ASTContext.cpp revision 48eff6c3512fd6c768072b05ab4c287c7719072b
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const ClassTemplateSpecializationDecl *CTSD =
89          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
90    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
91    if (TSK == TSK_ImplicitInstantiation ||
92        TSK == TSK_Undeclared)
93      return NULL;
94  }
95
96  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
97    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
98      return NULL;
99  }
100  if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
101    // When tag declaration (but not definition!) is part of the
102    // decl-specifier-seq of some other declaration, it doesn't get comment
103    if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
104      return NULL;
105  }
106  // TODO: handle comments for function parameters properly.
107  if (isa<ParmVarDecl>(D))
108    return NULL;
109
110  // TODO: we could look up template parameter documentation in the template
111  // documentation.
112  if (isa<TemplateTypeParmDecl>(D) ||
113      isa<NonTypeTemplateParmDecl>(D) ||
114      isa<TemplateTemplateParmDecl>(D))
115    return NULL;
116
117  ArrayRef<RawComment *> RawComments = Comments.getComments();
118
119  // If there are no comments anywhere, we won't find anything.
120  if (RawComments.empty())
121    return NULL;
122
123  // Find declaration location.
124  // For Objective-C declarations we generally don't expect to have multiple
125  // declarators, thus use declaration starting location as the "declaration
126  // location".
127  // For all other declarations multiple declarators are used quite frequently,
128  // so we use the location of the identifier as the "declaration location".
129  SourceLocation DeclLoc;
130  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
131      isa<ObjCPropertyDecl>(D) ||
132      isa<RedeclarableTemplateDecl>(D) ||
133      isa<ClassTemplateSpecializationDecl>(D))
134    DeclLoc = D->getLocStart();
135  else
136    DeclLoc = D->getLocation();
137
138  // If the declaration doesn't map directly to a location in a file, we
139  // can't find the comment.
140  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
141    return NULL;
142
143  // Find the comment that occurs just after this declaration.
144  ArrayRef<RawComment *>::iterator Comment;
145  {
146    // When searching for comments during parsing, the comment we are looking
147    // for is usually among the last two comments we parsed -- check them
148    // first.
149    RawComment CommentAtDeclLoc(
150        SourceMgr, SourceRange(DeclLoc), false,
151        LangOpts.CommentOpts.ParseAllComments);
152    BeforeThanCompare<RawComment> Compare(SourceMgr);
153    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
154    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
155    if (!Found && RawComments.size() >= 2) {
156      MaybeBeforeDecl--;
157      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
158    }
159
160    if (Found) {
161      Comment = MaybeBeforeDecl + 1;
162      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
163                                         &CommentAtDeclLoc, Compare));
164    } else {
165      // Slow path.
166      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
167                                 &CommentAtDeclLoc, Compare);
168    }
169  }
170
171  // Decompose the location for the declaration and find the beginning of the
172  // file buffer.
173  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
174
175  // First check whether we have a trailing comment.
176  if (Comment != RawComments.end() &&
177      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
178      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
179    std::pair<FileID, unsigned> CommentBeginDecomp
180      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
181    // Check that Doxygen trailing comment comes after the declaration, starts
182    // on the same line and in the same file as the declaration.
183    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
184        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
185          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
186                                     CommentBeginDecomp.second)) {
187      return *Comment;
188    }
189  }
190
191  // The comment just after the declaration was not a trailing comment.
192  // Let's look at the previous comment.
193  if (Comment == RawComments.begin())
194    return NULL;
195  --Comment;
196
197  // Check that we actually have a non-member Doxygen comment.
198  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
199    return NULL;
200
201  // Decompose the end of the comment.
202  std::pair<FileID, unsigned> CommentEndDecomp
203    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
204
205  // If the comment and the declaration aren't in the same file, then they
206  // aren't related.
207  if (DeclLocDecomp.first != CommentEndDecomp.first)
208    return NULL;
209
210  // Get the corresponding buffer.
211  bool Invalid = false;
212  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
213                                               &Invalid).data();
214  if (Invalid)
215    return NULL;
216
217  // Extract text between the comment and declaration.
218  StringRef Text(Buffer + CommentEndDecomp.second,
219                 DeclLocDecomp.second - CommentEndDecomp.second);
220
221  // There should be no other declarations or preprocessor directives between
222  // comment and declaration.
223  if (Text.find_first_of(",;{}#@") != StringRef::npos)
224    return NULL;
225
226  return *Comment;
227}
228
229namespace {
230/// If we have a 'templated' declaration for a template, adjust 'D' to
231/// refer to the actual template.
232/// If we have an implicit instantiation, adjust 'D' to refer to template.
233const Decl *adjustDeclToTemplate(const Decl *D) {
234  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
235    // Is this function declaration part of a function template?
236    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
237      return FTD;
238
239    // Nothing to do if function is not an implicit instantiation.
240    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
241      return D;
242
243    // Function is an implicit instantiation of a function template?
244    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
245      return FTD;
246
247    // Function is instantiated from a member definition of a class template?
248    if (const FunctionDecl *MemberDecl =
249            FD->getInstantiatedFromMemberFunction())
250      return MemberDecl;
251
252    return D;
253  }
254  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
255    // Static data member is instantiated from a member definition of a class
256    // template?
257    if (VD->isStaticDataMember())
258      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
259        return MemberDecl;
260
261    return D;
262  }
263  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
264    // Is this class declaration part of a class template?
265    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
266      return CTD;
267
268    // Class is an implicit instantiation of a class template or partial
269    // specialization?
270    if (const ClassTemplateSpecializationDecl *CTSD =
271            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
272      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
273        return D;
274      llvm::PointerUnion<ClassTemplateDecl *,
275                         ClassTemplatePartialSpecializationDecl *>
276          PU = CTSD->getSpecializedTemplateOrPartial();
277      return PU.is<ClassTemplateDecl*>() ?
278          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
279          static_cast<const Decl*>(
280              PU.get<ClassTemplatePartialSpecializationDecl *>());
281    }
282
283    // Class is instantiated from a member definition of a class template?
284    if (const MemberSpecializationInfo *Info =
285                   CRD->getMemberSpecializationInfo())
286      return Info->getInstantiatedFrom();
287
288    return D;
289  }
290  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
291    // Enum is instantiated from a member definition of a class template?
292    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
293      return MemberDecl;
294
295    return D;
296  }
297  // FIXME: Adjust alias templates?
298  return D;
299}
300} // unnamed namespace
301
302const RawComment *ASTContext::getRawCommentForAnyRedecl(
303                                                const Decl *D,
304                                                const Decl **OriginalDecl) const {
305  D = adjustDeclToTemplate(D);
306
307  // Check whether we have cached a comment for this declaration already.
308  {
309    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
310        RedeclComments.find(D);
311    if (Pos != RedeclComments.end()) {
312      const RawCommentAndCacheFlags &Raw = Pos->second;
313      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
314        if (OriginalDecl)
315          *OriginalDecl = Raw.getOriginalDecl();
316        return Raw.getRaw();
317      }
318    }
319  }
320
321  // Search for comments attached to declarations in the redeclaration chain.
322  const RawComment *RC = NULL;
323  const Decl *OriginalDeclForRC = NULL;
324  for (Decl::redecl_iterator I = D->redecls_begin(),
325                             E = D->redecls_end();
326       I != E; ++I) {
327    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
328        RedeclComments.find(*I);
329    if (Pos != RedeclComments.end()) {
330      const RawCommentAndCacheFlags &Raw = Pos->second;
331      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
332        RC = Raw.getRaw();
333        OriginalDeclForRC = Raw.getOriginalDecl();
334        break;
335      }
336    } else {
337      RC = getRawCommentForDeclNoCache(*I);
338      OriginalDeclForRC = *I;
339      RawCommentAndCacheFlags Raw;
340      if (RC) {
341        Raw.setRaw(RC);
342        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
343      } else
344        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
345      Raw.setOriginalDecl(*I);
346      RedeclComments[*I] = Raw;
347      if (RC)
348        break;
349    }
350  }
351
352  // If we found a comment, it should be a documentation comment.
353  assert(!RC || RC->isDocumentation());
354
355  if (OriginalDecl)
356    *OriginalDecl = OriginalDeclForRC;
357
358  // Update cache for every declaration in the redeclaration chain.
359  RawCommentAndCacheFlags Raw;
360  Raw.setRaw(RC);
361  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
362  Raw.setOriginalDecl(OriginalDeclForRC);
363
364  for (Decl::redecl_iterator I = D->redecls_begin(),
365                             E = D->redecls_end();
366       I != E; ++I) {
367    RawCommentAndCacheFlags &R = RedeclComments[*I];
368    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
369      R = Raw;
370  }
371
372  return RC;
373}
374
375static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
376                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
377  const DeclContext *DC = ObjCMethod->getDeclContext();
378  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
379    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
380    if (!ID)
381      return;
382    // Add redeclared method here.
383    for (ObjCInterfaceDecl::known_extensions_iterator
384           Ext = ID->known_extensions_begin(),
385           ExtEnd = ID->known_extensions_end();
386         Ext != ExtEnd; ++Ext) {
387      if (ObjCMethodDecl *RedeclaredMethod =
388            Ext->getMethod(ObjCMethod->getSelector(),
389                                  ObjCMethod->isInstanceMethod()))
390        Redeclared.push_back(RedeclaredMethod);
391    }
392  }
393}
394
395comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
396                                                    const Decl *D) const {
397  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
398  ThisDeclInfo->CommentDecl = D;
399  ThisDeclInfo->IsFilled = false;
400  ThisDeclInfo->fill();
401  ThisDeclInfo->CommentDecl = FC->getDecl();
402  comments::FullComment *CFC =
403    new (*this) comments::FullComment(FC->getBlocks(),
404                                      ThisDeclInfo);
405  return CFC;
406
407}
408
409comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
410  const RawComment *RC = getRawCommentForDeclNoCache(D);
411  return RC ? RC->parse(*this, 0, D) : 0;
412}
413
414comments::FullComment *ASTContext::getCommentForDecl(
415                                              const Decl *D,
416                                              const Preprocessor *PP) const {
417  if (D->isInvalidDecl())
418    return NULL;
419  D = adjustDeclToTemplate(D);
420
421  const Decl *Canonical = D->getCanonicalDecl();
422  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
423      ParsedComments.find(Canonical);
424
425  if (Pos != ParsedComments.end()) {
426    if (Canonical != D) {
427      comments::FullComment *FC = Pos->second;
428      comments::FullComment *CFC = cloneFullComment(FC, D);
429      return CFC;
430    }
431    return Pos->second;
432  }
433
434  const Decl *OriginalDecl;
435
436  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
437  if (!RC) {
438    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
439      SmallVector<const NamedDecl*, 8> Overridden;
440      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
441      if (OMD && OMD->isPropertyAccessor())
442        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
443          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
444            return cloneFullComment(FC, D);
445      if (OMD)
446        addRedeclaredMethods(OMD, Overridden);
447      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
448      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
449        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
450          return cloneFullComment(FC, D);
451    }
452    else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
453      // Attach any tag type's documentation to its typedef if latter
454      // does not have one of its own.
455      QualType QT = TD->getUnderlyingType();
456      if (const TagType *TT = QT->getAs<TagType>())
457        if (const Decl *TD = TT->getDecl())
458          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
459            return cloneFullComment(FC, D);
460    }
461    else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
462      while (IC->getSuperClass()) {
463        IC = IC->getSuperClass();
464        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
465          return cloneFullComment(FC, D);
466      }
467    }
468    else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
469      if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
470        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
471          return cloneFullComment(FC, D);
472    }
473    else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
474      if (!(RD = RD->getDefinition()))
475        return NULL;
476      // Check non-virtual bases.
477      for (CXXRecordDecl::base_class_const_iterator I =
478           RD->bases_begin(), E = RD->bases_end(); I != E; ++I) {
479        if (I->isVirtual() || (I->getAccessSpecifier() != AS_public))
480          continue;
481        QualType Ty = I->getType();
482        if (Ty.isNull())
483          continue;
484        if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
485          if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
486            continue;
487
488          if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
489            return cloneFullComment(FC, D);
490        }
491      }
492      // Check virtual bases.
493      for (CXXRecordDecl::base_class_const_iterator I =
494           RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) {
495        if (I->getAccessSpecifier() != AS_public)
496          continue;
497        QualType Ty = I->getType();
498        if (Ty.isNull())
499          continue;
500        if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
501          if (!(VirtualBase= VirtualBase->getDefinition()))
502            continue;
503          if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
504            return cloneFullComment(FC, D);
505        }
506      }
507    }
508    return NULL;
509  }
510
511  // If the RawComment was attached to other redeclaration of this Decl, we
512  // should parse the comment in context of that other Decl.  This is important
513  // because comments can contain references to parameter names which can be
514  // different across redeclarations.
515  if (D != OriginalDecl)
516    return getCommentForDecl(OriginalDecl, PP);
517
518  comments::FullComment *FC = RC->parse(*this, PP, D);
519  ParsedComments[Canonical] = FC;
520  return FC;
521}
522
523void
524ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
525                                               TemplateTemplateParmDecl *Parm) {
526  ID.AddInteger(Parm->getDepth());
527  ID.AddInteger(Parm->getPosition());
528  ID.AddBoolean(Parm->isParameterPack());
529
530  TemplateParameterList *Params = Parm->getTemplateParameters();
531  ID.AddInteger(Params->size());
532  for (TemplateParameterList::const_iterator P = Params->begin(),
533                                          PEnd = Params->end();
534       P != PEnd; ++P) {
535    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
536      ID.AddInteger(0);
537      ID.AddBoolean(TTP->isParameterPack());
538      continue;
539    }
540
541    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
542      ID.AddInteger(1);
543      ID.AddBoolean(NTTP->isParameterPack());
544      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
545      if (NTTP->isExpandedParameterPack()) {
546        ID.AddBoolean(true);
547        ID.AddInteger(NTTP->getNumExpansionTypes());
548        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
549          QualType T = NTTP->getExpansionType(I);
550          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
551        }
552      } else
553        ID.AddBoolean(false);
554      continue;
555    }
556
557    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
558    ID.AddInteger(2);
559    Profile(ID, TTP);
560  }
561}
562
563TemplateTemplateParmDecl *
564ASTContext::getCanonicalTemplateTemplateParmDecl(
565                                          TemplateTemplateParmDecl *TTP) const {
566  // Check if we already have a canonical template template parameter.
567  llvm::FoldingSetNodeID ID;
568  CanonicalTemplateTemplateParm::Profile(ID, TTP);
569  void *InsertPos = 0;
570  CanonicalTemplateTemplateParm *Canonical
571    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
572  if (Canonical)
573    return Canonical->getParam();
574
575  // Build a canonical template parameter list.
576  TemplateParameterList *Params = TTP->getTemplateParameters();
577  SmallVector<NamedDecl *, 4> CanonParams;
578  CanonParams.reserve(Params->size());
579  for (TemplateParameterList::const_iterator P = Params->begin(),
580                                          PEnd = Params->end();
581       P != PEnd; ++P) {
582    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
583      CanonParams.push_back(
584                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
585                                               SourceLocation(),
586                                               SourceLocation(),
587                                               TTP->getDepth(),
588                                               TTP->getIndex(), 0, false,
589                                               TTP->isParameterPack()));
590    else if (NonTypeTemplateParmDecl *NTTP
591             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
592      QualType T = getCanonicalType(NTTP->getType());
593      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
594      NonTypeTemplateParmDecl *Param;
595      if (NTTP->isExpandedParameterPack()) {
596        SmallVector<QualType, 2> ExpandedTypes;
597        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
598        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
599          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
600          ExpandedTInfos.push_back(
601                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
602        }
603
604        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
605                                                SourceLocation(),
606                                                SourceLocation(),
607                                                NTTP->getDepth(),
608                                                NTTP->getPosition(), 0,
609                                                T,
610                                                TInfo,
611                                                ExpandedTypes.data(),
612                                                ExpandedTypes.size(),
613                                                ExpandedTInfos.data());
614      } else {
615        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
616                                                SourceLocation(),
617                                                SourceLocation(),
618                                                NTTP->getDepth(),
619                                                NTTP->getPosition(), 0,
620                                                T,
621                                                NTTP->isParameterPack(),
622                                                TInfo);
623      }
624      CanonParams.push_back(Param);
625
626    } else
627      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
628                                           cast<TemplateTemplateParmDecl>(*P)));
629  }
630
631  TemplateTemplateParmDecl *CanonTTP
632    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
633                                       SourceLocation(), TTP->getDepth(),
634                                       TTP->getPosition(),
635                                       TTP->isParameterPack(),
636                                       0,
637                         TemplateParameterList::Create(*this, SourceLocation(),
638                                                       SourceLocation(),
639                                                       CanonParams.data(),
640                                                       CanonParams.size(),
641                                                       SourceLocation()));
642
643  // Get the new insert position for the node we care about.
644  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
645  assert(Canonical == 0 && "Shouldn't be in the map!");
646  (void)Canonical;
647
648  // Create the canonical template template parameter entry.
649  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
650  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
651  return CanonTTP;
652}
653
654CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
655  if (!LangOpts.CPlusPlus) return 0;
656
657  switch (T.getCXXABI().getKind()) {
658  case TargetCXXABI::GenericARM:
659  case TargetCXXABI::iOS:
660    return CreateARMCXXABI(*this);
661  case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
662  case TargetCXXABI::GenericItanium:
663    return CreateItaniumCXXABI(*this);
664  case TargetCXXABI::Microsoft:
665    return CreateMicrosoftCXXABI(*this);
666  }
667  llvm_unreachable("Invalid CXXABI type!");
668}
669
670static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
671                                             const LangOptions &LOpts) {
672  if (LOpts.FakeAddressSpaceMap) {
673    // The fake address space map must have a distinct entry for each
674    // language-specific address space.
675    static const unsigned FakeAddrSpaceMap[] = {
676      1, // opencl_global
677      2, // opencl_local
678      3, // opencl_constant
679      4, // cuda_device
680      5, // cuda_constant
681      6  // cuda_shared
682    };
683    return &FakeAddrSpaceMap;
684  } else {
685    return &T.getAddressSpaceMap();
686  }
687}
688
689ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
690                       const TargetInfo *t,
691                       IdentifierTable &idents, SelectorTable &sels,
692                       Builtin::Context &builtins,
693                       unsigned size_reserve,
694                       bool DelayInitialization)
695  : FunctionProtoTypes(this_()),
696    TemplateSpecializationTypes(this_()),
697    DependentTemplateSpecializationTypes(this_()),
698    SubstTemplateTemplateParmPacks(this_()),
699    GlobalNestedNameSpecifier(0),
700    Int128Decl(0), UInt128Decl(0),
701    BuiltinVaListDecl(0),
702    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
703    BOOLDecl(0),
704    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
705    FILEDecl(0),
706    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
707    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
708    cudaConfigureCallDecl(0),
709    NullTypeSourceInfo(QualType()),
710    FirstLocalImport(), LastLocalImport(),
711    SourceMgr(SM), LangOpts(LOpts),
712    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
713    Idents(idents), Selectors(sels),
714    BuiltinInfo(builtins),
715    DeclarationNames(*this),
716    ExternalSource(0), Listener(0),
717    Comments(SM), CommentsLoaded(false),
718    CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
719    LastSDM(0, 0)
720{
721  if (size_reserve > 0) Types.reserve(size_reserve);
722  TUDecl = TranslationUnitDecl::Create(*this);
723
724  if (!DelayInitialization) {
725    assert(t && "No target supplied for ASTContext initialization");
726    InitBuiltinTypes(*t);
727  }
728}
729
730ASTContext::~ASTContext() {
731  // Release the DenseMaps associated with DeclContext objects.
732  // FIXME: Is this the ideal solution?
733  ReleaseDeclContextMaps();
734
735  // Call all of the deallocation functions on all of their targets.
736  for (DeallocationMap::const_iterator I = Deallocations.begin(),
737           E = Deallocations.end(); I != E; ++I)
738    for (unsigned J = 0, N = I->second.size(); J != N; ++J)
739      (I->first)((I->second)[J]);
740
741  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
742  // because they can contain DenseMaps.
743  for (llvm::DenseMap<const ObjCContainerDecl*,
744       const ASTRecordLayout*>::iterator
745       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
746    // Increment in loop to prevent using deallocated memory.
747    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
748      R->Destroy(*this);
749
750  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
751       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
752    // Increment in loop to prevent using deallocated memory.
753    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
754      R->Destroy(*this);
755  }
756
757  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
758                                                    AEnd = DeclAttrs.end();
759       A != AEnd; ++A)
760    A->second->~AttrVec();
761}
762
763void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
764  Deallocations[Callback].push_back(Data);
765}
766
767void
768ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
769  ExternalSource.reset(Source.take());
770}
771
772void ASTContext::PrintStats() const {
773  llvm::errs() << "\n*** AST Context Stats:\n";
774  llvm::errs() << "  " << Types.size() << " types total.\n";
775
776  unsigned counts[] = {
777#define TYPE(Name, Parent) 0,
778#define ABSTRACT_TYPE(Name, Parent)
779#include "clang/AST/TypeNodes.def"
780    0 // Extra
781  };
782
783  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
784    Type *T = Types[i];
785    counts[(unsigned)T->getTypeClass()]++;
786  }
787
788  unsigned Idx = 0;
789  unsigned TotalBytes = 0;
790#define TYPE(Name, Parent)                                              \
791  if (counts[Idx])                                                      \
792    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
793                 << " types\n";                                         \
794  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
795  ++Idx;
796#define ABSTRACT_TYPE(Name, Parent)
797#include "clang/AST/TypeNodes.def"
798
799  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
800
801  // Implicit special member functions.
802  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
803               << NumImplicitDefaultConstructors
804               << " implicit default constructors created\n";
805  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
806               << NumImplicitCopyConstructors
807               << " implicit copy constructors created\n";
808  if (getLangOpts().CPlusPlus)
809    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
810                 << NumImplicitMoveConstructors
811                 << " implicit move constructors created\n";
812  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
813               << NumImplicitCopyAssignmentOperators
814               << " implicit copy assignment operators created\n";
815  if (getLangOpts().CPlusPlus)
816    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
817                 << NumImplicitMoveAssignmentOperators
818                 << " implicit move assignment operators created\n";
819  llvm::errs() << NumImplicitDestructorsDeclared << "/"
820               << NumImplicitDestructors
821               << " implicit destructors created\n";
822
823  if (ExternalSource.get()) {
824    llvm::errs() << "\n";
825    ExternalSource->PrintStats();
826  }
827
828  BumpAlloc.PrintStats();
829}
830
831TypedefDecl *ASTContext::getInt128Decl() const {
832  if (!Int128Decl) {
833    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
834    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
835                                     getTranslationUnitDecl(),
836                                     SourceLocation(),
837                                     SourceLocation(),
838                                     &Idents.get("__int128_t"),
839                                     TInfo);
840  }
841
842  return Int128Decl;
843}
844
845TypedefDecl *ASTContext::getUInt128Decl() const {
846  if (!UInt128Decl) {
847    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
848    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
849                                     getTranslationUnitDecl(),
850                                     SourceLocation(),
851                                     SourceLocation(),
852                                     &Idents.get("__uint128_t"),
853                                     TInfo);
854  }
855
856  return UInt128Decl;
857}
858
859void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
860  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
861  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
862  Types.push_back(Ty);
863}
864
865void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
866  assert((!this->Target || this->Target == &Target) &&
867         "Incorrect target reinitialization");
868  assert(VoidTy.isNull() && "Context reinitialized?");
869
870  this->Target = &Target;
871
872  ABI.reset(createCXXABI(Target));
873  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
874
875  // C99 6.2.5p19.
876  InitBuiltinType(VoidTy,              BuiltinType::Void);
877
878  // C99 6.2.5p2.
879  InitBuiltinType(BoolTy,              BuiltinType::Bool);
880  // C99 6.2.5p3.
881  if (LangOpts.CharIsSigned)
882    InitBuiltinType(CharTy,            BuiltinType::Char_S);
883  else
884    InitBuiltinType(CharTy,            BuiltinType::Char_U);
885  // C99 6.2.5p4.
886  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
887  InitBuiltinType(ShortTy,             BuiltinType::Short);
888  InitBuiltinType(IntTy,               BuiltinType::Int);
889  InitBuiltinType(LongTy,              BuiltinType::Long);
890  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
891
892  // C99 6.2.5p6.
893  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
894  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
895  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
896  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
897  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
898
899  // C99 6.2.5p10.
900  InitBuiltinType(FloatTy,             BuiltinType::Float);
901  InitBuiltinType(DoubleTy,            BuiltinType::Double);
902  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
903
904  // GNU extension, 128-bit integers.
905  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
906  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
907
908  // C++ 3.9.1p5
909  if (TargetInfo::isTypeSigned(Target.getWCharType()))
910    InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
911  else  // -fshort-wchar makes wchar_t be unsigned.
912    InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
913  if (LangOpts.CPlusPlus && LangOpts.WChar)
914    WideCharTy = WCharTy;
915  else {
916    // C99 (or C++ using -fno-wchar).
917    WideCharTy = getFromTargetType(Target.getWCharType());
918  }
919
920  WIntTy = getFromTargetType(Target.getWIntType());
921
922  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
923    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
924  else // C99
925    Char16Ty = getFromTargetType(Target.getChar16Type());
926
927  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
928    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
929  else // C99
930    Char32Ty = getFromTargetType(Target.getChar32Type());
931
932  // Placeholder type for type-dependent expressions whose type is
933  // completely unknown. No code should ever check a type against
934  // DependentTy and users should never see it; however, it is here to
935  // help diagnose failures to properly check for type-dependent
936  // expressions.
937  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
938
939  // Placeholder type for functions.
940  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
941
942  // Placeholder type for bound members.
943  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
944
945  // Placeholder type for pseudo-objects.
946  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
947
948  // "any" type; useful for debugger-like clients.
949  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
950
951  // Placeholder type for unbridged ARC casts.
952  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
953
954  // Placeholder type for builtin functions.
955  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
956
957  // C99 6.2.5p11.
958  FloatComplexTy      = getComplexType(FloatTy);
959  DoubleComplexTy     = getComplexType(DoubleTy);
960  LongDoubleComplexTy = getComplexType(LongDoubleTy);
961
962  // Builtin types for 'id', 'Class', and 'SEL'.
963  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
964  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
965  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
966
967  if (LangOpts.OpenCL) {
968    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
969    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
970    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
971    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
972    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
973    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
974
975    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
976    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
977  }
978
979  // Builtin type for __objc_yes and __objc_no
980  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
981                       SignedCharTy : BoolTy);
982
983  ObjCConstantStringType = QualType();
984
985  ObjCSuperType = QualType();
986
987  // void * type
988  VoidPtrTy = getPointerType(VoidTy);
989
990  // nullptr type (C++0x 2.14.7)
991  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
992
993  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
994  InitBuiltinType(HalfTy, BuiltinType::Half);
995
996  // Builtin type used to help define __builtin_va_list.
997  VaListTagTy = QualType();
998}
999
1000DiagnosticsEngine &ASTContext::getDiagnostics() const {
1001  return SourceMgr.getDiagnostics();
1002}
1003
1004AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1005  AttrVec *&Result = DeclAttrs[D];
1006  if (!Result) {
1007    void *Mem = Allocate(sizeof(AttrVec));
1008    Result = new (Mem) AttrVec;
1009  }
1010
1011  return *Result;
1012}
1013
1014/// \brief Erase the attributes corresponding to the given declaration.
1015void ASTContext::eraseDeclAttrs(const Decl *D) {
1016  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1017  if (Pos != DeclAttrs.end()) {
1018    Pos->second->~AttrVec();
1019    DeclAttrs.erase(Pos);
1020  }
1021}
1022
1023MemberSpecializationInfo *
1024ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1025  assert(Var->isStaticDataMember() && "Not a static data member");
1026  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
1027    = InstantiatedFromStaticDataMember.find(Var);
1028  if (Pos == InstantiatedFromStaticDataMember.end())
1029    return 0;
1030
1031  return Pos->second;
1032}
1033
1034void
1035ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1036                                                TemplateSpecializationKind TSK,
1037                                          SourceLocation PointOfInstantiation) {
1038  assert(Inst->isStaticDataMember() && "Not a static data member");
1039  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1040  assert(!InstantiatedFromStaticDataMember[Inst] &&
1041         "Already noted what static data member was instantiated from");
1042  InstantiatedFromStaticDataMember[Inst]
1043    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
1044}
1045
1046FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1047                                                     const FunctionDecl *FD){
1048  assert(FD && "Specialization is 0");
1049  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1050    = ClassScopeSpecializationPattern.find(FD);
1051  if (Pos == ClassScopeSpecializationPattern.end())
1052    return 0;
1053
1054  return Pos->second;
1055}
1056
1057void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1058                                        FunctionDecl *Pattern) {
1059  assert(FD && "Specialization is 0");
1060  assert(Pattern && "Class scope specialization pattern is 0");
1061  ClassScopeSpecializationPattern[FD] = Pattern;
1062}
1063
1064NamedDecl *
1065ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1066  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1067    = InstantiatedFromUsingDecl.find(UUD);
1068  if (Pos == InstantiatedFromUsingDecl.end())
1069    return 0;
1070
1071  return Pos->second;
1072}
1073
1074void
1075ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1076  assert((isa<UsingDecl>(Pattern) ||
1077          isa<UnresolvedUsingValueDecl>(Pattern) ||
1078          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1079         "pattern decl is not a using decl");
1080  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1081  InstantiatedFromUsingDecl[Inst] = Pattern;
1082}
1083
1084UsingShadowDecl *
1085ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1086  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1087    = InstantiatedFromUsingShadowDecl.find(Inst);
1088  if (Pos == InstantiatedFromUsingShadowDecl.end())
1089    return 0;
1090
1091  return Pos->second;
1092}
1093
1094void
1095ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1096                                               UsingShadowDecl *Pattern) {
1097  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1098  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1099}
1100
1101FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1102  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1103    = InstantiatedFromUnnamedFieldDecl.find(Field);
1104  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1105    return 0;
1106
1107  return Pos->second;
1108}
1109
1110void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1111                                                     FieldDecl *Tmpl) {
1112  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1113  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1114  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1115         "Already noted what unnamed field was instantiated from");
1116
1117  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1118}
1119
1120bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1121                                    const FieldDecl *LastFD) const {
1122  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1123          FD->getBitWidthValue(*this) == 0);
1124}
1125
1126bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1127                                             const FieldDecl *LastFD) const {
1128  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1129          FD->getBitWidthValue(*this) == 0 &&
1130          LastFD->getBitWidthValue(*this) != 0);
1131}
1132
1133bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1134                                         const FieldDecl *LastFD) const {
1135  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1136          FD->getBitWidthValue(*this) &&
1137          LastFD->getBitWidthValue(*this));
1138}
1139
1140bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1141                                         const FieldDecl *LastFD) const {
1142  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1143          LastFD->getBitWidthValue(*this));
1144}
1145
1146bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1147                                             const FieldDecl *LastFD) const {
1148  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1149          FD->getBitWidthValue(*this));
1150}
1151
1152ASTContext::overridden_cxx_method_iterator
1153ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1154  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1155    = OverriddenMethods.find(Method->getCanonicalDecl());
1156  if (Pos == OverriddenMethods.end())
1157    return 0;
1158
1159  return Pos->second.begin();
1160}
1161
1162ASTContext::overridden_cxx_method_iterator
1163ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1164  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1165    = OverriddenMethods.find(Method->getCanonicalDecl());
1166  if (Pos == OverriddenMethods.end())
1167    return 0;
1168
1169  return Pos->second.end();
1170}
1171
1172unsigned
1173ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1174  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1175    = OverriddenMethods.find(Method->getCanonicalDecl());
1176  if (Pos == OverriddenMethods.end())
1177    return 0;
1178
1179  return Pos->second.size();
1180}
1181
1182void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1183                                     const CXXMethodDecl *Overridden) {
1184  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1185  OverriddenMethods[Method].push_back(Overridden);
1186}
1187
1188void ASTContext::getOverriddenMethods(
1189                      const NamedDecl *D,
1190                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1191  assert(D);
1192
1193  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1194    Overridden.append(overridden_methods_begin(CXXMethod),
1195                      overridden_methods_end(CXXMethod));
1196    return;
1197  }
1198
1199  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1200  if (!Method)
1201    return;
1202
1203  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1204  Method->getOverriddenMethods(OverDecls);
1205  Overridden.append(OverDecls.begin(), OverDecls.end());
1206}
1207
1208void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1209  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1210  assert(!Import->isFromASTFile() && "Non-local import declaration");
1211  if (!FirstLocalImport) {
1212    FirstLocalImport = Import;
1213    LastLocalImport = Import;
1214    return;
1215  }
1216
1217  LastLocalImport->NextLocalImport = Import;
1218  LastLocalImport = Import;
1219}
1220
1221//===----------------------------------------------------------------------===//
1222//                         Type Sizing and Analysis
1223//===----------------------------------------------------------------------===//
1224
1225/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1226/// scalar floating point type.
1227const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1228  const BuiltinType *BT = T->getAs<BuiltinType>();
1229  assert(BT && "Not a floating point type!");
1230  switch (BT->getKind()) {
1231  default: llvm_unreachable("Not a floating point type!");
1232  case BuiltinType::Half:       return Target->getHalfFormat();
1233  case BuiltinType::Float:      return Target->getFloatFormat();
1234  case BuiltinType::Double:     return Target->getDoubleFormat();
1235  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1236  }
1237}
1238
1239/// getDeclAlign - Return a conservative estimate of the alignment of the
1240/// specified decl.  Note that bitfields do not have a valid alignment, so
1241/// this method will assert on them.
1242/// If @p RefAsPointee, references are treated like their underlying type
1243/// (for alignof), else they're treated like pointers (for CodeGen).
1244CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1245  unsigned Align = Target->getCharWidth();
1246
1247  bool UseAlignAttrOnly = false;
1248  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1249    Align = AlignFromAttr;
1250
1251    // __attribute__((aligned)) can increase or decrease alignment
1252    // *except* on a struct or struct member, where it only increases
1253    // alignment unless 'packed' is also specified.
1254    //
1255    // It is an error for alignas to decrease alignment, so we can
1256    // ignore that possibility;  Sema should diagnose it.
1257    if (isa<FieldDecl>(D)) {
1258      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1259        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1260    } else {
1261      UseAlignAttrOnly = true;
1262    }
1263  }
1264  else if (isa<FieldDecl>(D))
1265      UseAlignAttrOnly =
1266        D->hasAttr<PackedAttr>() ||
1267        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1268
1269  // If we're using the align attribute only, just ignore everything
1270  // else about the declaration and its type.
1271  if (UseAlignAttrOnly) {
1272    // do nothing
1273
1274  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1275    QualType T = VD->getType();
1276    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1277      if (RefAsPointee)
1278        T = RT->getPointeeType();
1279      else
1280        T = getPointerType(RT->getPointeeType());
1281    }
1282    if (!T->isIncompleteType() && !T->isFunctionType()) {
1283      // Adjust alignments of declarations with array type by the
1284      // large-array alignment on the target.
1285      unsigned MinWidth = Target->getLargeArrayMinWidth();
1286      const ArrayType *arrayType;
1287      if (MinWidth && (arrayType = getAsArrayType(T))) {
1288        if (isa<VariableArrayType>(arrayType))
1289          Align = std::max(Align, Target->getLargeArrayAlign());
1290        else if (isa<ConstantArrayType>(arrayType) &&
1291                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1292          Align = std::max(Align, Target->getLargeArrayAlign());
1293
1294        // Walk through any array types while we're at it.
1295        T = getBaseElementType(arrayType);
1296      }
1297      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1298      if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1299        if (VD->hasGlobalStorage())
1300          Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1301      }
1302    }
1303
1304    // Fields can be subject to extra alignment constraints, like if
1305    // the field is packed, the struct is packed, or the struct has a
1306    // a max-field-alignment constraint (#pragma pack).  So calculate
1307    // the actual alignment of the field within the struct, and then
1308    // (as we're expected to) constrain that by the alignment of the type.
1309    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1310      // So calculate the alignment of the field.
1311      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1312
1313      // Start with the record's overall alignment.
1314      unsigned fieldAlign = toBits(layout.getAlignment());
1315
1316      // Use the GCD of that and the offset within the record.
1317      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1318      if (offset > 0) {
1319        // Alignment is always a power of 2, so the GCD will be a power of 2,
1320        // which means we get to do this crazy thing instead of Euclid's.
1321        uint64_t lowBitOfOffset = offset & (~offset + 1);
1322        if (lowBitOfOffset < fieldAlign)
1323          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1324      }
1325
1326      Align = std::min(Align, fieldAlign);
1327    }
1328  }
1329
1330  return toCharUnitsFromBits(Align);
1331}
1332
1333// getTypeInfoDataSizeInChars - Return the size of a type, in
1334// chars. If the type is a record, its data size is returned.  This is
1335// the size of the memcpy that's performed when assigning this type
1336// using a trivial copy/move assignment operator.
1337std::pair<CharUnits, CharUnits>
1338ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1339  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1340
1341  // In C++, objects can sometimes be allocated into the tail padding
1342  // of a base-class subobject.  We decide whether that's possible
1343  // during class layout, so here we can just trust the layout results.
1344  if (getLangOpts().CPlusPlus) {
1345    if (const RecordType *RT = T->getAs<RecordType>()) {
1346      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1347      sizeAndAlign.first = layout.getDataSize();
1348    }
1349  }
1350
1351  return sizeAndAlign;
1352}
1353
1354/// getConstantArrayInfoInChars - Performing the computation in CharUnits
1355/// instead of in bits prevents overflowing the uint64_t for some large arrays.
1356std::pair<CharUnits, CharUnits>
1357static getConstantArrayInfoInChars(const ASTContext &Context,
1358                                   const ConstantArrayType *CAT) {
1359  std::pair<CharUnits, CharUnits> EltInfo =
1360      Context.getTypeInfoInChars(CAT->getElementType());
1361  uint64_t Size = CAT->getSize().getZExtValue();
1362  assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1363              (uint64_t)(-1)/Size) &&
1364         "Overflow in array type char size evaluation");
1365  uint64_t Width = EltInfo.first.getQuantity() * Size;
1366  unsigned Align = EltInfo.second.getQuantity();
1367  Width = llvm::RoundUpToAlignment(Width, Align);
1368  return std::make_pair(CharUnits::fromQuantity(Width),
1369                        CharUnits::fromQuantity(Align));
1370}
1371
1372std::pair<CharUnits, CharUnits>
1373ASTContext::getTypeInfoInChars(const Type *T) const {
1374  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1375    return getConstantArrayInfoInChars(*this, CAT);
1376  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1377  return std::make_pair(toCharUnitsFromBits(Info.first),
1378                        toCharUnitsFromBits(Info.second));
1379}
1380
1381std::pair<CharUnits, CharUnits>
1382ASTContext::getTypeInfoInChars(QualType T) const {
1383  return getTypeInfoInChars(T.getTypePtr());
1384}
1385
1386std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1387  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1388  if (it != MemoizedTypeInfo.end())
1389    return it->second;
1390
1391  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1392  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1393  return Info;
1394}
1395
1396/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1397/// method does not work on incomplete types.
1398///
1399/// FIXME: Pointers into different addr spaces could have different sizes and
1400/// alignment requirements: getPointerInfo should take an AddrSpace, this
1401/// should take a QualType, &c.
1402std::pair<uint64_t, unsigned>
1403ASTContext::getTypeInfoImpl(const Type *T) const {
1404  uint64_t Width=0;
1405  unsigned Align=8;
1406  switch (T->getTypeClass()) {
1407#define TYPE(Class, Base)
1408#define ABSTRACT_TYPE(Class, Base)
1409#define NON_CANONICAL_TYPE(Class, Base)
1410#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1411#include "clang/AST/TypeNodes.def"
1412    llvm_unreachable("Should not see dependent types");
1413
1414  case Type::FunctionNoProto:
1415  case Type::FunctionProto:
1416    // GCC extension: alignof(function) = 32 bits
1417    Width = 0;
1418    Align = 32;
1419    break;
1420
1421  case Type::IncompleteArray:
1422  case Type::VariableArray:
1423    Width = 0;
1424    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1425    break;
1426
1427  case Type::ConstantArray: {
1428    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1429
1430    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1431    uint64_t Size = CAT->getSize().getZExtValue();
1432    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1433           "Overflow in array type bit size evaluation");
1434    Width = EltInfo.first*Size;
1435    Align = EltInfo.second;
1436    Width = llvm::RoundUpToAlignment(Width, Align);
1437    break;
1438  }
1439  case Type::ExtVector:
1440  case Type::Vector: {
1441    const VectorType *VT = cast<VectorType>(T);
1442    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1443    Width = EltInfo.first*VT->getNumElements();
1444    Align = Width;
1445    // If the alignment is not a power of 2, round up to the next power of 2.
1446    // This happens for non-power-of-2 length vectors.
1447    if (Align & (Align-1)) {
1448      Align = llvm::NextPowerOf2(Align);
1449      Width = llvm::RoundUpToAlignment(Width, Align);
1450    }
1451    // Adjust the alignment based on the target max.
1452    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1453    if (TargetVectorAlign && TargetVectorAlign < Align)
1454      Align = TargetVectorAlign;
1455    break;
1456  }
1457
1458  case Type::Builtin:
1459    switch (cast<BuiltinType>(T)->getKind()) {
1460    default: llvm_unreachable("Unknown builtin type!");
1461    case BuiltinType::Void:
1462      // GCC extension: alignof(void) = 8 bits.
1463      Width = 0;
1464      Align = 8;
1465      break;
1466
1467    case BuiltinType::Bool:
1468      Width = Target->getBoolWidth();
1469      Align = Target->getBoolAlign();
1470      break;
1471    case BuiltinType::Char_S:
1472    case BuiltinType::Char_U:
1473    case BuiltinType::UChar:
1474    case BuiltinType::SChar:
1475      Width = Target->getCharWidth();
1476      Align = Target->getCharAlign();
1477      break;
1478    case BuiltinType::WChar_S:
1479    case BuiltinType::WChar_U:
1480      Width = Target->getWCharWidth();
1481      Align = Target->getWCharAlign();
1482      break;
1483    case BuiltinType::Char16:
1484      Width = Target->getChar16Width();
1485      Align = Target->getChar16Align();
1486      break;
1487    case BuiltinType::Char32:
1488      Width = Target->getChar32Width();
1489      Align = Target->getChar32Align();
1490      break;
1491    case BuiltinType::UShort:
1492    case BuiltinType::Short:
1493      Width = Target->getShortWidth();
1494      Align = Target->getShortAlign();
1495      break;
1496    case BuiltinType::UInt:
1497    case BuiltinType::Int:
1498      Width = Target->getIntWidth();
1499      Align = Target->getIntAlign();
1500      break;
1501    case BuiltinType::ULong:
1502    case BuiltinType::Long:
1503      Width = Target->getLongWidth();
1504      Align = Target->getLongAlign();
1505      break;
1506    case BuiltinType::ULongLong:
1507    case BuiltinType::LongLong:
1508      Width = Target->getLongLongWidth();
1509      Align = Target->getLongLongAlign();
1510      break;
1511    case BuiltinType::Int128:
1512    case BuiltinType::UInt128:
1513      Width = 128;
1514      Align = 128; // int128_t is 128-bit aligned on all targets.
1515      break;
1516    case BuiltinType::Half:
1517      Width = Target->getHalfWidth();
1518      Align = Target->getHalfAlign();
1519      break;
1520    case BuiltinType::Float:
1521      Width = Target->getFloatWidth();
1522      Align = Target->getFloatAlign();
1523      break;
1524    case BuiltinType::Double:
1525      Width = Target->getDoubleWidth();
1526      Align = Target->getDoubleAlign();
1527      break;
1528    case BuiltinType::LongDouble:
1529      Width = Target->getLongDoubleWidth();
1530      Align = Target->getLongDoubleAlign();
1531      break;
1532    case BuiltinType::NullPtr:
1533      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1534      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1535      break;
1536    case BuiltinType::ObjCId:
1537    case BuiltinType::ObjCClass:
1538    case BuiltinType::ObjCSel:
1539      Width = Target->getPointerWidth(0);
1540      Align = Target->getPointerAlign(0);
1541      break;
1542    case BuiltinType::OCLSampler:
1543      // Samplers are modeled as integers.
1544      Width = Target->getIntWidth();
1545      Align = Target->getIntAlign();
1546      break;
1547    case BuiltinType::OCLEvent:
1548    case BuiltinType::OCLImage1d:
1549    case BuiltinType::OCLImage1dArray:
1550    case BuiltinType::OCLImage1dBuffer:
1551    case BuiltinType::OCLImage2d:
1552    case BuiltinType::OCLImage2dArray:
1553    case BuiltinType::OCLImage3d:
1554      // Currently these types are pointers to opaque types.
1555      Width = Target->getPointerWidth(0);
1556      Align = Target->getPointerAlign(0);
1557      break;
1558    }
1559    break;
1560  case Type::ObjCObjectPointer:
1561    Width = Target->getPointerWidth(0);
1562    Align = Target->getPointerAlign(0);
1563    break;
1564  case Type::BlockPointer: {
1565    unsigned AS = getTargetAddressSpace(
1566        cast<BlockPointerType>(T)->getPointeeType());
1567    Width = Target->getPointerWidth(AS);
1568    Align = Target->getPointerAlign(AS);
1569    break;
1570  }
1571  case Type::LValueReference:
1572  case Type::RValueReference: {
1573    // alignof and sizeof should never enter this code path here, so we go
1574    // the pointer route.
1575    unsigned AS = getTargetAddressSpace(
1576        cast<ReferenceType>(T)->getPointeeType());
1577    Width = Target->getPointerWidth(AS);
1578    Align = Target->getPointerAlign(AS);
1579    break;
1580  }
1581  case Type::Pointer: {
1582    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1583    Width = Target->getPointerWidth(AS);
1584    Align = Target->getPointerAlign(AS);
1585    break;
1586  }
1587  case Type::MemberPointer: {
1588    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1589    llvm::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1590    break;
1591  }
1592  case Type::Complex: {
1593    // Complex types have the same alignment as their elements, but twice the
1594    // size.
1595    std::pair<uint64_t, unsigned> EltInfo =
1596      getTypeInfo(cast<ComplexType>(T)->getElementType());
1597    Width = EltInfo.first*2;
1598    Align = EltInfo.second;
1599    break;
1600  }
1601  case Type::ObjCObject:
1602    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1603  case Type::ObjCInterface: {
1604    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1605    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1606    Width = toBits(Layout.getSize());
1607    Align = toBits(Layout.getAlignment());
1608    break;
1609  }
1610  case Type::Record:
1611  case Type::Enum: {
1612    const TagType *TT = cast<TagType>(T);
1613
1614    if (TT->getDecl()->isInvalidDecl()) {
1615      Width = 8;
1616      Align = 8;
1617      break;
1618    }
1619
1620    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1621      return getTypeInfo(ET->getDecl()->getIntegerType());
1622
1623    const RecordType *RT = cast<RecordType>(TT);
1624    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1625    Width = toBits(Layout.getSize());
1626    Align = toBits(Layout.getAlignment());
1627    break;
1628  }
1629
1630  case Type::SubstTemplateTypeParm:
1631    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1632                       getReplacementType().getTypePtr());
1633
1634  case Type::Auto: {
1635    const AutoType *A = cast<AutoType>(T);
1636    assert(!A->getDeducedType().isNull() &&
1637           "cannot request the size of an undeduced or dependent auto type");
1638    return getTypeInfo(A->getDeducedType().getTypePtr());
1639  }
1640
1641  case Type::Paren:
1642    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1643
1644  case Type::Typedef: {
1645    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1646    std::pair<uint64_t, unsigned> Info
1647      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1648    // If the typedef has an aligned attribute on it, it overrides any computed
1649    // alignment we have.  This violates the GCC documentation (which says that
1650    // attribute(aligned) can only round up) but matches its implementation.
1651    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1652      Align = AttrAlign;
1653    else
1654      Align = Info.second;
1655    Width = Info.first;
1656    break;
1657  }
1658
1659  case Type::TypeOfExpr:
1660    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1661                         .getTypePtr());
1662
1663  case Type::TypeOf:
1664    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1665
1666  case Type::Decltype:
1667    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1668                        .getTypePtr());
1669
1670  case Type::UnaryTransform:
1671    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1672
1673  case Type::Elaborated:
1674    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1675
1676  case Type::Attributed:
1677    return getTypeInfo(
1678                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1679
1680  case Type::TemplateSpecialization: {
1681    assert(getCanonicalType(T) != T &&
1682           "Cannot request the size of a dependent type");
1683    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1684    // A type alias template specialization may refer to a typedef with the
1685    // aligned attribute on it.
1686    if (TST->isTypeAlias())
1687      return getTypeInfo(TST->getAliasedType().getTypePtr());
1688    else
1689      return getTypeInfo(getCanonicalType(T));
1690  }
1691
1692  case Type::Atomic: {
1693    // Start with the base type information.
1694    std::pair<uint64_t, unsigned> Info
1695      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1696    Width = Info.first;
1697    Align = Info.second;
1698
1699    // If the size of the type doesn't exceed the platform's max
1700    // atomic promotion width, make the size and alignment more
1701    // favorable to atomic operations:
1702    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1703      // Round the size up to a power of 2.
1704      if (!llvm::isPowerOf2_64(Width))
1705        Width = llvm::NextPowerOf2(Width);
1706
1707      // Set the alignment equal to the size.
1708      Align = static_cast<unsigned>(Width);
1709    }
1710  }
1711
1712  }
1713
1714  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1715  return std::make_pair(Width, Align);
1716}
1717
1718/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1719CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1720  return CharUnits::fromQuantity(BitSize / getCharWidth());
1721}
1722
1723/// toBits - Convert a size in characters to a size in characters.
1724int64_t ASTContext::toBits(CharUnits CharSize) const {
1725  return CharSize.getQuantity() * getCharWidth();
1726}
1727
1728/// getTypeSizeInChars - Return the size of the specified type, in characters.
1729/// This method does not work on incomplete types.
1730CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1731  return getTypeInfoInChars(T).first;
1732}
1733CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1734  return getTypeInfoInChars(T).first;
1735}
1736
1737/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1738/// characters. This method does not work on incomplete types.
1739CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1740  return toCharUnitsFromBits(getTypeAlign(T));
1741}
1742CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1743  return toCharUnitsFromBits(getTypeAlign(T));
1744}
1745
1746/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1747/// type for the current target in bits.  This can be different than the ABI
1748/// alignment in cases where it is beneficial for performance to overalign
1749/// a data type.
1750unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1751  unsigned ABIAlign = getTypeAlign(T);
1752
1753  // Double and long long should be naturally aligned if possible.
1754  if (const ComplexType* CT = T->getAs<ComplexType>())
1755    T = CT->getElementType().getTypePtr();
1756  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1757      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1758      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1759    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1760
1761  return ABIAlign;
1762}
1763
1764/// getAlignOfGlobalVar - Return the alignment in bits that should be given
1765/// to a global variable of the specified type.
1766unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1767  return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1768}
1769
1770/// getAlignOfGlobalVarInChars - Return the alignment in characters that
1771/// should be given to a global variable of the specified type.
1772CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1773  return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1774}
1775
1776/// DeepCollectObjCIvars -
1777/// This routine first collects all declared, but not synthesized, ivars in
1778/// super class and then collects all ivars, including those synthesized for
1779/// current class. This routine is used for implementation of current class
1780/// when all ivars, declared and synthesized are known.
1781///
1782void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1783                                      bool leafClass,
1784                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1785  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1786    DeepCollectObjCIvars(SuperClass, false, Ivars);
1787  if (!leafClass) {
1788    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1789         E = OI->ivar_end(); I != E; ++I)
1790      Ivars.push_back(*I);
1791  } else {
1792    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1793    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1794         Iv= Iv->getNextIvar())
1795      Ivars.push_back(Iv);
1796  }
1797}
1798
1799/// CollectInheritedProtocols - Collect all protocols in current class and
1800/// those inherited by it.
1801void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1802                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1803  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1804    // We can use protocol_iterator here instead of
1805    // all_referenced_protocol_iterator since we are walking all categories.
1806    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1807         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1808      ObjCProtocolDecl *Proto = (*P);
1809      Protocols.insert(Proto->getCanonicalDecl());
1810      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1811           PE = Proto->protocol_end(); P != PE; ++P) {
1812        Protocols.insert((*P)->getCanonicalDecl());
1813        CollectInheritedProtocols(*P, Protocols);
1814      }
1815    }
1816
1817    // Categories of this Interface.
1818    for (ObjCInterfaceDecl::visible_categories_iterator
1819           Cat = OI->visible_categories_begin(),
1820           CatEnd = OI->visible_categories_end();
1821         Cat != CatEnd; ++Cat) {
1822      CollectInheritedProtocols(*Cat, Protocols);
1823    }
1824
1825    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1826      while (SD) {
1827        CollectInheritedProtocols(SD, Protocols);
1828        SD = SD->getSuperClass();
1829      }
1830  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1831    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1832         PE = OC->protocol_end(); P != PE; ++P) {
1833      ObjCProtocolDecl *Proto = (*P);
1834      Protocols.insert(Proto->getCanonicalDecl());
1835      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1836           PE = Proto->protocol_end(); P != PE; ++P)
1837        CollectInheritedProtocols(*P, Protocols);
1838    }
1839  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1840    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1841         PE = OP->protocol_end(); P != PE; ++P) {
1842      ObjCProtocolDecl *Proto = (*P);
1843      Protocols.insert(Proto->getCanonicalDecl());
1844      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1845           PE = Proto->protocol_end(); P != PE; ++P)
1846        CollectInheritedProtocols(*P, Protocols);
1847    }
1848  }
1849}
1850
1851unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1852  unsigned count = 0;
1853  // Count ivars declared in class extension.
1854  for (ObjCInterfaceDecl::known_extensions_iterator
1855         Ext = OI->known_extensions_begin(),
1856         ExtEnd = OI->known_extensions_end();
1857       Ext != ExtEnd; ++Ext) {
1858    count += Ext->ivar_size();
1859  }
1860
1861  // Count ivar defined in this class's implementation.  This
1862  // includes synthesized ivars.
1863  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1864    count += ImplDecl->ivar_size();
1865
1866  return count;
1867}
1868
1869bool ASTContext::isSentinelNullExpr(const Expr *E) {
1870  if (!E)
1871    return false;
1872
1873  // nullptr_t is always treated as null.
1874  if (E->getType()->isNullPtrType()) return true;
1875
1876  if (E->getType()->isAnyPointerType() &&
1877      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1878                                                Expr::NPC_ValueDependentIsNull))
1879    return true;
1880
1881  // Unfortunately, __null has type 'int'.
1882  if (isa<GNUNullExpr>(E)) return true;
1883
1884  return false;
1885}
1886
1887/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1888ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1889  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1890    I = ObjCImpls.find(D);
1891  if (I != ObjCImpls.end())
1892    return cast<ObjCImplementationDecl>(I->second);
1893  return 0;
1894}
1895/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1896ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1897  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1898    I = ObjCImpls.find(D);
1899  if (I != ObjCImpls.end())
1900    return cast<ObjCCategoryImplDecl>(I->second);
1901  return 0;
1902}
1903
1904/// \brief Set the implementation of ObjCInterfaceDecl.
1905void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1906                           ObjCImplementationDecl *ImplD) {
1907  assert(IFaceD && ImplD && "Passed null params");
1908  ObjCImpls[IFaceD] = ImplD;
1909}
1910/// \brief Set the implementation of ObjCCategoryDecl.
1911void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1912                           ObjCCategoryImplDecl *ImplD) {
1913  assert(CatD && ImplD && "Passed null params");
1914  ObjCImpls[CatD] = ImplD;
1915}
1916
1917const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1918                                              const NamedDecl *ND) const {
1919  if (const ObjCInterfaceDecl *ID =
1920          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1921    return ID;
1922  if (const ObjCCategoryDecl *CD =
1923          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1924    return CD->getClassInterface();
1925  if (const ObjCImplDecl *IMD =
1926          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1927    return IMD->getClassInterface();
1928
1929  return 0;
1930}
1931
1932/// \brief Get the copy initialization expression of VarDecl,or NULL if
1933/// none exists.
1934Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1935  assert(VD && "Passed null params");
1936  assert(VD->hasAttr<BlocksAttr>() &&
1937         "getBlockVarCopyInits - not __block var");
1938  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1939    I = BlockVarCopyInits.find(VD);
1940  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1941}
1942
1943/// \brief Set the copy inialization expression of a block var decl.
1944void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1945  assert(VD && Init && "Passed null params");
1946  assert(VD->hasAttr<BlocksAttr>() &&
1947         "setBlockVarCopyInits - not __block var");
1948  BlockVarCopyInits[VD] = Init;
1949}
1950
1951TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1952                                                 unsigned DataSize) const {
1953  if (!DataSize)
1954    DataSize = TypeLoc::getFullDataSizeForType(T);
1955  else
1956    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1957           "incorrect data size provided to CreateTypeSourceInfo!");
1958
1959  TypeSourceInfo *TInfo =
1960    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1961  new (TInfo) TypeSourceInfo(T);
1962  return TInfo;
1963}
1964
1965TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1966                                                     SourceLocation L) const {
1967  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1968  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1969  return DI;
1970}
1971
1972const ASTRecordLayout &
1973ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1974  return getObjCLayout(D, 0);
1975}
1976
1977const ASTRecordLayout &
1978ASTContext::getASTObjCImplementationLayout(
1979                                        const ObjCImplementationDecl *D) const {
1980  return getObjCLayout(D->getClassInterface(), D);
1981}
1982
1983//===----------------------------------------------------------------------===//
1984//                   Type creation/memoization methods
1985//===----------------------------------------------------------------------===//
1986
1987QualType
1988ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1989  unsigned fastQuals = quals.getFastQualifiers();
1990  quals.removeFastQualifiers();
1991
1992  // Check if we've already instantiated this type.
1993  llvm::FoldingSetNodeID ID;
1994  ExtQuals::Profile(ID, baseType, quals);
1995  void *insertPos = 0;
1996  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1997    assert(eq->getQualifiers() == quals);
1998    return QualType(eq, fastQuals);
1999  }
2000
2001  // If the base type is not canonical, make the appropriate canonical type.
2002  QualType canon;
2003  if (!baseType->isCanonicalUnqualified()) {
2004    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2005    canonSplit.Quals.addConsistentQualifiers(quals);
2006    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2007
2008    // Re-find the insert position.
2009    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2010  }
2011
2012  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2013  ExtQualNodes.InsertNode(eq, insertPos);
2014  return QualType(eq, fastQuals);
2015}
2016
2017QualType
2018ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2019  QualType CanT = getCanonicalType(T);
2020  if (CanT.getAddressSpace() == AddressSpace)
2021    return T;
2022
2023  // If we are composing extended qualifiers together, merge together
2024  // into one ExtQuals node.
2025  QualifierCollector Quals;
2026  const Type *TypeNode = Quals.strip(T);
2027
2028  // If this type already has an address space specified, it cannot get
2029  // another one.
2030  assert(!Quals.hasAddressSpace() &&
2031         "Type cannot be in multiple addr spaces!");
2032  Quals.addAddressSpace(AddressSpace);
2033
2034  return getExtQualType(TypeNode, Quals);
2035}
2036
2037QualType ASTContext::getObjCGCQualType(QualType T,
2038                                       Qualifiers::GC GCAttr) const {
2039  QualType CanT = getCanonicalType(T);
2040  if (CanT.getObjCGCAttr() == GCAttr)
2041    return T;
2042
2043  if (const PointerType *ptr = T->getAs<PointerType>()) {
2044    QualType Pointee = ptr->getPointeeType();
2045    if (Pointee->isAnyPointerType()) {
2046      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2047      return getPointerType(ResultType);
2048    }
2049  }
2050
2051  // If we are composing extended qualifiers together, merge together
2052  // into one ExtQuals node.
2053  QualifierCollector Quals;
2054  const Type *TypeNode = Quals.strip(T);
2055
2056  // If this type already has an ObjCGC specified, it cannot get
2057  // another one.
2058  assert(!Quals.hasObjCGCAttr() &&
2059         "Type cannot have multiple ObjCGCs!");
2060  Quals.addObjCGCAttr(GCAttr);
2061
2062  return getExtQualType(TypeNode, Quals);
2063}
2064
2065const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2066                                                   FunctionType::ExtInfo Info) {
2067  if (T->getExtInfo() == Info)
2068    return T;
2069
2070  QualType Result;
2071  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2072    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
2073  } else {
2074    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2075    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2076    EPI.ExtInfo = Info;
2077    Result = getFunctionType(FPT->getResultType(),
2078                             ArrayRef<QualType>(FPT->arg_type_begin(),
2079                                                FPT->getNumArgs()),
2080                             EPI);
2081  }
2082
2083  return cast<FunctionType>(Result.getTypePtr());
2084}
2085
2086void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2087                                                 QualType ResultType) {
2088  FD = FD->getMostRecentDecl();
2089  while (true) {
2090    const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2091    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2092    FD->setType(getFunctionType(ResultType, FPT->getArgTypes(), EPI));
2093    if (FunctionDecl *Next = FD->getPreviousDecl())
2094      FD = Next;
2095    else
2096      break;
2097  }
2098  if (ASTMutationListener *L = getASTMutationListener())
2099    L->DeducedReturnType(FD, ResultType);
2100}
2101
2102/// getComplexType - Return the uniqued reference to the type for a complex
2103/// number with the specified element type.
2104QualType ASTContext::getComplexType(QualType T) const {
2105  // Unique pointers, to guarantee there is only one pointer of a particular
2106  // structure.
2107  llvm::FoldingSetNodeID ID;
2108  ComplexType::Profile(ID, T);
2109
2110  void *InsertPos = 0;
2111  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2112    return QualType(CT, 0);
2113
2114  // If the pointee type isn't canonical, this won't be a canonical type either,
2115  // so fill in the canonical type field.
2116  QualType Canonical;
2117  if (!T.isCanonical()) {
2118    Canonical = getComplexType(getCanonicalType(T));
2119
2120    // Get the new insert position for the node we care about.
2121    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2122    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2123  }
2124  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2125  Types.push_back(New);
2126  ComplexTypes.InsertNode(New, InsertPos);
2127  return QualType(New, 0);
2128}
2129
2130/// getPointerType - Return the uniqued reference to the type for a pointer to
2131/// the specified type.
2132QualType ASTContext::getPointerType(QualType T) const {
2133  // Unique pointers, to guarantee there is only one pointer of a particular
2134  // structure.
2135  llvm::FoldingSetNodeID ID;
2136  PointerType::Profile(ID, T);
2137
2138  void *InsertPos = 0;
2139  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2140    return QualType(PT, 0);
2141
2142  // If the pointee type isn't canonical, this won't be a canonical type either,
2143  // so fill in the canonical type field.
2144  QualType Canonical;
2145  if (!T.isCanonical()) {
2146    Canonical = getPointerType(getCanonicalType(T));
2147
2148    // Get the new insert position for the node we care about.
2149    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2150    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2151  }
2152  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2153  Types.push_back(New);
2154  PointerTypes.InsertNode(New, InsertPos);
2155  return QualType(New, 0);
2156}
2157
2158/// getBlockPointerType - Return the uniqued reference to the type for
2159/// a pointer to the specified block.
2160QualType ASTContext::getBlockPointerType(QualType T) const {
2161  assert(T->isFunctionType() && "block of function types only");
2162  // Unique pointers, to guarantee there is only one block of a particular
2163  // structure.
2164  llvm::FoldingSetNodeID ID;
2165  BlockPointerType::Profile(ID, T);
2166
2167  void *InsertPos = 0;
2168  if (BlockPointerType *PT =
2169        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2170    return QualType(PT, 0);
2171
2172  // If the block pointee type isn't canonical, this won't be a canonical
2173  // type either so fill in the canonical type field.
2174  QualType Canonical;
2175  if (!T.isCanonical()) {
2176    Canonical = getBlockPointerType(getCanonicalType(T));
2177
2178    // Get the new insert position for the node we care about.
2179    BlockPointerType *NewIP =
2180      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2181    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2182  }
2183  BlockPointerType *New
2184    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2185  Types.push_back(New);
2186  BlockPointerTypes.InsertNode(New, InsertPos);
2187  return QualType(New, 0);
2188}
2189
2190/// getLValueReferenceType - Return the uniqued reference to the type for an
2191/// lvalue reference to the specified type.
2192QualType
2193ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2194  assert(getCanonicalType(T) != OverloadTy &&
2195         "Unresolved overloaded function type");
2196
2197  // Unique pointers, to guarantee there is only one pointer of a particular
2198  // structure.
2199  llvm::FoldingSetNodeID ID;
2200  ReferenceType::Profile(ID, T, SpelledAsLValue);
2201
2202  void *InsertPos = 0;
2203  if (LValueReferenceType *RT =
2204        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2205    return QualType(RT, 0);
2206
2207  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2208
2209  // If the referencee type isn't canonical, this won't be a canonical type
2210  // either, so fill in the canonical type field.
2211  QualType Canonical;
2212  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2213    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2214    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2215
2216    // Get the new insert position for the node we care about.
2217    LValueReferenceType *NewIP =
2218      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2219    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2220  }
2221
2222  LValueReferenceType *New
2223    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2224                                                     SpelledAsLValue);
2225  Types.push_back(New);
2226  LValueReferenceTypes.InsertNode(New, InsertPos);
2227
2228  return QualType(New, 0);
2229}
2230
2231/// getRValueReferenceType - Return the uniqued reference to the type for an
2232/// rvalue reference to the specified type.
2233QualType ASTContext::getRValueReferenceType(QualType T) const {
2234  // Unique pointers, to guarantee there is only one pointer of a particular
2235  // structure.
2236  llvm::FoldingSetNodeID ID;
2237  ReferenceType::Profile(ID, T, false);
2238
2239  void *InsertPos = 0;
2240  if (RValueReferenceType *RT =
2241        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2242    return QualType(RT, 0);
2243
2244  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2245
2246  // If the referencee type isn't canonical, this won't be a canonical type
2247  // either, so fill in the canonical type field.
2248  QualType Canonical;
2249  if (InnerRef || !T.isCanonical()) {
2250    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2251    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2252
2253    // Get the new insert position for the node we care about.
2254    RValueReferenceType *NewIP =
2255      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2256    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2257  }
2258
2259  RValueReferenceType *New
2260    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2261  Types.push_back(New);
2262  RValueReferenceTypes.InsertNode(New, InsertPos);
2263  return QualType(New, 0);
2264}
2265
2266/// getMemberPointerType - Return the uniqued reference to the type for a
2267/// member pointer to the specified type, in the specified class.
2268QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2269  // Unique pointers, to guarantee there is only one pointer of a particular
2270  // structure.
2271  llvm::FoldingSetNodeID ID;
2272  MemberPointerType::Profile(ID, T, Cls);
2273
2274  void *InsertPos = 0;
2275  if (MemberPointerType *PT =
2276      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2277    return QualType(PT, 0);
2278
2279  // If the pointee or class type isn't canonical, this won't be a canonical
2280  // type either, so fill in the canonical type field.
2281  QualType Canonical;
2282  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2283    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2284
2285    // Get the new insert position for the node we care about.
2286    MemberPointerType *NewIP =
2287      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2288    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2289  }
2290  MemberPointerType *New
2291    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2292  Types.push_back(New);
2293  MemberPointerTypes.InsertNode(New, InsertPos);
2294  return QualType(New, 0);
2295}
2296
2297/// getConstantArrayType - Return the unique reference to the type for an
2298/// array of the specified element type.
2299QualType ASTContext::getConstantArrayType(QualType EltTy,
2300                                          const llvm::APInt &ArySizeIn,
2301                                          ArrayType::ArraySizeModifier ASM,
2302                                          unsigned IndexTypeQuals) const {
2303  assert((EltTy->isDependentType() ||
2304          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2305         "Constant array of VLAs is illegal!");
2306
2307  // Convert the array size into a canonical width matching the pointer size for
2308  // the target.
2309  llvm::APInt ArySize(ArySizeIn);
2310  ArySize =
2311    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2312
2313  llvm::FoldingSetNodeID ID;
2314  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2315
2316  void *InsertPos = 0;
2317  if (ConstantArrayType *ATP =
2318      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2319    return QualType(ATP, 0);
2320
2321  // If the element type isn't canonical or has qualifiers, this won't
2322  // be a canonical type either, so fill in the canonical type field.
2323  QualType Canon;
2324  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2325    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2326    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2327                                 ASM, IndexTypeQuals);
2328    Canon = getQualifiedType(Canon, canonSplit.Quals);
2329
2330    // Get the new insert position for the node we care about.
2331    ConstantArrayType *NewIP =
2332      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2333    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2334  }
2335
2336  ConstantArrayType *New = new(*this,TypeAlignment)
2337    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2338  ConstantArrayTypes.InsertNode(New, InsertPos);
2339  Types.push_back(New);
2340  return QualType(New, 0);
2341}
2342
2343/// getVariableArrayDecayedType - Turns the given type, which may be
2344/// variably-modified, into the corresponding type with all the known
2345/// sizes replaced with [*].
2346QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2347  // Vastly most common case.
2348  if (!type->isVariablyModifiedType()) return type;
2349
2350  QualType result;
2351
2352  SplitQualType split = type.getSplitDesugaredType();
2353  const Type *ty = split.Ty;
2354  switch (ty->getTypeClass()) {
2355#define TYPE(Class, Base)
2356#define ABSTRACT_TYPE(Class, Base)
2357#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2358#include "clang/AST/TypeNodes.def"
2359    llvm_unreachable("didn't desugar past all non-canonical types?");
2360
2361  // These types should never be variably-modified.
2362  case Type::Builtin:
2363  case Type::Complex:
2364  case Type::Vector:
2365  case Type::ExtVector:
2366  case Type::DependentSizedExtVector:
2367  case Type::ObjCObject:
2368  case Type::ObjCInterface:
2369  case Type::ObjCObjectPointer:
2370  case Type::Record:
2371  case Type::Enum:
2372  case Type::UnresolvedUsing:
2373  case Type::TypeOfExpr:
2374  case Type::TypeOf:
2375  case Type::Decltype:
2376  case Type::UnaryTransform:
2377  case Type::DependentName:
2378  case Type::InjectedClassName:
2379  case Type::TemplateSpecialization:
2380  case Type::DependentTemplateSpecialization:
2381  case Type::TemplateTypeParm:
2382  case Type::SubstTemplateTypeParmPack:
2383  case Type::Auto:
2384  case Type::PackExpansion:
2385    llvm_unreachable("type should never be variably-modified");
2386
2387  // These types can be variably-modified but should never need to
2388  // further decay.
2389  case Type::FunctionNoProto:
2390  case Type::FunctionProto:
2391  case Type::BlockPointer:
2392  case Type::MemberPointer:
2393    return type;
2394
2395  // These types can be variably-modified.  All these modifications
2396  // preserve structure except as noted by comments.
2397  // TODO: if we ever care about optimizing VLAs, there are no-op
2398  // optimizations available here.
2399  case Type::Pointer:
2400    result = getPointerType(getVariableArrayDecayedType(
2401                              cast<PointerType>(ty)->getPointeeType()));
2402    break;
2403
2404  case Type::LValueReference: {
2405    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2406    result = getLValueReferenceType(
2407                 getVariableArrayDecayedType(lv->getPointeeType()),
2408                                    lv->isSpelledAsLValue());
2409    break;
2410  }
2411
2412  case Type::RValueReference: {
2413    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2414    result = getRValueReferenceType(
2415                 getVariableArrayDecayedType(lv->getPointeeType()));
2416    break;
2417  }
2418
2419  case Type::Atomic: {
2420    const AtomicType *at = cast<AtomicType>(ty);
2421    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2422    break;
2423  }
2424
2425  case Type::ConstantArray: {
2426    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2427    result = getConstantArrayType(
2428                 getVariableArrayDecayedType(cat->getElementType()),
2429                                  cat->getSize(),
2430                                  cat->getSizeModifier(),
2431                                  cat->getIndexTypeCVRQualifiers());
2432    break;
2433  }
2434
2435  case Type::DependentSizedArray: {
2436    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2437    result = getDependentSizedArrayType(
2438                 getVariableArrayDecayedType(dat->getElementType()),
2439                                        dat->getSizeExpr(),
2440                                        dat->getSizeModifier(),
2441                                        dat->getIndexTypeCVRQualifiers(),
2442                                        dat->getBracketsRange());
2443    break;
2444  }
2445
2446  // Turn incomplete types into [*] types.
2447  case Type::IncompleteArray: {
2448    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2449    result = getVariableArrayType(
2450                 getVariableArrayDecayedType(iat->getElementType()),
2451                                  /*size*/ 0,
2452                                  ArrayType::Normal,
2453                                  iat->getIndexTypeCVRQualifiers(),
2454                                  SourceRange());
2455    break;
2456  }
2457
2458  // Turn VLA types into [*] types.
2459  case Type::VariableArray: {
2460    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2461    result = getVariableArrayType(
2462                 getVariableArrayDecayedType(vat->getElementType()),
2463                                  /*size*/ 0,
2464                                  ArrayType::Star,
2465                                  vat->getIndexTypeCVRQualifiers(),
2466                                  vat->getBracketsRange());
2467    break;
2468  }
2469  }
2470
2471  // Apply the top-level qualifiers from the original.
2472  return getQualifiedType(result, split.Quals);
2473}
2474
2475/// getVariableArrayType - Returns a non-unique reference to the type for a
2476/// variable array of the specified element type.
2477QualType ASTContext::getVariableArrayType(QualType EltTy,
2478                                          Expr *NumElts,
2479                                          ArrayType::ArraySizeModifier ASM,
2480                                          unsigned IndexTypeQuals,
2481                                          SourceRange Brackets) const {
2482  // Since we don't unique expressions, it isn't possible to unique VLA's
2483  // that have an expression provided for their size.
2484  QualType Canon;
2485
2486  // Be sure to pull qualifiers off the element type.
2487  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2488    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2489    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2490                                 IndexTypeQuals, Brackets);
2491    Canon = getQualifiedType(Canon, canonSplit.Quals);
2492  }
2493
2494  VariableArrayType *New = new(*this, TypeAlignment)
2495    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2496
2497  VariableArrayTypes.push_back(New);
2498  Types.push_back(New);
2499  return QualType(New, 0);
2500}
2501
2502/// getDependentSizedArrayType - Returns a non-unique reference to
2503/// the type for a dependently-sized array of the specified element
2504/// type.
2505QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2506                                                Expr *numElements,
2507                                                ArrayType::ArraySizeModifier ASM,
2508                                                unsigned elementTypeQuals,
2509                                                SourceRange brackets) const {
2510  assert((!numElements || numElements->isTypeDependent() ||
2511          numElements->isValueDependent()) &&
2512         "Size must be type- or value-dependent!");
2513
2514  // Dependently-sized array types that do not have a specified number
2515  // of elements will have their sizes deduced from a dependent
2516  // initializer.  We do no canonicalization here at all, which is okay
2517  // because they can't be used in most locations.
2518  if (!numElements) {
2519    DependentSizedArrayType *newType
2520      = new (*this, TypeAlignment)
2521          DependentSizedArrayType(*this, elementType, QualType(),
2522                                  numElements, ASM, elementTypeQuals,
2523                                  brackets);
2524    Types.push_back(newType);
2525    return QualType(newType, 0);
2526  }
2527
2528  // Otherwise, we actually build a new type every time, but we
2529  // also build a canonical type.
2530
2531  SplitQualType canonElementType = getCanonicalType(elementType).split();
2532
2533  void *insertPos = 0;
2534  llvm::FoldingSetNodeID ID;
2535  DependentSizedArrayType::Profile(ID, *this,
2536                                   QualType(canonElementType.Ty, 0),
2537                                   ASM, elementTypeQuals, numElements);
2538
2539  // Look for an existing type with these properties.
2540  DependentSizedArrayType *canonTy =
2541    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2542
2543  // If we don't have one, build one.
2544  if (!canonTy) {
2545    canonTy = new (*this, TypeAlignment)
2546      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2547                              QualType(), numElements, ASM, elementTypeQuals,
2548                              brackets);
2549    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2550    Types.push_back(canonTy);
2551  }
2552
2553  // Apply qualifiers from the element type to the array.
2554  QualType canon = getQualifiedType(QualType(canonTy,0),
2555                                    canonElementType.Quals);
2556
2557  // If we didn't need extra canonicalization for the element type,
2558  // then just use that as our result.
2559  if (QualType(canonElementType.Ty, 0) == elementType)
2560    return canon;
2561
2562  // Otherwise, we need to build a type which follows the spelling
2563  // of the element type.
2564  DependentSizedArrayType *sugaredType
2565    = new (*this, TypeAlignment)
2566        DependentSizedArrayType(*this, elementType, canon, numElements,
2567                                ASM, elementTypeQuals, brackets);
2568  Types.push_back(sugaredType);
2569  return QualType(sugaredType, 0);
2570}
2571
2572QualType ASTContext::getIncompleteArrayType(QualType elementType,
2573                                            ArrayType::ArraySizeModifier ASM,
2574                                            unsigned elementTypeQuals) const {
2575  llvm::FoldingSetNodeID ID;
2576  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2577
2578  void *insertPos = 0;
2579  if (IncompleteArrayType *iat =
2580       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2581    return QualType(iat, 0);
2582
2583  // If the element type isn't canonical, this won't be a canonical type
2584  // either, so fill in the canonical type field.  We also have to pull
2585  // qualifiers off the element type.
2586  QualType canon;
2587
2588  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2589    SplitQualType canonSplit = getCanonicalType(elementType).split();
2590    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2591                                   ASM, elementTypeQuals);
2592    canon = getQualifiedType(canon, canonSplit.Quals);
2593
2594    // Get the new insert position for the node we care about.
2595    IncompleteArrayType *existing =
2596      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2597    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2598  }
2599
2600  IncompleteArrayType *newType = new (*this, TypeAlignment)
2601    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2602
2603  IncompleteArrayTypes.InsertNode(newType, insertPos);
2604  Types.push_back(newType);
2605  return QualType(newType, 0);
2606}
2607
2608/// getVectorType - Return the unique reference to a vector type of
2609/// the specified element type and size. VectorType must be a built-in type.
2610QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2611                                   VectorType::VectorKind VecKind) const {
2612  assert(vecType->isBuiltinType());
2613
2614  // Check if we've already instantiated a vector of this type.
2615  llvm::FoldingSetNodeID ID;
2616  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2617
2618  void *InsertPos = 0;
2619  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2620    return QualType(VTP, 0);
2621
2622  // If the element type isn't canonical, this won't be a canonical type either,
2623  // so fill in the canonical type field.
2624  QualType Canonical;
2625  if (!vecType.isCanonical()) {
2626    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2627
2628    // Get the new insert position for the node we care about.
2629    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2630    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2631  }
2632  VectorType *New = new (*this, TypeAlignment)
2633    VectorType(vecType, NumElts, Canonical, VecKind);
2634  VectorTypes.InsertNode(New, InsertPos);
2635  Types.push_back(New);
2636  return QualType(New, 0);
2637}
2638
2639/// getExtVectorType - Return the unique reference to an extended vector type of
2640/// the specified element type and size. VectorType must be a built-in type.
2641QualType
2642ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2643  assert(vecType->isBuiltinType() || vecType->isDependentType());
2644
2645  // Check if we've already instantiated a vector of this type.
2646  llvm::FoldingSetNodeID ID;
2647  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2648                      VectorType::GenericVector);
2649  void *InsertPos = 0;
2650  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2651    return QualType(VTP, 0);
2652
2653  // If the element type isn't canonical, this won't be a canonical type either,
2654  // so fill in the canonical type field.
2655  QualType Canonical;
2656  if (!vecType.isCanonical()) {
2657    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2658
2659    // Get the new insert position for the node we care about.
2660    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2661    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2662  }
2663  ExtVectorType *New = new (*this, TypeAlignment)
2664    ExtVectorType(vecType, NumElts, Canonical);
2665  VectorTypes.InsertNode(New, InsertPos);
2666  Types.push_back(New);
2667  return QualType(New, 0);
2668}
2669
2670QualType
2671ASTContext::getDependentSizedExtVectorType(QualType vecType,
2672                                           Expr *SizeExpr,
2673                                           SourceLocation AttrLoc) const {
2674  llvm::FoldingSetNodeID ID;
2675  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2676                                       SizeExpr);
2677
2678  void *InsertPos = 0;
2679  DependentSizedExtVectorType *Canon
2680    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2681  DependentSizedExtVectorType *New;
2682  if (Canon) {
2683    // We already have a canonical version of this array type; use it as
2684    // the canonical type for a newly-built type.
2685    New = new (*this, TypeAlignment)
2686      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2687                                  SizeExpr, AttrLoc);
2688  } else {
2689    QualType CanonVecTy = getCanonicalType(vecType);
2690    if (CanonVecTy == vecType) {
2691      New = new (*this, TypeAlignment)
2692        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2693                                    AttrLoc);
2694
2695      DependentSizedExtVectorType *CanonCheck
2696        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2697      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2698      (void)CanonCheck;
2699      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2700    } else {
2701      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2702                                                      SourceLocation());
2703      New = new (*this, TypeAlignment)
2704        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2705    }
2706  }
2707
2708  Types.push_back(New);
2709  return QualType(New, 0);
2710}
2711
2712/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2713///
2714QualType
2715ASTContext::getFunctionNoProtoType(QualType ResultTy,
2716                                   const FunctionType::ExtInfo &Info) const {
2717  const CallingConv DefaultCC = Info.getCC();
2718  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2719                               CC_X86StdCall : DefaultCC;
2720  // Unique functions, to guarantee there is only one function of a particular
2721  // structure.
2722  llvm::FoldingSetNodeID ID;
2723  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2724
2725  void *InsertPos = 0;
2726  if (FunctionNoProtoType *FT =
2727        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2728    return QualType(FT, 0);
2729
2730  QualType Canonical;
2731  if (!ResultTy.isCanonical() ||
2732      getCanonicalCallConv(CallConv) != CallConv) {
2733    Canonical =
2734      getFunctionNoProtoType(getCanonicalType(ResultTy),
2735                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2736
2737    // Get the new insert position for the node we care about.
2738    FunctionNoProtoType *NewIP =
2739      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2740    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2741  }
2742
2743  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2744  FunctionNoProtoType *New = new (*this, TypeAlignment)
2745    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2746  Types.push_back(New);
2747  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2748  return QualType(New, 0);
2749}
2750
2751/// \brief Determine whether \p T is canonical as the result type of a function.
2752static bool isCanonicalResultType(QualType T) {
2753  return T.isCanonical() &&
2754         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2755          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2756}
2757
2758/// getFunctionType - Return a normal function type with a typed argument
2759/// list.  isVariadic indicates whether the argument list includes '...'.
2760QualType
2761ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2762                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2763  size_t NumArgs = ArgArray.size();
2764
2765  // Unique functions, to guarantee there is only one function of a particular
2766  // structure.
2767  llvm::FoldingSetNodeID ID;
2768  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2769                             *this);
2770
2771  void *InsertPos = 0;
2772  if (FunctionProtoType *FTP =
2773        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2774    return QualType(FTP, 0);
2775
2776  // Determine whether the type being created is already canonical or not.
2777  bool isCanonical =
2778    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2779    !EPI.HasTrailingReturn;
2780  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2781    if (!ArgArray[i].isCanonicalAsParam())
2782      isCanonical = false;
2783
2784  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2785  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2786                               CC_X86StdCall : DefaultCC;
2787
2788  // If this type isn't canonical, get the canonical version of it.
2789  // The exception spec is not part of the canonical type.
2790  QualType Canonical;
2791  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2792    SmallVector<QualType, 16> CanonicalArgs;
2793    CanonicalArgs.reserve(NumArgs);
2794    for (unsigned i = 0; i != NumArgs; ++i)
2795      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2796
2797    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2798    CanonicalEPI.HasTrailingReturn = false;
2799    CanonicalEPI.ExceptionSpecType = EST_None;
2800    CanonicalEPI.NumExceptions = 0;
2801    CanonicalEPI.ExtInfo
2802      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2803
2804    // Result types do not have ARC lifetime qualifiers.
2805    QualType CanResultTy = getCanonicalType(ResultTy);
2806    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2807      Qualifiers Qs = CanResultTy.getQualifiers();
2808      Qs.removeObjCLifetime();
2809      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2810    }
2811
2812    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2813
2814    // Get the new insert position for the node we care about.
2815    FunctionProtoType *NewIP =
2816      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2817    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2818  }
2819
2820  // FunctionProtoType objects are allocated with extra bytes after
2821  // them for three variable size arrays at the end:
2822  //  - parameter types
2823  //  - exception types
2824  //  - consumed-arguments flags
2825  // Instead of the exception types, there could be a noexcept
2826  // expression, or information used to resolve the exception
2827  // specification.
2828  size_t Size = sizeof(FunctionProtoType) +
2829                NumArgs * sizeof(QualType);
2830  if (EPI.ExceptionSpecType == EST_Dynamic) {
2831    Size += EPI.NumExceptions * sizeof(QualType);
2832  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2833    Size += sizeof(Expr*);
2834  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2835    Size += 2 * sizeof(FunctionDecl*);
2836  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2837    Size += sizeof(FunctionDecl*);
2838  }
2839  if (EPI.ConsumedArguments)
2840    Size += NumArgs * sizeof(bool);
2841
2842  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2843  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2844  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2845  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2846  Types.push_back(FTP);
2847  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2848  return QualType(FTP, 0);
2849}
2850
2851#ifndef NDEBUG
2852static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2853  if (!isa<CXXRecordDecl>(D)) return false;
2854  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2855  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2856    return true;
2857  if (RD->getDescribedClassTemplate() &&
2858      !isa<ClassTemplateSpecializationDecl>(RD))
2859    return true;
2860  return false;
2861}
2862#endif
2863
2864/// getInjectedClassNameType - Return the unique reference to the
2865/// injected class name type for the specified templated declaration.
2866QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2867                                              QualType TST) const {
2868  assert(NeedsInjectedClassNameType(Decl));
2869  if (Decl->TypeForDecl) {
2870    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2871  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2872    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2873    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2874    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2875  } else {
2876    Type *newType =
2877      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2878    Decl->TypeForDecl = newType;
2879    Types.push_back(newType);
2880  }
2881  return QualType(Decl->TypeForDecl, 0);
2882}
2883
2884/// getTypeDeclType - Return the unique reference to the type for the
2885/// specified type declaration.
2886QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2887  assert(Decl && "Passed null for Decl param");
2888  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2889
2890  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2891    return getTypedefType(Typedef);
2892
2893  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2894         "Template type parameter types are always available.");
2895
2896  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2897    assert(!Record->getPreviousDecl() &&
2898           "struct/union has previous declaration");
2899    assert(!NeedsInjectedClassNameType(Record));
2900    return getRecordType(Record);
2901  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2902    assert(!Enum->getPreviousDecl() &&
2903           "enum has previous declaration");
2904    return getEnumType(Enum);
2905  } else if (const UnresolvedUsingTypenameDecl *Using =
2906               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2907    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2908    Decl->TypeForDecl = newType;
2909    Types.push_back(newType);
2910  } else
2911    llvm_unreachable("TypeDecl without a type?");
2912
2913  return QualType(Decl->TypeForDecl, 0);
2914}
2915
2916/// getTypedefType - Return the unique reference to the type for the
2917/// specified typedef name decl.
2918QualType
2919ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2920                           QualType Canonical) const {
2921  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2922
2923  if (Canonical.isNull())
2924    Canonical = getCanonicalType(Decl->getUnderlyingType());
2925  TypedefType *newType = new(*this, TypeAlignment)
2926    TypedefType(Type::Typedef, Decl, Canonical);
2927  Decl->TypeForDecl = newType;
2928  Types.push_back(newType);
2929  return QualType(newType, 0);
2930}
2931
2932QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2933  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2934
2935  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2936    if (PrevDecl->TypeForDecl)
2937      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2938
2939  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2940  Decl->TypeForDecl = newType;
2941  Types.push_back(newType);
2942  return QualType(newType, 0);
2943}
2944
2945QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2946  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2947
2948  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2949    if (PrevDecl->TypeForDecl)
2950      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2951
2952  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2953  Decl->TypeForDecl = newType;
2954  Types.push_back(newType);
2955  return QualType(newType, 0);
2956}
2957
2958QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2959                                       QualType modifiedType,
2960                                       QualType equivalentType) {
2961  llvm::FoldingSetNodeID id;
2962  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2963
2964  void *insertPos = 0;
2965  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2966  if (type) return QualType(type, 0);
2967
2968  QualType canon = getCanonicalType(equivalentType);
2969  type = new (*this, TypeAlignment)
2970           AttributedType(canon, attrKind, modifiedType, equivalentType);
2971
2972  Types.push_back(type);
2973  AttributedTypes.InsertNode(type, insertPos);
2974
2975  return QualType(type, 0);
2976}
2977
2978
2979/// \brief Retrieve a substitution-result type.
2980QualType
2981ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2982                                         QualType Replacement) const {
2983  assert(Replacement.isCanonical()
2984         && "replacement types must always be canonical");
2985
2986  llvm::FoldingSetNodeID ID;
2987  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2988  void *InsertPos = 0;
2989  SubstTemplateTypeParmType *SubstParm
2990    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2991
2992  if (!SubstParm) {
2993    SubstParm = new (*this, TypeAlignment)
2994      SubstTemplateTypeParmType(Parm, Replacement);
2995    Types.push_back(SubstParm);
2996    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2997  }
2998
2999  return QualType(SubstParm, 0);
3000}
3001
3002/// \brief Retrieve a
3003QualType ASTContext::getSubstTemplateTypeParmPackType(
3004                                          const TemplateTypeParmType *Parm,
3005                                              const TemplateArgument &ArgPack) {
3006#ifndef NDEBUG
3007  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
3008                                    PEnd = ArgPack.pack_end();
3009       P != PEnd; ++P) {
3010    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3011    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
3012  }
3013#endif
3014
3015  llvm::FoldingSetNodeID ID;
3016  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3017  void *InsertPos = 0;
3018  if (SubstTemplateTypeParmPackType *SubstParm
3019        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3020    return QualType(SubstParm, 0);
3021
3022  QualType Canon;
3023  if (!Parm->isCanonicalUnqualified()) {
3024    Canon = getCanonicalType(QualType(Parm, 0));
3025    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3026                                             ArgPack);
3027    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3028  }
3029
3030  SubstTemplateTypeParmPackType *SubstParm
3031    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3032                                                               ArgPack);
3033  Types.push_back(SubstParm);
3034  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3035  return QualType(SubstParm, 0);
3036}
3037
3038/// \brief Retrieve the template type parameter type for a template
3039/// parameter or parameter pack with the given depth, index, and (optionally)
3040/// name.
3041QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3042                                             bool ParameterPack,
3043                                             TemplateTypeParmDecl *TTPDecl) const {
3044  llvm::FoldingSetNodeID ID;
3045  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3046  void *InsertPos = 0;
3047  TemplateTypeParmType *TypeParm
3048    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3049
3050  if (TypeParm)
3051    return QualType(TypeParm, 0);
3052
3053  if (TTPDecl) {
3054    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3055    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3056
3057    TemplateTypeParmType *TypeCheck
3058      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3059    assert(!TypeCheck && "Template type parameter canonical type broken");
3060    (void)TypeCheck;
3061  } else
3062    TypeParm = new (*this, TypeAlignment)
3063      TemplateTypeParmType(Depth, Index, ParameterPack);
3064
3065  Types.push_back(TypeParm);
3066  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3067
3068  return QualType(TypeParm, 0);
3069}
3070
3071TypeSourceInfo *
3072ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3073                                              SourceLocation NameLoc,
3074                                        const TemplateArgumentListInfo &Args,
3075                                              QualType Underlying) const {
3076  assert(!Name.getAsDependentTemplateName() &&
3077         "No dependent template names here!");
3078  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3079
3080  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3081  TemplateSpecializationTypeLoc TL =
3082      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3083  TL.setTemplateKeywordLoc(SourceLocation());
3084  TL.setTemplateNameLoc(NameLoc);
3085  TL.setLAngleLoc(Args.getLAngleLoc());
3086  TL.setRAngleLoc(Args.getRAngleLoc());
3087  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3088    TL.setArgLocInfo(i, Args[i].getLocInfo());
3089  return DI;
3090}
3091
3092QualType
3093ASTContext::getTemplateSpecializationType(TemplateName Template,
3094                                          const TemplateArgumentListInfo &Args,
3095                                          QualType Underlying) const {
3096  assert(!Template.getAsDependentTemplateName() &&
3097         "No dependent template names here!");
3098
3099  unsigned NumArgs = Args.size();
3100
3101  SmallVector<TemplateArgument, 4> ArgVec;
3102  ArgVec.reserve(NumArgs);
3103  for (unsigned i = 0; i != NumArgs; ++i)
3104    ArgVec.push_back(Args[i].getArgument());
3105
3106  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3107                                       Underlying);
3108}
3109
3110#ifndef NDEBUG
3111static bool hasAnyPackExpansions(const TemplateArgument *Args,
3112                                 unsigned NumArgs) {
3113  for (unsigned I = 0; I != NumArgs; ++I)
3114    if (Args[I].isPackExpansion())
3115      return true;
3116
3117  return true;
3118}
3119#endif
3120
3121QualType
3122ASTContext::getTemplateSpecializationType(TemplateName Template,
3123                                          const TemplateArgument *Args,
3124                                          unsigned NumArgs,
3125                                          QualType Underlying) const {
3126  assert(!Template.getAsDependentTemplateName() &&
3127         "No dependent template names here!");
3128  // Look through qualified template names.
3129  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3130    Template = TemplateName(QTN->getTemplateDecl());
3131
3132  bool IsTypeAlias =
3133    Template.getAsTemplateDecl() &&
3134    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3135  QualType CanonType;
3136  if (!Underlying.isNull())
3137    CanonType = getCanonicalType(Underlying);
3138  else {
3139    // We can get here with an alias template when the specialization contains
3140    // a pack expansion that does not match up with a parameter pack.
3141    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3142           "Caller must compute aliased type");
3143    IsTypeAlias = false;
3144    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3145                                                       NumArgs);
3146  }
3147
3148  // Allocate the (non-canonical) template specialization type, but don't
3149  // try to unique it: these types typically have location information that
3150  // we don't unique and don't want to lose.
3151  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3152                       sizeof(TemplateArgument) * NumArgs +
3153                       (IsTypeAlias? sizeof(QualType) : 0),
3154                       TypeAlignment);
3155  TemplateSpecializationType *Spec
3156    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3157                                         IsTypeAlias ? Underlying : QualType());
3158
3159  Types.push_back(Spec);
3160  return QualType(Spec, 0);
3161}
3162
3163QualType
3164ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3165                                                   const TemplateArgument *Args,
3166                                                   unsigned NumArgs) const {
3167  assert(!Template.getAsDependentTemplateName() &&
3168         "No dependent template names here!");
3169
3170  // Look through qualified template names.
3171  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3172    Template = TemplateName(QTN->getTemplateDecl());
3173
3174  // Build the canonical template specialization type.
3175  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3176  SmallVector<TemplateArgument, 4> CanonArgs;
3177  CanonArgs.reserve(NumArgs);
3178  for (unsigned I = 0; I != NumArgs; ++I)
3179    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3180
3181  // Determine whether this canonical template specialization type already
3182  // exists.
3183  llvm::FoldingSetNodeID ID;
3184  TemplateSpecializationType::Profile(ID, CanonTemplate,
3185                                      CanonArgs.data(), NumArgs, *this);
3186
3187  void *InsertPos = 0;
3188  TemplateSpecializationType *Spec
3189    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3190
3191  if (!Spec) {
3192    // Allocate a new canonical template specialization type.
3193    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3194                          sizeof(TemplateArgument) * NumArgs),
3195                         TypeAlignment);
3196    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3197                                                CanonArgs.data(), NumArgs,
3198                                                QualType(), QualType());
3199    Types.push_back(Spec);
3200    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3201  }
3202
3203  assert(Spec->isDependentType() &&
3204         "Non-dependent template-id type must have a canonical type");
3205  return QualType(Spec, 0);
3206}
3207
3208QualType
3209ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3210                              NestedNameSpecifier *NNS,
3211                              QualType NamedType) const {
3212  llvm::FoldingSetNodeID ID;
3213  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3214
3215  void *InsertPos = 0;
3216  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3217  if (T)
3218    return QualType(T, 0);
3219
3220  QualType Canon = NamedType;
3221  if (!Canon.isCanonical()) {
3222    Canon = getCanonicalType(NamedType);
3223    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3224    assert(!CheckT && "Elaborated canonical type broken");
3225    (void)CheckT;
3226  }
3227
3228  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3229  Types.push_back(T);
3230  ElaboratedTypes.InsertNode(T, InsertPos);
3231  return QualType(T, 0);
3232}
3233
3234QualType
3235ASTContext::getParenType(QualType InnerType) const {
3236  llvm::FoldingSetNodeID ID;
3237  ParenType::Profile(ID, InnerType);
3238
3239  void *InsertPos = 0;
3240  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3241  if (T)
3242    return QualType(T, 0);
3243
3244  QualType Canon = InnerType;
3245  if (!Canon.isCanonical()) {
3246    Canon = getCanonicalType(InnerType);
3247    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3248    assert(!CheckT && "Paren canonical type broken");
3249    (void)CheckT;
3250  }
3251
3252  T = new (*this) ParenType(InnerType, Canon);
3253  Types.push_back(T);
3254  ParenTypes.InsertNode(T, InsertPos);
3255  return QualType(T, 0);
3256}
3257
3258QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3259                                          NestedNameSpecifier *NNS,
3260                                          const IdentifierInfo *Name,
3261                                          QualType Canon) const {
3262  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3263
3264  if (Canon.isNull()) {
3265    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3266    ElaboratedTypeKeyword CanonKeyword = Keyword;
3267    if (Keyword == ETK_None)
3268      CanonKeyword = ETK_Typename;
3269
3270    if (CanonNNS != NNS || CanonKeyword != Keyword)
3271      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3272  }
3273
3274  llvm::FoldingSetNodeID ID;
3275  DependentNameType::Profile(ID, Keyword, NNS, Name);
3276
3277  void *InsertPos = 0;
3278  DependentNameType *T
3279    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3280  if (T)
3281    return QualType(T, 0);
3282
3283  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3284  Types.push_back(T);
3285  DependentNameTypes.InsertNode(T, InsertPos);
3286  return QualType(T, 0);
3287}
3288
3289QualType
3290ASTContext::getDependentTemplateSpecializationType(
3291                                 ElaboratedTypeKeyword Keyword,
3292                                 NestedNameSpecifier *NNS,
3293                                 const IdentifierInfo *Name,
3294                                 const TemplateArgumentListInfo &Args) const {
3295  // TODO: avoid this copy
3296  SmallVector<TemplateArgument, 16> ArgCopy;
3297  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3298    ArgCopy.push_back(Args[I].getArgument());
3299  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3300                                                ArgCopy.size(),
3301                                                ArgCopy.data());
3302}
3303
3304QualType
3305ASTContext::getDependentTemplateSpecializationType(
3306                                 ElaboratedTypeKeyword Keyword,
3307                                 NestedNameSpecifier *NNS,
3308                                 const IdentifierInfo *Name,
3309                                 unsigned NumArgs,
3310                                 const TemplateArgument *Args) const {
3311  assert((!NNS || NNS->isDependent()) &&
3312         "nested-name-specifier must be dependent");
3313
3314  llvm::FoldingSetNodeID ID;
3315  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3316                                               Name, NumArgs, Args);
3317
3318  void *InsertPos = 0;
3319  DependentTemplateSpecializationType *T
3320    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3321  if (T)
3322    return QualType(T, 0);
3323
3324  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3325
3326  ElaboratedTypeKeyword CanonKeyword = Keyword;
3327  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3328
3329  bool AnyNonCanonArgs = false;
3330  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3331  for (unsigned I = 0; I != NumArgs; ++I) {
3332    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3333    if (!CanonArgs[I].structurallyEquals(Args[I]))
3334      AnyNonCanonArgs = true;
3335  }
3336
3337  QualType Canon;
3338  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3339    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3340                                                   Name, NumArgs,
3341                                                   CanonArgs.data());
3342
3343    // Find the insert position again.
3344    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3345  }
3346
3347  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3348                        sizeof(TemplateArgument) * NumArgs),
3349                       TypeAlignment);
3350  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3351                                                    Name, NumArgs, Args, Canon);
3352  Types.push_back(T);
3353  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3354  return QualType(T, 0);
3355}
3356
3357QualType ASTContext::getPackExpansionType(QualType Pattern,
3358                                          Optional<unsigned> NumExpansions) {
3359  llvm::FoldingSetNodeID ID;
3360  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3361
3362  assert(Pattern->containsUnexpandedParameterPack() &&
3363         "Pack expansions must expand one or more parameter packs");
3364  void *InsertPos = 0;
3365  PackExpansionType *T
3366    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3367  if (T)
3368    return QualType(T, 0);
3369
3370  QualType Canon;
3371  if (!Pattern.isCanonical()) {
3372    Canon = getCanonicalType(Pattern);
3373    // The canonical type might not contain an unexpanded parameter pack, if it
3374    // contains an alias template specialization which ignores one of its
3375    // parameters.
3376    if (Canon->containsUnexpandedParameterPack()) {
3377      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3378
3379      // Find the insert position again, in case we inserted an element into
3380      // PackExpansionTypes and invalidated our insert position.
3381      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3382    }
3383  }
3384
3385  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3386  Types.push_back(T);
3387  PackExpansionTypes.InsertNode(T, InsertPos);
3388  return QualType(T, 0);
3389}
3390
3391/// CmpProtocolNames - Comparison predicate for sorting protocols
3392/// alphabetically.
3393static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3394                            const ObjCProtocolDecl *RHS) {
3395  return LHS->getDeclName() < RHS->getDeclName();
3396}
3397
3398static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3399                                unsigned NumProtocols) {
3400  if (NumProtocols == 0) return true;
3401
3402  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3403    return false;
3404
3405  for (unsigned i = 1; i != NumProtocols; ++i)
3406    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3407        Protocols[i]->getCanonicalDecl() != Protocols[i])
3408      return false;
3409  return true;
3410}
3411
3412static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3413                                   unsigned &NumProtocols) {
3414  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3415
3416  // Sort protocols, keyed by name.
3417  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3418
3419  // Canonicalize.
3420  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3421    Protocols[I] = Protocols[I]->getCanonicalDecl();
3422
3423  // Remove duplicates.
3424  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3425  NumProtocols = ProtocolsEnd-Protocols;
3426}
3427
3428QualType ASTContext::getObjCObjectType(QualType BaseType,
3429                                       ObjCProtocolDecl * const *Protocols,
3430                                       unsigned NumProtocols) const {
3431  // If the base type is an interface and there aren't any protocols
3432  // to add, then the interface type will do just fine.
3433  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3434    return BaseType;
3435
3436  // Look in the folding set for an existing type.
3437  llvm::FoldingSetNodeID ID;
3438  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3439  void *InsertPos = 0;
3440  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3441    return QualType(QT, 0);
3442
3443  // Build the canonical type, which has the canonical base type and
3444  // a sorted-and-uniqued list of protocols.
3445  QualType Canonical;
3446  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3447  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3448    if (!ProtocolsSorted) {
3449      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3450                                                     Protocols + NumProtocols);
3451      unsigned UniqueCount = NumProtocols;
3452
3453      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3454      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3455                                    &Sorted[0], UniqueCount);
3456    } else {
3457      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3458                                    Protocols, NumProtocols);
3459    }
3460
3461    // Regenerate InsertPos.
3462    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3463  }
3464
3465  unsigned Size = sizeof(ObjCObjectTypeImpl);
3466  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3467  void *Mem = Allocate(Size, TypeAlignment);
3468  ObjCObjectTypeImpl *T =
3469    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3470
3471  Types.push_back(T);
3472  ObjCObjectTypes.InsertNode(T, InsertPos);
3473  return QualType(T, 0);
3474}
3475
3476/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3477/// the given object type.
3478QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3479  llvm::FoldingSetNodeID ID;
3480  ObjCObjectPointerType::Profile(ID, ObjectT);
3481
3482  void *InsertPos = 0;
3483  if (ObjCObjectPointerType *QT =
3484              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3485    return QualType(QT, 0);
3486
3487  // Find the canonical object type.
3488  QualType Canonical;
3489  if (!ObjectT.isCanonical()) {
3490    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3491
3492    // Regenerate InsertPos.
3493    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3494  }
3495
3496  // No match.
3497  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3498  ObjCObjectPointerType *QType =
3499    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3500
3501  Types.push_back(QType);
3502  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3503  return QualType(QType, 0);
3504}
3505
3506/// getObjCInterfaceType - Return the unique reference to the type for the
3507/// specified ObjC interface decl. The list of protocols is optional.
3508QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3509                                          ObjCInterfaceDecl *PrevDecl) const {
3510  if (Decl->TypeForDecl)
3511    return QualType(Decl->TypeForDecl, 0);
3512
3513  if (PrevDecl) {
3514    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3515    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3516    return QualType(PrevDecl->TypeForDecl, 0);
3517  }
3518
3519  // Prefer the definition, if there is one.
3520  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3521    Decl = Def;
3522
3523  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3524  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3525  Decl->TypeForDecl = T;
3526  Types.push_back(T);
3527  return QualType(T, 0);
3528}
3529
3530/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3531/// TypeOfExprType AST's (since expression's are never shared). For example,
3532/// multiple declarations that refer to "typeof(x)" all contain different
3533/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3534/// on canonical type's (which are always unique).
3535QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3536  TypeOfExprType *toe;
3537  if (tofExpr->isTypeDependent()) {
3538    llvm::FoldingSetNodeID ID;
3539    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3540
3541    void *InsertPos = 0;
3542    DependentTypeOfExprType *Canon
3543      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3544    if (Canon) {
3545      // We already have a "canonical" version of an identical, dependent
3546      // typeof(expr) type. Use that as our canonical type.
3547      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3548                                          QualType((TypeOfExprType*)Canon, 0));
3549    } else {
3550      // Build a new, canonical typeof(expr) type.
3551      Canon
3552        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3553      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3554      toe = Canon;
3555    }
3556  } else {
3557    QualType Canonical = getCanonicalType(tofExpr->getType());
3558    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3559  }
3560  Types.push_back(toe);
3561  return QualType(toe, 0);
3562}
3563
3564/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3565/// TypeOfType AST's. The only motivation to unique these nodes would be
3566/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3567/// an issue. This doesn't effect the type checker, since it operates
3568/// on canonical type's (which are always unique).
3569QualType ASTContext::getTypeOfType(QualType tofType) const {
3570  QualType Canonical = getCanonicalType(tofType);
3571  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3572  Types.push_back(tot);
3573  return QualType(tot, 0);
3574}
3575
3576
3577/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3578/// DecltypeType AST's. The only motivation to unique these nodes would be
3579/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3580/// an issue. This doesn't effect the type checker, since it operates
3581/// on canonical types (which are always unique).
3582QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3583  DecltypeType *dt;
3584
3585  // C++0x [temp.type]p2:
3586  //   If an expression e involves a template parameter, decltype(e) denotes a
3587  //   unique dependent type. Two such decltype-specifiers refer to the same
3588  //   type only if their expressions are equivalent (14.5.6.1).
3589  if (e->isInstantiationDependent()) {
3590    llvm::FoldingSetNodeID ID;
3591    DependentDecltypeType::Profile(ID, *this, e);
3592
3593    void *InsertPos = 0;
3594    DependentDecltypeType *Canon
3595      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3596    if (Canon) {
3597      // We already have a "canonical" version of an equivalent, dependent
3598      // decltype type. Use that as our canonical type.
3599      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3600                                       QualType((DecltypeType*)Canon, 0));
3601    } else {
3602      // Build a new, canonical typeof(expr) type.
3603      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3604      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3605      dt = Canon;
3606    }
3607  } else {
3608    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3609                                      getCanonicalType(UnderlyingType));
3610  }
3611  Types.push_back(dt);
3612  return QualType(dt, 0);
3613}
3614
3615/// getUnaryTransformationType - We don't unique these, since the memory
3616/// savings are minimal and these are rare.
3617QualType ASTContext::getUnaryTransformType(QualType BaseType,
3618                                           QualType UnderlyingType,
3619                                           UnaryTransformType::UTTKind Kind)
3620    const {
3621  UnaryTransformType *Ty =
3622    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3623                                                   Kind,
3624                                 UnderlyingType->isDependentType() ?
3625                                 QualType() : getCanonicalType(UnderlyingType));
3626  Types.push_back(Ty);
3627  return QualType(Ty, 0);
3628}
3629
3630/// getAutoType - Return the uniqued reference to the 'auto' type which has been
3631/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3632/// canonical deduced-but-dependent 'auto' type.
3633QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3634                                 bool IsDependent) const {
3635  if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3636    return getAutoDeductType();
3637
3638  // Look in the folding set for an existing type.
3639  void *InsertPos = 0;
3640  llvm::FoldingSetNodeID ID;
3641  AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3642  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3643    return QualType(AT, 0);
3644
3645  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3646                                                     IsDecltypeAuto,
3647                                                     IsDependent);
3648  Types.push_back(AT);
3649  if (InsertPos)
3650    AutoTypes.InsertNode(AT, InsertPos);
3651  return QualType(AT, 0);
3652}
3653
3654/// getAtomicType - Return the uniqued reference to the atomic type for
3655/// the given value type.
3656QualType ASTContext::getAtomicType(QualType T) const {
3657  // Unique pointers, to guarantee there is only one pointer of a particular
3658  // structure.
3659  llvm::FoldingSetNodeID ID;
3660  AtomicType::Profile(ID, T);
3661
3662  void *InsertPos = 0;
3663  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3664    return QualType(AT, 0);
3665
3666  // If the atomic value type isn't canonical, this won't be a canonical type
3667  // either, so fill in the canonical type field.
3668  QualType Canonical;
3669  if (!T.isCanonical()) {
3670    Canonical = getAtomicType(getCanonicalType(T));
3671
3672    // Get the new insert position for the node we care about.
3673    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3674    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3675  }
3676  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3677  Types.push_back(New);
3678  AtomicTypes.InsertNode(New, InsertPos);
3679  return QualType(New, 0);
3680}
3681
3682/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3683QualType ASTContext::getAutoDeductType() const {
3684  if (AutoDeductTy.isNull())
3685    AutoDeductTy = QualType(
3686      new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3687                                          /*dependent*/false),
3688      0);
3689  return AutoDeductTy;
3690}
3691
3692/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3693QualType ASTContext::getAutoRRefDeductType() const {
3694  if (AutoRRefDeductTy.isNull())
3695    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3696  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3697  return AutoRRefDeductTy;
3698}
3699
3700/// getTagDeclType - Return the unique reference to the type for the
3701/// specified TagDecl (struct/union/class/enum) decl.
3702QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3703  assert (Decl);
3704  // FIXME: What is the design on getTagDeclType when it requires casting
3705  // away const?  mutable?
3706  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3707}
3708
3709/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3710/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3711/// needs to agree with the definition in <stddef.h>.
3712CanQualType ASTContext::getSizeType() const {
3713  return getFromTargetType(Target->getSizeType());
3714}
3715
3716/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3717CanQualType ASTContext::getIntMaxType() const {
3718  return getFromTargetType(Target->getIntMaxType());
3719}
3720
3721/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3722CanQualType ASTContext::getUIntMaxType() const {
3723  return getFromTargetType(Target->getUIntMaxType());
3724}
3725
3726/// getSignedWCharType - Return the type of "signed wchar_t".
3727/// Used when in C++, as a GCC extension.
3728QualType ASTContext::getSignedWCharType() const {
3729  // FIXME: derive from "Target" ?
3730  return WCharTy;
3731}
3732
3733/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3734/// Used when in C++, as a GCC extension.
3735QualType ASTContext::getUnsignedWCharType() const {
3736  // FIXME: derive from "Target" ?
3737  return UnsignedIntTy;
3738}
3739
3740QualType ASTContext::getIntPtrType() const {
3741  return getFromTargetType(Target->getIntPtrType());
3742}
3743
3744QualType ASTContext::getUIntPtrType() const {
3745  return getCorrespondingUnsignedType(getIntPtrType());
3746}
3747
3748/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3749/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3750QualType ASTContext::getPointerDiffType() const {
3751  return getFromTargetType(Target->getPtrDiffType(0));
3752}
3753
3754/// \brief Return the unique type for "pid_t" defined in
3755/// <sys/types.h>. We need this to compute the correct type for vfork().
3756QualType ASTContext::getProcessIDType() const {
3757  return getFromTargetType(Target->getProcessIDType());
3758}
3759
3760//===----------------------------------------------------------------------===//
3761//                              Type Operators
3762//===----------------------------------------------------------------------===//
3763
3764CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3765  // Push qualifiers into arrays, and then discard any remaining
3766  // qualifiers.
3767  T = getCanonicalType(T);
3768  T = getVariableArrayDecayedType(T);
3769  const Type *Ty = T.getTypePtr();
3770  QualType Result;
3771  if (isa<ArrayType>(Ty)) {
3772    Result = getArrayDecayedType(QualType(Ty,0));
3773  } else if (isa<FunctionType>(Ty)) {
3774    Result = getPointerType(QualType(Ty, 0));
3775  } else {
3776    Result = QualType(Ty, 0);
3777  }
3778
3779  return CanQualType::CreateUnsafe(Result);
3780}
3781
3782QualType ASTContext::getUnqualifiedArrayType(QualType type,
3783                                             Qualifiers &quals) {
3784  SplitQualType splitType = type.getSplitUnqualifiedType();
3785
3786  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3787  // the unqualified desugared type and then drops it on the floor.
3788  // We then have to strip that sugar back off with
3789  // getUnqualifiedDesugaredType(), which is silly.
3790  const ArrayType *AT =
3791    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3792
3793  // If we don't have an array, just use the results in splitType.
3794  if (!AT) {
3795    quals = splitType.Quals;
3796    return QualType(splitType.Ty, 0);
3797  }
3798
3799  // Otherwise, recurse on the array's element type.
3800  QualType elementType = AT->getElementType();
3801  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3802
3803  // If that didn't change the element type, AT has no qualifiers, so we
3804  // can just use the results in splitType.
3805  if (elementType == unqualElementType) {
3806    assert(quals.empty()); // from the recursive call
3807    quals = splitType.Quals;
3808    return QualType(splitType.Ty, 0);
3809  }
3810
3811  // Otherwise, add in the qualifiers from the outermost type, then
3812  // build the type back up.
3813  quals.addConsistentQualifiers(splitType.Quals);
3814
3815  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3816    return getConstantArrayType(unqualElementType, CAT->getSize(),
3817                                CAT->getSizeModifier(), 0);
3818  }
3819
3820  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3821    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3822  }
3823
3824  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3825    return getVariableArrayType(unqualElementType,
3826                                VAT->getSizeExpr(),
3827                                VAT->getSizeModifier(),
3828                                VAT->getIndexTypeCVRQualifiers(),
3829                                VAT->getBracketsRange());
3830  }
3831
3832  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3833  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3834                                    DSAT->getSizeModifier(), 0,
3835                                    SourceRange());
3836}
3837
3838/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3839/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3840/// they point to and return true. If T1 and T2 aren't pointer types
3841/// or pointer-to-member types, or if they are not similar at this
3842/// level, returns false and leaves T1 and T2 unchanged. Top-level
3843/// qualifiers on T1 and T2 are ignored. This function will typically
3844/// be called in a loop that successively "unwraps" pointer and
3845/// pointer-to-member types to compare them at each level.
3846bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3847  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3848                    *T2PtrType = T2->getAs<PointerType>();
3849  if (T1PtrType && T2PtrType) {
3850    T1 = T1PtrType->getPointeeType();
3851    T2 = T2PtrType->getPointeeType();
3852    return true;
3853  }
3854
3855  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3856                          *T2MPType = T2->getAs<MemberPointerType>();
3857  if (T1MPType && T2MPType &&
3858      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3859                             QualType(T2MPType->getClass(), 0))) {
3860    T1 = T1MPType->getPointeeType();
3861    T2 = T2MPType->getPointeeType();
3862    return true;
3863  }
3864
3865  if (getLangOpts().ObjC1) {
3866    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3867                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3868    if (T1OPType && T2OPType) {
3869      T1 = T1OPType->getPointeeType();
3870      T2 = T2OPType->getPointeeType();
3871      return true;
3872    }
3873  }
3874
3875  // FIXME: Block pointers, too?
3876
3877  return false;
3878}
3879
3880DeclarationNameInfo
3881ASTContext::getNameForTemplate(TemplateName Name,
3882                               SourceLocation NameLoc) const {
3883  switch (Name.getKind()) {
3884  case TemplateName::QualifiedTemplate:
3885  case TemplateName::Template:
3886    // DNInfo work in progress: CHECKME: what about DNLoc?
3887    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3888                               NameLoc);
3889
3890  case TemplateName::OverloadedTemplate: {
3891    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3892    // DNInfo work in progress: CHECKME: what about DNLoc?
3893    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3894  }
3895
3896  case TemplateName::DependentTemplate: {
3897    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3898    DeclarationName DName;
3899    if (DTN->isIdentifier()) {
3900      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3901      return DeclarationNameInfo(DName, NameLoc);
3902    } else {
3903      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3904      // DNInfo work in progress: FIXME: source locations?
3905      DeclarationNameLoc DNLoc;
3906      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3907      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3908      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3909    }
3910  }
3911
3912  case TemplateName::SubstTemplateTemplateParm: {
3913    SubstTemplateTemplateParmStorage *subst
3914      = Name.getAsSubstTemplateTemplateParm();
3915    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3916                               NameLoc);
3917  }
3918
3919  case TemplateName::SubstTemplateTemplateParmPack: {
3920    SubstTemplateTemplateParmPackStorage *subst
3921      = Name.getAsSubstTemplateTemplateParmPack();
3922    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3923                               NameLoc);
3924  }
3925  }
3926
3927  llvm_unreachable("bad template name kind!");
3928}
3929
3930TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3931  switch (Name.getKind()) {
3932  case TemplateName::QualifiedTemplate:
3933  case TemplateName::Template: {
3934    TemplateDecl *Template = Name.getAsTemplateDecl();
3935    if (TemplateTemplateParmDecl *TTP
3936          = dyn_cast<TemplateTemplateParmDecl>(Template))
3937      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3938
3939    // The canonical template name is the canonical template declaration.
3940    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3941  }
3942
3943  case TemplateName::OverloadedTemplate:
3944    llvm_unreachable("cannot canonicalize overloaded template");
3945
3946  case TemplateName::DependentTemplate: {
3947    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3948    assert(DTN && "Non-dependent template names must refer to template decls.");
3949    return DTN->CanonicalTemplateName;
3950  }
3951
3952  case TemplateName::SubstTemplateTemplateParm: {
3953    SubstTemplateTemplateParmStorage *subst
3954      = Name.getAsSubstTemplateTemplateParm();
3955    return getCanonicalTemplateName(subst->getReplacement());
3956  }
3957
3958  case TemplateName::SubstTemplateTemplateParmPack: {
3959    SubstTemplateTemplateParmPackStorage *subst
3960                                  = Name.getAsSubstTemplateTemplateParmPack();
3961    TemplateTemplateParmDecl *canonParameter
3962      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3963    TemplateArgument canonArgPack
3964      = getCanonicalTemplateArgument(subst->getArgumentPack());
3965    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3966  }
3967  }
3968
3969  llvm_unreachable("bad template name!");
3970}
3971
3972bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3973  X = getCanonicalTemplateName(X);
3974  Y = getCanonicalTemplateName(Y);
3975  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3976}
3977
3978TemplateArgument
3979ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3980  switch (Arg.getKind()) {
3981    case TemplateArgument::Null:
3982      return Arg;
3983
3984    case TemplateArgument::Expression:
3985      return Arg;
3986
3987    case TemplateArgument::Declaration: {
3988      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3989      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3990    }
3991
3992    case TemplateArgument::NullPtr:
3993      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3994                              /*isNullPtr*/true);
3995
3996    case TemplateArgument::Template:
3997      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3998
3999    case TemplateArgument::TemplateExpansion:
4000      return TemplateArgument(getCanonicalTemplateName(
4001                                         Arg.getAsTemplateOrTemplatePattern()),
4002                              Arg.getNumTemplateExpansions());
4003
4004    case TemplateArgument::Integral:
4005      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
4006
4007    case TemplateArgument::Type:
4008      return TemplateArgument(getCanonicalType(Arg.getAsType()));
4009
4010    case TemplateArgument::Pack: {
4011      if (Arg.pack_size() == 0)
4012        return Arg;
4013
4014      TemplateArgument *CanonArgs
4015        = new (*this) TemplateArgument[Arg.pack_size()];
4016      unsigned Idx = 0;
4017      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4018                                        AEnd = Arg.pack_end();
4019           A != AEnd; (void)++A, ++Idx)
4020        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4021
4022      return TemplateArgument(CanonArgs, Arg.pack_size());
4023    }
4024  }
4025
4026  // Silence GCC warning
4027  llvm_unreachable("Unhandled template argument kind");
4028}
4029
4030NestedNameSpecifier *
4031ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4032  if (!NNS)
4033    return 0;
4034
4035  switch (NNS->getKind()) {
4036  case NestedNameSpecifier::Identifier:
4037    // Canonicalize the prefix but keep the identifier the same.
4038    return NestedNameSpecifier::Create(*this,
4039                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4040                                       NNS->getAsIdentifier());
4041
4042  case NestedNameSpecifier::Namespace:
4043    // A namespace is canonical; build a nested-name-specifier with
4044    // this namespace and no prefix.
4045    return NestedNameSpecifier::Create(*this, 0,
4046                                 NNS->getAsNamespace()->getOriginalNamespace());
4047
4048  case NestedNameSpecifier::NamespaceAlias:
4049    // A namespace is canonical; build a nested-name-specifier with
4050    // this namespace and no prefix.
4051    return NestedNameSpecifier::Create(*this, 0,
4052                                    NNS->getAsNamespaceAlias()->getNamespace()
4053                                                      ->getOriginalNamespace());
4054
4055  case NestedNameSpecifier::TypeSpec:
4056  case NestedNameSpecifier::TypeSpecWithTemplate: {
4057    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4058
4059    // If we have some kind of dependent-named type (e.g., "typename T::type"),
4060    // break it apart into its prefix and identifier, then reconsititute those
4061    // as the canonical nested-name-specifier. This is required to canonicalize
4062    // a dependent nested-name-specifier involving typedefs of dependent-name
4063    // types, e.g.,
4064    //   typedef typename T::type T1;
4065    //   typedef typename T1::type T2;
4066    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4067      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4068                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4069
4070    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4071    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4072    // first place?
4073    return NestedNameSpecifier::Create(*this, 0, false,
4074                                       const_cast<Type*>(T.getTypePtr()));
4075  }
4076
4077  case NestedNameSpecifier::Global:
4078    // The global specifier is canonical and unique.
4079    return NNS;
4080  }
4081
4082  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4083}
4084
4085
4086const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4087  // Handle the non-qualified case efficiently.
4088  if (!T.hasLocalQualifiers()) {
4089    // Handle the common positive case fast.
4090    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4091      return AT;
4092  }
4093
4094  // Handle the common negative case fast.
4095  if (!isa<ArrayType>(T.getCanonicalType()))
4096    return 0;
4097
4098  // Apply any qualifiers from the array type to the element type.  This
4099  // implements C99 6.7.3p8: "If the specification of an array type includes
4100  // any type qualifiers, the element type is so qualified, not the array type."
4101
4102  // If we get here, we either have type qualifiers on the type, or we have
4103  // sugar such as a typedef in the way.  If we have type qualifiers on the type
4104  // we must propagate them down into the element type.
4105
4106  SplitQualType split = T.getSplitDesugaredType();
4107  Qualifiers qs = split.Quals;
4108
4109  // If we have a simple case, just return now.
4110  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4111  if (ATy == 0 || qs.empty())
4112    return ATy;
4113
4114  // Otherwise, we have an array and we have qualifiers on it.  Push the
4115  // qualifiers into the array element type and return a new array type.
4116  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4117
4118  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4119    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4120                                                CAT->getSizeModifier(),
4121                                           CAT->getIndexTypeCVRQualifiers()));
4122  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4123    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4124                                                  IAT->getSizeModifier(),
4125                                           IAT->getIndexTypeCVRQualifiers()));
4126
4127  if (const DependentSizedArrayType *DSAT
4128        = dyn_cast<DependentSizedArrayType>(ATy))
4129    return cast<ArrayType>(
4130                     getDependentSizedArrayType(NewEltTy,
4131                                                DSAT->getSizeExpr(),
4132                                                DSAT->getSizeModifier(),
4133                                              DSAT->getIndexTypeCVRQualifiers(),
4134                                                DSAT->getBracketsRange()));
4135
4136  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4137  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4138                                              VAT->getSizeExpr(),
4139                                              VAT->getSizeModifier(),
4140                                              VAT->getIndexTypeCVRQualifiers(),
4141                                              VAT->getBracketsRange()));
4142}
4143
4144QualType ASTContext::getAdjustedParameterType(QualType T) const {
4145  // C99 6.7.5.3p7:
4146  //   A declaration of a parameter as "array of type" shall be
4147  //   adjusted to "qualified pointer to type", where the type
4148  //   qualifiers (if any) are those specified within the [ and ] of
4149  //   the array type derivation.
4150  if (T->isArrayType())
4151    return getArrayDecayedType(T);
4152
4153  // C99 6.7.5.3p8:
4154  //   A declaration of a parameter as "function returning type"
4155  //   shall be adjusted to "pointer to function returning type", as
4156  //   in 6.3.2.1.
4157  if (T->isFunctionType())
4158    return getPointerType(T);
4159
4160  return T;
4161}
4162
4163QualType ASTContext::getSignatureParameterType(QualType T) const {
4164  T = getVariableArrayDecayedType(T);
4165  T = getAdjustedParameterType(T);
4166  return T.getUnqualifiedType();
4167}
4168
4169/// getArrayDecayedType - Return the properly qualified result of decaying the
4170/// specified array type to a pointer.  This operation is non-trivial when
4171/// handling typedefs etc.  The canonical type of "T" must be an array type,
4172/// this returns a pointer to a properly qualified element of the array.
4173///
4174/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4175QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4176  // Get the element type with 'getAsArrayType' so that we don't lose any
4177  // typedefs in the element type of the array.  This also handles propagation
4178  // of type qualifiers from the array type into the element type if present
4179  // (C99 6.7.3p8).
4180  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4181  assert(PrettyArrayType && "Not an array type!");
4182
4183  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4184
4185  // int x[restrict 4] ->  int *restrict
4186  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4187}
4188
4189QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4190  return getBaseElementType(array->getElementType());
4191}
4192
4193QualType ASTContext::getBaseElementType(QualType type) const {
4194  Qualifiers qs;
4195  while (true) {
4196    SplitQualType split = type.getSplitDesugaredType();
4197    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4198    if (!array) break;
4199
4200    type = array->getElementType();
4201    qs.addConsistentQualifiers(split.Quals);
4202  }
4203
4204  return getQualifiedType(type, qs);
4205}
4206
4207/// getConstantArrayElementCount - Returns number of constant array elements.
4208uint64_t
4209ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4210  uint64_t ElementCount = 1;
4211  do {
4212    ElementCount *= CA->getSize().getZExtValue();
4213    CA = dyn_cast_or_null<ConstantArrayType>(
4214      CA->getElementType()->getAsArrayTypeUnsafe());
4215  } while (CA);
4216  return ElementCount;
4217}
4218
4219/// getFloatingRank - Return a relative rank for floating point types.
4220/// This routine will assert if passed a built-in type that isn't a float.
4221static FloatingRank getFloatingRank(QualType T) {
4222  if (const ComplexType *CT = T->getAs<ComplexType>())
4223    return getFloatingRank(CT->getElementType());
4224
4225  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4226  switch (T->getAs<BuiltinType>()->getKind()) {
4227  default: llvm_unreachable("getFloatingRank(): not a floating type");
4228  case BuiltinType::Half:       return HalfRank;
4229  case BuiltinType::Float:      return FloatRank;
4230  case BuiltinType::Double:     return DoubleRank;
4231  case BuiltinType::LongDouble: return LongDoubleRank;
4232  }
4233}
4234
4235/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4236/// point or a complex type (based on typeDomain/typeSize).
4237/// 'typeDomain' is a real floating point or complex type.
4238/// 'typeSize' is a real floating point or complex type.
4239QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4240                                                       QualType Domain) const {
4241  FloatingRank EltRank = getFloatingRank(Size);
4242  if (Domain->isComplexType()) {
4243    switch (EltRank) {
4244    case HalfRank: llvm_unreachable("Complex half is not supported");
4245    case FloatRank:      return FloatComplexTy;
4246    case DoubleRank:     return DoubleComplexTy;
4247    case LongDoubleRank: return LongDoubleComplexTy;
4248    }
4249  }
4250
4251  assert(Domain->isRealFloatingType() && "Unknown domain!");
4252  switch (EltRank) {
4253  case HalfRank:       return HalfTy;
4254  case FloatRank:      return FloatTy;
4255  case DoubleRank:     return DoubleTy;
4256  case LongDoubleRank: return LongDoubleTy;
4257  }
4258  llvm_unreachable("getFloatingRank(): illegal value for rank");
4259}
4260
4261/// getFloatingTypeOrder - Compare the rank of the two specified floating
4262/// point types, ignoring the domain of the type (i.e. 'double' ==
4263/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4264/// LHS < RHS, return -1.
4265int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4266  FloatingRank LHSR = getFloatingRank(LHS);
4267  FloatingRank RHSR = getFloatingRank(RHS);
4268
4269  if (LHSR == RHSR)
4270    return 0;
4271  if (LHSR > RHSR)
4272    return 1;
4273  return -1;
4274}
4275
4276/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4277/// routine will assert if passed a built-in type that isn't an integer or enum,
4278/// or if it is not canonicalized.
4279unsigned ASTContext::getIntegerRank(const Type *T) const {
4280  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4281
4282  switch (cast<BuiltinType>(T)->getKind()) {
4283  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4284  case BuiltinType::Bool:
4285    return 1 + (getIntWidth(BoolTy) << 3);
4286  case BuiltinType::Char_S:
4287  case BuiltinType::Char_U:
4288  case BuiltinType::SChar:
4289  case BuiltinType::UChar:
4290    return 2 + (getIntWidth(CharTy) << 3);
4291  case BuiltinType::Short:
4292  case BuiltinType::UShort:
4293    return 3 + (getIntWidth(ShortTy) << 3);
4294  case BuiltinType::Int:
4295  case BuiltinType::UInt:
4296    return 4 + (getIntWidth(IntTy) << 3);
4297  case BuiltinType::Long:
4298  case BuiltinType::ULong:
4299    return 5 + (getIntWidth(LongTy) << 3);
4300  case BuiltinType::LongLong:
4301  case BuiltinType::ULongLong:
4302    return 6 + (getIntWidth(LongLongTy) << 3);
4303  case BuiltinType::Int128:
4304  case BuiltinType::UInt128:
4305    return 7 + (getIntWidth(Int128Ty) << 3);
4306  }
4307}
4308
4309/// \brief Whether this is a promotable bitfield reference according
4310/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4311///
4312/// \returns the type this bit-field will promote to, or NULL if no
4313/// promotion occurs.
4314QualType ASTContext::isPromotableBitField(Expr *E) const {
4315  if (E->isTypeDependent() || E->isValueDependent())
4316    return QualType();
4317
4318  FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4319  if (!Field)
4320    return QualType();
4321
4322  QualType FT = Field->getType();
4323
4324  uint64_t BitWidth = Field->getBitWidthValue(*this);
4325  uint64_t IntSize = getTypeSize(IntTy);
4326  // GCC extension compatibility: if the bit-field size is less than or equal
4327  // to the size of int, it gets promoted no matter what its type is.
4328  // For instance, unsigned long bf : 4 gets promoted to signed int.
4329  if (BitWidth < IntSize)
4330    return IntTy;
4331
4332  if (BitWidth == IntSize)
4333    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4334
4335  // Types bigger than int are not subject to promotions, and therefore act
4336  // like the base type.
4337  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4338  // is ridiculous.
4339  return QualType();
4340}
4341
4342/// getPromotedIntegerType - Returns the type that Promotable will
4343/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4344/// integer type.
4345QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4346  assert(!Promotable.isNull());
4347  assert(Promotable->isPromotableIntegerType());
4348  if (const EnumType *ET = Promotable->getAs<EnumType>())
4349    return ET->getDecl()->getPromotionType();
4350
4351  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4352    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4353    // (3.9.1) can be converted to a prvalue of the first of the following
4354    // types that can represent all the values of its underlying type:
4355    // int, unsigned int, long int, unsigned long int, long long int, or
4356    // unsigned long long int [...]
4357    // FIXME: Is there some better way to compute this?
4358    if (BT->getKind() == BuiltinType::WChar_S ||
4359        BT->getKind() == BuiltinType::WChar_U ||
4360        BT->getKind() == BuiltinType::Char16 ||
4361        BT->getKind() == BuiltinType::Char32) {
4362      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4363      uint64_t FromSize = getTypeSize(BT);
4364      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4365                                  LongLongTy, UnsignedLongLongTy };
4366      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4367        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4368        if (FromSize < ToSize ||
4369            (FromSize == ToSize &&
4370             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4371          return PromoteTypes[Idx];
4372      }
4373      llvm_unreachable("char type should fit into long long");
4374    }
4375  }
4376
4377  // At this point, we should have a signed or unsigned integer type.
4378  if (Promotable->isSignedIntegerType())
4379    return IntTy;
4380  uint64_t PromotableSize = getIntWidth(Promotable);
4381  uint64_t IntSize = getIntWidth(IntTy);
4382  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4383  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4384}
4385
4386/// \brief Recurses in pointer/array types until it finds an objc retainable
4387/// type and returns its ownership.
4388Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4389  while (!T.isNull()) {
4390    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4391      return T.getObjCLifetime();
4392    if (T->isArrayType())
4393      T = getBaseElementType(T);
4394    else if (const PointerType *PT = T->getAs<PointerType>())
4395      T = PT->getPointeeType();
4396    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4397      T = RT->getPointeeType();
4398    else
4399      break;
4400  }
4401
4402  return Qualifiers::OCL_None;
4403}
4404
4405/// getIntegerTypeOrder - Returns the highest ranked integer type:
4406/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4407/// LHS < RHS, return -1.
4408int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4409  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4410  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4411  if (LHSC == RHSC) return 0;
4412
4413  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4414  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4415
4416  unsigned LHSRank = getIntegerRank(LHSC);
4417  unsigned RHSRank = getIntegerRank(RHSC);
4418
4419  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4420    if (LHSRank == RHSRank) return 0;
4421    return LHSRank > RHSRank ? 1 : -1;
4422  }
4423
4424  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4425  if (LHSUnsigned) {
4426    // If the unsigned [LHS] type is larger, return it.
4427    if (LHSRank >= RHSRank)
4428      return 1;
4429
4430    // If the signed type can represent all values of the unsigned type, it
4431    // wins.  Because we are dealing with 2's complement and types that are
4432    // powers of two larger than each other, this is always safe.
4433    return -1;
4434  }
4435
4436  // If the unsigned [RHS] type is larger, return it.
4437  if (RHSRank >= LHSRank)
4438    return -1;
4439
4440  // If the signed type can represent all values of the unsigned type, it
4441  // wins.  Because we are dealing with 2's complement and types that are
4442  // powers of two larger than each other, this is always safe.
4443  return 1;
4444}
4445
4446static RecordDecl *
4447CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4448                 DeclContext *DC, IdentifierInfo *Id) {
4449  SourceLocation Loc;
4450  if (Ctx.getLangOpts().CPlusPlus)
4451    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4452  else
4453    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4454}
4455
4456// getCFConstantStringType - Return the type used for constant CFStrings.
4457QualType ASTContext::getCFConstantStringType() const {
4458  if (!CFConstantStringTypeDecl) {
4459    CFConstantStringTypeDecl =
4460      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4461                       &Idents.get("NSConstantString"));
4462    CFConstantStringTypeDecl->startDefinition();
4463
4464    QualType FieldTypes[4];
4465
4466    // const int *isa;
4467    FieldTypes[0] = getPointerType(IntTy.withConst());
4468    // int flags;
4469    FieldTypes[1] = IntTy;
4470    // const char *str;
4471    FieldTypes[2] = getPointerType(CharTy.withConst());
4472    // long length;
4473    FieldTypes[3] = LongTy;
4474
4475    // Create fields
4476    for (unsigned i = 0; i < 4; ++i) {
4477      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4478                                           SourceLocation(),
4479                                           SourceLocation(), 0,
4480                                           FieldTypes[i], /*TInfo=*/0,
4481                                           /*BitWidth=*/0,
4482                                           /*Mutable=*/false,
4483                                           ICIS_NoInit);
4484      Field->setAccess(AS_public);
4485      CFConstantStringTypeDecl->addDecl(Field);
4486    }
4487
4488    CFConstantStringTypeDecl->completeDefinition();
4489  }
4490
4491  return getTagDeclType(CFConstantStringTypeDecl);
4492}
4493
4494QualType ASTContext::getObjCSuperType() const {
4495  if (ObjCSuperType.isNull()) {
4496    RecordDecl *ObjCSuperTypeDecl  =
4497      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4498    TUDecl->addDecl(ObjCSuperTypeDecl);
4499    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4500  }
4501  return ObjCSuperType;
4502}
4503
4504void ASTContext::setCFConstantStringType(QualType T) {
4505  const RecordType *Rec = T->getAs<RecordType>();
4506  assert(Rec && "Invalid CFConstantStringType");
4507  CFConstantStringTypeDecl = Rec->getDecl();
4508}
4509
4510QualType ASTContext::getBlockDescriptorType() const {
4511  if (BlockDescriptorType)
4512    return getTagDeclType(BlockDescriptorType);
4513
4514  RecordDecl *T;
4515  // FIXME: Needs the FlagAppleBlock bit.
4516  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4517                       &Idents.get("__block_descriptor"));
4518  T->startDefinition();
4519
4520  QualType FieldTypes[] = {
4521    UnsignedLongTy,
4522    UnsignedLongTy,
4523  };
4524
4525  const char *FieldNames[] = {
4526    "reserved",
4527    "Size"
4528  };
4529
4530  for (size_t i = 0; i < 2; ++i) {
4531    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4532                                         SourceLocation(),
4533                                         &Idents.get(FieldNames[i]),
4534                                         FieldTypes[i], /*TInfo=*/0,
4535                                         /*BitWidth=*/0,
4536                                         /*Mutable=*/false,
4537                                         ICIS_NoInit);
4538    Field->setAccess(AS_public);
4539    T->addDecl(Field);
4540  }
4541
4542  T->completeDefinition();
4543
4544  BlockDescriptorType = T;
4545
4546  return getTagDeclType(BlockDescriptorType);
4547}
4548
4549QualType ASTContext::getBlockDescriptorExtendedType() const {
4550  if (BlockDescriptorExtendedType)
4551    return getTagDeclType(BlockDescriptorExtendedType);
4552
4553  RecordDecl *T;
4554  // FIXME: Needs the FlagAppleBlock bit.
4555  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4556                       &Idents.get("__block_descriptor_withcopydispose"));
4557  T->startDefinition();
4558
4559  QualType FieldTypes[] = {
4560    UnsignedLongTy,
4561    UnsignedLongTy,
4562    getPointerType(VoidPtrTy),
4563    getPointerType(VoidPtrTy)
4564  };
4565
4566  const char *FieldNames[] = {
4567    "reserved",
4568    "Size",
4569    "CopyFuncPtr",
4570    "DestroyFuncPtr"
4571  };
4572
4573  for (size_t i = 0; i < 4; ++i) {
4574    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4575                                         SourceLocation(),
4576                                         &Idents.get(FieldNames[i]),
4577                                         FieldTypes[i], /*TInfo=*/0,
4578                                         /*BitWidth=*/0,
4579                                         /*Mutable=*/false,
4580                                         ICIS_NoInit);
4581    Field->setAccess(AS_public);
4582    T->addDecl(Field);
4583  }
4584
4585  T->completeDefinition();
4586
4587  BlockDescriptorExtendedType = T;
4588
4589  return getTagDeclType(BlockDescriptorExtendedType);
4590}
4591
4592/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4593/// requires copy/dispose. Note that this must match the logic
4594/// in buildByrefHelpers.
4595bool ASTContext::BlockRequiresCopying(QualType Ty,
4596                                      const VarDecl *D) {
4597  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4598    const Expr *copyExpr = getBlockVarCopyInits(D);
4599    if (!copyExpr && record->hasTrivialDestructor()) return false;
4600
4601    return true;
4602  }
4603
4604  if (!Ty->isObjCRetainableType()) return false;
4605
4606  Qualifiers qs = Ty.getQualifiers();
4607
4608  // If we have lifetime, that dominates.
4609  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4610    assert(getLangOpts().ObjCAutoRefCount);
4611
4612    switch (lifetime) {
4613      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4614
4615      // These are just bits as far as the runtime is concerned.
4616      case Qualifiers::OCL_ExplicitNone:
4617      case Qualifiers::OCL_Autoreleasing:
4618        return false;
4619
4620      // Tell the runtime that this is ARC __weak, called by the
4621      // byref routines.
4622      case Qualifiers::OCL_Weak:
4623      // ARC __strong __block variables need to be retained.
4624      case Qualifiers::OCL_Strong:
4625        return true;
4626    }
4627    llvm_unreachable("fell out of lifetime switch!");
4628  }
4629  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4630          Ty->isObjCObjectPointerType());
4631}
4632
4633bool ASTContext::getByrefLifetime(QualType Ty,
4634                              Qualifiers::ObjCLifetime &LifeTime,
4635                              bool &HasByrefExtendedLayout) const {
4636
4637  if (!getLangOpts().ObjC1 ||
4638      getLangOpts().getGC() != LangOptions::NonGC)
4639    return false;
4640
4641  HasByrefExtendedLayout = false;
4642  if (Ty->isRecordType()) {
4643    HasByrefExtendedLayout = true;
4644    LifeTime = Qualifiers::OCL_None;
4645  }
4646  else if (getLangOpts().ObjCAutoRefCount)
4647    LifeTime = Ty.getObjCLifetime();
4648  // MRR.
4649  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4650    LifeTime = Qualifiers::OCL_ExplicitNone;
4651  else
4652    LifeTime = Qualifiers::OCL_None;
4653  return true;
4654}
4655
4656TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4657  if (!ObjCInstanceTypeDecl)
4658    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4659                                               getTranslationUnitDecl(),
4660                                               SourceLocation(),
4661                                               SourceLocation(),
4662                                               &Idents.get("instancetype"),
4663                                     getTrivialTypeSourceInfo(getObjCIdType()));
4664  return ObjCInstanceTypeDecl;
4665}
4666
4667// This returns true if a type has been typedefed to BOOL:
4668// typedef <type> BOOL;
4669static bool isTypeTypedefedAsBOOL(QualType T) {
4670  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4671    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4672      return II->isStr("BOOL");
4673
4674  return false;
4675}
4676
4677/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4678/// purpose.
4679CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4680  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4681    return CharUnits::Zero();
4682
4683  CharUnits sz = getTypeSizeInChars(type);
4684
4685  // Make all integer and enum types at least as large as an int
4686  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4687    sz = std::max(sz, getTypeSizeInChars(IntTy));
4688  // Treat arrays as pointers, since that's how they're passed in.
4689  else if (type->isArrayType())
4690    sz = getTypeSizeInChars(VoidPtrTy);
4691  return sz;
4692}
4693
4694static inline
4695std::string charUnitsToString(const CharUnits &CU) {
4696  return llvm::itostr(CU.getQuantity());
4697}
4698
4699/// getObjCEncodingForBlock - Return the encoded type for this block
4700/// declaration.
4701std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4702  std::string S;
4703
4704  const BlockDecl *Decl = Expr->getBlockDecl();
4705  QualType BlockTy =
4706      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4707  // Encode result type.
4708  if (getLangOpts().EncodeExtendedBlockSig)
4709    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4710                            BlockTy->getAs<FunctionType>()->getResultType(),
4711                            S, true /*Extended*/);
4712  else
4713    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4714                           S);
4715  // Compute size of all parameters.
4716  // Start with computing size of a pointer in number of bytes.
4717  // FIXME: There might(should) be a better way of doing this computation!
4718  SourceLocation Loc;
4719  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4720  CharUnits ParmOffset = PtrSize;
4721  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4722       E = Decl->param_end(); PI != E; ++PI) {
4723    QualType PType = (*PI)->getType();
4724    CharUnits sz = getObjCEncodingTypeSize(PType);
4725    if (sz.isZero())
4726      continue;
4727    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4728    ParmOffset += sz;
4729  }
4730  // Size of the argument frame
4731  S += charUnitsToString(ParmOffset);
4732  // Block pointer and offset.
4733  S += "@?0";
4734
4735  // Argument types.
4736  ParmOffset = PtrSize;
4737  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4738       Decl->param_end(); PI != E; ++PI) {
4739    ParmVarDecl *PVDecl = *PI;
4740    QualType PType = PVDecl->getOriginalType();
4741    if (const ArrayType *AT =
4742          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4743      // Use array's original type only if it has known number of
4744      // elements.
4745      if (!isa<ConstantArrayType>(AT))
4746        PType = PVDecl->getType();
4747    } else if (PType->isFunctionType())
4748      PType = PVDecl->getType();
4749    if (getLangOpts().EncodeExtendedBlockSig)
4750      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4751                                      S, true /*Extended*/);
4752    else
4753      getObjCEncodingForType(PType, S);
4754    S += charUnitsToString(ParmOffset);
4755    ParmOffset += getObjCEncodingTypeSize(PType);
4756  }
4757
4758  return S;
4759}
4760
4761bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4762                                                std::string& S) {
4763  // Encode result type.
4764  getObjCEncodingForType(Decl->getResultType(), S);
4765  CharUnits ParmOffset;
4766  // Compute size of all parameters.
4767  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4768       E = Decl->param_end(); PI != E; ++PI) {
4769    QualType PType = (*PI)->getType();
4770    CharUnits sz = getObjCEncodingTypeSize(PType);
4771    if (sz.isZero())
4772      continue;
4773
4774    assert (sz.isPositive() &&
4775        "getObjCEncodingForFunctionDecl - Incomplete param type");
4776    ParmOffset += sz;
4777  }
4778  S += charUnitsToString(ParmOffset);
4779  ParmOffset = CharUnits::Zero();
4780
4781  // Argument types.
4782  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4783       E = Decl->param_end(); PI != E; ++PI) {
4784    ParmVarDecl *PVDecl = *PI;
4785    QualType PType = PVDecl->getOriginalType();
4786    if (const ArrayType *AT =
4787          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4788      // Use array's original type only if it has known number of
4789      // elements.
4790      if (!isa<ConstantArrayType>(AT))
4791        PType = PVDecl->getType();
4792    } else if (PType->isFunctionType())
4793      PType = PVDecl->getType();
4794    getObjCEncodingForType(PType, S);
4795    S += charUnitsToString(ParmOffset);
4796    ParmOffset += getObjCEncodingTypeSize(PType);
4797  }
4798
4799  return false;
4800}
4801
4802/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4803/// method parameter or return type. If Extended, include class names and
4804/// block object types.
4805void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4806                                                   QualType T, std::string& S,
4807                                                   bool Extended) const {
4808  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4809  getObjCEncodingForTypeQualifier(QT, S);
4810  // Encode parameter type.
4811  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4812                             true     /*OutermostType*/,
4813                             false    /*EncodingProperty*/,
4814                             false    /*StructField*/,
4815                             Extended /*EncodeBlockParameters*/,
4816                             Extended /*EncodeClassNames*/);
4817}
4818
4819/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4820/// declaration.
4821bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4822                                              std::string& S,
4823                                              bool Extended) const {
4824  // FIXME: This is not very efficient.
4825  // Encode return type.
4826  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4827                                    Decl->getResultType(), S, Extended);
4828  // Compute size of all parameters.
4829  // Start with computing size of a pointer in number of bytes.
4830  // FIXME: There might(should) be a better way of doing this computation!
4831  SourceLocation Loc;
4832  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4833  // The first two arguments (self and _cmd) are pointers; account for
4834  // their size.
4835  CharUnits ParmOffset = 2 * PtrSize;
4836  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4837       E = Decl->sel_param_end(); PI != E; ++PI) {
4838    QualType PType = (*PI)->getType();
4839    CharUnits sz = getObjCEncodingTypeSize(PType);
4840    if (sz.isZero())
4841      continue;
4842
4843    assert (sz.isPositive() &&
4844        "getObjCEncodingForMethodDecl - Incomplete param type");
4845    ParmOffset += sz;
4846  }
4847  S += charUnitsToString(ParmOffset);
4848  S += "@0:";
4849  S += charUnitsToString(PtrSize);
4850
4851  // Argument types.
4852  ParmOffset = 2 * PtrSize;
4853  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4854       E = Decl->sel_param_end(); PI != E; ++PI) {
4855    const ParmVarDecl *PVDecl = *PI;
4856    QualType PType = PVDecl->getOriginalType();
4857    if (const ArrayType *AT =
4858          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4859      // Use array's original type only if it has known number of
4860      // elements.
4861      if (!isa<ConstantArrayType>(AT))
4862        PType = PVDecl->getType();
4863    } else if (PType->isFunctionType())
4864      PType = PVDecl->getType();
4865    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4866                                      PType, S, Extended);
4867    S += charUnitsToString(ParmOffset);
4868    ParmOffset += getObjCEncodingTypeSize(PType);
4869  }
4870
4871  return false;
4872}
4873
4874/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4875/// property declaration. If non-NULL, Container must be either an
4876/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4877/// NULL when getting encodings for protocol properties.
4878/// Property attributes are stored as a comma-delimited C string. The simple
4879/// attributes readonly and bycopy are encoded as single characters. The
4880/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4881/// encoded as single characters, followed by an identifier. Property types
4882/// are also encoded as a parametrized attribute. The characters used to encode
4883/// these attributes are defined by the following enumeration:
4884/// @code
4885/// enum PropertyAttributes {
4886/// kPropertyReadOnly = 'R',   // property is read-only.
4887/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4888/// kPropertyByref = '&',  // property is a reference to the value last assigned
4889/// kPropertyDynamic = 'D',    // property is dynamic
4890/// kPropertyGetter = 'G',     // followed by getter selector name
4891/// kPropertySetter = 'S',     // followed by setter selector name
4892/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4893/// kPropertyType = 'T'              // followed by old-style type encoding.
4894/// kPropertyWeak = 'W'              // 'weak' property
4895/// kPropertyStrong = 'P'            // property GC'able
4896/// kPropertyNonAtomic = 'N'         // property non-atomic
4897/// };
4898/// @endcode
4899void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4900                                                const Decl *Container,
4901                                                std::string& S) const {
4902  // Collect information from the property implementation decl(s).
4903  bool Dynamic = false;
4904  ObjCPropertyImplDecl *SynthesizePID = 0;
4905
4906  // FIXME: Duplicated code due to poor abstraction.
4907  if (Container) {
4908    if (const ObjCCategoryImplDecl *CID =
4909        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4910      for (ObjCCategoryImplDecl::propimpl_iterator
4911             i = CID->propimpl_begin(), e = CID->propimpl_end();
4912           i != e; ++i) {
4913        ObjCPropertyImplDecl *PID = *i;
4914        if (PID->getPropertyDecl() == PD) {
4915          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4916            Dynamic = true;
4917          } else {
4918            SynthesizePID = PID;
4919          }
4920        }
4921      }
4922    } else {
4923      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4924      for (ObjCCategoryImplDecl::propimpl_iterator
4925             i = OID->propimpl_begin(), e = OID->propimpl_end();
4926           i != e; ++i) {
4927        ObjCPropertyImplDecl *PID = *i;
4928        if (PID->getPropertyDecl() == PD) {
4929          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4930            Dynamic = true;
4931          } else {
4932            SynthesizePID = PID;
4933          }
4934        }
4935      }
4936    }
4937  }
4938
4939  // FIXME: This is not very efficient.
4940  S = "T";
4941
4942  // Encode result type.
4943  // GCC has some special rules regarding encoding of properties which
4944  // closely resembles encoding of ivars.
4945  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4946                             true /* outermost type */,
4947                             true /* encoding for property */);
4948
4949  if (PD->isReadOnly()) {
4950    S += ",R";
4951    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
4952      S += ",C";
4953    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
4954      S += ",&";
4955  } else {
4956    switch (PD->getSetterKind()) {
4957    case ObjCPropertyDecl::Assign: break;
4958    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4959    case ObjCPropertyDecl::Retain: S += ",&"; break;
4960    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4961    }
4962  }
4963
4964  // It really isn't clear at all what this means, since properties
4965  // are "dynamic by default".
4966  if (Dynamic)
4967    S += ",D";
4968
4969  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4970    S += ",N";
4971
4972  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4973    S += ",G";
4974    S += PD->getGetterName().getAsString();
4975  }
4976
4977  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4978    S += ",S";
4979    S += PD->getSetterName().getAsString();
4980  }
4981
4982  if (SynthesizePID) {
4983    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4984    S += ",V";
4985    S += OID->getNameAsString();
4986  }
4987
4988  // FIXME: OBJCGC: weak & strong
4989}
4990
4991/// getLegacyIntegralTypeEncoding -
4992/// Another legacy compatibility encoding: 32-bit longs are encoded as
4993/// 'l' or 'L' , but not always.  For typedefs, we need to use
4994/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4995///
4996void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4997  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4998    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4999      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
5000        PointeeTy = UnsignedIntTy;
5001      else
5002        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
5003          PointeeTy = IntTy;
5004    }
5005  }
5006}
5007
5008void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5009                                        const FieldDecl *Field) const {
5010  // We follow the behavior of gcc, expanding structures which are
5011  // directly pointed to, and expanding embedded structures. Note that
5012  // these rules are sufficient to prevent recursive encoding of the
5013  // same type.
5014  getObjCEncodingForTypeImpl(T, S, true, true, Field,
5015                             true /* outermost type */);
5016}
5017
5018static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5019                                            BuiltinType::Kind kind) {
5020    switch (kind) {
5021    case BuiltinType::Void:       return 'v';
5022    case BuiltinType::Bool:       return 'B';
5023    case BuiltinType::Char_U:
5024    case BuiltinType::UChar:      return 'C';
5025    case BuiltinType::Char16:
5026    case BuiltinType::UShort:     return 'S';
5027    case BuiltinType::Char32:
5028    case BuiltinType::UInt:       return 'I';
5029    case BuiltinType::ULong:
5030        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5031    case BuiltinType::UInt128:    return 'T';
5032    case BuiltinType::ULongLong:  return 'Q';
5033    case BuiltinType::Char_S:
5034    case BuiltinType::SChar:      return 'c';
5035    case BuiltinType::Short:      return 's';
5036    case BuiltinType::WChar_S:
5037    case BuiltinType::WChar_U:
5038    case BuiltinType::Int:        return 'i';
5039    case BuiltinType::Long:
5040      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5041    case BuiltinType::LongLong:   return 'q';
5042    case BuiltinType::Int128:     return 't';
5043    case BuiltinType::Float:      return 'f';
5044    case BuiltinType::Double:     return 'd';
5045    case BuiltinType::LongDouble: return 'D';
5046    case BuiltinType::NullPtr:    return '*'; // like char*
5047
5048    case BuiltinType::Half:
5049      // FIXME: potentially need @encodes for these!
5050      return ' ';
5051
5052    case BuiltinType::ObjCId:
5053    case BuiltinType::ObjCClass:
5054    case BuiltinType::ObjCSel:
5055      llvm_unreachable("@encoding ObjC primitive type");
5056
5057    // OpenCL and placeholder types don't need @encodings.
5058    case BuiltinType::OCLImage1d:
5059    case BuiltinType::OCLImage1dArray:
5060    case BuiltinType::OCLImage1dBuffer:
5061    case BuiltinType::OCLImage2d:
5062    case BuiltinType::OCLImage2dArray:
5063    case BuiltinType::OCLImage3d:
5064    case BuiltinType::OCLEvent:
5065    case BuiltinType::OCLSampler:
5066    case BuiltinType::Dependent:
5067#define BUILTIN_TYPE(KIND, ID)
5068#define PLACEHOLDER_TYPE(KIND, ID) \
5069    case BuiltinType::KIND:
5070#include "clang/AST/BuiltinTypes.def"
5071      llvm_unreachable("invalid builtin type for @encode");
5072    }
5073    llvm_unreachable("invalid BuiltinType::Kind value");
5074}
5075
5076static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5077  EnumDecl *Enum = ET->getDecl();
5078
5079  // The encoding of an non-fixed enum type is always 'i', regardless of size.
5080  if (!Enum->isFixed())
5081    return 'i';
5082
5083  // The encoding of a fixed enum type matches its fixed underlying type.
5084  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5085  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5086}
5087
5088static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5089                           QualType T, const FieldDecl *FD) {
5090  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5091  S += 'b';
5092  // The NeXT runtime encodes bit fields as b followed by the number of bits.
5093  // The GNU runtime requires more information; bitfields are encoded as b,
5094  // then the offset (in bits) of the first element, then the type of the
5095  // bitfield, then the size in bits.  For example, in this structure:
5096  //
5097  // struct
5098  // {
5099  //    int integer;
5100  //    int flags:2;
5101  // };
5102  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5103  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5104  // information is not especially sensible, but we're stuck with it for
5105  // compatibility with GCC, although providing it breaks anything that
5106  // actually uses runtime introspection and wants to work on both runtimes...
5107  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5108    const RecordDecl *RD = FD->getParent();
5109    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5110    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5111    if (const EnumType *ET = T->getAs<EnumType>())
5112      S += ObjCEncodingForEnumType(Ctx, ET);
5113    else {
5114      const BuiltinType *BT = T->castAs<BuiltinType>();
5115      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5116    }
5117  }
5118  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5119}
5120
5121// FIXME: Use SmallString for accumulating string.
5122void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5123                                            bool ExpandPointedToStructures,
5124                                            bool ExpandStructures,
5125                                            const FieldDecl *FD,
5126                                            bool OutermostType,
5127                                            bool EncodingProperty,
5128                                            bool StructField,
5129                                            bool EncodeBlockParameters,
5130                                            bool EncodeClassNames,
5131                                            bool EncodePointerToObjCTypedef) const {
5132  CanQualType CT = getCanonicalType(T);
5133  switch (CT->getTypeClass()) {
5134  case Type::Builtin:
5135  case Type::Enum:
5136    if (FD && FD->isBitField())
5137      return EncodeBitField(this, S, T, FD);
5138    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5139      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5140    else
5141      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5142    return;
5143
5144  case Type::Complex: {
5145    const ComplexType *CT = T->castAs<ComplexType>();
5146    S += 'j';
5147    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5148                               false);
5149    return;
5150  }
5151
5152  case Type::Atomic: {
5153    const AtomicType *AT = T->castAs<AtomicType>();
5154    S += 'A';
5155    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5156                               false, false);
5157    return;
5158  }
5159
5160  // encoding for pointer or reference types.
5161  case Type::Pointer:
5162  case Type::LValueReference:
5163  case Type::RValueReference: {
5164    QualType PointeeTy;
5165    if (isa<PointerType>(CT)) {
5166      const PointerType *PT = T->castAs<PointerType>();
5167      if (PT->isObjCSelType()) {
5168        S += ':';
5169        return;
5170      }
5171      PointeeTy = PT->getPointeeType();
5172    } else {
5173      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5174    }
5175
5176    bool isReadOnly = false;
5177    // For historical/compatibility reasons, the read-only qualifier of the
5178    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5179    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5180    // Also, do not emit the 'r' for anything but the outermost type!
5181    if (isa<TypedefType>(T.getTypePtr())) {
5182      if (OutermostType && T.isConstQualified()) {
5183        isReadOnly = true;
5184        S += 'r';
5185      }
5186    } else if (OutermostType) {
5187      QualType P = PointeeTy;
5188      while (P->getAs<PointerType>())
5189        P = P->getAs<PointerType>()->getPointeeType();
5190      if (P.isConstQualified()) {
5191        isReadOnly = true;
5192        S += 'r';
5193      }
5194    }
5195    if (isReadOnly) {
5196      // Another legacy compatibility encoding. Some ObjC qualifier and type
5197      // combinations need to be rearranged.
5198      // Rewrite "in const" from "nr" to "rn"
5199      if (StringRef(S).endswith("nr"))
5200        S.replace(S.end()-2, S.end(), "rn");
5201    }
5202
5203    if (PointeeTy->isCharType()) {
5204      // char pointer types should be encoded as '*' unless it is a
5205      // type that has been typedef'd to 'BOOL'.
5206      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5207        S += '*';
5208        return;
5209      }
5210    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5211      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5212      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5213        S += '#';
5214        return;
5215      }
5216      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5217      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5218        S += '@';
5219        return;
5220      }
5221      // fall through...
5222    }
5223    S += '^';
5224    getLegacyIntegralTypeEncoding(PointeeTy);
5225
5226    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5227                               NULL);
5228    return;
5229  }
5230
5231  case Type::ConstantArray:
5232  case Type::IncompleteArray:
5233  case Type::VariableArray: {
5234    const ArrayType *AT = cast<ArrayType>(CT);
5235
5236    if (isa<IncompleteArrayType>(AT) && !StructField) {
5237      // Incomplete arrays are encoded as a pointer to the array element.
5238      S += '^';
5239
5240      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5241                                 false, ExpandStructures, FD);
5242    } else {
5243      S += '[';
5244
5245      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
5246        S += llvm::utostr(CAT->getSize().getZExtValue());
5247      else {
5248        //Variable length arrays are encoded as a regular array with 0 elements.
5249        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5250               "Unknown array type!");
5251        S += '0';
5252      }
5253
5254      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5255                                 false, ExpandStructures, FD);
5256      S += ']';
5257    }
5258    return;
5259  }
5260
5261  case Type::FunctionNoProto:
5262  case Type::FunctionProto:
5263    S += '?';
5264    return;
5265
5266  case Type::Record: {
5267    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5268    S += RDecl->isUnion() ? '(' : '{';
5269    // Anonymous structures print as '?'
5270    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5271      S += II->getName();
5272      if (ClassTemplateSpecializationDecl *Spec
5273          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5274        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5275        llvm::raw_string_ostream OS(S);
5276        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5277                                            TemplateArgs.data(),
5278                                            TemplateArgs.size(),
5279                                            (*this).getPrintingPolicy());
5280      }
5281    } else {
5282      S += '?';
5283    }
5284    if (ExpandStructures) {
5285      S += '=';
5286      if (!RDecl->isUnion()) {
5287        getObjCEncodingForStructureImpl(RDecl, S, FD);
5288      } else {
5289        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5290                                     FieldEnd = RDecl->field_end();
5291             Field != FieldEnd; ++Field) {
5292          if (FD) {
5293            S += '"';
5294            S += Field->getNameAsString();
5295            S += '"';
5296          }
5297
5298          // Special case bit-fields.
5299          if (Field->isBitField()) {
5300            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5301                                       *Field);
5302          } else {
5303            QualType qt = Field->getType();
5304            getLegacyIntegralTypeEncoding(qt);
5305            getObjCEncodingForTypeImpl(qt, S, false, true,
5306                                       FD, /*OutermostType*/false,
5307                                       /*EncodingProperty*/false,
5308                                       /*StructField*/true);
5309          }
5310        }
5311      }
5312    }
5313    S += RDecl->isUnion() ? ')' : '}';
5314    return;
5315  }
5316
5317  case Type::BlockPointer: {
5318    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5319    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5320    if (EncodeBlockParameters) {
5321      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5322
5323      S += '<';
5324      // Block return type
5325      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5326                                 ExpandPointedToStructures, ExpandStructures,
5327                                 FD,
5328                                 false /* OutermostType */,
5329                                 EncodingProperty,
5330                                 false /* StructField */,
5331                                 EncodeBlockParameters,
5332                                 EncodeClassNames);
5333      // Block self
5334      S += "@?";
5335      // Block parameters
5336      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5337        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5338               E = FPT->arg_type_end(); I && (I != E); ++I) {
5339          getObjCEncodingForTypeImpl(*I, S,
5340                                     ExpandPointedToStructures,
5341                                     ExpandStructures,
5342                                     FD,
5343                                     false /* OutermostType */,
5344                                     EncodingProperty,
5345                                     false /* StructField */,
5346                                     EncodeBlockParameters,
5347                                     EncodeClassNames);
5348        }
5349      }
5350      S += '>';
5351    }
5352    return;
5353  }
5354
5355  case Type::ObjCObject:
5356  case Type::ObjCInterface: {
5357    // Ignore protocol qualifiers when mangling at this level.
5358    T = T->castAs<ObjCObjectType>()->getBaseType();
5359
5360    // The assumption seems to be that this assert will succeed
5361    // because nested levels will have filtered out 'id' and 'Class'.
5362    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5363    // @encode(class_name)
5364    ObjCInterfaceDecl *OI = OIT->getDecl();
5365    S += '{';
5366    const IdentifierInfo *II = OI->getIdentifier();
5367    S += II->getName();
5368    S += '=';
5369    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5370    DeepCollectObjCIvars(OI, true, Ivars);
5371    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5372      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5373      if (Field->isBitField())
5374        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5375      else
5376        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5377                                   false, false, false, false, false,
5378                                   EncodePointerToObjCTypedef);
5379    }
5380    S += '}';
5381    return;
5382  }
5383
5384  case Type::ObjCObjectPointer: {
5385    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5386    if (OPT->isObjCIdType()) {
5387      S += '@';
5388      return;
5389    }
5390
5391    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5392      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5393      // Since this is a binary compatibility issue, need to consult with runtime
5394      // folks. Fortunately, this is a *very* obsure construct.
5395      S += '#';
5396      return;
5397    }
5398
5399    if (OPT->isObjCQualifiedIdType()) {
5400      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5401                                 ExpandPointedToStructures,
5402                                 ExpandStructures, FD);
5403      if (FD || EncodingProperty || EncodeClassNames) {
5404        // Note that we do extended encoding of protocol qualifer list
5405        // Only when doing ivar or property encoding.
5406        S += '"';
5407        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5408             E = OPT->qual_end(); I != E; ++I) {
5409          S += '<';
5410          S += (*I)->getNameAsString();
5411          S += '>';
5412        }
5413        S += '"';
5414      }
5415      return;
5416    }
5417
5418    QualType PointeeTy = OPT->getPointeeType();
5419    if (!EncodingProperty &&
5420        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5421        !EncodePointerToObjCTypedef) {
5422      // Another historical/compatibility reason.
5423      // We encode the underlying type which comes out as
5424      // {...};
5425      S += '^';
5426      getObjCEncodingForTypeImpl(PointeeTy, S,
5427                                 false, ExpandPointedToStructures,
5428                                 NULL,
5429                                 false, false, false, false, false,
5430                                 /*EncodePointerToObjCTypedef*/true);
5431      return;
5432    }
5433
5434    S += '@';
5435    if (OPT->getInterfaceDecl() &&
5436        (FD || EncodingProperty || EncodeClassNames)) {
5437      S += '"';
5438      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5439      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5440           E = OPT->qual_end(); I != E; ++I) {
5441        S += '<';
5442        S += (*I)->getNameAsString();
5443        S += '>';
5444      }
5445      S += '"';
5446    }
5447    return;
5448  }
5449
5450  // gcc just blithely ignores member pointers.
5451  // FIXME: we shoul do better than that.  'M' is available.
5452  case Type::MemberPointer:
5453    return;
5454
5455  case Type::Vector:
5456  case Type::ExtVector:
5457    // This matches gcc's encoding, even though technically it is
5458    // insufficient.
5459    // FIXME. We should do a better job than gcc.
5460    return;
5461
5462  case Type::Auto:
5463    // We could see an undeduced auto type here during error recovery.
5464    // Just ignore it.
5465    return;
5466
5467#define ABSTRACT_TYPE(KIND, BASE)
5468#define TYPE(KIND, BASE)
5469#define DEPENDENT_TYPE(KIND, BASE) \
5470  case Type::KIND:
5471#define NON_CANONICAL_TYPE(KIND, BASE) \
5472  case Type::KIND:
5473#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5474  case Type::KIND:
5475#include "clang/AST/TypeNodes.def"
5476    llvm_unreachable("@encode for dependent type!");
5477  }
5478  llvm_unreachable("bad type kind!");
5479}
5480
5481void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5482                                                 std::string &S,
5483                                                 const FieldDecl *FD,
5484                                                 bool includeVBases) const {
5485  assert(RDecl && "Expected non-null RecordDecl");
5486  assert(!RDecl->isUnion() && "Should not be called for unions");
5487  if (!RDecl->getDefinition())
5488    return;
5489
5490  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5491  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5492  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5493
5494  if (CXXRec) {
5495    for (CXXRecordDecl::base_class_iterator
5496           BI = CXXRec->bases_begin(),
5497           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5498      if (!BI->isVirtual()) {
5499        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5500        if (base->isEmpty())
5501          continue;
5502        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5503        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5504                                  std::make_pair(offs, base));
5505      }
5506    }
5507  }
5508
5509  unsigned i = 0;
5510  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5511                               FieldEnd = RDecl->field_end();
5512       Field != FieldEnd; ++Field, ++i) {
5513    uint64_t offs = layout.getFieldOffset(i);
5514    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5515                              std::make_pair(offs, *Field));
5516  }
5517
5518  if (CXXRec && includeVBases) {
5519    for (CXXRecordDecl::base_class_iterator
5520           BI = CXXRec->vbases_begin(),
5521           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5522      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5523      if (base->isEmpty())
5524        continue;
5525      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5526      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5527        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5528                                  std::make_pair(offs, base));
5529    }
5530  }
5531
5532  CharUnits size;
5533  if (CXXRec) {
5534    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5535  } else {
5536    size = layout.getSize();
5537  }
5538
5539  uint64_t CurOffs = 0;
5540  std::multimap<uint64_t, NamedDecl *>::iterator
5541    CurLayObj = FieldOrBaseOffsets.begin();
5542
5543  if (CXXRec && CXXRec->isDynamicClass() &&
5544      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5545    if (FD) {
5546      S += "\"_vptr$";
5547      std::string recname = CXXRec->getNameAsString();
5548      if (recname.empty()) recname = "?";
5549      S += recname;
5550      S += '"';
5551    }
5552    S += "^^?";
5553    CurOffs += getTypeSize(VoidPtrTy);
5554  }
5555
5556  if (!RDecl->hasFlexibleArrayMember()) {
5557    // Mark the end of the structure.
5558    uint64_t offs = toBits(size);
5559    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5560                              std::make_pair(offs, (NamedDecl*)0));
5561  }
5562
5563  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5564    assert(CurOffs <= CurLayObj->first);
5565
5566    if (CurOffs < CurLayObj->first) {
5567      uint64_t padding = CurLayObj->first - CurOffs;
5568      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5569      // packing/alignment of members is different that normal, in which case
5570      // the encoding will be out-of-sync with the real layout.
5571      // If the runtime switches to just consider the size of types without
5572      // taking into account alignment, we could make padding explicit in the
5573      // encoding (e.g. using arrays of chars). The encoding strings would be
5574      // longer then though.
5575      CurOffs += padding;
5576    }
5577
5578    NamedDecl *dcl = CurLayObj->second;
5579    if (dcl == 0)
5580      break; // reached end of structure.
5581
5582    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5583      // We expand the bases without their virtual bases since those are going
5584      // in the initial structure. Note that this differs from gcc which
5585      // expands virtual bases each time one is encountered in the hierarchy,
5586      // making the encoding type bigger than it really is.
5587      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5588      assert(!base->isEmpty());
5589      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5590    } else {
5591      FieldDecl *field = cast<FieldDecl>(dcl);
5592      if (FD) {
5593        S += '"';
5594        S += field->getNameAsString();
5595        S += '"';
5596      }
5597
5598      if (field->isBitField()) {
5599        EncodeBitField(this, S, field->getType(), field);
5600        CurOffs += field->getBitWidthValue(*this);
5601      } else {
5602        QualType qt = field->getType();
5603        getLegacyIntegralTypeEncoding(qt);
5604        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5605                                   /*OutermostType*/false,
5606                                   /*EncodingProperty*/false,
5607                                   /*StructField*/true);
5608        CurOffs += getTypeSize(field->getType());
5609      }
5610    }
5611  }
5612}
5613
5614void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5615                                                 std::string& S) const {
5616  if (QT & Decl::OBJC_TQ_In)
5617    S += 'n';
5618  if (QT & Decl::OBJC_TQ_Inout)
5619    S += 'N';
5620  if (QT & Decl::OBJC_TQ_Out)
5621    S += 'o';
5622  if (QT & Decl::OBJC_TQ_Bycopy)
5623    S += 'O';
5624  if (QT & Decl::OBJC_TQ_Byref)
5625    S += 'R';
5626  if (QT & Decl::OBJC_TQ_Oneway)
5627    S += 'V';
5628}
5629
5630TypedefDecl *ASTContext::getObjCIdDecl() const {
5631  if (!ObjCIdDecl) {
5632    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5633    T = getObjCObjectPointerType(T);
5634    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5635    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5636                                     getTranslationUnitDecl(),
5637                                     SourceLocation(), SourceLocation(),
5638                                     &Idents.get("id"), IdInfo);
5639  }
5640
5641  return ObjCIdDecl;
5642}
5643
5644TypedefDecl *ASTContext::getObjCSelDecl() const {
5645  if (!ObjCSelDecl) {
5646    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5647    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5648    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5649                                      getTranslationUnitDecl(),
5650                                      SourceLocation(), SourceLocation(),
5651                                      &Idents.get("SEL"), SelInfo);
5652  }
5653  return ObjCSelDecl;
5654}
5655
5656TypedefDecl *ASTContext::getObjCClassDecl() const {
5657  if (!ObjCClassDecl) {
5658    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5659    T = getObjCObjectPointerType(T);
5660    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5661    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5662                                        getTranslationUnitDecl(),
5663                                        SourceLocation(), SourceLocation(),
5664                                        &Idents.get("Class"), ClassInfo);
5665  }
5666
5667  return ObjCClassDecl;
5668}
5669
5670ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5671  if (!ObjCProtocolClassDecl) {
5672    ObjCProtocolClassDecl
5673      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5674                                  SourceLocation(),
5675                                  &Idents.get("Protocol"),
5676                                  /*PrevDecl=*/0,
5677                                  SourceLocation(), true);
5678  }
5679
5680  return ObjCProtocolClassDecl;
5681}
5682
5683//===----------------------------------------------------------------------===//
5684// __builtin_va_list Construction Functions
5685//===----------------------------------------------------------------------===//
5686
5687static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5688  // typedef char* __builtin_va_list;
5689  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5690  TypeSourceInfo *TInfo
5691    = Context->getTrivialTypeSourceInfo(CharPtrType);
5692
5693  TypedefDecl *VaListTypeDecl
5694    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5695                          Context->getTranslationUnitDecl(),
5696                          SourceLocation(), SourceLocation(),
5697                          &Context->Idents.get("__builtin_va_list"),
5698                          TInfo);
5699  return VaListTypeDecl;
5700}
5701
5702static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5703  // typedef void* __builtin_va_list;
5704  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5705  TypeSourceInfo *TInfo
5706    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5707
5708  TypedefDecl *VaListTypeDecl
5709    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5710                          Context->getTranslationUnitDecl(),
5711                          SourceLocation(), SourceLocation(),
5712                          &Context->Idents.get("__builtin_va_list"),
5713                          TInfo);
5714  return VaListTypeDecl;
5715}
5716
5717static TypedefDecl *
5718CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5719  RecordDecl *VaListTagDecl;
5720  if (Context->getLangOpts().CPlusPlus) {
5721    // namespace std { struct __va_list {
5722    NamespaceDecl *NS;
5723    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5724                               Context->getTranslationUnitDecl(),
5725                               /*Inline*/false, SourceLocation(),
5726                               SourceLocation(), &Context->Idents.get("std"),
5727                               /*PrevDecl*/0);
5728
5729    VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5730                                          Context->getTranslationUnitDecl(),
5731                                          SourceLocation(), SourceLocation(),
5732                                          &Context->Idents.get("__va_list"));
5733    VaListTagDecl->setDeclContext(NS);
5734  } else {
5735    // struct __va_list
5736    VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5737                                   Context->getTranslationUnitDecl(),
5738                                   &Context->Idents.get("__va_list"));
5739  }
5740
5741  VaListTagDecl->startDefinition();
5742
5743  const size_t NumFields = 5;
5744  QualType FieldTypes[NumFields];
5745  const char *FieldNames[NumFields];
5746
5747  // void *__stack;
5748  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5749  FieldNames[0] = "__stack";
5750
5751  // void *__gr_top;
5752  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5753  FieldNames[1] = "__gr_top";
5754
5755  // void *__vr_top;
5756  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5757  FieldNames[2] = "__vr_top";
5758
5759  // int __gr_offs;
5760  FieldTypes[3] = Context->IntTy;
5761  FieldNames[3] = "__gr_offs";
5762
5763  // int __vr_offs;
5764  FieldTypes[4] = Context->IntTy;
5765  FieldNames[4] = "__vr_offs";
5766
5767  // Create fields
5768  for (unsigned i = 0; i < NumFields; ++i) {
5769    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5770                                         VaListTagDecl,
5771                                         SourceLocation(),
5772                                         SourceLocation(),
5773                                         &Context->Idents.get(FieldNames[i]),
5774                                         FieldTypes[i], /*TInfo=*/0,
5775                                         /*BitWidth=*/0,
5776                                         /*Mutable=*/false,
5777                                         ICIS_NoInit);
5778    Field->setAccess(AS_public);
5779    VaListTagDecl->addDecl(Field);
5780  }
5781  VaListTagDecl->completeDefinition();
5782  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5783  Context->VaListTagTy = VaListTagType;
5784
5785  // } __builtin_va_list;
5786  TypedefDecl *VaListTypedefDecl
5787    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5788                          Context->getTranslationUnitDecl(),
5789                          SourceLocation(), SourceLocation(),
5790                          &Context->Idents.get("__builtin_va_list"),
5791                          Context->getTrivialTypeSourceInfo(VaListTagType));
5792
5793  return VaListTypedefDecl;
5794}
5795
5796static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5797  // typedef struct __va_list_tag {
5798  RecordDecl *VaListTagDecl;
5799
5800  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5801                                   Context->getTranslationUnitDecl(),
5802                                   &Context->Idents.get("__va_list_tag"));
5803  VaListTagDecl->startDefinition();
5804
5805  const size_t NumFields = 5;
5806  QualType FieldTypes[NumFields];
5807  const char *FieldNames[NumFields];
5808
5809  //   unsigned char gpr;
5810  FieldTypes[0] = Context->UnsignedCharTy;
5811  FieldNames[0] = "gpr";
5812
5813  //   unsigned char fpr;
5814  FieldTypes[1] = Context->UnsignedCharTy;
5815  FieldNames[1] = "fpr";
5816
5817  //   unsigned short reserved;
5818  FieldTypes[2] = Context->UnsignedShortTy;
5819  FieldNames[2] = "reserved";
5820
5821  //   void* overflow_arg_area;
5822  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5823  FieldNames[3] = "overflow_arg_area";
5824
5825  //   void* reg_save_area;
5826  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5827  FieldNames[4] = "reg_save_area";
5828
5829  // Create fields
5830  for (unsigned i = 0; i < NumFields; ++i) {
5831    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5832                                         SourceLocation(),
5833                                         SourceLocation(),
5834                                         &Context->Idents.get(FieldNames[i]),
5835                                         FieldTypes[i], /*TInfo=*/0,
5836                                         /*BitWidth=*/0,
5837                                         /*Mutable=*/false,
5838                                         ICIS_NoInit);
5839    Field->setAccess(AS_public);
5840    VaListTagDecl->addDecl(Field);
5841  }
5842  VaListTagDecl->completeDefinition();
5843  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5844  Context->VaListTagTy = VaListTagType;
5845
5846  // } __va_list_tag;
5847  TypedefDecl *VaListTagTypedefDecl
5848    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5849                          Context->getTranslationUnitDecl(),
5850                          SourceLocation(), SourceLocation(),
5851                          &Context->Idents.get("__va_list_tag"),
5852                          Context->getTrivialTypeSourceInfo(VaListTagType));
5853  QualType VaListTagTypedefType =
5854    Context->getTypedefType(VaListTagTypedefDecl);
5855
5856  // typedef __va_list_tag __builtin_va_list[1];
5857  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5858  QualType VaListTagArrayType
5859    = Context->getConstantArrayType(VaListTagTypedefType,
5860                                    Size, ArrayType::Normal, 0);
5861  TypeSourceInfo *TInfo
5862    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5863  TypedefDecl *VaListTypedefDecl
5864    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5865                          Context->getTranslationUnitDecl(),
5866                          SourceLocation(), SourceLocation(),
5867                          &Context->Idents.get("__builtin_va_list"),
5868                          TInfo);
5869
5870  return VaListTypedefDecl;
5871}
5872
5873static TypedefDecl *
5874CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5875  // typedef struct __va_list_tag {
5876  RecordDecl *VaListTagDecl;
5877  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5878                                   Context->getTranslationUnitDecl(),
5879                                   &Context->Idents.get("__va_list_tag"));
5880  VaListTagDecl->startDefinition();
5881
5882  const size_t NumFields = 4;
5883  QualType FieldTypes[NumFields];
5884  const char *FieldNames[NumFields];
5885
5886  //   unsigned gp_offset;
5887  FieldTypes[0] = Context->UnsignedIntTy;
5888  FieldNames[0] = "gp_offset";
5889
5890  //   unsigned fp_offset;
5891  FieldTypes[1] = Context->UnsignedIntTy;
5892  FieldNames[1] = "fp_offset";
5893
5894  //   void* overflow_arg_area;
5895  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5896  FieldNames[2] = "overflow_arg_area";
5897
5898  //   void* reg_save_area;
5899  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5900  FieldNames[3] = "reg_save_area";
5901
5902  // Create fields
5903  for (unsigned i = 0; i < NumFields; ++i) {
5904    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5905                                         VaListTagDecl,
5906                                         SourceLocation(),
5907                                         SourceLocation(),
5908                                         &Context->Idents.get(FieldNames[i]),
5909                                         FieldTypes[i], /*TInfo=*/0,
5910                                         /*BitWidth=*/0,
5911                                         /*Mutable=*/false,
5912                                         ICIS_NoInit);
5913    Field->setAccess(AS_public);
5914    VaListTagDecl->addDecl(Field);
5915  }
5916  VaListTagDecl->completeDefinition();
5917  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5918  Context->VaListTagTy = VaListTagType;
5919
5920  // } __va_list_tag;
5921  TypedefDecl *VaListTagTypedefDecl
5922    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5923                          Context->getTranslationUnitDecl(),
5924                          SourceLocation(), SourceLocation(),
5925                          &Context->Idents.get("__va_list_tag"),
5926                          Context->getTrivialTypeSourceInfo(VaListTagType));
5927  QualType VaListTagTypedefType =
5928    Context->getTypedefType(VaListTagTypedefDecl);
5929
5930  // typedef __va_list_tag __builtin_va_list[1];
5931  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5932  QualType VaListTagArrayType
5933    = Context->getConstantArrayType(VaListTagTypedefType,
5934                                      Size, ArrayType::Normal,0);
5935  TypeSourceInfo *TInfo
5936    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5937  TypedefDecl *VaListTypedefDecl
5938    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5939                          Context->getTranslationUnitDecl(),
5940                          SourceLocation(), SourceLocation(),
5941                          &Context->Idents.get("__builtin_va_list"),
5942                          TInfo);
5943
5944  return VaListTypedefDecl;
5945}
5946
5947static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5948  // typedef int __builtin_va_list[4];
5949  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5950  QualType IntArrayType
5951    = Context->getConstantArrayType(Context->IntTy,
5952				    Size, ArrayType::Normal, 0);
5953  TypedefDecl *VaListTypedefDecl
5954    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5955                          Context->getTranslationUnitDecl(),
5956                          SourceLocation(), SourceLocation(),
5957                          &Context->Idents.get("__builtin_va_list"),
5958                          Context->getTrivialTypeSourceInfo(IntArrayType));
5959
5960  return VaListTypedefDecl;
5961}
5962
5963static TypedefDecl *
5964CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5965  RecordDecl *VaListDecl;
5966  if (Context->getLangOpts().CPlusPlus) {
5967    // namespace std { struct __va_list {
5968    NamespaceDecl *NS;
5969    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5970                               Context->getTranslationUnitDecl(),
5971                               /*Inline*/false, SourceLocation(),
5972                               SourceLocation(), &Context->Idents.get("std"),
5973                               /*PrevDecl*/0);
5974
5975    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5976                                       Context->getTranslationUnitDecl(),
5977                                       SourceLocation(), SourceLocation(),
5978                                       &Context->Idents.get("__va_list"));
5979
5980    VaListDecl->setDeclContext(NS);
5981
5982  } else {
5983    // struct __va_list {
5984    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5985                                  Context->getTranslationUnitDecl(),
5986                                  &Context->Idents.get("__va_list"));
5987  }
5988
5989  VaListDecl->startDefinition();
5990
5991  // void * __ap;
5992  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5993                                       VaListDecl,
5994                                       SourceLocation(),
5995                                       SourceLocation(),
5996                                       &Context->Idents.get("__ap"),
5997                                       Context->getPointerType(Context->VoidTy),
5998                                       /*TInfo=*/0,
5999                                       /*BitWidth=*/0,
6000                                       /*Mutable=*/false,
6001                                       ICIS_NoInit);
6002  Field->setAccess(AS_public);
6003  VaListDecl->addDecl(Field);
6004
6005  // };
6006  VaListDecl->completeDefinition();
6007
6008  // typedef struct __va_list __builtin_va_list;
6009  TypeSourceInfo *TInfo
6010    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
6011
6012  TypedefDecl *VaListTypeDecl
6013    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6014                          Context->getTranslationUnitDecl(),
6015                          SourceLocation(), SourceLocation(),
6016                          &Context->Idents.get("__builtin_va_list"),
6017                          TInfo);
6018
6019  return VaListTypeDecl;
6020}
6021
6022static TypedefDecl *
6023CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6024  // typedef struct __va_list_tag {
6025  RecordDecl *VaListTagDecl;
6026  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
6027                                   Context->getTranslationUnitDecl(),
6028                                   &Context->Idents.get("__va_list_tag"));
6029  VaListTagDecl->startDefinition();
6030
6031  const size_t NumFields = 4;
6032  QualType FieldTypes[NumFields];
6033  const char *FieldNames[NumFields];
6034
6035  //   long __gpr;
6036  FieldTypes[0] = Context->LongTy;
6037  FieldNames[0] = "__gpr";
6038
6039  //   long __fpr;
6040  FieldTypes[1] = Context->LongTy;
6041  FieldNames[1] = "__fpr";
6042
6043  //   void *__overflow_arg_area;
6044  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6045  FieldNames[2] = "__overflow_arg_area";
6046
6047  //   void *__reg_save_area;
6048  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6049  FieldNames[3] = "__reg_save_area";
6050
6051  // Create fields
6052  for (unsigned i = 0; i < NumFields; ++i) {
6053    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6054                                         VaListTagDecl,
6055                                         SourceLocation(),
6056                                         SourceLocation(),
6057                                         &Context->Idents.get(FieldNames[i]),
6058                                         FieldTypes[i], /*TInfo=*/0,
6059                                         /*BitWidth=*/0,
6060                                         /*Mutable=*/false,
6061                                         ICIS_NoInit);
6062    Field->setAccess(AS_public);
6063    VaListTagDecl->addDecl(Field);
6064  }
6065  VaListTagDecl->completeDefinition();
6066  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6067  Context->VaListTagTy = VaListTagType;
6068
6069  // } __va_list_tag;
6070  TypedefDecl *VaListTagTypedefDecl
6071    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6072                          Context->getTranslationUnitDecl(),
6073                          SourceLocation(), SourceLocation(),
6074                          &Context->Idents.get("__va_list_tag"),
6075                          Context->getTrivialTypeSourceInfo(VaListTagType));
6076  QualType VaListTagTypedefType =
6077    Context->getTypedefType(VaListTagTypedefDecl);
6078
6079  // typedef __va_list_tag __builtin_va_list[1];
6080  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6081  QualType VaListTagArrayType
6082    = Context->getConstantArrayType(VaListTagTypedefType,
6083                                      Size, ArrayType::Normal,0);
6084  TypeSourceInfo *TInfo
6085    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
6086  TypedefDecl *VaListTypedefDecl
6087    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6088                          Context->getTranslationUnitDecl(),
6089                          SourceLocation(), SourceLocation(),
6090                          &Context->Idents.get("__builtin_va_list"),
6091                          TInfo);
6092
6093  return VaListTypedefDecl;
6094}
6095
6096static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6097                                     TargetInfo::BuiltinVaListKind Kind) {
6098  switch (Kind) {
6099  case TargetInfo::CharPtrBuiltinVaList:
6100    return CreateCharPtrBuiltinVaListDecl(Context);
6101  case TargetInfo::VoidPtrBuiltinVaList:
6102    return CreateVoidPtrBuiltinVaListDecl(Context);
6103  case TargetInfo::AArch64ABIBuiltinVaList:
6104    return CreateAArch64ABIBuiltinVaListDecl(Context);
6105  case TargetInfo::PowerABIBuiltinVaList:
6106    return CreatePowerABIBuiltinVaListDecl(Context);
6107  case TargetInfo::X86_64ABIBuiltinVaList:
6108    return CreateX86_64ABIBuiltinVaListDecl(Context);
6109  case TargetInfo::PNaClABIBuiltinVaList:
6110    return CreatePNaClABIBuiltinVaListDecl(Context);
6111  case TargetInfo::AAPCSABIBuiltinVaList:
6112    return CreateAAPCSABIBuiltinVaListDecl(Context);
6113  case TargetInfo::SystemZBuiltinVaList:
6114    return CreateSystemZBuiltinVaListDecl(Context);
6115  }
6116
6117  llvm_unreachable("Unhandled __builtin_va_list type kind");
6118}
6119
6120TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6121  if (!BuiltinVaListDecl)
6122    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6123
6124  return BuiltinVaListDecl;
6125}
6126
6127QualType ASTContext::getVaListTagType() const {
6128  // Force the creation of VaListTagTy by building the __builtin_va_list
6129  // declaration.
6130  if (VaListTagTy.isNull())
6131    (void) getBuiltinVaListDecl();
6132
6133  return VaListTagTy;
6134}
6135
6136void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6137  assert(ObjCConstantStringType.isNull() &&
6138         "'NSConstantString' type already set!");
6139
6140  ObjCConstantStringType = getObjCInterfaceType(Decl);
6141}
6142
6143/// \brief Retrieve the template name that corresponds to a non-empty
6144/// lookup.
6145TemplateName
6146ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6147                                      UnresolvedSetIterator End) const {
6148  unsigned size = End - Begin;
6149  assert(size > 1 && "set is not overloaded!");
6150
6151  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6152                          size * sizeof(FunctionTemplateDecl*));
6153  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6154
6155  NamedDecl **Storage = OT->getStorage();
6156  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6157    NamedDecl *D = *I;
6158    assert(isa<FunctionTemplateDecl>(D) ||
6159           (isa<UsingShadowDecl>(D) &&
6160            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6161    *Storage++ = D;
6162  }
6163
6164  return TemplateName(OT);
6165}
6166
6167/// \brief Retrieve the template name that represents a qualified
6168/// template name such as \c std::vector.
6169TemplateName
6170ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6171                                     bool TemplateKeyword,
6172                                     TemplateDecl *Template) const {
6173  assert(NNS && "Missing nested-name-specifier in qualified template name");
6174
6175  // FIXME: Canonicalization?
6176  llvm::FoldingSetNodeID ID;
6177  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6178
6179  void *InsertPos = 0;
6180  QualifiedTemplateName *QTN =
6181    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6182  if (!QTN) {
6183    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6184        QualifiedTemplateName(NNS, TemplateKeyword, Template);
6185    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6186  }
6187
6188  return TemplateName(QTN);
6189}
6190
6191/// \brief Retrieve the template name that represents a dependent
6192/// template name such as \c MetaFun::template apply.
6193TemplateName
6194ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6195                                     const IdentifierInfo *Name) const {
6196  assert((!NNS || NNS->isDependent()) &&
6197         "Nested name specifier must be dependent");
6198
6199  llvm::FoldingSetNodeID ID;
6200  DependentTemplateName::Profile(ID, NNS, Name);
6201
6202  void *InsertPos = 0;
6203  DependentTemplateName *QTN =
6204    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6205
6206  if (QTN)
6207    return TemplateName(QTN);
6208
6209  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6210  if (CanonNNS == NNS) {
6211    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6212        DependentTemplateName(NNS, Name);
6213  } else {
6214    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6215    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6216        DependentTemplateName(NNS, Name, Canon);
6217    DependentTemplateName *CheckQTN =
6218      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6219    assert(!CheckQTN && "Dependent type name canonicalization broken");
6220    (void)CheckQTN;
6221  }
6222
6223  DependentTemplateNames.InsertNode(QTN, InsertPos);
6224  return TemplateName(QTN);
6225}
6226
6227/// \brief Retrieve the template name that represents a dependent
6228/// template name such as \c MetaFun::template operator+.
6229TemplateName
6230ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6231                                     OverloadedOperatorKind Operator) const {
6232  assert((!NNS || NNS->isDependent()) &&
6233         "Nested name specifier must be dependent");
6234
6235  llvm::FoldingSetNodeID ID;
6236  DependentTemplateName::Profile(ID, NNS, Operator);
6237
6238  void *InsertPos = 0;
6239  DependentTemplateName *QTN
6240    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6241
6242  if (QTN)
6243    return TemplateName(QTN);
6244
6245  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6246  if (CanonNNS == NNS) {
6247    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6248        DependentTemplateName(NNS, Operator);
6249  } else {
6250    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6251    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6252        DependentTemplateName(NNS, Operator, Canon);
6253
6254    DependentTemplateName *CheckQTN
6255      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6256    assert(!CheckQTN && "Dependent template name canonicalization broken");
6257    (void)CheckQTN;
6258  }
6259
6260  DependentTemplateNames.InsertNode(QTN, InsertPos);
6261  return TemplateName(QTN);
6262}
6263
6264TemplateName
6265ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6266                                         TemplateName replacement) const {
6267  llvm::FoldingSetNodeID ID;
6268  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6269
6270  void *insertPos = 0;
6271  SubstTemplateTemplateParmStorage *subst
6272    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6273
6274  if (!subst) {
6275    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6276    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6277  }
6278
6279  return TemplateName(subst);
6280}
6281
6282TemplateName
6283ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6284                                       const TemplateArgument &ArgPack) const {
6285  ASTContext &Self = const_cast<ASTContext &>(*this);
6286  llvm::FoldingSetNodeID ID;
6287  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6288
6289  void *InsertPos = 0;
6290  SubstTemplateTemplateParmPackStorage *Subst
6291    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6292
6293  if (!Subst) {
6294    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6295                                                           ArgPack.pack_size(),
6296                                                         ArgPack.pack_begin());
6297    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6298  }
6299
6300  return TemplateName(Subst);
6301}
6302
6303/// getFromTargetType - Given one of the integer types provided by
6304/// TargetInfo, produce the corresponding type. The unsigned @p Type
6305/// is actually a value of type @c TargetInfo::IntType.
6306CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6307  switch (Type) {
6308  case TargetInfo::NoInt: return CanQualType();
6309  case TargetInfo::SignedShort: return ShortTy;
6310  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6311  case TargetInfo::SignedInt: return IntTy;
6312  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6313  case TargetInfo::SignedLong: return LongTy;
6314  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6315  case TargetInfo::SignedLongLong: return LongLongTy;
6316  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6317  }
6318
6319  llvm_unreachable("Unhandled TargetInfo::IntType value");
6320}
6321
6322//===----------------------------------------------------------------------===//
6323//                        Type Predicates.
6324//===----------------------------------------------------------------------===//
6325
6326/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6327/// garbage collection attribute.
6328///
6329Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6330  if (getLangOpts().getGC() == LangOptions::NonGC)
6331    return Qualifiers::GCNone;
6332
6333  assert(getLangOpts().ObjC1);
6334  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6335
6336  // Default behaviour under objective-C's gc is for ObjC pointers
6337  // (or pointers to them) be treated as though they were declared
6338  // as __strong.
6339  if (GCAttrs == Qualifiers::GCNone) {
6340    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6341      return Qualifiers::Strong;
6342    else if (Ty->isPointerType())
6343      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6344  } else {
6345    // It's not valid to set GC attributes on anything that isn't a
6346    // pointer.
6347#ifndef NDEBUG
6348    QualType CT = Ty->getCanonicalTypeInternal();
6349    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6350      CT = AT->getElementType();
6351    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6352#endif
6353  }
6354  return GCAttrs;
6355}
6356
6357//===----------------------------------------------------------------------===//
6358//                        Type Compatibility Testing
6359//===----------------------------------------------------------------------===//
6360
6361/// areCompatVectorTypes - Return true if the two specified vector types are
6362/// compatible.
6363static bool areCompatVectorTypes(const VectorType *LHS,
6364                                 const VectorType *RHS) {
6365  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6366  return LHS->getElementType() == RHS->getElementType() &&
6367         LHS->getNumElements() == RHS->getNumElements();
6368}
6369
6370bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6371                                          QualType SecondVec) {
6372  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6373  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6374
6375  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6376    return true;
6377
6378  // Treat Neon vector types and most AltiVec vector types as if they are the
6379  // equivalent GCC vector types.
6380  const VectorType *First = FirstVec->getAs<VectorType>();
6381  const VectorType *Second = SecondVec->getAs<VectorType>();
6382  if (First->getNumElements() == Second->getNumElements() &&
6383      hasSameType(First->getElementType(), Second->getElementType()) &&
6384      First->getVectorKind() != VectorType::AltiVecPixel &&
6385      First->getVectorKind() != VectorType::AltiVecBool &&
6386      Second->getVectorKind() != VectorType::AltiVecPixel &&
6387      Second->getVectorKind() != VectorType::AltiVecBool)
6388    return true;
6389
6390  return false;
6391}
6392
6393//===----------------------------------------------------------------------===//
6394// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6395//===----------------------------------------------------------------------===//
6396
6397/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6398/// inheritance hierarchy of 'rProto'.
6399bool
6400ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6401                                           ObjCProtocolDecl *rProto) const {
6402  if (declaresSameEntity(lProto, rProto))
6403    return true;
6404  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6405       E = rProto->protocol_end(); PI != E; ++PI)
6406    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6407      return true;
6408  return false;
6409}
6410
6411/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6412/// return true if lhs's protocols conform to rhs's protocol; false
6413/// otherwise.
6414bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6415  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6416    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6417  return false;
6418}
6419
6420/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6421/// Class<pr1, ...>.
6422bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6423                                                      QualType rhs) {
6424  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6425  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6426  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6427
6428  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6429       E = lhsQID->qual_end(); I != E; ++I) {
6430    bool match = false;
6431    ObjCProtocolDecl *lhsProto = *I;
6432    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6433         E = rhsOPT->qual_end(); J != E; ++J) {
6434      ObjCProtocolDecl *rhsProto = *J;
6435      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6436        match = true;
6437        break;
6438      }
6439    }
6440    if (!match)
6441      return false;
6442  }
6443  return true;
6444}
6445
6446/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6447/// ObjCQualifiedIDType.
6448bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6449                                                   bool compare) {
6450  // Allow id<P..> and an 'id' or void* type in all cases.
6451  if (lhs->isVoidPointerType() ||
6452      lhs->isObjCIdType() || lhs->isObjCClassType())
6453    return true;
6454  else if (rhs->isVoidPointerType() ||
6455           rhs->isObjCIdType() || rhs->isObjCClassType())
6456    return true;
6457
6458  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6459    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6460
6461    if (!rhsOPT) return false;
6462
6463    if (rhsOPT->qual_empty()) {
6464      // If the RHS is a unqualified interface pointer "NSString*",
6465      // make sure we check the class hierarchy.
6466      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6467        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6468             E = lhsQID->qual_end(); I != E; ++I) {
6469          // when comparing an id<P> on lhs with a static type on rhs,
6470          // see if static class implements all of id's protocols, directly or
6471          // through its super class and categories.
6472          if (!rhsID->ClassImplementsProtocol(*I, true))
6473            return false;
6474        }
6475      }
6476      // If there are no qualifiers and no interface, we have an 'id'.
6477      return true;
6478    }
6479    // Both the right and left sides have qualifiers.
6480    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6481         E = lhsQID->qual_end(); I != E; ++I) {
6482      ObjCProtocolDecl *lhsProto = *I;
6483      bool match = false;
6484
6485      // when comparing an id<P> on lhs with a static type on rhs,
6486      // see if static class implements all of id's protocols, directly or
6487      // through its super class and categories.
6488      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6489           E = rhsOPT->qual_end(); J != E; ++J) {
6490        ObjCProtocolDecl *rhsProto = *J;
6491        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6492            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6493          match = true;
6494          break;
6495        }
6496      }
6497      // If the RHS is a qualified interface pointer "NSString<P>*",
6498      // make sure we check the class hierarchy.
6499      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6500        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6501             E = lhsQID->qual_end(); I != E; ++I) {
6502          // when comparing an id<P> on lhs with a static type on rhs,
6503          // see if static class implements all of id's protocols, directly or
6504          // through its super class and categories.
6505          if (rhsID->ClassImplementsProtocol(*I, true)) {
6506            match = true;
6507            break;
6508          }
6509        }
6510      }
6511      if (!match)
6512        return false;
6513    }
6514
6515    return true;
6516  }
6517
6518  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6519  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6520
6521  if (const ObjCObjectPointerType *lhsOPT =
6522        lhs->getAsObjCInterfacePointerType()) {
6523    // If both the right and left sides have qualifiers.
6524    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6525         E = lhsOPT->qual_end(); I != E; ++I) {
6526      ObjCProtocolDecl *lhsProto = *I;
6527      bool match = false;
6528
6529      // when comparing an id<P> on rhs with a static type on lhs,
6530      // see if static class implements all of id's protocols, directly or
6531      // through its super class and categories.
6532      // First, lhs protocols in the qualifier list must be found, direct
6533      // or indirect in rhs's qualifier list or it is a mismatch.
6534      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6535           E = rhsQID->qual_end(); J != E; ++J) {
6536        ObjCProtocolDecl *rhsProto = *J;
6537        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6538            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6539          match = true;
6540          break;
6541        }
6542      }
6543      if (!match)
6544        return false;
6545    }
6546
6547    // Static class's protocols, or its super class or category protocols
6548    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6549    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6550      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6551      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6552      // This is rather dubious but matches gcc's behavior. If lhs has
6553      // no type qualifier and its class has no static protocol(s)
6554      // assume that it is mismatch.
6555      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6556        return false;
6557      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6558           LHSInheritedProtocols.begin(),
6559           E = LHSInheritedProtocols.end(); I != E; ++I) {
6560        bool match = false;
6561        ObjCProtocolDecl *lhsProto = (*I);
6562        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6563             E = rhsQID->qual_end(); J != E; ++J) {
6564          ObjCProtocolDecl *rhsProto = *J;
6565          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6566              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6567            match = true;
6568            break;
6569          }
6570        }
6571        if (!match)
6572          return false;
6573      }
6574    }
6575    return true;
6576  }
6577  return false;
6578}
6579
6580/// canAssignObjCInterfaces - Return true if the two interface types are
6581/// compatible for assignment from RHS to LHS.  This handles validation of any
6582/// protocol qualifiers on the LHS or RHS.
6583///
6584bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6585                                         const ObjCObjectPointerType *RHSOPT) {
6586  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6587  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6588
6589  // If either type represents the built-in 'id' or 'Class' types, return true.
6590  if (LHS->isObjCUnqualifiedIdOrClass() ||
6591      RHS->isObjCUnqualifiedIdOrClass())
6592    return true;
6593
6594  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6595    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6596                                             QualType(RHSOPT,0),
6597                                             false);
6598
6599  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6600    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6601                                                QualType(RHSOPT,0));
6602
6603  // If we have 2 user-defined types, fall into that path.
6604  if (LHS->getInterface() && RHS->getInterface())
6605    return canAssignObjCInterfaces(LHS, RHS);
6606
6607  return false;
6608}
6609
6610/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6611/// for providing type-safety for objective-c pointers used to pass/return
6612/// arguments in block literals. When passed as arguments, passing 'A*' where
6613/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6614/// not OK. For the return type, the opposite is not OK.
6615bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6616                                         const ObjCObjectPointerType *LHSOPT,
6617                                         const ObjCObjectPointerType *RHSOPT,
6618                                         bool BlockReturnType) {
6619  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6620    return true;
6621
6622  if (LHSOPT->isObjCBuiltinType()) {
6623    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6624  }
6625
6626  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6627    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6628                                             QualType(RHSOPT,0),
6629                                             false);
6630
6631  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6632  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6633  if (LHS && RHS)  { // We have 2 user-defined types.
6634    if (LHS != RHS) {
6635      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6636        return BlockReturnType;
6637      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6638        return !BlockReturnType;
6639    }
6640    else
6641      return true;
6642  }
6643  return false;
6644}
6645
6646/// getIntersectionOfProtocols - This routine finds the intersection of set
6647/// of protocols inherited from two distinct objective-c pointer objects.
6648/// It is used to build composite qualifier list of the composite type of
6649/// the conditional expression involving two objective-c pointer objects.
6650static
6651void getIntersectionOfProtocols(ASTContext &Context,
6652                                const ObjCObjectPointerType *LHSOPT,
6653                                const ObjCObjectPointerType *RHSOPT,
6654      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6655
6656  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6657  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6658  assert(LHS->getInterface() && "LHS must have an interface base");
6659  assert(RHS->getInterface() && "RHS must have an interface base");
6660
6661  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6662  unsigned LHSNumProtocols = LHS->getNumProtocols();
6663  if (LHSNumProtocols > 0)
6664    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6665  else {
6666    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6667    Context.CollectInheritedProtocols(LHS->getInterface(),
6668                                      LHSInheritedProtocols);
6669    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6670                                LHSInheritedProtocols.end());
6671  }
6672
6673  unsigned RHSNumProtocols = RHS->getNumProtocols();
6674  if (RHSNumProtocols > 0) {
6675    ObjCProtocolDecl **RHSProtocols =
6676      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6677    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6678      if (InheritedProtocolSet.count(RHSProtocols[i]))
6679        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6680  } else {
6681    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6682    Context.CollectInheritedProtocols(RHS->getInterface(),
6683                                      RHSInheritedProtocols);
6684    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6685         RHSInheritedProtocols.begin(),
6686         E = RHSInheritedProtocols.end(); I != E; ++I)
6687      if (InheritedProtocolSet.count((*I)))
6688        IntersectionOfProtocols.push_back((*I));
6689  }
6690}
6691
6692/// areCommonBaseCompatible - Returns common base class of the two classes if
6693/// one found. Note that this is O'2 algorithm. But it will be called as the
6694/// last type comparison in a ?-exp of ObjC pointer types before a
6695/// warning is issued. So, its invokation is extremely rare.
6696QualType ASTContext::areCommonBaseCompatible(
6697                                          const ObjCObjectPointerType *Lptr,
6698                                          const ObjCObjectPointerType *Rptr) {
6699  const ObjCObjectType *LHS = Lptr->getObjectType();
6700  const ObjCObjectType *RHS = Rptr->getObjectType();
6701  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6702  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6703  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6704    return QualType();
6705
6706  do {
6707    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6708    if (canAssignObjCInterfaces(LHS, RHS)) {
6709      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6710      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6711
6712      QualType Result = QualType(LHS, 0);
6713      if (!Protocols.empty())
6714        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6715      Result = getObjCObjectPointerType(Result);
6716      return Result;
6717    }
6718  } while ((LDecl = LDecl->getSuperClass()));
6719
6720  return QualType();
6721}
6722
6723bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6724                                         const ObjCObjectType *RHS) {
6725  assert(LHS->getInterface() && "LHS is not an interface type");
6726  assert(RHS->getInterface() && "RHS is not an interface type");
6727
6728  // Verify that the base decls are compatible: the RHS must be a subclass of
6729  // the LHS.
6730  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6731    return false;
6732
6733  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6734  // protocol qualified at all, then we are good.
6735  if (LHS->getNumProtocols() == 0)
6736    return true;
6737
6738  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6739  // more detailed analysis is required.
6740  if (RHS->getNumProtocols() == 0) {
6741    // OK, if LHS is a superclass of RHS *and*
6742    // this superclass is assignment compatible with LHS.
6743    // false otherwise.
6744    bool IsSuperClass =
6745      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6746    if (IsSuperClass) {
6747      // OK if conversion of LHS to SuperClass results in narrowing of types
6748      // ; i.e., SuperClass may implement at least one of the protocols
6749      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6750      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6751      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6752      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6753      // If super class has no protocols, it is not a match.
6754      if (SuperClassInheritedProtocols.empty())
6755        return false;
6756
6757      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6758           LHSPE = LHS->qual_end();
6759           LHSPI != LHSPE; LHSPI++) {
6760        bool SuperImplementsProtocol = false;
6761        ObjCProtocolDecl *LHSProto = (*LHSPI);
6762
6763        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6764             SuperClassInheritedProtocols.begin(),
6765             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6766          ObjCProtocolDecl *SuperClassProto = (*I);
6767          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6768            SuperImplementsProtocol = true;
6769            break;
6770          }
6771        }
6772        if (!SuperImplementsProtocol)
6773          return false;
6774      }
6775      return true;
6776    }
6777    return false;
6778  }
6779
6780  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6781                                     LHSPE = LHS->qual_end();
6782       LHSPI != LHSPE; LHSPI++) {
6783    bool RHSImplementsProtocol = false;
6784
6785    // If the RHS doesn't implement the protocol on the left, the types
6786    // are incompatible.
6787    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6788                                       RHSPE = RHS->qual_end();
6789         RHSPI != RHSPE; RHSPI++) {
6790      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6791        RHSImplementsProtocol = true;
6792        break;
6793      }
6794    }
6795    // FIXME: For better diagnostics, consider passing back the protocol name.
6796    if (!RHSImplementsProtocol)
6797      return false;
6798  }
6799  // The RHS implements all protocols listed on the LHS.
6800  return true;
6801}
6802
6803bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6804  // get the "pointed to" types
6805  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6806  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6807
6808  if (!LHSOPT || !RHSOPT)
6809    return false;
6810
6811  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6812         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6813}
6814
6815bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6816  return canAssignObjCInterfaces(
6817                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6818                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6819}
6820
6821/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6822/// both shall have the identically qualified version of a compatible type.
6823/// C99 6.2.7p1: Two types have compatible types if their types are the
6824/// same. See 6.7.[2,3,5] for additional rules.
6825bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6826                                    bool CompareUnqualified) {
6827  if (getLangOpts().CPlusPlus)
6828    return hasSameType(LHS, RHS);
6829
6830  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6831}
6832
6833bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6834  return typesAreCompatible(LHS, RHS);
6835}
6836
6837bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6838  return !mergeTypes(LHS, RHS, true).isNull();
6839}
6840
6841/// mergeTransparentUnionType - if T is a transparent union type and a member
6842/// of T is compatible with SubType, return the merged type, else return
6843/// QualType()
6844QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6845                                               bool OfBlockPointer,
6846                                               bool Unqualified) {
6847  if (const RecordType *UT = T->getAsUnionType()) {
6848    RecordDecl *UD = UT->getDecl();
6849    if (UD->hasAttr<TransparentUnionAttr>()) {
6850      for (RecordDecl::field_iterator it = UD->field_begin(),
6851           itend = UD->field_end(); it != itend; ++it) {
6852        QualType ET = it->getType().getUnqualifiedType();
6853        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6854        if (!MT.isNull())
6855          return MT;
6856      }
6857    }
6858  }
6859
6860  return QualType();
6861}
6862
6863/// mergeFunctionArgumentTypes - merge two types which appear as function
6864/// argument types
6865QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6866                                                bool OfBlockPointer,
6867                                                bool Unqualified) {
6868  // GNU extension: two types are compatible if they appear as a function
6869  // argument, one of the types is a transparent union type and the other
6870  // type is compatible with a union member
6871  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6872                                              Unqualified);
6873  if (!lmerge.isNull())
6874    return lmerge;
6875
6876  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6877                                              Unqualified);
6878  if (!rmerge.isNull())
6879    return rmerge;
6880
6881  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6882}
6883
6884QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6885                                        bool OfBlockPointer,
6886                                        bool Unqualified) {
6887  const FunctionType *lbase = lhs->getAs<FunctionType>();
6888  const FunctionType *rbase = rhs->getAs<FunctionType>();
6889  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6890  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6891  bool allLTypes = true;
6892  bool allRTypes = true;
6893
6894  // Check return type
6895  QualType retType;
6896  if (OfBlockPointer) {
6897    QualType RHS = rbase->getResultType();
6898    QualType LHS = lbase->getResultType();
6899    bool UnqualifiedResult = Unqualified;
6900    if (!UnqualifiedResult)
6901      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6902    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6903  }
6904  else
6905    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6906                         Unqualified);
6907  if (retType.isNull()) return QualType();
6908
6909  if (Unqualified)
6910    retType = retType.getUnqualifiedType();
6911
6912  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6913  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6914  if (Unqualified) {
6915    LRetType = LRetType.getUnqualifiedType();
6916    RRetType = RRetType.getUnqualifiedType();
6917  }
6918
6919  if (getCanonicalType(retType) != LRetType)
6920    allLTypes = false;
6921  if (getCanonicalType(retType) != RRetType)
6922    allRTypes = false;
6923
6924  // FIXME: double check this
6925  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6926  //                           rbase->getRegParmAttr() != 0 &&
6927  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6928  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6929  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6930
6931  // Compatible functions must have compatible calling conventions
6932  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6933    return QualType();
6934
6935  // Regparm is part of the calling convention.
6936  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6937    return QualType();
6938  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6939    return QualType();
6940
6941  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6942    return QualType();
6943
6944  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6945  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6946
6947  if (lbaseInfo.getNoReturn() != NoReturn)
6948    allLTypes = false;
6949  if (rbaseInfo.getNoReturn() != NoReturn)
6950    allRTypes = false;
6951
6952  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6953
6954  if (lproto && rproto) { // two C99 style function prototypes
6955    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6956           "C++ shouldn't be here");
6957    unsigned lproto_nargs = lproto->getNumArgs();
6958    unsigned rproto_nargs = rproto->getNumArgs();
6959
6960    // Compatible functions must have the same number of arguments
6961    if (lproto_nargs != rproto_nargs)
6962      return QualType();
6963
6964    // Variadic and non-variadic functions aren't compatible
6965    if (lproto->isVariadic() != rproto->isVariadic())
6966      return QualType();
6967
6968    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6969      return QualType();
6970
6971    if (LangOpts.ObjCAutoRefCount &&
6972        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6973      return QualType();
6974
6975    // Check argument compatibility
6976    SmallVector<QualType, 10> types;
6977    for (unsigned i = 0; i < lproto_nargs; i++) {
6978      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6979      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6980      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6981                                                    OfBlockPointer,
6982                                                    Unqualified);
6983      if (argtype.isNull()) return QualType();
6984
6985      if (Unqualified)
6986        argtype = argtype.getUnqualifiedType();
6987
6988      types.push_back(argtype);
6989      if (Unqualified) {
6990        largtype = largtype.getUnqualifiedType();
6991        rargtype = rargtype.getUnqualifiedType();
6992      }
6993
6994      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6995        allLTypes = false;
6996      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6997        allRTypes = false;
6998    }
6999
7000    if (allLTypes) return lhs;
7001    if (allRTypes) return rhs;
7002
7003    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
7004    EPI.ExtInfo = einfo;
7005    return getFunctionType(retType, types, EPI);
7006  }
7007
7008  if (lproto) allRTypes = false;
7009  if (rproto) allLTypes = false;
7010
7011  const FunctionProtoType *proto = lproto ? lproto : rproto;
7012  if (proto) {
7013    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
7014    if (proto->isVariadic()) return QualType();
7015    // Check that the types are compatible with the types that
7016    // would result from default argument promotions (C99 6.7.5.3p15).
7017    // The only types actually affected are promotable integer
7018    // types and floats, which would be passed as a different
7019    // type depending on whether the prototype is visible.
7020    unsigned proto_nargs = proto->getNumArgs();
7021    for (unsigned i = 0; i < proto_nargs; ++i) {
7022      QualType argTy = proto->getArgType(i);
7023
7024      // Look at the converted type of enum types, since that is the type used
7025      // to pass enum values.
7026      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
7027        argTy = Enum->getDecl()->getIntegerType();
7028        if (argTy.isNull())
7029          return QualType();
7030      }
7031
7032      if (argTy->isPromotableIntegerType() ||
7033          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
7034        return QualType();
7035    }
7036
7037    if (allLTypes) return lhs;
7038    if (allRTypes) return rhs;
7039
7040    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7041    EPI.ExtInfo = einfo;
7042    return getFunctionType(retType,
7043                           ArrayRef<QualType>(proto->arg_type_begin(),
7044                                              proto->getNumArgs()),
7045                           EPI);
7046  }
7047
7048  if (allLTypes) return lhs;
7049  if (allRTypes) return rhs;
7050  return getFunctionNoProtoType(retType, einfo);
7051}
7052
7053/// Given that we have an enum type and a non-enum type, try to merge them.
7054static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7055                                     QualType other, bool isBlockReturnType) {
7056  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7057  // a signed integer type, or an unsigned integer type.
7058  // Compatibility is based on the underlying type, not the promotion
7059  // type.
7060  QualType underlyingType = ET->getDecl()->getIntegerType();
7061  if (underlyingType.isNull()) return QualType();
7062  if (Context.hasSameType(underlyingType, other))
7063    return other;
7064
7065  // In block return types, we're more permissive and accept any
7066  // integral type of the same size.
7067  if (isBlockReturnType && other->isIntegerType() &&
7068      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7069    return other;
7070
7071  return QualType();
7072}
7073
7074QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7075                                bool OfBlockPointer,
7076                                bool Unqualified, bool BlockReturnType) {
7077  // C++ [expr]: If an expression initially has the type "reference to T", the
7078  // type is adjusted to "T" prior to any further analysis, the expression
7079  // designates the object or function denoted by the reference, and the
7080  // expression is an lvalue unless the reference is an rvalue reference and
7081  // the expression is a function call (possibly inside parentheses).
7082  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7083  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7084
7085  if (Unqualified) {
7086    LHS = LHS.getUnqualifiedType();
7087    RHS = RHS.getUnqualifiedType();
7088  }
7089
7090  QualType LHSCan = getCanonicalType(LHS),
7091           RHSCan = getCanonicalType(RHS);
7092
7093  // If two types are identical, they are compatible.
7094  if (LHSCan == RHSCan)
7095    return LHS;
7096
7097  // If the qualifiers are different, the types aren't compatible... mostly.
7098  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7099  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7100  if (LQuals != RQuals) {
7101    // If any of these qualifiers are different, we have a type
7102    // mismatch.
7103    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7104        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7105        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7106      return QualType();
7107
7108    // Exactly one GC qualifier difference is allowed: __strong is
7109    // okay if the other type has no GC qualifier but is an Objective
7110    // C object pointer (i.e. implicitly strong by default).  We fix
7111    // this by pretending that the unqualified type was actually
7112    // qualified __strong.
7113    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7114    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7115    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7116
7117    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7118      return QualType();
7119
7120    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7121      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7122    }
7123    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7124      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7125    }
7126    return QualType();
7127  }
7128
7129  // Okay, qualifiers are equal.
7130
7131  Type::TypeClass LHSClass = LHSCan->getTypeClass();
7132  Type::TypeClass RHSClass = RHSCan->getTypeClass();
7133
7134  // We want to consider the two function types to be the same for these
7135  // comparisons, just force one to the other.
7136  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7137  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7138
7139  // Same as above for arrays
7140  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7141    LHSClass = Type::ConstantArray;
7142  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7143    RHSClass = Type::ConstantArray;
7144
7145  // ObjCInterfaces are just specialized ObjCObjects.
7146  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7147  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7148
7149  // Canonicalize ExtVector -> Vector.
7150  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7151  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7152
7153  // If the canonical type classes don't match.
7154  if (LHSClass != RHSClass) {
7155    // Note that we only have special rules for turning block enum
7156    // returns into block int returns, not vice-versa.
7157    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7158      return mergeEnumWithInteger(*this, ETy, RHS, false);
7159    }
7160    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7161      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7162    }
7163    // allow block pointer type to match an 'id' type.
7164    if (OfBlockPointer && !BlockReturnType) {
7165       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7166         return LHS;
7167      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7168        return RHS;
7169    }
7170
7171    return QualType();
7172  }
7173
7174  // The canonical type classes match.
7175  switch (LHSClass) {
7176#define TYPE(Class, Base)
7177#define ABSTRACT_TYPE(Class, Base)
7178#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7179#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7180#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7181#include "clang/AST/TypeNodes.def"
7182    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7183
7184  case Type::Auto:
7185  case Type::LValueReference:
7186  case Type::RValueReference:
7187  case Type::MemberPointer:
7188    llvm_unreachable("C++ should never be in mergeTypes");
7189
7190  case Type::ObjCInterface:
7191  case Type::IncompleteArray:
7192  case Type::VariableArray:
7193  case Type::FunctionProto:
7194  case Type::ExtVector:
7195    llvm_unreachable("Types are eliminated above");
7196
7197  case Type::Pointer:
7198  {
7199    // Merge two pointer types, while trying to preserve typedef info
7200    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7201    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7202    if (Unqualified) {
7203      LHSPointee = LHSPointee.getUnqualifiedType();
7204      RHSPointee = RHSPointee.getUnqualifiedType();
7205    }
7206    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7207                                     Unqualified);
7208    if (ResultType.isNull()) return QualType();
7209    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7210      return LHS;
7211    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7212      return RHS;
7213    return getPointerType(ResultType);
7214  }
7215  case Type::BlockPointer:
7216  {
7217    // Merge two block pointer types, while trying to preserve typedef info
7218    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7219    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7220    if (Unqualified) {
7221      LHSPointee = LHSPointee.getUnqualifiedType();
7222      RHSPointee = RHSPointee.getUnqualifiedType();
7223    }
7224    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7225                                     Unqualified);
7226    if (ResultType.isNull()) return QualType();
7227    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7228      return LHS;
7229    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7230      return RHS;
7231    return getBlockPointerType(ResultType);
7232  }
7233  case Type::Atomic:
7234  {
7235    // Merge two pointer types, while trying to preserve typedef info
7236    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7237    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7238    if (Unqualified) {
7239      LHSValue = LHSValue.getUnqualifiedType();
7240      RHSValue = RHSValue.getUnqualifiedType();
7241    }
7242    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7243                                     Unqualified);
7244    if (ResultType.isNull()) return QualType();
7245    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7246      return LHS;
7247    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7248      return RHS;
7249    return getAtomicType(ResultType);
7250  }
7251  case Type::ConstantArray:
7252  {
7253    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7254    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7255    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7256      return QualType();
7257
7258    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7259    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7260    if (Unqualified) {
7261      LHSElem = LHSElem.getUnqualifiedType();
7262      RHSElem = RHSElem.getUnqualifiedType();
7263    }
7264
7265    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7266    if (ResultType.isNull()) return QualType();
7267    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7268      return LHS;
7269    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7270      return RHS;
7271    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7272                                          ArrayType::ArraySizeModifier(), 0);
7273    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7274                                          ArrayType::ArraySizeModifier(), 0);
7275    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7276    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7277    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7278      return LHS;
7279    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7280      return RHS;
7281    if (LVAT) {
7282      // FIXME: This isn't correct! But tricky to implement because
7283      // the array's size has to be the size of LHS, but the type
7284      // has to be different.
7285      return LHS;
7286    }
7287    if (RVAT) {
7288      // FIXME: This isn't correct! But tricky to implement because
7289      // the array's size has to be the size of RHS, but the type
7290      // has to be different.
7291      return RHS;
7292    }
7293    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7294    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7295    return getIncompleteArrayType(ResultType,
7296                                  ArrayType::ArraySizeModifier(), 0);
7297  }
7298  case Type::FunctionNoProto:
7299    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7300  case Type::Record:
7301  case Type::Enum:
7302    return QualType();
7303  case Type::Builtin:
7304    // Only exactly equal builtin types are compatible, which is tested above.
7305    return QualType();
7306  case Type::Complex:
7307    // Distinct complex types are incompatible.
7308    return QualType();
7309  case Type::Vector:
7310    // FIXME: The merged type should be an ExtVector!
7311    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7312                             RHSCan->getAs<VectorType>()))
7313      return LHS;
7314    return QualType();
7315  case Type::ObjCObject: {
7316    // Check if the types are assignment compatible.
7317    // FIXME: This should be type compatibility, e.g. whether
7318    // "LHS x; RHS x;" at global scope is legal.
7319    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7320    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7321    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7322      return LHS;
7323
7324    return QualType();
7325  }
7326  case Type::ObjCObjectPointer: {
7327    if (OfBlockPointer) {
7328      if (canAssignObjCInterfacesInBlockPointer(
7329                                          LHS->getAs<ObjCObjectPointerType>(),
7330                                          RHS->getAs<ObjCObjectPointerType>(),
7331                                          BlockReturnType))
7332        return LHS;
7333      return QualType();
7334    }
7335    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7336                                RHS->getAs<ObjCObjectPointerType>()))
7337      return LHS;
7338
7339    return QualType();
7340  }
7341  }
7342
7343  llvm_unreachable("Invalid Type::Class!");
7344}
7345
7346bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7347                   const FunctionProtoType *FromFunctionType,
7348                   const FunctionProtoType *ToFunctionType) {
7349  if (FromFunctionType->hasAnyConsumedArgs() !=
7350      ToFunctionType->hasAnyConsumedArgs())
7351    return false;
7352  FunctionProtoType::ExtProtoInfo FromEPI =
7353    FromFunctionType->getExtProtoInfo();
7354  FunctionProtoType::ExtProtoInfo ToEPI =
7355    ToFunctionType->getExtProtoInfo();
7356  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7357    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7358         ArgIdx != NumArgs; ++ArgIdx)  {
7359      if (FromEPI.ConsumedArguments[ArgIdx] !=
7360          ToEPI.ConsumedArguments[ArgIdx])
7361        return false;
7362    }
7363  return true;
7364}
7365
7366/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7367/// 'RHS' attributes and returns the merged version; including for function
7368/// return types.
7369QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7370  QualType LHSCan = getCanonicalType(LHS),
7371  RHSCan = getCanonicalType(RHS);
7372  // If two types are identical, they are compatible.
7373  if (LHSCan == RHSCan)
7374    return LHS;
7375  if (RHSCan->isFunctionType()) {
7376    if (!LHSCan->isFunctionType())
7377      return QualType();
7378    QualType OldReturnType =
7379      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7380    QualType NewReturnType =
7381      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7382    QualType ResReturnType =
7383      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7384    if (ResReturnType.isNull())
7385      return QualType();
7386    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7387      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7388      // In either case, use OldReturnType to build the new function type.
7389      const FunctionType *F = LHS->getAs<FunctionType>();
7390      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7391        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7392        EPI.ExtInfo = getFunctionExtInfo(LHS);
7393        QualType ResultType
7394          = getFunctionType(OldReturnType,
7395                            ArrayRef<QualType>(FPT->arg_type_begin(),
7396                                               FPT->getNumArgs()),
7397                            EPI);
7398        return ResultType;
7399      }
7400    }
7401    return QualType();
7402  }
7403
7404  // If the qualifiers are different, the types can still be merged.
7405  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7406  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7407  if (LQuals != RQuals) {
7408    // If any of these qualifiers are different, we have a type mismatch.
7409    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7410        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7411      return QualType();
7412
7413    // Exactly one GC qualifier difference is allowed: __strong is
7414    // okay if the other type has no GC qualifier but is an Objective
7415    // C object pointer (i.e. implicitly strong by default).  We fix
7416    // this by pretending that the unqualified type was actually
7417    // qualified __strong.
7418    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7419    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7420    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7421
7422    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7423      return QualType();
7424
7425    if (GC_L == Qualifiers::Strong)
7426      return LHS;
7427    if (GC_R == Qualifiers::Strong)
7428      return RHS;
7429    return QualType();
7430  }
7431
7432  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7433    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7434    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7435    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7436    if (ResQT == LHSBaseQT)
7437      return LHS;
7438    if (ResQT == RHSBaseQT)
7439      return RHS;
7440  }
7441  return QualType();
7442}
7443
7444//===----------------------------------------------------------------------===//
7445//                         Integer Predicates
7446//===----------------------------------------------------------------------===//
7447
7448unsigned ASTContext::getIntWidth(QualType T) const {
7449  if (const EnumType *ET = dyn_cast<EnumType>(T))
7450    T = ET->getDecl()->getIntegerType();
7451  if (T->isBooleanType())
7452    return 1;
7453  // For builtin types, just use the standard type sizing method
7454  return (unsigned)getTypeSize(T);
7455}
7456
7457QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7458  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7459
7460  // Turn <4 x signed int> -> <4 x unsigned int>
7461  if (const VectorType *VTy = T->getAs<VectorType>())
7462    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7463                         VTy->getNumElements(), VTy->getVectorKind());
7464
7465  // For enums, we return the unsigned version of the base type.
7466  if (const EnumType *ETy = T->getAs<EnumType>())
7467    T = ETy->getDecl()->getIntegerType();
7468
7469  const BuiltinType *BTy = T->getAs<BuiltinType>();
7470  assert(BTy && "Unexpected signed integer type");
7471  switch (BTy->getKind()) {
7472  case BuiltinType::Char_S:
7473  case BuiltinType::SChar:
7474    return UnsignedCharTy;
7475  case BuiltinType::Short:
7476    return UnsignedShortTy;
7477  case BuiltinType::Int:
7478    return UnsignedIntTy;
7479  case BuiltinType::Long:
7480    return UnsignedLongTy;
7481  case BuiltinType::LongLong:
7482    return UnsignedLongLongTy;
7483  case BuiltinType::Int128:
7484    return UnsignedInt128Ty;
7485  default:
7486    llvm_unreachable("Unexpected signed integer type");
7487  }
7488}
7489
7490ASTMutationListener::~ASTMutationListener() { }
7491
7492void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7493                                            QualType ReturnType) {}
7494
7495//===----------------------------------------------------------------------===//
7496//                          Builtin Type Computation
7497//===----------------------------------------------------------------------===//
7498
7499/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7500/// pointer over the consumed characters.  This returns the resultant type.  If
7501/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7502/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7503/// a vector of "i*".
7504///
7505/// RequiresICE is filled in on return to indicate whether the value is required
7506/// to be an Integer Constant Expression.
7507static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7508                                  ASTContext::GetBuiltinTypeError &Error,
7509                                  bool &RequiresICE,
7510                                  bool AllowTypeModifiers) {
7511  // Modifiers.
7512  int HowLong = 0;
7513  bool Signed = false, Unsigned = false;
7514  RequiresICE = false;
7515
7516  // Read the prefixed modifiers first.
7517  bool Done = false;
7518  while (!Done) {
7519    switch (*Str++) {
7520    default: Done = true; --Str; break;
7521    case 'I':
7522      RequiresICE = true;
7523      break;
7524    case 'S':
7525      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7526      assert(!Signed && "Can't use 'S' modifier multiple times!");
7527      Signed = true;
7528      break;
7529    case 'U':
7530      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7531      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7532      Unsigned = true;
7533      break;
7534    case 'L':
7535      assert(HowLong <= 2 && "Can't have LLLL modifier");
7536      ++HowLong;
7537      break;
7538    }
7539  }
7540
7541  QualType Type;
7542
7543  // Read the base type.
7544  switch (*Str++) {
7545  default: llvm_unreachable("Unknown builtin type letter!");
7546  case 'v':
7547    assert(HowLong == 0 && !Signed && !Unsigned &&
7548           "Bad modifiers used with 'v'!");
7549    Type = Context.VoidTy;
7550    break;
7551  case 'f':
7552    assert(HowLong == 0 && !Signed && !Unsigned &&
7553           "Bad modifiers used with 'f'!");
7554    Type = Context.FloatTy;
7555    break;
7556  case 'd':
7557    assert(HowLong < 2 && !Signed && !Unsigned &&
7558           "Bad modifiers used with 'd'!");
7559    if (HowLong)
7560      Type = Context.LongDoubleTy;
7561    else
7562      Type = Context.DoubleTy;
7563    break;
7564  case 's':
7565    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7566    if (Unsigned)
7567      Type = Context.UnsignedShortTy;
7568    else
7569      Type = Context.ShortTy;
7570    break;
7571  case 'i':
7572    if (HowLong == 3)
7573      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7574    else if (HowLong == 2)
7575      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7576    else if (HowLong == 1)
7577      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7578    else
7579      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7580    break;
7581  case 'c':
7582    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7583    if (Signed)
7584      Type = Context.SignedCharTy;
7585    else if (Unsigned)
7586      Type = Context.UnsignedCharTy;
7587    else
7588      Type = Context.CharTy;
7589    break;
7590  case 'b': // boolean
7591    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7592    Type = Context.BoolTy;
7593    break;
7594  case 'z':  // size_t.
7595    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7596    Type = Context.getSizeType();
7597    break;
7598  case 'F':
7599    Type = Context.getCFConstantStringType();
7600    break;
7601  case 'G':
7602    Type = Context.getObjCIdType();
7603    break;
7604  case 'H':
7605    Type = Context.getObjCSelType();
7606    break;
7607  case 'M':
7608    Type = Context.getObjCSuperType();
7609    break;
7610  case 'a':
7611    Type = Context.getBuiltinVaListType();
7612    assert(!Type.isNull() && "builtin va list type not initialized!");
7613    break;
7614  case 'A':
7615    // This is a "reference" to a va_list; however, what exactly
7616    // this means depends on how va_list is defined. There are two
7617    // different kinds of va_list: ones passed by value, and ones
7618    // passed by reference.  An example of a by-value va_list is
7619    // x86, where va_list is a char*. An example of by-ref va_list
7620    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7621    // we want this argument to be a char*&; for x86-64, we want
7622    // it to be a __va_list_tag*.
7623    Type = Context.getBuiltinVaListType();
7624    assert(!Type.isNull() && "builtin va list type not initialized!");
7625    if (Type->isArrayType())
7626      Type = Context.getArrayDecayedType(Type);
7627    else
7628      Type = Context.getLValueReferenceType(Type);
7629    break;
7630  case 'V': {
7631    char *End;
7632    unsigned NumElements = strtoul(Str, &End, 10);
7633    assert(End != Str && "Missing vector size");
7634    Str = End;
7635
7636    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7637                                             RequiresICE, false);
7638    assert(!RequiresICE && "Can't require vector ICE");
7639
7640    // TODO: No way to make AltiVec vectors in builtins yet.
7641    Type = Context.getVectorType(ElementType, NumElements,
7642                                 VectorType::GenericVector);
7643    break;
7644  }
7645  case 'E': {
7646    char *End;
7647
7648    unsigned NumElements = strtoul(Str, &End, 10);
7649    assert(End != Str && "Missing vector size");
7650
7651    Str = End;
7652
7653    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7654                                             false);
7655    Type = Context.getExtVectorType(ElementType, NumElements);
7656    break;
7657  }
7658  case 'X': {
7659    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7660                                             false);
7661    assert(!RequiresICE && "Can't require complex ICE");
7662    Type = Context.getComplexType(ElementType);
7663    break;
7664  }
7665  case 'Y' : {
7666    Type = Context.getPointerDiffType();
7667    break;
7668  }
7669  case 'P':
7670    Type = Context.getFILEType();
7671    if (Type.isNull()) {
7672      Error = ASTContext::GE_Missing_stdio;
7673      return QualType();
7674    }
7675    break;
7676  case 'J':
7677    if (Signed)
7678      Type = Context.getsigjmp_bufType();
7679    else
7680      Type = Context.getjmp_bufType();
7681
7682    if (Type.isNull()) {
7683      Error = ASTContext::GE_Missing_setjmp;
7684      return QualType();
7685    }
7686    break;
7687  case 'K':
7688    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7689    Type = Context.getucontext_tType();
7690
7691    if (Type.isNull()) {
7692      Error = ASTContext::GE_Missing_ucontext;
7693      return QualType();
7694    }
7695    break;
7696  case 'p':
7697    Type = Context.getProcessIDType();
7698    break;
7699  }
7700
7701  // If there are modifiers and if we're allowed to parse them, go for it.
7702  Done = !AllowTypeModifiers;
7703  while (!Done) {
7704    switch (char c = *Str++) {
7705    default: Done = true; --Str; break;
7706    case '*':
7707    case '&': {
7708      // Both pointers and references can have their pointee types
7709      // qualified with an address space.
7710      char *End;
7711      unsigned AddrSpace = strtoul(Str, &End, 10);
7712      if (End != Str && AddrSpace != 0) {
7713        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7714        Str = End;
7715      }
7716      if (c == '*')
7717        Type = Context.getPointerType(Type);
7718      else
7719        Type = Context.getLValueReferenceType(Type);
7720      break;
7721    }
7722    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7723    case 'C':
7724      Type = Type.withConst();
7725      break;
7726    case 'D':
7727      Type = Context.getVolatileType(Type);
7728      break;
7729    case 'R':
7730      Type = Type.withRestrict();
7731      break;
7732    }
7733  }
7734
7735  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7736         "Integer constant 'I' type must be an integer");
7737
7738  return Type;
7739}
7740
7741/// GetBuiltinType - Return the type for the specified builtin.
7742QualType ASTContext::GetBuiltinType(unsigned Id,
7743                                    GetBuiltinTypeError &Error,
7744                                    unsigned *IntegerConstantArgs) const {
7745  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7746
7747  SmallVector<QualType, 8> ArgTypes;
7748
7749  bool RequiresICE = false;
7750  Error = GE_None;
7751  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7752                                       RequiresICE, true);
7753  if (Error != GE_None)
7754    return QualType();
7755
7756  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7757
7758  while (TypeStr[0] && TypeStr[0] != '.') {
7759    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7760    if (Error != GE_None)
7761      return QualType();
7762
7763    // If this argument is required to be an IntegerConstantExpression and the
7764    // caller cares, fill in the bitmask we return.
7765    if (RequiresICE && IntegerConstantArgs)
7766      *IntegerConstantArgs |= 1 << ArgTypes.size();
7767
7768    // Do array -> pointer decay.  The builtin should use the decayed type.
7769    if (Ty->isArrayType())
7770      Ty = getArrayDecayedType(Ty);
7771
7772    ArgTypes.push_back(Ty);
7773  }
7774
7775  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7776         "'.' should only occur at end of builtin type list!");
7777
7778  FunctionType::ExtInfo EI;
7779  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7780
7781  bool Variadic = (TypeStr[0] == '.');
7782
7783  // We really shouldn't be making a no-proto type here, especially in C++.
7784  if (ArgTypes.empty() && Variadic)
7785    return getFunctionNoProtoType(ResType, EI);
7786
7787  FunctionProtoType::ExtProtoInfo EPI;
7788  EPI.ExtInfo = EI;
7789  EPI.Variadic = Variadic;
7790
7791  return getFunctionType(ResType, ArgTypes, EPI);
7792}
7793
7794GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7795  if (!FD->isExternallyVisible())
7796    return GVA_Internal;
7797
7798  GVALinkage External = GVA_StrongExternal;
7799  switch (FD->getTemplateSpecializationKind()) {
7800  case TSK_Undeclared:
7801  case TSK_ExplicitSpecialization:
7802    External = GVA_StrongExternal;
7803    break;
7804
7805  case TSK_ExplicitInstantiationDefinition:
7806    return GVA_ExplicitTemplateInstantiation;
7807
7808  case TSK_ExplicitInstantiationDeclaration:
7809  case TSK_ImplicitInstantiation:
7810    External = GVA_TemplateInstantiation;
7811    break;
7812  }
7813
7814  if (!FD->isInlined())
7815    return External;
7816
7817  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7818    // GNU or C99 inline semantics. Determine whether this symbol should be
7819    // externally visible.
7820    if (FD->isInlineDefinitionExternallyVisible())
7821      return External;
7822
7823    // C99 inline semantics, where the symbol is not externally visible.
7824    return GVA_C99Inline;
7825  }
7826
7827  // C++0x [temp.explicit]p9:
7828  //   [ Note: The intent is that an inline function that is the subject of
7829  //   an explicit instantiation declaration will still be implicitly
7830  //   instantiated when used so that the body can be considered for
7831  //   inlining, but that no out-of-line copy of the inline function would be
7832  //   generated in the translation unit. -- end note ]
7833  if (FD->getTemplateSpecializationKind()
7834                                       == TSK_ExplicitInstantiationDeclaration)
7835    return GVA_C99Inline;
7836
7837  return GVA_CXXInline;
7838}
7839
7840GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7841  if (!VD->isExternallyVisible())
7842    return GVA_Internal;
7843
7844  // If this is a static data member, compute the kind of template
7845  // specialization. Otherwise, this variable is not part of a
7846  // template.
7847  TemplateSpecializationKind TSK = TSK_Undeclared;
7848  if (VD->isStaticDataMember())
7849    TSK = VD->getTemplateSpecializationKind();
7850
7851  switch (TSK) {
7852  case TSK_Undeclared:
7853  case TSK_ExplicitSpecialization:
7854    return GVA_StrongExternal;
7855
7856  case TSK_ExplicitInstantiationDeclaration:
7857    llvm_unreachable("Variable should not be instantiated");
7858  // Fall through to treat this like any other instantiation.
7859
7860  case TSK_ExplicitInstantiationDefinition:
7861    return GVA_ExplicitTemplateInstantiation;
7862
7863  case TSK_ImplicitInstantiation:
7864    return GVA_TemplateInstantiation;
7865  }
7866
7867  llvm_unreachable("Invalid Linkage!");
7868}
7869
7870bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7871  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7872    if (!VD->isFileVarDecl())
7873      return false;
7874  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7875    // We never need to emit an uninstantiated function template.
7876    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7877      return false;
7878  } else
7879    return false;
7880
7881  // If this is a member of a class template, we do not need to emit it.
7882  if (D->getDeclContext()->isDependentContext())
7883    return false;
7884
7885  // Weak references don't produce any output by themselves.
7886  if (D->hasAttr<WeakRefAttr>())
7887    return false;
7888
7889  // Aliases and used decls are required.
7890  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7891    return true;
7892
7893  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7894    // Forward declarations aren't required.
7895    if (!FD->doesThisDeclarationHaveABody())
7896      return FD->doesDeclarationForceExternallyVisibleDefinition();
7897
7898    // Constructors and destructors are required.
7899    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7900      return true;
7901
7902    // The key function for a class is required.  This rule only comes
7903    // into play when inline functions can be key functions, though.
7904    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7905      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7906        const CXXRecordDecl *RD = MD->getParent();
7907        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7908          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7909          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7910            return true;
7911        }
7912      }
7913    }
7914
7915    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7916
7917    // static, static inline, always_inline, and extern inline functions can
7918    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7919    // Implicit template instantiations can also be deferred in C++.
7920    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7921        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7922      return false;
7923    return true;
7924  }
7925
7926  const VarDecl *VD = cast<VarDecl>(D);
7927  assert(VD->isFileVarDecl() && "Expected file scoped var");
7928
7929  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7930    return false;
7931
7932  // Variables that can be needed in other TUs are required.
7933  GVALinkage L = GetGVALinkageForVariable(VD);
7934  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7935    return true;
7936
7937  // Variables that have destruction with side-effects are required.
7938  if (VD->getType().isDestructedType())
7939    return true;
7940
7941  // Variables that have initialization with side-effects are required.
7942  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7943    return true;
7944
7945  return false;
7946}
7947
7948CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7949  // Pass through to the C++ ABI object
7950  return ABI->getDefaultMethodCallConv(isVariadic);
7951}
7952
7953CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7954  if (CC == CC_C && !LangOpts.MRTD &&
7955      getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7956    return CC_Default;
7957  return CC;
7958}
7959
7960bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7961  // Pass through to the C++ ABI object
7962  return ABI->isNearlyEmpty(RD);
7963}
7964
7965MangleContext *ASTContext::createMangleContext() {
7966  switch (Target->getCXXABI().getKind()) {
7967  case TargetCXXABI::GenericAArch64:
7968  case TargetCXXABI::GenericItanium:
7969  case TargetCXXABI::GenericARM:
7970  case TargetCXXABI::iOS:
7971    return createItaniumMangleContext(*this, getDiagnostics());
7972  case TargetCXXABI::Microsoft:
7973    return createMicrosoftMangleContext(*this, getDiagnostics());
7974  }
7975  llvm_unreachable("Unsupported ABI");
7976}
7977
7978CXXABI::~CXXABI() {}
7979
7980size_t ASTContext::getSideTableAllocatedMemory() const {
7981  return ASTRecordLayouts.getMemorySize()
7982    + llvm::capacity_in_bytes(ObjCLayouts)
7983    + llvm::capacity_in_bytes(KeyFunctions)
7984    + llvm::capacity_in_bytes(ObjCImpls)
7985    + llvm::capacity_in_bytes(BlockVarCopyInits)
7986    + llvm::capacity_in_bytes(DeclAttrs)
7987    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7988    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7989    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7990    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7991    + llvm::capacity_in_bytes(OverriddenMethods)
7992    + llvm::capacity_in_bytes(Types)
7993    + llvm::capacity_in_bytes(VariableArrayTypes)
7994    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7995}
7996
7997void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7998  // FIXME: This mangling should be applied to function local classes too
7999  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
8000      !isa<CXXRecordDecl>(Tag->getParent()))
8001    return;
8002
8003  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
8004    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
8005  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
8006}
8007
8008int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
8009  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
8010    UnnamedMangleNumbers.find(Tag);
8011  return I != UnnamedMangleNumbers.end() ? I->second : -1;
8012}
8013
8014unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
8015  CXXRecordDecl *Lambda = CallOperator->getParent();
8016  return LambdaMangleContexts[Lambda->getDeclContext()]
8017           .getManglingNumber(CallOperator);
8018}
8019
8020
8021void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8022  ParamIndices[D] = index;
8023}
8024
8025unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8026  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8027  assert(I != ParamIndices.end() &&
8028         "ParmIndices lacks entry set by ParmVarDecl");
8029  return I->second;
8030}
8031
8032bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
8033  const llvm::Triple &T = getTargetInfo().getTriple();
8034  if (!T.isOSDarwin())
8035    return false;
8036
8037  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
8038  CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
8039  uint64_t Size = sizeChars.getQuantity();
8040  CharUnits alignChars = getTypeAlignInChars(AtomicTy);
8041  unsigned Align = alignChars.getQuantity();
8042  unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
8043  return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
8044}
8045