ASTContext.cpp revision 465d41b92b2c862f3062c412a0538db65c6a2661
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "RecordLayoutBuilder.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44  NSConstantStringTypeDecl(0),
45  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
46  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
47  SourceMgr(SM), LangOpts(LOpts), FreeMemory(FreeMem), Target(t),
48  Idents(idents), Selectors(sels),
49  BuiltinInfo(builtins),
50  DeclarationNames(*this),
51  ExternalSource(0), PrintingPolicy(LOpts),
52  LastSDM(0, 0) {
53  ObjCIdRedefinitionType = QualType();
54  ObjCClassRedefinitionType = QualType();
55  ObjCSelRedefinitionType = QualType();
56  if (size_reserve > 0) Types.reserve(size_reserve);
57  TUDecl = TranslationUnitDecl::Create(*this);
58  InitBuiltinTypes();
59}
60
61ASTContext::~ASTContext() {
62  // Release the DenseMaps associated with DeclContext objects.
63  // FIXME: Is this the ideal solution?
64  ReleaseDeclContextMaps();
65
66  // Release all of the memory associated with overridden C++ methods.
67  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
68         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
69       OM != OMEnd; ++OM)
70    OM->second.Destroy();
71
72  if (FreeMemory) {
73    // Deallocate all the types.
74    while (!Types.empty()) {
75      Types.back()->Destroy(*this);
76      Types.pop_back();
77    }
78
79    for (llvm::FoldingSet<ExtQuals>::iterator
80         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
81      // Increment in loop to prevent using deallocated memory.
82      Deallocate(&*I++);
83    }
84
85    for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
86         I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
87      // Increment in loop to prevent using deallocated memory.
88      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
89        R->Destroy(*this);
90    }
91
92    for (llvm::DenseMap<const ObjCContainerDecl*,
93         const ASTRecordLayout*>::iterator
94         I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
95      // Increment in loop to prevent using deallocated memory.
96      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
97        R->Destroy(*this);
98    }
99  }
100
101  // Destroy nested-name-specifiers.
102  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
103         NNS = NestedNameSpecifiers.begin(),
104         NNSEnd = NestedNameSpecifiers.end();
105       NNS != NNSEnd; ) {
106    // Increment in loop to prevent using deallocated memory.
107    (*NNS++).Destroy(*this);
108  }
109
110  if (GlobalNestedNameSpecifier)
111    GlobalNestedNameSpecifier->Destroy(*this);
112
113  TUDecl->Destroy(*this);
114}
115
116void
117ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
118  ExternalSource.reset(Source.take());
119}
120
121void ASTContext::PrintStats() const {
122  fprintf(stderr, "*** AST Context Stats:\n");
123  fprintf(stderr, "  %d types total.\n", (int)Types.size());
124
125  unsigned counts[] = {
126#define TYPE(Name, Parent) 0,
127#define ABSTRACT_TYPE(Name, Parent)
128#include "clang/AST/TypeNodes.def"
129    0 // Extra
130  };
131
132  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
133    Type *T = Types[i];
134    counts[(unsigned)T->getTypeClass()]++;
135  }
136
137  unsigned Idx = 0;
138  unsigned TotalBytes = 0;
139#define TYPE(Name, Parent)                                              \
140  if (counts[Idx])                                                      \
141    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
142  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
143  ++Idx;
144#define ABSTRACT_TYPE(Name, Parent)
145#include "clang/AST/TypeNodes.def"
146
147  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
148
149  if (ExternalSource.get()) {
150    fprintf(stderr, "\n");
151    ExternalSource->PrintStats();
152  }
153}
154
155
156void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
157  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
158  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
159  Types.push_back(Ty);
160}
161
162void ASTContext::InitBuiltinTypes() {
163  assert(VoidTy.isNull() && "Context reinitialized?");
164
165  // C99 6.2.5p19.
166  InitBuiltinType(VoidTy,              BuiltinType::Void);
167
168  // C99 6.2.5p2.
169  InitBuiltinType(BoolTy,              BuiltinType::Bool);
170  // C99 6.2.5p3.
171  if (LangOpts.CharIsSigned)
172    InitBuiltinType(CharTy,            BuiltinType::Char_S);
173  else
174    InitBuiltinType(CharTy,            BuiltinType::Char_U);
175  // C99 6.2.5p4.
176  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
177  InitBuiltinType(ShortTy,             BuiltinType::Short);
178  InitBuiltinType(IntTy,               BuiltinType::Int);
179  InitBuiltinType(LongTy,              BuiltinType::Long);
180  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
181
182  // C99 6.2.5p6.
183  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
184  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
185  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
186  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
187  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
188
189  // C99 6.2.5p10.
190  InitBuiltinType(FloatTy,             BuiltinType::Float);
191  InitBuiltinType(DoubleTy,            BuiltinType::Double);
192  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
193
194  // GNU extension, 128-bit integers.
195  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
196  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
197
198  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
199    InitBuiltinType(WCharTy,           BuiltinType::WChar);
200  else // C99
201    WCharTy = getFromTargetType(Target.getWCharType());
202
203  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
204    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
205  else // C99
206    Char16Ty = getFromTargetType(Target.getChar16Type());
207
208  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
209    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
210  else // C99
211    Char32Ty = getFromTargetType(Target.getChar32Type());
212
213  // Placeholder type for functions.
214  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
215
216  // Placeholder type for type-dependent expressions whose type is
217  // completely unknown. No code should ever check a type against
218  // DependentTy and users should never see it; however, it is here to
219  // help diagnose failures to properly check for type-dependent
220  // expressions.
221  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
222
223  // Placeholder type for C++0x auto declarations whose real type has
224  // not yet been deduced.
225  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
226
227  // C99 6.2.5p11.
228  FloatComplexTy      = getComplexType(FloatTy);
229  DoubleComplexTy     = getComplexType(DoubleTy);
230  LongDoubleComplexTy = getComplexType(LongDoubleTy);
231
232  BuiltinVaListType = QualType();
233
234  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
235  ObjCIdTypedefType = QualType();
236  ObjCClassTypedefType = QualType();
237  ObjCSelTypedefType = QualType();
238
239  // Builtin types for 'id', 'Class', and 'SEL'.
240  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
241  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
242  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
243
244  ObjCConstantStringType = QualType();
245
246  // void * type
247  VoidPtrTy = getPointerType(VoidTy);
248
249  // nullptr type (C++0x 2.14.7)
250  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
251}
252
253MemberSpecializationInfo *
254ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
255  assert(Var->isStaticDataMember() && "Not a static data member");
256  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
257    = InstantiatedFromStaticDataMember.find(Var);
258  if (Pos == InstantiatedFromStaticDataMember.end())
259    return 0;
260
261  return Pos->second;
262}
263
264void
265ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
266                                                TemplateSpecializationKind TSK) {
267  assert(Inst->isStaticDataMember() && "Not a static data member");
268  assert(Tmpl->isStaticDataMember() && "Not a static data member");
269  assert(!InstantiatedFromStaticDataMember[Inst] &&
270         "Already noted what static data member was instantiated from");
271  InstantiatedFromStaticDataMember[Inst]
272    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
273}
274
275NamedDecl *
276ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
277  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
278    = InstantiatedFromUsingDecl.find(UUD);
279  if (Pos == InstantiatedFromUsingDecl.end())
280    return 0;
281
282  return Pos->second;
283}
284
285void
286ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
287  assert((isa<UsingDecl>(Pattern) ||
288          isa<UnresolvedUsingValueDecl>(Pattern) ||
289          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
290         "pattern decl is not a using decl");
291  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
292  InstantiatedFromUsingDecl[Inst] = Pattern;
293}
294
295UsingShadowDecl *
296ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
297  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
298    = InstantiatedFromUsingShadowDecl.find(Inst);
299  if (Pos == InstantiatedFromUsingShadowDecl.end())
300    return 0;
301
302  return Pos->second;
303}
304
305void
306ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
307                                               UsingShadowDecl *Pattern) {
308  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
309  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
310}
311
312FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
313  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
314    = InstantiatedFromUnnamedFieldDecl.find(Field);
315  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
316    return 0;
317
318  return Pos->second;
319}
320
321void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
322                                                     FieldDecl *Tmpl) {
323  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
324  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
325  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
326         "Already noted what unnamed field was instantiated from");
327
328  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
329}
330
331ASTContext::overridden_cxx_method_iterator
332ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
333  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
334    = OverriddenMethods.find(Method);
335  if (Pos == OverriddenMethods.end())
336    return 0;
337
338  return Pos->second.begin();
339}
340
341ASTContext::overridden_cxx_method_iterator
342ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
343  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
344    = OverriddenMethods.find(Method);
345  if (Pos == OverriddenMethods.end())
346    return 0;
347
348  return Pos->second.end();
349}
350
351void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
352                                     const CXXMethodDecl *Overridden) {
353  OverriddenMethods[Method].push_back(Overridden);
354}
355
356namespace {
357  class BeforeInTranslationUnit
358    : std::binary_function<SourceRange, SourceRange, bool> {
359    SourceManager *SourceMgr;
360
361  public:
362    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
363
364    bool operator()(SourceRange X, SourceRange Y) {
365      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
366    }
367  };
368}
369
370//===----------------------------------------------------------------------===//
371//                         Type Sizing and Analysis
372//===----------------------------------------------------------------------===//
373
374/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
375/// scalar floating point type.
376const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
377  const BuiltinType *BT = T->getAs<BuiltinType>();
378  assert(BT && "Not a floating point type!");
379  switch (BT->getKind()) {
380  default: assert(0 && "Not a floating point type!");
381  case BuiltinType::Float:      return Target.getFloatFormat();
382  case BuiltinType::Double:     return Target.getDoubleFormat();
383  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
384  }
385}
386
387/// getDeclAlign - Return a conservative estimate of the alignment of the
388/// specified decl.  Note that bitfields do not have a valid alignment, so
389/// this method will assert on them.
390/// If @p RefAsPointee, references are treated like their underlying type
391/// (for alignof), else they're treated like pointers (for CodeGen).
392CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
393  unsigned Align = Target.getCharWidth();
394
395  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
396    Align = std::max(Align, AA->getMaxAlignment());
397
398  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
399    QualType T = VD->getType();
400    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
401      if (RefAsPointee)
402        T = RT->getPointeeType();
403      else
404        T = getPointerType(RT->getPointeeType());
405    }
406    if (!T->isIncompleteType() && !T->isFunctionType()) {
407      // Incomplete or function types default to 1.
408      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
409        T = cast<ArrayType>(T)->getElementType();
410
411      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
412    }
413    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
414      // In the case of a field in a packed struct, we want the minimum
415      // of the alignment of the field and the alignment of the struct.
416      Align = std::min(Align,
417        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
418    }
419  }
420
421  return CharUnits::fromQuantity(Align / Target.getCharWidth());
422}
423
424/// getTypeSize - Return the size of the specified type, in bits.  This method
425/// does not work on incomplete types.
426///
427/// FIXME: Pointers into different addr spaces could have different sizes and
428/// alignment requirements: getPointerInfo should take an AddrSpace, this
429/// should take a QualType, &c.
430std::pair<uint64_t, unsigned>
431ASTContext::getTypeInfo(const Type *T) {
432  uint64_t Width=0;
433  unsigned Align=8;
434  switch (T->getTypeClass()) {
435#define TYPE(Class, Base)
436#define ABSTRACT_TYPE(Class, Base)
437#define NON_CANONICAL_TYPE(Class, Base)
438#define DEPENDENT_TYPE(Class, Base) case Type::Class:
439#include "clang/AST/TypeNodes.def"
440    assert(false && "Should not see dependent types");
441    break;
442
443  case Type::FunctionNoProto:
444  case Type::FunctionProto:
445    // GCC extension: alignof(function) = 32 bits
446    Width = 0;
447    Align = 32;
448    break;
449
450  case Type::IncompleteArray:
451  case Type::VariableArray:
452    Width = 0;
453    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
454    break;
455
456  case Type::ConstantArray: {
457    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
458
459    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
460    Width = EltInfo.first*CAT->getSize().getZExtValue();
461    Align = EltInfo.second;
462    break;
463  }
464  case Type::ExtVector:
465  case Type::Vector: {
466    const VectorType *VT = cast<VectorType>(T);
467    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
468    Width = EltInfo.first*VT->getNumElements();
469    Align = Width;
470    // If the alignment is not a power of 2, round up to the next power of 2.
471    // This happens for non-power-of-2 length vectors.
472    if (Align & (Align-1)) {
473      Align = llvm::NextPowerOf2(Align);
474      Width = llvm::RoundUpToAlignment(Width, Align);
475    }
476    break;
477  }
478
479  case Type::Builtin:
480    switch (cast<BuiltinType>(T)->getKind()) {
481    default: assert(0 && "Unknown builtin type!");
482    case BuiltinType::Void:
483      // GCC extension: alignof(void) = 8 bits.
484      Width = 0;
485      Align = 8;
486      break;
487
488    case BuiltinType::Bool:
489      Width = Target.getBoolWidth();
490      Align = Target.getBoolAlign();
491      break;
492    case BuiltinType::Char_S:
493    case BuiltinType::Char_U:
494    case BuiltinType::UChar:
495    case BuiltinType::SChar:
496      Width = Target.getCharWidth();
497      Align = Target.getCharAlign();
498      break;
499    case BuiltinType::WChar:
500      Width = Target.getWCharWidth();
501      Align = Target.getWCharAlign();
502      break;
503    case BuiltinType::Char16:
504      Width = Target.getChar16Width();
505      Align = Target.getChar16Align();
506      break;
507    case BuiltinType::Char32:
508      Width = Target.getChar32Width();
509      Align = Target.getChar32Align();
510      break;
511    case BuiltinType::UShort:
512    case BuiltinType::Short:
513      Width = Target.getShortWidth();
514      Align = Target.getShortAlign();
515      break;
516    case BuiltinType::UInt:
517    case BuiltinType::Int:
518      Width = Target.getIntWidth();
519      Align = Target.getIntAlign();
520      break;
521    case BuiltinType::ULong:
522    case BuiltinType::Long:
523      Width = Target.getLongWidth();
524      Align = Target.getLongAlign();
525      break;
526    case BuiltinType::ULongLong:
527    case BuiltinType::LongLong:
528      Width = Target.getLongLongWidth();
529      Align = Target.getLongLongAlign();
530      break;
531    case BuiltinType::Int128:
532    case BuiltinType::UInt128:
533      Width = 128;
534      Align = 128; // int128_t is 128-bit aligned on all targets.
535      break;
536    case BuiltinType::Float:
537      Width = Target.getFloatWidth();
538      Align = Target.getFloatAlign();
539      break;
540    case BuiltinType::Double:
541      Width = Target.getDoubleWidth();
542      Align = Target.getDoubleAlign();
543      break;
544    case BuiltinType::LongDouble:
545      Width = Target.getLongDoubleWidth();
546      Align = Target.getLongDoubleAlign();
547      break;
548    case BuiltinType::NullPtr:
549      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
550      Align = Target.getPointerAlign(0); //   == sizeof(void*)
551      break;
552    }
553    break;
554  case Type::ObjCObjectPointer:
555    Width = Target.getPointerWidth(0);
556    Align = Target.getPointerAlign(0);
557    break;
558  case Type::BlockPointer: {
559    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
560    Width = Target.getPointerWidth(AS);
561    Align = Target.getPointerAlign(AS);
562    break;
563  }
564  case Type::LValueReference:
565  case Type::RValueReference: {
566    // alignof and sizeof should never enter this code path here, so we go
567    // the pointer route.
568    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
569    Width = Target.getPointerWidth(AS);
570    Align = Target.getPointerAlign(AS);
571    break;
572  }
573  case Type::Pointer: {
574    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
575    Width = Target.getPointerWidth(AS);
576    Align = Target.getPointerAlign(AS);
577    break;
578  }
579  case Type::MemberPointer: {
580    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
581    std::pair<uint64_t, unsigned> PtrDiffInfo =
582      getTypeInfo(getPointerDiffType());
583    Width = PtrDiffInfo.first;
584    if (Pointee->isFunctionType())
585      Width *= 2;
586    Align = PtrDiffInfo.second;
587    break;
588  }
589  case Type::Complex: {
590    // Complex types have the same alignment as their elements, but twice the
591    // size.
592    std::pair<uint64_t, unsigned> EltInfo =
593      getTypeInfo(cast<ComplexType>(T)->getElementType());
594    Width = EltInfo.first*2;
595    Align = EltInfo.second;
596    break;
597  }
598  case Type::ObjCInterface: {
599    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
600    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
601    Width = Layout.getSize();
602    Align = Layout.getAlignment();
603    break;
604  }
605  case Type::Record:
606  case Type::Enum: {
607    const TagType *TT = cast<TagType>(T);
608
609    if (TT->getDecl()->isInvalidDecl()) {
610      Width = 1;
611      Align = 1;
612      break;
613    }
614
615    if (const EnumType *ET = dyn_cast<EnumType>(TT))
616      return getTypeInfo(ET->getDecl()->getIntegerType());
617
618    const RecordType *RT = cast<RecordType>(TT);
619    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
620    Width = Layout.getSize();
621    Align = Layout.getAlignment();
622    break;
623  }
624
625  case Type::SubstTemplateTypeParm:
626    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
627                       getReplacementType().getTypePtr());
628
629  case Type::Typedef: {
630    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
631    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
632      Align = std::max(Aligned->getMaxAlignment(),
633                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
634      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
635    } else
636      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
637    break;
638  }
639
640  case Type::TypeOfExpr:
641    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
642                         .getTypePtr());
643
644  case Type::TypeOf:
645    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
646
647  case Type::Decltype:
648    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
649                        .getTypePtr());
650
651  case Type::Elaborated:
652    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
653
654  case Type::TemplateSpecialization:
655    assert(getCanonicalType(T) != T &&
656           "Cannot request the size of a dependent type");
657    // FIXME: this is likely to be wrong once we support template
658    // aliases, since a template alias could refer to a typedef that
659    // has an __aligned__ attribute on it.
660    return getTypeInfo(getCanonicalType(T));
661  }
662
663  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
664  return std::make_pair(Width, Align);
665}
666
667/// getTypeSizeInChars - Return the size of the specified type, in characters.
668/// This method does not work on incomplete types.
669CharUnits ASTContext::getTypeSizeInChars(QualType T) {
670  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
671}
672CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
673  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
674}
675
676/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
677/// characters. This method does not work on incomplete types.
678CharUnits ASTContext::getTypeAlignInChars(QualType T) {
679  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
680}
681CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
682  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
683}
684
685/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
686/// type for the current target in bits.  This can be different than the ABI
687/// alignment in cases where it is beneficial for performance to overalign
688/// a data type.
689unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
690  unsigned ABIAlign = getTypeAlign(T);
691
692  // Double and long long should be naturally aligned if possible.
693  if (const ComplexType* CT = T->getAs<ComplexType>())
694    T = CT->getElementType().getTypePtr();
695  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
696      T->isSpecificBuiltinType(BuiltinType::LongLong))
697    return std::max(ABIAlign, (unsigned)getTypeSize(T));
698
699  return ABIAlign;
700}
701
702static void CollectLocalObjCIvars(ASTContext *Ctx,
703                                  const ObjCInterfaceDecl *OI,
704                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
705  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
706       E = OI->ivar_end(); I != E; ++I) {
707    ObjCIvarDecl *IVDecl = *I;
708    if (!IVDecl->isInvalidDecl())
709      Fields.push_back(cast<FieldDecl>(IVDecl));
710  }
711}
712
713void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
714                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
715  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
716    CollectObjCIvars(SuperClass, Fields);
717  CollectLocalObjCIvars(this, OI, Fields);
718}
719
720/// ShallowCollectObjCIvars -
721/// Collect all ivars, including those synthesized, in the current class.
722///
723void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
724                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
725  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
726         E = OI->ivar_end(); I != E; ++I) {
727     Ivars.push_back(*I);
728  }
729
730  CollectNonClassIvars(OI, Ivars);
731}
732
733/// CollectNonClassIvars -
734/// This routine collects all other ivars which are not declared in the class.
735/// This includes synthesized ivars (via @synthesize) and those in
736//  class's @implementation.
737///
738void ASTContext::CollectNonClassIvars(const ObjCInterfaceDecl *OI,
739                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
740  // Find ivars declared in class extension.
741  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) {
742    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
743         E = CDecl->ivar_end(); I != E; ++I) {
744      Ivars.push_back(*I);
745    }
746  }
747
748  // Also add any ivar defined in this class's implementation.  This
749  // includes synthesized ivars.
750  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
751    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
752         E = ImplDecl->ivar_end(); I != E; ++I)
753      Ivars.push_back(*I);
754  }
755}
756
757/// CollectInheritedProtocols - Collect all protocols in current class and
758/// those inherited by it.
759void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
760                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
761  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
762    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
763         PE = OI->protocol_end(); P != PE; ++P) {
764      ObjCProtocolDecl *Proto = (*P);
765      Protocols.insert(Proto);
766      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
767           PE = Proto->protocol_end(); P != PE; ++P) {
768        Protocols.insert(*P);
769        CollectInheritedProtocols(*P, Protocols);
770      }
771    }
772
773    // Categories of this Interface.
774    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
775         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
776      CollectInheritedProtocols(CDeclChain, Protocols);
777    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
778      while (SD) {
779        CollectInheritedProtocols(SD, Protocols);
780        SD = SD->getSuperClass();
781      }
782  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
783    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
784         PE = OC->protocol_end(); P != PE; ++P) {
785      ObjCProtocolDecl *Proto = (*P);
786      Protocols.insert(Proto);
787      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
788           PE = Proto->protocol_end(); P != PE; ++P)
789        CollectInheritedProtocols(*P, Protocols);
790    }
791  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
792    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
793         PE = OP->protocol_end(); P != PE; ++P) {
794      ObjCProtocolDecl *Proto = (*P);
795      Protocols.insert(Proto);
796      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
797           PE = Proto->protocol_end(); P != PE; ++P)
798        CollectInheritedProtocols(*P, Protocols);
799    }
800  }
801}
802
803unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
804  unsigned count = 0;
805  // Count ivars declared in class extension.
806  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension())
807    count += CDecl->ivar_size();
808
809  // Count ivar defined in this class's implementation.  This
810  // includes synthesized ivars.
811  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
812    count += ImplDecl->ivar_size();
813
814  return count;
815}
816
817/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
818ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
819  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
820    I = ObjCImpls.find(D);
821  if (I != ObjCImpls.end())
822    return cast<ObjCImplementationDecl>(I->second);
823  return 0;
824}
825/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
826ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
827  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
828    I = ObjCImpls.find(D);
829  if (I != ObjCImpls.end())
830    return cast<ObjCCategoryImplDecl>(I->second);
831  return 0;
832}
833
834/// \brief Set the implementation of ObjCInterfaceDecl.
835void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
836                           ObjCImplementationDecl *ImplD) {
837  assert(IFaceD && ImplD && "Passed null params");
838  ObjCImpls[IFaceD] = ImplD;
839}
840/// \brief Set the implementation of ObjCCategoryDecl.
841void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
842                           ObjCCategoryImplDecl *ImplD) {
843  assert(CatD && ImplD && "Passed null params");
844  ObjCImpls[CatD] = ImplD;
845}
846
847/// \brief Allocate an uninitialized TypeSourceInfo.
848///
849/// The caller should initialize the memory held by TypeSourceInfo using
850/// the TypeLoc wrappers.
851///
852/// \param T the type that will be the basis for type source info. This type
853/// should refer to how the declarator was written in source code, not to
854/// what type semantic analysis resolved the declarator to.
855TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
856                                                 unsigned DataSize) {
857  if (!DataSize)
858    DataSize = TypeLoc::getFullDataSizeForType(T);
859  else
860    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
861           "incorrect data size provided to CreateTypeSourceInfo!");
862
863  TypeSourceInfo *TInfo =
864    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
865  new (TInfo) TypeSourceInfo(T);
866  return TInfo;
867}
868
869TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
870                                                     SourceLocation L) {
871  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
872  DI->getTypeLoc().initialize(L);
873  return DI;
874}
875
876/// getInterfaceLayoutImpl - Get or compute information about the
877/// layout of the given interface.
878///
879/// \param Impl - If given, also include the layout of the interface's
880/// implementation. This may differ by including synthesized ivars.
881const ASTRecordLayout &
882ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
883                          const ObjCImplementationDecl *Impl) {
884  assert(!D->isForwardDecl() && "Invalid interface decl!");
885
886  // Look up this layout, if already laid out, return what we have.
887  ObjCContainerDecl *Key =
888    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
889  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
890    return *Entry;
891
892  // Add in synthesized ivar count if laying out an implementation.
893  if (Impl) {
894    unsigned SynthCount = CountNonClassIvars(D);
895    // If there aren't any sythesized ivars then reuse the interface
896    // entry. Note we can't cache this because we simply free all
897    // entries later; however we shouldn't look up implementations
898    // frequently.
899    if (SynthCount == 0)
900      return getObjCLayout(D, 0);
901  }
902
903  const ASTRecordLayout *NewEntry =
904    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
905  ObjCLayouts[Key] = NewEntry;
906
907  return *NewEntry;
908}
909
910const ASTRecordLayout &
911ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
912  return getObjCLayout(D, 0);
913}
914
915const ASTRecordLayout &
916ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
917  return getObjCLayout(D->getClassInterface(), D);
918}
919
920/// getASTRecordLayout - Get or compute information about the layout of the
921/// specified record (struct/union/class), which indicates its size and field
922/// position information.
923const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
924  D = D->getDefinition();
925  assert(D && "Cannot get layout of forward declarations!");
926
927  // Look up this layout, if already laid out, return what we have.
928  // Note that we can't save a reference to the entry because this function
929  // is recursive.
930  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
931  if (Entry) return *Entry;
932
933  const ASTRecordLayout *NewEntry =
934    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
935  ASTRecordLayouts[D] = NewEntry;
936
937  if (getLangOptions().DumpRecordLayouts) {
938    llvm::errs() << "\n*** Dumping AST Record Layout\n";
939    DumpRecordLayout(D, llvm::errs());
940  }
941
942  return *NewEntry;
943}
944
945const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
946  RD = cast<CXXRecordDecl>(RD->getDefinition());
947  assert(RD && "Cannot get key function for forward declarations!");
948
949  const CXXMethodDecl *&Entry = KeyFunctions[RD];
950  if (!Entry)
951    Entry = ASTRecordLayoutBuilder::ComputeKeyFunction(RD);
952  else
953    assert(Entry == ASTRecordLayoutBuilder::ComputeKeyFunction(RD) &&
954           "Key function changed!");
955
956  return Entry;
957}
958
959//===----------------------------------------------------------------------===//
960//                   Type creation/memoization methods
961//===----------------------------------------------------------------------===//
962
963QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
964  unsigned Fast = Quals.getFastQualifiers();
965  Quals.removeFastQualifiers();
966
967  // Check if we've already instantiated this type.
968  llvm::FoldingSetNodeID ID;
969  ExtQuals::Profile(ID, TypeNode, Quals);
970  void *InsertPos = 0;
971  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
972    assert(EQ->getQualifiers() == Quals);
973    QualType T = QualType(EQ, Fast);
974    return T;
975  }
976
977  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
978  ExtQualNodes.InsertNode(New, InsertPos);
979  QualType T = QualType(New, Fast);
980  return T;
981}
982
983QualType ASTContext::getVolatileType(QualType T) {
984  QualType CanT = getCanonicalType(T);
985  if (CanT.isVolatileQualified()) return T;
986
987  QualifierCollector Quals;
988  const Type *TypeNode = Quals.strip(T);
989  Quals.addVolatile();
990
991  return getExtQualType(TypeNode, Quals);
992}
993
994QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
995  QualType CanT = getCanonicalType(T);
996  if (CanT.getAddressSpace() == AddressSpace)
997    return T;
998
999  // If we are composing extended qualifiers together, merge together
1000  // into one ExtQuals node.
1001  QualifierCollector Quals;
1002  const Type *TypeNode = Quals.strip(T);
1003
1004  // If this type already has an address space specified, it cannot get
1005  // another one.
1006  assert(!Quals.hasAddressSpace() &&
1007         "Type cannot be in multiple addr spaces!");
1008  Quals.addAddressSpace(AddressSpace);
1009
1010  return getExtQualType(TypeNode, Quals);
1011}
1012
1013QualType ASTContext::getObjCGCQualType(QualType T,
1014                                       Qualifiers::GC GCAttr) {
1015  QualType CanT = getCanonicalType(T);
1016  if (CanT.getObjCGCAttr() == GCAttr)
1017    return T;
1018
1019  if (T->isPointerType()) {
1020    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1021    if (Pointee->isAnyPointerType()) {
1022      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1023      return getPointerType(ResultType);
1024    }
1025  }
1026
1027  // If we are composing extended qualifiers together, merge together
1028  // into one ExtQuals node.
1029  QualifierCollector Quals;
1030  const Type *TypeNode = Quals.strip(T);
1031
1032  // If this type already has an ObjCGC specified, it cannot get
1033  // another one.
1034  assert(!Quals.hasObjCGCAttr() &&
1035         "Type cannot have multiple ObjCGCs!");
1036  Quals.addObjCGCAttr(GCAttr);
1037
1038  return getExtQualType(TypeNode, Quals);
1039}
1040
1041static QualType getExtFunctionType(ASTContext& Context, QualType T,
1042                                        const FunctionType::ExtInfo &Info) {
1043  QualType ResultType;
1044  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1045    QualType Pointee = Pointer->getPointeeType();
1046    ResultType = getExtFunctionType(Context, Pointee, Info);
1047    if (ResultType == Pointee)
1048      return T;
1049
1050    ResultType = Context.getPointerType(ResultType);
1051  } else if (const BlockPointerType *BlockPointer
1052                                              = T->getAs<BlockPointerType>()) {
1053    QualType Pointee = BlockPointer->getPointeeType();
1054    ResultType = getExtFunctionType(Context, Pointee, Info);
1055    if (ResultType == Pointee)
1056      return T;
1057
1058    ResultType = Context.getBlockPointerType(ResultType);
1059   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1060    if (F->getExtInfo() == Info)
1061      return T;
1062
1063    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1064      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1065                                                  Info);
1066    } else {
1067      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1068      ResultType
1069        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1070                                  FPT->getNumArgs(), FPT->isVariadic(),
1071                                  FPT->getTypeQuals(),
1072                                  FPT->hasExceptionSpec(),
1073                                  FPT->hasAnyExceptionSpec(),
1074                                  FPT->getNumExceptions(),
1075                                  FPT->exception_begin(),
1076                                  Info);
1077    }
1078  } else
1079    return T;
1080
1081  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1082}
1083
1084QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1085  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1086  return getExtFunctionType(*this, T,
1087                                 Info.withNoReturn(AddNoReturn));
1088}
1089
1090QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1091  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1092  return getExtFunctionType(*this, T,
1093                            Info.withCallingConv(CallConv));
1094}
1095
1096QualType ASTContext::getRegParmType(QualType T, unsigned RegParm) {
1097  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1098  return getExtFunctionType(*this, T,
1099                                 Info.withRegParm(RegParm));
1100}
1101
1102/// getComplexType - Return the uniqued reference to the type for a complex
1103/// number with the specified element type.
1104QualType ASTContext::getComplexType(QualType T) {
1105  // Unique pointers, to guarantee there is only one pointer of a particular
1106  // structure.
1107  llvm::FoldingSetNodeID ID;
1108  ComplexType::Profile(ID, T);
1109
1110  void *InsertPos = 0;
1111  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1112    return QualType(CT, 0);
1113
1114  // If the pointee type isn't canonical, this won't be a canonical type either,
1115  // so fill in the canonical type field.
1116  QualType Canonical;
1117  if (!T.isCanonical()) {
1118    Canonical = getComplexType(getCanonicalType(T));
1119
1120    // Get the new insert position for the node we care about.
1121    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1122    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1123  }
1124  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1125  Types.push_back(New);
1126  ComplexTypes.InsertNode(New, InsertPos);
1127  return QualType(New, 0);
1128}
1129
1130/// getPointerType - Return the uniqued reference to the type for a pointer to
1131/// the specified type.
1132QualType ASTContext::getPointerType(QualType T) {
1133  // Unique pointers, to guarantee there is only one pointer of a particular
1134  // structure.
1135  llvm::FoldingSetNodeID ID;
1136  PointerType::Profile(ID, T);
1137
1138  void *InsertPos = 0;
1139  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1140    return QualType(PT, 0);
1141
1142  // If the pointee type isn't canonical, this won't be a canonical type either,
1143  // so fill in the canonical type field.
1144  QualType Canonical;
1145  if (!T.isCanonical()) {
1146    Canonical = getPointerType(getCanonicalType(T));
1147
1148    // Get the new insert position for the node we care about.
1149    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1150    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1151  }
1152  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1153  Types.push_back(New);
1154  PointerTypes.InsertNode(New, InsertPos);
1155  return QualType(New, 0);
1156}
1157
1158/// getBlockPointerType - Return the uniqued reference to the type for
1159/// a pointer to the specified block.
1160QualType ASTContext::getBlockPointerType(QualType T) {
1161  assert(T->isFunctionType() && "block of function types only");
1162  // Unique pointers, to guarantee there is only one block of a particular
1163  // structure.
1164  llvm::FoldingSetNodeID ID;
1165  BlockPointerType::Profile(ID, T);
1166
1167  void *InsertPos = 0;
1168  if (BlockPointerType *PT =
1169        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1170    return QualType(PT, 0);
1171
1172  // If the block pointee type isn't canonical, this won't be a canonical
1173  // type either so fill in the canonical type field.
1174  QualType Canonical;
1175  if (!T.isCanonical()) {
1176    Canonical = getBlockPointerType(getCanonicalType(T));
1177
1178    // Get the new insert position for the node we care about.
1179    BlockPointerType *NewIP =
1180      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1181    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1182  }
1183  BlockPointerType *New
1184    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1185  Types.push_back(New);
1186  BlockPointerTypes.InsertNode(New, InsertPos);
1187  return QualType(New, 0);
1188}
1189
1190/// getLValueReferenceType - Return the uniqued reference to the type for an
1191/// lvalue reference to the specified type.
1192QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1193  // Unique pointers, to guarantee there is only one pointer of a particular
1194  // structure.
1195  llvm::FoldingSetNodeID ID;
1196  ReferenceType::Profile(ID, T, SpelledAsLValue);
1197
1198  void *InsertPos = 0;
1199  if (LValueReferenceType *RT =
1200        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1201    return QualType(RT, 0);
1202
1203  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1204
1205  // If the referencee type isn't canonical, this won't be a canonical type
1206  // either, so fill in the canonical type field.
1207  QualType Canonical;
1208  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1209    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1210    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1211
1212    // Get the new insert position for the node we care about.
1213    LValueReferenceType *NewIP =
1214      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1215    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1216  }
1217
1218  LValueReferenceType *New
1219    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1220                                                     SpelledAsLValue);
1221  Types.push_back(New);
1222  LValueReferenceTypes.InsertNode(New, InsertPos);
1223
1224  return QualType(New, 0);
1225}
1226
1227/// getRValueReferenceType - Return the uniqued reference to the type for an
1228/// rvalue reference to the specified type.
1229QualType ASTContext::getRValueReferenceType(QualType T) {
1230  // Unique pointers, to guarantee there is only one pointer of a particular
1231  // structure.
1232  llvm::FoldingSetNodeID ID;
1233  ReferenceType::Profile(ID, T, false);
1234
1235  void *InsertPos = 0;
1236  if (RValueReferenceType *RT =
1237        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1238    return QualType(RT, 0);
1239
1240  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1241
1242  // If the referencee type isn't canonical, this won't be a canonical type
1243  // either, so fill in the canonical type field.
1244  QualType Canonical;
1245  if (InnerRef || !T.isCanonical()) {
1246    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1247    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1248
1249    // Get the new insert position for the node we care about.
1250    RValueReferenceType *NewIP =
1251      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1252    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1253  }
1254
1255  RValueReferenceType *New
1256    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1257  Types.push_back(New);
1258  RValueReferenceTypes.InsertNode(New, InsertPos);
1259  return QualType(New, 0);
1260}
1261
1262/// getMemberPointerType - Return the uniqued reference to the type for a
1263/// member pointer to the specified type, in the specified class.
1264QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1265  // Unique pointers, to guarantee there is only one pointer of a particular
1266  // structure.
1267  llvm::FoldingSetNodeID ID;
1268  MemberPointerType::Profile(ID, T, Cls);
1269
1270  void *InsertPos = 0;
1271  if (MemberPointerType *PT =
1272      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1273    return QualType(PT, 0);
1274
1275  // If the pointee or class type isn't canonical, this won't be a canonical
1276  // type either, so fill in the canonical type field.
1277  QualType Canonical;
1278  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1279    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1280
1281    // Get the new insert position for the node we care about.
1282    MemberPointerType *NewIP =
1283      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1284    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1285  }
1286  MemberPointerType *New
1287    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1288  Types.push_back(New);
1289  MemberPointerTypes.InsertNode(New, InsertPos);
1290  return QualType(New, 0);
1291}
1292
1293/// getConstantArrayType - Return the unique reference to the type for an
1294/// array of the specified element type.
1295QualType ASTContext::getConstantArrayType(QualType EltTy,
1296                                          const llvm::APInt &ArySizeIn,
1297                                          ArrayType::ArraySizeModifier ASM,
1298                                          unsigned EltTypeQuals) {
1299  assert((EltTy->isDependentType() ||
1300          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1301         "Constant array of VLAs is illegal!");
1302
1303  // Convert the array size into a canonical width matching the pointer size for
1304  // the target.
1305  llvm::APInt ArySize(ArySizeIn);
1306  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1307
1308  llvm::FoldingSetNodeID ID;
1309  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1310
1311  void *InsertPos = 0;
1312  if (ConstantArrayType *ATP =
1313      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1314    return QualType(ATP, 0);
1315
1316  // If the element type isn't canonical, this won't be a canonical type either,
1317  // so fill in the canonical type field.
1318  QualType Canonical;
1319  if (!EltTy.isCanonical()) {
1320    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1321                                     ASM, EltTypeQuals);
1322    // Get the new insert position for the node we care about.
1323    ConstantArrayType *NewIP =
1324      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1325    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1326  }
1327
1328  ConstantArrayType *New = new(*this,TypeAlignment)
1329    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1330  ConstantArrayTypes.InsertNode(New, InsertPos);
1331  Types.push_back(New);
1332  return QualType(New, 0);
1333}
1334
1335/// getVariableArrayType - Returns a non-unique reference to the type for a
1336/// variable array of the specified element type.
1337QualType ASTContext::getVariableArrayType(QualType EltTy,
1338                                          Expr *NumElts,
1339                                          ArrayType::ArraySizeModifier ASM,
1340                                          unsigned EltTypeQuals,
1341                                          SourceRange Brackets) {
1342  // Since we don't unique expressions, it isn't possible to unique VLA's
1343  // that have an expression provided for their size.
1344
1345  VariableArrayType *New = new(*this, TypeAlignment)
1346    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1347
1348  VariableArrayTypes.push_back(New);
1349  Types.push_back(New);
1350  return QualType(New, 0);
1351}
1352
1353/// getDependentSizedArrayType - Returns a non-unique reference to
1354/// the type for a dependently-sized array of the specified element
1355/// type.
1356QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1357                                                Expr *NumElts,
1358                                                ArrayType::ArraySizeModifier ASM,
1359                                                unsigned EltTypeQuals,
1360                                                SourceRange Brackets) {
1361  assert((!NumElts || NumElts->isTypeDependent() ||
1362          NumElts->isValueDependent()) &&
1363         "Size must be type- or value-dependent!");
1364
1365  void *InsertPos = 0;
1366  DependentSizedArrayType *Canon = 0;
1367  llvm::FoldingSetNodeID ID;
1368
1369  if (NumElts) {
1370    // Dependently-sized array types that do not have a specified
1371    // number of elements will have their sizes deduced from an
1372    // initializer.
1373    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1374                                     EltTypeQuals, NumElts);
1375
1376    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1377  }
1378
1379  DependentSizedArrayType *New;
1380  if (Canon) {
1381    // We already have a canonical version of this array type; use it as
1382    // the canonical type for a newly-built type.
1383    New = new (*this, TypeAlignment)
1384      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1385                              NumElts, ASM, EltTypeQuals, Brackets);
1386  } else {
1387    QualType CanonEltTy = getCanonicalType(EltTy);
1388    if (CanonEltTy == EltTy) {
1389      New = new (*this, TypeAlignment)
1390        DependentSizedArrayType(*this, EltTy, QualType(),
1391                                NumElts, ASM, EltTypeQuals, Brackets);
1392
1393      if (NumElts) {
1394        DependentSizedArrayType *CanonCheck
1395          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1396        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1397        (void)CanonCheck;
1398        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1399      }
1400    } else {
1401      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1402                                                  ASM, EltTypeQuals,
1403                                                  SourceRange());
1404      New = new (*this, TypeAlignment)
1405        DependentSizedArrayType(*this, EltTy, Canon,
1406                                NumElts, ASM, EltTypeQuals, Brackets);
1407    }
1408  }
1409
1410  Types.push_back(New);
1411  return QualType(New, 0);
1412}
1413
1414QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1415                                            ArrayType::ArraySizeModifier ASM,
1416                                            unsigned EltTypeQuals) {
1417  llvm::FoldingSetNodeID ID;
1418  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1419
1420  void *InsertPos = 0;
1421  if (IncompleteArrayType *ATP =
1422       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1423    return QualType(ATP, 0);
1424
1425  // If the element type isn't canonical, this won't be a canonical type
1426  // either, so fill in the canonical type field.
1427  QualType Canonical;
1428
1429  if (!EltTy.isCanonical()) {
1430    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1431                                       ASM, EltTypeQuals);
1432
1433    // Get the new insert position for the node we care about.
1434    IncompleteArrayType *NewIP =
1435      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1436    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1437  }
1438
1439  IncompleteArrayType *New = new (*this, TypeAlignment)
1440    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1441
1442  IncompleteArrayTypes.InsertNode(New, InsertPos);
1443  Types.push_back(New);
1444  return QualType(New, 0);
1445}
1446
1447/// getVectorType - Return the unique reference to a vector type of
1448/// the specified element type and size. VectorType must be a built-in type.
1449QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1450                                   bool IsAltiVec, bool IsPixel) {
1451  BuiltinType *baseType;
1452
1453  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1454  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1455
1456  // Check if we've already instantiated a vector of this type.
1457  llvm::FoldingSetNodeID ID;
1458  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1459    IsAltiVec, IsPixel);
1460  void *InsertPos = 0;
1461  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1462    return QualType(VTP, 0);
1463
1464  // If the element type isn't canonical, this won't be a canonical type either,
1465  // so fill in the canonical type field.
1466  QualType Canonical;
1467  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1468    Canonical = getVectorType(getCanonicalType(vecType),
1469      NumElts, false, false);
1470
1471    // Get the new insert position for the node we care about.
1472    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1473    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1474  }
1475  VectorType *New = new (*this, TypeAlignment)
1476    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1477  VectorTypes.InsertNode(New, InsertPos);
1478  Types.push_back(New);
1479  return QualType(New, 0);
1480}
1481
1482/// getExtVectorType - Return the unique reference to an extended vector type of
1483/// the specified element type and size. VectorType must be a built-in type.
1484QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1485  BuiltinType *baseType;
1486
1487  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1488  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1489
1490  // Check if we've already instantiated a vector of this type.
1491  llvm::FoldingSetNodeID ID;
1492  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1493  void *InsertPos = 0;
1494  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1495    return QualType(VTP, 0);
1496
1497  // If the element type isn't canonical, this won't be a canonical type either,
1498  // so fill in the canonical type field.
1499  QualType Canonical;
1500  if (!vecType.isCanonical()) {
1501    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1502
1503    // Get the new insert position for the node we care about.
1504    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1505    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1506  }
1507  ExtVectorType *New = new (*this, TypeAlignment)
1508    ExtVectorType(vecType, NumElts, Canonical);
1509  VectorTypes.InsertNode(New, InsertPos);
1510  Types.push_back(New);
1511  return QualType(New, 0);
1512}
1513
1514QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1515                                                    Expr *SizeExpr,
1516                                                    SourceLocation AttrLoc) {
1517  llvm::FoldingSetNodeID ID;
1518  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1519                                       SizeExpr);
1520
1521  void *InsertPos = 0;
1522  DependentSizedExtVectorType *Canon
1523    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1524  DependentSizedExtVectorType *New;
1525  if (Canon) {
1526    // We already have a canonical version of this array type; use it as
1527    // the canonical type for a newly-built type.
1528    New = new (*this, TypeAlignment)
1529      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1530                                  SizeExpr, AttrLoc);
1531  } else {
1532    QualType CanonVecTy = getCanonicalType(vecType);
1533    if (CanonVecTy == vecType) {
1534      New = new (*this, TypeAlignment)
1535        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1536                                    AttrLoc);
1537
1538      DependentSizedExtVectorType *CanonCheck
1539        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1540      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1541      (void)CanonCheck;
1542      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1543    } else {
1544      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1545                                                      SourceLocation());
1546      New = new (*this, TypeAlignment)
1547        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1548    }
1549  }
1550
1551  Types.push_back(New);
1552  return QualType(New, 0);
1553}
1554
1555/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1556///
1557QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
1558                                            const FunctionType::ExtInfo &Info) {
1559  const CallingConv CallConv = Info.getCC();
1560  // Unique functions, to guarantee there is only one function of a particular
1561  // structure.
1562  llvm::FoldingSetNodeID ID;
1563  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1564
1565  void *InsertPos = 0;
1566  if (FunctionNoProtoType *FT =
1567        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1568    return QualType(FT, 0);
1569
1570  QualType Canonical;
1571  if (!ResultTy.isCanonical() ||
1572      getCanonicalCallConv(CallConv) != CallConv) {
1573    Canonical =
1574      getFunctionNoProtoType(getCanonicalType(ResultTy),
1575                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1576
1577    // Get the new insert position for the node we care about.
1578    FunctionNoProtoType *NewIP =
1579      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1580    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1581  }
1582
1583  FunctionNoProtoType *New = new (*this, TypeAlignment)
1584    FunctionNoProtoType(ResultTy, Canonical, Info);
1585  Types.push_back(New);
1586  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1587  return QualType(New, 0);
1588}
1589
1590/// getFunctionType - Return a normal function type with a typed argument
1591/// list.  isVariadic indicates whether the argument list includes '...'.
1592QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1593                                     unsigned NumArgs, bool isVariadic,
1594                                     unsigned TypeQuals, bool hasExceptionSpec,
1595                                     bool hasAnyExceptionSpec, unsigned NumExs,
1596                                     const QualType *ExArray,
1597                                     const FunctionType::ExtInfo &Info) {
1598  const CallingConv CallConv= Info.getCC();
1599  // Unique functions, to guarantee there is only one function of a particular
1600  // structure.
1601  llvm::FoldingSetNodeID ID;
1602  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1603                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1604                             NumExs, ExArray, Info);
1605
1606  void *InsertPos = 0;
1607  if (FunctionProtoType *FTP =
1608        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1609    return QualType(FTP, 0);
1610
1611  // Determine whether the type being created is already canonical or not.
1612  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1613  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1614    if (!ArgArray[i].isCanonicalAsParam())
1615      isCanonical = false;
1616
1617  // If this type isn't canonical, get the canonical version of it.
1618  // The exception spec is not part of the canonical type.
1619  QualType Canonical;
1620  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1621    llvm::SmallVector<QualType, 16> CanonicalArgs;
1622    CanonicalArgs.reserve(NumArgs);
1623    for (unsigned i = 0; i != NumArgs; ++i)
1624      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1625
1626    Canonical = getFunctionType(getCanonicalType(ResultTy),
1627                                CanonicalArgs.data(), NumArgs,
1628                                isVariadic, TypeQuals, false,
1629                                false, 0, 0,
1630                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1631
1632    // Get the new insert position for the node we care about.
1633    FunctionProtoType *NewIP =
1634      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1635    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1636  }
1637
1638  // FunctionProtoType objects are allocated with extra bytes after them
1639  // for two variable size arrays (for parameter and exception types) at the
1640  // end of them.
1641  FunctionProtoType *FTP =
1642    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1643                                 NumArgs*sizeof(QualType) +
1644                                 NumExs*sizeof(QualType), TypeAlignment);
1645  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1646                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1647                              ExArray, NumExs, Canonical, Info);
1648  Types.push_back(FTP);
1649  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1650  return QualType(FTP, 0);
1651}
1652
1653#ifndef NDEBUG
1654static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1655  if (!isa<CXXRecordDecl>(D)) return false;
1656  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1657  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1658    return true;
1659  if (RD->getDescribedClassTemplate() &&
1660      !isa<ClassTemplateSpecializationDecl>(RD))
1661    return true;
1662  return false;
1663}
1664#endif
1665
1666/// getInjectedClassNameType - Return the unique reference to the
1667/// injected class name type for the specified templated declaration.
1668QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1669                                              QualType TST) {
1670  assert(NeedsInjectedClassNameType(Decl));
1671  if (Decl->TypeForDecl) {
1672    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1673  } else if (CXXRecordDecl *PrevDecl
1674               = cast_or_null<CXXRecordDecl>(Decl->getPreviousDeclaration())) {
1675    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1676    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1677    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1678  } else {
1679    Decl->TypeForDecl =
1680      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1681    Types.push_back(Decl->TypeForDecl);
1682  }
1683  return QualType(Decl->TypeForDecl, 0);
1684}
1685
1686/// getTypeDeclType - Return the unique reference to the type for the
1687/// specified type declaration.
1688QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1689  assert(Decl && "Passed null for Decl param");
1690  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1691
1692  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1693    return getTypedefType(Typedef);
1694
1695  if (const ObjCInterfaceDecl *ObjCInterface
1696               = dyn_cast<ObjCInterfaceDecl>(Decl))
1697    return getObjCInterfaceType(ObjCInterface);
1698
1699  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1700         "Template type parameter types are always available.");
1701
1702  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1703    assert(!Record->getPreviousDeclaration() &&
1704           "struct/union has previous declaration");
1705    assert(!NeedsInjectedClassNameType(Record));
1706    Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1707  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1708    assert(!Enum->getPreviousDeclaration() &&
1709           "enum has previous declaration");
1710    Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1711  } else if (const UnresolvedUsingTypenameDecl *Using =
1712               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1713    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1714  } else
1715    llvm_unreachable("TypeDecl without a type?");
1716
1717  Types.push_back(Decl->TypeForDecl);
1718  return QualType(Decl->TypeForDecl, 0);
1719}
1720
1721/// getTypedefType - Return the unique reference to the type for the
1722/// specified typename decl.
1723QualType ASTContext::getTypedefType(const TypedefDecl *Decl) {
1724  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1725
1726  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1727  Decl->TypeForDecl = new(*this, TypeAlignment)
1728    TypedefType(Type::Typedef, Decl, Canonical);
1729  Types.push_back(Decl->TypeForDecl);
1730  return QualType(Decl->TypeForDecl, 0);
1731}
1732
1733/// \brief Retrieve a substitution-result type.
1734QualType
1735ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1736                                         QualType Replacement) {
1737  assert(Replacement.isCanonical()
1738         && "replacement types must always be canonical");
1739
1740  llvm::FoldingSetNodeID ID;
1741  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1742  void *InsertPos = 0;
1743  SubstTemplateTypeParmType *SubstParm
1744    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1745
1746  if (!SubstParm) {
1747    SubstParm = new (*this, TypeAlignment)
1748      SubstTemplateTypeParmType(Parm, Replacement);
1749    Types.push_back(SubstParm);
1750    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1751  }
1752
1753  return QualType(SubstParm, 0);
1754}
1755
1756/// \brief Retrieve the template type parameter type for a template
1757/// parameter or parameter pack with the given depth, index, and (optionally)
1758/// name.
1759QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1760                                             bool ParameterPack,
1761                                             IdentifierInfo *Name) {
1762  llvm::FoldingSetNodeID ID;
1763  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1764  void *InsertPos = 0;
1765  TemplateTypeParmType *TypeParm
1766    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1767
1768  if (TypeParm)
1769    return QualType(TypeParm, 0);
1770
1771  if (Name) {
1772    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1773    TypeParm = new (*this, TypeAlignment)
1774      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1775
1776    TemplateTypeParmType *TypeCheck
1777      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1778    assert(!TypeCheck && "Template type parameter canonical type broken");
1779    (void)TypeCheck;
1780  } else
1781    TypeParm = new (*this, TypeAlignment)
1782      TemplateTypeParmType(Depth, Index, ParameterPack);
1783
1784  Types.push_back(TypeParm);
1785  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1786
1787  return QualType(TypeParm, 0);
1788}
1789
1790TypeSourceInfo *
1791ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
1792                                              SourceLocation NameLoc,
1793                                        const TemplateArgumentListInfo &Args,
1794                                              QualType CanonType) {
1795  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
1796
1797  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
1798  TemplateSpecializationTypeLoc TL
1799    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1800  TL.setTemplateNameLoc(NameLoc);
1801  TL.setLAngleLoc(Args.getLAngleLoc());
1802  TL.setRAngleLoc(Args.getRAngleLoc());
1803  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1804    TL.setArgLocInfo(i, Args[i].getLocInfo());
1805  return DI;
1806}
1807
1808QualType
1809ASTContext::getTemplateSpecializationType(TemplateName Template,
1810                                          const TemplateArgumentListInfo &Args,
1811                                          QualType Canon,
1812                                          bool IsCurrentInstantiation) {
1813  unsigned NumArgs = Args.size();
1814
1815  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1816  ArgVec.reserve(NumArgs);
1817  for (unsigned i = 0; i != NumArgs; ++i)
1818    ArgVec.push_back(Args[i].getArgument());
1819
1820  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
1821                                       Canon, IsCurrentInstantiation);
1822}
1823
1824QualType
1825ASTContext::getTemplateSpecializationType(TemplateName Template,
1826                                          const TemplateArgument *Args,
1827                                          unsigned NumArgs,
1828                                          QualType Canon,
1829                                          bool IsCurrentInstantiation) {
1830  if (!Canon.isNull())
1831    Canon = getCanonicalType(Canon);
1832  else {
1833    assert(!IsCurrentInstantiation &&
1834           "current-instantiation specializations should always "
1835           "have a canonical type");
1836
1837    // Build the canonical template specialization type.
1838    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1839    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1840    CanonArgs.reserve(NumArgs);
1841    for (unsigned I = 0; I != NumArgs; ++I)
1842      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1843
1844    // Determine whether this canonical template specialization type already
1845    // exists.
1846    llvm::FoldingSetNodeID ID;
1847    TemplateSpecializationType::Profile(ID, CanonTemplate, false,
1848                                        CanonArgs.data(), NumArgs, *this);
1849
1850    void *InsertPos = 0;
1851    TemplateSpecializationType *Spec
1852      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1853
1854    if (!Spec) {
1855      // Allocate a new canonical template specialization type.
1856      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1857                            sizeof(TemplateArgument) * NumArgs),
1858                           TypeAlignment);
1859      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate, false,
1860                                                  CanonArgs.data(), NumArgs,
1861                                                  Canon);
1862      Types.push_back(Spec);
1863      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1864    }
1865
1866    if (Canon.isNull())
1867      Canon = QualType(Spec, 0);
1868    assert(Canon->isDependentType() &&
1869           "Non-dependent template-id type must have a canonical type");
1870  }
1871
1872  // Allocate the (non-canonical) template specialization type, but don't
1873  // try to unique it: these types typically have location information that
1874  // we don't unique and don't want to lose.
1875  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1876                        sizeof(TemplateArgument) * NumArgs),
1877                       TypeAlignment);
1878  TemplateSpecializationType *Spec
1879    = new (Mem) TemplateSpecializationType(*this, Template,
1880                                           IsCurrentInstantiation,
1881                                           Args, NumArgs,
1882                                           Canon);
1883
1884  Types.push_back(Spec);
1885  return QualType(Spec, 0);
1886}
1887
1888QualType
1889ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
1890                              NestedNameSpecifier *NNS,
1891                              QualType NamedType) {
1892  llvm::FoldingSetNodeID ID;
1893  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
1894
1895  void *InsertPos = 0;
1896  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1897  if (T)
1898    return QualType(T, 0);
1899
1900  QualType Canon = NamedType;
1901  if (!Canon.isCanonical()) {
1902    Canon = getCanonicalType(NamedType);
1903    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1904    assert(!CheckT && "Elaborated canonical type broken");
1905    (void)CheckT;
1906  }
1907
1908  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
1909  Types.push_back(T);
1910  ElaboratedTypes.InsertNode(T, InsertPos);
1911  return QualType(T, 0);
1912}
1913
1914QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
1915                                          NestedNameSpecifier *NNS,
1916                                          const IdentifierInfo *Name,
1917                                          QualType Canon) {
1918  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1919
1920  if (Canon.isNull()) {
1921    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1922    ElaboratedTypeKeyword CanonKeyword = Keyword;
1923    if (Keyword == ETK_None)
1924      CanonKeyword = ETK_Typename;
1925
1926    if (CanonNNS != NNS || CanonKeyword != Keyword)
1927      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
1928  }
1929
1930  llvm::FoldingSetNodeID ID;
1931  DependentNameType::Profile(ID, Keyword, NNS, Name);
1932
1933  void *InsertPos = 0;
1934  DependentNameType *T
1935    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1936  if (T)
1937    return QualType(T, 0);
1938
1939  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
1940  Types.push_back(T);
1941  DependentNameTypes.InsertNode(T, InsertPos);
1942  return QualType(T, 0);
1943}
1944
1945QualType
1946ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
1947                                 NestedNameSpecifier *NNS,
1948                                 const TemplateSpecializationType *TemplateId,
1949                                 QualType Canon) {
1950  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1951
1952  llvm::FoldingSetNodeID ID;
1953  DependentNameType::Profile(ID, Keyword, NNS, TemplateId);
1954
1955  void *InsertPos = 0;
1956  DependentNameType *T
1957    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1958  if (T)
1959    return QualType(T, 0);
1960
1961  if (Canon.isNull()) {
1962    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1963    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1964    ElaboratedTypeKeyword CanonKeyword = Keyword;
1965    if (Keyword == ETK_None)
1966      CanonKeyword = ETK_Typename;
1967    if (CanonNNS != NNS || CanonKeyword != Keyword ||
1968        CanonType != QualType(TemplateId, 0)) {
1969      const TemplateSpecializationType *CanonTemplateId
1970        = CanonType->getAs<TemplateSpecializationType>();
1971      assert(CanonTemplateId &&
1972             "Canonical type must also be a template specialization type");
1973      Canon = getDependentNameType(CanonKeyword, CanonNNS, CanonTemplateId);
1974    }
1975
1976    DependentNameType *CheckT
1977      = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1978    assert(!CheckT && "Typename canonical type is broken"); (void)CheckT;
1979  }
1980
1981  T = new (*this) DependentNameType(Keyword, NNS, TemplateId, Canon);
1982  Types.push_back(T);
1983  DependentNameTypes.InsertNode(T, InsertPos);
1984  return QualType(T, 0);
1985}
1986
1987/// CmpProtocolNames - Comparison predicate for sorting protocols
1988/// alphabetically.
1989static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1990                            const ObjCProtocolDecl *RHS) {
1991  return LHS->getDeclName() < RHS->getDeclName();
1992}
1993
1994static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
1995                                unsigned NumProtocols) {
1996  if (NumProtocols == 0) return true;
1997
1998  for (unsigned i = 1; i != NumProtocols; ++i)
1999    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2000      return false;
2001  return true;
2002}
2003
2004static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2005                                   unsigned &NumProtocols) {
2006  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2007
2008  // Sort protocols, keyed by name.
2009  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2010
2011  // Remove duplicates.
2012  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2013  NumProtocols = ProtocolsEnd-Protocols;
2014}
2015
2016/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2017/// the given interface decl and the conforming protocol list.
2018QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2019                                              ObjCProtocolDecl **Protocols,
2020                                              unsigned NumProtocols,
2021                                              unsigned Quals) {
2022  llvm::FoldingSetNodeID ID;
2023  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2024  Qualifiers Qs = Qualifiers::fromCVRMask(Quals);
2025
2026  void *InsertPos = 0;
2027  if (ObjCObjectPointerType *QT =
2028              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2029    return getQualifiedType(QualType(QT, 0), Qs);
2030
2031  // Sort the protocol list alphabetically to canonicalize it.
2032  QualType Canonical;
2033  if (!InterfaceT.isCanonical() ||
2034      !areSortedAndUniqued(Protocols, NumProtocols)) {
2035    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2036      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2037                                                     Protocols + NumProtocols);
2038      unsigned UniqueCount = NumProtocols;
2039
2040      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2041
2042      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2043                                           &Sorted[0], UniqueCount);
2044    } else {
2045      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2046                                           Protocols, NumProtocols);
2047    }
2048
2049    // Regenerate InsertPos.
2050    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2051  }
2052
2053  // No match.
2054  unsigned Size = sizeof(ObjCObjectPointerType)
2055                + NumProtocols * sizeof(ObjCProtocolDecl *);
2056  void *Mem = Allocate(Size, TypeAlignment);
2057  ObjCObjectPointerType *QType = new (Mem) ObjCObjectPointerType(Canonical,
2058                                                                 InterfaceT,
2059                                                                 Protocols,
2060                                                                 NumProtocols);
2061
2062  Types.push_back(QType);
2063  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2064  return getQualifiedType(QualType(QType, 0), Qs);
2065}
2066
2067/// getObjCInterfaceType - Return the unique reference to the type for the
2068/// specified ObjC interface decl. The list of protocols is optional.
2069QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2070                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2071  llvm::FoldingSetNodeID ID;
2072  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2073
2074  void *InsertPos = 0;
2075  if (ObjCInterfaceType *QT =
2076      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2077    return QualType(QT, 0);
2078
2079  // Sort the protocol list alphabetically to canonicalize it.
2080  QualType Canonical;
2081  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2082    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2083                                                   Protocols + NumProtocols);
2084
2085    unsigned UniqueCount = NumProtocols;
2086    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2087
2088    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2089
2090    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2091  }
2092
2093  unsigned Size = sizeof(ObjCInterfaceType)
2094    + NumProtocols * sizeof(ObjCProtocolDecl *);
2095  void *Mem = Allocate(Size, TypeAlignment);
2096  ObjCInterfaceType *QType = new (Mem) ObjCInterfaceType(Canonical,
2097                                        const_cast<ObjCInterfaceDecl*>(Decl),
2098                                                         Protocols,
2099                                                         NumProtocols);
2100
2101  Types.push_back(QType);
2102  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2103  return QualType(QType, 0);
2104}
2105
2106/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2107/// TypeOfExprType AST's (since expression's are never shared). For example,
2108/// multiple declarations that refer to "typeof(x)" all contain different
2109/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2110/// on canonical type's (which are always unique).
2111QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2112  TypeOfExprType *toe;
2113  if (tofExpr->isTypeDependent()) {
2114    llvm::FoldingSetNodeID ID;
2115    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2116
2117    void *InsertPos = 0;
2118    DependentTypeOfExprType *Canon
2119      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2120    if (Canon) {
2121      // We already have a "canonical" version of an identical, dependent
2122      // typeof(expr) type. Use that as our canonical type.
2123      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2124                                          QualType((TypeOfExprType*)Canon, 0));
2125    }
2126    else {
2127      // Build a new, canonical typeof(expr) type.
2128      Canon
2129        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2130      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2131      toe = Canon;
2132    }
2133  } else {
2134    QualType Canonical = getCanonicalType(tofExpr->getType());
2135    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2136  }
2137  Types.push_back(toe);
2138  return QualType(toe, 0);
2139}
2140
2141/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2142/// TypeOfType AST's. The only motivation to unique these nodes would be
2143/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2144/// an issue. This doesn't effect the type checker, since it operates
2145/// on canonical type's (which are always unique).
2146QualType ASTContext::getTypeOfType(QualType tofType) {
2147  QualType Canonical = getCanonicalType(tofType);
2148  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2149  Types.push_back(tot);
2150  return QualType(tot, 0);
2151}
2152
2153/// getDecltypeForExpr - Given an expr, will return the decltype for that
2154/// expression, according to the rules in C++0x [dcl.type.simple]p4
2155static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2156  if (e->isTypeDependent())
2157    return Context.DependentTy;
2158
2159  // If e is an id expression or a class member access, decltype(e) is defined
2160  // as the type of the entity named by e.
2161  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2162    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2163      return VD->getType();
2164  }
2165  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2166    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2167      return FD->getType();
2168  }
2169  // If e is a function call or an invocation of an overloaded operator,
2170  // (parentheses around e are ignored), decltype(e) is defined as the
2171  // return type of that function.
2172  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2173    return CE->getCallReturnType();
2174
2175  QualType T = e->getType();
2176
2177  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2178  // defined as T&, otherwise decltype(e) is defined as T.
2179  if (e->isLvalue(Context) == Expr::LV_Valid)
2180    T = Context.getLValueReferenceType(T);
2181
2182  return T;
2183}
2184
2185/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2186/// DecltypeType AST's. The only motivation to unique these nodes would be
2187/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2188/// an issue. This doesn't effect the type checker, since it operates
2189/// on canonical type's (which are always unique).
2190QualType ASTContext::getDecltypeType(Expr *e) {
2191  DecltypeType *dt;
2192  if (e->isTypeDependent()) {
2193    llvm::FoldingSetNodeID ID;
2194    DependentDecltypeType::Profile(ID, *this, e);
2195
2196    void *InsertPos = 0;
2197    DependentDecltypeType *Canon
2198      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2199    if (Canon) {
2200      // We already have a "canonical" version of an equivalent, dependent
2201      // decltype type. Use that as our canonical type.
2202      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2203                                       QualType((DecltypeType*)Canon, 0));
2204    }
2205    else {
2206      // Build a new, canonical typeof(expr) type.
2207      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2208      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2209      dt = Canon;
2210    }
2211  } else {
2212    QualType T = getDecltypeForExpr(e, *this);
2213    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2214  }
2215  Types.push_back(dt);
2216  return QualType(dt, 0);
2217}
2218
2219/// getTagDeclType - Return the unique reference to the type for the
2220/// specified TagDecl (struct/union/class/enum) decl.
2221QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2222  assert (Decl);
2223  // FIXME: What is the design on getTagDeclType when it requires casting
2224  // away const?  mutable?
2225  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2226}
2227
2228/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2229/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2230/// needs to agree with the definition in <stddef.h>.
2231CanQualType ASTContext::getSizeType() const {
2232  return getFromTargetType(Target.getSizeType());
2233}
2234
2235/// getSignedWCharType - Return the type of "signed wchar_t".
2236/// Used when in C++, as a GCC extension.
2237QualType ASTContext::getSignedWCharType() const {
2238  // FIXME: derive from "Target" ?
2239  return WCharTy;
2240}
2241
2242/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2243/// Used when in C++, as a GCC extension.
2244QualType ASTContext::getUnsignedWCharType() const {
2245  // FIXME: derive from "Target" ?
2246  return UnsignedIntTy;
2247}
2248
2249/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2250/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2251QualType ASTContext::getPointerDiffType() const {
2252  return getFromTargetType(Target.getPtrDiffType(0));
2253}
2254
2255//===----------------------------------------------------------------------===//
2256//                              Type Operators
2257//===----------------------------------------------------------------------===//
2258
2259CanQualType ASTContext::getCanonicalParamType(QualType T) {
2260  // Push qualifiers into arrays, and then discard any remaining
2261  // qualifiers.
2262  T = getCanonicalType(T);
2263  const Type *Ty = T.getTypePtr();
2264
2265  QualType Result;
2266  if (isa<ArrayType>(Ty)) {
2267    Result = getArrayDecayedType(QualType(Ty,0));
2268  } else if (isa<FunctionType>(Ty)) {
2269    Result = getPointerType(QualType(Ty, 0));
2270  } else {
2271    Result = QualType(Ty, 0);
2272  }
2273
2274  return CanQualType::CreateUnsafe(Result);
2275}
2276
2277/// getCanonicalType - Return the canonical (structural) type corresponding to
2278/// the specified potentially non-canonical type.  The non-canonical version
2279/// of a type may have many "decorated" versions of types.  Decorators can
2280/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2281/// to be free of any of these, allowing two canonical types to be compared
2282/// for exact equality with a simple pointer comparison.
2283CanQualType ASTContext::getCanonicalType(QualType T) {
2284  QualifierCollector Quals;
2285  const Type *Ptr = Quals.strip(T);
2286  QualType CanType = Ptr->getCanonicalTypeInternal();
2287
2288  // The canonical internal type will be the canonical type *except*
2289  // that we push type qualifiers down through array types.
2290
2291  // If there are no new qualifiers to push down, stop here.
2292  if (!Quals.hasQualifiers())
2293    return CanQualType::CreateUnsafe(CanType);
2294
2295  // If the type qualifiers are on an array type, get the canonical
2296  // type of the array with the qualifiers applied to the element
2297  // type.
2298  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2299  if (!AT)
2300    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2301
2302  // Get the canonical version of the element with the extra qualifiers on it.
2303  // This can recursively sink qualifiers through multiple levels of arrays.
2304  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2305  NewEltTy = getCanonicalType(NewEltTy);
2306
2307  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2308    return CanQualType::CreateUnsafe(
2309             getConstantArrayType(NewEltTy, CAT->getSize(),
2310                                  CAT->getSizeModifier(),
2311                                  CAT->getIndexTypeCVRQualifiers()));
2312  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2313    return CanQualType::CreateUnsafe(
2314             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2315                                    IAT->getIndexTypeCVRQualifiers()));
2316
2317  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2318    return CanQualType::CreateUnsafe(
2319             getDependentSizedArrayType(NewEltTy,
2320                                        DSAT->getSizeExpr() ?
2321                                          DSAT->getSizeExpr()->Retain() : 0,
2322                                        DSAT->getSizeModifier(),
2323                                        DSAT->getIndexTypeCVRQualifiers(),
2324                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2325
2326  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2327  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2328                                                        VAT->getSizeExpr() ?
2329                                              VAT->getSizeExpr()->Retain() : 0,
2330                                                        VAT->getSizeModifier(),
2331                                              VAT->getIndexTypeCVRQualifiers(),
2332                                                     VAT->getBracketsRange()));
2333}
2334
2335QualType ASTContext::getUnqualifiedArrayType(QualType T,
2336                                             Qualifiers &Quals) {
2337  Quals = T.getQualifiers();
2338  if (!isa<ArrayType>(T)) {
2339    return T.getUnqualifiedType();
2340  }
2341
2342  const ArrayType *AT = cast<ArrayType>(T);
2343  QualType Elt = AT->getElementType();
2344  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2345  if (Elt == UnqualElt)
2346    return T;
2347
2348  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) {
2349    return getConstantArrayType(UnqualElt, CAT->getSize(),
2350                                CAT->getSizeModifier(), 0);
2351  }
2352
2353  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) {
2354    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2355  }
2356
2357  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T);
2358  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2359                                    DSAT->getSizeModifier(), 0,
2360                                    SourceRange());
2361}
2362
2363DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2364  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2365    return TD->getDeclName();
2366
2367  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2368    if (DTN->isIdentifier()) {
2369      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2370    } else {
2371      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2372    }
2373  }
2374
2375  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2376  assert(Storage);
2377  return (*Storage->begin())->getDeclName();
2378}
2379
2380TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2381  // If this template name refers to a template, the canonical
2382  // template name merely stores the template itself.
2383  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2384    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2385
2386  assert(!Name.getAsOverloadedTemplate());
2387
2388  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2389  assert(DTN && "Non-dependent template names must refer to template decls.");
2390  return DTN->CanonicalTemplateName;
2391}
2392
2393bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2394  X = getCanonicalTemplateName(X);
2395  Y = getCanonicalTemplateName(Y);
2396  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2397}
2398
2399TemplateArgument
2400ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2401  switch (Arg.getKind()) {
2402    case TemplateArgument::Null:
2403      return Arg;
2404
2405    case TemplateArgument::Expression:
2406      return Arg;
2407
2408    case TemplateArgument::Declaration:
2409      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2410
2411    case TemplateArgument::Template:
2412      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2413
2414    case TemplateArgument::Integral:
2415      return TemplateArgument(*Arg.getAsIntegral(),
2416                              getCanonicalType(Arg.getIntegralType()));
2417
2418    case TemplateArgument::Type:
2419      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2420
2421    case TemplateArgument::Pack: {
2422      // FIXME: Allocate in ASTContext
2423      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2424      unsigned Idx = 0;
2425      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2426                                        AEnd = Arg.pack_end();
2427           A != AEnd; (void)++A, ++Idx)
2428        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2429
2430      TemplateArgument Result;
2431      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2432      return Result;
2433    }
2434  }
2435
2436  // Silence GCC warning
2437  assert(false && "Unhandled template argument kind");
2438  return TemplateArgument();
2439}
2440
2441NestedNameSpecifier *
2442ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2443  if (!NNS)
2444    return 0;
2445
2446  switch (NNS->getKind()) {
2447  case NestedNameSpecifier::Identifier:
2448    // Canonicalize the prefix but keep the identifier the same.
2449    return NestedNameSpecifier::Create(*this,
2450                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2451                                       NNS->getAsIdentifier());
2452
2453  case NestedNameSpecifier::Namespace:
2454    // A namespace is canonical; build a nested-name-specifier with
2455    // this namespace and no prefix.
2456    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2457
2458  case NestedNameSpecifier::TypeSpec:
2459  case NestedNameSpecifier::TypeSpecWithTemplate: {
2460    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2461    return NestedNameSpecifier::Create(*this, 0,
2462                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2463                                       T.getTypePtr());
2464  }
2465
2466  case NestedNameSpecifier::Global:
2467    // The global specifier is canonical and unique.
2468    return NNS;
2469  }
2470
2471  // Required to silence a GCC warning
2472  return 0;
2473}
2474
2475
2476const ArrayType *ASTContext::getAsArrayType(QualType T) {
2477  // Handle the non-qualified case efficiently.
2478  if (!T.hasLocalQualifiers()) {
2479    // Handle the common positive case fast.
2480    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2481      return AT;
2482  }
2483
2484  // Handle the common negative case fast.
2485  QualType CType = T->getCanonicalTypeInternal();
2486  if (!isa<ArrayType>(CType))
2487    return 0;
2488
2489  // Apply any qualifiers from the array type to the element type.  This
2490  // implements C99 6.7.3p8: "If the specification of an array type includes
2491  // any type qualifiers, the element type is so qualified, not the array type."
2492
2493  // If we get here, we either have type qualifiers on the type, or we have
2494  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2495  // we must propagate them down into the element type.
2496
2497  QualifierCollector Qs;
2498  const Type *Ty = Qs.strip(T.getDesugaredType());
2499
2500  // If we have a simple case, just return now.
2501  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2502  if (ATy == 0 || Qs.empty())
2503    return ATy;
2504
2505  // Otherwise, we have an array and we have qualifiers on it.  Push the
2506  // qualifiers into the array element type and return a new array type.
2507  // Get the canonical version of the element with the extra qualifiers on it.
2508  // This can recursively sink qualifiers through multiple levels of arrays.
2509  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2510
2511  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2512    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2513                                                CAT->getSizeModifier(),
2514                                           CAT->getIndexTypeCVRQualifiers()));
2515  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2516    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2517                                                  IAT->getSizeModifier(),
2518                                           IAT->getIndexTypeCVRQualifiers()));
2519
2520  if (const DependentSizedArrayType *DSAT
2521        = dyn_cast<DependentSizedArrayType>(ATy))
2522    return cast<ArrayType>(
2523                     getDependentSizedArrayType(NewEltTy,
2524                                                DSAT->getSizeExpr() ?
2525                                              DSAT->getSizeExpr()->Retain() : 0,
2526                                                DSAT->getSizeModifier(),
2527                                              DSAT->getIndexTypeCVRQualifiers(),
2528                                                DSAT->getBracketsRange()));
2529
2530  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2531  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2532                                              VAT->getSizeExpr() ?
2533                                              VAT->getSizeExpr()->Retain() : 0,
2534                                              VAT->getSizeModifier(),
2535                                              VAT->getIndexTypeCVRQualifiers(),
2536                                              VAT->getBracketsRange()));
2537}
2538
2539
2540/// getArrayDecayedType - Return the properly qualified result of decaying the
2541/// specified array type to a pointer.  This operation is non-trivial when
2542/// handling typedefs etc.  The canonical type of "T" must be an array type,
2543/// this returns a pointer to a properly qualified element of the array.
2544///
2545/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2546QualType ASTContext::getArrayDecayedType(QualType Ty) {
2547  // Get the element type with 'getAsArrayType' so that we don't lose any
2548  // typedefs in the element type of the array.  This also handles propagation
2549  // of type qualifiers from the array type into the element type if present
2550  // (C99 6.7.3p8).
2551  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2552  assert(PrettyArrayType && "Not an array type!");
2553
2554  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2555
2556  // int x[restrict 4] ->  int *restrict
2557  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2558}
2559
2560QualType ASTContext::getBaseElementType(QualType QT) {
2561  QualifierCollector Qs;
2562  while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
2563    QT = AT->getElementType();
2564  return Qs.apply(QT);
2565}
2566
2567QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2568  QualType ElemTy = AT->getElementType();
2569
2570  if (const ArrayType *AT = getAsArrayType(ElemTy))
2571    return getBaseElementType(AT);
2572
2573  return ElemTy;
2574}
2575
2576/// getConstantArrayElementCount - Returns number of constant array elements.
2577uint64_t
2578ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2579  uint64_t ElementCount = 1;
2580  do {
2581    ElementCount *= CA->getSize().getZExtValue();
2582    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2583  } while (CA);
2584  return ElementCount;
2585}
2586
2587/// getFloatingRank - Return a relative rank for floating point types.
2588/// This routine will assert if passed a built-in type that isn't a float.
2589static FloatingRank getFloatingRank(QualType T) {
2590  if (const ComplexType *CT = T->getAs<ComplexType>())
2591    return getFloatingRank(CT->getElementType());
2592
2593  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2594  switch (T->getAs<BuiltinType>()->getKind()) {
2595  default: assert(0 && "getFloatingRank(): not a floating type");
2596  case BuiltinType::Float:      return FloatRank;
2597  case BuiltinType::Double:     return DoubleRank;
2598  case BuiltinType::LongDouble: return LongDoubleRank;
2599  }
2600}
2601
2602/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2603/// point or a complex type (based on typeDomain/typeSize).
2604/// 'typeDomain' is a real floating point or complex type.
2605/// 'typeSize' is a real floating point or complex type.
2606QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2607                                                       QualType Domain) const {
2608  FloatingRank EltRank = getFloatingRank(Size);
2609  if (Domain->isComplexType()) {
2610    switch (EltRank) {
2611    default: assert(0 && "getFloatingRank(): illegal value for rank");
2612    case FloatRank:      return FloatComplexTy;
2613    case DoubleRank:     return DoubleComplexTy;
2614    case LongDoubleRank: return LongDoubleComplexTy;
2615    }
2616  }
2617
2618  assert(Domain->isRealFloatingType() && "Unknown domain!");
2619  switch (EltRank) {
2620  default: assert(0 && "getFloatingRank(): illegal value for rank");
2621  case FloatRank:      return FloatTy;
2622  case DoubleRank:     return DoubleTy;
2623  case LongDoubleRank: return LongDoubleTy;
2624  }
2625}
2626
2627/// getFloatingTypeOrder - Compare the rank of the two specified floating
2628/// point types, ignoring the domain of the type (i.e. 'double' ==
2629/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2630/// LHS < RHS, return -1.
2631int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2632  FloatingRank LHSR = getFloatingRank(LHS);
2633  FloatingRank RHSR = getFloatingRank(RHS);
2634
2635  if (LHSR == RHSR)
2636    return 0;
2637  if (LHSR > RHSR)
2638    return 1;
2639  return -1;
2640}
2641
2642/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2643/// routine will assert if passed a built-in type that isn't an integer or enum,
2644/// or if it is not canonicalized.
2645unsigned ASTContext::getIntegerRank(Type *T) {
2646  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2647  if (EnumType* ET = dyn_cast<EnumType>(T))
2648    T = ET->getDecl()->getPromotionType().getTypePtr();
2649
2650  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2651    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2652
2653  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2654    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2655
2656  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2657    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2658
2659  switch (cast<BuiltinType>(T)->getKind()) {
2660  default: assert(0 && "getIntegerRank(): not a built-in integer");
2661  case BuiltinType::Bool:
2662    return 1 + (getIntWidth(BoolTy) << 3);
2663  case BuiltinType::Char_S:
2664  case BuiltinType::Char_U:
2665  case BuiltinType::SChar:
2666  case BuiltinType::UChar:
2667    return 2 + (getIntWidth(CharTy) << 3);
2668  case BuiltinType::Short:
2669  case BuiltinType::UShort:
2670    return 3 + (getIntWidth(ShortTy) << 3);
2671  case BuiltinType::Int:
2672  case BuiltinType::UInt:
2673    return 4 + (getIntWidth(IntTy) << 3);
2674  case BuiltinType::Long:
2675  case BuiltinType::ULong:
2676    return 5 + (getIntWidth(LongTy) << 3);
2677  case BuiltinType::LongLong:
2678  case BuiltinType::ULongLong:
2679    return 6 + (getIntWidth(LongLongTy) << 3);
2680  case BuiltinType::Int128:
2681  case BuiltinType::UInt128:
2682    return 7 + (getIntWidth(Int128Ty) << 3);
2683  }
2684}
2685
2686/// \brief Whether this is a promotable bitfield reference according
2687/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2688///
2689/// \returns the type this bit-field will promote to, or NULL if no
2690/// promotion occurs.
2691QualType ASTContext::isPromotableBitField(Expr *E) {
2692  FieldDecl *Field = E->getBitField();
2693  if (!Field)
2694    return QualType();
2695
2696  QualType FT = Field->getType();
2697
2698  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2699  uint64_t BitWidth = BitWidthAP.getZExtValue();
2700  uint64_t IntSize = getTypeSize(IntTy);
2701  // GCC extension compatibility: if the bit-field size is less than or equal
2702  // to the size of int, it gets promoted no matter what its type is.
2703  // For instance, unsigned long bf : 4 gets promoted to signed int.
2704  if (BitWidth < IntSize)
2705    return IntTy;
2706
2707  if (BitWidth == IntSize)
2708    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2709
2710  // Types bigger than int are not subject to promotions, and therefore act
2711  // like the base type.
2712  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2713  // is ridiculous.
2714  return QualType();
2715}
2716
2717/// getPromotedIntegerType - Returns the type that Promotable will
2718/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2719/// integer type.
2720QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2721  assert(!Promotable.isNull());
2722  assert(Promotable->isPromotableIntegerType());
2723  if (const EnumType *ET = Promotable->getAs<EnumType>())
2724    return ET->getDecl()->getPromotionType();
2725  if (Promotable->isSignedIntegerType())
2726    return IntTy;
2727  uint64_t PromotableSize = getTypeSize(Promotable);
2728  uint64_t IntSize = getTypeSize(IntTy);
2729  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2730  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2731}
2732
2733/// getIntegerTypeOrder - Returns the highest ranked integer type:
2734/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2735/// LHS < RHS, return -1.
2736int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2737  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2738  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2739  if (LHSC == RHSC) return 0;
2740
2741  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2742  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2743
2744  unsigned LHSRank = getIntegerRank(LHSC);
2745  unsigned RHSRank = getIntegerRank(RHSC);
2746
2747  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2748    if (LHSRank == RHSRank) return 0;
2749    return LHSRank > RHSRank ? 1 : -1;
2750  }
2751
2752  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2753  if (LHSUnsigned) {
2754    // If the unsigned [LHS] type is larger, return it.
2755    if (LHSRank >= RHSRank)
2756      return 1;
2757
2758    // If the signed type can represent all values of the unsigned type, it
2759    // wins.  Because we are dealing with 2's complement and types that are
2760    // powers of two larger than each other, this is always safe.
2761    return -1;
2762  }
2763
2764  // If the unsigned [RHS] type is larger, return it.
2765  if (RHSRank >= LHSRank)
2766    return -1;
2767
2768  // If the signed type can represent all values of the unsigned type, it
2769  // wins.  Because we are dealing with 2's complement and types that are
2770  // powers of two larger than each other, this is always safe.
2771  return 1;
2772}
2773
2774static RecordDecl *
2775CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2776                 SourceLocation L, IdentifierInfo *Id) {
2777  if (Ctx.getLangOptions().CPlusPlus)
2778    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2779  else
2780    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2781}
2782
2783// getCFConstantStringType - Return the type used for constant CFStrings.
2784QualType ASTContext::getCFConstantStringType() {
2785  if (!CFConstantStringTypeDecl) {
2786    CFConstantStringTypeDecl =
2787      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2788                       &Idents.get("NSConstantString"));
2789    CFConstantStringTypeDecl->startDefinition();
2790
2791    QualType FieldTypes[4];
2792
2793    // const int *isa;
2794    FieldTypes[0] = getPointerType(IntTy.withConst());
2795    // int flags;
2796    FieldTypes[1] = IntTy;
2797    // const char *str;
2798    FieldTypes[2] = getPointerType(CharTy.withConst());
2799    // long length;
2800    FieldTypes[3] = LongTy;
2801
2802    // Create fields
2803    for (unsigned i = 0; i < 4; ++i) {
2804      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2805                                           SourceLocation(), 0,
2806                                           FieldTypes[i], /*TInfo=*/0,
2807                                           /*BitWidth=*/0,
2808                                           /*Mutable=*/false);
2809      Field->setAccess(AS_public);
2810      CFConstantStringTypeDecl->addDecl(Field);
2811    }
2812
2813    CFConstantStringTypeDecl->completeDefinition();
2814  }
2815
2816  return getTagDeclType(CFConstantStringTypeDecl);
2817}
2818
2819void ASTContext::setCFConstantStringType(QualType T) {
2820  const RecordType *Rec = T->getAs<RecordType>();
2821  assert(Rec && "Invalid CFConstantStringType");
2822  CFConstantStringTypeDecl = Rec->getDecl();
2823}
2824
2825// getNSConstantStringType - Return the type used for constant NSStrings.
2826QualType ASTContext::getNSConstantStringType() {
2827  if (!NSConstantStringTypeDecl) {
2828    NSConstantStringTypeDecl =
2829    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2830                     &Idents.get("__builtin_NSString"));
2831    NSConstantStringTypeDecl->startDefinition();
2832
2833    QualType FieldTypes[3];
2834
2835    // const int *isa;
2836    FieldTypes[0] = getPointerType(IntTy.withConst());
2837    // const char *str;
2838    FieldTypes[1] = getPointerType(CharTy.withConst());
2839    // unsigned int length;
2840    FieldTypes[2] = UnsignedIntTy;
2841
2842    // Create fields
2843    for (unsigned i = 0; i < 3; ++i) {
2844      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
2845                                           SourceLocation(), 0,
2846                                           FieldTypes[i], /*TInfo=*/0,
2847                                           /*BitWidth=*/0,
2848                                           /*Mutable=*/false);
2849      Field->setAccess(AS_public);
2850      NSConstantStringTypeDecl->addDecl(Field);
2851    }
2852
2853    NSConstantStringTypeDecl->completeDefinition();
2854  }
2855
2856  return getTagDeclType(NSConstantStringTypeDecl);
2857}
2858
2859void ASTContext::setNSConstantStringType(QualType T) {
2860  const RecordType *Rec = T->getAs<RecordType>();
2861  assert(Rec && "Invalid NSConstantStringType");
2862  NSConstantStringTypeDecl = Rec->getDecl();
2863}
2864
2865QualType ASTContext::getObjCFastEnumerationStateType() {
2866  if (!ObjCFastEnumerationStateTypeDecl) {
2867    ObjCFastEnumerationStateTypeDecl =
2868      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2869                       &Idents.get("__objcFastEnumerationState"));
2870    ObjCFastEnumerationStateTypeDecl->startDefinition();
2871
2872    QualType FieldTypes[] = {
2873      UnsignedLongTy,
2874      getPointerType(ObjCIdTypedefType),
2875      getPointerType(UnsignedLongTy),
2876      getConstantArrayType(UnsignedLongTy,
2877                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2878    };
2879
2880    for (size_t i = 0; i < 4; ++i) {
2881      FieldDecl *Field = FieldDecl::Create(*this,
2882                                           ObjCFastEnumerationStateTypeDecl,
2883                                           SourceLocation(), 0,
2884                                           FieldTypes[i], /*TInfo=*/0,
2885                                           /*BitWidth=*/0,
2886                                           /*Mutable=*/false);
2887      Field->setAccess(AS_public);
2888      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2889    }
2890
2891    ObjCFastEnumerationStateTypeDecl->completeDefinition();
2892  }
2893
2894  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2895}
2896
2897QualType ASTContext::getBlockDescriptorType() {
2898  if (BlockDescriptorType)
2899    return getTagDeclType(BlockDescriptorType);
2900
2901  RecordDecl *T;
2902  // FIXME: Needs the FlagAppleBlock bit.
2903  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2904                       &Idents.get("__block_descriptor"));
2905  T->startDefinition();
2906
2907  QualType FieldTypes[] = {
2908    UnsignedLongTy,
2909    UnsignedLongTy,
2910  };
2911
2912  const char *FieldNames[] = {
2913    "reserved",
2914    "Size"
2915  };
2916
2917  for (size_t i = 0; i < 2; ++i) {
2918    FieldDecl *Field = FieldDecl::Create(*this,
2919                                         T,
2920                                         SourceLocation(),
2921                                         &Idents.get(FieldNames[i]),
2922                                         FieldTypes[i], /*TInfo=*/0,
2923                                         /*BitWidth=*/0,
2924                                         /*Mutable=*/false);
2925    Field->setAccess(AS_public);
2926    T->addDecl(Field);
2927  }
2928
2929  T->completeDefinition();
2930
2931  BlockDescriptorType = T;
2932
2933  return getTagDeclType(BlockDescriptorType);
2934}
2935
2936void ASTContext::setBlockDescriptorType(QualType T) {
2937  const RecordType *Rec = T->getAs<RecordType>();
2938  assert(Rec && "Invalid BlockDescriptorType");
2939  BlockDescriptorType = Rec->getDecl();
2940}
2941
2942QualType ASTContext::getBlockDescriptorExtendedType() {
2943  if (BlockDescriptorExtendedType)
2944    return getTagDeclType(BlockDescriptorExtendedType);
2945
2946  RecordDecl *T;
2947  // FIXME: Needs the FlagAppleBlock bit.
2948  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2949                       &Idents.get("__block_descriptor_withcopydispose"));
2950  T->startDefinition();
2951
2952  QualType FieldTypes[] = {
2953    UnsignedLongTy,
2954    UnsignedLongTy,
2955    getPointerType(VoidPtrTy),
2956    getPointerType(VoidPtrTy)
2957  };
2958
2959  const char *FieldNames[] = {
2960    "reserved",
2961    "Size",
2962    "CopyFuncPtr",
2963    "DestroyFuncPtr"
2964  };
2965
2966  for (size_t i = 0; i < 4; ++i) {
2967    FieldDecl *Field = FieldDecl::Create(*this,
2968                                         T,
2969                                         SourceLocation(),
2970                                         &Idents.get(FieldNames[i]),
2971                                         FieldTypes[i], /*TInfo=*/0,
2972                                         /*BitWidth=*/0,
2973                                         /*Mutable=*/false);
2974    Field->setAccess(AS_public);
2975    T->addDecl(Field);
2976  }
2977
2978  T->completeDefinition();
2979
2980  BlockDescriptorExtendedType = T;
2981
2982  return getTagDeclType(BlockDescriptorExtendedType);
2983}
2984
2985void ASTContext::setBlockDescriptorExtendedType(QualType T) {
2986  const RecordType *Rec = T->getAs<RecordType>();
2987  assert(Rec && "Invalid BlockDescriptorType");
2988  BlockDescriptorExtendedType = Rec->getDecl();
2989}
2990
2991bool ASTContext::BlockRequiresCopying(QualType Ty) {
2992  if (Ty->isBlockPointerType())
2993    return true;
2994  if (isObjCNSObjectType(Ty))
2995    return true;
2996  if (Ty->isObjCObjectPointerType())
2997    return true;
2998  return false;
2999}
3000
3001QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3002  //  type = struct __Block_byref_1_X {
3003  //    void *__isa;
3004  //    struct __Block_byref_1_X *__forwarding;
3005  //    unsigned int __flags;
3006  //    unsigned int __size;
3007  //    void *__copy_helper;		// as needed
3008  //    void *__destroy_help		// as needed
3009  //    int X;
3010  //  } *
3011
3012  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3013
3014  // FIXME: Move up
3015  static unsigned int UniqueBlockByRefTypeID = 0;
3016  llvm::SmallString<36> Name;
3017  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3018                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3019  RecordDecl *T;
3020  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3021                       &Idents.get(Name.str()));
3022  T->startDefinition();
3023  QualType Int32Ty = IntTy;
3024  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3025  QualType FieldTypes[] = {
3026    getPointerType(VoidPtrTy),
3027    getPointerType(getTagDeclType(T)),
3028    Int32Ty,
3029    Int32Ty,
3030    getPointerType(VoidPtrTy),
3031    getPointerType(VoidPtrTy),
3032    Ty
3033  };
3034
3035  const char *FieldNames[] = {
3036    "__isa",
3037    "__forwarding",
3038    "__flags",
3039    "__size",
3040    "__copy_helper",
3041    "__destroy_helper",
3042    DeclName,
3043  };
3044
3045  for (size_t i = 0; i < 7; ++i) {
3046    if (!HasCopyAndDispose && i >=4 && i <= 5)
3047      continue;
3048    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3049                                         &Idents.get(FieldNames[i]),
3050                                         FieldTypes[i], /*TInfo=*/0,
3051                                         /*BitWidth=*/0, /*Mutable=*/false);
3052    Field->setAccess(AS_public);
3053    T->addDecl(Field);
3054  }
3055
3056  T->completeDefinition();
3057
3058  return getPointerType(getTagDeclType(T));
3059}
3060
3061
3062QualType ASTContext::getBlockParmType(
3063  bool BlockHasCopyDispose,
3064  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3065  // FIXME: Move up
3066  static unsigned int UniqueBlockParmTypeID = 0;
3067  llvm::SmallString<36> Name;
3068  llvm::raw_svector_ostream(Name) << "__block_literal_"
3069                                  << ++UniqueBlockParmTypeID;
3070  RecordDecl *T;
3071  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3072                       &Idents.get(Name.str()));
3073  T->startDefinition();
3074  QualType FieldTypes[] = {
3075    getPointerType(VoidPtrTy),
3076    IntTy,
3077    IntTy,
3078    getPointerType(VoidPtrTy),
3079    (BlockHasCopyDispose ?
3080     getPointerType(getBlockDescriptorExtendedType()) :
3081     getPointerType(getBlockDescriptorType()))
3082  };
3083
3084  const char *FieldNames[] = {
3085    "__isa",
3086    "__flags",
3087    "__reserved",
3088    "__FuncPtr",
3089    "__descriptor"
3090  };
3091
3092  for (size_t i = 0; i < 5; ++i) {
3093    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3094                                         &Idents.get(FieldNames[i]),
3095                                         FieldTypes[i], /*TInfo=*/0,
3096                                         /*BitWidth=*/0, /*Mutable=*/false);
3097    Field->setAccess(AS_public);
3098    T->addDecl(Field);
3099  }
3100
3101  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3102    const Expr *E = BlockDeclRefDecls[i];
3103    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3104    clang::IdentifierInfo *Name = 0;
3105    if (BDRE) {
3106      const ValueDecl *D = BDRE->getDecl();
3107      Name = &Idents.get(D->getName());
3108    }
3109    QualType FieldType = E->getType();
3110
3111    if (BDRE && BDRE->isByRef())
3112      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3113                                 FieldType);
3114
3115    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3116                                         Name, FieldType, /*TInfo=*/0,
3117                                         /*BitWidth=*/0, /*Mutable=*/false);
3118    Field->setAccess(AS_public);
3119    T->addDecl(Field);
3120  }
3121
3122  T->completeDefinition();
3123
3124  return getPointerType(getTagDeclType(T));
3125}
3126
3127void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3128  const RecordType *Rec = T->getAs<RecordType>();
3129  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3130  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3131}
3132
3133// This returns true if a type has been typedefed to BOOL:
3134// typedef <type> BOOL;
3135static bool isTypeTypedefedAsBOOL(QualType T) {
3136  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3137    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3138      return II->isStr("BOOL");
3139
3140  return false;
3141}
3142
3143/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3144/// purpose.
3145CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3146  CharUnits sz = getTypeSizeInChars(type);
3147
3148  // Make all integer and enum types at least as large as an int
3149  if (sz.isPositive() && type->isIntegralType())
3150    sz = std::max(sz, getTypeSizeInChars(IntTy));
3151  // Treat arrays as pointers, since that's how they're passed in.
3152  else if (type->isArrayType())
3153    sz = getTypeSizeInChars(VoidPtrTy);
3154  return sz;
3155}
3156
3157static inline
3158std::string charUnitsToString(const CharUnits &CU) {
3159  return llvm::itostr(CU.getQuantity());
3160}
3161
3162/// getObjCEncodingForBlockDecl - Return the encoded type for this block
3163/// declaration.
3164void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3165                                             std::string& S) {
3166  const BlockDecl *Decl = Expr->getBlockDecl();
3167  QualType BlockTy =
3168      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3169  // Encode result type.
3170  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3171  // Compute size of all parameters.
3172  // Start with computing size of a pointer in number of bytes.
3173  // FIXME: There might(should) be a better way of doing this computation!
3174  SourceLocation Loc;
3175  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3176  CharUnits ParmOffset = PtrSize;
3177  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3178       E = Decl->param_end(); PI != E; ++PI) {
3179    QualType PType = (*PI)->getType();
3180    CharUnits sz = getObjCEncodingTypeSize(PType);
3181    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3182    ParmOffset += sz;
3183  }
3184  // Size of the argument frame
3185  S += charUnitsToString(ParmOffset);
3186  // Block pointer and offset.
3187  S += "@?0";
3188  ParmOffset = PtrSize;
3189
3190  // Argument types.
3191  ParmOffset = PtrSize;
3192  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3193       Decl->param_end(); PI != E; ++PI) {
3194    ParmVarDecl *PVDecl = *PI;
3195    QualType PType = PVDecl->getOriginalType();
3196    if (const ArrayType *AT =
3197          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3198      // Use array's original type only if it has known number of
3199      // elements.
3200      if (!isa<ConstantArrayType>(AT))
3201        PType = PVDecl->getType();
3202    } else if (PType->isFunctionType())
3203      PType = PVDecl->getType();
3204    getObjCEncodingForType(PType, S);
3205    S += charUnitsToString(ParmOffset);
3206    ParmOffset += getObjCEncodingTypeSize(PType);
3207  }
3208}
3209
3210/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3211/// declaration.
3212void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3213                                              std::string& S) {
3214  // FIXME: This is not very efficient.
3215  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3216  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3217  // Encode result type.
3218  getObjCEncodingForType(Decl->getResultType(), S);
3219  // Compute size of all parameters.
3220  // Start with computing size of a pointer in number of bytes.
3221  // FIXME: There might(should) be a better way of doing this computation!
3222  SourceLocation Loc;
3223  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3224  // The first two arguments (self and _cmd) are pointers; account for
3225  // their size.
3226  CharUnits ParmOffset = 2 * PtrSize;
3227  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3228       E = Decl->sel_param_end(); PI != E; ++PI) {
3229    QualType PType = (*PI)->getType();
3230    CharUnits sz = getObjCEncodingTypeSize(PType);
3231    assert (sz.isPositive() &&
3232        "getObjCEncodingForMethodDecl - Incomplete param type");
3233    ParmOffset += sz;
3234  }
3235  S += charUnitsToString(ParmOffset);
3236  S += "@0:";
3237  S += charUnitsToString(PtrSize);
3238
3239  // Argument types.
3240  ParmOffset = 2 * PtrSize;
3241  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3242       E = Decl->sel_param_end(); PI != E; ++PI) {
3243    ParmVarDecl *PVDecl = *PI;
3244    QualType PType = PVDecl->getOriginalType();
3245    if (const ArrayType *AT =
3246          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3247      // Use array's original type only if it has known number of
3248      // elements.
3249      if (!isa<ConstantArrayType>(AT))
3250        PType = PVDecl->getType();
3251    } else if (PType->isFunctionType())
3252      PType = PVDecl->getType();
3253    // Process argument qualifiers for user supplied arguments; such as,
3254    // 'in', 'inout', etc.
3255    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3256    getObjCEncodingForType(PType, S);
3257    S += charUnitsToString(ParmOffset);
3258    ParmOffset += getObjCEncodingTypeSize(PType);
3259  }
3260}
3261
3262/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3263/// property declaration. If non-NULL, Container must be either an
3264/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3265/// NULL when getting encodings for protocol properties.
3266/// Property attributes are stored as a comma-delimited C string. The simple
3267/// attributes readonly and bycopy are encoded as single characters. The
3268/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3269/// encoded as single characters, followed by an identifier. Property types
3270/// are also encoded as a parametrized attribute. The characters used to encode
3271/// these attributes are defined by the following enumeration:
3272/// @code
3273/// enum PropertyAttributes {
3274/// kPropertyReadOnly = 'R',   // property is read-only.
3275/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3276/// kPropertyByref = '&',  // property is a reference to the value last assigned
3277/// kPropertyDynamic = 'D',    // property is dynamic
3278/// kPropertyGetter = 'G',     // followed by getter selector name
3279/// kPropertySetter = 'S',     // followed by setter selector name
3280/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3281/// kPropertyType = 't'              // followed by old-style type encoding.
3282/// kPropertyWeak = 'W'              // 'weak' property
3283/// kPropertyStrong = 'P'            // property GC'able
3284/// kPropertyNonAtomic = 'N'         // property non-atomic
3285/// };
3286/// @endcode
3287void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3288                                                const Decl *Container,
3289                                                std::string& S) {
3290  // Collect information from the property implementation decl(s).
3291  bool Dynamic = false;
3292  ObjCPropertyImplDecl *SynthesizePID = 0;
3293
3294  // FIXME: Duplicated code due to poor abstraction.
3295  if (Container) {
3296    if (const ObjCCategoryImplDecl *CID =
3297        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3298      for (ObjCCategoryImplDecl::propimpl_iterator
3299             i = CID->propimpl_begin(), e = CID->propimpl_end();
3300           i != e; ++i) {
3301        ObjCPropertyImplDecl *PID = *i;
3302        if (PID->getPropertyDecl() == PD) {
3303          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3304            Dynamic = true;
3305          } else {
3306            SynthesizePID = PID;
3307          }
3308        }
3309      }
3310    } else {
3311      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3312      for (ObjCCategoryImplDecl::propimpl_iterator
3313             i = OID->propimpl_begin(), e = OID->propimpl_end();
3314           i != e; ++i) {
3315        ObjCPropertyImplDecl *PID = *i;
3316        if (PID->getPropertyDecl() == PD) {
3317          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3318            Dynamic = true;
3319          } else {
3320            SynthesizePID = PID;
3321          }
3322        }
3323      }
3324    }
3325  }
3326
3327  // FIXME: This is not very efficient.
3328  S = "T";
3329
3330  // Encode result type.
3331  // GCC has some special rules regarding encoding of properties which
3332  // closely resembles encoding of ivars.
3333  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3334                             true /* outermost type */,
3335                             true /* encoding for property */);
3336
3337  if (PD->isReadOnly()) {
3338    S += ",R";
3339  } else {
3340    switch (PD->getSetterKind()) {
3341    case ObjCPropertyDecl::Assign: break;
3342    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3343    case ObjCPropertyDecl::Retain: S += ",&"; break;
3344    }
3345  }
3346
3347  // It really isn't clear at all what this means, since properties
3348  // are "dynamic by default".
3349  if (Dynamic)
3350    S += ",D";
3351
3352  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3353    S += ",N";
3354
3355  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3356    S += ",G";
3357    S += PD->getGetterName().getAsString();
3358  }
3359
3360  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3361    S += ",S";
3362    S += PD->getSetterName().getAsString();
3363  }
3364
3365  if (SynthesizePID) {
3366    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3367    S += ",V";
3368    S += OID->getNameAsString();
3369  }
3370
3371  // FIXME: OBJCGC: weak & strong
3372}
3373
3374/// getLegacyIntegralTypeEncoding -
3375/// Another legacy compatibility encoding: 32-bit longs are encoded as
3376/// 'l' or 'L' , but not always.  For typedefs, we need to use
3377/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3378///
3379void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3380  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3381    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3382      if (BT->getKind() == BuiltinType::ULong &&
3383          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3384        PointeeTy = UnsignedIntTy;
3385      else
3386        if (BT->getKind() == BuiltinType::Long &&
3387            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3388          PointeeTy = IntTy;
3389    }
3390  }
3391}
3392
3393void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3394                                        const FieldDecl *Field) {
3395  // We follow the behavior of gcc, expanding structures which are
3396  // directly pointed to, and expanding embedded structures. Note that
3397  // these rules are sufficient to prevent recursive encoding of the
3398  // same type.
3399  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3400                             true /* outermost type */);
3401}
3402
3403static void EncodeBitField(const ASTContext *Context, std::string& S,
3404                           const FieldDecl *FD) {
3405  const Expr *E = FD->getBitWidth();
3406  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3407  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3408  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3409  S += 'b';
3410  S += llvm::utostr(N);
3411}
3412
3413// FIXME: Use SmallString for accumulating string.
3414void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3415                                            bool ExpandPointedToStructures,
3416                                            bool ExpandStructures,
3417                                            const FieldDecl *FD,
3418                                            bool OutermostType,
3419                                            bool EncodingProperty) {
3420  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3421    if (FD && FD->isBitField())
3422      return EncodeBitField(this, S, FD);
3423    char encoding;
3424    switch (BT->getKind()) {
3425    default: assert(0 && "Unhandled builtin type kind");
3426    case BuiltinType::Void:       encoding = 'v'; break;
3427    case BuiltinType::Bool:       encoding = 'B'; break;
3428    case BuiltinType::Char_U:
3429    case BuiltinType::UChar:      encoding = 'C'; break;
3430    case BuiltinType::UShort:     encoding = 'S'; break;
3431    case BuiltinType::UInt:       encoding = 'I'; break;
3432    case BuiltinType::ULong:
3433        encoding =
3434          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3435        break;
3436    case BuiltinType::UInt128:    encoding = 'T'; break;
3437    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3438    case BuiltinType::Char_S:
3439    case BuiltinType::SChar:      encoding = 'c'; break;
3440    case BuiltinType::Short:      encoding = 's'; break;
3441    case BuiltinType::Int:        encoding = 'i'; break;
3442    case BuiltinType::Long:
3443      encoding =
3444        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3445      break;
3446    case BuiltinType::LongLong:   encoding = 'q'; break;
3447    case BuiltinType::Int128:     encoding = 't'; break;
3448    case BuiltinType::Float:      encoding = 'f'; break;
3449    case BuiltinType::Double:     encoding = 'd'; break;
3450    case BuiltinType::LongDouble: encoding = 'd'; break;
3451    }
3452
3453    S += encoding;
3454    return;
3455  }
3456
3457  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3458    S += 'j';
3459    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3460                               false);
3461    return;
3462  }
3463
3464  // encoding for pointer or r3eference types.
3465  QualType PointeeTy;
3466  if (const PointerType *PT = T->getAs<PointerType>()) {
3467    if (PT->isObjCSelType()) {
3468      S += ':';
3469      return;
3470    }
3471    PointeeTy = PT->getPointeeType();
3472  }
3473  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3474    PointeeTy = RT->getPointeeType();
3475  if (!PointeeTy.isNull()) {
3476    bool isReadOnly = false;
3477    // For historical/compatibility reasons, the read-only qualifier of the
3478    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3479    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3480    // Also, do not emit the 'r' for anything but the outermost type!
3481    if (isa<TypedefType>(T.getTypePtr())) {
3482      if (OutermostType && T.isConstQualified()) {
3483        isReadOnly = true;
3484        S += 'r';
3485      }
3486    } else if (OutermostType) {
3487      QualType P = PointeeTy;
3488      while (P->getAs<PointerType>())
3489        P = P->getAs<PointerType>()->getPointeeType();
3490      if (P.isConstQualified()) {
3491        isReadOnly = true;
3492        S += 'r';
3493      }
3494    }
3495    if (isReadOnly) {
3496      // Another legacy compatibility encoding. Some ObjC qualifier and type
3497      // combinations need to be rearranged.
3498      // Rewrite "in const" from "nr" to "rn"
3499      if (llvm::StringRef(S).endswith("nr"))
3500        S.replace(S.end()-2, S.end(), "rn");
3501    }
3502
3503    if (PointeeTy->isCharType()) {
3504      // char pointer types should be encoded as '*' unless it is a
3505      // type that has been typedef'd to 'BOOL'.
3506      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3507        S += '*';
3508        return;
3509      }
3510    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3511      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3512      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3513        S += '#';
3514        return;
3515      }
3516      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3517      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3518        S += '@';
3519        return;
3520      }
3521      // fall through...
3522    }
3523    S += '^';
3524    getLegacyIntegralTypeEncoding(PointeeTy);
3525
3526    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3527                               NULL);
3528    return;
3529  }
3530
3531  if (const ArrayType *AT =
3532      // Ignore type qualifiers etc.
3533        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3534    if (isa<IncompleteArrayType>(AT)) {
3535      // Incomplete arrays are encoded as a pointer to the array element.
3536      S += '^';
3537
3538      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3539                                 false, ExpandStructures, FD);
3540    } else {
3541      S += '[';
3542
3543      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3544        S += llvm::utostr(CAT->getSize().getZExtValue());
3545      else {
3546        //Variable length arrays are encoded as a regular array with 0 elements.
3547        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3548        S += '0';
3549      }
3550
3551      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3552                                 false, ExpandStructures, FD);
3553      S += ']';
3554    }
3555    return;
3556  }
3557
3558  if (T->getAs<FunctionType>()) {
3559    S += '?';
3560    return;
3561  }
3562
3563  if (const RecordType *RTy = T->getAs<RecordType>()) {
3564    RecordDecl *RDecl = RTy->getDecl();
3565    S += RDecl->isUnion() ? '(' : '{';
3566    // Anonymous structures print as '?'
3567    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3568      S += II->getName();
3569      if (ClassTemplateSpecializationDecl *Spec
3570          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
3571        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3572        std::string TemplateArgsStr
3573          = TemplateSpecializationType::PrintTemplateArgumentList(
3574                                            TemplateArgs.getFlatArgumentList(),
3575                                            TemplateArgs.flat_size(),
3576                                            (*this).PrintingPolicy);
3577
3578        S += TemplateArgsStr;
3579      }
3580    } else {
3581      S += '?';
3582    }
3583    if (ExpandStructures) {
3584      S += '=';
3585      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3586                                   FieldEnd = RDecl->field_end();
3587           Field != FieldEnd; ++Field) {
3588        if (FD) {
3589          S += '"';
3590          S += Field->getNameAsString();
3591          S += '"';
3592        }
3593
3594        // Special case bit-fields.
3595        if (Field->isBitField()) {
3596          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3597                                     (*Field));
3598        } else {
3599          QualType qt = Field->getType();
3600          getLegacyIntegralTypeEncoding(qt);
3601          getObjCEncodingForTypeImpl(qt, S, false, true,
3602                                     FD);
3603        }
3604      }
3605    }
3606    S += RDecl->isUnion() ? ')' : '}';
3607    return;
3608  }
3609
3610  if (T->isEnumeralType()) {
3611    if (FD && FD->isBitField())
3612      EncodeBitField(this, S, FD);
3613    else
3614      S += 'i';
3615    return;
3616  }
3617
3618  if (T->isBlockPointerType()) {
3619    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3620    return;
3621  }
3622
3623  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3624    // @encode(class_name)
3625    ObjCInterfaceDecl *OI = OIT->getDecl();
3626    S += '{';
3627    const IdentifierInfo *II = OI->getIdentifier();
3628    S += II->getName();
3629    S += '=';
3630    llvm::SmallVector<FieldDecl*, 32> RecFields;
3631    CollectObjCIvars(OI, RecFields);
3632    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3633      if (RecFields[i]->isBitField())
3634        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3635                                   RecFields[i]);
3636      else
3637        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3638                                   FD);
3639    }
3640    S += '}';
3641    return;
3642  }
3643
3644  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3645    if (OPT->isObjCIdType()) {
3646      S += '@';
3647      return;
3648    }
3649
3650    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3651      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3652      // Since this is a binary compatibility issue, need to consult with runtime
3653      // folks. Fortunately, this is a *very* obsure construct.
3654      S += '#';
3655      return;
3656    }
3657
3658    if (OPT->isObjCQualifiedIdType()) {
3659      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3660                                 ExpandPointedToStructures,
3661                                 ExpandStructures, FD);
3662      if (FD || EncodingProperty) {
3663        // Note that we do extended encoding of protocol qualifer list
3664        // Only when doing ivar or property encoding.
3665        S += '"';
3666        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3667             E = OPT->qual_end(); I != E; ++I) {
3668          S += '<';
3669          S += (*I)->getNameAsString();
3670          S += '>';
3671        }
3672        S += '"';
3673      }
3674      return;
3675    }
3676
3677    QualType PointeeTy = OPT->getPointeeType();
3678    if (!EncodingProperty &&
3679        isa<TypedefType>(PointeeTy.getTypePtr())) {
3680      // Another historical/compatibility reason.
3681      // We encode the underlying type which comes out as
3682      // {...};
3683      S += '^';
3684      getObjCEncodingForTypeImpl(PointeeTy, S,
3685                                 false, ExpandPointedToStructures,
3686                                 NULL);
3687      return;
3688    }
3689
3690    S += '@';
3691    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3692      S += '"';
3693      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3694      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3695           E = OPT->qual_end(); I != E; ++I) {
3696        S += '<';
3697        S += (*I)->getNameAsString();
3698        S += '>';
3699      }
3700      S += '"';
3701    }
3702    return;
3703  }
3704
3705  assert(0 && "@encode for type not implemented!");
3706}
3707
3708void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3709                                                 std::string& S) const {
3710  if (QT & Decl::OBJC_TQ_In)
3711    S += 'n';
3712  if (QT & Decl::OBJC_TQ_Inout)
3713    S += 'N';
3714  if (QT & Decl::OBJC_TQ_Out)
3715    S += 'o';
3716  if (QT & Decl::OBJC_TQ_Bycopy)
3717    S += 'O';
3718  if (QT & Decl::OBJC_TQ_Byref)
3719    S += 'R';
3720  if (QT & Decl::OBJC_TQ_Oneway)
3721    S += 'V';
3722}
3723
3724void ASTContext::setBuiltinVaListType(QualType T) {
3725  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3726
3727  BuiltinVaListType = T;
3728}
3729
3730void ASTContext::setObjCIdType(QualType T) {
3731  ObjCIdTypedefType = T;
3732}
3733
3734void ASTContext::setObjCSelType(QualType T) {
3735  ObjCSelTypedefType = T;
3736}
3737
3738void ASTContext::setObjCProtoType(QualType QT) {
3739  ObjCProtoType = QT;
3740}
3741
3742void ASTContext::setObjCClassType(QualType T) {
3743  ObjCClassTypedefType = T;
3744}
3745
3746void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3747  assert(ObjCConstantStringType.isNull() &&
3748         "'NSConstantString' type already set!");
3749
3750  ObjCConstantStringType = getObjCInterfaceType(Decl);
3751}
3752
3753/// \brief Retrieve the template name that corresponds to a non-empty
3754/// lookup.
3755TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3756                                                   UnresolvedSetIterator End) {
3757  unsigned size = End - Begin;
3758  assert(size > 1 && "set is not overloaded!");
3759
3760  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3761                          size * sizeof(FunctionTemplateDecl*));
3762  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3763
3764  NamedDecl **Storage = OT->getStorage();
3765  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3766    NamedDecl *D = *I;
3767    assert(isa<FunctionTemplateDecl>(D) ||
3768           (isa<UsingShadowDecl>(D) &&
3769            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3770    *Storage++ = D;
3771  }
3772
3773  return TemplateName(OT);
3774}
3775
3776/// \brief Retrieve the template name that represents a qualified
3777/// template name such as \c std::vector.
3778TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3779                                                  bool TemplateKeyword,
3780                                                  TemplateDecl *Template) {
3781  // FIXME: Canonicalization?
3782  llvm::FoldingSetNodeID ID;
3783  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3784
3785  void *InsertPos = 0;
3786  QualifiedTemplateName *QTN =
3787    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3788  if (!QTN) {
3789    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3790    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3791  }
3792
3793  return TemplateName(QTN);
3794}
3795
3796/// \brief Retrieve the template name that represents a dependent
3797/// template name such as \c MetaFun::template apply.
3798TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3799                                                  const IdentifierInfo *Name) {
3800  assert((!NNS || NNS->isDependent()) &&
3801         "Nested name specifier must be dependent");
3802
3803  llvm::FoldingSetNodeID ID;
3804  DependentTemplateName::Profile(ID, NNS, Name);
3805
3806  void *InsertPos = 0;
3807  DependentTemplateName *QTN =
3808    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3809
3810  if (QTN)
3811    return TemplateName(QTN);
3812
3813  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3814  if (CanonNNS == NNS) {
3815    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3816  } else {
3817    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3818    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3819    DependentTemplateName *CheckQTN =
3820      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3821    assert(!CheckQTN && "Dependent type name canonicalization broken");
3822    (void)CheckQTN;
3823  }
3824
3825  DependentTemplateNames.InsertNode(QTN, InsertPos);
3826  return TemplateName(QTN);
3827}
3828
3829/// \brief Retrieve the template name that represents a dependent
3830/// template name such as \c MetaFun::template operator+.
3831TemplateName
3832ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3833                                     OverloadedOperatorKind Operator) {
3834  assert((!NNS || NNS->isDependent()) &&
3835         "Nested name specifier must be dependent");
3836
3837  llvm::FoldingSetNodeID ID;
3838  DependentTemplateName::Profile(ID, NNS, Operator);
3839
3840  void *InsertPos = 0;
3841  DependentTemplateName *QTN
3842    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3843
3844  if (QTN)
3845    return TemplateName(QTN);
3846
3847  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3848  if (CanonNNS == NNS) {
3849    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3850  } else {
3851    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3852    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3853
3854    DependentTemplateName *CheckQTN
3855      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3856    assert(!CheckQTN && "Dependent template name canonicalization broken");
3857    (void)CheckQTN;
3858  }
3859
3860  DependentTemplateNames.InsertNode(QTN, InsertPos);
3861  return TemplateName(QTN);
3862}
3863
3864/// getFromTargetType - Given one of the integer types provided by
3865/// TargetInfo, produce the corresponding type. The unsigned @p Type
3866/// is actually a value of type @c TargetInfo::IntType.
3867CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3868  switch (Type) {
3869  case TargetInfo::NoInt: return CanQualType();
3870  case TargetInfo::SignedShort: return ShortTy;
3871  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3872  case TargetInfo::SignedInt: return IntTy;
3873  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3874  case TargetInfo::SignedLong: return LongTy;
3875  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3876  case TargetInfo::SignedLongLong: return LongLongTy;
3877  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3878  }
3879
3880  assert(false && "Unhandled TargetInfo::IntType value");
3881  return CanQualType();
3882}
3883
3884//===----------------------------------------------------------------------===//
3885//                        Type Predicates.
3886//===----------------------------------------------------------------------===//
3887
3888/// isObjCNSObjectType - Return true if this is an NSObject object using
3889/// NSObject attribute on a c-style pointer type.
3890/// FIXME - Make it work directly on types.
3891/// FIXME: Move to Type.
3892///
3893bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3894  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3895    if (TypedefDecl *TD = TDT->getDecl())
3896      if (TD->getAttr<ObjCNSObjectAttr>())
3897        return true;
3898  }
3899  return false;
3900}
3901
3902/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3903/// garbage collection attribute.
3904///
3905Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3906  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3907  if (getLangOptions().ObjC1 &&
3908      getLangOptions().getGCMode() != LangOptions::NonGC) {
3909    GCAttrs = Ty.getObjCGCAttr();
3910    // Default behavious under objective-c's gc is for objective-c pointers
3911    // (or pointers to them) be treated as though they were declared
3912    // as __strong.
3913    if (GCAttrs == Qualifiers::GCNone) {
3914      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3915        GCAttrs = Qualifiers::Strong;
3916      else if (Ty->isPointerType())
3917        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3918    }
3919    // Non-pointers have none gc'able attribute regardless of the attribute
3920    // set on them.
3921    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3922      return Qualifiers::GCNone;
3923  }
3924  return GCAttrs;
3925}
3926
3927//===----------------------------------------------------------------------===//
3928//                        Type Compatibility Testing
3929//===----------------------------------------------------------------------===//
3930
3931/// areCompatVectorTypes - Return true if the two specified vector types are
3932/// compatible.
3933static bool areCompatVectorTypes(const VectorType *LHS,
3934                                 const VectorType *RHS) {
3935  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3936  return LHS->getElementType() == RHS->getElementType() &&
3937         LHS->getNumElements() == RHS->getNumElements();
3938}
3939
3940//===----------------------------------------------------------------------===//
3941// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3942//===----------------------------------------------------------------------===//
3943
3944/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3945/// inheritance hierarchy of 'rProto'.
3946bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3947                                                ObjCProtocolDecl *rProto) {
3948  if (lProto == rProto)
3949    return true;
3950  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3951       E = rProto->protocol_end(); PI != E; ++PI)
3952    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3953      return true;
3954  return false;
3955}
3956
3957/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3958/// return true if lhs's protocols conform to rhs's protocol; false
3959/// otherwise.
3960bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3961  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3962    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3963  return false;
3964}
3965
3966/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3967/// ObjCQualifiedIDType.
3968bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3969                                                   bool compare) {
3970  // Allow id<P..> and an 'id' or void* type in all cases.
3971  if (lhs->isVoidPointerType() ||
3972      lhs->isObjCIdType() || lhs->isObjCClassType())
3973    return true;
3974  else if (rhs->isVoidPointerType() ||
3975           rhs->isObjCIdType() || rhs->isObjCClassType())
3976    return true;
3977
3978  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3979    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
3980
3981    if (!rhsOPT) return false;
3982
3983    if (rhsOPT->qual_empty()) {
3984      // If the RHS is a unqualified interface pointer "NSString*",
3985      // make sure we check the class hierarchy.
3986      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3987        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3988             E = lhsQID->qual_end(); I != E; ++I) {
3989          // when comparing an id<P> on lhs with a static type on rhs,
3990          // see if static class implements all of id's protocols, directly or
3991          // through its super class and categories.
3992          if (!rhsID->ClassImplementsProtocol(*I, true))
3993            return false;
3994        }
3995      }
3996      // If there are no qualifiers and no interface, we have an 'id'.
3997      return true;
3998    }
3999    // Both the right and left sides have qualifiers.
4000    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4001         E = lhsQID->qual_end(); I != E; ++I) {
4002      ObjCProtocolDecl *lhsProto = *I;
4003      bool match = false;
4004
4005      // when comparing an id<P> on lhs with a static type on rhs,
4006      // see if static class implements all of id's protocols, directly or
4007      // through its super class and categories.
4008      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4009           E = rhsOPT->qual_end(); J != E; ++J) {
4010        ObjCProtocolDecl *rhsProto = *J;
4011        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4012            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4013          match = true;
4014          break;
4015        }
4016      }
4017      // If the RHS is a qualified interface pointer "NSString<P>*",
4018      // make sure we check the class hierarchy.
4019      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4020        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4021             E = lhsQID->qual_end(); I != E; ++I) {
4022          // when comparing an id<P> on lhs with a static type on rhs,
4023          // see if static class implements all of id's protocols, directly or
4024          // through its super class and categories.
4025          if (rhsID->ClassImplementsProtocol(*I, true)) {
4026            match = true;
4027            break;
4028          }
4029        }
4030      }
4031      if (!match)
4032        return false;
4033    }
4034
4035    return true;
4036  }
4037
4038  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4039  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4040
4041  if (const ObjCObjectPointerType *lhsOPT =
4042        lhs->getAsObjCInterfacePointerType()) {
4043    if (lhsOPT->qual_empty()) {
4044      bool match = false;
4045      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4046        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4047             E = rhsQID->qual_end(); I != E; ++I) {
4048          // when comparing an id<P> on lhs with a static type on rhs,
4049          // see if static class implements all of id's protocols, directly or
4050          // through its super class and categories.
4051          if (lhsID->ClassImplementsProtocol(*I, true)) {
4052            match = true;
4053            break;
4054          }
4055        }
4056        if (!match)
4057          return false;
4058      }
4059      return true;
4060    }
4061    // Both the right and left sides have qualifiers.
4062    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4063         E = lhsOPT->qual_end(); I != E; ++I) {
4064      ObjCProtocolDecl *lhsProto = *I;
4065      bool match = false;
4066
4067      // when comparing an id<P> on lhs with a static type on rhs,
4068      // see if static class implements all of id's protocols, directly or
4069      // through its super class and categories.
4070      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4071           E = rhsQID->qual_end(); J != E; ++J) {
4072        ObjCProtocolDecl *rhsProto = *J;
4073        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4074            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4075          match = true;
4076          break;
4077        }
4078      }
4079      if (!match)
4080        return false;
4081    }
4082    return true;
4083  }
4084  return false;
4085}
4086
4087/// canAssignObjCInterfaces - Return true if the two interface types are
4088/// compatible for assignment from RHS to LHS.  This handles validation of any
4089/// protocol qualifiers on the LHS or RHS.
4090///
4091bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4092                                         const ObjCObjectPointerType *RHSOPT) {
4093  // If either type represents the built-in 'id' or 'Class' types, return true.
4094  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
4095    return true;
4096
4097  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4098    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4099                                             QualType(RHSOPT,0),
4100                                             false);
4101
4102  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4103  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4104  if (LHS && RHS) // We have 2 user-defined types.
4105    return canAssignObjCInterfaces(LHS, RHS);
4106
4107  return false;
4108}
4109
4110/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4111/// for providing type-safty for objective-c pointers used to pass/return
4112/// arguments in block literals. When passed as arguments, passing 'A*' where
4113/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4114/// not OK. For the return type, the opposite is not OK.
4115bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4116                                         const ObjCObjectPointerType *LHSOPT,
4117                                         const ObjCObjectPointerType *RHSOPT) {
4118  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4119    return true;
4120
4121  if (LHSOPT->isObjCBuiltinType()) {
4122    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4123  }
4124
4125  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4126    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4127                                             QualType(RHSOPT,0),
4128                                             false);
4129
4130  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4131  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4132  if (LHS && RHS)  { // We have 2 user-defined types.
4133    if (LHS != RHS) {
4134      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4135        return false;
4136      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4137        return true;
4138    }
4139    else
4140      return true;
4141  }
4142  return false;
4143}
4144
4145/// getIntersectionOfProtocols - This routine finds the intersection of set
4146/// of protocols inherited from two distinct objective-c pointer objects.
4147/// It is used to build composite qualifier list of the composite type of
4148/// the conditional expression involving two objective-c pointer objects.
4149static
4150void getIntersectionOfProtocols(ASTContext &Context,
4151                                const ObjCObjectPointerType *LHSOPT,
4152                                const ObjCObjectPointerType *RHSOPT,
4153      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4154
4155  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4156  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4157
4158  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4159  unsigned LHSNumProtocols = LHS->getNumProtocols();
4160  if (LHSNumProtocols > 0)
4161    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4162  else {
4163    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4164    Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4165    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4166                                LHSInheritedProtocols.end());
4167  }
4168
4169  unsigned RHSNumProtocols = RHS->getNumProtocols();
4170  if (RHSNumProtocols > 0) {
4171    ObjCProtocolDecl **RHSProtocols =
4172      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4173    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4174      if (InheritedProtocolSet.count(RHSProtocols[i]))
4175        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4176  }
4177  else {
4178    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4179    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4180    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4181         RHSInheritedProtocols.begin(),
4182         E = RHSInheritedProtocols.end(); I != E; ++I)
4183      if (InheritedProtocolSet.count((*I)))
4184        IntersectionOfProtocols.push_back((*I));
4185  }
4186}
4187
4188/// areCommonBaseCompatible - Returns common base class of the two classes if
4189/// one found. Note that this is O'2 algorithm. But it will be called as the
4190/// last type comparison in a ?-exp of ObjC pointer types before a
4191/// warning is issued. So, its invokation is extremely rare.
4192QualType ASTContext::areCommonBaseCompatible(
4193                                          const ObjCObjectPointerType *LHSOPT,
4194                                          const ObjCObjectPointerType *RHSOPT) {
4195  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4196  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4197  if (!LHS || !RHS)
4198    return QualType();
4199
4200  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4201    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4202    LHS = LHSTy->getAs<ObjCInterfaceType>();
4203    if (canAssignObjCInterfaces(LHS, RHS)) {
4204      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4205      getIntersectionOfProtocols(*this,
4206                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4207      if (IntersectionOfProtocols.empty())
4208        LHSTy = getObjCObjectPointerType(LHSTy);
4209      else
4210        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4211                                                IntersectionOfProtocols.size());
4212      return LHSTy;
4213    }
4214  }
4215
4216  return QualType();
4217}
4218
4219bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4220                                         const ObjCInterfaceType *RHS) {
4221  // Verify that the base decls are compatible: the RHS must be a subclass of
4222  // the LHS.
4223  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4224    return false;
4225
4226  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4227  // protocol qualified at all, then we are good.
4228  if (LHS->getNumProtocols() == 0)
4229    return true;
4230
4231  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4232  // isn't a superset.
4233  if (RHS->getNumProtocols() == 0)
4234    return true;  // FIXME: should return false!
4235
4236  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4237                                        LHSPE = LHS->qual_end();
4238       LHSPI != LHSPE; LHSPI++) {
4239    bool RHSImplementsProtocol = false;
4240
4241    // If the RHS doesn't implement the protocol on the left, the types
4242    // are incompatible.
4243    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4244                                          RHSPE = RHS->qual_end();
4245         RHSPI != RHSPE; RHSPI++) {
4246      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4247        RHSImplementsProtocol = true;
4248        break;
4249      }
4250    }
4251    // FIXME: For better diagnostics, consider passing back the protocol name.
4252    if (!RHSImplementsProtocol)
4253      return false;
4254  }
4255  // The RHS implements all protocols listed on the LHS.
4256  return true;
4257}
4258
4259bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4260  // get the "pointed to" types
4261  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4262  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4263
4264  if (!LHSOPT || !RHSOPT)
4265    return false;
4266
4267  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4268         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4269}
4270
4271/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4272/// both shall have the identically qualified version of a compatible type.
4273/// C99 6.2.7p1: Two types have compatible types if their types are the
4274/// same. See 6.7.[2,3,5] for additional rules.
4275bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4276  if (getLangOptions().CPlusPlus)
4277    return hasSameType(LHS, RHS);
4278
4279  return !mergeTypes(LHS, RHS).isNull();
4280}
4281
4282bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4283  return !mergeTypes(LHS, RHS, true).isNull();
4284}
4285
4286QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4287                                        bool OfBlockPointer) {
4288  const FunctionType *lbase = lhs->getAs<FunctionType>();
4289  const FunctionType *rbase = rhs->getAs<FunctionType>();
4290  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4291  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4292  bool allLTypes = true;
4293  bool allRTypes = true;
4294
4295  // Check return type
4296  QualType retType;
4297  if (OfBlockPointer)
4298    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true);
4299  else
4300   retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4301  if (retType.isNull()) return QualType();
4302  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4303    allLTypes = false;
4304  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4305    allRTypes = false;
4306  // FIXME: double check this
4307  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4308  //                           rbase->getRegParmAttr() != 0 &&
4309  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4310  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4311  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4312  unsigned RegParm = lbaseInfo.getRegParm() == 0 ? rbaseInfo.getRegParm() :
4313      lbaseInfo.getRegParm();
4314  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4315  if (NoReturn != lbaseInfo.getNoReturn() ||
4316      RegParm != lbaseInfo.getRegParm())
4317    allLTypes = false;
4318  if (NoReturn != rbaseInfo.getNoReturn() ||
4319      RegParm != rbaseInfo.getRegParm())
4320    allRTypes = false;
4321  CallingConv lcc = lbaseInfo.getCC();
4322  CallingConv rcc = rbaseInfo.getCC();
4323  // Compatible functions must have compatible calling conventions
4324  if (!isSameCallConv(lcc, rcc))
4325    return QualType();
4326
4327  if (lproto && rproto) { // two C99 style function prototypes
4328    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4329           "C++ shouldn't be here");
4330    unsigned lproto_nargs = lproto->getNumArgs();
4331    unsigned rproto_nargs = rproto->getNumArgs();
4332
4333    // Compatible functions must have the same number of arguments
4334    if (lproto_nargs != rproto_nargs)
4335      return QualType();
4336
4337    // Variadic and non-variadic functions aren't compatible
4338    if (lproto->isVariadic() != rproto->isVariadic())
4339      return QualType();
4340
4341    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4342      return QualType();
4343
4344    // Check argument compatibility
4345    llvm::SmallVector<QualType, 10> types;
4346    for (unsigned i = 0; i < lproto_nargs; i++) {
4347      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4348      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4349      QualType argtype = mergeTypes(largtype, rargtype, OfBlockPointer);
4350      if (argtype.isNull()) return QualType();
4351      types.push_back(argtype);
4352      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4353        allLTypes = false;
4354      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4355        allRTypes = false;
4356    }
4357    if (allLTypes) return lhs;
4358    if (allRTypes) return rhs;
4359    return getFunctionType(retType, types.begin(), types.size(),
4360                           lproto->isVariadic(), lproto->getTypeQuals(),
4361                           false, false, 0, 0,
4362                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4363  }
4364
4365  if (lproto) allRTypes = false;
4366  if (rproto) allLTypes = false;
4367
4368  const FunctionProtoType *proto = lproto ? lproto : rproto;
4369  if (proto) {
4370    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4371    if (proto->isVariadic()) return QualType();
4372    // Check that the types are compatible with the types that
4373    // would result from default argument promotions (C99 6.7.5.3p15).
4374    // The only types actually affected are promotable integer
4375    // types and floats, which would be passed as a different
4376    // type depending on whether the prototype is visible.
4377    unsigned proto_nargs = proto->getNumArgs();
4378    for (unsigned i = 0; i < proto_nargs; ++i) {
4379      QualType argTy = proto->getArgType(i);
4380
4381      // Look at the promotion type of enum types, since that is the type used
4382      // to pass enum values.
4383      if (const EnumType *Enum = argTy->getAs<EnumType>())
4384        argTy = Enum->getDecl()->getPromotionType();
4385
4386      if (argTy->isPromotableIntegerType() ||
4387          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4388        return QualType();
4389    }
4390
4391    if (allLTypes) return lhs;
4392    if (allRTypes) return rhs;
4393    return getFunctionType(retType, proto->arg_type_begin(),
4394                           proto->getNumArgs(), proto->isVariadic(),
4395                           proto->getTypeQuals(),
4396                           false, false, 0, 0,
4397                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4398  }
4399
4400  if (allLTypes) return lhs;
4401  if (allRTypes) return rhs;
4402  FunctionType::ExtInfo Info(NoReturn, RegParm, lcc);
4403  return getFunctionNoProtoType(retType, Info);
4404}
4405
4406QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
4407                                bool OfBlockPointer) {
4408  // C++ [expr]: If an expression initially has the type "reference to T", the
4409  // type is adjusted to "T" prior to any further analysis, the expression
4410  // designates the object or function denoted by the reference, and the
4411  // expression is an lvalue unless the reference is an rvalue reference and
4412  // the expression is a function call (possibly inside parentheses).
4413  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4414  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4415
4416  QualType LHSCan = getCanonicalType(LHS),
4417           RHSCan = getCanonicalType(RHS);
4418
4419  // If two types are identical, they are compatible.
4420  if (LHSCan == RHSCan)
4421    return LHS;
4422
4423  // If the qualifiers are different, the types aren't compatible... mostly.
4424  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4425  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4426  if (LQuals != RQuals) {
4427    // If any of these qualifiers are different, we have a type
4428    // mismatch.
4429    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4430        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4431      return QualType();
4432
4433    // Exactly one GC qualifier difference is allowed: __strong is
4434    // okay if the other type has no GC qualifier but is an Objective
4435    // C object pointer (i.e. implicitly strong by default).  We fix
4436    // this by pretending that the unqualified type was actually
4437    // qualified __strong.
4438    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4439    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4440    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4441
4442    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4443      return QualType();
4444
4445    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4446      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4447    }
4448    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4449      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4450    }
4451    return QualType();
4452  }
4453
4454  // Okay, qualifiers are equal.
4455
4456  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4457  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4458
4459  // We want to consider the two function types to be the same for these
4460  // comparisons, just force one to the other.
4461  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4462  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4463
4464  // Same as above for arrays
4465  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4466    LHSClass = Type::ConstantArray;
4467  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4468    RHSClass = Type::ConstantArray;
4469
4470  // Canonicalize ExtVector -> Vector.
4471  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4472  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4473
4474  // If the canonical type classes don't match.
4475  if (LHSClass != RHSClass) {
4476    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4477    // a signed integer type, or an unsigned integer type.
4478    // Compatibility is based on the underlying type, not the promotion
4479    // type.
4480    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4481      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4482        return RHS;
4483    }
4484    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4485      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4486        return LHS;
4487    }
4488
4489    return QualType();
4490  }
4491
4492  // The canonical type classes match.
4493  switch (LHSClass) {
4494#define TYPE(Class, Base)
4495#define ABSTRACT_TYPE(Class, Base)
4496#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
4497#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4498#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4499#include "clang/AST/TypeNodes.def"
4500    assert(false && "Non-canonical and dependent types shouldn't get here");
4501    return QualType();
4502
4503  case Type::LValueReference:
4504  case Type::RValueReference:
4505  case Type::MemberPointer:
4506    assert(false && "C++ should never be in mergeTypes");
4507    return QualType();
4508
4509  case Type::IncompleteArray:
4510  case Type::VariableArray:
4511  case Type::FunctionProto:
4512  case Type::ExtVector:
4513    assert(false && "Types are eliminated above");
4514    return QualType();
4515
4516  case Type::Pointer:
4517  {
4518    // Merge two pointer types, while trying to preserve typedef info
4519    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4520    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4521    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4522    if (ResultType.isNull()) return QualType();
4523    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4524      return LHS;
4525    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4526      return RHS;
4527    return getPointerType(ResultType);
4528  }
4529  case Type::BlockPointer:
4530  {
4531    // Merge two block pointer types, while trying to preserve typedef info
4532    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4533    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4534    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer);
4535    if (ResultType.isNull()) return QualType();
4536    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4537      return LHS;
4538    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4539      return RHS;
4540    return getBlockPointerType(ResultType);
4541  }
4542  case Type::ConstantArray:
4543  {
4544    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4545    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4546    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4547      return QualType();
4548
4549    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4550    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4551    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4552    if (ResultType.isNull()) return QualType();
4553    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4554      return LHS;
4555    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4556      return RHS;
4557    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4558                                          ArrayType::ArraySizeModifier(), 0);
4559    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4560                                          ArrayType::ArraySizeModifier(), 0);
4561    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4562    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4563    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4564      return LHS;
4565    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4566      return RHS;
4567    if (LVAT) {
4568      // FIXME: This isn't correct! But tricky to implement because
4569      // the array's size has to be the size of LHS, but the type
4570      // has to be different.
4571      return LHS;
4572    }
4573    if (RVAT) {
4574      // FIXME: This isn't correct! But tricky to implement because
4575      // the array's size has to be the size of RHS, but the type
4576      // has to be different.
4577      return RHS;
4578    }
4579    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4580    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4581    return getIncompleteArrayType(ResultType,
4582                                  ArrayType::ArraySizeModifier(), 0);
4583  }
4584  case Type::FunctionNoProto:
4585    return mergeFunctionTypes(LHS, RHS, OfBlockPointer);
4586  case Type::Record:
4587  case Type::Enum:
4588    return QualType();
4589  case Type::Builtin:
4590    // Only exactly equal builtin types are compatible, which is tested above.
4591    return QualType();
4592  case Type::Complex:
4593    // Distinct complex types are incompatible.
4594    return QualType();
4595  case Type::Vector:
4596    // FIXME: The merged type should be an ExtVector!
4597    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
4598                             RHSCan->getAs<VectorType>()))
4599      return LHS;
4600    return QualType();
4601  case Type::ObjCInterface: {
4602    // Check if the interfaces are assignment compatible.
4603    // FIXME: This should be type compatibility, e.g. whether
4604    // "LHS x; RHS x;" at global scope is legal.
4605    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4606    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4607    if (LHSIface && RHSIface &&
4608        canAssignObjCInterfaces(LHSIface, RHSIface))
4609      return LHS;
4610
4611    return QualType();
4612  }
4613  case Type::ObjCObjectPointer: {
4614    if (OfBlockPointer) {
4615      if (canAssignObjCInterfacesInBlockPointer(
4616                                          LHS->getAs<ObjCObjectPointerType>(),
4617                                          RHS->getAs<ObjCObjectPointerType>()))
4618      return LHS;
4619      return QualType();
4620    }
4621    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4622                                RHS->getAs<ObjCObjectPointerType>()))
4623      return LHS;
4624
4625    return QualType();
4626    }
4627  }
4628
4629  return QualType();
4630}
4631
4632//===----------------------------------------------------------------------===//
4633//                         Integer Predicates
4634//===----------------------------------------------------------------------===//
4635
4636unsigned ASTContext::getIntWidth(QualType T) {
4637  if (T->isBooleanType())
4638    return 1;
4639  if (EnumType *ET = dyn_cast<EnumType>(T))
4640    T = ET->getDecl()->getIntegerType();
4641  // For builtin types, just use the standard type sizing method
4642  return (unsigned)getTypeSize(T);
4643}
4644
4645QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4646  assert(T->isSignedIntegerType() && "Unexpected type");
4647
4648  // Turn <4 x signed int> -> <4 x unsigned int>
4649  if (const VectorType *VTy = T->getAs<VectorType>())
4650    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4651             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4652
4653  // For enums, we return the unsigned version of the base type.
4654  if (const EnumType *ETy = T->getAs<EnumType>())
4655    T = ETy->getDecl()->getIntegerType();
4656
4657  const BuiltinType *BTy = T->getAs<BuiltinType>();
4658  assert(BTy && "Unexpected signed integer type");
4659  switch (BTy->getKind()) {
4660  case BuiltinType::Char_S:
4661  case BuiltinType::SChar:
4662    return UnsignedCharTy;
4663  case BuiltinType::Short:
4664    return UnsignedShortTy;
4665  case BuiltinType::Int:
4666    return UnsignedIntTy;
4667  case BuiltinType::Long:
4668    return UnsignedLongTy;
4669  case BuiltinType::LongLong:
4670    return UnsignedLongLongTy;
4671  case BuiltinType::Int128:
4672    return UnsignedInt128Ty;
4673  default:
4674    assert(0 && "Unexpected signed integer type");
4675    return QualType();
4676  }
4677}
4678
4679ExternalASTSource::~ExternalASTSource() { }
4680
4681void ExternalASTSource::PrintStats() { }
4682
4683
4684//===----------------------------------------------------------------------===//
4685//                          Builtin Type Computation
4686//===----------------------------------------------------------------------===//
4687
4688/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4689/// pointer over the consumed characters.  This returns the resultant type.
4690static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4691                                  ASTContext::GetBuiltinTypeError &Error,
4692                                  bool AllowTypeModifiers = true) {
4693  // Modifiers.
4694  int HowLong = 0;
4695  bool Signed = false, Unsigned = false;
4696
4697  // Read the modifiers first.
4698  bool Done = false;
4699  while (!Done) {
4700    switch (*Str++) {
4701    default: Done = true; --Str; break;
4702    case 'S':
4703      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4704      assert(!Signed && "Can't use 'S' modifier multiple times!");
4705      Signed = true;
4706      break;
4707    case 'U':
4708      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4709      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4710      Unsigned = true;
4711      break;
4712    case 'L':
4713      assert(HowLong <= 2 && "Can't have LLLL modifier");
4714      ++HowLong;
4715      break;
4716    }
4717  }
4718
4719  QualType Type;
4720
4721  // Read the base type.
4722  switch (*Str++) {
4723  default: assert(0 && "Unknown builtin type letter!");
4724  case 'v':
4725    assert(HowLong == 0 && !Signed && !Unsigned &&
4726           "Bad modifiers used with 'v'!");
4727    Type = Context.VoidTy;
4728    break;
4729  case 'f':
4730    assert(HowLong == 0 && !Signed && !Unsigned &&
4731           "Bad modifiers used with 'f'!");
4732    Type = Context.FloatTy;
4733    break;
4734  case 'd':
4735    assert(HowLong < 2 && !Signed && !Unsigned &&
4736           "Bad modifiers used with 'd'!");
4737    if (HowLong)
4738      Type = Context.LongDoubleTy;
4739    else
4740      Type = Context.DoubleTy;
4741    break;
4742  case 's':
4743    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4744    if (Unsigned)
4745      Type = Context.UnsignedShortTy;
4746    else
4747      Type = Context.ShortTy;
4748    break;
4749  case 'i':
4750    if (HowLong == 3)
4751      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4752    else if (HowLong == 2)
4753      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4754    else if (HowLong == 1)
4755      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4756    else
4757      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4758    break;
4759  case 'c':
4760    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4761    if (Signed)
4762      Type = Context.SignedCharTy;
4763    else if (Unsigned)
4764      Type = Context.UnsignedCharTy;
4765    else
4766      Type = Context.CharTy;
4767    break;
4768  case 'b': // boolean
4769    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4770    Type = Context.BoolTy;
4771    break;
4772  case 'z':  // size_t.
4773    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4774    Type = Context.getSizeType();
4775    break;
4776  case 'F':
4777    Type = Context.getCFConstantStringType();
4778    break;
4779  case 'a':
4780    Type = Context.getBuiltinVaListType();
4781    assert(!Type.isNull() && "builtin va list type not initialized!");
4782    break;
4783  case 'A':
4784    // This is a "reference" to a va_list; however, what exactly
4785    // this means depends on how va_list is defined. There are two
4786    // different kinds of va_list: ones passed by value, and ones
4787    // passed by reference.  An example of a by-value va_list is
4788    // x86, where va_list is a char*. An example of by-ref va_list
4789    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4790    // we want this argument to be a char*&; for x86-64, we want
4791    // it to be a __va_list_tag*.
4792    Type = Context.getBuiltinVaListType();
4793    assert(!Type.isNull() && "builtin va list type not initialized!");
4794    if (Type->isArrayType()) {
4795      Type = Context.getArrayDecayedType(Type);
4796    } else {
4797      Type = Context.getLValueReferenceType(Type);
4798    }
4799    break;
4800  case 'V': {
4801    char *End;
4802    unsigned NumElements = strtoul(Str, &End, 10);
4803    assert(End != Str && "Missing vector size");
4804
4805    Str = End;
4806
4807    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4808    // FIXME: Don't know what to do about AltiVec.
4809    Type = Context.getVectorType(ElementType, NumElements, false, false);
4810    break;
4811  }
4812  case 'X': {
4813    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4814    Type = Context.getComplexType(ElementType);
4815    break;
4816  }
4817  case 'P':
4818    Type = Context.getFILEType();
4819    if (Type.isNull()) {
4820      Error = ASTContext::GE_Missing_stdio;
4821      return QualType();
4822    }
4823    break;
4824  case 'J':
4825    if (Signed)
4826      Type = Context.getsigjmp_bufType();
4827    else
4828      Type = Context.getjmp_bufType();
4829
4830    if (Type.isNull()) {
4831      Error = ASTContext::GE_Missing_setjmp;
4832      return QualType();
4833    }
4834    break;
4835  }
4836
4837  if (!AllowTypeModifiers)
4838    return Type;
4839
4840  Done = false;
4841  while (!Done) {
4842    switch (char c = *Str++) {
4843      default: Done = true; --Str; break;
4844      case '*':
4845      case '&':
4846        {
4847          // Both pointers and references can have their pointee types
4848          // qualified with an address space.
4849          char *End;
4850          unsigned AddrSpace = strtoul(Str, &End, 10);
4851          if (End != Str && AddrSpace != 0) {
4852            Type = Context.getAddrSpaceQualType(Type, AddrSpace);
4853            Str = End;
4854          }
4855        }
4856        if (c == '*')
4857          Type = Context.getPointerType(Type);
4858        else
4859          Type = Context.getLValueReferenceType(Type);
4860        break;
4861      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4862      case 'C':
4863        Type = Type.withConst();
4864        break;
4865      case 'D':
4866        Type = Context.getVolatileType(Type);
4867        break;
4868    }
4869  }
4870
4871  return Type;
4872}
4873
4874/// GetBuiltinType - Return the type for the specified builtin.
4875QualType ASTContext::GetBuiltinType(unsigned id,
4876                                    GetBuiltinTypeError &Error) {
4877  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4878
4879  llvm::SmallVector<QualType, 8> ArgTypes;
4880
4881  Error = GE_None;
4882  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4883  if (Error != GE_None)
4884    return QualType();
4885  while (TypeStr[0] && TypeStr[0] != '.') {
4886    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4887    if (Error != GE_None)
4888      return QualType();
4889
4890    // Do array -> pointer decay.  The builtin should use the decayed type.
4891    if (Ty->isArrayType())
4892      Ty = getArrayDecayedType(Ty);
4893
4894    ArgTypes.push_back(Ty);
4895  }
4896
4897  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4898         "'.' should only occur at end of builtin type list!");
4899
4900  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4901  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4902    return getFunctionNoProtoType(ResType);
4903
4904  // FIXME: Should we create noreturn types?
4905  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4906                         TypeStr[0] == '.', 0, false, false, 0, 0,
4907                         FunctionType::ExtInfo());
4908}
4909
4910QualType
4911ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4912  // Perform the usual unary conversions. We do this early so that
4913  // integral promotions to "int" can allow us to exit early, in the
4914  // lhs == rhs check. Also, for conversion purposes, we ignore any
4915  // qualifiers.  For example, "const float" and "float" are
4916  // equivalent.
4917  if (lhs->isPromotableIntegerType())
4918    lhs = getPromotedIntegerType(lhs);
4919  else
4920    lhs = lhs.getUnqualifiedType();
4921  if (rhs->isPromotableIntegerType())
4922    rhs = getPromotedIntegerType(rhs);
4923  else
4924    rhs = rhs.getUnqualifiedType();
4925
4926  // If both types are identical, no conversion is needed.
4927  if (lhs == rhs)
4928    return lhs;
4929
4930  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4931  // The caller can deal with this (e.g. pointer + int).
4932  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4933    return lhs;
4934
4935  // At this point, we have two different arithmetic types.
4936
4937  // Handle complex types first (C99 6.3.1.8p1).
4938  if (lhs->isComplexType() || rhs->isComplexType()) {
4939    // if we have an integer operand, the result is the complex type.
4940    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4941      // convert the rhs to the lhs complex type.
4942      return lhs;
4943    }
4944    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4945      // convert the lhs to the rhs complex type.
4946      return rhs;
4947    }
4948    // This handles complex/complex, complex/float, or float/complex.
4949    // When both operands are complex, the shorter operand is converted to the
4950    // type of the longer, and that is the type of the result. This corresponds
4951    // to what is done when combining two real floating-point operands.
4952    // The fun begins when size promotion occur across type domains.
4953    // From H&S 6.3.4: When one operand is complex and the other is a real
4954    // floating-point type, the less precise type is converted, within it's
4955    // real or complex domain, to the precision of the other type. For example,
4956    // when combining a "long double" with a "double _Complex", the
4957    // "double _Complex" is promoted to "long double _Complex".
4958    int result = getFloatingTypeOrder(lhs, rhs);
4959
4960    if (result > 0) { // The left side is bigger, convert rhs.
4961      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4962    } else if (result < 0) { // The right side is bigger, convert lhs.
4963      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4964    }
4965    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4966    // domains match. This is a requirement for our implementation, C99
4967    // does not require this promotion.
4968    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4969      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4970        return rhs;
4971      } else { // handle "_Complex double, double".
4972        return lhs;
4973      }
4974    }
4975    return lhs; // The domain/size match exactly.
4976  }
4977  // Now handle "real" floating types (i.e. float, double, long double).
4978  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4979    // if we have an integer operand, the result is the real floating type.
4980    if (rhs->isIntegerType()) {
4981      // convert rhs to the lhs floating point type.
4982      return lhs;
4983    }
4984    if (rhs->isComplexIntegerType()) {
4985      // convert rhs to the complex floating point type.
4986      return getComplexType(lhs);
4987    }
4988    if (lhs->isIntegerType()) {
4989      // convert lhs to the rhs floating point type.
4990      return rhs;
4991    }
4992    if (lhs->isComplexIntegerType()) {
4993      // convert lhs to the complex floating point type.
4994      return getComplexType(rhs);
4995    }
4996    // We have two real floating types, float/complex combos were handled above.
4997    // Convert the smaller operand to the bigger result.
4998    int result = getFloatingTypeOrder(lhs, rhs);
4999    if (result > 0) // convert the rhs
5000      return lhs;
5001    assert(result < 0 && "illegal float comparison");
5002    return rhs;   // convert the lhs
5003  }
5004  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5005    // Handle GCC complex int extension.
5006    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5007    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5008
5009    if (lhsComplexInt && rhsComplexInt) {
5010      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5011                              rhsComplexInt->getElementType()) >= 0)
5012        return lhs; // convert the rhs
5013      return rhs;
5014    } else if (lhsComplexInt && rhs->isIntegerType()) {
5015      // convert the rhs to the lhs complex type.
5016      return lhs;
5017    } else if (rhsComplexInt && lhs->isIntegerType()) {
5018      // convert the lhs to the rhs complex type.
5019      return rhs;
5020    }
5021  }
5022  // Finally, we have two differing integer types.
5023  // The rules for this case are in C99 6.3.1.8
5024  int compare = getIntegerTypeOrder(lhs, rhs);
5025  bool lhsSigned = lhs->isSignedIntegerType(),
5026       rhsSigned = rhs->isSignedIntegerType();
5027  QualType destType;
5028  if (lhsSigned == rhsSigned) {
5029    // Same signedness; use the higher-ranked type
5030    destType = compare >= 0 ? lhs : rhs;
5031  } else if (compare != (lhsSigned ? 1 : -1)) {
5032    // The unsigned type has greater than or equal rank to the
5033    // signed type, so use the unsigned type
5034    destType = lhsSigned ? rhs : lhs;
5035  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5036    // The two types are different widths; if we are here, that
5037    // means the signed type is larger than the unsigned type, so
5038    // use the signed type.
5039    destType = lhsSigned ? lhs : rhs;
5040  } else {
5041    // The signed type is higher-ranked than the unsigned type,
5042    // but isn't actually any bigger (like unsigned int and long
5043    // on most 32-bit systems).  Use the unsigned type corresponding
5044    // to the signed type.
5045    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5046  }
5047  return destType;
5048}
5049