt &ArySizeIn,
2169                                          ArrayType::ArraySizeModifier ASM,
2170                                          unsigned IndexTypeQuals) const {
2171  assert((EltTy->isDependentType() ||
2172          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2173         "Constant array of VLAs is illegal!");
2174
2175  // Convert the array size into a canonical width matching the pointer size for
2176  // the target.
2177  llvm::APInt ArySize(ArySizeIn);
2178  ArySize =
2179    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2180
2181  llvm::FoldingSetNodeID ID;
2182  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2183
2184  void *InsertPos = 0;
2185  if (ConstantArrayType *ATP =
2186      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2187    return QualType(ATP, 0);
2188
2189  // If the element type isn't canonical or has qualifiers, this won't
2190  // be a canonical type either, so fill in the canonical type field.
2191  QualType Canon;
2192  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2193    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2194    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2195                                 ASM, IndexTypeQuals);
2196    Canon = getQualifiedType(Canon, canonSplit.Quals);
2197
2198    // Get the new insert position for the node we care about.
2199    ConstantArrayType *NewIP =
2200      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2201    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2202  }
2203
2204  ConstantArrayType *New = new(*this,TypeAlignment)
2205    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2206  ConstantArrayTypes.InsertNode(New, InsertPos);
2207  Types.push_back(New);
2208  return QualType(New, 0);
2209}
2210
2211/// getVariableArrayDecayedType - Turns the given type, which may be
2212/// variably-modified, into the corresponding type with all the known
2213/// sizes replaced with [*].
2214QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2215  // Vastly most common case.
2216  if (!type->isVariablyModifiedType()) return type;
2217
2218  QualType result;
2219
2220  SplitQualType split = type.getSplitDesugaredType();
2221  const Type *ty = split.Ty;
2222  switch (ty->getTypeClass()) {
2223#define TYPE(Class, Base)
2224#define ABSTRACT_TYPE(Class, Base)
2225#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2226#include "clang/AST/TypeNodes.def"
2227    llvm_unreachable("didn't desugar past all non-canonical types?");
2228
2229  // These types should never be variably-modified.
2230  case Type::Builtin:
2231  case Type::Complex:
2232  case Type::Vector:
2233  case Type::ExtVector:
2234  case Type::DependentSizedExtVector:
2235  case Type::ObjCObject:
2236  case Type::ObjCInterface:
2237  case Type::ObjCObjectPointer:
2238  case Type::Record:
2239  case Type::Enum:
2240  case Type::UnresolvedUsing:
2241  case Type::TypeOfExpr:
2242  case Type::TypeOf:
2243  case Type::Decltype:
2244  case Type::UnaryTransform:
2245  case Type::DependentName:
2246  case Type::InjectedClassName:
2247  case Type::TemplateSpecialization:
2248  case Type::DependentTemplateSpecialization:
2249  case Type::TemplateTypeParm:
2250  case Type::SubstTemplateTypeParmPack:
2251  case Type::Auto:
2252  case Type::PackExpansion:
2253    llvm_unreachable("type should never be variably-modified");
2254
2255  // These types can be variably-modified but should never need to
2256  // further decay.
2257  case Type::FunctionNoProto:
2258  case Type::FunctionProto:
2259  case Type::BlockPointer:
2260  case Type::MemberPointer:
2261    return type;
2262
2263  // These types can be variably-modified.  All these modifications
2264  // preserve structure except as noted by comments.
2265  // TODO: if we ever care about optimizing VLAs, there are no-op
2266  // optimizations available here.
2267  case Type::Pointer:
2268    result = getPointerType(getVariableArrayDecayedType(
2269                              cast<PointerType>(ty)->getPointeeType()));
2270    break;
2271
2272  case Type::LValueReference: {
2273    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2274    result = getLValueReferenceType(
2275                 getVariableArrayDecayedType(lv->getPointeeType()),
2276                                    lv->isSpelledAsLValue());
2277    break;
2278  }
2279
2280  case Type::RValueReference: {
2281    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2282    result = getRValueReferenceType(
2283                 getVariableArrayDecayedType(lv->getPointeeType()));
2284    break;
2285  }
2286
2287  case Type::Atomic: {
2288    const AtomicType *at = cast<AtomicType>(ty);
2289    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2290    break;
2291  }
2292
2293  case Type::ConstantArray: {
2294    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2295    result = getConstantArrayType(
2296                 getVariableArrayDecayedType(cat->getElementType()),
2297                                  cat->getSize(),
2298                                  cat->getSizeModifier(),
2299                                  cat->getIndexTypeCVRQualifiers());
2300    break;
2301  }
2302
2303  case Type::DependentSizedArray: {
2304    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2305    result = getDependentSizedArrayType(
2306                 getVariableArrayDecayedType(dat->getElementType()),
2307                                        dat->getSizeExpr(),
2308                                        dat->getSizeModifier(),
2309                                        dat->getIndexTypeCVRQualifiers(),
2310                                        dat->getBracketsRange());
2311    break;
2312  }
2313
2314  // Turn incomplete types into [*] types.
2315  case Type::IncompleteArray: {
2316    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2317    result = getVariableArrayType(
2318                 getVariableArrayDecayedType(iat->getElementType()),
2319                                  /*size*/ 0,
2320                                  ArrayType::Normal,
2321                                  iat->getIndexTypeCVRQualifiers(),
2322                                  SourceRange());
2323    break;
2324  }
2325
2326  // Turn VLA types into [*] types.
2327  case Type::VariableArray: {
2328    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2329    result = getVariableArrayType(
2330                 getVariableArrayDecayedType(vat->getElementType()),
2331                                  /*size*/ 0,
2332                                  ArrayType::Star,
2333                                  vat->getIndexTypeCVRQualifiers(),
2334                                  vat->getBracketsRange());
2335    break;
2336  }
2337  }
2338
2339  // Apply the top-level qualifiers from the original.
2340  return getQualifiedType(result, split.Quals);
2341}
2342
2343/// getVariableArrayType - Returns a non-unique reference to the type for a
2344/// variable array of the specified element type.
2345QualType ASTContext::getVariableArrayType(QualType EltTy,
2346                                          Expr *NumElts,
2347                                          ArrayType::ArraySizeModifier ASM,
2348                                          unsigned IndexTypeQuals,
2349                                          SourceRange Brackets) const {
2350  // Since we don't unique expressions, it isn't possible to unique VLA's
2351  // that have an expression provided for their size.
2352  QualType Canon;
2353
2354  // Be sure to pull qualifiers off the element type.
2355  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2356    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2357    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2358                                 IndexTypeQuals, Brackets);
2359    Canon = getQualifiedType(Canon, canonSplit.Quals);
2360  }
2361
2362  VariableArrayType *New = new(*this, TypeAlignment)
2363    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2364
2365  VariableArrayTypes.push_back(New);
2366  Types.push_back(New);
2367  return QualType(New, 0);
2368}
2369
2370/// getDependentSizedArrayType - Returns a non-unique reference to
2371/// the type for a dependently-sized array of the specified element
2372/// type.
2373QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2374                                                Expr *numElements,
2375                                                ArrayType::ArraySizeModifier ASM,
2376                                                unsigned elementTypeQuals,
2377                                                SourceRange brackets) const {
2378  assert((!numElements || numElements->isTypeDependent() ||
2379          numElements->isValueDependent()) &&
2380         "Size must be type- or value-dependent!");
2381
2382  // Dependently-sized array types that do not have a specified number
2383  // of elements will have their sizes deduced from a dependent
2384  // initializer.  We do no canonicalization here at all, which is okay
2385  // because they can't be used in most locations.
2386  if (!numElements) {
2387    DependentSizedArrayType *newType
2388      = new (*this, TypeAlignment)
2389          DependentSizedArrayType(*this, elementType, QualType(),
2390                                  numElements, ASM, elementTypeQuals,
2391                                  brackets);
2392    Types.push_back(newType);
2393    return QualType(newType, 0);
2394  }
2395
2396  // Otherwise, we actually build a new type every time, but we
2397  // also build a canonical type.
2398
2399  SplitQualType canonElementType = getCanonicalType(elementType).split();
2400
2401  void *insertPos = 0;
2402  llvm::FoldingSetNodeID ID;
2403  DependentSizedArrayType::Profile(ID, *this,
2404                                   QualType(canonElementType.Ty, 0),
2405                                   ASM, elementTypeQuals, numElements);
2406
2407  // Look for an existing type with these properties.
2408  DependentSizedArrayType *canonTy =
2409    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2410
2411  // If we don't have one, build one.
2412  if (!canonTy) {
2413    canonTy = new (*this, TypeAlignment)
2414      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2415                              QualType(), numElements, ASM, elementTypeQuals,
2416                              brackets);
2417    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2418    Types.push_back(canonTy);
2419  }
2420
2421  // Apply qualifiers from the element type to the array.
2422  QualType canon = getQualifiedType(QualType(canonTy,0),
2423                                    canonElementType.Quals);
2424
2425  // If we didn't need extra canonicalization for the element type,
2426  // then just use that as our result.
2427  if (QualType(canonElementType.Ty, 0) == elementType)
2428    return canon;
2429
2430  // Otherwise, we need to build a type which follows the spelling
2431  // of the element type.
2432  DependentSizedArrayType *sugaredType
2433    = new (*this, TypeAlignment)
2434        DependentSizedArrayType(*this, elementType, canon, numElements,
2435                                ASM, elementTypeQuals, brackets);
2436  Types.push_back(sugaredType);
2437  return QualType(sugaredType, 0);
2438}
2439
2440QualType ASTContext::getIncompleteArrayType(QualType elementType,
2441                                            ArrayType::ArraySizeModifier ASM,
2442                                            unsigned elementTypeQuals) const {
2443  llvm::FoldingSetNodeID ID;
2444  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2445
2446  void *insertPos = 0;
2447  if (IncompleteArrayType *iat =
2448       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2449    return QualType(iat, 0);
2450
2451  // If the element type isn't canonical, this won't be a canonical type
2452  // either, so fill in the canonical type field.  We also have to pull
2453  // qualifiers off the element type.
2454  QualType canon;
2455
2456  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2457    SplitQualType canonSplit = getCanonicalType(elementType).split();
2458    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2459                                   ASM, elementTypeQuals);
2460    canon = getQualifiedType(canon, canonSplit.Quals);
2461
2462    // Get the new insert position for the node we care about.
2463    IncompleteArrayType *existing =
2464      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2465    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2466  }
2467
2468  IncompleteArrayType *newType = new (*this, TypeAlignment)
2469    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2470
2471  IncompleteArrayTypes.InsertNode(newType, insertPos);
2472  Types.push_back(newType);
2473  return QualType(newType, 0);
2474}
2475
2476/// getVectorType - Return the unique reference to a vector type of
2477/// the specified element type and size. VectorType must be a built-in type.
2478QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2479                                   VectorType::VectorKind VecKind) const {
2480  assert(vecType->isBuiltinType());
2481
2482  // Check if we've already instantiated a vector of this type.
2483  llvm::FoldingSetNodeID ID;
2484  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2485
2486  void *InsertPos = 0;
2487  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2488    return QualType(VTP, 0);
2489
2490  // If the element type isn't canonical, this won't be a canonical type either,
2491  // so fill in the canonical type field.
2492  QualType Canonical;
2493  if (!vecType.isCanonical()) {
2494    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2495
2496    // Get the new insert position for the node we care about.
2497    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2498    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2499  }
2500  VectorType *New = new (*this, TypeAlignment)
2501    VectorType(vecType, NumElts, Canonical, VecKind);
2502  VectorTypes.InsertNode(New, InsertPos);
2503  Types.push_back(New);
2504  return QualType(New, 0);
2505}
2506
2507/// getExtVectorType - Return the unique reference to an extended vector type of
2508/// the specified element type and size. VectorType must be a built-in type.
2509QualType
2510ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2511  assert(vecType->isBuiltinType() || vecType->isDependentType());
2512
2513  // Check if we've already instantiated a vector of this type.
2514  llvm::FoldingSetNodeID ID;
2515  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2516                      VectorType::GenericVector);
2517  void *InsertPos = 0;
2518  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2519    return QualType(VTP, 0);
2520
2521  // If the element type isn't canonical, this won't be a canonical type either,
2522  // so fill in the canonical type field.
2523  QualType Canonical;
2524  if (!vecType.isCanonical()) {
2525    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2526
2527    // Get the new insert position for the node we care about.
2528    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2529    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2530  }
2531  ExtVectorType *New = new (*this, TypeAlignment)
2532    ExtVectorType(vecType, NumElts, Canonical);
2533  VectorTypes.InsertNode(New, InsertPos);
2534  Types.push_back(New);
2535  return QualType(New, 0);
2536}
2537
2538QualType
2539ASTContext::getDependentSizedExtVectorType(QualType vecType,
2540                                           Expr *SizeExpr,
2541                                           SourceLocation AttrLoc) const {
2542  llvm::FoldingSetNodeID ID;
2543  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2544                                       SizeExpr);
2545
2546  void *InsertPos = 0;
2547  DependentSizedExtVectorType *Canon
2548    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2549  DependentSizedExtVectorType *New;
2550  if (Canon) {
2551    // We already have a canonical version of this array type; use it as
2552    // the canonical type for a newly-built type.
2553    New = new (*this, TypeAlignment)
2554      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2555                                  SizeExpr, AttrLoc);
2556  } else {
2557    QualType CanonVecTy = getCanonicalType(vecType);
2558    if (CanonVecTy == vecType) {
2559      New = new (*this, TypeAlignment)
2560        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2561                                    AttrLoc);
2562
2563      DependentSizedExtVectorType *CanonCheck
2564        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2565      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2566      (void)CanonCheck;
2567      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2568    } else {
2569      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2570                                                      SourceLocation());
2571      New = new (*this, TypeAlignment)
2572        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2573    }
2574  }
2575
2576  Types.push_back(New);
2577  return QualType(New, 0);
2578}
2579
2580/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2581///
2582QualType
2583ASTContext::getFunctionNoProtoType(QualType ResultTy,
2584                                   const FunctionType::ExtInfo &Info) const {
2585  const CallingConv DefaultCC = Info.getCC();
2586  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2587                               CC_X86StdCall : DefaultCC;
2588  // Unique functions, to guarantee there is only one function of a particular
2589  // structure.
2590  llvm::FoldingSetNodeID ID;
2591  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2592
2593  void *InsertPos = 0;
2594  if (FunctionNoProtoType *FT =
2595        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2596    return QualType(FT, 0);
2597
2598  QualType Canonical;
2599  if (!ResultTy.isCanonical() ||
2600      getCanonicalCallConv(CallConv) != CallConv) {
2601    Canonical =
2602      getFunctionNoProtoType(getCanonicalType(ResultTy),
2603                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2604
2605    // Get the new insert position for the node we care about.
2606    FunctionNoProtoType *NewIP =
2607      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2608    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2609  }
2610
2611  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2612  FunctionNoProtoType *New = new (*this, TypeAlignment)
2613    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2614  Types.push_back(New);
2615  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2616  return QualType(New, 0);
2617}
2618
2619/// \brief Determine whether \p T is canonical as the result type of a function.
2620static bool isCanonicalResultType(QualType T) {
2621  return T.isCanonical() &&
2622         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2623          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2624}
2625
2626/// getFunctionType - Return a normal function type with a typed argument
2627/// list.  isVariadic indicates whether the argument list includes '...'.
2628QualType
2629ASTContext::getFunctionType(QualType ResultTy,
2630                            const QualType *ArgArray, unsigned NumArgs,
2631                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2632  // Unique functions, to guarantee there is only one function of a particular
2633  // structure.
2634  llvm::FoldingSetNodeID ID;
2635  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2636
2637  void *InsertPos = 0;
2638  if (FunctionProtoType *FTP =
2639        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2640    return QualType(FTP, 0);
2641
2642  // Determine whether the type being created is already canonical or not.
2643  bool isCanonical =
2644    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2645    !EPI.HasTrailingReturn;
2646  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2647    if (!ArgArray[i].isCanonicalAsParam())
2648      isCanonical = false;
2649
2650  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2651  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2652                               CC_X86StdCall : DefaultCC;
2653
2654  // If this type isn't canonical, get the canonical version of it.
2655  // The exception spec is not part of the canonical type.
2656  QualType Canonical;
2657  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2658    SmallVector<QualType, 16> CanonicalArgs;
2659    CanonicalArgs.reserve(NumArgs);
2660    for (unsigned i = 0; i != NumArgs; ++i)
2661      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2662
2663    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2664    CanonicalEPI.HasTrailingReturn = false;
2665    CanonicalEPI.ExceptionSpecType = EST_None;
2666    CanonicalEPI.NumExceptions = 0;
2667    CanonicalEPI.ExtInfo
2668      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2669
2670    // Result types do not have ARC lifetime qualifiers.
2671    QualType CanResultTy = getCanonicalType(ResultTy);
2672    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2673      Qualifiers Qs = CanResultTy.getQualifiers();
2674      Qs.removeObjCLifetime();
2675      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2676    }
2677
2678    Canonical = getFunctionType(CanResultTy,
2679                                CanonicalArgs.data(), NumArgs,
2680                                CanonicalEPI);
2681
2682    // Get the new insert position for the node we care about.
2683    FunctionProtoType *NewIP =
2684      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2685    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2686  }
2687
2688  // FunctionProtoType objects are allocated with extra bytes after
2689  // them for three variable size arrays at the end:
2690  //  - parameter types
2691  //  - exception types
2692  //  - consumed-arguments flags
2693  // Instead of the exception types, there could be a noexcept
2694  // expression, or information used to resolve the exception
2695  // specification.
2696  size_t Size = sizeof(FunctionProtoType) +
2697                NumArgs * sizeof(QualType);
2698  if (EPI.ExceptionSpecType == EST_Dynamic) {
2699    Size += EPI.NumExceptions * sizeof(QualType);
2700  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2701    Size += sizeof(Expr*);
2702  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2703    Size += 2 * sizeof(FunctionDecl*);
2704  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2705    Size += sizeof(FunctionDecl*);
2706  }
2707  if (EPI.ConsumedArguments)
2708    Size += NumArgs * sizeof(bool);
2709
2710  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2711  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2712  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2713  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2714  Types.push_back(FTP);
2715  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2716  return QualType(FTP, 0);
2717}
2718
2719#ifndef NDEBUG
2720static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2721  if (!isa<CXXRecordDecl>(D)) return false;
2722  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2723  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2724    return true;
2725  if (RD->getDescribedClassTemplate() &&
2726      !isa<ClassTemplateSpecializationDecl>(RD))
2727    return true;
2728  return false;
2729}
2730#endif
2731
2732/// getInjectedClassNameType - Return the unique reference to the
2733/// injected class name type for the specified templated declaration.
2734QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2735                                              QualType TST) const {
2736  assert(NeedsInjectedClassNameType(Decl));
2737  if (Decl->TypeForDecl) {
2738    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2739  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2740    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2741    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2742    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2743  } else {
2744    Type *newType =
2745      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2746    Decl->TypeForDecl = newType;
2747    Types.push_back(newType);
2748  }
2749  return QualType(Decl->TypeForDecl, 0);
2750}
2751
2752/// getTypeDeclType - Return the unique reference to the type for the
2753/// specified type declaration.
2754QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2755  assert(Decl && "Passed null for Decl param");
2756  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2757
2758  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2759    return getTypedefType(Typedef);
2760
2761  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2762         "Template type parameter types are always available.");
2763
2764  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2765    assert(!Record->getPreviousDecl() &&
2766           "struct/union has previous declaration");
2767    assert(!NeedsInjectedClassNameType(Record));
2768    return getRecordType(Record);
2769  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2770    assert(!Enum->getPreviousDecl() &&
2771           "enum has previous declaration");
2772    return getEnumType(Enum);
2773  } else if (const UnresolvedUsingTypenameDecl *Using =
2774               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2775    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2776    Decl->TypeForDecl = newType;
2777    Types.push_back(newType);
2778  } else
2779    llvm_unreachable("TypeDecl without a type?");
2780
2781  return QualType(Decl->TypeForDecl, 0);
2782}
2783
2784/// getTypedefType - Return the unique reference to the type for the
2785/// specified typedef name decl.
2786QualType
2787ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2788                           QualType Canonical) const {
2789  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2790
2791  if (Canonical.isNull())
2792    Canonical = getCanonicalType(Decl->getUnderlyingType());
2793  TypedefType *newType = new(*this, TypeAlignment)
2794    TypedefType(Type::Typedef, Decl, Canonical);
2795  Decl->TypeForDecl = newType;
2796  Types.push_back(newType);
2797  return QualType(newType, 0);
2798}
2799
2800QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2801  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2802
2803  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2804    if (PrevDecl->TypeForDecl)
2805      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2806
2807  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2808  Decl->TypeForDecl = newType;
2809  Types.push_back(newType);
2810  return QualType(newType, 0);
2811}
2812
2813QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2814  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2815
2816  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2817    if (PrevDecl->TypeForDecl)
2818      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2819
2820  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2821  Decl->TypeForDecl = newType;
2822  Types.push_back(newType);
2823  return QualType(newType, 0);
2824}
2825
2826QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2827                                       QualType modifiedType,
2828                                       QualType equivalentType) {
2829  llvm::FoldingSetNodeID id;
2830  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2831
2832  void *insertPos = 0;
2833  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2834  if (type) return QualType(type, 0);
2835
2836  QualType canon = getCanonicalType(equivalentType);
2837  type = new (*this, TypeAlignment)
2838           AttributedType(canon, attrKind, modifiedType, equivalentType);
2839
2840  Types.push_back(type);
2841  AttributedTypes.InsertNode(type, insertPos);
2842
2843  return QualType(type, 0);
2844}
2845
2846
2847/// \brief Retrieve a substitution-result type.
2848QualType
2849ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2850                                         QualType Replacement) const {
2851  assert(Replacement.isCanonical()
2852         && "replacement types must always be canonical");
2853
2854  llvm::FoldingSetNodeID ID;
2855  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2856  void *InsertPos = 0;
2857  SubstTemplateTypeParmType *SubstParm
2858    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2859
2860  if (!SubstParm) {
2861    SubstParm = new (*this, TypeAlignment)
2862      SubstTemplateTypeParmType(Parm, Replacement);
2863    Types.push_back(SubstParm);
2864    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2865  }
2866
2867  return QualType(SubstParm, 0);
2868}
2869
2870/// \brief Retrieve a
2871QualType ASTContext::getSubstTemplateTypeParmPackType(
2872                                          const TemplateTypeParmType *Parm,
2873                                              const TemplateArgument &ArgPack) {
2874#ifndef NDEBUG
2875  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2876                                    PEnd = ArgPack.pack_end();
2877       P != PEnd; ++P) {
2878    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2879    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2880  }
2881#endif
2882
2883  llvm::FoldingSetNodeID ID;
2884  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2885  void *InsertPos = 0;
2886  if (SubstTemplateTypeParmPackType *SubstParm
2887        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2888    return QualType(SubstParm, 0);
2889
2890  QualType Canon;
2891  if (!Parm->isCanonicalUnqualified()) {
2892    Canon = getCanonicalType(QualType(Parm, 0));
2893    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2894                                             ArgPack);
2895    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2896  }
2897
2898  SubstTemplateTypeParmPackType *SubstParm
2899    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2900                                                               ArgPack);
2901  Types.push_back(SubstParm);
2902  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2903  return QualType(SubstParm, 0);
2904}
2905
2906/// \brief Retrieve the template type parameter type for a template
2907/// parameter or parameter pack with the given depth, index, and (optionally)
2908/// name.
2909QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2910                                             bool ParameterPack,
2911                                             TemplateTypeParmDecl *TTPDecl) const {
2912  llvm::FoldingSetNodeID ID;
2913  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2914  void *InsertPos = 0;
2915  TemplateTypeParmType *TypeParm
2916    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2917
2918  if (TypeParm)
2919    return QualType(TypeParm, 0);
2920
2921  if (TTPDecl) {
2922    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2923    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2924
2925    TemplateTypeParmType *TypeCheck
2926      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2927    assert(!TypeCheck && "Template type parameter canonical type broken");
2928    (void)TypeCheck;
2929  } else
2930    TypeParm = new (*this, TypeAlignment)
2931      TemplateTypeParmType(Depth, Index, ParameterPack);
2932
2933  Types.push_back(TypeParm);
2934  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2935
2936  return QualType(TypeParm, 0);
2937}
2938
2939TypeSourceInfo *
2940ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2941                                              SourceLocation NameLoc,
2942                                        const TemplateArgumentListInfo &Args,
2943                                              QualType Underlying) const {
2944  assert(!Name.getAsDependentTemplateName() &&
2945         "No dependent template names here!");
2946  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2947
2948  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2949  TemplateSpecializationTypeLoc TL
2950    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2951  TL.setTemplateKeywordLoc(SourceLocation());
2952  TL.setTemplateNameLoc(NameLoc);
2953  TL.setLAngleLoc(Args.getLAngleLoc());
2954  TL.setRAngleLoc(Args.getRAngleLoc());
2955  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2956    TL.setArgLocInfo(i, Args[i].getLocInfo());
2957  return DI;
2958}
2959
2960QualType
2961ASTContext::getTemplateSpecializationType(TemplateName Template,
2962                                          const TemplateArgumentListInfo &Args,
2963                                          QualType Underlying) const {
2964  assert(!Template.getAsDependentTemplateName() &&
2965         "No dependent template names here!");
2966
2967  unsigned NumArgs = Args.size();
2968
2969  SmallVector<TemplateArgument, 4> ArgVec;
2970  ArgVec.reserve(NumArgs);
2971  for (unsigned i = 0; i != NumArgs; ++i)
2972    ArgVec.push_back(Args[i].getArgument());
2973
2974  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2975                                       Underlying);
2976}
2977
2978#ifndef NDEBUG
2979static bool hasAnyPackExpansions(const TemplateArgument *Args,
2980                                 unsigned NumArgs) {
2981  for (unsigned I = 0; I != NumArgs; ++I)
2982    if (Args[I].isPackExpansion())
2983      return true;
2984
2985  return true;
2986}
2987#endif
2988
2989QualType
2990ASTContext::getTemplateSpecializationType(TemplateName Template,
2991                                          const TemplateArgument *Args,
2992                                          unsigned NumArgs,
2993                                          QualType Underlying) const {
2994  assert(!Template.getAsDependentTemplateName() &&
2995         "No dependent template names here!");
2996  // Look through qualified template names.
2997  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2998    Template = TemplateName(QTN->getTemplateDecl());
2999
3000  bool IsTypeAlias =
3001    Template.getAsTemplateDecl() &&
3002    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3003  QualType CanonType;
3004  if (!Underlying.isNull())
3005    CanonType = getCanonicalType(Underlying);
3006  else {
3007    // We can get here with an alias template when the specialization contains
3008    // a pack expansion that does not match up with a parameter pack.
3009    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3010           "Caller must compute aliased type");
3011    IsTypeAlias = false;
3012    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3013                                                       NumArgs);
3014  }
3015
3016  // Allocate the (non-canonical) template specialization type, but don't
3017  // try to unique it: these types typically have location information that
3018  // we don't unique and don't want to lose.
3019  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3020                       sizeof(TemplateArgument) * NumArgs +
3021                       (IsTypeAlias? sizeof(QualType) : 0),
3022                       TypeAlignment);
3023  TemplateSpecializationType *Spec
3024    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3025                                         IsTypeAlias ? Underlying : QualType());
3026
3027  Types.push_back(Spec);
3028  return QualType(Spec, 0);
3029}
3030
3031QualType
3032ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3033                                                   const TemplateArgument *Args,
3034                                                   unsigned NumArgs) const {
3035  assert(!Template.getAsDependentTemplateName() &&
3036         "No dependent template names here!");
3037
3038  // Look through qualified template names.
3039  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3040    Template = TemplateName(QTN->getTemplateDecl());
3041
3042  // Build the canonical template specialization type.
3043  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3044  SmallVector<TemplateArgument, 4> CanonArgs;
3045  CanonArgs.reserve(NumArgs);
3046  for (unsigned I = 0; I != NumArgs; ++I)
3047    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3048
3049  // Determine whether this canonical template specialization type already
3050  // exists.
3051  llvm::FoldingSetNodeID ID;
3052  TemplateSpecializationType::Profile(ID, CanonTemplate,
3053                                      CanonArgs.data(), NumArgs, *this);
3054
3055  void *InsertPos = 0;
3056  TemplateSpecializationType *Spec
3057    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3058
3059  if (!Spec) {
3060    // Allocate a new canonical template specialization type.
3061    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3062                          sizeof(TemplateArgument) * NumArgs),
3063                         TypeAlignment);
3064    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3065                                                CanonArgs.data(), NumArgs,
3066                                                QualType(), QualType());
3067    Types.push_back(Spec);
3068    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3069  }
3070
3071  assert(Spec->isDependentType() &&
3072         "Non-dependent template-id type must have a canonical type");
3073  return QualType(Spec, 0);
3074}
3075
3076QualType
3077ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3078                              NestedNameSpecifier *NNS,
3079                              QualType NamedType) const {
3080  llvm::FoldingSetNodeID ID;
3081  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3082
3083  void *InsertPos = 0;
3084  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3085  if (T)
3086    return QualType(T, 0);
3087
3088  QualType Canon = NamedType;
3089  if (!Canon.isCanonical()) {
3090    Canon = getCanonicalType(NamedType);
3091    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3092    assert(!CheckT && "Elaborated canonical type broken");
3093    (void)CheckT;
3094  }
3095
3096  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3097  Types.push_back(T);
3098  ElaboratedTypes.InsertNode(T, InsertPos);
3099  return QualType(T, 0);
3100}
3101
3102QualType
3103ASTContext::getParenType(QualType InnerType) const {
3104  llvm::FoldingSetNodeID ID;
3105  ParenType::Profile(ID, InnerType);
3106
3107  void *InsertPos = 0;
3108  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3109  if (T)
3110    return QualType(T, 0);
3111
3112  QualType Canon = InnerType;
3113  if (!Canon.isCanonical()) {
3114    Canon = getCanonicalType(InnerType);
3115    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3116    assert(!CheckT && "Paren canonical type broken");
3117    (void)CheckT;
3118  }
3119
3120  T = new (*this) ParenType(InnerType, Canon);
3121  Types.push_back(T);
3122  ParenTypes.InsertNode(T, InsertPos);
3123  return QualType(T, 0);
3124}
3125
3126QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3127                                          NestedNameSpecifier *NNS,
3128                                          const IdentifierInfo *Name,
3129                                          QualType Canon) const {
3130  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3131
3132  if (Canon.isNull()) {
3133    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3134    ElaboratedTypeKeyword CanonKeyword = Keyword;
3135    if (Keyword == ETK_None)
3136      CanonKeyword = ETK_Typename;
3137
3138    if (CanonNNS != NNS || CanonKeyword != Keyword)
3139      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3140  }
3141
3142  llvm::FoldingSetNodeID ID;
3143  DependentNameType::Profile(ID, Keyword, NNS, Name);
3144
3145  void *InsertPos = 0;
3146  DependentNameType *T
3147    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3148  if (T)
3149    return QualType(T, 0);
3150
3151  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3152  Types.push_back(T);
3153  DependentNameTypes.InsertNode(T, InsertPos);
3154  return QualType(T, 0);
3155}
3156
3157QualType
3158ASTContext::getDependentTemplateSpecializationType(
3159                                 ElaboratedTypeKeyword Keyword,
3160                                 NestedNameSpecifier *NNS,
3161                                 const IdentifierInfo *Name,
3162                                 const TemplateArgumentListInfo &Args) const {
3163  // TODO: avoid this copy
3164  SmallVector<TemplateArgument, 16> ArgCopy;
3165  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3166    ArgCopy.push_back(Args[I].getArgument());
3167  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3168                                                ArgCopy.size(),
3169                                                ArgCopy.data());
3170}
3171
3172QualType
3173ASTContext::getDependentTemplateSpecializationType(
3174                                 ElaboratedTypeKeyword Keyword,
3175                                 NestedNameSpecifier *NNS,
3176                                 const IdentifierInfo *Name,
3177                                 unsigned NumArgs,
3178                                 const TemplateArgument *Args) const {
3179  assert((!NNS || NNS->isDependent()) &&
3180         "nested-name-specifier must be dependent");
3181
3182  llvm::FoldingSetNodeID ID;
3183  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3184                                               Name, NumArgs, Args);
3185
3186  void *InsertPos = 0;
3187  DependentTemplateSpecializationType *T
3188    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3189  if (T)
3190    return QualType(T, 0);
3191
3192  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3193
3194  ElaboratedTypeKeyword CanonKeyword = Keyword;
3195  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3196
3197  bool AnyNonCanonArgs = false;
3198  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3199  for (unsigned I = 0; I != NumArgs; ++I) {
3200    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3201    if (!CanonArgs[I].structurallyEquals(Args[I]))
3202      AnyNonCanonArgs = true;
3203  }
3204
3205  QualType Canon;
3206  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3207    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3208                                                   Name, NumArgs,
3209                                                   CanonArgs.data());
3210
3211    // Find the insert position again.
3212    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3213  }
3214
3215  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3216                        sizeof(TemplateArgument) * NumArgs),
3217                       TypeAlignment);
3218  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3219                                                    Name, NumArgs, Args, Canon);
3220  Types.push_back(T);
3221  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3222  return QualType(T, 0);
3223}
3224
3225QualType ASTContext::getPackExpansionType(QualType Pattern,
3226                                      llvm::Optional<unsigned> NumExpansions) {
3227  llvm::FoldingSetNodeID ID;
3228  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3229
3230  assert(Pattern->containsUnexpandedParameterPack() &&
3231         "Pack expansions must expand one or more parameter packs");
3232  void *InsertPos = 0;
3233  PackExpansionType *T
3234    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3235  if (T)
3236    return QualType(T, 0);
3237
3238  QualType Canon;
3239  if (!Pattern.isCanonical()) {
3240    Canon = getCanonicalType(Pattern);
3241    // The canonical type might not contain an unexpanded parameter pack, if it
3242    // contains an alias template specialization which ignores one of its
3243    // parameters.
3244    if (Canon->containsUnexpandedParameterPack()) {
3245      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3246
3247      // Find the insert position again, in case we inserted an element into
3248      // PackExpansionTypes and invalidated our insert position.
3249      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3250    }
3251  }
3252
3253  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3254  Types.push_back(T);
3255  PackExpansionTypes.InsertNode(T, InsertPos);
3256  return QualType(T, 0);
3257}
3258
3259/// CmpProtocolNames - Comparison predicate for sorting protocols
3260/// alphabetically.
3261static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3262                            const ObjCProtocolDecl *RHS) {
3263  return LHS->getDeclName() < RHS->getDeclName();
3264}
3265
3266static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3267                                unsigned NumProtocols) {
3268  if (NumProtocols == 0) return true;
3269
3270  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3271    return false;
3272
3273  for (unsigned i = 1; i != NumProtocols; ++i)
3274    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3275        Protocols[i]->getCanonicalDecl() != Protocols[i])
3276      return false;
3277  return true;
3278}
3279
3280static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3281                                   unsigned &NumProtocols) {
3282  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3283
3284  // Sort protocols, keyed by name.
3285  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3286
3287  // Canonicalize.
3288  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3289    Protocols[I] = Protocols[I]->getCanonicalDecl();
3290
3291  // Remove duplicates.
3292  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3293  NumProtocols = ProtocolsEnd-Protocols;
3294}
3295
3296QualType ASTContext::getObjCObjectType(QualType BaseType,
3297                                       ObjCProtocolDecl * const *Protocols,
3298                                       unsigned NumProtocols) const {
3299  // If the base type is an interface and there aren't any protocols
3300  // to add, then the interface type will do just fine.
3301  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3302    return BaseType;
3303
3304  // Look in the folding set for an existing type.
3305  llvm::FoldingSetNodeID ID;
3306  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3307  void *InsertPos = 0;
3308  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3309    return QualType(QT, 0);
3310
3311  // Build the canonical type, which has the canonical base type and
3312  // a sorted-and-uniqued list of protocols.
3313  QualType Canonical;
3314  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3315  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3316    if (!ProtocolsSorted) {
3317      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3318                                                     Protocols + NumProtocols);
3319      unsigned UniqueCount = NumProtocols;
3320
3321      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3322      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3323                                    &Sorted[0], UniqueCount);
3324    } else {
3325      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3326                                    Protocols, NumProtocols);
3327    }
3328
3329    // Regenerate InsertPos.
3330    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3331  }
3332
3333  unsigned Size = sizeof(ObjCObjectTypeImpl);
3334  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3335  void *Mem = Allocate(Size, TypeAlignment);
3336  ObjCObjectTypeImpl *T =
3337    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3338
3339  Types.push_back(T);
3340  ObjCObjectTypes.InsertNode(T, InsertPos);
3341  return QualType(T, 0);
3342}
3343
3344/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3345/// the given object type.
3346QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3347  llvm::FoldingSetNodeID ID;
3348  ObjCObjectPointerType::Profile(ID, ObjectT);
3349
3350  void *InsertPos = 0;
3351  if (ObjCObjectPointerType *QT =
3352              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3353    return QualType(QT, 0);
3354
3355  // Find the canonical object type.
3356  QualType Canonical;
3357  if (!ObjectT.isCanonical()) {
3358    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3359
3360    // Regenerate InsertPos.
3361    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3362  }
3363
3364  // No match.
3365  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3366  ObjCObjectPointerType *QType =
3367    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3368
3369  Types.push_back(QType);
3370  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3371  return QualType(QType, 0);
3372}
3373
3374/// getObjCInterfaceType - Return the unique reference to the type for the
3375/// specified ObjC interface decl. The list of protocols is optional.
3376QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3377                                          ObjCInterfaceDecl *PrevDecl) const {
3378  if (Decl->TypeForDecl)
3379    return QualType(Decl->TypeForDecl, 0);
3380
3381  if (PrevDecl) {
3382    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3383    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3384    return QualType(PrevDecl->TypeForDecl, 0);
3385  }
3386
3387  // Prefer the definition, if there is one.
3388  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3389    Decl = Def;
3390
3391  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3392  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3393  Decl->TypeForDecl = T;
3394  Types.push_back(T);
3395  return QualType(T, 0);
3396}
3397
3398/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3399/// TypeOfExprType AST's (since expression's are never shared). For example,
3400/// multiple declarations that refer to "typeof(x)" all contain different
3401/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3402/// on canonical type's (which are always unique).
3403QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3404  TypeOfExprType *toe;
3405  if (tofExpr->isTypeDependent()) {
3406    llvm::FoldingSetNodeID ID;
3407    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3408
3409    void *InsertPos = 0;
3410    DependentTypeOfExprType *Canon
3411      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3412    if (Canon) {
3413      // We already have a "canonical" version of an identical, dependent
3414      // typeof(expr) type. Use that as our canonical type.
3415      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3416                                          QualType((TypeOfExprType*)Canon, 0));
3417    } else {
3418      // Build a new, canonical typeof(expr) type.
3419      Canon
3420        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3421      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3422      toe = Canon;
3423    }
3424  } else {
3425    QualType Canonical = getCanonicalType(tofExpr->getType());
3426    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3427  }
3428  Types.push_back(toe);
3429  return QualType(toe, 0);
3430}
3431
3432/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3433/// TypeOfType AST's. The only motivation to unique these nodes would be
3434/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3435/// an issue. This doesn't effect the type checker, since it operates
3436/// on canonical type's (which are always unique).
3437QualType ASTContext::getTypeOfType(QualType tofType) const {
3438  QualType Canonical = getCanonicalType(tofType);
3439  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3440  Types.push_back(tot);
3441  return QualType(tot, 0);
3442}
3443
3444
3445/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3446/// DecltypeType AST's. The only motivation to unique these nodes would be
3447/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3448/// an issue. This doesn't effect the type checker, since it operates
3449/// on canonical types (which are always unique).
3450QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3451  DecltypeType *dt;
3452
3453  // C++0x [temp.type]p2:
3454  //   If an expression e involves a template parameter, decltype(e) denotes a
3455  //   unique dependent type. Two such decltype-specifiers refer to the same
3456  //   type only if their expressions are equivalent (14.5.6.1).
3457  if (e->isInstantiationDependent()) {
3458    llvm::FoldingSetNodeID ID;
3459    DependentDecltypeType::Profile(ID, *this, e);
3460
3461    void *InsertPos = 0;
3462    DependentDecltypeType *Canon
3463      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3464    if (Canon) {
3465      // We already have a "canonical" version of an equivalent, dependent
3466      // decltype type. Use that as our canonical type.
3467      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3468                                       QualType((DecltypeType*)Canon, 0));
3469    } else {
3470      // Build a new, canonical typeof(expr) type.
3471      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3472      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3473      dt = Canon;
3474    }
3475  } else {
3476    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3477                                      getCanonicalType(UnderlyingType));
3478  }
3479  Types.push_back(dt);
3480  return QualType(dt, 0);
3481}
3482
3483/// getUnaryTransformationType - We don't unique these, since the memory
3484/// savings are minimal and these are rare.
3485QualType ASTContext::getUnaryTransformType(QualType BaseType,
3486                                           QualType UnderlyingType,
3487                                           UnaryTransformType::UTTKind Kind)
3488    const {
3489  UnaryTransformType *Ty =
3490    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3491                                                   Kind,
3492                                 UnderlyingType->isDependentType() ?
3493                                 QualType() : getCanonicalType(UnderlyingType));
3494  Types.push_back(Ty);
3495  return QualType(Ty, 0);
3496}
3497
3498/// getAutoType - We only unique auto types after they've been deduced.
3499QualType ASTContext::getAutoType(QualType DeducedType) const {
3500  void *InsertPos = 0;
3501  if (!DeducedType.isNull()) {
3502    // Look in the folding set for an existing type.
3503    llvm::FoldingSetNodeID ID;
3504    AutoType::Profile(ID, DeducedType);
3505    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3506      return QualType(AT, 0);
3507  }
3508
3509  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3510  Types.push_back(AT);
3511  if (InsertPos)
3512    AutoTypes.InsertNode(AT, InsertPos);
3513  return QualType(AT, 0);
3514}
3515
3516/// getAtomicType - Return the uniqued reference to the atomic type for
3517/// the given value type.
3518QualType ASTContext::getAtomicType(QualType T) const {
3519  // Unique pointers, to guarantee there is only one pointer of a particular
3520  // structure.
3521  llvm::FoldingSetNodeID ID;
3522  AtomicType::Profile(ID, T);
3523
3524  void *InsertPos = 0;
3525  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3526    return QualType(AT, 0);
3527
3528  // If the atomic value type isn't canonical, this won't be a canonical type
3529  // either, so fill in the canonical type field.
3530  QualType Canonical;
3531  if (!T.isCanonical()) {
3532    Canonical = getAtomicType(getCanonicalType(T));
3533
3534    // Get the new insert position for the node we care about.
3535    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3536    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3537  }
3538  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3539  Types.push_back(New);
3540  AtomicTypes.InsertNode(New, InsertPos);
3541  return QualType(New, 0);
3542}
3543
3544/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3545QualType ASTContext::getAutoDeductType() const {
3546  if (AutoDeductTy.isNull())
3547    AutoDeductTy = getAutoType(QualType());
3548  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3549  return AutoDeductTy;
3550}
3551
3552/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3553QualType ASTContext::getAutoRRefDeductType() const {
3554  if (AutoRRefDeductTy.isNull())
3555    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3556  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3557  return AutoRRefDeductTy;
3558}
3559
3560/// getTagDeclType - Return the unique reference to the type for the
3561/// specified TagDecl (struct/union/class/enum) decl.
3562QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3563  assert (Decl);
3564  // FIXME: What is the design on getTagDeclType when it requires casting
3565  // away const?  mutable?
3566  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3567}
3568
3569/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3570/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3571/// needs to agree with the definition in <stddef.h>.
3572CanQualType ASTContext::getSizeType() const {
3573  return getFromTargetType(Target->getSizeType());
3574}
3575
3576/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3577CanQualType ASTContext::getIntMaxType() const {
3578  return getFromTargetType(Target->getIntMaxType());
3579}
3580
3581/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3582CanQualType ASTContext::getUIntMaxType() const {
3583  return getFromTargetType(Target->getUIntMaxType());
3584}
3585
3586/// getSignedWCharType - Return the type of "signed wchar_t".
3587/// Used when in C++, as a GCC extension.
3588QualType ASTContext::getSignedWCharType() const {
3589  // FIXME: derive from "Target" ?
3590  return WCharTy;
3591}
3592
3593/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3594/// Used when in C++, as a GCC extension.
3595QualType ASTContext::getUnsignedWCharType() const {
3596  // FIXME: derive from "Target" ?
3597  return UnsignedIntTy;
3598}
3599
3600/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3601/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3602QualType ASTContext::getPointerDiffType() const {
3603  return getFromTargetType(Target->getPtrDiffType(0));
3604}
3605
3606/// \brief Return the unique type for "pid_t" defined in
3607/// <sys/types.h>. We need this to compute the correct type for vfork().
3608QualType ASTContext::getProcessIDType() const {
3609  return getFromTargetType(Target->getProcessIDType());
3610}
3611
3612//===----------------------------------------------------------------------===//
3613//                              Type Operators
3614//===----------------------------------------------------------------------===//
3615
3616CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3617  // Push qualifiers into arrays, and then discard any remaining
3618  // qualifiers.
3619  T = getCanonicalType(T);
3620  T = getVariableArrayDecayedType(T);
3621  const Type *Ty = T.getTypePtr();
3622  QualType Result;
3623  if (isa<ArrayType>(Ty)) {
3624    Result = getArrayDecayedType(QualType(Ty,0));
3625  } else if (isa<FunctionType>(Ty)) {
3626    Result = getPointerType(QualType(Ty, 0));
3627  } else {
3628    Result = QualType(Ty, 0);
3629  }
3630
3631  return CanQualType::CreateUnsafe(Result);
3632}
3633
3634QualType ASTContext::getUnqualifiedArrayType(QualType type,
3635                                             Qualifiers &quals) {
3636  SplitQualType splitType = type.getSplitUnqualifiedType();
3637
3638  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3639  // the unqualified desugared type and then drops it on the floor.
3640  // We then have to strip that sugar back off with
3641  // getUnqualifiedDesugaredType(), which is silly.
3642  const ArrayType *AT =
3643    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3644
3645  // If we don't have an array, just use the results in splitType.
3646  if (!AT) {
3647    quals = splitType.Quals;
3648    return QualType(splitType.Ty, 0);
3649  }
3650
3651  // Otherwise, recurse on the array's element type.
3652  QualType elementType = AT->getElementType();
3653  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3654
3655  // If that didn't change the element type, AT has no qualifiers, so we
3656  // can just use the results in splitType.
3657  if (elementType == unqualElementType) {
3658    assert(quals.empty()); // from the recursive call
3659    quals = splitType.Quals;
3660    return QualType(splitType.Ty, 0);
3661  }
3662
3663  // Otherwise, add in the qualifiers from the outermost type, then
3664  // build the type back up.
3665  quals.addConsistentQualifiers(splitType.Quals);
3666
3667  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3668    return getConstantArrayType(unqualElementType, CAT->getSize(),
3669                                CAT->getSizeModifier(), 0);
3670  }
3671
3672  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3673    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3674  }
3675
3676  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3677    return getVariableArrayType(unqualElementType,
3678                                VAT->getSizeExpr(),
3679                                VAT->getSizeModifier(),
3680                                VAT->getIndexTypeCVRQualifiers(),
3681                                VAT->getBracketsRange());
3682  }
3683
3684  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3685  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3686                                    DSAT->getSizeModifier(), 0,
3687                                    SourceRange());
3688}
3689
3690/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3691/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3692/// they point to and return true. If T1 and T2 aren't pointer types
3693/// or pointer-to-member types, or if they are not similar at this
3694/// level, returns false and leaves T1 and T2 unchanged. Top-level
3695/// qualifiers on T1 and T2 are ignored. This function will typically
3696/// be called in a loop that successively "unwraps" pointer and
3697/// pointer-to-member types to compare them at each level.
3698bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3699  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3700                    *T2PtrType = T2->getAs<PointerType>();
3701  if (T1PtrType && T2PtrType) {
3702    T1 = T1PtrType->getPointeeType();
3703    T2 = T2PtrType->getPointeeType();
3704    return true;
3705  }
3706
3707  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3708                          *T2MPType = T2->getAs<MemberPointerType>();
3709  if (T1MPType && T2MPType &&
3710      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3711                             QualType(T2MPType->getClass(), 0))) {
3712    T1 = T1MPType->getPointeeType();
3713    T2 = T2MPType->getPointeeType();
3714    return true;
3715  }
3716
3717  if (getLangOpts().ObjC1) {
3718    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3719                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3720    if (T1OPType && T2OPType) {
3721      T1 = T1OPType->getPointeeType();
3722      T2 = T2OPType->getPointeeType();
3723      return true;
3724    }
3725  }
3726
3727  // FIXME: Block pointers, too?
3728
3729  return false;
3730}
3731
3732DeclarationNameInfo
3733ASTContext::getNameForTemplate(TemplateName Name,
3734                               SourceLocation NameLoc) const {
3735  switch (Name.getKind()) {
3736  case TemplateName::QualifiedTemplate:
3737  case TemplateName::Template:
3738    // DNInfo work in progress: CHECKME: what about DNLoc?
3739    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3740                               NameLoc);
3741
3742  case TemplateName::OverloadedTemplate: {
3743    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3744    // DNInfo work in progress: CHECKME: what about DNLoc?
3745    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3746  }
3747
3748  case TemplateName::DependentTemplate: {
3749    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3750    DeclarationName DName;
3751    if (DTN->isIdentifier()) {
3752      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3753      return DeclarationNameInfo(DName, NameLoc);
3754    } else {
3755      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3756      // DNInfo work in progress: FIXME: source locations?
3757      DeclarationNameLoc DNLoc;
3758      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3759      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3760      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3761    }
3762  }
3763
3764  case TemplateName::SubstTemplateTemplateParm: {
3765    SubstTemplateTemplateParmStorage *subst
3766      = Name.getAsSubstTemplateTemplateParm();
3767    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3768                               NameLoc);
3769  }
3770
3771  case TemplateName::SubstTemplateTemplateParmPack: {
3772    SubstTemplateTemplateParmPackStorage *subst
3773      = Name.getAsSubstTemplateTemplateParmPack();
3774    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3775                               NameLoc);
3776  }
3777  }
3778
3779  llvm_unreachable("bad template name kind!");
3780}
3781
3782TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3783  switch (Name.getKind()) {
3784  case TemplateName::QualifiedTemplate:
3785  case TemplateName::Template: {
3786    TemplateDecl *Template = Name.getAsTemplateDecl();
3787    if (TemplateTemplateParmDecl *TTP
3788          = dyn_cast<TemplateTemplateParmDecl>(Template))
3789      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3790
3791    // The canonical template name is the canonical template declaration.
3792    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3793  }
3794
3795  case TemplateName::OverloadedTemplate:
3796    llvm_unreachable("cannot canonicalize overloaded template");
3797
3798  case TemplateName::DependentTemplate: {
3799    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3800    assert(DTN && "Non-dependent template names must refer to template decls.");
3801    return DTN->CanonicalTemplateName;
3802  }
3803
3804  case TemplateName::SubstTemplateTemplateParm: {
3805    SubstTemplateTemplateParmStorage *subst
3806      = Name.getAsSubstTemplateTemplateParm();
3807    return getCanonicalTemplateName(subst->getReplacement());
3808  }
3809
3810  case TemplateName::SubstTemplateTemplateParmPack: {
3811    SubstTemplateTemplateParmPackStorage *subst
3812                                  = Name.getAsSubstTemplateTemplateParmPack();
3813    TemplateTemplateParmDecl *canonParameter
3814      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3815    TemplateArgument canonArgPack
3816      = getCanonicalTemplateArgument(subst->getArgumentPack());
3817    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3818  }
3819  }
3820
3821  llvm_unreachable("bad template name!");
3822}
3823
3824bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3825  X = getCanonicalTemplateName(X);
3826  Y = getCanonicalTemplateName(Y);
3827  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3828}
3829
3830TemplateArgument
3831ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3832  switch (Arg.getKind()) {
3833    case TemplateArgument::Null:
3834      return Arg;
3835
3836    case TemplateArgument::Expression:
3837      return Arg;
3838
3839    case TemplateArgument::Declaration: {
3840      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3841      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3842    }
3843
3844    case TemplateArgument::NullPtr:
3845      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3846                              /*isNullPtr*/true);
3847
3848    case TemplateArgument::Template:
3849      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3850
3851    case TemplateArgument::TemplateExpansion:
3852      return TemplateArgument(getCanonicalTemplateName(
3853                                         Arg.getAsTemplateOrTemplatePattern()),
3854                              Arg.getNumTemplateExpansions());
3855
3856    case TemplateArgument::Integral:
3857      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3858
3859    case TemplateArgument::Type:
3860      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3861
3862    case TemplateArgument::Pack: {
3863      if (Arg.pack_size() == 0)
3864        return Arg;
3865
3866      TemplateArgument *CanonArgs
3867        = new (*this) TemplateArgument[Arg.pack_size()];
3868      unsigned Idx = 0;
3869      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3870                                        AEnd = Arg.pack_end();
3871           A != AEnd; (void)++A, ++Idx)
3872        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3873
3874      return TemplateArgument(CanonArgs, Arg.pack_size());
3875    }
3876  }
3877
3878  // Silence GCC warning
3879  llvm_unreachable("Unhandled template argument kind");
3880}
3881
3882NestedNameSpecifier *
3883ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3884  if (!NNS)
3885    return 0;
3886
3887  switch (NNS->getKind()) {
3888  case NestedNameSpecifier::Identifier:
3889    // Canonicalize the prefix but keep the identifier the same.
3890    return NestedNameSpecifier::Create(*this,
3891                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3892                                       NNS->getAsIdentifier());
3893
3894  case NestedNameSpecifier::Namespace:
3895    // A namespace is canonical; build a nested-name-specifier with
3896    // this namespace and no prefix.
3897    return NestedNameSpecifier::Create(*this, 0,
3898                                 NNS->getAsNamespace()->getOriginalNamespace());
3899
3900  case NestedNameSpecifier::NamespaceAlias:
3901    // A namespace is canonical; build a nested-name-specifier with
3902    // this namespace and no prefix.
3903    return NestedNameSpecifier::Create(*this, 0,
3904                                    NNS->getAsNamespaceAlias()->getNamespace()
3905                                                      ->getOriginalNamespace());
3906
3907  case NestedNameSpecifier::TypeSpec:
3908  case NestedNameSpecifier::TypeSpecWithTemplate: {
3909    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3910
3911    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3912    // break it apart into its prefix and identifier, then reconsititute those
3913    // as the canonical nested-name-specifier. This is required to canonicalize
3914    // a dependent nested-name-specifier involving typedefs of dependent-name
3915    // types, e.g.,
3916    //   typedef typename T::type T1;
3917    //   typedef typename T1::type T2;
3918    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3919      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3920                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3921
3922    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3923    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3924    // first place?
3925    return NestedNameSpecifier::Create(*this, 0, false,
3926                                       const_cast<Type*>(T.getTypePtr()));
3927  }
3928
3929  case NestedNameSpecifier::Global:
3930    // The global specifier is canonical and unique.
3931    return NNS;
3932  }
3933
3934  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3935}
3936
3937
3938const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3939  // Handle the non-qualified case efficiently.
3940  if (!T.hasLocalQualifiers()) {
3941    // Handle the common positive case fast.
3942    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3943      return AT;
3944  }
3945
3946  // Handle the common negative case fast.
3947  if (!isa<ArrayType>(T.getCanonicalType()))
3948    return 0;
3949
3950  // Apply any qualifiers from the array type to the element type.  This
3951  // implements C99 6.7.3p8: "If the specification of an array type includes
3952  // any type qualifiers, the element type is so qualified, not the array type."
3953
3954  // If we get here, we either have type qualifiers on the type, or we have
3955  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3956  // we must propagate them down into the element type.
3957
3958  SplitQualType split = T.getSplitDesugaredType();
3959  Qualifiers qs = split.Quals;
3960
3961  // If we have a simple case, just return now.
3962  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3963  if (ATy == 0 || qs.empty())
3964    return ATy;
3965
3966  // Otherwise, we have an array and we have qualifiers on it.  Push the
3967  // qualifiers into the array element type and return a new array type.
3968  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3969
3970  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3971    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3972                                                CAT->getSizeModifier(),
3973                                           CAT->getIndexTypeCVRQualifiers()));
3974  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3975    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3976                                                  IAT->getSizeModifier(),
3977                                           IAT->getIndexTypeCVRQualifiers()));
3978
3979  if (const DependentSizedArrayType *DSAT
3980        = dyn_cast<DependentSizedArrayType>(ATy))
3981    return cast<ArrayType>(
3982                     getDependentSizedArrayType(NewEltTy,
3983                                                DSAT->getSizeExpr(),
3984                                                DSAT->getSizeModifier(),
3985                                              DSAT->getIndexTypeCVRQualifiers(),
3986                                                DSAT->getBracketsRange()));
3987
3988  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3989  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3990                                              VAT->getSizeExpr(),
3991                                              VAT->getSizeModifier(),
3992                                              VAT->getIndexTypeCVRQualifiers(),
3993                                              VAT->getBracketsRange()));
3994}
3995
3996QualType ASTContext::getAdjustedParameterType(QualType T) const {
3997  // C99 6.7.5.3p7:
3998  //   A declaration of a parameter as "array of type" shall be
3999  //   adjusted to "qualified pointer to type", where the type
4000  //   qualifiers (if any) are those specified within the [ and ] of
4001  //   the array type derivation.
4002  if (T->isArrayType())
4003    return getArrayDecayedType(T);
4004
4005  // C99 6.7.5.3p8:
4006  //   A declaration of a parameter as "function returning type"
4007  //   shall be adjusted to "pointer to function returning type", as
4008  //   in 6.3.2.1.
4009  if (T->isFunctionType())
4010    return getPointerType(T);
4011
4012  return T;
4013}
4014
4015QualType ASTContext::getSignatureParameterType(QualType T) const {
4016  T = getVariableArrayDecayedType(T);
4017  T = getAdjustedParameterType(T);
4018  return T.getUnqualifiedType();
4019}
4020
4021/// getArrayDecayedType - Return the properly qualified result of decaying the
4022/// specified array type to a pointer.  This operation is non-trivial when
4023/// handling typedefs etc.  The canonical type of "T" must be an array type,
4024/// this returns a pointer to a properly qualified element of the array.
4025///
4026/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4027QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4028  // Get the element type with 'getAsArrayType' so that we don't lose any
4029  // typedefs in the element type of the array.  This also handles propagation
4030  // of type qualifiers from the array type into the element type if present
4031  // (C99 6.7.3p8).
4032  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4033  assert(PrettyArrayType && "Not an array type!");
4034
4035  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4036
4037  // int x[restrict 4] ->  int *restrict
4038  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4039}
4040
4041QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4042  return getBaseElementType(array->getElementType());
4043}
4044
4045QualType ASTContext::getBaseElementType(QualType type) const {
4046  Qualifiers qs;
4047  while (true) {
4048    SplitQualType split = type.getSplitDesugaredType();
4049    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4050    if (!array) break;
4051
4052    type = array->getElementType();
4053    qs.addConsistentQualifiers(split.Quals);
4054  }
4055
4056  return getQualifiedType(type, qs);
4057}
4058
4059/// getConstantArrayElementCount - Returns number of constant array elements.
4060uint64_t
4061ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4062  uint64_t ElementCount = 1;
4063  do {
4064    ElementCount *= CA->getSize().getZExtValue();
4065    CA = dyn_cast_or_null<ConstantArrayType>(
4066      CA->getElementType()->getAsArrayTypeUnsafe());
4067  } while (CA);
4068  return ElementCount;
4069}
4070
4071/// getFloatingRank - Return a relative rank for floating point types.
4072/// This routine will assert if passed a built-in type that isn't a float.
4073static FloatingRank getFloatingRank(QualType T) {
4074  if (const ComplexType *CT = T->getAs<ComplexType>())
4075    return getFloatingRank(CT->getElementType());
4076
4077  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4078  switch (T->getAs<BuiltinType>()->getKind()) {
4079  default: llvm_unreachable("getFloatingRank(): not a floating type");
4080  case BuiltinType::Half:       return HalfRank;
4081  case BuiltinType::Float:      return FloatRank;
4082  case BuiltinType::Double:     return DoubleRank;
4083  case BuiltinType::LongDouble: return LongDoubleRank;
4084  }
4085}
4086
4087/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4088/// point or a complex type (based on typeDomain/typeSize).
4089/// 'typeDomain' is a real floating point or complex type.
4090/// 'typeSize' is a real floating point or complex type.
4091QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4092                                                       QualType Domain) const {
4093  FloatingRank EltRank = getFloatingRank(Size);
4094  if (Domain->isComplexType()) {
4095    switch (EltRank) {
4096    case HalfRank: llvm_unreachable("Complex half is not supported");
4097    case FloatRank:      return FloatComplexTy;
4098    case DoubleRank:     return DoubleComplexTy;
4099    case LongDoubleRank: return LongDoubleComplexTy;
4100    }
4101  }
4102
4103  assert(Domain->isRealFloatingType() && "Unknown domain!");
4104  switch (EltRank) {
4105  case HalfRank:       return HalfTy;
4106  case FloatRank:      return FloatTy;
4107  case DoubleRank:     return DoubleTy;
4108  case LongDoubleRank: return LongDoubleTy;
4109  }
4110  llvm_unreachable("getFloatingRank(): illegal value for rank");
4111}
4112
4113/// getFloatingTypeOrder - Compare the rank of the two specified floating
4114/// point types, ignoring the domain of the type (i.e. 'double' ==
4115/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4116/// LHS < RHS, return -1.
4117int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4118  FloatingRank LHSR = getFloatingRank(LHS);
4119  FloatingRank RHSR = getFloatingRank(RHS);
4120
4121  if (LHSR == RHSR)
4122    return 0;
4123  if (LHSR > RHSR)
4124    return 1;
4125  return -1;
4126}
4127
4128/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4129/// routine will assert if passed a built-in type that isn't an integer or enum,
4130/// or if it is not canonicalized.
4131unsigned ASTContext::getIntegerRank(const Type *T) const {
4132  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4133
4134  switch (cast<BuiltinType>(T)->getKind()) {
4135  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4136  case BuiltinType::Bool:
4137    return 1 + (getIntWidth(BoolTy) << 3);
4138  case BuiltinType::Char_S:
4139  case BuiltinType::Char_U:
4140  case BuiltinType::SChar:
4141  case BuiltinType::UChar:
4142    return 2 + (getIntWidth(CharTy) << 3);
4143  case BuiltinType::Short:
4144  case BuiltinType::UShort:
4145    return 3 + (getIntWidth(ShortTy) << 3);
4146  case BuiltinType::Int:
4147  case BuiltinType::UInt:
4148    return 4 + (getIntWidth(IntTy) << 3);
4149  case BuiltinType::Long:
4150  case BuiltinType::ULong:
4151    return 5 + (getIntWidth(LongTy) << 3);
4152  case BuiltinType::LongLong:
4153  case BuiltinType::ULongLong:
4154    return 6 + (getIntWidth(LongLongTy) << 3);
4155  case BuiltinType::Int128:
4156  case BuiltinType::UInt128:
4157    return 7 + (getIntWidth(Int128Ty) << 3);
4158  }
4159}
4160
4161/// \brief Whether this is a promotable bitfield reference according
4162/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4163///
4164/// \returns the type this bit-field will promote to, or NULL if no
4165/// promotion occurs.
4166QualType ASTContext::isPromotableBitField(Expr *E) const {
4167  if (E->isTypeDependent() || E->isValueDependent())
4168    return QualType();
4169
4170  FieldDecl *Field = E->getBitField();
4171  if (!Field)
4172    return QualType();
4173
4174  QualType FT = Field->getType();
4175
4176  uint64_t BitWidth = Field->getBitWidthValue(*this);
4177  uint64_t IntSize = getTypeSize(IntTy);
4178  // GCC extension compatibility: if the bit-field size is less than or equal
4179  // to the size of int, it gets promoted no matter what its type is.
4180  // For instance, unsigned long bf : 4 gets promoted to signed int.
4181  if (BitWidth < IntSize)
4182    return IntTy;
4183
4184  if (BitWidth == IntSize)
4185    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4186
4187  // Types bigger than int are not subject to promotions, and therefore act
4188  // like the base type.
4189  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4190  // is ridiculous.
4191  return QualType();
4192}
4193
4194/// getPromotedIntegerType - Returns the type that Promotable will
4195/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4196/// integer type.
4197QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4198  assert(!Promotable.isNull());
4199  assert(Promotable->isPromotableIntegerType());
4200  if (const EnumType *ET = Promotable->getAs<EnumType>())
4201    return ET->getDecl()->getPromotionType();
4202
4203  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4204    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4205    // (3.9.1) can be converted to a prvalue of the first of the following
4206    // types that can represent all the values of its underlying type:
4207    // int, unsigned int, long int, unsigned long int, long long int, or
4208    // unsigned long long int [...]
4209    // FIXME: Is there some better way to compute this?
4210    if (BT->getKind() == BuiltinType::WChar_S ||
4211        BT->getKind() == BuiltinType::WChar_U ||
4212        BT->getKind() == BuiltinType::Char16 ||
4213        BT->getKind() == BuiltinType::Char32) {
4214      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4215      uint64_t FromSize = getTypeSize(BT);
4216      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4217                                  LongLongTy, UnsignedLongLongTy };
4218      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4219        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4220        if (FromSize < ToSize ||
4221            (FromSize == ToSize &&
4222             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4223          return PromoteTypes[Idx];
4224      }
4225      llvm_unreachable("char type should fit into long long");
4226    }
4227  }
4228
4229  // At this point, we should have a signed or unsigned integer type.
4230  if (Promotable->isSignedIntegerType())
4231    return IntTy;
4232  uint64_t PromotableSize = getIntWidth(Promotable);
4233  uint64_t IntSize = getIntWidth(IntTy);
4234  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4235  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4236}
4237
4238/// \brief Recurses in pointer/array types until it finds an objc retainable
4239/// type and returns its ownership.
4240Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4241  while (!T.isNull()) {
4242    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4243      return T.getObjCLifetime();
4244    if (T->isArrayType())
4245      T = getBaseElementType(T);
4246    else if (const PointerType *PT = T->getAs<PointerType>())
4247      T = PT->getPointeeType();
4248    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4249      T = RT->getPointeeType();
4250    else
4251      break;
4252  }
4253
4254  return Qualifiers::OCL_None;
4255}
4256
4257/// getIntegerTypeOrder - Returns the highest ranked integer type:
4258/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4259/// LHS < RHS, return -1.
4260int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4261  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4262  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4263  if (LHSC == RHSC) return 0;
4264
4265  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4266  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4267
4268  unsigned LHSRank = getIntegerRank(LHSC);
4269  unsigned RHSRank = getIntegerRank(RHSC);
4270
4271  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4272    if (LHSRank == RHSRank) return 0;
4273    return LHSRank > RHSRank ? 1 : -1;
4274  }
4275
4276  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4277  if (LHSUnsigned) {
4278    // If the unsigned [LHS] type is larger, return it.
4279    if (LHSRank >= RHSRank)
4280      return 1;
4281
4282    // If the signed type can represent all values of the unsigned type, it
4283    // wins.  Because we are dealing with 2's complement and types that are
4284    // powers of two larger than each other, this is always safe.
4285    return -1;
4286  }
4287
4288  // If the unsigned [RHS] type is larger, return it.
4289  if (RHSRank >= LHSRank)
4290    return -1;
4291
4292  // If the signed type can represent all values of the unsigned type, it
4293  // wins.  Because we are dealing with 2's complement and types that are
4294  // powers of two larger than each other, this is always safe.
4295  return 1;
4296}
4297
4298static RecordDecl *
4299CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4300                 DeclContext *DC, IdentifierInfo *Id) {
4301  SourceLocation Loc;
4302  if (Ctx.getLangOpts().CPlusPlus)
4303    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4304  else
4305    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4306}
4307
4308// getCFConstantStringType - Return the type used for constant CFStrings.
4309QualType ASTContext::getCFConstantStringType() const {
4310  if (!CFConstantStringTypeDecl) {
4311    CFConstantStringTypeDecl =
4312      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4313                       &Idents.get("NSConstantString"));
4314    CFConstantStringTypeDecl->startDefinition();
4315
4316    QualType FieldTypes[4];
4317
4318    // const int *isa;
4319    FieldTypes[0] = getPointerType(IntTy.withConst());
4320    // int flags;
4321    FieldTypes[1] = IntTy;
4322    // const char *str;
4323    FieldTypes[2] = getPointerType(CharTy.withConst());
4324    // long length;
4325    FieldTypes[3] = LongTy;
4326
4327    // Create fields
4328    for (unsigned i = 0; i < 4; ++i) {
4329      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4330                                           SourceLocation(),
4331                                           SourceLocation(), 0,
4332                                           FieldTypes[i], /*TInfo=*/0,
4333                                           /*BitWidth=*/0,
4334                                           /*Mutable=*/false,
4335                                           ICIS_NoInit);
4336      Field->setAccess(AS_public);
4337      CFConstantStringTypeDecl->addDecl(Field);
4338    }
4339
4340    CFConstantStringTypeDecl->completeDefinition();
4341  }
4342
4343  return getTagDeclType(CFConstantStringTypeDecl);
4344}
4345
4346QualType ASTContext::getObjCSuperType() const {
4347  if (ObjCSuperType.isNull()) {
4348    RecordDecl *ObjCSuperTypeDecl  =
4349      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4350    TUDecl->addDecl(ObjCSuperTypeDecl);
4351    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4352  }
4353  return ObjCSuperType;
4354}
4355
4356void ASTContext::setCFConstantStringType(QualType T) {
4357  const RecordType *Rec = T->getAs<RecordType>();
4358  assert(Rec && "Invalid CFConstantStringType");
4359  CFConstantStringTypeDecl = Rec->getDecl();
4360}
4361
4362QualType ASTContext::getBlockDescriptorType() const {
4363  if (BlockDescriptorType)
4364    return getTagDeclType(BlockDescriptorType);
4365
4366  RecordDecl *T;
4367  // FIXME: Needs the FlagAppleBlock bit.
4368  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4369                       &Idents.get("__block_descriptor"));
4370  T->startDefinition();
4371
4372  QualType FieldTypes[] = {
4373    UnsignedLongTy,
4374    UnsignedLongTy,
4375  };
4376
4377  const char *FieldNames[] = {
4378    "reserved",
4379    "Size"
4380  };
4381
4382  for (size_t i = 0; i < 2; ++i) {
4383    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4384                                         SourceLocation(),
4385                                         &Idents.get(FieldNames[i]),
4386                                         FieldTypes[i], /*TInfo=*/0,
4387                                         /*BitWidth=*/0,
4388                                         /*Mutable=*/false,
4389                                         ICIS_NoInit);
4390    Field->setAccess(AS_public);
4391    T->addDecl(Field);
4392  }
4393
4394  T->completeDefinition();
4395
4396  BlockDescriptorType = T;
4397
4398  return getTagDeclType(BlockDescriptorType);
4399}
4400
4401QualType ASTContext::getBlockDescriptorExtendedType() const {
4402  if (BlockDescriptorExtendedType)
4403    return getTagDeclType(BlockDescriptorExtendedType);
4404
4405  RecordDecl *T;
4406  // FIXME: Needs the FlagAppleBlock bit.
4407  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4408                       &Idents.get("__block_descriptor_withcopydispose"));
4409  T->startDefinition();
4410
4411  QualType FieldTypes[] = {
4412    UnsignedLongTy,
4413    UnsignedLongTy,
4414    getPointerType(VoidPtrTy),
4415    getPointerType(VoidPtrTy)
4416  };
4417
4418  const char *FieldNames[] = {
4419    "reserved",
4420    "Size",
4421    "CopyFuncPtr",
4422    "DestroyFuncPtr"
4423  };
4424
4425  for (size_t i = 0; i < 4; ++i) {
4426    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4427                                         SourceLocation(),
4428                                         &Idents.get(FieldNames[i]),
4429                                         FieldTypes[i], /*TInfo=*/0,
4430                                         /*BitWidth=*/0,
4431                                         /*Mutable=*/false,
4432                                         ICIS_NoInit);
4433    Field->setAccess(AS_public);
4434    T->addDecl(Field);
4435  }
4436
4437  T->completeDefinition();
4438
4439  BlockDescriptorExtendedType = T;
4440
4441  return getTagDeclType(BlockDescriptorExtendedType);
4442}
4443
4444/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4445/// requires copy/dispose. Note that this must match the logic
4446/// in buildByrefHelpers.
4447bool ASTContext::BlockRequiresCopying(QualType Ty,
4448                                      const VarDecl *D) {
4449  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4450    const Expr *copyExpr = getBlockVarCopyInits(D);
4451    if (!copyExpr && record->hasTrivialDestructor()) return false;
4452
4453    return true;
4454  }
4455
4456  if (!Ty->isObjCRetainableType()) return false;
4457
4458  Qualifiers qs = Ty.getQualifiers();
4459
4460  // If we have lifetime, that dominates.
4461  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4462    assert(getLangOpts().ObjCAutoRefCount);
4463
4464    switch (lifetime) {
4465      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4466
4467      // These are just bits as far as the runtime is concerned.
4468      case Qualifiers::OCL_ExplicitNone:
4469      case Qualifiers::OCL_Autoreleasing:
4470        return false;
4471
4472      // Tell the runtime that this is ARC __weak, called by the
4473      // byref routines.
4474      case Qualifiers::OCL_Weak:
4475      // ARC __strong __block variables need to be retained.
4476      case Qualifiers::OCL_Strong:
4477        return true;
4478    }
4479    llvm_unreachable("fell out of lifetime switch!");
4480  }
4481  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4482          Ty->isObjCObjectPointerType());
4483}
4484
4485bool ASTContext::getByrefLifetime(QualType Ty,
4486                              Qualifiers::ObjCLifetime &LifeTime,
4487                              bool &HasByrefExtendedLayout) const {
4488
4489  if (!getLangOpts().ObjC1 ||
4490      getLangOpts().getGC() != LangOptions::NonGC)
4491    return false;
4492
4493  HasByrefExtendedLayout = false;
4494  if (Ty->isRecordType()) {
4495    HasByrefExtendedLayout = true;
4496    LifeTime = Qualifiers::OCL_None;
4497  }
4498  else if (getLangOpts().ObjCAutoRefCount)
4499    LifeTime = Ty.getObjCLifetime();
4500  // MRR.
4501  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4502    LifeTime = Qualifiers::OCL_ExplicitNone;
4503  else
4504    LifeTime = Qualifiers::OCL_None;
4505  return true;
4506}
4507
4508TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4509  if (!ObjCInstanceTypeDecl)
4510    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4511                                               getTranslationUnitDecl(),
4512                                               SourceLocation(),
4513                                               SourceLocation(),
4514                                               &Idents.get("instancetype"),
4515                                     getTrivialTypeSourceInfo(getObjCIdType()));
4516  return ObjCInstanceTypeDecl;
4517}
4518
4519// This returns true if a type has been typedefed to BOOL:
4520// typedef <type> BOOL;
4521static bool isTypeTypedefedAsBOOL(QualType T) {
4522  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4523    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4524      return II->isStr("BOOL");
4525
4526  return false;
4527}
4528
4529/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4530/// purpose.
4531CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4532  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4533    return CharUnits::Zero();
4534
4535  CharUnits sz = getTypeSizeInChars(type);
4536
4537  // Make all integer and enum types at least as large as an int
4538  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4539    sz = std::max(sz, getTypeSizeInChars(IntTy));
4540  // Treat arrays as pointers, since that's how they're passed in.
4541  else if (type->isArrayType())
4542    sz = getTypeSizeInChars(VoidPtrTy);
4543  return sz;
4544}
4545
4546static inline
4547std::string charUnitsToString(const CharUnits &CU) {
4548  return llvm::itostr(CU.getQuantity());
4549}
4550
4551/// getObjCEncodingForBlock - Return the encoded type for this block
4552/// declaration.
4553std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4554  std::string S;
4555
4556  const BlockDecl *Decl = Expr->getBlockDecl();
4557  QualType BlockTy =
4558      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4559  // Encode result type.
4560  if (getLangOpts().EncodeExtendedBlockSig)
4561    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4562                            BlockTy->getAs<FunctionType>()->getResultType(),
4563                            S, true /*Extended*/);
4564  else
4565    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4566                           S);
4567  // Compute size of all parameters.
4568  // Start with computing size of a pointer in number of bytes.
4569  // FIXME: There might(should) be a better way of doing this computation!
4570  SourceLocation Loc;
4571  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4572  CharUnits ParmOffset = PtrSize;
4573  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4574       E = Decl->param_end(); PI != E; ++PI) {
4575    QualType PType = (*PI)->getType();
4576    CharUnits sz = getObjCEncodingTypeSize(PType);
4577    if (sz.isZero())
4578      continue;
4579    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4580    ParmOffset += sz;
4581  }
4582  // Size of the argument frame
4583  S += charUnitsToString(ParmOffset);
4584  // Block pointer and offset.
4585  S += "@?0";
4586
4587  // Argument types.
4588  ParmOffset = PtrSize;
4589  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4590       Decl->param_end(); PI != E; ++PI) {
4591    ParmVarDecl *PVDecl = *PI;
4592    QualType PType = PVDecl->getOriginalType();
4593    if (const ArrayType *AT =
4594          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4595      // Use array's original type only if it has known number of
4596      // elements.
4597      if (!isa<ConstantArrayType>(AT))
4598        PType = PVDecl->getType();
4599    } else if (PType->isFunctionType())
4600      PType = PVDecl->getType();
4601    if (getLangOpts().EncodeExtendedBlockSig)
4602      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4603                                      S, true /*Extended*/);
4604    else
4605      getObjCEncodingForType(PType, S);
4606    S += charUnitsToString(ParmOffset);
4607    ParmOffset += getObjCEncodingTypeSize(PType);
4608  }
4609
4610  return S;
4611}
4612
4613bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4614                                                std::string& S) {
4615  // Encode result type.
4616  getObjCEncodingForType(Decl->getResultType(), S);
4617  CharUnits ParmOffset;
4618  // Compute size of all parameters.
4619  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4620       E = Decl->param_end(); PI != E; ++PI) {
4621    QualType PType = (*PI)->getType();
4622    CharUnits sz = getObjCEncodingTypeSize(PType);
4623    if (sz.isZero())
4624      continue;
4625
4626    assert (sz.isPositive() &&
4627        "getObjCEncodingForFunctionDecl - Incomplete param type");
4628    ParmOffset += sz;
4629  }
4630  S += charUnitsToString(ParmOffset);
4631  ParmOffset = CharUnits::Zero();
4632
4633  // Argument types.
4634  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4635       E = Decl->param_end(); PI != E; ++PI) {
4636    ParmVarDecl *PVDecl = *PI;
4637    QualType PType = PVDecl->getOriginalType();
4638    if (const ArrayType *AT =
4639          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4640      // Use array's original type only if it has known number of
4641      // elements.
4642      if (!isa<ConstantArrayType>(AT))
4643        PType = PVDecl->getType();
4644    } else if (PType->isFunctionType())
4645      PType = PVDecl->getType();
4646    getObjCEncodingForType(PType, S);
4647    S += charUnitsToString(ParmOffset);
4648    ParmOffset += getObjCEncodingTypeSize(PType);
4649  }
4650
4651  return false;
4652}
4653
4654/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4655/// method parameter or return type. If Extended, include class names and
4656/// block object types.
4657void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4658                                                   QualType T, std::string& S,
4659                                                   bool Extended) const {
4660  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4661  getObjCEncodingForTypeQualifier(QT, S);
4662  // Encode parameter type.
4663  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4664                             true     /*OutermostType*/,
4665                             false    /*EncodingProperty*/,
4666                             false    /*StructField*/,
4667                             Extended /*EncodeBlockParameters*/,
4668                             Extended /*EncodeClassNames*/);
4669}
4670
4671/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4672/// declaration.
4673bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4674                                              std::string& S,
4675                                              bool Extended) const {
4676  // FIXME: This is not very efficient.
4677  // Encode return type.
4678  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4679                                    Decl->getResultType(), S, Extended);
4680  // Compute size of all parameters.
4681  // Start with computing size of a pointer in number of bytes.
4682  // FIXME: There might(should) be a better way of doing this computation!
4683  SourceLocation Loc;
4684  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4685  // The first two arguments (self and _cmd) are pointers; account for
4686  // their size.
4687  CharUnits ParmOffset = 2 * PtrSize;
4688  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4689       E = Decl->sel_param_end(); PI != E; ++PI) {
4690    QualType PType = (*PI)->getType();
4691    CharUnits sz = getObjCEncodingTypeSize(PType);
4692    if (sz.isZero())
4693      continue;
4694
4695    assert (sz.isPositive() &&
4696        "getObjCEncodingForMethodDecl - Incomplete param type");
4697    ParmOffset += sz;
4698  }
4699  S += charUnitsToString(ParmOffset);
4700  S += "@0:";
4701  S += charUnitsToString(PtrSize);
4702
4703  // Argument types.
4704  ParmOffset = 2 * PtrSize;
4705  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4706       E = Decl->sel_param_end(); PI != E; ++PI) {
4707    const ParmVarDecl *PVDecl = *PI;
4708    QualType PType = PVDecl->getOriginalType();
4709    if (const ArrayType *AT =
4710          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4711      // Use array's original type only if it has known number of
4712      // elements.
4713      if (!isa<ConstantArrayType>(AT))
4714        PType = PVDecl->getType();
4715    } else if (PType->isFunctionType())
4716      PType = PVDecl->getType();
4717    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4718                                      PType, S, Extended);
4719    S += charUnitsToString(ParmOffset);
4720    ParmOffset += getObjCEncodingTypeSize(PType);
4721  }
4722
4723  return false;
4724}
4725
4726/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4727/// property declaration. If non-NULL, Container must be either an
4728/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4729/// NULL when getting encodings for protocol properties.
4730/// Property attributes are stored as a comma-delimited C string. The simple
4731/// attributes readonly and bycopy are encoded as single characters. The
4732/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4733/// encoded as single characters, followed by an identifier. Property types
4734/// are also encoded as a parametrized attribute. The characters used to encode
4735/// these attributes are defined by the following enumeration:
4736/// @code
4737/// enum PropertyAttributes {
4738/// kPropertyReadOnly = 'R',   // property is read-only.
4739/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4740/// kPropertyByref = '&',  // property is a reference to the value last assigned
4741/// kPropertyDynamic = 'D',    // property is dynamic
4742/// kPropertyGetter = 'G',     // followed by getter selector name
4743/// kPropertySetter = 'S',     // followed by setter selector name
4744/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4745/// kPropertyType = 'T'              // followed by old-style type encoding.
4746/// kPropertyWeak = 'W'              // 'weak' property
4747/// kPropertyStrong = 'P'            // property GC'able
4748/// kPropertyNonAtomic = 'N'         // property non-atomic
4749/// };
4750/// @endcode
4751void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4752                                                const Decl *Container,
4753                                                std::string& S) const {
4754  // Collect information from the property implementation decl(s).
4755  bool Dynamic = false;
4756  ObjCPropertyImplDecl *SynthesizePID = 0;
4757
4758  // FIXME: Duplicated code due to poor abstraction.
4759  if (Container) {
4760    if (const ObjCCategoryImplDecl *CID =
4761        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4762      for (ObjCCategoryImplDecl::propimpl_iterator
4763             i = CID->propimpl_begin(), e = CID->propimpl_end();
4764           i != e; ++i) {
4765        ObjCPropertyImplDecl *PID = *i;
4766        if (PID->getPropertyDecl() == PD) {
4767          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4768            Dynamic = true;
4769          } else {
4770            SynthesizePID = PID;
4771          }
4772        }
4773      }
4774    } else {
4775      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4776      for (ObjCCategoryImplDecl::propimpl_iterator
4777             i = OID->propimpl_begin(), e = OID->propimpl_end();
4778           i != e; ++i) {
4779        ObjCPropertyImplDecl *PID = *i;
4780        if (PID->getPropertyDecl() == PD) {
4781          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4782            Dynamic = true;
4783          } else {
4784            SynthesizePID = PID;
4785          }
4786        }
4787      }
4788    }
4789  }
4790
4791  // FIXME: This is not very efficient.
4792  S = "T";
4793
4794  // Encode result type.
4795  // GCC has some special rules regarding encoding of properties which
4796  // closely resembles encoding of ivars.
4797  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4798                             true /* outermost type */,
4799                             true /* encoding for property */);
4800
4801  if (PD->isReadOnly()) {
4802    S += ",R";
4803  } else {
4804    switch (PD->getSetterKind()) {
4805    case ObjCPropertyDecl::Assign: break;
4806    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4807    case ObjCPropertyDecl::Retain: S += ",&"; break;
4808    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4809    }
4810  }
4811
4812  // It really isn't clear at all what this means, since properties
4813  // are "dynamic by default".
4814  if (Dynamic)
4815    S += ",D";
4816
4817  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4818    S += ",N";
4819
4820  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4821    S += ",G";
4822    S += PD->getGetterName().getAsString();
4823  }
4824
4825  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4826    S += ",S";
4827    S += PD->getSetterName().getAsString();
4828  }
4829
4830  if (SynthesizePID) {
4831    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4832    S += ",V";
4833    S += OID->getNameAsString();
4834  }
4835
4836  // FIXME: OBJCGC: weak & strong
4837}
4838
4839/// getLegacyIntegralTypeEncoding -
4840/// Another legacy compatibility encoding: 32-bit longs are encoded as
4841/// 'l' or 'L' , but not always.  For typedefs, we need to use
4842/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4843///
4844void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4845  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4846    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4847      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4848        PointeeTy = UnsignedIntTy;
4849      else
4850        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4851          PointeeTy = IntTy;
4852    }
4853  }
4854}
4855
4856void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4857                                        const FieldDecl *Field) const {
4858  // We follow the behavior of gcc, expanding structures which are
4859  // directly pointed to, and expanding embedded structures. Note that
4860  // these rules are sufficient to prevent recursive encoding of the
4861  // same type.
4862  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4863                             true /* outermost type */);
4864}
4865
4866static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
4867                                            BuiltinType::Kind kind) {
4868    switch (kind) {
4869    case BuiltinType::Void:       return 'v';
4870    case BuiltinType::Bool:       return 'B';
4871    case BuiltinType::Char_U:
4872    case BuiltinType::UChar:      return 'C';
4873    case BuiltinType::Char16:
4874    case BuiltinType::UShort:     return 'S';
4875    case BuiltinType::Char32:
4876    case BuiltinType::UInt:       return 'I';
4877    case BuiltinType::ULong:
4878        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
4879    case BuiltinType::UInt128:    return 'T';
4880    case BuiltinType::ULongLong:  return 'Q';
4881    case BuiltinType::Char_S:
4882    case BuiltinType::SChar:      return 'c';
4883    case BuiltinType::Short:      return 's';
4884    case BuiltinType::WChar_S:
4885    case BuiltinType::WChar_U:
4886    case BuiltinType::Int:        return 'i';
4887    case BuiltinType::Long:
4888      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
4889    case BuiltinType::LongLong:   return 'q';
4890    case BuiltinType::Int128:     return 't';
4891    case BuiltinType::Float:      return 'f';
4892    case BuiltinType::Double:     return 'd';
4893    case BuiltinType::LongDouble: return 'D';
4894    case BuiltinType::NullPtr:    return '*'; // like char*
4895
4896    case BuiltinType::Half:
4897      // FIXME: potentially need @encodes for these!
4898      return ' ';
4899
4900    case BuiltinType::ObjCId:
4901    case BuiltinType::ObjCClass:
4902    case BuiltinType::ObjCSel:
4903      llvm_unreachable("@encoding ObjC primitive type");
4904
4905    // OpenCL and placeholder types don't need @encodings.
4906    case BuiltinType::OCLImage1d:
4907    case BuiltinType::OCLImage1dArray:
4908    case BuiltinType::OCLImage1dBuffer:
4909    case BuiltinType::OCLImage2d:
4910    case BuiltinType::OCLImage2dArray:
4911    case BuiltinType::OCLImage3d:
4912    case BuiltinType::OCLEvent:
4913    case BuiltinType::Dependent:
4914#define BUILTIN_TYPE(KIND, ID)
4915#define PLACEHOLDER_TYPE(KIND, ID) \
4916    case BuiltinType::KIND:
4917#include "clang/AST/BuiltinTypes.def"
4918      llvm_unreachable("invalid builtin type for @encode");
4919    }
4920    llvm_unreachable("invalid BuiltinType::Kind value");
4921}
4922
4923static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4924  EnumDecl *Enum = ET->getDecl();
4925
4926  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4927  if (!Enum->isFixed())
4928    return 'i';
4929
4930  // The encoding of a fixed enum type matches its fixed underlying type.
4931  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
4932  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
4933}
4934
4935static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4936                           QualType T, const FieldDecl *FD) {
4937  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4938  S += 'b';
4939  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4940  // The GNU runtime requires more information; bitfields are encoded as b,
4941  // then the offset (in bits) of the first element, then the type of the
4942  // bitfield, then the size in bits.  For example, in this structure:
4943  //
4944  // struct
4945  // {
4946  //    int integer;
4947  //    int flags:2;
4948  // };
4949  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4950  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4951  // information is not especially sensible, but we're stuck with it for
4952  // compatibility with GCC, although providing it breaks anything that
4953  // actually uses runtime introspection and wants to work on both runtimes...
4954  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4955    const RecordDecl *RD = FD->getParent();
4956    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4957    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4958    if (const EnumType *ET = T->getAs<EnumType>())
4959      S += ObjCEncodingForEnumType(Ctx, ET);
4960    else {
4961      const BuiltinType *BT = T->castAs<BuiltinType>();
4962      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
4963    }
4964  }
4965  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4966}
4967
4968// FIXME: Use SmallString for accumulating string.
4969void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4970                                            bool ExpandPointedToStructures,
4971                                            bool ExpandStructures,
4972                                            const FieldDecl *FD,
4973                                            bool OutermostType,
4974                                            bool EncodingProperty,
4975                                            bool StructField,
4976                                            bool EncodeBlockParameters,
4977                                            bool EncodeClassNames) const {
4978  CanQualType CT = getCanonicalType(T);
4979  switch (CT->getTypeClass()) {
4980  case Type::Builtin:
4981  case Type::Enum:
4982    if (FD && FD->isBitField())
4983      return EncodeBitField(this, S, T, FD);
4984    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
4985      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
4986    else
4987      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
4988    return;
4989
4990  case Type::Complex: {
4991    const ComplexType *CT = T->castAs<ComplexType>();
4992    S += 'j';
4993    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4994                               false);
4995    return;
4996  }
4997
4998  case Type::Atomic: {
4999    const AtomicType *AT = T->castAs<AtomicType>();
5000    S += 'A';
5001    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5002                               false, false);
5003    return;
5004  }
5005
5006  // encoding for pointer or reference types.
5007  case Type::Pointer:
5008  case Type::LValueReference:
5009  case Type::RValueReference: {
5010    QualType PointeeTy;
5011    if (isa<PointerType>(CT)) {
5012      const PointerType *PT = T->castAs<PointerType>();
5013      if (PT->isObjCSelType()) {
5014        S += ':';
5015        return;
5016      }
5017      PointeeTy = PT->getPointeeType();
5018    } else {
5019      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5020    }
5021
5022    bool isReadOnly = false;
5023    // For historical/compatibility reasons, the read-only qualifier of the
5024    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5025    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5026    // Also, do not emit the 'r' for anything but the outermost type!
5027    if (isa<TypedefType>(T.getTypePtr())) {
5028      if (OutermostType && T.isConstQualified()) {
5029        isReadOnly = true;
5030        S += 'r';
5031      }
5032    } else if (OutermostType) {
5033      QualType P = PointeeTy;
5034      while (P->getAs<PointerType>())
5035        P = P->getAs<PointerType>()->getPointeeType();
5036      if (P.isConstQualified()) {
5037        isReadOnly = true;
5038        S += 'r';
5039      }
5040    }
5041    if (isReadOnly) {
5042      // Another legacy compatibility encoding. Some ObjC qualifier and type
5043      // combinations need to be rearranged.
5044      // Rewrite "in const" from "nr" to "rn"
5045      if (StringRef(S).endswith("nr"))
5046        S.replace(S.end()-2, S.end(), "rn");
5047    }
5048
5049    if (PointeeTy->isCharType()) {
5050      // char pointer types should be encoded as '*' unless it is a
5051      // type that has been typedef'd to 'BOOL'.
5052      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5053        S += '*';
5054        return;
5055      }
5056    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5057      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5058      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5059        S += '#';
5060        return;
5061      }
5062      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5063      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5064        S += '@';
5065        return;
5066      }
5067      // fall through...
5068    }
5069    S += '^';
5070    getLegacyIntegralTypeEncoding(PointeeTy);
5071
5072    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5073                               NULL);
5074    return;
5075  }
5076
5077  case Type::ConstantArray:
5078  case Type::IncompleteArray:
5079  case Type::VariableArray: {
5080    const ArrayType *AT = cast<ArrayType>(CT);
5081
5082    if (isa<IncompleteArrayType>(AT) && !StructField) {
5083      // Incomplete arrays are encoded as a pointer to the array element.
5084      S += '^';
5085
5086      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5087                                 false, ExpandStructures, FD);
5088    } else {
5089      S += '[';
5090
5091      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5092        if (getTypeSize(CAT->getElementType()) == 0)
5093          S += '0';
5094        else
5095          S += llvm::utostr(CAT->getSize().getZExtValue());
5096      } else {
5097        //Variable length arrays are encoded as a regular array with 0 elements.
5098        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5099               "Unknown array type!");
5100        S += '0';
5101      }
5102
5103      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5104                                 false, ExpandStructures, FD);
5105      S += ']';
5106    }
5107    return;
5108  }
5109
5110  case Type::FunctionNoProto:
5111  case Type::FunctionProto:
5112    S += '?';
5113    return;
5114
5115  case Type::Record: {
5116    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5117    S += RDecl->isUnion() ? '(' : '{';
5118    // Anonymous structures print as '?'
5119    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5120      S += II->getName();
5121      if (ClassTemplateSpecializationDecl *Spec
5122          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5123        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5124        std::string TemplateArgsStr
5125          = TemplateSpecializationType::PrintTemplateArgumentList(
5126                                            TemplateArgs.data(),
5127                                            TemplateArgs.size(),
5128                                            (*this).getPrintingPolicy());
5129
5130        S += TemplateArgsStr;
5131      }
5132    } else {
5133      S += '?';
5134    }
5135    if (ExpandStructures) {
5136      S += '=';
5137      if (!RDecl->isUnion()) {
5138        getObjCEncodingForStructureImpl(RDecl, S, FD);
5139      } else {
5140        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5141                                     FieldEnd = RDecl->field_end();
5142             Field != FieldEnd; ++Field) {
5143          if (FD) {
5144            S += '"';
5145            S += Field->getNameAsString();
5146            S += '"';
5147          }
5148
5149          // Special case bit-fields.
5150          if (Field->isBitField()) {
5151            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5152                                       *Field);
5153          } else {
5154            QualType qt = Field->getType();
5155            getLegacyIntegralTypeEncoding(qt);
5156            getObjCEncodingForTypeImpl(qt, S, false, true,
5157                                       FD, /*OutermostType*/false,
5158                                       /*EncodingProperty*/false,
5159                                       /*StructField*/true);
5160          }
5161        }
5162      }
5163    }
5164    S += RDecl->isUnion() ? ')' : '}';
5165    return;
5166  }
5167
5168  case Type::BlockPointer: {
5169    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5170    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5171    if (EncodeBlockParameters) {
5172      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5173
5174      S += '<';
5175      // Block return type
5176      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5177                                 ExpandPointedToStructures, ExpandStructures,
5178                                 FD,
5179                                 false /* OutermostType */,
5180                                 EncodingProperty,
5181                                 false /* StructField */,
5182                                 EncodeBlockParameters,
5183                                 EncodeClassNames);
5184      // Block self
5185      S += "@?";
5186      // Block parameters
5187      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5188        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5189               E = FPT->arg_type_end(); I && (I != E); ++I) {
5190          getObjCEncodingForTypeImpl(*I, S,
5191                                     ExpandPointedToStructures,
5192                                     ExpandStructures,
5193                                     FD,
5194                                     false /* OutermostType */,
5195                                     EncodingProperty,
5196                                     false /* StructField */,
5197                                     EncodeBlockParameters,
5198                                     EncodeClassNames);
5199        }
5200      }
5201      S += '>';
5202    }
5203    return;
5204  }
5205
5206  case Type::ObjCObject:
5207  case Type::ObjCInterface: {
5208    // Ignore protocol qualifiers when mangling at this level.
5209    T = T->castAs<ObjCObjectType>()->getBaseType();
5210
5211    // The assumption seems to be that this assert will succeed
5212    // because nested levels will have filtered out 'id' and 'Class'.
5213    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5214    // @encode(class_name)
5215    ObjCInterfaceDecl *OI = OIT->getDecl();
5216    S += '{';
5217    const IdentifierInfo *II = OI->getIdentifier();
5218    S += II->getName();
5219    S += '=';
5220    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5221    DeepCollectObjCIvars(OI, true, Ivars);
5222    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5223      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5224      if (Field->isBitField())
5225        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5226      else
5227        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
5228    }
5229    S += '}';
5230    return;
5231  }
5232
5233  case Type::ObjCObjectPointer: {
5234    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5235    if (OPT->isObjCIdType()) {
5236      S += '@';
5237      return;
5238    }
5239
5240    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5241      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5242      // Since this is a binary compatibility issue, need to consult with runtime
5243      // folks. Fortunately, this is a *very* obsure construct.
5244      S += '#';
5245      return;
5246    }
5247
5248    if (OPT->isObjCQualifiedIdType()) {
5249      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5250                                 ExpandPointedToStructures,
5251                                 ExpandStructures, FD);
5252      if (FD || EncodingProperty || EncodeClassNames) {
5253        // Note that we do extended encoding of protocol qualifer list
5254        // Only when doing ivar or property encoding.
5255        S += '"';
5256        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5257             E = OPT->qual_end(); I != E; ++I) {
5258          S += '<';
5259          S += (*I)->getNameAsString();
5260          S += '>';
5261        }
5262        S += '"';
5263      }
5264      return;
5265    }
5266
5267    QualType PointeeTy = OPT->getPointeeType();
5268    if (!EncodingProperty &&
5269        isa<TypedefType>(PointeeTy.getTypePtr())) {
5270      // Another historical/compatibility reason.
5271      // We encode the underlying type which comes out as
5272      // {...};
5273      S += '^';
5274      getObjCEncodingForTypeImpl(PointeeTy, S,
5275                                 false, ExpandPointedToStructures,
5276                                 NULL);
5277      return;
5278    }
5279
5280    S += '@';
5281    if (OPT->getInterfaceDecl() &&
5282        (FD || EncodingProperty || EncodeClassNames)) {
5283      S += '"';
5284      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5285      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5286           E = OPT->qual_end(); I != E; ++I) {
5287        S += '<';
5288        S += (*I)->getNameAsString();
5289        S += '>';
5290      }
5291      S += '"';
5292    }
5293    return;
5294  }
5295
5296  // gcc just blithely ignores member pointers.
5297  // FIXME: we shoul do better than that.  'M' is available.
5298  case Type::MemberPointer:
5299    return;
5300
5301  case Type::Vector:
5302  case Type::ExtVector:
5303    // This matches gcc's encoding, even though technically it is
5304    // insufficient.
5305    // FIXME. We should do a better job than gcc.
5306    return;
5307
5308#define ABSTRACT_TYPE(KIND, BASE)
5309#define TYPE(KIND, BASE)
5310#define DEPENDENT_TYPE(KIND, BASE) \
5311  case Type::KIND:
5312#define NON_CANONICAL_TYPE(KIND, BASE) \
5313  case Type::KIND:
5314#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5315  case Type::KIND:
5316#include "clang/AST/TypeNodes.def"
5317    llvm_unreachable("@encode for dependent type!");
5318  }
5319  llvm_unreachable("bad type kind!");
5320}
5321
5322void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5323                                                 std::string &S,
5324                                                 const FieldDecl *FD,
5325                                                 bool includeVBases) const {
5326  assert(RDecl && "Expected non-null RecordDecl");
5327  assert(!RDecl->isUnion() && "Should not be called for unions");
5328  if (!RDecl->getDefinition())
5329    return;
5330
5331  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5332  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5333  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5334
5335  if (CXXRec) {
5336    for (CXXRecordDecl::base_class_iterator
5337           BI = CXXRec->bases_begin(),
5338           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5339      if (!BI->isVirtual()) {
5340        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5341        if (base->isEmpty())
5342          continue;
5343        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5344        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5345                                  std::make_pair(offs, base));
5346      }
5347    }
5348  }
5349
5350  unsigned i = 0;
5351  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5352                               FieldEnd = RDecl->field_end();
5353       Field != FieldEnd; ++Field, ++i) {
5354    uint64_t offs = layout.getFieldOffset(i);
5355    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5356                              std::make_pair(offs, *Field));
5357  }
5358
5359  if (CXXRec && includeVBases) {
5360    for (CXXRecordDecl::base_class_iterator
5361           BI = CXXRec->vbases_begin(),
5362           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5363      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5364      if (base->isEmpty())
5365        continue;
5366      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5367      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5368        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5369                                  std::make_pair(offs, base));
5370    }
5371  }
5372
5373  CharUnits size;
5374  if (CXXRec) {
5375    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5376  } else {
5377    size = layout.getSize();
5378  }
5379
5380  uint64_t CurOffs = 0;
5381  std::multimap<uint64_t, NamedDecl *>::iterator
5382    CurLayObj = FieldOrBaseOffsets.begin();
5383
5384  if (CXXRec && CXXRec->isDynamicClass() &&
5385      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5386    if (FD) {
5387      S += "\"_vptr$";
5388      std::string recname = CXXRec->getNameAsString();
5389      if (recname.empty()) recname = "?";
5390      S += recname;
5391      S += '"';
5392    }
5393    S += "^^?";
5394    CurOffs += getTypeSize(VoidPtrTy);
5395  }
5396
5397  if (!RDecl->hasFlexibleArrayMember()) {
5398    // Mark the end of the structure.
5399    uint64_t offs = toBits(size);
5400    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5401                              std::make_pair(offs, (NamedDecl*)0));
5402  }
5403
5404  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5405    assert(CurOffs <= CurLayObj->first);
5406
5407    if (CurOffs < CurLayObj->first) {
5408      uint64_t padding = CurLayObj->first - CurOffs;
5409      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5410      // packing/alignment of members is different that normal, in which case
5411      // the encoding will be out-of-sync with the real layout.
5412      // If the runtime switches to just consider the size of types without
5413      // taking into account alignment, we could make padding explicit in the
5414      // encoding (e.g. using arrays of chars). The encoding strings would be
5415      // longer then though.
5416      CurOffs += padding;
5417    }
5418
5419    NamedDecl *dcl = CurLayObj->second;
5420    if (dcl == 0)
5421      break; // reached end of structure.
5422
5423    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5424      // We expand the bases without their virtual bases since those are going
5425      // in the initial structure. Note that this differs from gcc which
5426      // expands virtual bases each time one is encountered in the hierarchy,
5427      // making the encoding type bigger than it really is.
5428      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5429      assert(!base->isEmpty());
5430      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5431    } else {
5432      FieldDecl *field = cast<FieldDecl>(dcl);
5433      if (FD) {
5434        S += '"';
5435        S += field->getNameAsString();
5436        S += '"';
5437      }
5438
5439      if (field->isBitField()) {
5440        EncodeBitField(this, S, field->getType(), field);
5441        CurOffs += field->getBitWidthValue(*this);
5442      } else {
5443        QualType qt = field->getType();
5444        getLegacyIntegralTypeEncoding(qt);
5445        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5446                                   /*OutermostType*/false,
5447                                   /*EncodingProperty*/false,
5448                                   /*StructField*/true);
5449        CurOffs += getTypeSize(field->getType());
5450      }
5451    }
5452  }
5453}
5454
5455void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5456                                                 std::string& S) const {
5457  if (QT & Decl::OBJC_TQ_In)
5458    S += 'n';
5459  if (QT & Decl::OBJC_TQ_Inout)
5460    S += 'N';
5461  if (QT & Decl::OBJC_TQ_Out)
5462    S += 'o';
5463  if (QT & Decl::OBJC_TQ_Bycopy)
5464    S += 'O';
5465  if (QT & Decl::OBJC_TQ_Byref)
5466    S += 'R';
5467  if (QT & Decl::OBJC_TQ_Oneway)
5468    S += 'V';
5469}
5470
5471TypedefDecl *ASTContext::getObjCIdDecl() const {
5472  if (!ObjCIdDecl) {
5473    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5474    T = getObjCObjectPointerType(T);
5475    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5476    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5477                                     getTranslationUnitDecl(),
5478                                     SourceLocation(), SourceLocation(),
5479                                     &Idents.get("id"), IdInfo);
5480  }
5481
5482  return ObjCIdDecl;
5483}
5484
5485TypedefDecl *ASTContext::getObjCSelDecl() const {
5486  if (!ObjCSelDecl) {
5487    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5488    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5489    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5490                                      getTranslationUnitDecl(),
5491                                      SourceLocation(), SourceLocation(),
5492                                      &Idents.get("SEL"), SelInfo);
5493  }
5494  return ObjCSelDecl;
5495}
5496
5497TypedefDecl *ASTContext::getObjCClassDecl() const {
5498  if (!ObjCClassDecl) {
5499    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5500    T = getObjCObjectPointerType(T);
5501    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5502    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5503                                        getTranslationUnitDecl(),
5504                                        SourceLocation(), SourceLocation(),
5505                                        &Idents.get("Class"), ClassInfo);
5506  }
5507
5508  return ObjCClassDecl;
5509}
5510
5511ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5512  if (!ObjCProtocolClassDecl) {
5513    ObjCProtocolClassDecl
5514      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5515                                  SourceLocation(),
5516                                  &Idents.get("Protocol"),
5517                                  /*PrevDecl=*/0,
5518                                  SourceLocation(), true);
5519  }
5520
5521  return ObjCProtocolClassDecl;
5522}
5523
5524//===----------------------------------------------------------------------===//
5525// __builtin_va_list Construction Functions
5526//===----------------------------------------------------------------------===//
5527
5528static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5529  // typedef char* __builtin_va_list;
5530  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5531  TypeSourceInfo *TInfo
5532    = Context->getTrivialTypeSourceInfo(CharPtrType);
5533
5534  TypedefDecl *VaListTypeDecl
5535    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5536                          Context->getTranslationUnitDecl(),
5537                          SourceLocation(), SourceLocation(),
5538                          &Context->Idents.get("__builtin_va_list"),
5539                          TInfo);
5540  return VaListTypeDecl;
5541}
5542
5543static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5544  // typedef void* __builtin_va_list;
5545  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5546  TypeSourceInfo *TInfo
5547    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5548
5549  TypedefDecl *VaListTypeDecl
5550    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5551                          Context->getTranslationUnitDecl(),
5552                          SourceLocation(), SourceLocation(),
5553                          &Context->Idents.get("__builtin_va_list"),
5554                          TInfo);
5555  return VaListTypeDecl;
5556}
5557
5558static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5559  // typedef struct __va_list_tag {
5560  RecordDecl *VaListTagDecl;
5561
5562  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5563                                   Context->getTranslationUnitDecl(),
5564                                   &Context->Idents.get("__va_list_tag"));
5565  VaListTagDecl->startDefinition();
5566
5567  const size_t NumFields = 5;
5568  QualType FieldTypes[NumFields];
5569  const char *FieldNames[NumFields];
5570
5571  //   unsigned char gpr;
5572  FieldTypes[0] = Context->UnsignedCharTy;
5573  FieldNames[0] = "gpr";
5574
5575  //   unsigned char fpr;
5576  FieldTypes[1] = Context->UnsignedCharTy;
5577  FieldNames[1] = "fpr";
5578
5579  //   unsigned short reserved;
5580  FieldTypes[2] = Context->UnsignedShortTy;
5581  FieldNames[2] = "reserved";
5582
5583  //   void* overflow_arg_area;
5584  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5585  FieldNames[3] = "overflow_arg_area";
5586
5587  //   void* reg_save_area;
5588  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5589  FieldNames[4] = "reg_save_area";
5590
5591  // Create fields
5592  for (unsigned i = 0; i < NumFields; ++i) {
5593    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5594                                         SourceLocation(),
5595                                         SourceLocation(),
5596                                         &Context->Idents.get(FieldNames[i]),
5597                                         FieldTypes[i], /*TInfo=*/0,
5598                                         /*BitWidth=*/0,
5599                                         /*Mutable=*/false,
5600                                         ICIS_NoInit);
5601    Field->setAccess(AS_public);
5602    VaListTagDecl->addDecl(Field);
5603  }
5604  VaListTagDecl->completeDefinition();
5605  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5606  Context->VaListTagTy = VaListTagType;
5607
5608  // } __va_list_tag;
5609  TypedefDecl *VaListTagTypedefDecl
5610    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5611                          Context->getTranslationUnitDecl(),
5612                          SourceLocation(), SourceLocation(),
5613                          &Context->Idents.get("__va_list_tag"),
5614                          Context->getTrivialTypeSourceInfo(VaListTagType));
5615  QualType VaListTagTypedefType =
5616    Context->getTypedefType(VaListTagTypedefDecl);
5617
5618  // typedef __va_list_tag __builtin_va_list[1];
5619  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5620  QualType VaListTagArrayType
5621    = Context->getConstantArrayType(VaListTagTypedefType,
5622                                    Size, ArrayType::Normal, 0);
5623  TypeSourceInfo *TInfo
5624    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5625  TypedefDecl *VaListTypedefDecl
5626    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5627                          Context->getTranslationUnitDecl(),
5628                          SourceLocation(), SourceLocation(),
5629                          &Context->Idents.get("__builtin_va_list"),
5630                          TInfo);
5631
5632  return VaListTypedefDecl;
5633}
5634
5635static TypedefDecl *
5636CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5637  // typedef struct __va_list_tag {
5638  RecordDecl *VaListTagDecl;
5639  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5640                                   Context->getTranslationUnitDecl(),
5641                                   &Context->Idents.get("__va_list_tag"));
5642  VaListTagDecl->startDefinition();
5643
5644  const size_t NumFields = 4;
5645  QualType FieldTypes[NumFields];
5646  const char *FieldNames[NumFields];
5647
5648  //   unsigned gp_offset;
5649  FieldTypes[0] = Context->UnsignedIntTy;
5650  FieldNames[0] = "gp_offset";
5651
5652  //   unsigned fp_offset;
5653  FieldTypes[1] = Context->UnsignedIntTy;
5654  FieldNames[1] = "fp_offset";
5655
5656  //   void* overflow_arg_area;
5657  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5658  FieldNames[2] = "overflow_arg_area";
5659
5660  //   void* reg_save_area;
5661  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5662  FieldNames[3] = "reg_save_area";
5663
5664  // Create fields
5665  for (unsigned i = 0; i < NumFields; ++i) {
5666    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5667                                         VaListTagDecl,
5668                                         SourceLocation(),
5669                                         SourceLocation(),
5670                                         &Context->Idents.get(FieldNames[i]),
5671                                         FieldTypes[i], /*TInfo=*/0,
5672                                         /*BitWidth=*/0,
5673                                         /*Mutable=*/false,
5674                                         ICIS_NoInit);
5675    Field->setAccess(AS_public);
5676    VaListTagDecl->addDecl(Field);
5677  }
5678  VaListTagDecl->completeDefinition();
5679  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5680  Context->VaListTagTy = VaListTagType;
5681
5682  // } __va_list_tag;
5683  TypedefDecl *VaListTagTypedefDecl
5684    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5685                          Context->getTranslationUnitDecl(),
5686                          SourceLocation(), SourceLocation(),
5687                          &Context->Idents.get("__va_list_tag"),
5688                          Context->getTrivialTypeSourceInfo(VaListTagType));
5689  QualType VaListTagTypedefType =
5690    Context->getTypedefType(VaListTagTypedefDecl);
5691
5692  // typedef __va_list_tag __builtin_va_list[1];
5693  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5694  QualType VaListTagArrayType
5695    = Context->getConstantArrayType(VaListTagTypedefType,
5696                                      Size, ArrayType::Normal,0);
5697  TypeSourceInfo *TInfo
5698    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5699  TypedefDecl *VaListTypedefDecl
5700    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5701                          Context->getTranslationUnitDecl(),
5702                          SourceLocation(), SourceLocation(),
5703                          &Context->Idents.get("__builtin_va_list"),
5704                          TInfo);
5705
5706  return VaListTypedefDecl;
5707}
5708
5709static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5710  // typedef int __builtin_va_list[4];
5711  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5712  QualType IntArrayType
5713    = Context->getConstantArrayType(Context->IntTy,
5714				    Size, ArrayType::Normal, 0);
5715  TypedefDecl *VaListTypedefDecl
5716    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5717                          Context->getTranslationUnitDecl(),
5718                          SourceLocation(), SourceLocation(),
5719                          &Context->Idents.get("__builtin_va_list"),
5720                          Context->getTrivialTypeSourceInfo(IntArrayType));
5721
5722  return VaListTypedefDecl;
5723}
5724
5725static TypedefDecl *
5726CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5727  RecordDecl *VaListDecl;
5728  if (Context->getLangOpts().CPlusPlus) {
5729    // namespace std { struct __va_list {
5730    NamespaceDecl *NS;
5731    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5732                               Context->getTranslationUnitDecl(),
5733                               /*Inline*/false, SourceLocation(),
5734                               SourceLocation(), &Context->Idents.get("std"),
5735                               /*PrevDecl*/0);
5736
5737    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5738                                       Context->getTranslationUnitDecl(),
5739                                       SourceLocation(), SourceLocation(),
5740                                       &Context->Idents.get("__va_list"));
5741
5742    VaListDecl->setDeclContext(NS);
5743
5744  } else {
5745    // struct __va_list {
5746    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5747                                  Context->getTranslationUnitDecl(),
5748                                  &Context->Idents.get("__va_list"));
5749  }
5750
5751  VaListDecl->startDefinition();
5752
5753  // void * __ap;
5754  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5755                                       VaListDecl,
5756                                       SourceLocation(),
5757                                       SourceLocation(),
5758                                       &Context->Idents.get("__ap"),
5759                                       Context->getPointerType(Context->VoidTy),
5760                                       /*TInfo=*/0,
5761                                       /*BitWidth=*/0,
5762                                       /*Mutable=*/false,
5763                                       ICIS_NoInit);
5764  Field->setAccess(AS_public);
5765  VaListDecl->addDecl(Field);
5766
5767  // };
5768  VaListDecl->completeDefinition();
5769
5770  // typedef struct __va_list __builtin_va_list;
5771  TypeSourceInfo *TInfo
5772    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5773
5774  TypedefDecl *VaListTypeDecl
5775    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5776                          Context->getTranslationUnitDecl(),
5777                          SourceLocation(), SourceLocation(),
5778                          &Context->Idents.get("__builtin_va_list"),
5779                          TInfo);
5780
5781  return VaListTypeDecl;
5782}
5783
5784static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5785                                     TargetInfo::BuiltinVaListKind Kind) {
5786  switch (Kind) {
5787  case TargetInfo::CharPtrBuiltinVaList:
5788    return CreateCharPtrBuiltinVaListDecl(Context);
5789  case TargetInfo::VoidPtrBuiltinVaList:
5790    return CreateVoidPtrBuiltinVaListDecl(Context);
5791  case TargetInfo::PowerABIBuiltinVaList:
5792    return CreatePowerABIBuiltinVaListDecl(Context);
5793  case TargetInfo::X86_64ABIBuiltinVaList:
5794    return CreateX86_64ABIBuiltinVaListDecl(Context);
5795  case TargetInfo::PNaClABIBuiltinVaList:
5796    return CreatePNaClABIBuiltinVaListDecl(Context);
5797  case TargetInfo::AAPCSABIBuiltinVaList:
5798    return CreateAAPCSABIBuiltinVaListDecl(Context);
5799  }
5800
5801  llvm_unreachable("Unhandled __builtin_va_list type kind");
5802}
5803
5804TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5805  if (!BuiltinVaListDecl)
5806    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5807
5808  return BuiltinVaListDecl;
5809}
5810
5811QualType ASTContext::getVaListTagType() const {
5812  // Force the creation of VaListTagTy by building the __builtin_va_list
5813  // declaration.
5814  if (VaListTagTy.isNull())
5815    (void) getBuiltinVaListDecl();
5816
5817  return VaListTagTy;
5818}
5819
5820void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5821  assert(ObjCConstantStringType.isNull() &&
5822         "'NSConstantString' type already set!");
5823
5824  ObjCConstantStringType = getObjCInterfaceType(Decl);
5825}
5826
5827/// \brief Retrieve the template name that corresponds to a non-empty
5828/// lookup.
5829TemplateName
5830ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5831                                      UnresolvedSetIterator End) const {
5832  unsigned size = End - Begin;
5833  assert(size > 1 && "set is not overloaded!");
5834
5835  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5836                          size * sizeof(FunctionTemplateDecl*));
5837  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5838
5839  NamedDecl **Storage = OT->getStorage();
5840  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5841    NamedDecl *D = *I;
5842    assert(isa<FunctionTemplateDecl>(D) ||
5843           (isa<UsingShadowDecl>(D) &&
5844            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5845    *Storage++ = D;
5846  }
5847
5848  return TemplateName(OT);
5849}
5850
5851/// \brief Retrieve the template name that represents a qualified
5852/// template name such as \c std::vector.
5853TemplateName
5854ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5855                                     bool TemplateKeyword,
5856                                     TemplateDecl *Template) const {
5857  assert(NNS && "Missing nested-name-specifier in qualified template name");
5858
5859  // FIXME: Canonicalization?
5860  llvm::FoldingSetNodeID ID;
5861  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5862
5863  void *InsertPos = 0;
5864  QualifiedTemplateName *QTN =
5865    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5866  if (!QTN) {
5867    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5868        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5869    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5870  }
5871
5872  return TemplateName(QTN);
5873}
5874
5875/// \brief Retrieve the template name that represents a dependent
5876/// template name such as \c MetaFun::template apply.
5877TemplateName
5878ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5879                                     const IdentifierInfo *Name) const {
5880  assert((!NNS || NNS->isDependent()) &&
5881         "Nested name specifier must be dependent");
5882
5883  llvm::FoldingSetNodeID ID;
5884  DependentTemplateName::Profile(ID, NNS, Name);
5885
5886  void *InsertPos = 0;
5887  DependentTemplateName *QTN =
5888    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5889
5890  if (QTN)
5891    return TemplateName(QTN);
5892
5893  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5894  if (CanonNNS == NNS) {
5895    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5896        DependentTemplateName(NNS, Name);
5897  } else {
5898    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5899    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5900        DependentTemplateName(NNS, Name, Canon);
5901    DependentTemplateName *CheckQTN =
5902      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5903    assert(!CheckQTN && "Dependent type name canonicalization broken");
5904    (void)CheckQTN;
5905  }
5906
5907  DependentTemplateNames.InsertNode(QTN, InsertPos);
5908  return TemplateName(QTN);
5909}
5910
5911/// \brief Retrieve the template name that represents a dependent
5912/// template name such as \c MetaFun::template operator+.
5913TemplateName
5914ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5915                                     OverloadedOperatorKind Operator) const {
5916  assert((!NNS || NNS->isDependent()) &&
5917         "Nested name specifier must be dependent");
5918
5919  llvm::FoldingSetNodeID ID;
5920  DependentTemplateName::Profile(ID, NNS, Operator);
5921
5922  void *InsertPos = 0;
5923  DependentTemplateName *QTN
5924    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5925
5926  if (QTN)
5927    return TemplateName(QTN);
5928
5929  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5930  if (CanonNNS == NNS) {
5931    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5932        DependentTemplateName(NNS, Operator);
5933  } else {
5934    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5935    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5936        DependentTemplateName(NNS, Operator, Canon);
5937
5938    DependentTemplateName *CheckQTN
5939      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5940    assert(!CheckQTN && "Dependent template name canonicalization broken");
5941    (void)CheckQTN;
5942  }
5943
5944  DependentTemplateNames.InsertNode(QTN, InsertPos);
5945  return TemplateName(QTN);
5946}
5947
5948TemplateName
5949ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5950                                         TemplateName replacement) const {
5951  llvm::FoldingSetNodeID ID;
5952  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5953
5954  void *insertPos = 0;
5955  SubstTemplateTemplateParmStorage *subst
5956    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5957
5958  if (!subst) {
5959    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5960    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5961  }
5962
5963  return TemplateName(subst);
5964}
5965
5966TemplateName
5967ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5968                                       const TemplateArgument &ArgPack) const {
5969  ASTContext &Self = const_cast<ASTContext &>(*this);
5970  llvm::FoldingSetNodeID ID;
5971  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5972
5973  void *InsertPos = 0;
5974  SubstTemplateTemplateParmPackStorage *Subst
5975    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5976
5977  if (!Subst) {
5978    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5979                                                           ArgPack.pack_size(),
5980                                                         ArgPack.pack_begin());
5981    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5982  }
5983
5984  return TemplateName(Subst);
5985}
5986
5987/// getFromTargetType - Given one of the integer types provided by
5988/// TargetInfo, produce the corresponding type. The unsigned @p Type
5989/// is actually a value of type @c TargetInfo::IntType.
5990CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5991  switch (Type) {
5992  case TargetInfo::NoInt: return CanQualType();
5993  case TargetInfo::SignedShort: return ShortTy;
5994  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5995  case TargetInfo::SignedInt: return IntTy;
5996  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5997  case TargetInfo::SignedLong: return LongTy;
5998  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5999  case TargetInfo::SignedLongLong: return LongLongTy;
6000  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6001  }
6002
6003  llvm_unreachable("Unhandled TargetInfo::IntType value");
6004}
6005
6006//===----------------------------------------------------------------------===//
6007//                        Type Predicates.
6008//===----------------------------------------------------------------------===//
6009
6010/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6011/// garbage collection attribute.
6012///
6013Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6014  if (getLangOpts().getGC() == LangOptions::NonGC)
6015    return Qualifiers::GCNone;
6016
6017  assert(getLangOpts().ObjC1);
6018  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6019
6020  // Default behaviour under objective-C's gc is for ObjC pointers
6021  // (or pointers to them) be treated as though they were declared
6022  // as __strong.
6023  if (GCAttrs == Qualifiers::GCNone) {
6024    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6025      return Qualifiers::Strong;
6026    else if (Ty->isPointerType())
6027      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6028  } else {
6029    // It's not valid to set GC attributes on anything that isn't a
6030    // pointer.
6031#ifndef NDEBUG
6032    QualType CT = Ty->getCanonicalTypeInternal();
6033    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6034      CT = AT->getElementType();
6035    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6036#endif
6037  }
6038  return GCAttrs;
6039}
6040
6041//===----------------------------------------------------------------------===//
6042//                        Type Compatibility Testing
6043//===----------------------------------------------------------------------===//
6044
6045/// areCompatVectorTypes - Return true if the two specified vector types are
6046/// compatible.
6047static bool areCompatVectorTypes(const VectorType *LHS,
6048                                 const VectorType *RHS) {
6049  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6050  return LHS->getElementType() == RHS->getElementType() &&
6051         LHS->getNumElements() == RHS->getNumElements();
6052}
6053
6054bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6055                                          QualType SecondVec) {
6056  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6057  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6058
6059  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6060    return true;
6061
6062  // Treat Neon vector types and most AltiVec vector types as if they are the
6063  // equivalent GCC vector types.
6064  const VectorType *First = FirstVec->getAs<VectorType>();
6065  const VectorType *Second = SecondVec->getAs<VectorType>();
6066  if (First->getNumElements() == Second->getNumElements() &&
6067      hasSameType(First->getElementType(), Second->getElementType()) &&
6068      First->getVectorKind() != VectorType::AltiVecPixel &&
6069      First->getVectorKind() != VectorType::AltiVecBool &&
6070      Second->getVectorKind() != VectorType::AltiVecPixel &&
6071      Second->getVectorKind() != VectorType::AltiVecBool)
6072    return true;
6073
6074  return false;
6075}
6076
6077//===----------------------------------------------------------------------===//
6078// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6079//===----------------------------------------------------------------------===//
6080
6081/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6082/// inheritance hierarchy of 'rProto'.
6083bool
6084ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6085                                           ObjCProtocolDecl *rProto) const {
6086  if (declaresSameEntity(lProto, rProto))
6087    return true;
6088  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6089       E = rProto->protocol_end(); PI != E; ++PI)
6090    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6091      return true;
6092  return false;
6093}
6094
6095/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6096/// return true if lhs's protocols conform to rhs's protocol; false
6097/// otherwise.
6098bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6099  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6100    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6101  return false;
6102}
6103
6104/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6105/// Class<pr1, ...>.
6106bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6107                                                      QualType rhs) {
6108  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6109  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6110  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6111
6112  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6113       E = lhsQID->qual_end(); I != E; ++I) {
6114    bool match = false;
6115    ObjCProtocolDecl *lhsProto = *I;
6116    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6117         E = rhsOPT->qual_end(); J != E; ++J) {
6118      ObjCProtocolDecl *rhsProto = *J;
6119      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6120        match = true;
6121        break;
6122      }
6123    }
6124    if (!match)
6125      return false;
6126  }
6127  return true;
6128}
6129
6130/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6131/// ObjCQualifiedIDType.
6132bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6133                                                   bool compare) {
6134  // Allow id<P..> and an 'id' or void* type in all cases.
6135  if (lhs->isVoidPointerType() ||
6136      lhs->isObjCIdType() || lhs->isObjCClassType())
6137    return true;
6138  else if (rhs->isVoidPointerType() ||
6139           rhs->isObjCIdType() || rhs->isObjCClassType())
6140    return true;
6141
6142  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6143    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6144
6145    if (!rhsOPT) return false;
6146
6147    if (rhsOPT->qual_empty()) {
6148      // If the RHS is a unqualified interface pointer "NSString*",
6149      // make sure we check the class hierarchy.
6150      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6151        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6152             E = lhsQID->qual_end(); I != E; ++I) {
6153          // when comparing an id<P> on lhs with a static type on rhs,
6154          // see if static class implements all of id's protocols, directly or
6155          // through its super class and categories.
6156          if (!rhsID->ClassImplementsProtocol(*I, true))
6157            return false;
6158        }
6159      }
6160      // If there are no qualifiers and no interface, we have an 'id'.
6161      return true;
6162    }
6163    // Both the right and left sides have qualifiers.
6164    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6165         E = lhsQID->qual_end(); I != E; ++I) {
6166      ObjCProtocolDecl *lhsProto = *I;
6167      bool match = false;
6168
6169      // when comparing an id<P> on lhs with a static type on rhs,
6170      // see if static class implements all of id's protocols, directly or
6171      // through its super class and categories.
6172      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6173           E = rhsOPT->qual_end(); J != E; ++J) {
6174        ObjCProtocolDecl *rhsProto = *J;
6175        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6176            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6177          match = true;
6178          break;
6179        }
6180      }
6181      // If the RHS is a qualified interface pointer "NSString<P>*",
6182      // make sure we check the class hierarchy.
6183      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6184        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6185             E = lhsQID->qual_end(); I != E; ++I) {
6186          // when comparing an id<P> on lhs with a static type on rhs,
6187          // see if static class implements all of id's protocols, directly or
6188          // through its super class and categories.
6189          if (rhsID->ClassImplementsProtocol(*I, true)) {
6190            match = true;
6191            break;
6192          }
6193        }
6194      }
6195      if (!match)
6196        return false;
6197    }
6198
6199    return true;
6200  }
6201
6202  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6203  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6204
6205  if (const ObjCObjectPointerType *lhsOPT =
6206        lhs->getAsObjCInterfacePointerType()) {
6207    // If both the right and left sides have qualifiers.
6208    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6209         E = lhsOPT->qual_end(); I != E; ++I) {
6210      ObjCProtocolDecl *lhsProto = *I;
6211      bool match = false;
6212
6213      // when comparing an id<P> on rhs with a static type on lhs,
6214      // see if static class implements all of id's protocols, directly or
6215      // through its super class and categories.
6216      // First, lhs protocols in the qualifier list must be found, direct
6217      // or indirect in rhs's qualifier list or it is a mismatch.
6218      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6219           E = rhsQID->qual_end(); J != E; ++J) {
6220        ObjCProtocolDecl *rhsProto = *J;
6221        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6222            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6223          match = true;
6224          break;
6225        }
6226      }
6227      if (!match)
6228        return false;
6229    }
6230
6231    // Static class's protocols, or its super class or category protocols
6232    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6233    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6234      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6235      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6236      // This is rather dubious but matches gcc's behavior. If lhs has
6237      // no type qualifier and its class has no static protocol(s)
6238      // assume that it is mismatch.
6239      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6240        return false;
6241      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6242           LHSInheritedProtocols.begin(),
6243           E = LHSInheritedProtocols.end(); I != E; ++I) {
6244        bool match = false;
6245        ObjCProtocolDecl *lhsProto = (*I);
6246        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6247             E = rhsQID->qual_end(); J != E; ++J) {
6248          ObjCProtocolDecl *rhsProto = *J;
6249          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6250              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6251            match = true;
6252            break;
6253          }
6254        }
6255        if (!match)
6256          return false;
6257      }
6258    }
6259    return true;
6260  }
6261  return false;
6262}
6263
6264/// canAssignObjCInterfaces - Return true if the two interface types are
6265/// compatible for assignment from RHS to LHS.  This handles validation of any
6266/// protocol qualifiers on the LHS or RHS.
6267///
6268bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6269                                         const ObjCObjectPointerType *RHSOPT) {
6270  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6271  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6272
6273  // If either type represents the built-in 'id' or 'Class' types, return true.
6274  if (LHS->isObjCUnqualifiedIdOrClass() ||
6275      RHS->isObjCUnqualifiedIdOrClass())
6276    return true;
6277
6278  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6279    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6280                                             QualType(RHSOPT,0),
6281                                             false);
6282
6283  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6284    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6285                                                QualType(RHSOPT,0));
6286
6287  // If we have 2 user-defined types, fall into that path.
6288  if (LHS->getInterface() && RHS->getInterface())
6289    return canAssignObjCInterfaces(LHS, RHS);
6290
6291  return false;
6292}
6293
6294/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6295/// for providing type-safety for objective-c pointers used to pass/return
6296/// arguments in block literals. When passed as arguments, passing 'A*' where
6297/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6298/// not OK. For the return type, the opposite is not OK.
6299bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6300                                         const ObjCObjectPointerType *LHSOPT,
6301                                         const ObjCObjectPointerType *RHSOPT,
6302                                         bool BlockReturnType) {
6303  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6304    return true;
6305
6306  if (LHSOPT->isObjCBuiltinType()) {
6307    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6308  }
6309
6310  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6311    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6312                                             QualType(RHSOPT,0),
6313                                             false);
6314
6315  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6316  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6317  if (LHS && RHS)  { // We have 2 user-defined types.
6318    if (LHS != RHS) {
6319      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6320        return BlockReturnType;
6321      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6322        return !BlockReturnType;
6323    }
6324    else
6325      return true;
6326  }
6327  return false;
6328}
6329
6330/// getIntersectionOfProtocols - This routine finds the intersection of set
6331/// of protocols inherited from two distinct objective-c pointer objects.
6332/// It is used to build composite qualifier list of the composite type of
6333/// the conditional expression involving two objective-c pointer objects.
6334static
6335void getIntersectionOfProtocols(ASTContext &Context,
6336                                const ObjCObjectPointerType *LHSOPT,
6337                                const ObjCObjectPointerType *RHSOPT,
6338      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6339
6340  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6341  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6342  assert(LHS->getInterface() && "LHS must have an interface base");
6343  assert(RHS->getInterface() && "RHS must have an interface base");
6344
6345  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6346  unsigned LHSNumProtocols = LHS->getNumProtocols();
6347  if (LHSNumProtocols > 0)
6348    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6349  else {
6350    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6351    Context.CollectInheritedProtocols(LHS->getInterface(),
6352                                      LHSInheritedProtocols);
6353    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6354                                LHSInheritedProtocols.end());
6355  }
6356
6357  unsigned RHSNumProtocols = RHS->getNumProtocols();
6358  if (RHSNumProtocols > 0) {
6359    ObjCProtocolDecl **RHSProtocols =
6360      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6361    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6362      if (InheritedProtocolSet.count(RHSProtocols[i]))
6363        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6364  } else {
6365    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6366    Context.CollectInheritedProtocols(RHS->getInterface(),
6367                                      RHSInheritedProtocols);
6368    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6369         RHSInheritedProtocols.begin(),
6370         E = RHSInheritedProtocols.end(); I != E; ++I)
6371      if (InheritedProtocolSet.count((*I)))
6372        IntersectionOfProtocols.push_back((*I));
6373  }
6374}
6375
6376/// areCommonBaseCompatible - Returns common base class of the two classes if
6377/// one found. Note that this is O'2 algorithm. But it will be called as the
6378/// last type comparison in a ?-exp of ObjC pointer types before a
6379/// warning is issued. So, its invokation is extremely rare.
6380QualType ASTContext::areCommonBaseCompatible(
6381                                          const ObjCObjectPointerType *Lptr,
6382                                          const ObjCObjectPointerType *Rptr) {
6383  const ObjCObjectType *LHS = Lptr->getObjectType();
6384  const ObjCObjectType *RHS = Rptr->getObjectType();
6385  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6386  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6387  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6388    return QualType();
6389
6390  do {
6391    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6392    if (canAssignObjCInterfaces(LHS, RHS)) {
6393      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6394      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6395
6396      QualType Result = QualType(LHS, 0);
6397      if (!Protocols.empty())
6398        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6399      Result = getObjCObjectPointerType(Result);
6400      return Result;
6401    }
6402  } while ((LDecl = LDecl->getSuperClass()));
6403
6404  return QualType();
6405}
6406
6407bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6408                                         const ObjCObjectType *RHS) {
6409  assert(LHS->getInterface() && "LHS is not an interface type");
6410  assert(RHS->getInterface() && "RHS is not an interface type");
6411
6412  // Verify that the base decls are compatible: the RHS must be a subclass of
6413  // the LHS.
6414  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6415    return false;
6416
6417  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6418  // protocol qualified at all, then we are good.
6419  if (LHS->getNumProtocols() == 0)
6420    return true;
6421
6422  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6423  // more detailed analysis is required.
6424  if (RHS->getNumProtocols() == 0) {
6425    // OK, if LHS is a superclass of RHS *and*
6426    // this superclass is assignment compatible with LHS.
6427    // false otherwise.
6428    bool IsSuperClass =
6429      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6430    if (IsSuperClass) {
6431      // OK if conversion of LHS to SuperClass results in narrowing of types
6432      // ; i.e., SuperClass may implement at least one of the protocols
6433      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6434      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6435      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6436      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6437      // If super class has no protocols, it is not a match.
6438      if (SuperClassInheritedProtocols.empty())
6439        return false;
6440
6441      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6442           LHSPE = LHS->qual_end();
6443           LHSPI != LHSPE; LHSPI++) {
6444        bool SuperImplementsProtocol = false;
6445        ObjCProtocolDecl *LHSProto = (*LHSPI);
6446
6447        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6448             SuperClassInheritedProtocols.begin(),
6449             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6450          ObjCProtocolDecl *SuperClassProto = (*I);
6451          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6452            SuperImplementsProtocol = true;
6453            break;
6454          }
6455        }
6456        if (!SuperImplementsProtocol)
6457          return false;
6458      }
6459      return true;
6460    }
6461    return false;
6462  }
6463
6464  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6465                                     LHSPE = LHS->qual_end();
6466       LHSPI != LHSPE; LHSPI++) {
6467    bool RHSImplementsProtocol = false;
6468
6469    // If the RHS doesn't implement the protocol on the left, the types
6470    // are incompatible.
6471    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6472                                       RHSPE = RHS->qual_end();
6473         RHSPI != RHSPE; RHSPI++) {
6474      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6475        RHSImplementsProtocol = true;
6476        break;
6477      }
6478    }
6479    // FIXME: For better diagnostics, consider passing back the protocol name.
6480    if (!RHSImplementsProtocol)
6481      return false;
6482  }
6483  // The RHS implements all protocols listed on the LHS.
6484  return true;
6485}
6486
6487bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6488  // get the "pointed to" types
6489  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6490  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6491
6492  if (!LHSOPT || !RHSOPT)
6493    return false;
6494
6495  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6496         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6497}
6498
6499bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6500  return canAssignObjCInterfaces(
6501                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6502                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6503}
6504
6505/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6506/// both shall have the identically qualified version of a compatible type.
6507/// C99 6.2.7p1: Two types have compatible types if their types are the
6508/// same. See 6.7.[2,3,5] for additional rules.
6509bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6510                                    bool CompareUnqualified) {
6511  if (getLangOpts().CPlusPlus)
6512    return hasSameType(LHS, RHS);
6513
6514  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6515}
6516
6517bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6518  return typesAreCompatible(LHS, RHS);
6519}
6520
6521bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6522  return !mergeTypes(LHS, RHS, true).isNull();
6523}
6524
6525/// mergeTransparentUnionType - if T is a transparent union type and a member
6526/// of T is compatible with SubType, return the merged type, else return
6527/// QualType()
6528QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6529                                               bool OfBlockPointer,
6530                                               bool Unqualified) {
6531  if (const RecordType *UT = T->getAsUnionType()) {
6532    RecordDecl *UD = UT->getDecl();
6533    if (UD->hasAttr<TransparentUnionAttr>()) {
6534      for (RecordDecl::field_iterator it = UD->field_begin(),
6535           itend = UD->field_end(); it != itend; ++it) {
6536        QualType ET = it->getType().getUnqualifiedType();
6537        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6538        if (!MT.isNull())
6539          return MT;
6540      }
6541    }
6542  }
6543
6544  return QualType();
6545}
6546
6547/// mergeFunctionArgumentTypes - merge two types which appear as function
6548/// argument types
6549QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6550                                                bool OfBlockPointer,
6551                                                bool Unqualified) {
6552  // GNU extension: two types are compatible if they appear as a function
6553  // argument, one of the types is a transparent union type and the other
6554  // type is compatible with a union member
6555  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6556                                              Unqualified);
6557  if (!lmerge.isNull())
6558    return lmerge;
6559
6560  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6561                                              Unqualified);
6562  if (!rmerge.isNull())
6563    return rmerge;
6564
6565  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6566}
6567
6568QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6569                                        bool OfBlockPointer,
6570                                        bool Unqualified) {
6571  const FunctionType *lbase = lhs->getAs<FunctionType>();
6572  const FunctionType *rbase = rhs->getAs<FunctionType>();
6573  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6574  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6575  bool allLTypes = true;
6576  bool allRTypes = true;
6577
6578  // Check return type
6579  QualType retType;
6580  if (OfBlockPointer) {
6581    QualType RHS = rbase->getResultType();
6582    QualType LHS = lbase->getResultType();
6583    bool UnqualifiedResult = Unqualified;
6584    if (!UnqualifiedResult)
6585      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6586    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6587  }
6588  else
6589    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6590                         Unqualified);
6591  if (retType.isNull()) return QualType();
6592
6593  if (Unqualified)
6594    retType = retType.getUnqualifiedType();
6595
6596  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6597  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6598  if (Unqualified) {
6599    LRetType = LRetType.getUnqualifiedType();
6600    RRetType = RRetType.getUnqualifiedType();
6601  }
6602
6603  if (getCanonicalType(retType) != LRetType)
6604    allLTypes = false;
6605  if (getCanonicalType(retType) != RRetType)
6606    allRTypes = false;
6607
6608  // FIXME: double check this
6609  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6610  //                           rbase->getRegParmAttr() != 0 &&
6611  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6612  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6613  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6614
6615  // Compatible functions must have compatible calling conventions
6616  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6617    return QualType();
6618
6619  // Regparm is part of the calling convention.
6620  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6621    return QualType();
6622  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6623    return QualType();
6624
6625  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6626    return QualType();
6627
6628  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6629  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6630
6631  if (lbaseInfo.getNoReturn() != NoReturn)
6632    allLTypes = false;
6633  if (rbaseInfo.getNoReturn() != NoReturn)
6634    allRTypes = false;
6635
6636  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6637
6638  if (lproto && rproto) { // two C99 style function prototypes
6639    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6640           "C++ shouldn't be here");
6641    unsigned lproto_nargs = lproto->getNumArgs();
6642    unsigned rproto_nargs = rproto->getNumArgs();
6643
6644    // Compatible functions must have the same number of arguments
6645    if (lproto_nargs != rproto_nargs)
6646      return QualType();
6647
6648    // Variadic and non-variadic functions aren't compatible
6649    if (lproto->isVariadic() != rproto->isVariadic())
6650      return QualType();
6651
6652    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6653      return QualType();
6654
6655    if (LangOpts.ObjCAutoRefCount &&
6656        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6657      return QualType();
6658
6659    // Check argument compatibility
6660    SmallVector<QualType, 10> types;
6661    for (unsigned i = 0; i < lproto_nargs; i++) {
6662      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6663      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6664      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6665                                                    OfBlockPointer,
6666                                                    Unqualified);
6667      if (argtype.isNull()) return QualType();
6668
6669      if (Unqualified)
6670        argtype = argtype.getUnqualifiedType();
6671
6672      types.push_back(argtype);
6673      if (Unqualified) {
6674        largtype = largtype.getUnqualifiedType();
6675        rargtype = rargtype.getUnqualifiedType();
6676      }
6677
6678      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6679        allLTypes = false;
6680      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6681        allRTypes = false;
6682    }
6683
6684    if (allLTypes) return lhs;
6685    if (allRTypes) return rhs;
6686
6687    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6688    EPI.ExtInfo = einfo;
6689    return getFunctionType(retType, types.begin(), types.size(), EPI);
6690  }
6691
6692  if (lproto) allRTypes = false;
6693  if (rproto) allLTypes = false;
6694
6695  const FunctionProtoType *proto = lproto ? lproto : rproto;
6696  if (proto) {
6697    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6698    if (proto->isVariadic()) return QualType();
6699    // Check that the types are compatible with the types that
6700    // would result from default argument promotions (C99 6.7.5.3p15).
6701    // The only types actually affected are promotable integer
6702    // types and floats, which would be passed as a different
6703    // type depending on whether the prototype is visible.
6704    unsigned proto_nargs = proto->getNumArgs();
6705    for (unsigned i = 0; i < proto_nargs; ++i) {
6706      QualType argTy = proto->getArgType(i);
6707
6708      // Look at the converted type of enum types, since that is the type used
6709      // to pass enum values.
6710      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6711        argTy = Enum->getDecl()->getIntegerType();
6712        if (argTy.isNull())
6713          return QualType();
6714      }
6715
6716      if (argTy->isPromotableIntegerType() ||
6717          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6718        return QualType();
6719    }
6720
6721    if (allLTypes) return lhs;
6722    if (allRTypes) return rhs;
6723
6724    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6725    EPI.ExtInfo = einfo;
6726    return getFunctionType(retType, proto->arg_type_begin(),
6727                           proto->getNumArgs(), EPI);
6728  }
6729
6730  if (allLTypes) return lhs;
6731  if (allRTypes) return rhs;
6732  return getFunctionNoProtoType(retType, einfo);
6733}
6734
6735QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6736                                bool OfBlockPointer,
6737                                bool Unqualified, bool BlockReturnType) {
6738  // C++ [expr]: If an expression initially has the type "reference to T", the
6739  // type is adjusted to "T" prior to any further analysis, the expression
6740  // designates the object or function denoted by the reference, and the
6741  // expression is an lvalue unless the reference is an rvalue reference and
6742  // the expression is a function call (possibly inside parentheses).
6743  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6744  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6745
6746  if (Unqualified) {
6747    LHS = LHS.getUnqualifiedType();
6748    RHS = RHS.getUnqualifiedType();
6749  }
6750
6751  QualType LHSCan = getCanonicalType(LHS),
6752           RHSCan = getCanonicalType(RHS);
6753
6754  // If two types are identical, they are compatible.
6755  if (LHSCan == RHSCan)
6756    return LHS;
6757
6758  // If the qualifiers are different, the types aren't compatible... mostly.
6759  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6760  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6761  if (LQuals != RQuals) {
6762    // If any of these qualifiers are different, we have a type
6763    // mismatch.
6764    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6765        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6766        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6767      return QualType();
6768
6769    // Exactly one GC qualifier difference is allowed: __strong is
6770    // okay if the other type has no GC qualifier but is an Objective
6771    // C object pointer (i.e. implicitly strong by default).  We fix
6772    // this by pretending that the unqualified type was actually
6773    // qualified __strong.
6774    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6775    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6776    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6777
6778    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6779      return QualType();
6780
6781    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6782      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6783    }
6784    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6785      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6786    }
6787    return QualType();
6788  }
6789
6790  // Okay, qualifiers are equal.
6791
6792  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6793  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6794
6795  // We want to consider the two function types to be the same for these
6796  // comparisons, just force one to the other.
6797  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6798  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6799
6800  // Same as above for arrays
6801  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6802    LHSClass = Type::ConstantArray;
6803  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6804    RHSClass = Type::ConstantArray;
6805
6806  // ObjCInterfaces are just specialized ObjCObjects.
6807  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6808  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6809
6810  // Canonicalize ExtVector -> Vector.
6811  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6812  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6813
6814  // If the canonical type classes don't match.
6815  if (LHSClass != RHSClass) {
6816    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6817    // a signed integer type, or an unsigned integer type.
6818    // Compatibility is based on the underlying type, not the promotion
6819    // type.
6820    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6821      QualType TINT = ETy->getDecl()->getIntegerType();
6822      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6823        return RHS;
6824    }
6825    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6826      QualType TINT = ETy->getDecl()->getIntegerType();
6827      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6828        return LHS;
6829    }
6830    // allow block pointer type to match an 'id' type.
6831    if (OfBlockPointer && !BlockReturnType) {
6832       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6833         return LHS;
6834      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6835        return RHS;
6836    }
6837
6838    return QualType();
6839  }
6840
6841  // The canonical type classes match.
6842  switch (LHSClass) {
6843#define TYPE(Class, Base)
6844#define ABSTRACT_TYPE(Class, Base)
6845#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6846#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6847#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6848#include "clang/AST/TypeNodes.def"
6849    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6850
6851  case Type::LValueReference:
6852  case Type::RValueReference:
6853  case Type::MemberPointer:
6854    llvm_unreachable("C++ should never be in mergeTypes");
6855
6856  case Type::ObjCInterface:
6857  case Type::IncompleteArray:
6858  case Type::VariableArray:
6859  case Type::FunctionProto:
6860  case Type::ExtVector:
6861    llvm_unreachable("Types are eliminated above");
6862
6863  case Type::Pointer:
6864  {
6865    // Merge two pointer types, while trying to preserve typedef info
6866    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6867    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6868    if (Unqualified) {
6869      LHSPointee = LHSPointee.getUnqualifiedType();
6870      RHSPointee = RHSPointee.getUnqualifiedType();
6871    }
6872    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6873                                     Unqualified);
6874    if (ResultType.isNull()) return QualType();
6875    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6876      return LHS;
6877    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6878      return RHS;
6879    return getPointerType(ResultType);
6880  }
6881  case Type::BlockPointer:
6882  {
6883    // Merge two block pointer types, while trying to preserve typedef info
6884    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6885    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6886    if (Unqualified) {
6887      LHSPointee = LHSPointee.getUnqualifiedType();
6888      RHSPointee = RHSPointee.getUnqualifiedType();
6889    }
6890    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6891                                     Unqualified);
6892    if (ResultType.isNull()) return QualType();
6893    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6894      return LHS;
6895    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6896      return RHS;
6897    return getBlockPointerType(ResultType);
6898  }
6899  case Type::Atomic:
6900  {
6901    // Merge two pointer types, while trying to preserve typedef info
6902    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6903    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6904    if (Unqualified) {
6905      LHSValue = LHSValue.getUnqualifiedType();
6906      RHSValue = RHSValue.getUnqualifiedType();
6907    }
6908    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6909                                     Unqualified);
6910    if (ResultType.isNull()) return QualType();
6911    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6912      return LHS;
6913    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6914      return RHS;
6915    return getAtomicType(ResultType);
6916  }
6917  case Type::ConstantArray:
6918  {
6919    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6920    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6921    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6922      return QualType();
6923
6924    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6925    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6926    if (Unqualified) {
6927      LHSElem = LHSElem.getUnqualifiedType();
6928      RHSElem = RHSElem.getUnqualifiedType();
6929    }
6930
6931    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6932    if (ResultType.isNull()) return QualType();
6933    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6934      return LHS;
6935    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6936      return RHS;
6937    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6938                                          ArrayType::ArraySizeModifier(), 0);
6939    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6940                                          ArrayType::ArraySizeModifier(), 0);
6941    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6942    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6943    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6944      return LHS;
6945    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6946      return RHS;
6947    if (LVAT) {
6948      // FIXME: This isn't correct! But tricky to implement because
6949      // the array's size has to be the size of LHS, but the type
6950      // has to be different.
6951      return LHS;
6952    }
6953    if (RVAT) {
6954      // FIXME: This isn't correct! But tricky to implement because
6955      // the array's size has to be the size of RHS, but the type
6956      // has to be different.
6957      return RHS;
6958    }
6959    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6960    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6961    return getIncompleteArrayType(ResultType,
6962                                  ArrayType::ArraySizeModifier(), 0);
6963  }
6964  case Type::FunctionNoProto:
6965    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6966  case Type::Record:
6967  case Type::Enum:
6968    return QualType();
6969  case Type::Builtin:
6970    // Only exactly equal builtin types are compatible, which is tested above.
6971    return QualType();
6972  case Type::Complex:
6973    // Distinct complex types are incompatible.
6974    return QualType();
6975  case Type::Vector:
6976    // FIXME: The merged type should be an ExtVector!
6977    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6978                             RHSCan->getAs<VectorType>()))
6979      return LHS;
6980    return QualType();
6981  case Type::ObjCObject: {
6982    // Check if the types are assignment compatible.
6983    // FIXME: This should be type compatibility, e.g. whether
6984    // "LHS x; RHS x;" at global scope is legal.
6985    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6986    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6987    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6988      return LHS;
6989
6990    return QualType();
6991  }
6992  case Type::ObjCObjectPointer: {
6993    if (OfBlockPointer) {
6994      if (canAssignObjCInterfacesInBlockPointer(
6995                                          LHS->getAs<ObjCObjectPointerType>(),
6996                                          RHS->getAs<ObjCObjectPointerType>(),
6997                                          BlockReturnType))
6998        return LHS;
6999      return QualType();
7000    }
7001    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7002                                RHS->getAs<ObjCObjectPointerType>()))
7003      return LHS;
7004
7005    return QualType();
7006  }
7007  }
7008
7009  llvm_unreachable("Invalid Type::Class!");
7010}
7011
7012bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7013                   const FunctionProtoType *FromFunctionType,
7014                   const FunctionProtoType *ToFunctionType) {
7015  if (FromFunctionType->hasAnyConsumedArgs() !=
7016      ToFunctionType->hasAnyConsumedArgs())
7017    return false;
7018  FunctionProtoType::ExtProtoInfo FromEPI =
7019    FromFunctionType->getExtProtoInfo();
7020  FunctionProtoType::ExtProtoInfo ToEPI =
7021    ToFunctionType->getExtProtoInfo();
7022  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7023    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7024         ArgIdx != NumArgs; ++ArgIdx)  {
7025      if (FromEPI.ConsumedArguments[ArgIdx] !=
7026          ToEPI.ConsumedArguments[ArgIdx])
7027        return false;
7028    }
7029  return true;
7030}
7031
7032/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7033/// 'RHS' attributes and returns the merged version; including for function
7034/// return types.
7035QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7036  QualType LHSCan = getCanonicalType(LHS),
7037  RHSCan = getCanonicalType(RHS);
7038  // If two types are identical, they are compatible.
7039  if (LHSCan == RHSCan)
7040    return LHS;
7041  if (RHSCan->isFunctionType()) {
7042    if (!LHSCan->isFunctionType())
7043      return QualType();
7044    QualType OldReturnType =
7045      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7046    QualType NewReturnType =
7047      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7048    QualType ResReturnType =
7049      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7050    if (ResReturnType.isNull())
7051      return QualType();
7052    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7053      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7054      // In either case, use OldReturnType to build the new function type.
7055      const FunctionType *F = LHS->getAs<FunctionType>();
7056      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7057        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7058        EPI.ExtInfo = getFunctionExtInfo(LHS);
7059        QualType ResultType
7060          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
7061                            FPT->getNumArgs(), EPI);
7062        return ResultType;
7063      }
7064    }
7065    return QualType();
7066  }
7067
7068  // If the qualifiers are different, the types can still be merged.
7069  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7070  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7071  if (LQuals != RQuals) {
7072    // If any of these qualifiers are different, we have a type mismatch.
7073    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7074        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7075      return QualType();
7076
7077    // Exactly one GC qualifier difference is allowed: __strong is
7078    // okay if the other type has no GC qualifier but is an Objective
7079    // C object pointer (i.e. implicitly strong by default).  We fix
7080    // this by pretending that the unqualified type was actually
7081    // qualified __strong.
7082    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7083    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7084    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7085
7086    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7087      return QualType();
7088
7089    if (GC_L == Qualifiers::Strong)
7090      return LHS;
7091    if (GC_R == Qualifiers::Strong)
7092      return RHS;
7093    return QualType();
7094  }
7095
7096  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7097    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7098    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7099    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7100    if (ResQT == LHSBaseQT)
7101      return LHS;
7102    if (ResQT == RHSBaseQT)
7103      return RHS;
7104  }
7105  return QualType();
7106}
7107
7108//===----------------------------------------------------------------------===//
7109//                         Integer Predicates
7110//===----------------------------------------------------------------------===//
7111
7112unsigned ASTContext::getIntWidth(QualType T) const {
7113  if (const EnumType *ET = dyn_cast<EnumType>(T))
7114    T = ET->getDecl()->getIntegerType();
7115  if (T->isBooleanType())
7116    return 1;
7117  // For builtin types, just use the standard type sizing method
7118  return (unsigned)getTypeSize(T);
7119}
7120
7121QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7122  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7123
7124  // Turn <4 x signed int> -> <4 x unsigned int>
7125  if (const VectorType *VTy = T->getAs<VectorType>())
7126    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7127                         VTy->getNumElements(), VTy->getVectorKind());
7128
7129  // For enums, we return the unsigned version of the base type.
7130  if (const EnumType *ETy = T->getAs<EnumType>())
7131    T = ETy->getDecl()->getIntegerType();
7132
7133  const BuiltinType *BTy = T->getAs<BuiltinType>();
7134  assert(BTy && "Unexpected signed integer type");
7135  switch (BTy->getKind()) {
7136  case BuiltinType::Char_S:
7137  case BuiltinType::SChar:
7138    return UnsignedCharTy;
7139  case BuiltinType::Short:
7140    return UnsignedShortTy;
7141  case BuiltinType::Int:
7142    return UnsignedIntTy;
7143  case BuiltinType::Long:
7144    return UnsignedLongTy;
7145  case BuiltinType::LongLong:
7146    return UnsignedLongLongTy;
7147  case BuiltinType::Int128:
7148    return UnsignedInt128Ty;
7149  default:
7150    llvm_unreachable("Unexpected signed integer type");
7151  }
7152}
7153
7154ASTMutationListener::~ASTMutationListener() { }
7155
7156
7157//===----------------------------------------------------------------------===//
7158//                          Builtin Type Computation
7159//===----------------------------------------------------------------------===//
7160
7161/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7162/// pointer over the consumed characters.  This returns the resultant type.  If
7163/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7164/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7165/// a vector of "i*".
7166///
7167/// RequiresICE is filled in on return to indicate whether the value is required
7168/// to be an Integer Constant Expression.
7169static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7170                                  ASTContext::GetBuiltinTypeError &Error,
7171                                  bool &RequiresICE,
7172                                  bool AllowTypeModifiers) {
7173  // Modifiers.
7174  int HowLong = 0;
7175  bool Signed = false, Unsigned = false;
7176  RequiresICE = false;
7177
7178  // Read the prefixed modifiers first.
7179  bool Done = false;
7180  while (!Done) {
7181    switch (*Str++) {
7182    default: Done = true; --Str; break;
7183    case 'I':
7184      RequiresICE = true;
7185      break;
7186    case 'S':
7187      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7188      assert(!Signed && "Can't use 'S' modifier multiple times!");
7189      Signed = true;
7190      break;
7191    case 'U':
7192      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7193      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7194      Unsigned = true;
7195      break;
7196    case 'L':
7197      assert(HowLong <= 2 && "Can't have LLLL modifier");
7198      ++HowLong;
7199      break;
7200    }
7201  }
7202
7203  QualType Type;
7204
7205  // Read the base type.
7206  switch (*Str++) {
7207  default: llvm_unreachable("Unknown builtin type letter!");
7208  case 'v':
7209    assert(HowLong == 0 && !Signed && !Unsigned &&
7210           "Bad modifiers used with 'v'!");
7211    Type = Context.VoidTy;
7212    break;
7213  case 'f':
7214    assert(HowLong == 0 && !Signed && !Unsigned &&
7215           "Bad modifiers used with 'f'!");
7216    Type = Context.FloatTy;
7217    break;
7218  case 'd':
7219    assert(HowLong < 2 && !Signed && !Unsigned &&
7220           "Bad modifiers used with 'd'!");
7221    if (HowLong)
7222      Type = Context.LongDoubleTy;
7223    else
7224      Type = Context.DoubleTy;
7225    break;
7226  case 's':
7227    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7228    if (Unsigned)
7229      Type = Context.UnsignedShortTy;
7230    else
7231      Type = Context.ShortTy;
7232    break;
7233  case 'i':
7234    if (HowLong == 3)
7235      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7236    else if (HowLong == 2)
7237      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7238    else if (HowLong == 1)
7239      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7240    else
7241      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7242    break;
7243  case 'c':
7244    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7245    if (Signed)
7246      Type = Context.SignedCharTy;
7247    else if (Unsigned)
7248      Type = Context.UnsignedCharTy;
7249    else
7250      Type = Context.CharTy;
7251    break;
7252  case 'b': // boolean
7253    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7254    Type = Context.BoolTy;
7255    break;
7256  case 'z':  // size_t.
7257    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7258    Type = Context.getSizeType();
7259    break;
7260  case 'F':
7261    Type = Context.getCFConstantStringType();
7262    break;
7263  case 'G':
7264    Type = Context.getObjCIdType();
7265    break;
7266  case 'H':
7267    Type = Context.getObjCSelType();
7268    break;
7269  case 'M':
7270    Type = Context.getObjCSuperType();
7271    break;
7272  case 'a':
7273    Type = Context.getBuiltinVaListType();
7274    assert(!Type.isNull() && "builtin va list type not initialized!");
7275    break;
7276  case 'A':
7277    // This is a "reference" to a va_list; however, what exactly
7278    // this means depends on how va_list is defined. There are two
7279    // different kinds of va_list: ones passed by value, and ones
7280    // passed by reference.  An example of a by-value va_list is
7281    // x86, where va_list is a char*. An example of by-ref va_list
7282    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7283    // we want this argument to be a char*&; for x86-64, we want
7284    // it to be a __va_list_tag*.
7285    Type = Context.getBuiltinVaListType();
7286    assert(!Type.isNull() && "builtin va list type not initialized!");
7287    if (Type->isArrayType())
7288      Type = Context.getArrayDecayedType(Type);
7289    else
7290      Type = Context.getLValueReferenceType(Type);
7291    break;
7292  case 'V': {
7293    char *End;
7294    unsigned NumElements = strtoul(Str, &End, 10);
7295    assert(End != Str && "Missing vector size");
7296    Str = End;
7297
7298    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7299                                             RequiresICE, false);
7300    assert(!RequiresICE && "Can't require vector ICE");
7301
7302    // TODO: No way to make AltiVec vectors in builtins yet.
7303    Type = Context.getVectorType(ElementType, NumElements,
7304                                 VectorType::GenericVector);
7305    break;
7306  }
7307  case 'E': {
7308    char *End;
7309
7310    unsigned NumElements = strtoul(Str, &End, 10);
7311    assert(End != Str && "Missing vector size");
7312
7313    Str = End;
7314
7315    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7316                                             false);
7317    Type = Context.getExtVectorType(ElementType, NumElements);
7318    break;
7319  }
7320  case 'X': {
7321    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7322                                             false);
7323    assert(!RequiresICE && "Can't require complex ICE");
7324    Type = Context.getComplexType(ElementType);
7325    break;
7326  }
7327  case 'Y' : {
7328    Type = Context.getPointerDiffType();
7329    break;
7330  }
7331  case 'P':
7332    Type = Context.getFILEType();
7333    if (Type.isNull()) {
7334      Error = ASTContext::GE_Missing_stdio;
7335      return QualType();
7336    }
7337    break;
7338  case 'J':
7339    if (Signed)
7340      Type = Context.getsigjmp_bufType();
7341    else
7342      Type = Context.getjmp_bufType();
7343
7344    if (Type.isNull()) {
7345      Error = ASTContext::GE_Missing_setjmp;
7346      return QualType();
7347    }
7348    break;
7349  case 'K':
7350    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7351    Type = Context.getucontext_tType();
7352
7353    if (Type.isNull()) {
7354      Error = ASTContext::GE_Missing_ucontext;
7355      return QualType();
7356    }
7357    break;
7358  case 'p':
7359    Type = Context.getProcessIDType();
7360    break;
7361  }
7362
7363  // If there are modifiers and if we're allowed to parse them, go for it.
7364  Done = !AllowTypeModifiers;
7365  while (!Done) {
7366    switch (char c = *Str++) {
7367    default: Done = true; --Str; break;
7368    case '*':
7369    case '&': {
7370      // Both pointers and references can have their pointee types
7371      // qualified with an address space.
7372      char *End;
7373      unsigned AddrSpace = strtoul(Str, &End, 10);
7374      if (End != Str && AddrSpace != 0) {
7375        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7376        Str = End;
7377      }
7378      if (c == '*')
7379        Type = Context.getPointerType(Type);
7380      else
7381        Type = Context.getLValueReferenceType(Type);
7382      break;
7383    }
7384    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7385    case 'C':
7386      Type = Type.withConst();
7387      break;
7388    case 'D':
7389      Type = Context.getVolatileType(Type);
7390      break;
7391    case 'R':
7392      Type = Type.withRestrict();
7393      break;
7394    }
7395  }
7396
7397  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7398         "Integer constant 'I' type must be an integer");
7399
7400  return Type;
7401}
7402
7403/// GetBuiltinType - Return the type for the specified builtin.
7404QualType ASTContext::GetBuiltinType(unsigned Id,
7405                                    GetBuiltinTypeError &Error,
7406                                    unsigned *IntegerConstantArgs) const {
7407  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7408
7409  SmallVector<QualType, 8> ArgTypes;
7410
7411  bool RequiresICE = false;
7412  Error = GE_None;
7413  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7414                                       RequiresICE, true);
7415  if (Error != GE_None)
7416    return QualType();
7417
7418  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7419
7420  while (TypeStr[0] && TypeStr[0] != '.') {
7421    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7422    if (Error != GE_None)
7423      return QualType();
7424
7425    // If this argument is required to be an IntegerConstantExpression and the
7426    // caller cares, fill in the bitmask we return.
7427    if (RequiresICE && IntegerConstantArgs)
7428      *IntegerConstantArgs |= 1 << ArgTypes.size();
7429
7430    // Do array -> pointer decay.  The builtin should use the decayed type.
7431    if (Ty->isArrayType())
7432      Ty = getArrayDecayedType(Ty);
7433
7434    ArgTypes.push_back(Ty);
7435  }
7436
7437  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7438         "'.' should only occur at end of builtin type list!");
7439
7440  FunctionType::ExtInfo EI;
7441  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7442
7443  bool Variadic = (TypeStr[0] == '.');
7444
7445  // We really shouldn't be making a no-proto type here, especially in C++.
7446  if (ArgTypes.empty() && Variadic)
7447    return getFunctionNoProtoType(ResType, EI);
7448
7449  FunctionProtoType::ExtProtoInfo EPI;
7450  EPI.ExtInfo = EI;
7451  EPI.Variadic = Variadic;
7452
7453  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
7454}
7455
7456GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7457  GVALinkage External = GVA_StrongExternal;
7458
7459  Linkage L = FD->getLinkage();
7460  switch (L) {
7461  case NoLinkage:
7462  case InternalLinkage:
7463  case UniqueExternalLinkage:
7464    return GVA_Internal;
7465
7466  case ExternalLinkage:
7467    switch (FD->getTemplateSpecializationKind()) {
7468    case TSK_Undeclared:
7469    case TSK_ExplicitSpecialization:
7470      External = GVA_StrongExternal;
7471      break;
7472
7473    case TSK_ExplicitInstantiationDefinition:
7474      return GVA_ExplicitTemplateInstantiation;
7475
7476    case TSK_ExplicitInstantiationDeclaration:
7477    case TSK_ImplicitInstantiation:
7478      External = GVA_TemplateInstantiation;
7479      break;
7480    }
7481  }
7482
7483  if (!FD->isInlined())
7484    return External;
7485
7486  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7487    // GNU or C99 inline semantics. Determine whether this symbol should be
7488    // externally visible.
7489    if (FD->isInlineDefinitionExternallyVisible())
7490      return External;
7491
7492    // C99 inline semantics, where the symbol is not externally visible.
7493    return GVA_C99Inline;
7494  }
7495
7496  // C++0x [temp.explicit]p9:
7497  //   [ Note: The intent is that an inline function that is the subject of
7498  //   an explicit instantiation declaration will still be implicitly
7499  //   instantiated when used so that the body can be considered for
7500  //   inlining, but that no out-of-line copy of the inline function would be
7501  //   generated in the translation unit. -- end note ]
7502  if (FD->getTemplateSpecializationKind()
7503                                       == TSK_ExplicitInstantiationDeclaration)
7504    return GVA_C99Inline;
7505
7506  return GVA_CXXInline;
7507}
7508
7509GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7510  // If this is a static data member, compute the kind of template
7511  // specialization. Otherwise, this variable is not part of a
7512  // template.
7513  TemplateSpecializationKind TSK = TSK_Undeclared;
7514  if (VD->isStaticDataMember())
7515    TSK = VD->getTemplateSpecializationKind();
7516
7517  Linkage L = VD->getLinkage();
7518  assert (!(L == ExternalLinkage && getLangOpts().CPlusPlus &&
7519            VD->getType()->getLinkage() == UniqueExternalLinkage));
7520
7521  switch (L) {
7522  case NoLinkage:
7523  case InternalLinkage:
7524  case UniqueExternalLinkage:
7525    return GVA_Internal;
7526
7527  case ExternalLinkage:
7528    switch (TSK) {
7529    case TSK_Undeclared:
7530    case TSK_ExplicitSpecialization:
7531      return GVA_StrongExternal;
7532
7533    case TSK_ExplicitInstantiationDeclaration:
7534      llvm_unreachable("Variable should not be instantiated");
7535      // Fall through to treat this like any other instantiation.
7536
7537    case TSK_ExplicitInstantiationDefinition:
7538      return GVA_ExplicitTemplateInstantiation;
7539
7540    case TSK_ImplicitInstantiation:
7541      return GVA_TemplateInstantiation;
7542    }
7543  }
7544
7545  llvm_unreachable("Invalid Linkage!");
7546}
7547
7548bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7549  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7550    if (!VD->isFileVarDecl())
7551      return false;
7552  } else if (!isa<FunctionDecl>(D))
7553    return false;
7554
7555  // Weak references don't produce any output by themselves.
7556  if (D->hasAttr<WeakRefAttr>())
7557    return false;
7558
7559  // Aliases and used decls are required.
7560  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7561    return true;
7562
7563  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7564    // Forward declarations aren't required.
7565    if (!FD->doesThisDeclarationHaveABody())
7566      return FD->doesDeclarationForceExternallyVisibleDefinition();
7567
7568    // Constructors and destructors are required.
7569    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7570      return true;
7571
7572    // The key function for a class is required.  This rule only comes
7573    // into play when inline functions can be key functions, though.
7574    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7575      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7576        const CXXRecordDecl *RD = MD->getParent();
7577        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7578          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7579          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7580            return true;
7581        }
7582      }
7583    }
7584
7585    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7586
7587    // static, static inline, always_inline, and extern inline functions can
7588    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7589    // Implicit template instantiations can also be deferred in C++.
7590    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7591        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7592      return false;
7593    return true;
7594  }
7595
7596  const VarDecl *VD = cast<VarDecl>(D);
7597  assert(VD->isFileVarDecl() && "Expected file scoped var");
7598
7599  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7600    return false;
7601
7602  // Variables that can be needed in other TUs are required.
7603  GVALinkage L = GetGVALinkageForVariable(VD);
7604  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7605    return true;
7606
7607  // Variables that have destruction with side-effects are required.
7608  if (VD->getType().isDestructedType())
7609    return true;
7610
7611  // Variables that have initialization with side-effects are required.
7612  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7613    return true;
7614
7615  return false;
7616}
7617
7618CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7619  // Pass through to the C++ ABI object
7620  return ABI->getDefaultMethodCallConv(isVariadic);
7621}
7622
7623CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7624  if (CC == CC_C && !LangOpts.MRTD &&
7625      getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7626    return CC_Default;
7627  return CC;
7628}
7629
7630bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7631  // Pass through to the C++ ABI object
7632  return ABI->isNearlyEmpty(RD);
7633}
7634
7635MangleContext *ASTContext::createMangleContext() {
7636  switch (Target->getCXXABI().getKind()) {
7637  case TargetCXXABI::GenericItanium:
7638  case TargetCXXABI::GenericARM:
7639  case TargetCXXABI::iOS:
7640    return createItaniumMangleContext(*this, getDiagnostics());
7641  case TargetCXXABI::Microsoft:
7642    return createMicrosoftMangleContext(*this, getDiagnostics());
7643  }
7644  llvm_unreachable("Unsupported ABI");
7645}
7646
7647CXXABI::~CXXABI() {}
7648
7649size_t ASTContext::getSideTableAllocatedMemory() const {
7650  return ASTRecordLayouts.getMemorySize()
7651    + llvm::capacity_in_bytes(ObjCLayouts)
7652    + llvm::capacity_in_bytes(KeyFunctions)
7653    + llvm::capacity_in_bytes(ObjCImpls)
7654    + llvm::capacity_in_bytes(BlockVarCopyInits)
7655    + llvm::capacity_in_bytes(DeclAttrs)
7656    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7657    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7658    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7659    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7660    + llvm::capacity_in_bytes(OverriddenMethods)
7661    + llvm::capacity_in_bytes(Types)
7662    + llvm::capacity_in_bytes(VariableArrayTypes)
7663    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7664}
7665
7666void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7667  // FIXME: This mangling should be applied to function local classes too
7668  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7669      !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
7670    return;
7671
7672  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7673    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7674  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7675}
7676
7677int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7678  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7679    UnnamedMangleNumbers.find(Tag);
7680  return I != UnnamedMangleNumbers.end() ? I->second : -1;
7681}
7682
7683unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7684  CXXRecordDecl *Lambda = CallOperator->getParent();
7685  return LambdaMangleContexts[Lambda->getDeclContext()]
7686           .getManglingNumber(CallOperator);
7687}
7688
7689
7690void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7691  ParamIndices[D] = index;
7692}
7693
7694unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7695  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7696  assert(I != ParamIndices.end() &&
7697         "ParmIndices lacks entry set by ParmVarDecl");
7698  return I->second;
7699}
7700