ASTContext.cpp revision 58db7a575efc9a2f35266fe240feac3cf317753d
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Support/Capacity.h"
34#include "CXXABI.h"
35#include <map>
36
37using namespace clang;
38
39unsigned ASTContext::NumImplicitDefaultConstructors;
40unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyConstructors;
42unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
43unsigned ASTContext::NumImplicitMoveConstructors;
44unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyAssignmentOperators;
46unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
47unsigned ASTContext::NumImplicitMoveAssignmentOperators;
48unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
49unsigned ASTContext::NumImplicitDestructors;
50unsigned ASTContext::NumImplicitDestructorsDeclared;
51
52enum FloatingRank {
53  HalfRank, FloatRank, DoubleRank, LongDoubleRank
54};
55
56void
57ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
58                                               TemplateTemplateParmDecl *Parm) {
59  ID.AddInteger(Parm->getDepth());
60  ID.AddInteger(Parm->getPosition());
61  ID.AddBoolean(Parm->isParameterPack());
62
63  TemplateParameterList *Params = Parm->getTemplateParameters();
64  ID.AddInteger(Params->size());
65  for (TemplateParameterList::const_iterator P = Params->begin(),
66                                          PEnd = Params->end();
67       P != PEnd; ++P) {
68    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
69      ID.AddInteger(0);
70      ID.AddBoolean(TTP->isParameterPack());
71      continue;
72    }
73
74    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
75      ID.AddInteger(1);
76      ID.AddBoolean(NTTP->isParameterPack());
77      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
78      if (NTTP->isExpandedParameterPack()) {
79        ID.AddBoolean(true);
80        ID.AddInteger(NTTP->getNumExpansionTypes());
81        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
82          QualType T = NTTP->getExpansionType(I);
83          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
84        }
85      } else
86        ID.AddBoolean(false);
87      continue;
88    }
89
90    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
91    ID.AddInteger(2);
92    Profile(ID, TTP);
93  }
94}
95
96TemplateTemplateParmDecl *
97ASTContext::getCanonicalTemplateTemplateParmDecl(
98                                          TemplateTemplateParmDecl *TTP) const {
99  // Check if we already have a canonical template template parameter.
100  llvm::FoldingSetNodeID ID;
101  CanonicalTemplateTemplateParm::Profile(ID, TTP);
102  void *InsertPos = 0;
103  CanonicalTemplateTemplateParm *Canonical
104    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
105  if (Canonical)
106    return Canonical->getParam();
107
108  // Build a canonical template parameter list.
109  TemplateParameterList *Params = TTP->getTemplateParameters();
110  SmallVector<NamedDecl *, 4> CanonParams;
111  CanonParams.reserve(Params->size());
112  for (TemplateParameterList::const_iterator P = Params->begin(),
113                                          PEnd = Params->end();
114       P != PEnd; ++P) {
115    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
116      CanonParams.push_back(
117                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
118                                               SourceLocation(),
119                                               SourceLocation(),
120                                               TTP->getDepth(),
121                                               TTP->getIndex(), 0, false,
122                                               TTP->isParameterPack()));
123    else if (NonTypeTemplateParmDecl *NTTP
124             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
125      QualType T = getCanonicalType(NTTP->getType());
126      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
127      NonTypeTemplateParmDecl *Param;
128      if (NTTP->isExpandedParameterPack()) {
129        SmallVector<QualType, 2> ExpandedTypes;
130        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
131        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
132          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
133          ExpandedTInfos.push_back(
134                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
135        }
136
137        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
138                                                SourceLocation(),
139                                                SourceLocation(),
140                                                NTTP->getDepth(),
141                                                NTTP->getPosition(), 0,
142                                                T,
143                                                TInfo,
144                                                ExpandedTypes.data(),
145                                                ExpandedTypes.size(),
146                                                ExpandedTInfos.data());
147      } else {
148        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
149                                                SourceLocation(),
150                                                SourceLocation(),
151                                                NTTP->getDepth(),
152                                                NTTP->getPosition(), 0,
153                                                T,
154                                                NTTP->isParameterPack(),
155                                                TInfo);
156      }
157      CanonParams.push_back(Param);
158
159    } else
160      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
161                                           cast<TemplateTemplateParmDecl>(*P)));
162  }
163
164  TemplateTemplateParmDecl *CanonTTP
165    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
166                                       SourceLocation(), TTP->getDepth(),
167                                       TTP->getPosition(),
168                                       TTP->isParameterPack(),
169                                       0,
170                         TemplateParameterList::Create(*this, SourceLocation(),
171                                                       SourceLocation(),
172                                                       CanonParams.data(),
173                                                       CanonParams.size(),
174                                                       SourceLocation()));
175
176  // Get the new insert position for the node we care about.
177  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
178  assert(Canonical == 0 && "Shouldn't be in the map!");
179  (void)Canonical;
180
181  // Create the canonical template template parameter entry.
182  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
183  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
184  return CanonTTP;
185}
186
187CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
188  if (!LangOpts.CPlusPlus) return 0;
189
190  switch (T.getCXXABI()) {
191  case CXXABI_ARM:
192    return CreateARMCXXABI(*this);
193  case CXXABI_Itanium:
194    return CreateItaniumCXXABI(*this);
195  case CXXABI_Microsoft:
196    return CreateMicrosoftCXXABI(*this);
197  }
198  llvm_unreachable("Invalid CXXABI type!");
199}
200
201static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
202                                             const LangOptions &LOpts) {
203  if (LOpts.FakeAddressSpaceMap) {
204    // The fake address space map must have a distinct entry for each
205    // language-specific address space.
206    static const unsigned FakeAddrSpaceMap[] = {
207      1, // opencl_global
208      2, // opencl_local
209      3  // opencl_constant
210    };
211    return &FakeAddrSpaceMap;
212  } else {
213    return &T.getAddressSpaceMap();
214  }
215}
216
217ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
218                       const TargetInfo *t,
219                       IdentifierTable &idents, SelectorTable &sels,
220                       Builtin::Context &builtins,
221                       unsigned size_reserve,
222                       bool DelayInitialization)
223  : FunctionProtoTypes(this_()),
224    TemplateSpecializationTypes(this_()),
225    DependentTemplateSpecializationTypes(this_()),
226    SubstTemplateTemplateParmPacks(this_()),
227    GlobalNestedNameSpecifier(0),
228    Int128Decl(0), UInt128Decl(0),
229    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
230    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
231    FILEDecl(0),
232    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
233    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
234    cudaConfigureCallDecl(0),
235    NullTypeSourceInfo(QualType()),
236    FirstLocalImport(), LastLocalImport(),
237    SourceMgr(SM), LangOpts(LOpts),
238    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
239    Idents(idents), Selectors(sels),
240    BuiltinInfo(builtins),
241    DeclarationNames(*this),
242    ExternalSource(0), Listener(0),
243    LastSDM(0, 0),
244    UniqueBlockByRefTypeID(0)
245{
246  if (size_reserve > 0) Types.reserve(size_reserve);
247  TUDecl = TranslationUnitDecl::Create(*this);
248
249  if (!DelayInitialization) {
250    assert(t && "No target supplied for ASTContext initialization");
251    InitBuiltinTypes(*t);
252  }
253}
254
255ASTContext::~ASTContext() {
256  // Release the DenseMaps associated with DeclContext objects.
257  // FIXME: Is this the ideal solution?
258  ReleaseDeclContextMaps();
259
260  // Call all of the deallocation functions.
261  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
262    Deallocations[I].first(Deallocations[I].second);
263
264  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
265  // because they can contain DenseMaps.
266  for (llvm::DenseMap<const ObjCContainerDecl*,
267       const ASTRecordLayout*>::iterator
268       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
269    // Increment in loop to prevent using deallocated memory.
270    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
271      R->Destroy(*this);
272
273  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
274       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
275    // Increment in loop to prevent using deallocated memory.
276    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
277      R->Destroy(*this);
278  }
279
280  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
281                                                    AEnd = DeclAttrs.end();
282       A != AEnd; ++A)
283    A->second->~AttrVec();
284}
285
286void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
287  Deallocations.push_back(std::make_pair(Callback, Data));
288}
289
290void
291ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
292  ExternalSource.reset(Source.take());
293}
294
295void ASTContext::PrintStats() const {
296  llvm::errs() << "\n*** AST Context Stats:\n";
297  llvm::errs() << "  " << Types.size() << " types total.\n";
298
299  unsigned counts[] = {
300#define TYPE(Name, Parent) 0,
301#define ABSTRACT_TYPE(Name, Parent)
302#include "clang/AST/TypeNodes.def"
303    0 // Extra
304  };
305
306  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
307    Type *T = Types[i];
308    counts[(unsigned)T->getTypeClass()]++;
309  }
310
311  unsigned Idx = 0;
312  unsigned TotalBytes = 0;
313#define TYPE(Name, Parent)                                              \
314  if (counts[Idx])                                                      \
315    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
316                 << " types\n";                                         \
317  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
318  ++Idx;
319#define ABSTRACT_TYPE(Name, Parent)
320#include "clang/AST/TypeNodes.def"
321
322  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
323
324  // Implicit special member functions.
325  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
326               << NumImplicitDefaultConstructors
327               << " implicit default constructors created\n";
328  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
329               << NumImplicitCopyConstructors
330               << " implicit copy constructors created\n";
331  if (getLangOpts().CPlusPlus)
332    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
333                 << NumImplicitMoveConstructors
334                 << " implicit move constructors created\n";
335  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
336               << NumImplicitCopyAssignmentOperators
337               << " implicit copy assignment operators created\n";
338  if (getLangOpts().CPlusPlus)
339    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
340                 << NumImplicitMoveAssignmentOperators
341                 << " implicit move assignment operators created\n";
342  llvm::errs() << NumImplicitDestructorsDeclared << "/"
343               << NumImplicitDestructors
344               << " implicit destructors created\n";
345
346  if (ExternalSource.get()) {
347    llvm::errs() << "\n";
348    ExternalSource->PrintStats();
349  }
350
351  BumpAlloc.PrintStats();
352}
353
354TypedefDecl *ASTContext::getInt128Decl() const {
355  if (!Int128Decl) {
356    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
357    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
358                                     getTranslationUnitDecl(),
359                                     SourceLocation(),
360                                     SourceLocation(),
361                                     &Idents.get("__int128_t"),
362                                     TInfo);
363  }
364
365  return Int128Decl;
366}
367
368TypedefDecl *ASTContext::getUInt128Decl() const {
369  if (!UInt128Decl) {
370    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
371    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
372                                     getTranslationUnitDecl(),
373                                     SourceLocation(),
374                                     SourceLocation(),
375                                     &Idents.get("__uint128_t"),
376                                     TInfo);
377  }
378
379  return UInt128Decl;
380}
381
382void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
383  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
384  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
385  Types.push_back(Ty);
386}
387
388void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
389  assert((!this->Target || this->Target == &Target) &&
390         "Incorrect target reinitialization");
391  assert(VoidTy.isNull() && "Context reinitialized?");
392
393  this->Target = &Target;
394
395  ABI.reset(createCXXABI(Target));
396  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
397
398  // C99 6.2.5p19.
399  InitBuiltinType(VoidTy,              BuiltinType::Void);
400
401  // C99 6.2.5p2.
402  InitBuiltinType(BoolTy,              BuiltinType::Bool);
403  // C99 6.2.5p3.
404  if (LangOpts.CharIsSigned)
405    InitBuiltinType(CharTy,            BuiltinType::Char_S);
406  else
407    InitBuiltinType(CharTy,            BuiltinType::Char_U);
408  // C99 6.2.5p4.
409  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
410  InitBuiltinType(ShortTy,             BuiltinType::Short);
411  InitBuiltinType(IntTy,               BuiltinType::Int);
412  InitBuiltinType(LongTy,              BuiltinType::Long);
413  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
414
415  // C99 6.2.5p6.
416  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
417  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
418  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
419  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
420  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
421
422  // C99 6.2.5p10.
423  InitBuiltinType(FloatTy,             BuiltinType::Float);
424  InitBuiltinType(DoubleTy,            BuiltinType::Double);
425  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
426
427  // GNU extension, 128-bit integers.
428  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
429  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
430
431  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
432    if (TargetInfo::isTypeSigned(Target.getWCharType()))
433      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
434    else  // -fshort-wchar makes wchar_t be unsigned.
435      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
436  } else // C99
437    WCharTy = getFromTargetType(Target.getWCharType());
438
439  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
440    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
441  else // C99
442    Char16Ty = getFromTargetType(Target.getChar16Type());
443
444  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
445    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
446  else // C99
447    Char32Ty = getFromTargetType(Target.getChar32Type());
448
449  // Placeholder type for type-dependent expressions whose type is
450  // completely unknown. No code should ever check a type against
451  // DependentTy and users should never see it; however, it is here to
452  // help diagnose failures to properly check for type-dependent
453  // expressions.
454  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
455
456  // Placeholder type for functions.
457  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
458
459  // Placeholder type for bound members.
460  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
461
462  // Placeholder type for pseudo-objects.
463  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
464
465  // "any" type; useful for debugger-like clients.
466  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
467
468  // Placeholder type for unbridged ARC casts.
469  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
470
471  // C99 6.2.5p11.
472  FloatComplexTy      = getComplexType(FloatTy);
473  DoubleComplexTy     = getComplexType(DoubleTy);
474  LongDoubleComplexTy = getComplexType(LongDoubleTy);
475
476  BuiltinVaListType = QualType();
477
478  // Builtin types for 'id', 'Class', and 'SEL'.
479  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
480  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
481  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
482
483  // Builtin type for __objc_yes and __objc_no
484  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
485                       SignedCharTy : BoolTy);
486
487  ObjCConstantStringType = QualType();
488
489  // void * type
490  VoidPtrTy = getPointerType(VoidTy);
491
492  // nullptr type (C++0x 2.14.7)
493  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
494
495  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
496  InitBuiltinType(HalfTy, BuiltinType::Half);
497}
498
499DiagnosticsEngine &ASTContext::getDiagnostics() const {
500  return SourceMgr.getDiagnostics();
501}
502
503AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
504  AttrVec *&Result = DeclAttrs[D];
505  if (!Result) {
506    void *Mem = Allocate(sizeof(AttrVec));
507    Result = new (Mem) AttrVec;
508  }
509
510  return *Result;
511}
512
513/// \brief Erase the attributes corresponding to the given declaration.
514void ASTContext::eraseDeclAttrs(const Decl *D) {
515  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
516  if (Pos != DeclAttrs.end()) {
517    Pos->second->~AttrVec();
518    DeclAttrs.erase(Pos);
519  }
520}
521
522MemberSpecializationInfo *
523ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
524  assert(Var->isStaticDataMember() && "Not a static data member");
525  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
526    = InstantiatedFromStaticDataMember.find(Var);
527  if (Pos == InstantiatedFromStaticDataMember.end())
528    return 0;
529
530  return Pos->second;
531}
532
533void
534ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
535                                                TemplateSpecializationKind TSK,
536                                          SourceLocation PointOfInstantiation) {
537  assert(Inst->isStaticDataMember() && "Not a static data member");
538  assert(Tmpl->isStaticDataMember() && "Not a static data member");
539  assert(!InstantiatedFromStaticDataMember[Inst] &&
540         "Already noted what static data member was instantiated from");
541  InstantiatedFromStaticDataMember[Inst]
542    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
543}
544
545FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
546                                                     const FunctionDecl *FD){
547  assert(FD && "Specialization is 0");
548  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
549    = ClassScopeSpecializationPattern.find(FD);
550  if (Pos == ClassScopeSpecializationPattern.end())
551    return 0;
552
553  return Pos->second;
554}
555
556void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
557                                        FunctionDecl *Pattern) {
558  assert(FD && "Specialization is 0");
559  assert(Pattern && "Class scope specialization pattern is 0");
560  ClassScopeSpecializationPattern[FD] = Pattern;
561}
562
563NamedDecl *
564ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
565  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
566    = InstantiatedFromUsingDecl.find(UUD);
567  if (Pos == InstantiatedFromUsingDecl.end())
568    return 0;
569
570  return Pos->second;
571}
572
573void
574ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
575  assert((isa<UsingDecl>(Pattern) ||
576          isa<UnresolvedUsingValueDecl>(Pattern) ||
577          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
578         "pattern decl is not a using decl");
579  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
580  InstantiatedFromUsingDecl[Inst] = Pattern;
581}
582
583UsingShadowDecl *
584ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
585  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
586    = InstantiatedFromUsingShadowDecl.find(Inst);
587  if (Pos == InstantiatedFromUsingShadowDecl.end())
588    return 0;
589
590  return Pos->second;
591}
592
593void
594ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
595                                               UsingShadowDecl *Pattern) {
596  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
597  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
598}
599
600FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
601  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
602    = InstantiatedFromUnnamedFieldDecl.find(Field);
603  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
604    return 0;
605
606  return Pos->second;
607}
608
609void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
610                                                     FieldDecl *Tmpl) {
611  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
612  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
613  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
614         "Already noted what unnamed field was instantiated from");
615
616  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
617}
618
619bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
620                                    const FieldDecl *LastFD) const {
621  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
622          FD->getBitWidthValue(*this) == 0);
623}
624
625bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
626                                             const FieldDecl *LastFD) const {
627  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
628          FD->getBitWidthValue(*this) == 0 &&
629          LastFD->getBitWidthValue(*this) != 0);
630}
631
632bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
633                                         const FieldDecl *LastFD) const {
634  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
635          FD->getBitWidthValue(*this) &&
636          LastFD->getBitWidthValue(*this));
637}
638
639bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
640                                         const FieldDecl *LastFD) const {
641  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
642          LastFD->getBitWidthValue(*this));
643}
644
645bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
646                                             const FieldDecl *LastFD) const {
647  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
648          FD->getBitWidthValue(*this));
649}
650
651ASTContext::overridden_cxx_method_iterator
652ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
653  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
654    = OverriddenMethods.find(Method);
655  if (Pos == OverriddenMethods.end())
656    return 0;
657
658  return Pos->second.begin();
659}
660
661ASTContext::overridden_cxx_method_iterator
662ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
663  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
664    = OverriddenMethods.find(Method);
665  if (Pos == OverriddenMethods.end())
666    return 0;
667
668  return Pos->second.end();
669}
670
671unsigned
672ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
673  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
674    = OverriddenMethods.find(Method);
675  if (Pos == OverriddenMethods.end())
676    return 0;
677
678  return Pos->second.size();
679}
680
681void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
682                                     const CXXMethodDecl *Overridden) {
683  OverriddenMethods[Method].push_back(Overridden);
684}
685
686void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
687  assert(!Import->NextLocalImport && "Import declaration already in the chain");
688  assert(!Import->isFromASTFile() && "Non-local import declaration");
689  if (!FirstLocalImport) {
690    FirstLocalImport = Import;
691    LastLocalImport = Import;
692    return;
693  }
694
695  LastLocalImport->NextLocalImport = Import;
696  LastLocalImport = Import;
697}
698
699//===----------------------------------------------------------------------===//
700//                         Type Sizing and Analysis
701//===----------------------------------------------------------------------===//
702
703/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
704/// scalar floating point type.
705const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
706  const BuiltinType *BT = T->getAs<BuiltinType>();
707  assert(BT && "Not a floating point type!");
708  switch (BT->getKind()) {
709  default: llvm_unreachable("Not a floating point type!");
710  case BuiltinType::Half:       return Target->getHalfFormat();
711  case BuiltinType::Float:      return Target->getFloatFormat();
712  case BuiltinType::Double:     return Target->getDoubleFormat();
713  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
714  }
715}
716
717/// getDeclAlign - Return a conservative estimate of the alignment of the
718/// specified decl.  Note that bitfields do not have a valid alignment, so
719/// this method will assert on them.
720/// If @p RefAsPointee, references are treated like their underlying type
721/// (for alignof), else they're treated like pointers (for CodeGen).
722CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
723  unsigned Align = Target->getCharWidth();
724
725  bool UseAlignAttrOnly = false;
726  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
727    Align = AlignFromAttr;
728
729    // __attribute__((aligned)) can increase or decrease alignment
730    // *except* on a struct or struct member, where it only increases
731    // alignment unless 'packed' is also specified.
732    //
733    // It is an error for alignas to decrease alignment, so we can
734    // ignore that possibility;  Sema should diagnose it.
735    if (isa<FieldDecl>(D)) {
736      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
737        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
738    } else {
739      UseAlignAttrOnly = true;
740    }
741  }
742  else if (isa<FieldDecl>(D))
743      UseAlignAttrOnly =
744        D->hasAttr<PackedAttr>() ||
745        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
746
747  // If we're using the align attribute only, just ignore everything
748  // else about the declaration and its type.
749  if (UseAlignAttrOnly) {
750    // do nothing
751
752  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
753    QualType T = VD->getType();
754    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
755      if (RefAsPointee)
756        T = RT->getPointeeType();
757      else
758        T = getPointerType(RT->getPointeeType());
759    }
760    if (!T->isIncompleteType() && !T->isFunctionType()) {
761      // Adjust alignments of declarations with array type by the
762      // large-array alignment on the target.
763      unsigned MinWidth = Target->getLargeArrayMinWidth();
764      const ArrayType *arrayType;
765      if (MinWidth && (arrayType = getAsArrayType(T))) {
766        if (isa<VariableArrayType>(arrayType))
767          Align = std::max(Align, Target->getLargeArrayAlign());
768        else if (isa<ConstantArrayType>(arrayType) &&
769                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
770          Align = std::max(Align, Target->getLargeArrayAlign());
771
772        // Walk through any array types while we're at it.
773        T = getBaseElementType(arrayType);
774      }
775      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
776    }
777
778    // Fields can be subject to extra alignment constraints, like if
779    // the field is packed, the struct is packed, or the struct has a
780    // a max-field-alignment constraint (#pragma pack).  So calculate
781    // the actual alignment of the field within the struct, and then
782    // (as we're expected to) constrain that by the alignment of the type.
783    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
784      // So calculate the alignment of the field.
785      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
786
787      // Start with the record's overall alignment.
788      unsigned fieldAlign = toBits(layout.getAlignment());
789
790      // Use the GCD of that and the offset within the record.
791      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
792      if (offset > 0) {
793        // Alignment is always a power of 2, so the GCD will be a power of 2,
794        // which means we get to do this crazy thing instead of Euclid's.
795        uint64_t lowBitOfOffset = offset & (~offset + 1);
796        if (lowBitOfOffset < fieldAlign)
797          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
798      }
799
800      Align = std::min(Align, fieldAlign);
801    }
802  }
803
804  return toCharUnitsFromBits(Align);
805}
806
807std::pair<CharUnits, CharUnits>
808ASTContext::getTypeInfoInChars(const Type *T) const {
809  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
810  return std::make_pair(toCharUnitsFromBits(Info.first),
811                        toCharUnitsFromBits(Info.second));
812}
813
814std::pair<CharUnits, CharUnits>
815ASTContext::getTypeInfoInChars(QualType T) const {
816  return getTypeInfoInChars(T.getTypePtr());
817}
818
819std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
820  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
821  if (it != MemoizedTypeInfo.end())
822    return it->second;
823
824  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
825  MemoizedTypeInfo.insert(std::make_pair(T, Info));
826  return Info;
827}
828
829/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
830/// method does not work on incomplete types.
831///
832/// FIXME: Pointers into different addr spaces could have different sizes and
833/// alignment requirements: getPointerInfo should take an AddrSpace, this
834/// should take a QualType, &c.
835std::pair<uint64_t, unsigned>
836ASTContext::getTypeInfoImpl(const Type *T) const {
837  uint64_t Width=0;
838  unsigned Align=8;
839  switch (T->getTypeClass()) {
840#define TYPE(Class, Base)
841#define ABSTRACT_TYPE(Class, Base)
842#define NON_CANONICAL_TYPE(Class, Base)
843#define DEPENDENT_TYPE(Class, Base) case Type::Class:
844#include "clang/AST/TypeNodes.def"
845    llvm_unreachable("Should not see dependent types");
846
847  case Type::FunctionNoProto:
848  case Type::FunctionProto:
849    // GCC extension: alignof(function) = 32 bits
850    Width = 0;
851    Align = 32;
852    break;
853
854  case Type::IncompleteArray:
855  case Type::VariableArray:
856    Width = 0;
857    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
858    break;
859
860  case Type::ConstantArray: {
861    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
862
863    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
864    uint64_t Size = CAT->getSize().getZExtValue();
865    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
866           "Overflow in array type bit size evaluation");
867    Width = EltInfo.first*Size;
868    Align = EltInfo.second;
869    Width = llvm::RoundUpToAlignment(Width, Align);
870    break;
871  }
872  case Type::ExtVector:
873  case Type::Vector: {
874    const VectorType *VT = cast<VectorType>(T);
875    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
876    Width = EltInfo.first*VT->getNumElements();
877    Align = Width;
878    // If the alignment is not a power of 2, round up to the next power of 2.
879    // This happens for non-power-of-2 length vectors.
880    if (Align & (Align-1)) {
881      Align = llvm::NextPowerOf2(Align);
882      Width = llvm::RoundUpToAlignment(Width, Align);
883    }
884    break;
885  }
886
887  case Type::Builtin:
888    switch (cast<BuiltinType>(T)->getKind()) {
889    default: llvm_unreachable("Unknown builtin type!");
890    case BuiltinType::Void:
891      // GCC extension: alignof(void) = 8 bits.
892      Width = 0;
893      Align = 8;
894      break;
895
896    case BuiltinType::Bool:
897      Width = Target->getBoolWidth();
898      Align = Target->getBoolAlign();
899      break;
900    case BuiltinType::Char_S:
901    case BuiltinType::Char_U:
902    case BuiltinType::UChar:
903    case BuiltinType::SChar:
904      Width = Target->getCharWidth();
905      Align = Target->getCharAlign();
906      break;
907    case BuiltinType::WChar_S:
908    case BuiltinType::WChar_U:
909      Width = Target->getWCharWidth();
910      Align = Target->getWCharAlign();
911      break;
912    case BuiltinType::Char16:
913      Width = Target->getChar16Width();
914      Align = Target->getChar16Align();
915      break;
916    case BuiltinType::Char32:
917      Width = Target->getChar32Width();
918      Align = Target->getChar32Align();
919      break;
920    case BuiltinType::UShort:
921    case BuiltinType::Short:
922      Width = Target->getShortWidth();
923      Align = Target->getShortAlign();
924      break;
925    case BuiltinType::UInt:
926    case BuiltinType::Int:
927      Width = Target->getIntWidth();
928      Align = Target->getIntAlign();
929      break;
930    case BuiltinType::ULong:
931    case BuiltinType::Long:
932      Width = Target->getLongWidth();
933      Align = Target->getLongAlign();
934      break;
935    case BuiltinType::ULongLong:
936    case BuiltinType::LongLong:
937      Width = Target->getLongLongWidth();
938      Align = Target->getLongLongAlign();
939      break;
940    case BuiltinType::Int128:
941    case BuiltinType::UInt128:
942      Width = 128;
943      Align = 128; // int128_t is 128-bit aligned on all targets.
944      break;
945    case BuiltinType::Half:
946      Width = Target->getHalfWidth();
947      Align = Target->getHalfAlign();
948      break;
949    case BuiltinType::Float:
950      Width = Target->getFloatWidth();
951      Align = Target->getFloatAlign();
952      break;
953    case BuiltinType::Double:
954      Width = Target->getDoubleWidth();
955      Align = Target->getDoubleAlign();
956      break;
957    case BuiltinType::LongDouble:
958      Width = Target->getLongDoubleWidth();
959      Align = Target->getLongDoubleAlign();
960      break;
961    case BuiltinType::NullPtr:
962      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
963      Align = Target->getPointerAlign(0); //   == sizeof(void*)
964      break;
965    case BuiltinType::ObjCId:
966    case BuiltinType::ObjCClass:
967    case BuiltinType::ObjCSel:
968      Width = Target->getPointerWidth(0);
969      Align = Target->getPointerAlign(0);
970      break;
971    }
972    break;
973  case Type::ObjCObjectPointer:
974    Width = Target->getPointerWidth(0);
975    Align = Target->getPointerAlign(0);
976    break;
977  case Type::BlockPointer: {
978    unsigned AS = getTargetAddressSpace(
979        cast<BlockPointerType>(T)->getPointeeType());
980    Width = Target->getPointerWidth(AS);
981    Align = Target->getPointerAlign(AS);
982    break;
983  }
984  case Type::LValueReference:
985  case Type::RValueReference: {
986    // alignof and sizeof should never enter this code path here, so we go
987    // the pointer route.
988    unsigned AS = getTargetAddressSpace(
989        cast<ReferenceType>(T)->getPointeeType());
990    Width = Target->getPointerWidth(AS);
991    Align = Target->getPointerAlign(AS);
992    break;
993  }
994  case Type::Pointer: {
995    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
996    Width = Target->getPointerWidth(AS);
997    Align = Target->getPointerAlign(AS);
998    break;
999  }
1000  case Type::MemberPointer: {
1001    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1002    std::pair<uint64_t, unsigned> PtrDiffInfo =
1003      getTypeInfo(getPointerDiffType());
1004    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1005    Align = PtrDiffInfo.second;
1006    break;
1007  }
1008  case Type::Complex: {
1009    // Complex types have the same alignment as their elements, but twice the
1010    // size.
1011    std::pair<uint64_t, unsigned> EltInfo =
1012      getTypeInfo(cast<ComplexType>(T)->getElementType());
1013    Width = EltInfo.first*2;
1014    Align = EltInfo.second;
1015    break;
1016  }
1017  case Type::ObjCObject:
1018    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1019  case Type::ObjCInterface: {
1020    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1021    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1022    Width = toBits(Layout.getSize());
1023    Align = toBits(Layout.getAlignment());
1024    break;
1025  }
1026  case Type::Record:
1027  case Type::Enum: {
1028    const TagType *TT = cast<TagType>(T);
1029
1030    if (TT->getDecl()->isInvalidDecl()) {
1031      Width = 8;
1032      Align = 8;
1033      break;
1034    }
1035
1036    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1037      return getTypeInfo(ET->getDecl()->getIntegerType());
1038
1039    const RecordType *RT = cast<RecordType>(TT);
1040    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1041    Width = toBits(Layout.getSize());
1042    Align = toBits(Layout.getAlignment());
1043    break;
1044  }
1045
1046  case Type::SubstTemplateTypeParm:
1047    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1048                       getReplacementType().getTypePtr());
1049
1050  case Type::Auto: {
1051    const AutoType *A = cast<AutoType>(T);
1052    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1053    return getTypeInfo(A->getDeducedType().getTypePtr());
1054  }
1055
1056  case Type::Paren:
1057    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1058
1059  case Type::Typedef: {
1060    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1061    std::pair<uint64_t, unsigned> Info
1062      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1063    // If the typedef has an aligned attribute on it, it overrides any computed
1064    // alignment we have.  This violates the GCC documentation (which says that
1065    // attribute(aligned) can only round up) but matches its implementation.
1066    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1067      Align = AttrAlign;
1068    else
1069      Align = Info.second;
1070    Width = Info.first;
1071    break;
1072  }
1073
1074  case Type::TypeOfExpr:
1075    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1076                         .getTypePtr());
1077
1078  case Type::TypeOf:
1079    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1080
1081  case Type::Decltype:
1082    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1083                        .getTypePtr());
1084
1085  case Type::UnaryTransform:
1086    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1087
1088  case Type::Elaborated:
1089    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1090
1091  case Type::Attributed:
1092    return getTypeInfo(
1093                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1094
1095  case Type::TemplateSpecialization: {
1096    assert(getCanonicalType(T) != T &&
1097           "Cannot request the size of a dependent type");
1098    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1099    // A type alias template specialization may refer to a typedef with the
1100    // aligned attribute on it.
1101    if (TST->isTypeAlias())
1102      return getTypeInfo(TST->getAliasedType().getTypePtr());
1103    else
1104      return getTypeInfo(getCanonicalType(T));
1105  }
1106
1107  case Type::Atomic: {
1108    std::pair<uint64_t, unsigned> Info
1109      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1110    Width = Info.first;
1111    Align = Info.second;
1112    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1113        llvm::isPowerOf2_64(Width)) {
1114      // We can potentially perform lock-free atomic operations for this
1115      // type; promote the alignment appropriately.
1116      // FIXME: We could potentially promote the width here as well...
1117      // is that worthwhile?  (Non-struct atomic types generally have
1118      // power-of-two size anyway, but structs might not.  Requires a bit
1119      // of implementation work to make sure we zero out the extra bits.)
1120      Align = static_cast<unsigned>(Width);
1121    }
1122  }
1123
1124  }
1125
1126  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1127  return std::make_pair(Width, Align);
1128}
1129
1130/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1131CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1132  return CharUnits::fromQuantity(BitSize / getCharWidth());
1133}
1134
1135/// toBits - Convert a size in characters to a size in characters.
1136int64_t ASTContext::toBits(CharUnits CharSize) const {
1137  return CharSize.getQuantity() * getCharWidth();
1138}
1139
1140/// getTypeSizeInChars - Return the size of the specified type, in characters.
1141/// This method does not work on incomplete types.
1142CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1143  return toCharUnitsFromBits(getTypeSize(T));
1144}
1145CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1146  return toCharUnitsFromBits(getTypeSize(T));
1147}
1148
1149/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1150/// characters. This method does not work on incomplete types.
1151CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1152  return toCharUnitsFromBits(getTypeAlign(T));
1153}
1154CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1155  return toCharUnitsFromBits(getTypeAlign(T));
1156}
1157
1158/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1159/// type for the current target in bits.  This can be different than the ABI
1160/// alignment in cases where it is beneficial for performance to overalign
1161/// a data type.
1162unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1163  unsigned ABIAlign = getTypeAlign(T);
1164
1165  // Double and long long should be naturally aligned if possible.
1166  if (const ComplexType* CT = T->getAs<ComplexType>())
1167    T = CT->getElementType().getTypePtr();
1168  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1169      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1170      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1171    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1172
1173  return ABIAlign;
1174}
1175
1176/// DeepCollectObjCIvars -
1177/// This routine first collects all declared, but not synthesized, ivars in
1178/// super class and then collects all ivars, including those synthesized for
1179/// current class. This routine is used for implementation of current class
1180/// when all ivars, declared and synthesized are known.
1181///
1182void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1183                                      bool leafClass,
1184                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1185  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1186    DeepCollectObjCIvars(SuperClass, false, Ivars);
1187  if (!leafClass) {
1188    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1189         E = OI->ivar_end(); I != E; ++I)
1190      Ivars.push_back(*I);
1191  } else {
1192    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1193    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1194         Iv= Iv->getNextIvar())
1195      Ivars.push_back(Iv);
1196  }
1197}
1198
1199/// CollectInheritedProtocols - Collect all protocols in current class and
1200/// those inherited by it.
1201void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1202                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1203  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1204    // We can use protocol_iterator here instead of
1205    // all_referenced_protocol_iterator since we are walking all categories.
1206    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1207         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1208      ObjCProtocolDecl *Proto = (*P);
1209      Protocols.insert(Proto->getCanonicalDecl());
1210      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1211           PE = Proto->protocol_end(); P != PE; ++P) {
1212        Protocols.insert((*P)->getCanonicalDecl());
1213        CollectInheritedProtocols(*P, Protocols);
1214      }
1215    }
1216
1217    // Categories of this Interface.
1218    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1219         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1220      CollectInheritedProtocols(CDeclChain, Protocols);
1221    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1222      while (SD) {
1223        CollectInheritedProtocols(SD, Protocols);
1224        SD = SD->getSuperClass();
1225      }
1226  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1227    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1228         PE = OC->protocol_end(); P != PE; ++P) {
1229      ObjCProtocolDecl *Proto = (*P);
1230      Protocols.insert(Proto->getCanonicalDecl());
1231      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1232           PE = Proto->protocol_end(); P != PE; ++P)
1233        CollectInheritedProtocols(*P, Protocols);
1234    }
1235  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1236    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1237         PE = OP->protocol_end(); P != PE; ++P) {
1238      ObjCProtocolDecl *Proto = (*P);
1239      Protocols.insert(Proto->getCanonicalDecl());
1240      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1241           PE = Proto->protocol_end(); P != PE; ++P)
1242        CollectInheritedProtocols(*P, Protocols);
1243    }
1244  }
1245}
1246
1247unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1248  unsigned count = 0;
1249  // Count ivars declared in class extension.
1250  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1251       CDecl = CDecl->getNextClassExtension())
1252    count += CDecl->ivar_size();
1253
1254  // Count ivar defined in this class's implementation.  This
1255  // includes synthesized ivars.
1256  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1257    count += ImplDecl->ivar_size();
1258
1259  return count;
1260}
1261
1262bool ASTContext::isSentinelNullExpr(const Expr *E) {
1263  if (!E)
1264    return false;
1265
1266  // nullptr_t is always treated as null.
1267  if (E->getType()->isNullPtrType()) return true;
1268
1269  if (E->getType()->isAnyPointerType() &&
1270      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1271                                                Expr::NPC_ValueDependentIsNull))
1272    return true;
1273
1274  // Unfortunately, __null has type 'int'.
1275  if (isa<GNUNullExpr>(E)) return true;
1276
1277  return false;
1278}
1279
1280/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1281ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1282  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1283    I = ObjCImpls.find(D);
1284  if (I != ObjCImpls.end())
1285    return cast<ObjCImplementationDecl>(I->second);
1286  return 0;
1287}
1288/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1289ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1290  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1291    I = ObjCImpls.find(D);
1292  if (I != ObjCImpls.end())
1293    return cast<ObjCCategoryImplDecl>(I->second);
1294  return 0;
1295}
1296
1297/// \brief Set the implementation of ObjCInterfaceDecl.
1298void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1299                           ObjCImplementationDecl *ImplD) {
1300  assert(IFaceD && ImplD && "Passed null params");
1301  ObjCImpls[IFaceD] = ImplD;
1302}
1303/// \brief Set the implementation of ObjCCategoryDecl.
1304void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1305                           ObjCCategoryImplDecl *ImplD) {
1306  assert(CatD && ImplD && "Passed null params");
1307  ObjCImpls[CatD] = ImplD;
1308}
1309
1310ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1311  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1312    return ID;
1313  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1314    return CD->getClassInterface();
1315  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1316    return IMD->getClassInterface();
1317
1318  return 0;
1319}
1320
1321/// \brief Get the copy initialization expression of VarDecl,or NULL if
1322/// none exists.
1323Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1324  assert(VD && "Passed null params");
1325  assert(VD->hasAttr<BlocksAttr>() &&
1326         "getBlockVarCopyInits - not __block var");
1327  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1328    I = BlockVarCopyInits.find(VD);
1329  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1330}
1331
1332/// \brief Set the copy inialization expression of a block var decl.
1333void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1334  assert(VD && Init && "Passed null params");
1335  assert(VD->hasAttr<BlocksAttr>() &&
1336         "setBlockVarCopyInits - not __block var");
1337  BlockVarCopyInits[VD] = Init;
1338}
1339
1340/// \brief Allocate an uninitialized TypeSourceInfo.
1341///
1342/// The caller should initialize the memory held by TypeSourceInfo using
1343/// the TypeLoc wrappers.
1344///
1345/// \param T the type that will be the basis for type source info. This type
1346/// should refer to how the declarator was written in source code, not to
1347/// what type semantic analysis resolved the declarator to.
1348TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1349                                                 unsigned DataSize) const {
1350  if (!DataSize)
1351    DataSize = TypeLoc::getFullDataSizeForType(T);
1352  else
1353    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1354           "incorrect data size provided to CreateTypeSourceInfo!");
1355
1356  TypeSourceInfo *TInfo =
1357    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1358  new (TInfo) TypeSourceInfo(T);
1359  return TInfo;
1360}
1361
1362TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1363                                                     SourceLocation L) const {
1364  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1365  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1366  return DI;
1367}
1368
1369const ASTRecordLayout &
1370ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1371  return getObjCLayout(D, 0);
1372}
1373
1374const ASTRecordLayout &
1375ASTContext::getASTObjCImplementationLayout(
1376                                        const ObjCImplementationDecl *D) const {
1377  return getObjCLayout(D->getClassInterface(), D);
1378}
1379
1380//===----------------------------------------------------------------------===//
1381//                   Type creation/memoization methods
1382//===----------------------------------------------------------------------===//
1383
1384QualType
1385ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1386  unsigned fastQuals = quals.getFastQualifiers();
1387  quals.removeFastQualifiers();
1388
1389  // Check if we've already instantiated this type.
1390  llvm::FoldingSetNodeID ID;
1391  ExtQuals::Profile(ID, baseType, quals);
1392  void *insertPos = 0;
1393  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1394    assert(eq->getQualifiers() == quals);
1395    return QualType(eq, fastQuals);
1396  }
1397
1398  // If the base type is not canonical, make the appropriate canonical type.
1399  QualType canon;
1400  if (!baseType->isCanonicalUnqualified()) {
1401    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1402    canonSplit.Quals.addConsistentQualifiers(quals);
1403    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1404
1405    // Re-find the insert position.
1406    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1407  }
1408
1409  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1410  ExtQualNodes.InsertNode(eq, insertPos);
1411  return QualType(eq, fastQuals);
1412}
1413
1414QualType
1415ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1416  QualType CanT = getCanonicalType(T);
1417  if (CanT.getAddressSpace() == AddressSpace)
1418    return T;
1419
1420  // If we are composing extended qualifiers together, merge together
1421  // into one ExtQuals node.
1422  QualifierCollector Quals;
1423  const Type *TypeNode = Quals.strip(T);
1424
1425  // If this type already has an address space specified, it cannot get
1426  // another one.
1427  assert(!Quals.hasAddressSpace() &&
1428         "Type cannot be in multiple addr spaces!");
1429  Quals.addAddressSpace(AddressSpace);
1430
1431  return getExtQualType(TypeNode, Quals);
1432}
1433
1434QualType ASTContext::getObjCGCQualType(QualType T,
1435                                       Qualifiers::GC GCAttr) const {
1436  QualType CanT = getCanonicalType(T);
1437  if (CanT.getObjCGCAttr() == GCAttr)
1438    return T;
1439
1440  if (const PointerType *ptr = T->getAs<PointerType>()) {
1441    QualType Pointee = ptr->getPointeeType();
1442    if (Pointee->isAnyPointerType()) {
1443      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1444      return getPointerType(ResultType);
1445    }
1446  }
1447
1448  // If we are composing extended qualifiers together, merge together
1449  // into one ExtQuals node.
1450  QualifierCollector Quals;
1451  const Type *TypeNode = Quals.strip(T);
1452
1453  // If this type already has an ObjCGC specified, it cannot get
1454  // another one.
1455  assert(!Quals.hasObjCGCAttr() &&
1456         "Type cannot have multiple ObjCGCs!");
1457  Quals.addObjCGCAttr(GCAttr);
1458
1459  return getExtQualType(TypeNode, Quals);
1460}
1461
1462const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1463                                                   FunctionType::ExtInfo Info) {
1464  if (T->getExtInfo() == Info)
1465    return T;
1466
1467  QualType Result;
1468  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1469    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1470  } else {
1471    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1472    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1473    EPI.ExtInfo = Info;
1474    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1475                             FPT->getNumArgs(), EPI);
1476  }
1477
1478  return cast<FunctionType>(Result.getTypePtr());
1479}
1480
1481/// getComplexType - Return the uniqued reference to the type for a complex
1482/// number with the specified element type.
1483QualType ASTContext::getComplexType(QualType T) const {
1484  // Unique pointers, to guarantee there is only one pointer of a particular
1485  // structure.
1486  llvm::FoldingSetNodeID ID;
1487  ComplexType::Profile(ID, T);
1488
1489  void *InsertPos = 0;
1490  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1491    return QualType(CT, 0);
1492
1493  // If the pointee type isn't canonical, this won't be a canonical type either,
1494  // so fill in the canonical type field.
1495  QualType Canonical;
1496  if (!T.isCanonical()) {
1497    Canonical = getComplexType(getCanonicalType(T));
1498
1499    // Get the new insert position for the node we care about.
1500    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1501    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1502  }
1503  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1504  Types.push_back(New);
1505  ComplexTypes.InsertNode(New, InsertPos);
1506  return QualType(New, 0);
1507}
1508
1509/// getPointerType - Return the uniqued reference to the type for a pointer to
1510/// the specified type.
1511QualType ASTContext::getPointerType(QualType T) const {
1512  // Unique pointers, to guarantee there is only one pointer of a particular
1513  // structure.
1514  llvm::FoldingSetNodeID ID;
1515  PointerType::Profile(ID, T);
1516
1517  void *InsertPos = 0;
1518  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1519    return QualType(PT, 0);
1520
1521  // If the pointee type isn't canonical, this won't be a canonical type either,
1522  // so fill in the canonical type field.
1523  QualType Canonical;
1524  if (!T.isCanonical()) {
1525    Canonical = getPointerType(getCanonicalType(T));
1526
1527    // Get the new insert position for the node we care about.
1528    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1529    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1530  }
1531  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1532  Types.push_back(New);
1533  PointerTypes.InsertNode(New, InsertPos);
1534  return QualType(New, 0);
1535}
1536
1537/// getBlockPointerType - Return the uniqued reference to the type for
1538/// a pointer to the specified block.
1539QualType ASTContext::getBlockPointerType(QualType T) const {
1540  assert(T->isFunctionType() && "block of function types only");
1541  // Unique pointers, to guarantee there is only one block of a particular
1542  // structure.
1543  llvm::FoldingSetNodeID ID;
1544  BlockPointerType::Profile(ID, T);
1545
1546  void *InsertPos = 0;
1547  if (BlockPointerType *PT =
1548        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1549    return QualType(PT, 0);
1550
1551  // If the block pointee type isn't canonical, this won't be a canonical
1552  // type either so fill in the canonical type field.
1553  QualType Canonical;
1554  if (!T.isCanonical()) {
1555    Canonical = getBlockPointerType(getCanonicalType(T));
1556
1557    // Get the new insert position for the node we care about.
1558    BlockPointerType *NewIP =
1559      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1560    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1561  }
1562  BlockPointerType *New
1563    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1564  Types.push_back(New);
1565  BlockPointerTypes.InsertNode(New, InsertPos);
1566  return QualType(New, 0);
1567}
1568
1569/// getLValueReferenceType - Return the uniqued reference to the type for an
1570/// lvalue reference to the specified type.
1571QualType
1572ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1573  assert(getCanonicalType(T) != OverloadTy &&
1574         "Unresolved overloaded function type");
1575
1576  // Unique pointers, to guarantee there is only one pointer of a particular
1577  // structure.
1578  llvm::FoldingSetNodeID ID;
1579  ReferenceType::Profile(ID, T, SpelledAsLValue);
1580
1581  void *InsertPos = 0;
1582  if (LValueReferenceType *RT =
1583        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1584    return QualType(RT, 0);
1585
1586  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1587
1588  // If the referencee type isn't canonical, this won't be a canonical type
1589  // either, so fill in the canonical type field.
1590  QualType Canonical;
1591  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1592    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1593    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1594
1595    // Get the new insert position for the node we care about.
1596    LValueReferenceType *NewIP =
1597      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1598    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1599  }
1600
1601  LValueReferenceType *New
1602    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1603                                                     SpelledAsLValue);
1604  Types.push_back(New);
1605  LValueReferenceTypes.InsertNode(New, InsertPos);
1606
1607  return QualType(New, 0);
1608}
1609
1610/// getRValueReferenceType - Return the uniqued reference to the type for an
1611/// rvalue reference to the specified type.
1612QualType ASTContext::getRValueReferenceType(QualType T) const {
1613  // Unique pointers, to guarantee there is only one pointer of a particular
1614  // structure.
1615  llvm::FoldingSetNodeID ID;
1616  ReferenceType::Profile(ID, T, false);
1617
1618  void *InsertPos = 0;
1619  if (RValueReferenceType *RT =
1620        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1621    return QualType(RT, 0);
1622
1623  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1624
1625  // If the referencee type isn't canonical, this won't be a canonical type
1626  // either, so fill in the canonical type field.
1627  QualType Canonical;
1628  if (InnerRef || !T.isCanonical()) {
1629    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1630    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1631
1632    // Get the new insert position for the node we care about.
1633    RValueReferenceType *NewIP =
1634      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1635    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1636  }
1637
1638  RValueReferenceType *New
1639    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1640  Types.push_back(New);
1641  RValueReferenceTypes.InsertNode(New, InsertPos);
1642  return QualType(New, 0);
1643}
1644
1645/// getMemberPointerType - Return the uniqued reference to the type for a
1646/// member pointer to the specified type, in the specified class.
1647QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1648  // Unique pointers, to guarantee there is only one pointer of a particular
1649  // structure.
1650  llvm::FoldingSetNodeID ID;
1651  MemberPointerType::Profile(ID, T, Cls);
1652
1653  void *InsertPos = 0;
1654  if (MemberPointerType *PT =
1655      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1656    return QualType(PT, 0);
1657
1658  // If the pointee or class type isn't canonical, this won't be a canonical
1659  // type either, so fill in the canonical type field.
1660  QualType Canonical;
1661  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1662    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1663
1664    // Get the new insert position for the node we care about.
1665    MemberPointerType *NewIP =
1666      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1667    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1668  }
1669  MemberPointerType *New
1670    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1671  Types.push_back(New);
1672  MemberPointerTypes.InsertNode(New, InsertPos);
1673  return QualType(New, 0);
1674}
1675
1676/// getConstantArrayType - Return the unique reference to the type for an
1677/// array of the specified element type.
1678QualType ASTContext::getConstantArrayType(QualType EltTy,
1679                                          const llvm::APInt &ArySizeIn,
1680                                          ArrayType::ArraySizeModifier ASM,
1681                                          unsigned IndexTypeQuals) const {
1682  assert((EltTy->isDependentType() ||
1683          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1684         "Constant array of VLAs is illegal!");
1685
1686  // Convert the array size into a canonical width matching the pointer size for
1687  // the target.
1688  llvm::APInt ArySize(ArySizeIn);
1689  ArySize =
1690    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1691
1692  llvm::FoldingSetNodeID ID;
1693  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1694
1695  void *InsertPos = 0;
1696  if (ConstantArrayType *ATP =
1697      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1698    return QualType(ATP, 0);
1699
1700  // If the element type isn't canonical or has qualifiers, this won't
1701  // be a canonical type either, so fill in the canonical type field.
1702  QualType Canon;
1703  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1704    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1705    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
1706                                 ASM, IndexTypeQuals);
1707    Canon = getQualifiedType(Canon, canonSplit.Quals);
1708
1709    // Get the new insert position for the node we care about.
1710    ConstantArrayType *NewIP =
1711      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1712    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1713  }
1714
1715  ConstantArrayType *New = new(*this,TypeAlignment)
1716    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1717  ConstantArrayTypes.InsertNode(New, InsertPos);
1718  Types.push_back(New);
1719  return QualType(New, 0);
1720}
1721
1722/// getVariableArrayDecayedType - Turns the given type, which may be
1723/// variably-modified, into the corresponding type with all the known
1724/// sizes replaced with [*].
1725QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1726  // Vastly most common case.
1727  if (!type->isVariablyModifiedType()) return type;
1728
1729  QualType result;
1730
1731  SplitQualType split = type.getSplitDesugaredType();
1732  const Type *ty = split.Ty;
1733  switch (ty->getTypeClass()) {
1734#define TYPE(Class, Base)
1735#define ABSTRACT_TYPE(Class, Base)
1736#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1737#include "clang/AST/TypeNodes.def"
1738    llvm_unreachable("didn't desugar past all non-canonical types?");
1739
1740  // These types should never be variably-modified.
1741  case Type::Builtin:
1742  case Type::Complex:
1743  case Type::Vector:
1744  case Type::ExtVector:
1745  case Type::DependentSizedExtVector:
1746  case Type::ObjCObject:
1747  case Type::ObjCInterface:
1748  case Type::ObjCObjectPointer:
1749  case Type::Record:
1750  case Type::Enum:
1751  case Type::UnresolvedUsing:
1752  case Type::TypeOfExpr:
1753  case Type::TypeOf:
1754  case Type::Decltype:
1755  case Type::UnaryTransform:
1756  case Type::DependentName:
1757  case Type::InjectedClassName:
1758  case Type::TemplateSpecialization:
1759  case Type::DependentTemplateSpecialization:
1760  case Type::TemplateTypeParm:
1761  case Type::SubstTemplateTypeParmPack:
1762  case Type::Auto:
1763  case Type::PackExpansion:
1764    llvm_unreachable("type should never be variably-modified");
1765
1766  // These types can be variably-modified but should never need to
1767  // further decay.
1768  case Type::FunctionNoProto:
1769  case Type::FunctionProto:
1770  case Type::BlockPointer:
1771  case Type::MemberPointer:
1772    return type;
1773
1774  // These types can be variably-modified.  All these modifications
1775  // preserve structure except as noted by comments.
1776  // TODO: if we ever care about optimizing VLAs, there are no-op
1777  // optimizations available here.
1778  case Type::Pointer:
1779    result = getPointerType(getVariableArrayDecayedType(
1780                              cast<PointerType>(ty)->getPointeeType()));
1781    break;
1782
1783  case Type::LValueReference: {
1784    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1785    result = getLValueReferenceType(
1786                 getVariableArrayDecayedType(lv->getPointeeType()),
1787                                    lv->isSpelledAsLValue());
1788    break;
1789  }
1790
1791  case Type::RValueReference: {
1792    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1793    result = getRValueReferenceType(
1794                 getVariableArrayDecayedType(lv->getPointeeType()));
1795    break;
1796  }
1797
1798  case Type::Atomic: {
1799    const AtomicType *at = cast<AtomicType>(ty);
1800    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1801    break;
1802  }
1803
1804  case Type::ConstantArray: {
1805    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1806    result = getConstantArrayType(
1807                 getVariableArrayDecayedType(cat->getElementType()),
1808                                  cat->getSize(),
1809                                  cat->getSizeModifier(),
1810                                  cat->getIndexTypeCVRQualifiers());
1811    break;
1812  }
1813
1814  case Type::DependentSizedArray: {
1815    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1816    result = getDependentSizedArrayType(
1817                 getVariableArrayDecayedType(dat->getElementType()),
1818                                        dat->getSizeExpr(),
1819                                        dat->getSizeModifier(),
1820                                        dat->getIndexTypeCVRQualifiers(),
1821                                        dat->getBracketsRange());
1822    break;
1823  }
1824
1825  // Turn incomplete types into [*] types.
1826  case Type::IncompleteArray: {
1827    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1828    result = getVariableArrayType(
1829                 getVariableArrayDecayedType(iat->getElementType()),
1830                                  /*size*/ 0,
1831                                  ArrayType::Normal,
1832                                  iat->getIndexTypeCVRQualifiers(),
1833                                  SourceRange());
1834    break;
1835  }
1836
1837  // Turn VLA types into [*] types.
1838  case Type::VariableArray: {
1839    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1840    result = getVariableArrayType(
1841                 getVariableArrayDecayedType(vat->getElementType()),
1842                                  /*size*/ 0,
1843                                  ArrayType::Star,
1844                                  vat->getIndexTypeCVRQualifiers(),
1845                                  vat->getBracketsRange());
1846    break;
1847  }
1848  }
1849
1850  // Apply the top-level qualifiers from the original.
1851  return getQualifiedType(result, split.Quals);
1852}
1853
1854/// getVariableArrayType - Returns a non-unique reference to the type for a
1855/// variable array of the specified element type.
1856QualType ASTContext::getVariableArrayType(QualType EltTy,
1857                                          Expr *NumElts,
1858                                          ArrayType::ArraySizeModifier ASM,
1859                                          unsigned IndexTypeQuals,
1860                                          SourceRange Brackets) const {
1861  // Since we don't unique expressions, it isn't possible to unique VLA's
1862  // that have an expression provided for their size.
1863  QualType Canon;
1864
1865  // Be sure to pull qualifiers off the element type.
1866  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1867    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1868    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
1869                                 IndexTypeQuals, Brackets);
1870    Canon = getQualifiedType(Canon, canonSplit.Quals);
1871  }
1872
1873  VariableArrayType *New = new(*this, TypeAlignment)
1874    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1875
1876  VariableArrayTypes.push_back(New);
1877  Types.push_back(New);
1878  return QualType(New, 0);
1879}
1880
1881/// getDependentSizedArrayType - Returns a non-unique reference to
1882/// the type for a dependently-sized array of the specified element
1883/// type.
1884QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1885                                                Expr *numElements,
1886                                                ArrayType::ArraySizeModifier ASM,
1887                                                unsigned elementTypeQuals,
1888                                                SourceRange brackets) const {
1889  assert((!numElements || numElements->isTypeDependent() ||
1890          numElements->isValueDependent()) &&
1891         "Size must be type- or value-dependent!");
1892
1893  // Dependently-sized array types that do not have a specified number
1894  // of elements will have their sizes deduced from a dependent
1895  // initializer.  We do no canonicalization here at all, which is okay
1896  // because they can't be used in most locations.
1897  if (!numElements) {
1898    DependentSizedArrayType *newType
1899      = new (*this, TypeAlignment)
1900          DependentSizedArrayType(*this, elementType, QualType(),
1901                                  numElements, ASM, elementTypeQuals,
1902                                  brackets);
1903    Types.push_back(newType);
1904    return QualType(newType, 0);
1905  }
1906
1907  // Otherwise, we actually build a new type every time, but we
1908  // also build a canonical type.
1909
1910  SplitQualType canonElementType = getCanonicalType(elementType).split();
1911
1912  void *insertPos = 0;
1913  llvm::FoldingSetNodeID ID;
1914  DependentSizedArrayType::Profile(ID, *this,
1915                                   QualType(canonElementType.Ty, 0),
1916                                   ASM, elementTypeQuals, numElements);
1917
1918  // Look for an existing type with these properties.
1919  DependentSizedArrayType *canonTy =
1920    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1921
1922  // If we don't have one, build one.
1923  if (!canonTy) {
1924    canonTy = new (*this, TypeAlignment)
1925      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
1926                              QualType(), numElements, ASM, elementTypeQuals,
1927                              brackets);
1928    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1929    Types.push_back(canonTy);
1930  }
1931
1932  // Apply qualifiers from the element type to the array.
1933  QualType canon = getQualifiedType(QualType(canonTy,0),
1934                                    canonElementType.Quals);
1935
1936  // If we didn't need extra canonicalization for the element type,
1937  // then just use that as our result.
1938  if (QualType(canonElementType.Ty, 0) == elementType)
1939    return canon;
1940
1941  // Otherwise, we need to build a type which follows the spelling
1942  // of the element type.
1943  DependentSizedArrayType *sugaredType
1944    = new (*this, TypeAlignment)
1945        DependentSizedArrayType(*this, elementType, canon, numElements,
1946                                ASM, elementTypeQuals, brackets);
1947  Types.push_back(sugaredType);
1948  return QualType(sugaredType, 0);
1949}
1950
1951QualType ASTContext::getIncompleteArrayType(QualType elementType,
1952                                            ArrayType::ArraySizeModifier ASM,
1953                                            unsigned elementTypeQuals) const {
1954  llvm::FoldingSetNodeID ID;
1955  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1956
1957  void *insertPos = 0;
1958  if (IncompleteArrayType *iat =
1959       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1960    return QualType(iat, 0);
1961
1962  // If the element type isn't canonical, this won't be a canonical type
1963  // either, so fill in the canonical type field.  We also have to pull
1964  // qualifiers off the element type.
1965  QualType canon;
1966
1967  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1968    SplitQualType canonSplit = getCanonicalType(elementType).split();
1969    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
1970                                   ASM, elementTypeQuals);
1971    canon = getQualifiedType(canon, canonSplit.Quals);
1972
1973    // Get the new insert position for the node we care about.
1974    IncompleteArrayType *existing =
1975      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1976    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1977  }
1978
1979  IncompleteArrayType *newType = new (*this, TypeAlignment)
1980    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1981
1982  IncompleteArrayTypes.InsertNode(newType, insertPos);
1983  Types.push_back(newType);
1984  return QualType(newType, 0);
1985}
1986
1987/// getVectorType - Return the unique reference to a vector type of
1988/// the specified element type and size. VectorType must be a built-in type.
1989QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1990                                   VectorType::VectorKind VecKind) const {
1991  assert(vecType->isBuiltinType());
1992
1993  // Check if we've already instantiated a vector of this type.
1994  llvm::FoldingSetNodeID ID;
1995  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1996
1997  void *InsertPos = 0;
1998  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1999    return QualType(VTP, 0);
2000
2001  // If the element type isn't canonical, this won't be a canonical type either,
2002  // so fill in the canonical type field.
2003  QualType Canonical;
2004  if (!vecType.isCanonical()) {
2005    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2006
2007    // Get the new insert position for the node we care about.
2008    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2009    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2010  }
2011  VectorType *New = new (*this, TypeAlignment)
2012    VectorType(vecType, NumElts, Canonical, VecKind);
2013  VectorTypes.InsertNode(New, InsertPos);
2014  Types.push_back(New);
2015  return QualType(New, 0);
2016}
2017
2018/// getExtVectorType - Return the unique reference to an extended vector type of
2019/// the specified element type and size. VectorType must be a built-in type.
2020QualType
2021ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2022  assert(vecType->isBuiltinType() || vecType->isDependentType());
2023
2024  // Check if we've already instantiated a vector of this type.
2025  llvm::FoldingSetNodeID ID;
2026  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2027                      VectorType::GenericVector);
2028  void *InsertPos = 0;
2029  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2030    return QualType(VTP, 0);
2031
2032  // If the element type isn't canonical, this won't be a canonical type either,
2033  // so fill in the canonical type field.
2034  QualType Canonical;
2035  if (!vecType.isCanonical()) {
2036    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2037
2038    // Get the new insert position for the node we care about.
2039    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2040    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2041  }
2042  ExtVectorType *New = new (*this, TypeAlignment)
2043    ExtVectorType(vecType, NumElts, Canonical);
2044  VectorTypes.InsertNode(New, InsertPos);
2045  Types.push_back(New);
2046  return QualType(New, 0);
2047}
2048
2049QualType
2050ASTContext::getDependentSizedExtVectorType(QualType vecType,
2051                                           Expr *SizeExpr,
2052                                           SourceLocation AttrLoc) const {
2053  llvm::FoldingSetNodeID ID;
2054  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2055                                       SizeExpr);
2056
2057  void *InsertPos = 0;
2058  DependentSizedExtVectorType *Canon
2059    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2060  DependentSizedExtVectorType *New;
2061  if (Canon) {
2062    // We already have a canonical version of this array type; use it as
2063    // the canonical type for a newly-built type.
2064    New = new (*this, TypeAlignment)
2065      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2066                                  SizeExpr, AttrLoc);
2067  } else {
2068    QualType CanonVecTy = getCanonicalType(vecType);
2069    if (CanonVecTy == vecType) {
2070      New = new (*this, TypeAlignment)
2071        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2072                                    AttrLoc);
2073
2074      DependentSizedExtVectorType *CanonCheck
2075        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2076      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2077      (void)CanonCheck;
2078      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2079    } else {
2080      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2081                                                      SourceLocation());
2082      New = new (*this, TypeAlignment)
2083        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2084    }
2085  }
2086
2087  Types.push_back(New);
2088  return QualType(New, 0);
2089}
2090
2091/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2092///
2093QualType
2094ASTContext::getFunctionNoProtoType(QualType ResultTy,
2095                                   const FunctionType::ExtInfo &Info) const {
2096  const CallingConv DefaultCC = Info.getCC();
2097  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2098                               CC_X86StdCall : DefaultCC;
2099  // Unique functions, to guarantee there is only one function of a particular
2100  // structure.
2101  llvm::FoldingSetNodeID ID;
2102  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2103
2104  void *InsertPos = 0;
2105  if (FunctionNoProtoType *FT =
2106        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2107    return QualType(FT, 0);
2108
2109  QualType Canonical;
2110  if (!ResultTy.isCanonical() ||
2111      getCanonicalCallConv(CallConv) != CallConv) {
2112    Canonical =
2113      getFunctionNoProtoType(getCanonicalType(ResultTy),
2114                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2115
2116    // Get the new insert position for the node we care about.
2117    FunctionNoProtoType *NewIP =
2118      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2119    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2120  }
2121
2122  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2123  FunctionNoProtoType *New = new (*this, TypeAlignment)
2124    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2125  Types.push_back(New);
2126  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2127  return QualType(New, 0);
2128}
2129
2130/// getFunctionType - Return a normal function type with a typed argument
2131/// list.  isVariadic indicates whether the argument list includes '...'.
2132QualType
2133ASTContext::getFunctionType(QualType ResultTy,
2134                            const QualType *ArgArray, unsigned NumArgs,
2135                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2136  // Unique functions, to guarantee there is only one function of a particular
2137  // structure.
2138  llvm::FoldingSetNodeID ID;
2139  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2140
2141  void *InsertPos = 0;
2142  if (FunctionProtoType *FTP =
2143        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2144    return QualType(FTP, 0);
2145
2146  // Determine whether the type being created is already canonical or not.
2147  bool isCanonical =
2148    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2149    !EPI.HasTrailingReturn;
2150  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2151    if (!ArgArray[i].isCanonicalAsParam())
2152      isCanonical = false;
2153
2154  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2155  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2156                               CC_X86StdCall : DefaultCC;
2157
2158  // If this type isn't canonical, get the canonical version of it.
2159  // The exception spec is not part of the canonical type.
2160  QualType Canonical;
2161  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2162    SmallVector<QualType, 16> CanonicalArgs;
2163    CanonicalArgs.reserve(NumArgs);
2164    for (unsigned i = 0; i != NumArgs; ++i)
2165      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2166
2167    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2168    CanonicalEPI.HasTrailingReturn = false;
2169    CanonicalEPI.ExceptionSpecType = EST_None;
2170    CanonicalEPI.NumExceptions = 0;
2171    CanonicalEPI.ExtInfo
2172      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2173
2174    Canonical = getFunctionType(getCanonicalType(ResultTy),
2175                                CanonicalArgs.data(), NumArgs,
2176                                CanonicalEPI);
2177
2178    // Get the new insert position for the node we care about.
2179    FunctionProtoType *NewIP =
2180      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2181    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2182  }
2183
2184  // FunctionProtoType objects are allocated with extra bytes after
2185  // them for three variable size arrays at the end:
2186  //  - parameter types
2187  //  - exception types
2188  //  - consumed-arguments flags
2189  // Instead of the exception types, there could be a noexcept
2190  // expression.
2191  size_t Size = sizeof(FunctionProtoType) +
2192                NumArgs * sizeof(QualType);
2193  if (EPI.ExceptionSpecType == EST_Dynamic)
2194    Size += EPI.NumExceptions * sizeof(QualType);
2195  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2196    Size += sizeof(Expr*);
2197  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2198    Size += 2 * sizeof(FunctionDecl*);
2199  }
2200  if (EPI.ConsumedArguments)
2201    Size += NumArgs * sizeof(bool);
2202
2203  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2204  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2205  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2206  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2207  Types.push_back(FTP);
2208  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2209  return QualType(FTP, 0);
2210}
2211
2212#ifndef NDEBUG
2213static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2214  if (!isa<CXXRecordDecl>(D)) return false;
2215  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2216  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2217    return true;
2218  if (RD->getDescribedClassTemplate() &&
2219      !isa<ClassTemplateSpecializationDecl>(RD))
2220    return true;
2221  return false;
2222}
2223#endif
2224
2225/// getInjectedClassNameType - Return the unique reference to the
2226/// injected class name type for the specified templated declaration.
2227QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2228                                              QualType TST) const {
2229  assert(NeedsInjectedClassNameType(Decl));
2230  if (Decl->TypeForDecl) {
2231    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2232  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2233    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2234    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2235    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2236  } else {
2237    Type *newType =
2238      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2239    Decl->TypeForDecl = newType;
2240    Types.push_back(newType);
2241  }
2242  return QualType(Decl->TypeForDecl, 0);
2243}
2244
2245/// getTypeDeclType - Return the unique reference to the type for the
2246/// specified type declaration.
2247QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2248  assert(Decl && "Passed null for Decl param");
2249  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2250
2251  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2252    return getTypedefType(Typedef);
2253
2254  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2255         "Template type parameter types are always available.");
2256
2257  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2258    assert(!Record->getPreviousDecl() &&
2259           "struct/union has previous declaration");
2260    assert(!NeedsInjectedClassNameType(Record));
2261    return getRecordType(Record);
2262  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2263    assert(!Enum->getPreviousDecl() &&
2264           "enum has previous declaration");
2265    return getEnumType(Enum);
2266  } else if (const UnresolvedUsingTypenameDecl *Using =
2267               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2268    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2269    Decl->TypeForDecl = newType;
2270    Types.push_back(newType);
2271  } else
2272    llvm_unreachable("TypeDecl without a type?");
2273
2274  return QualType(Decl->TypeForDecl, 0);
2275}
2276
2277/// getTypedefType - Return the unique reference to the type for the
2278/// specified typedef name decl.
2279QualType
2280ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2281                           QualType Canonical) const {
2282  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2283
2284  if (Canonical.isNull())
2285    Canonical = getCanonicalType(Decl->getUnderlyingType());
2286  TypedefType *newType = new(*this, TypeAlignment)
2287    TypedefType(Type::Typedef, Decl, Canonical);
2288  Decl->TypeForDecl = newType;
2289  Types.push_back(newType);
2290  return QualType(newType, 0);
2291}
2292
2293QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2294  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2295
2296  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2297    if (PrevDecl->TypeForDecl)
2298      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2299
2300  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2301  Decl->TypeForDecl = newType;
2302  Types.push_back(newType);
2303  return QualType(newType, 0);
2304}
2305
2306QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2307  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2308
2309  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2310    if (PrevDecl->TypeForDecl)
2311      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2312
2313  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2314  Decl->TypeForDecl = newType;
2315  Types.push_back(newType);
2316  return QualType(newType, 0);
2317}
2318
2319QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2320                                       QualType modifiedType,
2321                                       QualType equivalentType) {
2322  llvm::FoldingSetNodeID id;
2323  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2324
2325  void *insertPos = 0;
2326  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2327  if (type) return QualType(type, 0);
2328
2329  QualType canon = getCanonicalType(equivalentType);
2330  type = new (*this, TypeAlignment)
2331           AttributedType(canon, attrKind, modifiedType, equivalentType);
2332
2333  Types.push_back(type);
2334  AttributedTypes.InsertNode(type, insertPos);
2335
2336  return QualType(type, 0);
2337}
2338
2339
2340/// \brief Retrieve a substitution-result type.
2341QualType
2342ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2343                                         QualType Replacement) const {
2344  assert(Replacement.isCanonical()
2345         && "replacement types must always be canonical");
2346
2347  llvm::FoldingSetNodeID ID;
2348  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2349  void *InsertPos = 0;
2350  SubstTemplateTypeParmType *SubstParm
2351    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2352
2353  if (!SubstParm) {
2354    SubstParm = new (*this, TypeAlignment)
2355      SubstTemplateTypeParmType(Parm, Replacement);
2356    Types.push_back(SubstParm);
2357    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2358  }
2359
2360  return QualType(SubstParm, 0);
2361}
2362
2363/// \brief Retrieve a
2364QualType ASTContext::getSubstTemplateTypeParmPackType(
2365                                          const TemplateTypeParmType *Parm,
2366                                              const TemplateArgument &ArgPack) {
2367#ifndef NDEBUG
2368  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2369                                    PEnd = ArgPack.pack_end();
2370       P != PEnd; ++P) {
2371    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2372    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2373  }
2374#endif
2375
2376  llvm::FoldingSetNodeID ID;
2377  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2378  void *InsertPos = 0;
2379  if (SubstTemplateTypeParmPackType *SubstParm
2380        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2381    return QualType(SubstParm, 0);
2382
2383  QualType Canon;
2384  if (!Parm->isCanonicalUnqualified()) {
2385    Canon = getCanonicalType(QualType(Parm, 0));
2386    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2387                                             ArgPack);
2388    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2389  }
2390
2391  SubstTemplateTypeParmPackType *SubstParm
2392    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2393                                                               ArgPack);
2394  Types.push_back(SubstParm);
2395  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2396  return QualType(SubstParm, 0);
2397}
2398
2399/// \brief Retrieve the template type parameter type for a template
2400/// parameter or parameter pack with the given depth, index, and (optionally)
2401/// name.
2402QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2403                                             bool ParameterPack,
2404                                             TemplateTypeParmDecl *TTPDecl) const {
2405  llvm::FoldingSetNodeID ID;
2406  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2407  void *InsertPos = 0;
2408  TemplateTypeParmType *TypeParm
2409    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2410
2411  if (TypeParm)
2412    return QualType(TypeParm, 0);
2413
2414  if (TTPDecl) {
2415    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2416    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2417
2418    TemplateTypeParmType *TypeCheck
2419      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2420    assert(!TypeCheck && "Template type parameter canonical type broken");
2421    (void)TypeCheck;
2422  } else
2423    TypeParm = new (*this, TypeAlignment)
2424      TemplateTypeParmType(Depth, Index, ParameterPack);
2425
2426  Types.push_back(TypeParm);
2427  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2428
2429  return QualType(TypeParm, 0);
2430}
2431
2432TypeSourceInfo *
2433ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2434                                              SourceLocation NameLoc,
2435                                        const TemplateArgumentListInfo &Args,
2436                                              QualType Underlying) const {
2437  assert(!Name.getAsDependentTemplateName() &&
2438         "No dependent template names here!");
2439  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2440
2441  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2442  TemplateSpecializationTypeLoc TL
2443    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2444  TL.setTemplateKeywordLoc(SourceLocation());
2445  TL.setTemplateNameLoc(NameLoc);
2446  TL.setLAngleLoc(Args.getLAngleLoc());
2447  TL.setRAngleLoc(Args.getRAngleLoc());
2448  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2449    TL.setArgLocInfo(i, Args[i].getLocInfo());
2450  return DI;
2451}
2452
2453QualType
2454ASTContext::getTemplateSpecializationType(TemplateName Template,
2455                                          const TemplateArgumentListInfo &Args,
2456                                          QualType Underlying) const {
2457  assert(!Template.getAsDependentTemplateName() &&
2458         "No dependent template names here!");
2459
2460  unsigned NumArgs = Args.size();
2461
2462  SmallVector<TemplateArgument, 4> ArgVec;
2463  ArgVec.reserve(NumArgs);
2464  for (unsigned i = 0; i != NumArgs; ++i)
2465    ArgVec.push_back(Args[i].getArgument());
2466
2467  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2468                                       Underlying);
2469}
2470
2471#ifndef NDEBUG
2472static bool hasAnyPackExpansions(const TemplateArgument *Args,
2473                                 unsigned NumArgs) {
2474  for (unsigned I = 0; I != NumArgs; ++I)
2475    if (Args[I].isPackExpansion())
2476      return true;
2477
2478  return true;
2479}
2480#endif
2481
2482QualType
2483ASTContext::getTemplateSpecializationType(TemplateName Template,
2484                                          const TemplateArgument *Args,
2485                                          unsigned NumArgs,
2486                                          QualType Underlying) const {
2487  assert(!Template.getAsDependentTemplateName() &&
2488         "No dependent template names here!");
2489  // Look through qualified template names.
2490  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2491    Template = TemplateName(QTN->getTemplateDecl());
2492
2493  bool IsTypeAlias =
2494    Template.getAsTemplateDecl() &&
2495    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2496  QualType CanonType;
2497  if (!Underlying.isNull())
2498    CanonType = getCanonicalType(Underlying);
2499  else {
2500    // We can get here with an alias template when the specialization contains
2501    // a pack expansion that does not match up with a parameter pack.
2502    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2503           "Caller must compute aliased type");
2504    IsTypeAlias = false;
2505    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2506                                                       NumArgs);
2507  }
2508
2509  // Allocate the (non-canonical) template specialization type, but don't
2510  // try to unique it: these types typically have location information that
2511  // we don't unique and don't want to lose.
2512  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2513                       sizeof(TemplateArgument) * NumArgs +
2514                       (IsTypeAlias? sizeof(QualType) : 0),
2515                       TypeAlignment);
2516  TemplateSpecializationType *Spec
2517    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2518                                         IsTypeAlias ? Underlying : QualType());
2519
2520  Types.push_back(Spec);
2521  return QualType(Spec, 0);
2522}
2523
2524QualType
2525ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2526                                                   const TemplateArgument *Args,
2527                                                   unsigned NumArgs) const {
2528  assert(!Template.getAsDependentTemplateName() &&
2529         "No dependent template names here!");
2530
2531  // Look through qualified template names.
2532  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2533    Template = TemplateName(QTN->getTemplateDecl());
2534
2535  // Build the canonical template specialization type.
2536  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2537  SmallVector<TemplateArgument, 4> CanonArgs;
2538  CanonArgs.reserve(NumArgs);
2539  for (unsigned I = 0; I != NumArgs; ++I)
2540    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2541
2542  // Determine whether this canonical template specialization type already
2543  // exists.
2544  llvm::FoldingSetNodeID ID;
2545  TemplateSpecializationType::Profile(ID, CanonTemplate,
2546                                      CanonArgs.data(), NumArgs, *this);
2547
2548  void *InsertPos = 0;
2549  TemplateSpecializationType *Spec
2550    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2551
2552  if (!Spec) {
2553    // Allocate a new canonical template specialization type.
2554    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2555                          sizeof(TemplateArgument) * NumArgs),
2556                         TypeAlignment);
2557    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2558                                                CanonArgs.data(), NumArgs,
2559                                                QualType(), QualType());
2560    Types.push_back(Spec);
2561    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2562  }
2563
2564  assert(Spec->isDependentType() &&
2565         "Non-dependent template-id type must have a canonical type");
2566  return QualType(Spec, 0);
2567}
2568
2569QualType
2570ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2571                              NestedNameSpecifier *NNS,
2572                              QualType NamedType) const {
2573  llvm::FoldingSetNodeID ID;
2574  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2575
2576  void *InsertPos = 0;
2577  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2578  if (T)
2579    return QualType(T, 0);
2580
2581  QualType Canon = NamedType;
2582  if (!Canon.isCanonical()) {
2583    Canon = getCanonicalType(NamedType);
2584    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2585    assert(!CheckT && "Elaborated canonical type broken");
2586    (void)CheckT;
2587  }
2588
2589  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2590  Types.push_back(T);
2591  ElaboratedTypes.InsertNode(T, InsertPos);
2592  return QualType(T, 0);
2593}
2594
2595QualType
2596ASTContext::getParenType(QualType InnerType) const {
2597  llvm::FoldingSetNodeID ID;
2598  ParenType::Profile(ID, InnerType);
2599
2600  void *InsertPos = 0;
2601  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2602  if (T)
2603    return QualType(T, 0);
2604
2605  QualType Canon = InnerType;
2606  if (!Canon.isCanonical()) {
2607    Canon = getCanonicalType(InnerType);
2608    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2609    assert(!CheckT && "Paren canonical type broken");
2610    (void)CheckT;
2611  }
2612
2613  T = new (*this) ParenType(InnerType, Canon);
2614  Types.push_back(T);
2615  ParenTypes.InsertNode(T, InsertPos);
2616  return QualType(T, 0);
2617}
2618
2619QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2620                                          NestedNameSpecifier *NNS,
2621                                          const IdentifierInfo *Name,
2622                                          QualType Canon) const {
2623  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2624
2625  if (Canon.isNull()) {
2626    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2627    ElaboratedTypeKeyword CanonKeyword = Keyword;
2628    if (Keyword == ETK_None)
2629      CanonKeyword = ETK_Typename;
2630
2631    if (CanonNNS != NNS || CanonKeyword != Keyword)
2632      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2633  }
2634
2635  llvm::FoldingSetNodeID ID;
2636  DependentNameType::Profile(ID, Keyword, NNS, Name);
2637
2638  void *InsertPos = 0;
2639  DependentNameType *T
2640    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2641  if (T)
2642    return QualType(T, 0);
2643
2644  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2645  Types.push_back(T);
2646  DependentNameTypes.InsertNode(T, InsertPos);
2647  return QualType(T, 0);
2648}
2649
2650QualType
2651ASTContext::getDependentTemplateSpecializationType(
2652                                 ElaboratedTypeKeyword Keyword,
2653                                 NestedNameSpecifier *NNS,
2654                                 const IdentifierInfo *Name,
2655                                 const TemplateArgumentListInfo &Args) const {
2656  // TODO: avoid this copy
2657  SmallVector<TemplateArgument, 16> ArgCopy;
2658  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2659    ArgCopy.push_back(Args[I].getArgument());
2660  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2661                                                ArgCopy.size(),
2662                                                ArgCopy.data());
2663}
2664
2665QualType
2666ASTContext::getDependentTemplateSpecializationType(
2667                                 ElaboratedTypeKeyword Keyword,
2668                                 NestedNameSpecifier *NNS,
2669                                 const IdentifierInfo *Name,
2670                                 unsigned NumArgs,
2671                                 const TemplateArgument *Args) const {
2672  assert((!NNS || NNS->isDependent()) &&
2673         "nested-name-specifier must be dependent");
2674
2675  llvm::FoldingSetNodeID ID;
2676  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2677                                               Name, NumArgs, Args);
2678
2679  void *InsertPos = 0;
2680  DependentTemplateSpecializationType *T
2681    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2682  if (T)
2683    return QualType(T, 0);
2684
2685  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2686
2687  ElaboratedTypeKeyword CanonKeyword = Keyword;
2688  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2689
2690  bool AnyNonCanonArgs = false;
2691  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2692  for (unsigned I = 0; I != NumArgs; ++I) {
2693    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2694    if (!CanonArgs[I].structurallyEquals(Args[I]))
2695      AnyNonCanonArgs = true;
2696  }
2697
2698  QualType Canon;
2699  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2700    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2701                                                   Name, NumArgs,
2702                                                   CanonArgs.data());
2703
2704    // Find the insert position again.
2705    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2706  }
2707
2708  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2709                        sizeof(TemplateArgument) * NumArgs),
2710                       TypeAlignment);
2711  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2712                                                    Name, NumArgs, Args, Canon);
2713  Types.push_back(T);
2714  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2715  return QualType(T, 0);
2716}
2717
2718QualType ASTContext::getPackExpansionType(QualType Pattern,
2719                                      llvm::Optional<unsigned> NumExpansions) {
2720  llvm::FoldingSetNodeID ID;
2721  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2722
2723  assert(Pattern->containsUnexpandedParameterPack() &&
2724         "Pack expansions must expand one or more parameter packs");
2725  void *InsertPos = 0;
2726  PackExpansionType *T
2727    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2728  if (T)
2729    return QualType(T, 0);
2730
2731  QualType Canon;
2732  if (!Pattern.isCanonical()) {
2733    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2734
2735    // Find the insert position again.
2736    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2737  }
2738
2739  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2740  Types.push_back(T);
2741  PackExpansionTypes.InsertNode(T, InsertPos);
2742  return QualType(T, 0);
2743}
2744
2745/// CmpProtocolNames - Comparison predicate for sorting protocols
2746/// alphabetically.
2747static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2748                            const ObjCProtocolDecl *RHS) {
2749  return LHS->getDeclName() < RHS->getDeclName();
2750}
2751
2752static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2753                                unsigned NumProtocols) {
2754  if (NumProtocols == 0) return true;
2755
2756  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
2757    return false;
2758
2759  for (unsigned i = 1; i != NumProtocols; ++i)
2760    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
2761        Protocols[i]->getCanonicalDecl() != Protocols[i])
2762      return false;
2763  return true;
2764}
2765
2766static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2767                                   unsigned &NumProtocols) {
2768  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2769
2770  // Sort protocols, keyed by name.
2771  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2772
2773  // Canonicalize.
2774  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
2775    Protocols[I] = Protocols[I]->getCanonicalDecl();
2776
2777  // Remove duplicates.
2778  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2779  NumProtocols = ProtocolsEnd-Protocols;
2780}
2781
2782QualType ASTContext::getObjCObjectType(QualType BaseType,
2783                                       ObjCProtocolDecl * const *Protocols,
2784                                       unsigned NumProtocols) const {
2785  // If the base type is an interface and there aren't any protocols
2786  // to add, then the interface type will do just fine.
2787  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2788    return BaseType;
2789
2790  // Look in the folding set for an existing type.
2791  llvm::FoldingSetNodeID ID;
2792  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2793  void *InsertPos = 0;
2794  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2795    return QualType(QT, 0);
2796
2797  // Build the canonical type, which has the canonical base type and
2798  // a sorted-and-uniqued list of protocols.
2799  QualType Canonical;
2800  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2801  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2802    if (!ProtocolsSorted) {
2803      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2804                                                     Protocols + NumProtocols);
2805      unsigned UniqueCount = NumProtocols;
2806
2807      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2808      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2809                                    &Sorted[0], UniqueCount);
2810    } else {
2811      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2812                                    Protocols, NumProtocols);
2813    }
2814
2815    // Regenerate InsertPos.
2816    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2817  }
2818
2819  unsigned Size = sizeof(ObjCObjectTypeImpl);
2820  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2821  void *Mem = Allocate(Size, TypeAlignment);
2822  ObjCObjectTypeImpl *T =
2823    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2824
2825  Types.push_back(T);
2826  ObjCObjectTypes.InsertNode(T, InsertPos);
2827  return QualType(T, 0);
2828}
2829
2830/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2831/// the given object type.
2832QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2833  llvm::FoldingSetNodeID ID;
2834  ObjCObjectPointerType::Profile(ID, ObjectT);
2835
2836  void *InsertPos = 0;
2837  if (ObjCObjectPointerType *QT =
2838              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2839    return QualType(QT, 0);
2840
2841  // Find the canonical object type.
2842  QualType Canonical;
2843  if (!ObjectT.isCanonical()) {
2844    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2845
2846    // Regenerate InsertPos.
2847    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2848  }
2849
2850  // No match.
2851  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2852  ObjCObjectPointerType *QType =
2853    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2854
2855  Types.push_back(QType);
2856  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2857  return QualType(QType, 0);
2858}
2859
2860/// getObjCInterfaceType - Return the unique reference to the type for the
2861/// specified ObjC interface decl. The list of protocols is optional.
2862QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2863                                          ObjCInterfaceDecl *PrevDecl) const {
2864  if (Decl->TypeForDecl)
2865    return QualType(Decl->TypeForDecl, 0);
2866
2867  if (PrevDecl) {
2868    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
2869    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2870    return QualType(PrevDecl->TypeForDecl, 0);
2871  }
2872
2873  // Prefer the definition, if there is one.
2874  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
2875    Decl = Def;
2876
2877  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2878  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2879  Decl->TypeForDecl = T;
2880  Types.push_back(T);
2881  return QualType(T, 0);
2882}
2883
2884/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2885/// TypeOfExprType AST's (since expression's are never shared). For example,
2886/// multiple declarations that refer to "typeof(x)" all contain different
2887/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2888/// on canonical type's (which are always unique).
2889QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2890  TypeOfExprType *toe;
2891  if (tofExpr->isTypeDependent()) {
2892    llvm::FoldingSetNodeID ID;
2893    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2894
2895    void *InsertPos = 0;
2896    DependentTypeOfExprType *Canon
2897      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2898    if (Canon) {
2899      // We already have a "canonical" version of an identical, dependent
2900      // typeof(expr) type. Use that as our canonical type.
2901      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2902                                          QualType((TypeOfExprType*)Canon, 0));
2903    } else {
2904      // Build a new, canonical typeof(expr) type.
2905      Canon
2906        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2907      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2908      toe = Canon;
2909    }
2910  } else {
2911    QualType Canonical = getCanonicalType(tofExpr->getType());
2912    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2913  }
2914  Types.push_back(toe);
2915  return QualType(toe, 0);
2916}
2917
2918/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2919/// TypeOfType AST's. The only motivation to unique these nodes would be
2920/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2921/// an issue. This doesn't effect the type checker, since it operates
2922/// on canonical type's (which are always unique).
2923QualType ASTContext::getTypeOfType(QualType tofType) const {
2924  QualType Canonical = getCanonicalType(tofType);
2925  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2926  Types.push_back(tot);
2927  return QualType(tot, 0);
2928}
2929
2930
2931/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2932/// DecltypeType AST's. The only motivation to unique these nodes would be
2933/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2934/// an issue. This doesn't effect the type checker, since it operates
2935/// on canonical types (which are always unique).
2936QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
2937  DecltypeType *dt;
2938
2939  // C++0x [temp.type]p2:
2940  //   If an expression e involves a template parameter, decltype(e) denotes a
2941  //   unique dependent type. Two such decltype-specifiers refer to the same
2942  //   type only if their expressions are equivalent (14.5.6.1).
2943  if (e->isInstantiationDependent()) {
2944    llvm::FoldingSetNodeID ID;
2945    DependentDecltypeType::Profile(ID, *this, e);
2946
2947    void *InsertPos = 0;
2948    DependentDecltypeType *Canon
2949      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2950    if (Canon) {
2951      // We already have a "canonical" version of an equivalent, dependent
2952      // decltype type. Use that as our canonical type.
2953      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2954                                       QualType((DecltypeType*)Canon, 0));
2955    } else {
2956      // Build a new, canonical typeof(expr) type.
2957      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2958      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2959      dt = Canon;
2960    }
2961  } else {
2962    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
2963                                      getCanonicalType(UnderlyingType));
2964  }
2965  Types.push_back(dt);
2966  return QualType(dt, 0);
2967}
2968
2969/// getUnaryTransformationType - We don't unique these, since the memory
2970/// savings are minimal and these are rare.
2971QualType ASTContext::getUnaryTransformType(QualType BaseType,
2972                                           QualType UnderlyingType,
2973                                           UnaryTransformType::UTTKind Kind)
2974    const {
2975  UnaryTransformType *Ty =
2976    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2977                                                   Kind,
2978                                 UnderlyingType->isDependentType() ?
2979                                 QualType() : getCanonicalType(UnderlyingType));
2980  Types.push_back(Ty);
2981  return QualType(Ty, 0);
2982}
2983
2984/// getAutoType - We only unique auto types after they've been deduced.
2985QualType ASTContext::getAutoType(QualType DeducedType) const {
2986  void *InsertPos = 0;
2987  if (!DeducedType.isNull()) {
2988    // Look in the folding set for an existing type.
2989    llvm::FoldingSetNodeID ID;
2990    AutoType::Profile(ID, DeducedType);
2991    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2992      return QualType(AT, 0);
2993  }
2994
2995  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2996  Types.push_back(AT);
2997  if (InsertPos)
2998    AutoTypes.InsertNode(AT, InsertPos);
2999  return QualType(AT, 0);
3000}
3001
3002/// getAtomicType - Return the uniqued reference to the atomic type for
3003/// the given value type.
3004QualType ASTContext::getAtomicType(QualType T) const {
3005  // Unique pointers, to guarantee there is only one pointer of a particular
3006  // structure.
3007  llvm::FoldingSetNodeID ID;
3008  AtomicType::Profile(ID, T);
3009
3010  void *InsertPos = 0;
3011  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3012    return QualType(AT, 0);
3013
3014  // If the atomic value type isn't canonical, this won't be a canonical type
3015  // either, so fill in the canonical type field.
3016  QualType Canonical;
3017  if (!T.isCanonical()) {
3018    Canonical = getAtomicType(getCanonicalType(T));
3019
3020    // Get the new insert position for the node we care about.
3021    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3022    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3023  }
3024  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3025  Types.push_back(New);
3026  AtomicTypes.InsertNode(New, InsertPos);
3027  return QualType(New, 0);
3028}
3029
3030/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3031QualType ASTContext::getAutoDeductType() const {
3032  if (AutoDeductTy.isNull())
3033    AutoDeductTy = getAutoType(QualType());
3034  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3035  return AutoDeductTy;
3036}
3037
3038/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3039QualType ASTContext::getAutoRRefDeductType() const {
3040  if (AutoRRefDeductTy.isNull())
3041    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3042  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3043  return AutoRRefDeductTy;
3044}
3045
3046/// getTagDeclType - Return the unique reference to the type for the
3047/// specified TagDecl (struct/union/class/enum) decl.
3048QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3049  assert (Decl);
3050  // FIXME: What is the design on getTagDeclType when it requires casting
3051  // away const?  mutable?
3052  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3053}
3054
3055/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3056/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3057/// needs to agree with the definition in <stddef.h>.
3058CanQualType ASTContext::getSizeType() const {
3059  return getFromTargetType(Target->getSizeType());
3060}
3061
3062/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3063CanQualType ASTContext::getIntMaxType() const {
3064  return getFromTargetType(Target->getIntMaxType());
3065}
3066
3067/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3068CanQualType ASTContext::getUIntMaxType() const {
3069  return getFromTargetType(Target->getUIntMaxType());
3070}
3071
3072/// getSignedWCharType - Return the type of "signed wchar_t".
3073/// Used when in C++, as a GCC extension.
3074QualType ASTContext::getSignedWCharType() const {
3075  // FIXME: derive from "Target" ?
3076  return WCharTy;
3077}
3078
3079/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3080/// Used when in C++, as a GCC extension.
3081QualType ASTContext::getUnsignedWCharType() const {
3082  // FIXME: derive from "Target" ?
3083  return UnsignedIntTy;
3084}
3085
3086/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3087/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3088QualType ASTContext::getPointerDiffType() const {
3089  return getFromTargetType(Target->getPtrDiffType(0));
3090}
3091
3092//===----------------------------------------------------------------------===//
3093//                              Type Operators
3094//===----------------------------------------------------------------------===//
3095
3096CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3097  // Push qualifiers into arrays, and then discard any remaining
3098  // qualifiers.
3099  T = getCanonicalType(T);
3100  T = getVariableArrayDecayedType(T);
3101  const Type *Ty = T.getTypePtr();
3102  QualType Result;
3103  if (isa<ArrayType>(Ty)) {
3104    Result = getArrayDecayedType(QualType(Ty,0));
3105  } else if (isa<FunctionType>(Ty)) {
3106    Result = getPointerType(QualType(Ty, 0));
3107  } else {
3108    Result = QualType(Ty, 0);
3109  }
3110
3111  return CanQualType::CreateUnsafe(Result);
3112}
3113
3114QualType ASTContext::getUnqualifiedArrayType(QualType type,
3115                                             Qualifiers &quals) {
3116  SplitQualType splitType = type.getSplitUnqualifiedType();
3117
3118  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3119  // the unqualified desugared type and then drops it on the floor.
3120  // We then have to strip that sugar back off with
3121  // getUnqualifiedDesugaredType(), which is silly.
3122  const ArrayType *AT =
3123    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3124
3125  // If we don't have an array, just use the results in splitType.
3126  if (!AT) {
3127    quals = splitType.Quals;
3128    return QualType(splitType.Ty, 0);
3129  }
3130
3131  // Otherwise, recurse on the array's element type.
3132  QualType elementType = AT->getElementType();
3133  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3134
3135  // If that didn't change the element type, AT has no qualifiers, so we
3136  // can just use the results in splitType.
3137  if (elementType == unqualElementType) {
3138    assert(quals.empty()); // from the recursive call
3139    quals = splitType.Quals;
3140    return QualType(splitType.Ty, 0);
3141  }
3142
3143  // Otherwise, add in the qualifiers from the outermost type, then
3144  // build the type back up.
3145  quals.addConsistentQualifiers(splitType.Quals);
3146
3147  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3148    return getConstantArrayType(unqualElementType, CAT->getSize(),
3149                                CAT->getSizeModifier(), 0);
3150  }
3151
3152  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3153    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3154  }
3155
3156  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3157    return getVariableArrayType(unqualElementType,
3158                                VAT->getSizeExpr(),
3159                                VAT->getSizeModifier(),
3160                                VAT->getIndexTypeCVRQualifiers(),
3161                                VAT->getBracketsRange());
3162  }
3163
3164  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3165  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3166                                    DSAT->getSizeModifier(), 0,
3167                                    SourceRange());
3168}
3169
3170/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3171/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3172/// they point to and return true. If T1 and T2 aren't pointer types
3173/// or pointer-to-member types, or if they are not similar at this
3174/// level, returns false and leaves T1 and T2 unchanged. Top-level
3175/// qualifiers on T1 and T2 are ignored. This function will typically
3176/// be called in a loop that successively "unwraps" pointer and
3177/// pointer-to-member types to compare them at each level.
3178bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3179  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3180                    *T2PtrType = T2->getAs<PointerType>();
3181  if (T1PtrType && T2PtrType) {
3182    T1 = T1PtrType->getPointeeType();
3183    T2 = T2PtrType->getPointeeType();
3184    return true;
3185  }
3186
3187  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3188                          *T2MPType = T2->getAs<MemberPointerType>();
3189  if (T1MPType && T2MPType &&
3190      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3191                             QualType(T2MPType->getClass(), 0))) {
3192    T1 = T1MPType->getPointeeType();
3193    T2 = T2MPType->getPointeeType();
3194    return true;
3195  }
3196
3197  if (getLangOpts().ObjC1) {
3198    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3199                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3200    if (T1OPType && T2OPType) {
3201      T1 = T1OPType->getPointeeType();
3202      T2 = T2OPType->getPointeeType();
3203      return true;
3204    }
3205  }
3206
3207  // FIXME: Block pointers, too?
3208
3209  return false;
3210}
3211
3212DeclarationNameInfo
3213ASTContext::getNameForTemplate(TemplateName Name,
3214                               SourceLocation NameLoc) const {
3215  switch (Name.getKind()) {
3216  case TemplateName::QualifiedTemplate:
3217  case TemplateName::Template:
3218    // DNInfo work in progress: CHECKME: what about DNLoc?
3219    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3220                               NameLoc);
3221
3222  case TemplateName::OverloadedTemplate: {
3223    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3224    // DNInfo work in progress: CHECKME: what about DNLoc?
3225    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3226  }
3227
3228  case TemplateName::DependentTemplate: {
3229    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3230    DeclarationName DName;
3231    if (DTN->isIdentifier()) {
3232      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3233      return DeclarationNameInfo(DName, NameLoc);
3234    } else {
3235      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3236      // DNInfo work in progress: FIXME: source locations?
3237      DeclarationNameLoc DNLoc;
3238      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3239      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3240      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3241    }
3242  }
3243
3244  case TemplateName::SubstTemplateTemplateParm: {
3245    SubstTemplateTemplateParmStorage *subst
3246      = Name.getAsSubstTemplateTemplateParm();
3247    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3248                               NameLoc);
3249  }
3250
3251  case TemplateName::SubstTemplateTemplateParmPack: {
3252    SubstTemplateTemplateParmPackStorage *subst
3253      = Name.getAsSubstTemplateTemplateParmPack();
3254    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3255                               NameLoc);
3256  }
3257  }
3258
3259  llvm_unreachable("bad template name kind!");
3260}
3261
3262TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3263  switch (Name.getKind()) {
3264  case TemplateName::QualifiedTemplate:
3265  case TemplateName::Template: {
3266    TemplateDecl *Template = Name.getAsTemplateDecl();
3267    if (TemplateTemplateParmDecl *TTP
3268          = dyn_cast<TemplateTemplateParmDecl>(Template))
3269      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3270
3271    // The canonical template name is the canonical template declaration.
3272    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3273  }
3274
3275  case TemplateName::OverloadedTemplate:
3276    llvm_unreachable("cannot canonicalize overloaded template");
3277
3278  case TemplateName::DependentTemplate: {
3279    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3280    assert(DTN && "Non-dependent template names must refer to template decls.");
3281    return DTN->CanonicalTemplateName;
3282  }
3283
3284  case TemplateName::SubstTemplateTemplateParm: {
3285    SubstTemplateTemplateParmStorage *subst
3286      = Name.getAsSubstTemplateTemplateParm();
3287    return getCanonicalTemplateName(subst->getReplacement());
3288  }
3289
3290  case TemplateName::SubstTemplateTemplateParmPack: {
3291    SubstTemplateTemplateParmPackStorage *subst
3292                                  = Name.getAsSubstTemplateTemplateParmPack();
3293    TemplateTemplateParmDecl *canonParameter
3294      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3295    TemplateArgument canonArgPack
3296      = getCanonicalTemplateArgument(subst->getArgumentPack());
3297    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3298  }
3299  }
3300
3301  llvm_unreachable("bad template name!");
3302}
3303
3304bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3305  X = getCanonicalTemplateName(X);
3306  Y = getCanonicalTemplateName(Y);
3307  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3308}
3309
3310TemplateArgument
3311ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3312  switch (Arg.getKind()) {
3313    case TemplateArgument::Null:
3314      return Arg;
3315
3316    case TemplateArgument::Expression:
3317      return Arg;
3318
3319    case TemplateArgument::Declaration: {
3320      if (Decl *D = Arg.getAsDecl())
3321          return TemplateArgument(D->getCanonicalDecl());
3322      return TemplateArgument((Decl*)0);
3323    }
3324
3325    case TemplateArgument::Template:
3326      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3327
3328    case TemplateArgument::TemplateExpansion:
3329      return TemplateArgument(getCanonicalTemplateName(
3330                                         Arg.getAsTemplateOrTemplatePattern()),
3331                              Arg.getNumTemplateExpansions());
3332
3333    case TemplateArgument::Integral:
3334      return TemplateArgument(*Arg.getAsIntegral(),
3335                              getCanonicalType(Arg.getIntegralType()));
3336
3337    case TemplateArgument::Type:
3338      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3339
3340    case TemplateArgument::Pack: {
3341      if (Arg.pack_size() == 0)
3342        return Arg;
3343
3344      TemplateArgument *CanonArgs
3345        = new (*this) TemplateArgument[Arg.pack_size()];
3346      unsigned Idx = 0;
3347      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3348                                        AEnd = Arg.pack_end();
3349           A != AEnd; (void)++A, ++Idx)
3350        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3351
3352      return TemplateArgument(CanonArgs, Arg.pack_size());
3353    }
3354  }
3355
3356  // Silence GCC warning
3357  llvm_unreachable("Unhandled template argument kind");
3358}
3359
3360NestedNameSpecifier *
3361ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3362  if (!NNS)
3363    return 0;
3364
3365  switch (NNS->getKind()) {
3366  case NestedNameSpecifier::Identifier:
3367    // Canonicalize the prefix but keep the identifier the same.
3368    return NestedNameSpecifier::Create(*this,
3369                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3370                                       NNS->getAsIdentifier());
3371
3372  case NestedNameSpecifier::Namespace:
3373    // A namespace is canonical; build a nested-name-specifier with
3374    // this namespace and no prefix.
3375    return NestedNameSpecifier::Create(*this, 0,
3376                                 NNS->getAsNamespace()->getOriginalNamespace());
3377
3378  case NestedNameSpecifier::NamespaceAlias:
3379    // A namespace is canonical; build a nested-name-specifier with
3380    // this namespace and no prefix.
3381    return NestedNameSpecifier::Create(*this, 0,
3382                                    NNS->getAsNamespaceAlias()->getNamespace()
3383                                                      ->getOriginalNamespace());
3384
3385  case NestedNameSpecifier::TypeSpec:
3386  case NestedNameSpecifier::TypeSpecWithTemplate: {
3387    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3388
3389    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3390    // break it apart into its prefix and identifier, then reconsititute those
3391    // as the canonical nested-name-specifier. This is required to canonicalize
3392    // a dependent nested-name-specifier involving typedefs of dependent-name
3393    // types, e.g.,
3394    //   typedef typename T::type T1;
3395    //   typedef typename T1::type T2;
3396    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3397      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3398                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3399
3400    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3401    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3402    // first place?
3403    return NestedNameSpecifier::Create(*this, 0, false,
3404                                       const_cast<Type*>(T.getTypePtr()));
3405  }
3406
3407  case NestedNameSpecifier::Global:
3408    // The global specifier is canonical and unique.
3409    return NNS;
3410  }
3411
3412  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3413}
3414
3415
3416const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3417  // Handle the non-qualified case efficiently.
3418  if (!T.hasLocalQualifiers()) {
3419    // Handle the common positive case fast.
3420    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3421      return AT;
3422  }
3423
3424  // Handle the common negative case fast.
3425  if (!isa<ArrayType>(T.getCanonicalType()))
3426    return 0;
3427
3428  // Apply any qualifiers from the array type to the element type.  This
3429  // implements C99 6.7.3p8: "If the specification of an array type includes
3430  // any type qualifiers, the element type is so qualified, not the array type."
3431
3432  // If we get here, we either have type qualifiers on the type, or we have
3433  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3434  // we must propagate them down into the element type.
3435
3436  SplitQualType split = T.getSplitDesugaredType();
3437  Qualifiers qs = split.Quals;
3438
3439  // If we have a simple case, just return now.
3440  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3441  if (ATy == 0 || qs.empty())
3442    return ATy;
3443
3444  // Otherwise, we have an array and we have qualifiers on it.  Push the
3445  // qualifiers into the array element type and return a new array type.
3446  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3447
3448  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3449    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3450                                                CAT->getSizeModifier(),
3451                                           CAT->getIndexTypeCVRQualifiers()));
3452  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3453    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3454                                                  IAT->getSizeModifier(),
3455                                           IAT->getIndexTypeCVRQualifiers()));
3456
3457  if (const DependentSizedArrayType *DSAT
3458        = dyn_cast<DependentSizedArrayType>(ATy))
3459    return cast<ArrayType>(
3460                     getDependentSizedArrayType(NewEltTy,
3461                                                DSAT->getSizeExpr(),
3462                                                DSAT->getSizeModifier(),
3463                                              DSAT->getIndexTypeCVRQualifiers(),
3464                                                DSAT->getBracketsRange()));
3465
3466  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3467  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3468                                              VAT->getSizeExpr(),
3469                                              VAT->getSizeModifier(),
3470                                              VAT->getIndexTypeCVRQualifiers(),
3471                                              VAT->getBracketsRange()));
3472}
3473
3474QualType ASTContext::getAdjustedParameterType(QualType T) {
3475  // C99 6.7.5.3p7:
3476  //   A declaration of a parameter as "array of type" shall be
3477  //   adjusted to "qualified pointer to type", where the type
3478  //   qualifiers (if any) are those specified within the [ and ] of
3479  //   the array type derivation.
3480  if (T->isArrayType())
3481    return getArrayDecayedType(T);
3482
3483  // C99 6.7.5.3p8:
3484  //   A declaration of a parameter as "function returning type"
3485  //   shall be adjusted to "pointer to function returning type", as
3486  //   in 6.3.2.1.
3487  if (T->isFunctionType())
3488    return getPointerType(T);
3489
3490  return T;
3491}
3492
3493QualType ASTContext::getSignatureParameterType(QualType T) {
3494  T = getVariableArrayDecayedType(T);
3495  T = getAdjustedParameterType(T);
3496  return T.getUnqualifiedType();
3497}
3498
3499/// getArrayDecayedType - Return the properly qualified result of decaying the
3500/// specified array type to a pointer.  This operation is non-trivial when
3501/// handling typedefs etc.  The canonical type of "T" must be an array type,
3502/// this returns a pointer to a properly qualified element of the array.
3503///
3504/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3505QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3506  // Get the element type with 'getAsArrayType' so that we don't lose any
3507  // typedefs in the element type of the array.  This also handles propagation
3508  // of type qualifiers from the array type into the element type if present
3509  // (C99 6.7.3p8).
3510  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3511  assert(PrettyArrayType && "Not an array type!");
3512
3513  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3514
3515  // int x[restrict 4] ->  int *restrict
3516  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3517}
3518
3519QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3520  return getBaseElementType(array->getElementType());
3521}
3522
3523QualType ASTContext::getBaseElementType(QualType type) const {
3524  Qualifiers qs;
3525  while (true) {
3526    SplitQualType split = type.getSplitDesugaredType();
3527    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3528    if (!array) break;
3529
3530    type = array->getElementType();
3531    qs.addConsistentQualifiers(split.Quals);
3532  }
3533
3534  return getQualifiedType(type, qs);
3535}
3536
3537/// getConstantArrayElementCount - Returns number of constant array elements.
3538uint64_t
3539ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3540  uint64_t ElementCount = 1;
3541  do {
3542    ElementCount *= CA->getSize().getZExtValue();
3543    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3544  } while (CA);
3545  return ElementCount;
3546}
3547
3548/// getFloatingRank - Return a relative rank for floating point types.
3549/// This routine will assert if passed a built-in type that isn't a float.
3550static FloatingRank getFloatingRank(QualType T) {
3551  if (const ComplexType *CT = T->getAs<ComplexType>())
3552    return getFloatingRank(CT->getElementType());
3553
3554  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3555  switch (T->getAs<BuiltinType>()->getKind()) {
3556  default: llvm_unreachable("getFloatingRank(): not a floating type");
3557  case BuiltinType::Half:       return HalfRank;
3558  case BuiltinType::Float:      return FloatRank;
3559  case BuiltinType::Double:     return DoubleRank;
3560  case BuiltinType::LongDouble: return LongDoubleRank;
3561  }
3562}
3563
3564/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3565/// point or a complex type (based on typeDomain/typeSize).
3566/// 'typeDomain' is a real floating point or complex type.
3567/// 'typeSize' is a real floating point or complex type.
3568QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3569                                                       QualType Domain) const {
3570  FloatingRank EltRank = getFloatingRank(Size);
3571  if (Domain->isComplexType()) {
3572    switch (EltRank) {
3573    case HalfRank: llvm_unreachable("Complex half is not supported");
3574    case FloatRank:      return FloatComplexTy;
3575    case DoubleRank:     return DoubleComplexTy;
3576    case LongDoubleRank: return LongDoubleComplexTy;
3577    }
3578  }
3579
3580  assert(Domain->isRealFloatingType() && "Unknown domain!");
3581  switch (EltRank) {
3582  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3583  case FloatRank:      return FloatTy;
3584  case DoubleRank:     return DoubleTy;
3585  case LongDoubleRank: return LongDoubleTy;
3586  }
3587  llvm_unreachable("getFloatingRank(): illegal value for rank");
3588}
3589
3590/// getFloatingTypeOrder - Compare the rank of the two specified floating
3591/// point types, ignoring the domain of the type (i.e. 'double' ==
3592/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3593/// LHS < RHS, return -1.
3594int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3595  FloatingRank LHSR = getFloatingRank(LHS);
3596  FloatingRank RHSR = getFloatingRank(RHS);
3597
3598  if (LHSR == RHSR)
3599    return 0;
3600  if (LHSR > RHSR)
3601    return 1;
3602  return -1;
3603}
3604
3605/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3606/// routine will assert if passed a built-in type that isn't an integer or enum,
3607/// or if it is not canonicalized.
3608unsigned ASTContext::getIntegerRank(const Type *T) const {
3609  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3610
3611  switch (cast<BuiltinType>(T)->getKind()) {
3612  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3613  case BuiltinType::Bool:
3614    return 1 + (getIntWidth(BoolTy) << 3);
3615  case BuiltinType::Char_S:
3616  case BuiltinType::Char_U:
3617  case BuiltinType::SChar:
3618  case BuiltinType::UChar:
3619    return 2 + (getIntWidth(CharTy) << 3);
3620  case BuiltinType::Short:
3621  case BuiltinType::UShort:
3622    return 3 + (getIntWidth(ShortTy) << 3);
3623  case BuiltinType::Int:
3624  case BuiltinType::UInt:
3625    return 4 + (getIntWidth(IntTy) << 3);
3626  case BuiltinType::Long:
3627  case BuiltinType::ULong:
3628    return 5 + (getIntWidth(LongTy) << 3);
3629  case BuiltinType::LongLong:
3630  case BuiltinType::ULongLong:
3631    return 6 + (getIntWidth(LongLongTy) << 3);
3632  case BuiltinType::Int128:
3633  case BuiltinType::UInt128:
3634    return 7 + (getIntWidth(Int128Ty) << 3);
3635  }
3636}
3637
3638/// \brief Whether this is a promotable bitfield reference according
3639/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3640///
3641/// \returns the type this bit-field will promote to, or NULL if no
3642/// promotion occurs.
3643QualType ASTContext::isPromotableBitField(Expr *E) const {
3644  if (E->isTypeDependent() || E->isValueDependent())
3645    return QualType();
3646
3647  FieldDecl *Field = E->getBitField();
3648  if (!Field)
3649    return QualType();
3650
3651  QualType FT = Field->getType();
3652
3653  uint64_t BitWidth = Field->getBitWidthValue(*this);
3654  uint64_t IntSize = getTypeSize(IntTy);
3655  // GCC extension compatibility: if the bit-field size is less than or equal
3656  // to the size of int, it gets promoted no matter what its type is.
3657  // For instance, unsigned long bf : 4 gets promoted to signed int.
3658  if (BitWidth < IntSize)
3659    return IntTy;
3660
3661  if (BitWidth == IntSize)
3662    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3663
3664  // Types bigger than int are not subject to promotions, and therefore act
3665  // like the base type.
3666  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3667  // is ridiculous.
3668  return QualType();
3669}
3670
3671/// getPromotedIntegerType - Returns the type that Promotable will
3672/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3673/// integer type.
3674QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3675  assert(!Promotable.isNull());
3676  assert(Promotable->isPromotableIntegerType());
3677  if (const EnumType *ET = Promotable->getAs<EnumType>())
3678    return ET->getDecl()->getPromotionType();
3679
3680  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3681    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3682    // (3.9.1) can be converted to a prvalue of the first of the following
3683    // types that can represent all the values of its underlying type:
3684    // int, unsigned int, long int, unsigned long int, long long int, or
3685    // unsigned long long int [...]
3686    // FIXME: Is there some better way to compute this?
3687    if (BT->getKind() == BuiltinType::WChar_S ||
3688        BT->getKind() == BuiltinType::WChar_U ||
3689        BT->getKind() == BuiltinType::Char16 ||
3690        BT->getKind() == BuiltinType::Char32) {
3691      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3692      uint64_t FromSize = getTypeSize(BT);
3693      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3694                                  LongLongTy, UnsignedLongLongTy };
3695      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3696        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3697        if (FromSize < ToSize ||
3698            (FromSize == ToSize &&
3699             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3700          return PromoteTypes[Idx];
3701      }
3702      llvm_unreachable("char type should fit into long long");
3703    }
3704  }
3705
3706  // At this point, we should have a signed or unsigned integer type.
3707  if (Promotable->isSignedIntegerType())
3708    return IntTy;
3709  uint64_t PromotableSize = getTypeSize(Promotable);
3710  uint64_t IntSize = getTypeSize(IntTy);
3711  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3712  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3713}
3714
3715/// \brief Recurses in pointer/array types until it finds an objc retainable
3716/// type and returns its ownership.
3717Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3718  while (!T.isNull()) {
3719    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3720      return T.getObjCLifetime();
3721    if (T->isArrayType())
3722      T = getBaseElementType(T);
3723    else if (const PointerType *PT = T->getAs<PointerType>())
3724      T = PT->getPointeeType();
3725    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3726      T = RT->getPointeeType();
3727    else
3728      break;
3729  }
3730
3731  return Qualifiers::OCL_None;
3732}
3733
3734/// getIntegerTypeOrder - Returns the highest ranked integer type:
3735/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3736/// LHS < RHS, return -1.
3737int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3738  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3739  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3740  if (LHSC == RHSC) return 0;
3741
3742  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3743  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3744
3745  unsigned LHSRank = getIntegerRank(LHSC);
3746  unsigned RHSRank = getIntegerRank(RHSC);
3747
3748  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3749    if (LHSRank == RHSRank) return 0;
3750    return LHSRank > RHSRank ? 1 : -1;
3751  }
3752
3753  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3754  if (LHSUnsigned) {
3755    // If the unsigned [LHS] type is larger, return it.
3756    if (LHSRank >= RHSRank)
3757      return 1;
3758
3759    // If the signed type can represent all values of the unsigned type, it
3760    // wins.  Because we are dealing with 2's complement and types that are
3761    // powers of two larger than each other, this is always safe.
3762    return -1;
3763  }
3764
3765  // If the unsigned [RHS] type is larger, return it.
3766  if (RHSRank >= LHSRank)
3767    return -1;
3768
3769  // If the signed type can represent all values of the unsigned type, it
3770  // wins.  Because we are dealing with 2's complement and types that are
3771  // powers of two larger than each other, this is always safe.
3772  return 1;
3773}
3774
3775static RecordDecl *
3776CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3777                 DeclContext *DC, IdentifierInfo *Id) {
3778  SourceLocation Loc;
3779  if (Ctx.getLangOpts().CPlusPlus)
3780    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3781  else
3782    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3783}
3784
3785// getCFConstantStringType - Return the type used for constant CFStrings.
3786QualType ASTContext::getCFConstantStringType() const {
3787  if (!CFConstantStringTypeDecl) {
3788    CFConstantStringTypeDecl =
3789      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3790                       &Idents.get("NSConstantString"));
3791    CFConstantStringTypeDecl->startDefinition();
3792
3793    QualType FieldTypes[4];
3794
3795    // const int *isa;
3796    FieldTypes[0] = getPointerType(IntTy.withConst());
3797    // int flags;
3798    FieldTypes[1] = IntTy;
3799    // const char *str;
3800    FieldTypes[2] = getPointerType(CharTy.withConst());
3801    // long length;
3802    FieldTypes[3] = LongTy;
3803
3804    // Create fields
3805    for (unsigned i = 0; i < 4; ++i) {
3806      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3807                                           SourceLocation(),
3808                                           SourceLocation(), 0,
3809                                           FieldTypes[i], /*TInfo=*/0,
3810                                           /*BitWidth=*/0,
3811                                           /*Mutable=*/false,
3812                                           /*HasInit=*/false);
3813      Field->setAccess(AS_public);
3814      CFConstantStringTypeDecl->addDecl(Field);
3815    }
3816
3817    CFConstantStringTypeDecl->completeDefinition();
3818  }
3819
3820  return getTagDeclType(CFConstantStringTypeDecl);
3821}
3822
3823void ASTContext::setCFConstantStringType(QualType T) {
3824  const RecordType *Rec = T->getAs<RecordType>();
3825  assert(Rec && "Invalid CFConstantStringType");
3826  CFConstantStringTypeDecl = Rec->getDecl();
3827}
3828
3829QualType ASTContext::getBlockDescriptorType() const {
3830  if (BlockDescriptorType)
3831    return getTagDeclType(BlockDescriptorType);
3832
3833  RecordDecl *T;
3834  // FIXME: Needs the FlagAppleBlock bit.
3835  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3836                       &Idents.get("__block_descriptor"));
3837  T->startDefinition();
3838
3839  QualType FieldTypes[] = {
3840    UnsignedLongTy,
3841    UnsignedLongTy,
3842  };
3843
3844  const char *FieldNames[] = {
3845    "reserved",
3846    "Size"
3847  };
3848
3849  for (size_t i = 0; i < 2; ++i) {
3850    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3851                                         SourceLocation(),
3852                                         &Idents.get(FieldNames[i]),
3853                                         FieldTypes[i], /*TInfo=*/0,
3854                                         /*BitWidth=*/0,
3855                                         /*Mutable=*/false,
3856                                         /*HasInit=*/false);
3857    Field->setAccess(AS_public);
3858    T->addDecl(Field);
3859  }
3860
3861  T->completeDefinition();
3862
3863  BlockDescriptorType = T;
3864
3865  return getTagDeclType(BlockDescriptorType);
3866}
3867
3868QualType ASTContext::getBlockDescriptorExtendedType() const {
3869  if (BlockDescriptorExtendedType)
3870    return getTagDeclType(BlockDescriptorExtendedType);
3871
3872  RecordDecl *T;
3873  // FIXME: Needs the FlagAppleBlock bit.
3874  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3875                       &Idents.get("__block_descriptor_withcopydispose"));
3876  T->startDefinition();
3877
3878  QualType FieldTypes[] = {
3879    UnsignedLongTy,
3880    UnsignedLongTy,
3881    getPointerType(VoidPtrTy),
3882    getPointerType(VoidPtrTy)
3883  };
3884
3885  const char *FieldNames[] = {
3886    "reserved",
3887    "Size",
3888    "CopyFuncPtr",
3889    "DestroyFuncPtr"
3890  };
3891
3892  for (size_t i = 0; i < 4; ++i) {
3893    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3894                                         SourceLocation(),
3895                                         &Idents.get(FieldNames[i]),
3896                                         FieldTypes[i], /*TInfo=*/0,
3897                                         /*BitWidth=*/0,
3898                                         /*Mutable=*/false,
3899                                         /*HasInit=*/false);
3900    Field->setAccess(AS_public);
3901    T->addDecl(Field);
3902  }
3903
3904  T->completeDefinition();
3905
3906  BlockDescriptorExtendedType = T;
3907
3908  return getTagDeclType(BlockDescriptorExtendedType);
3909}
3910
3911bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3912  if (Ty->isObjCRetainableType())
3913    return true;
3914  if (getLangOpts().CPlusPlus) {
3915    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3916      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3917      return RD->hasConstCopyConstructor();
3918
3919    }
3920  }
3921  return false;
3922}
3923
3924QualType
3925ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
3926  //  type = struct __Block_byref_1_X {
3927  //    void *__isa;
3928  //    struct __Block_byref_1_X *__forwarding;
3929  //    unsigned int __flags;
3930  //    unsigned int __size;
3931  //    void *__copy_helper;            // as needed
3932  //    void *__destroy_help            // as needed
3933  //    int X;
3934  //  } *
3935
3936  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3937
3938  // FIXME: Move up
3939  SmallString<36> Name;
3940  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3941                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3942  RecordDecl *T;
3943  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3944  T->startDefinition();
3945  QualType Int32Ty = IntTy;
3946  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3947  QualType FieldTypes[] = {
3948    getPointerType(VoidPtrTy),
3949    getPointerType(getTagDeclType(T)),
3950    Int32Ty,
3951    Int32Ty,
3952    getPointerType(VoidPtrTy),
3953    getPointerType(VoidPtrTy),
3954    Ty
3955  };
3956
3957  StringRef FieldNames[] = {
3958    "__isa",
3959    "__forwarding",
3960    "__flags",
3961    "__size",
3962    "__copy_helper",
3963    "__destroy_helper",
3964    DeclName,
3965  };
3966
3967  for (size_t i = 0; i < 7; ++i) {
3968    if (!HasCopyAndDispose && i >=4 && i <= 5)
3969      continue;
3970    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3971                                         SourceLocation(),
3972                                         &Idents.get(FieldNames[i]),
3973                                         FieldTypes[i], /*TInfo=*/0,
3974                                         /*BitWidth=*/0, /*Mutable=*/false,
3975                                         /*HasInit=*/false);
3976    Field->setAccess(AS_public);
3977    T->addDecl(Field);
3978  }
3979
3980  T->completeDefinition();
3981
3982  return getPointerType(getTagDeclType(T));
3983}
3984
3985TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
3986  if (!ObjCInstanceTypeDecl)
3987    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
3988                                               getTranslationUnitDecl(),
3989                                               SourceLocation(),
3990                                               SourceLocation(),
3991                                               &Idents.get("instancetype"),
3992                                     getTrivialTypeSourceInfo(getObjCIdType()));
3993  return ObjCInstanceTypeDecl;
3994}
3995
3996// This returns true if a type has been typedefed to BOOL:
3997// typedef <type> BOOL;
3998static bool isTypeTypedefedAsBOOL(QualType T) {
3999  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4000    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4001      return II->isStr("BOOL");
4002
4003  return false;
4004}
4005
4006/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4007/// purpose.
4008CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4009  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4010    return CharUnits::Zero();
4011
4012  CharUnits sz = getTypeSizeInChars(type);
4013
4014  // Make all integer and enum types at least as large as an int
4015  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4016    sz = std::max(sz, getTypeSizeInChars(IntTy));
4017  // Treat arrays as pointers, since that's how they're passed in.
4018  else if (type->isArrayType())
4019    sz = getTypeSizeInChars(VoidPtrTy);
4020  return sz;
4021}
4022
4023static inline
4024std::string charUnitsToString(const CharUnits &CU) {
4025  return llvm::itostr(CU.getQuantity());
4026}
4027
4028/// getObjCEncodingForBlock - Return the encoded type for this block
4029/// declaration.
4030std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4031  std::string S;
4032
4033  const BlockDecl *Decl = Expr->getBlockDecl();
4034  QualType BlockTy =
4035      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4036  // Encode result type.
4037  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4038  // Compute size of all parameters.
4039  // Start with computing size of a pointer in number of bytes.
4040  // FIXME: There might(should) be a better way of doing this computation!
4041  SourceLocation Loc;
4042  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4043  CharUnits ParmOffset = PtrSize;
4044  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4045       E = Decl->param_end(); PI != E; ++PI) {
4046    QualType PType = (*PI)->getType();
4047    CharUnits sz = getObjCEncodingTypeSize(PType);
4048    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4049    ParmOffset += sz;
4050  }
4051  // Size of the argument frame
4052  S += charUnitsToString(ParmOffset);
4053  // Block pointer and offset.
4054  S += "@?0";
4055
4056  // Argument types.
4057  ParmOffset = PtrSize;
4058  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4059       Decl->param_end(); PI != E; ++PI) {
4060    ParmVarDecl *PVDecl = *PI;
4061    QualType PType = PVDecl->getOriginalType();
4062    if (const ArrayType *AT =
4063          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4064      // Use array's original type only if it has known number of
4065      // elements.
4066      if (!isa<ConstantArrayType>(AT))
4067        PType = PVDecl->getType();
4068    } else if (PType->isFunctionType())
4069      PType = PVDecl->getType();
4070    getObjCEncodingForType(PType, S);
4071    S += charUnitsToString(ParmOffset);
4072    ParmOffset += getObjCEncodingTypeSize(PType);
4073  }
4074
4075  return S;
4076}
4077
4078bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4079                                                std::string& S) {
4080  // Encode result type.
4081  getObjCEncodingForType(Decl->getResultType(), S);
4082  CharUnits ParmOffset;
4083  // Compute size of all parameters.
4084  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4085       E = Decl->param_end(); PI != E; ++PI) {
4086    QualType PType = (*PI)->getType();
4087    CharUnits sz = getObjCEncodingTypeSize(PType);
4088    if (sz.isZero())
4089      return true;
4090
4091    assert (sz.isPositive() &&
4092        "getObjCEncodingForFunctionDecl - Incomplete param type");
4093    ParmOffset += sz;
4094  }
4095  S += charUnitsToString(ParmOffset);
4096  ParmOffset = CharUnits::Zero();
4097
4098  // Argument types.
4099  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4100       E = Decl->param_end(); PI != E; ++PI) {
4101    ParmVarDecl *PVDecl = *PI;
4102    QualType PType = PVDecl->getOriginalType();
4103    if (const ArrayType *AT =
4104          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4105      // Use array's original type only if it has known number of
4106      // elements.
4107      if (!isa<ConstantArrayType>(AT))
4108        PType = PVDecl->getType();
4109    } else if (PType->isFunctionType())
4110      PType = PVDecl->getType();
4111    getObjCEncodingForType(PType, S);
4112    S += charUnitsToString(ParmOffset);
4113    ParmOffset += getObjCEncodingTypeSize(PType);
4114  }
4115
4116  return false;
4117}
4118
4119/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4120/// method parameter or return type. If Extended, include class names and
4121/// block object types.
4122void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4123                                                   QualType T, std::string& S,
4124                                                   bool Extended) const {
4125  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4126  getObjCEncodingForTypeQualifier(QT, S);
4127  // Encode parameter type.
4128  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4129                             true     /*OutermostType*/,
4130                             false    /*EncodingProperty*/,
4131                             false    /*StructField*/,
4132                             Extended /*EncodeBlockParameters*/,
4133                             Extended /*EncodeClassNames*/);
4134}
4135
4136/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4137/// declaration.
4138bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4139                                              std::string& S,
4140                                              bool Extended) const {
4141  // FIXME: This is not very efficient.
4142  // Encode return type.
4143  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4144                                    Decl->getResultType(), S, Extended);
4145  // Compute size of all parameters.
4146  // Start with computing size of a pointer in number of bytes.
4147  // FIXME: There might(should) be a better way of doing this computation!
4148  SourceLocation Loc;
4149  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4150  // The first two arguments (self and _cmd) are pointers; account for
4151  // their size.
4152  CharUnits ParmOffset = 2 * PtrSize;
4153  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4154       E = Decl->sel_param_end(); PI != E; ++PI) {
4155    QualType PType = (*PI)->getType();
4156    CharUnits sz = getObjCEncodingTypeSize(PType);
4157    if (sz.isZero())
4158      return true;
4159
4160    assert (sz.isPositive() &&
4161        "getObjCEncodingForMethodDecl - Incomplete param type");
4162    ParmOffset += sz;
4163  }
4164  S += charUnitsToString(ParmOffset);
4165  S += "@0:";
4166  S += charUnitsToString(PtrSize);
4167
4168  // Argument types.
4169  ParmOffset = 2 * PtrSize;
4170  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4171       E = Decl->sel_param_end(); PI != E; ++PI) {
4172    const ParmVarDecl *PVDecl = *PI;
4173    QualType PType = PVDecl->getOriginalType();
4174    if (const ArrayType *AT =
4175          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4176      // Use array's original type only if it has known number of
4177      // elements.
4178      if (!isa<ConstantArrayType>(AT))
4179        PType = PVDecl->getType();
4180    } else if (PType->isFunctionType())
4181      PType = PVDecl->getType();
4182    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4183                                      PType, S, Extended);
4184    S += charUnitsToString(ParmOffset);
4185    ParmOffset += getObjCEncodingTypeSize(PType);
4186  }
4187
4188  return false;
4189}
4190
4191/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4192/// property declaration. If non-NULL, Container must be either an
4193/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4194/// NULL when getting encodings for protocol properties.
4195/// Property attributes are stored as a comma-delimited C string. The simple
4196/// attributes readonly and bycopy are encoded as single characters. The
4197/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4198/// encoded as single characters, followed by an identifier. Property types
4199/// are also encoded as a parametrized attribute. The characters used to encode
4200/// these attributes are defined by the following enumeration:
4201/// @code
4202/// enum PropertyAttributes {
4203/// kPropertyReadOnly = 'R',   // property is read-only.
4204/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4205/// kPropertyByref = '&',  // property is a reference to the value last assigned
4206/// kPropertyDynamic = 'D',    // property is dynamic
4207/// kPropertyGetter = 'G',     // followed by getter selector name
4208/// kPropertySetter = 'S',     // followed by setter selector name
4209/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4210/// kPropertyType = 'T'              // followed by old-style type encoding.
4211/// kPropertyWeak = 'W'              // 'weak' property
4212/// kPropertyStrong = 'P'            // property GC'able
4213/// kPropertyNonAtomic = 'N'         // property non-atomic
4214/// };
4215/// @endcode
4216void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4217                                                const Decl *Container,
4218                                                std::string& S) const {
4219  // Collect information from the property implementation decl(s).
4220  bool Dynamic = false;
4221  ObjCPropertyImplDecl *SynthesizePID = 0;
4222
4223  // FIXME: Duplicated code due to poor abstraction.
4224  if (Container) {
4225    if (const ObjCCategoryImplDecl *CID =
4226        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4227      for (ObjCCategoryImplDecl::propimpl_iterator
4228             i = CID->propimpl_begin(), e = CID->propimpl_end();
4229           i != e; ++i) {
4230        ObjCPropertyImplDecl *PID = *i;
4231        if (PID->getPropertyDecl() == PD) {
4232          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4233            Dynamic = true;
4234          } else {
4235            SynthesizePID = PID;
4236          }
4237        }
4238      }
4239    } else {
4240      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4241      for (ObjCCategoryImplDecl::propimpl_iterator
4242             i = OID->propimpl_begin(), e = OID->propimpl_end();
4243           i != e; ++i) {
4244        ObjCPropertyImplDecl *PID = *i;
4245        if (PID->getPropertyDecl() == PD) {
4246          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4247            Dynamic = true;
4248          } else {
4249            SynthesizePID = PID;
4250          }
4251        }
4252      }
4253    }
4254  }
4255
4256  // FIXME: This is not very efficient.
4257  S = "T";
4258
4259  // Encode result type.
4260  // GCC has some special rules regarding encoding of properties which
4261  // closely resembles encoding of ivars.
4262  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4263                             true /* outermost type */,
4264                             true /* encoding for property */);
4265
4266  if (PD->isReadOnly()) {
4267    S += ",R";
4268  } else {
4269    switch (PD->getSetterKind()) {
4270    case ObjCPropertyDecl::Assign: break;
4271    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4272    case ObjCPropertyDecl::Retain: S += ",&"; break;
4273    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4274    }
4275  }
4276
4277  // It really isn't clear at all what this means, since properties
4278  // are "dynamic by default".
4279  if (Dynamic)
4280    S += ",D";
4281
4282  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4283    S += ",N";
4284
4285  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4286    S += ",G";
4287    S += PD->getGetterName().getAsString();
4288  }
4289
4290  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4291    S += ",S";
4292    S += PD->getSetterName().getAsString();
4293  }
4294
4295  if (SynthesizePID) {
4296    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4297    S += ",V";
4298    S += OID->getNameAsString();
4299  }
4300
4301  // FIXME: OBJCGC: weak & strong
4302}
4303
4304/// getLegacyIntegralTypeEncoding -
4305/// Another legacy compatibility encoding: 32-bit longs are encoded as
4306/// 'l' or 'L' , but not always.  For typedefs, we need to use
4307/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4308///
4309void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4310  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4311    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4312      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4313        PointeeTy = UnsignedIntTy;
4314      else
4315        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4316          PointeeTy = IntTy;
4317    }
4318  }
4319}
4320
4321void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4322                                        const FieldDecl *Field) const {
4323  // We follow the behavior of gcc, expanding structures which are
4324  // directly pointed to, and expanding embedded structures. Note that
4325  // these rules are sufficient to prevent recursive encoding of the
4326  // same type.
4327  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4328                             true /* outermost type */);
4329}
4330
4331static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4332    switch (T->getAs<BuiltinType>()->getKind()) {
4333    default: llvm_unreachable("Unhandled builtin type kind");
4334    case BuiltinType::Void:       return 'v';
4335    case BuiltinType::Bool:       return 'B';
4336    case BuiltinType::Char_U:
4337    case BuiltinType::UChar:      return 'C';
4338    case BuiltinType::UShort:     return 'S';
4339    case BuiltinType::UInt:       return 'I';
4340    case BuiltinType::ULong:
4341        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4342    case BuiltinType::UInt128:    return 'T';
4343    case BuiltinType::ULongLong:  return 'Q';
4344    case BuiltinType::Char_S:
4345    case BuiltinType::SChar:      return 'c';
4346    case BuiltinType::Short:      return 's';
4347    case BuiltinType::WChar_S:
4348    case BuiltinType::WChar_U:
4349    case BuiltinType::Int:        return 'i';
4350    case BuiltinType::Long:
4351      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4352    case BuiltinType::LongLong:   return 'q';
4353    case BuiltinType::Int128:     return 't';
4354    case BuiltinType::Float:      return 'f';
4355    case BuiltinType::Double:     return 'd';
4356    case BuiltinType::LongDouble: return 'D';
4357    }
4358}
4359
4360static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4361  EnumDecl *Enum = ET->getDecl();
4362
4363  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4364  if (!Enum->isFixed())
4365    return 'i';
4366
4367  // The encoding of a fixed enum type matches its fixed underlying type.
4368  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4369}
4370
4371static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4372                           QualType T, const FieldDecl *FD) {
4373  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4374  S += 'b';
4375  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4376  // The GNU runtime requires more information; bitfields are encoded as b,
4377  // then the offset (in bits) of the first element, then the type of the
4378  // bitfield, then the size in bits.  For example, in this structure:
4379  //
4380  // struct
4381  // {
4382  //    int integer;
4383  //    int flags:2;
4384  // };
4385  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4386  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4387  // information is not especially sensible, but we're stuck with it for
4388  // compatibility with GCC, although providing it breaks anything that
4389  // actually uses runtime introspection and wants to work on both runtimes...
4390  if (!Ctx->getLangOpts().NeXTRuntime) {
4391    const RecordDecl *RD = FD->getParent();
4392    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4393    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4394    if (const EnumType *ET = T->getAs<EnumType>())
4395      S += ObjCEncodingForEnumType(Ctx, ET);
4396    else
4397      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4398  }
4399  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4400}
4401
4402// FIXME: Use SmallString for accumulating string.
4403void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4404                                            bool ExpandPointedToStructures,
4405                                            bool ExpandStructures,
4406                                            const FieldDecl *FD,
4407                                            bool OutermostType,
4408                                            bool EncodingProperty,
4409                                            bool StructField,
4410                                            bool EncodeBlockParameters,
4411                                            bool EncodeClassNames) const {
4412  if (T->getAs<BuiltinType>()) {
4413    if (FD && FD->isBitField())
4414      return EncodeBitField(this, S, T, FD);
4415    S += ObjCEncodingForPrimitiveKind(this, T);
4416    return;
4417  }
4418
4419  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4420    S += 'j';
4421    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4422                               false);
4423    return;
4424  }
4425
4426  // encoding for pointer or r3eference types.
4427  QualType PointeeTy;
4428  if (const PointerType *PT = T->getAs<PointerType>()) {
4429    if (PT->isObjCSelType()) {
4430      S += ':';
4431      return;
4432    }
4433    PointeeTy = PT->getPointeeType();
4434  }
4435  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4436    PointeeTy = RT->getPointeeType();
4437  if (!PointeeTy.isNull()) {
4438    bool isReadOnly = false;
4439    // For historical/compatibility reasons, the read-only qualifier of the
4440    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4441    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4442    // Also, do not emit the 'r' for anything but the outermost type!
4443    if (isa<TypedefType>(T.getTypePtr())) {
4444      if (OutermostType && T.isConstQualified()) {
4445        isReadOnly = true;
4446        S += 'r';
4447      }
4448    } else if (OutermostType) {
4449      QualType P = PointeeTy;
4450      while (P->getAs<PointerType>())
4451        P = P->getAs<PointerType>()->getPointeeType();
4452      if (P.isConstQualified()) {
4453        isReadOnly = true;
4454        S += 'r';
4455      }
4456    }
4457    if (isReadOnly) {
4458      // Another legacy compatibility encoding. Some ObjC qualifier and type
4459      // combinations need to be rearranged.
4460      // Rewrite "in const" from "nr" to "rn"
4461      if (StringRef(S).endswith("nr"))
4462        S.replace(S.end()-2, S.end(), "rn");
4463    }
4464
4465    if (PointeeTy->isCharType()) {
4466      // char pointer types should be encoded as '*' unless it is a
4467      // type that has been typedef'd to 'BOOL'.
4468      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4469        S += '*';
4470        return;
4471      }
4472    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4473      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4474      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4475        S += '#';
4476        return;
4477      }
4478      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4479      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4480        S += '@';
4481        return;
4482      }
4483      // fall through...
4484    }
4485    S += '^';
4486    getLegacyIntegralTypeEncoding(PointeeTy);
4487
4488    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4489                               NULL);
4490    return;
4491  }
4492
4493  if (const ArrayType *AT =
4494      // Ignore type qualifiers etc.
4495        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4496    if (isa<IncompleteArrayType>(AT) && !StructField) {
4497      // Incomplete arrays are encoded as a pointer to the array element.
4498      S += '^';
4499
4500      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4501                                 false, ExpandStructures, FD);
4502    } else {
4503      S += '[';
4504
4505      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4506        if (getTypeSize(CAT->getElementType()) == 0)
4507          S += '0';
4508        else
4509          S += llvm::utostr(CAT->getSize().getZExtValue());
4510      } else {
4511        //Variable length arrays are encoded as a regular array with 0 elements.
4512        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4513               "Unknown array type!");
4514        S += '0';
4515      }
4516
4517      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4518                                 false, ExpandStructures, FD);
4519      S += ']';
4520    }
4521    return;
4522  }
4523
4524  if (T->getAs<FunctionType>()) {
4525    S += '?';
4526    return;
4527  }
4528
4529  if (const RecordType *RTy = T->getAs<RecordType>()) {
4530    RecordDecl *RDecl = RTy->getDecl();
4531    S += RDecl->isUnion() ? '(' : '{';
4532    // Anonymous structures print as '?'
4533    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4534      S += II->getName();
4535      if (ClassTemplateSpecializationDecl *Spec
4536          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4537        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4538        std::string TemplateArgsStr
4539          = TemplateSpecializationType::PrintTemplateArgumentList(
4540                                            TemplateArgs.data(),
4541                                            TemplateArgs.size(),
4542                                            (*this).getPrintingPolicy());
4543
4544        S += TemplateArgsStr;
4545      }
4546    } else {
4547      S += '?';
4548    }
4549    if (ExpandStructures) {
4550      S += '=';
4551      if (!RDecl->isUnion()) {
4552        getObjCEncodingForStructureImpl(RDecl, S, FD);
4553      } else {
4554        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4555                                     FieldEnd = RDecl->field_end();
4556             Field != FieldEnd; ++Field) {
4557          if (FD) {
4558            S += '"';
4559            S += Field->getNameAsString();
4560            S += '"';
4561          }
4562
4563          // Special case bit-fields.
4564          if (Field->isBitField()) {
4565            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4566                                       (*Field));
4567          } else {
4568            QualType qt = Field->getType();
4569            getLegacyIntegralTypeEncoding(qt);
4570            getObjCEncodingForTypeImpl(qt, S, false, true,
4571                                       FD, /*OutermostType*/false,
4572                                       /*EncodingProperty*/false,
4573                                       /*StructField*/true);
4574          }
4575        }
4576      }
4577    }
4578    S += RDecl->isUnion() ? ')' : '}';
4579    return;
4580  }
4581
4582  if (const EnumType *ET = T->getAs<EnumType>()) {
4583    if (FD && FD->isBitField())
4584      EncodeBitField(this, S, T, FD);
4585    else
4586      S += ObjCEncodingForEnumType(this, ET);
4587    return;
4588  }
4589
4590  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4591    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4592    if (EncodeBlockParameters) {
4593      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4594
4595      S += '<';
4596      // Block return type
4597      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4598                                 ExpandPointedToStructures, ExpandStructures,
4599                                 FD,
4600                                 false /* OutermostType */,
4601                                 EncodingProperty,
4602                                 false /* StructField */,
4603                                 EncodeBlockParameters,
4604                                 EncodeClassNames);
4605      // Block self
4606      S += "@?";
4607      // Block parameters
4608      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4609        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4610               E = FPT->arg_type_end(); I && (I != E); ++I) {
4611          getObjCEncodingForTypeImpl(*I, S,
4612                                     ExpandPointedToStructures,
4613                                     ExpandStructures,
4614                                     FD,
4615                                     false /* OutermostType */,
4616                                     EncodingProperty,
4617                                     false /* StructField */,
4618                                     EncodeBlockParameters,
4619                                     EncodeClassNames);
4620        }
4621      }
4622      S += '>';
4623    }
4624    return;
4625  }
4626
4627  // Ignore protocol qualifiers when mangling at this level.
4628  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4629    T = OT->getBaseType();
4630
4631  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4632    // @encode(class_name)
4633    ObjCInterfaceDecl *OI = OIT->getDecl();
4634    S += '{';
4635    const IdentifierInfo *II = OI->getIdentifier();
4636    S += II->getName();
4637    S += '=';
4638    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4639    DeepCollectObjCIvars(OI, true, Ivars);
4640    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4641      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4642      if (Field->isBitField())
4643        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4644      else
4645        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4646    }
4647    S += '}';
4648    return;
4649  }
4650
4651  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4652    if (OPT->isObjCIdType()) {
4653      S += '@';
4654      return;
4655    }
4656
4657    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4658      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4659      // Since this is a binary compatibility issue, need to consult with runtime
4660      // folks. Fortunately, this is a *very* obsure construct.
4661      S += '#';
4662      return;
4663    }
4664
4665    if (OPT->isObjCQualifiedIdType()) {
4666      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4667                                 ExpandPointedToStructures,
4668                                 ExpandStructures, FD);
4669      if (FD || EncodingProperty || EncodeClassNames) {
4670        // Note that we do extended encoding of protocol qualifer list
4671        // Only when doing ivar or property encoding.
4672        S += '"';
4673        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4674             E = OPT->qual_end(); I != E; ++I) {
4675          S += '<';
4676          S += (*I)->getNameAsString();
4677          S += '>';
4678        }
4679        S += '"';
4680      }
4681      return;
4682    }
4683
4684    QualType PointeeTy = OPT->getPointeeType();
4685    if (!EncodingProperty &&
4686        isa<TypedefType>(PointeeTy.getTypePtr())) {
4687      // Another historical/compatibility reason.
4688      // We encode the underlying type which comes out as
4689      // {...};
4690      S += '^';
4691      getObjCEncodingForTypeImpl(PointeeTy, S,
4692                                 false, ExpandPointedToStructures,
4693                                 NULL);
4694      return;
4695    }
4696
4697    S += '@';
4698    if (OPT->getInterfaceDecl() &&
4699        (FD || EncodingProperty || EncodeClassNames)) {
4700      S += '"';
4701      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4702      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4703           E = OPT->qual_end(); I != E; ++I) {
4704        S += '<';
4705        S += (*I)->getNameAsString();
4706        S += '>';
4707      }
4708      S += '"';
4709    }
4710    return;
4711  }
4712
4713  // gcc just blithely ignores member pointers.
4714  // TODO: maybe there should be a mangling for these
4715  if (T->getAs<MemberPointerType>())
4716    return;
4717
4718  if (T->isVectorType()) {
4719    // This matches gcc's encoding, even though technically it is
4720    // insufficient.
4721    // FIXME. We should do a better job than gcc.
4722    return;
4723  }
4724
4725  llvm_unreachable("@encode for type not implemented!");
4726}
4727
4728void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4729                                                 std::string &S,
4730                                                 const FieldDecl *FD,
4731                                                 bool includeVBases) const {
4732  assert(RDecl && "Expected non-null RecordDecl");
4733  assert(!RDecl->isUnion() && "Should not be called for unions");
4734  if (!RDecl->getDefinition())
4735    return;
4736
4737  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4738  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4739  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4740
4741  if (CXXRec) {
4742    for (CXXRecordDecl::base_class_iterator
4743           BI = CXXRec->bases_begin(),
4744           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4745      if (!BI->isVirtual()) {
4746        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4747        if (base->isEmpty())
4748          continue;
4749        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4750        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4751                                  std::make_pair(offs, base));
4752      }
4753    }
4754  }
4755
4756  unsigned i = 0;
4757  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4758                               FieldEnd = RDecl->field_end();
4759       Field != FieldEnd; ++Field, ++i) {
4760    uint64_t offs = layout.getFieldOffset(i);
4761    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4762                              std::make_pair(offs, *Field));
4763  }
4764
4765  if (CXXRec && includeVBases) {
4766    for (CXXRecordDecl::base_class_iterator
4767           BI = CXXRec->vbases_begin(),
4768           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4769      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4770      if (base->isEmpty())
4771        continue;
4772      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4773      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4774        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4775                                  std::make_pair(offs, base));
4776    }
4777  }
4778
4779  CharUnits size;
4780  if (CXXRec) {
4781    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4782  } else {
4783    size = layout.getSize();
4784  }
4785
4786  uint64_t CurOffs = 0;
4787  std::multimap<uint64_t, NamedDecl *>::iterator
4788    CurLayObj = FieldOrBaseOffsets.begin();
4789
4790  if (CXXRec && CXXRec->isDynamicClass() &&
4791      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
4792    if (FD) {
4793      S += "\"_vptr$";
4794      std::string recname = CXXRec->getNameAsString();
4795      if (recname.empty()) recname = "?";
4796      S += recname;
4797      S += '"';
4798    }
4799    S += "^^?";
4800    CurOffs += getTypeSize(VoidPtrTy);
4801  }
4802
4803  if (!RDecl->hasFlexibleArrayMember()) {
4804    // Mark the end of the structure.
4805    uint64_t offs = toBits(size);
4806    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4807                              std::make_pair(offs, (NamedDecl*)0));
4808  }
4809
4810  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4811    assert(CurOffs <= CurLayObj->first);
4812
4813    if (CurOffs < CurLayObj->first) {
4814      uint64_t padding = CurLayObj->first - CurOffs;
4815      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4816      // packing/alignment of members is different that normal, in which case
4817      // the encoding will be out-of-sync with the real layout.
4818      // If the runtime switches to just consider the size of types without
4819      // taking into account alignment, we could make padding explicit in the
4820      // encoding (e.g. using arrays of chars). The encoding strings would be
4821      // longer then though.
4822      CurOffs += padding;
4823    }
4824
4825    NamedDecl *dcl = CurLayObj->second;
4826    if (dcl == 0)
4827      break; // reached end of structure.
4828
4829    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4830      // We expand the bases without their virtual bases since those are going
4831      // in the initial structure. Note that this differs from gcc which
4832      // expands virtual bases each time one is encountered in the hierarchy,
4833      // making the encoding type bigger than it really is.
4834      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4835      assert(!base->isEmpty());
4836      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4837    } else {
4838      FieldDecl *field = cast<FieldDecl>(dcl);
4839      if (FD) {
4840        S += '"';
4841        S += field->getNameAsString();
4842        S += '"';
4843      }
4844
4845      if (field->isBitField()) {
4846        EncodeBitField(this, S, field->getType(), field);
4847        CurOffs += field->getBitWidthValue(*this);
4848      } else {
4849        QualType qt = field->getType();
4850        getLegacyIntegralTypeEncoding(qt);
4851        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4852                                   /*OutermostType*/false,
4853                                   /*EncodingProperty*/false,
4854                                   /*StructField*/true);
4855        CurOffs += getTypeSize(field->getType());
4856      }
4857    }
4858  }
4859}
4860
4861void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4862                                                 std::string& S) const {
4863  if (QT & Decl::OBJC_TQ_In)
4864    S += 'n';
4865  if (QT & Decl::OBJC_TQ_Inout)
4866    S += 'N';
4867  if (QT & Decl::OBJC_TQ_Out)
4868    S += 'o';
4869  if (QT & Decl::OBJC_TQ_Bycopy)
4870    S += 'O';
4871  if (QT & Decl::OBJC_TQ_Byref)
4872    S += 'R';
4873  if (QT & Decl::OBJC_TQ_Oneway)
4874    S += 'V';
4875}
4876
4877void ASTContext::setBuiltinVaListType(QualType T) {
4878  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4879
4880  BuiltinVaListType = T;
4881}
4882
4883TypedefDecl *ASTContext::getObjCIdDecl() const {
4884  if (!ObjCIdDecl) {
4885    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
4886    T = getObjCObjectPointerType(T);
4887    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
4888    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4889                                     getTranslationUnitDecl(),
4890                                     SourceLocation(), SourceLocation(),
4891                                     &Idents.get("id"), IdInfo);
4892  }
4893
4894  return ObjCIdDecl;
4895}
4896
4897TypedefDecl *ASTContext::getObjCSelDecl() const {
4898  if (!ObjCSelDecl) {
4899    QualType SelT = getPointerType(ObjCBuiltinSelTy);
4900    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
4901    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4902                                      getTranslationUnitDecl(),
4903                                      SourceLocation(), SourceLocation(),
4904                                      &Idents.get("SEL"), SelInfo);
4905  }
4906  return ObjCSelDecl;
4907}
4908
4909TypedefDecl *ASTContext::getObjCClassDecl() const {
4910  if (!ObjCClassDecl) {
4911    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
4912    T = getObjCObjectPointerType(T);
4913    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
4914    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4915                                        getTranslationUnitDecl(),
4916                                        SourceLocation(), SourceLocation(),
4917                                        &Idents.get("Class"), ClassInfo);
4918  }
4919
4920  return ObjCClassDecl;
4921}
4922
4923ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
4924  if (!ObjCProtocolClassDecl) {
4925    ObjCProtocolClassDecl
4926      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
4927                                  SourceLocation(),
4928                                  &Idents.get("Protocol"),
4929                                  /*PrevDecl=*/0,
4930                                  SourceLocation(), true);
4931  }
4932
4933  return ObjCProtocolClassDecl;
4934}
4935
4936void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4937  assert(ObjCConstantStringType.isNull() &&
4938         "'NSConstantString' type already set!");
4939
4940  ObjCConstantStringType = getObjCInterfaceType(Decl);
4941}
4942
4943/// \brief Retrieve the template name that corresponds to a non-empty
4944/// lookup.
4945TemplateName
4946ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4947                                      UnresolvedSetIterator End) const {
4948  unsigned size = End - Begin;
4949  assert(size > 1 && "set is not overloaded!");
4950
4951  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4952                          size * sizeof(FunctionTemplateDecl*));
4953  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4954
4955  NamedDecl **Storage = OT->getStorage();
4956  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4957    NamedDecl *D = *I;
4958    assert(isa<FunctionTemplateDecl>(D) ||
4959           (isa<UsingShadowDecl>(D) &&
4960            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4961    *Storage++ = D;
4962  }
4963
4964  return TemplateName(OT);
4965}
4966
4967/// \brief Retrieve the template name that represents a qualified
4968/// template name such as \c std::vector.
4969TemplateName
4970ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4971                                     bool TemplateKeyword,
4972                                     TemplateDecl *Template) const {
4973  assert(NNS && "Missing nested-name-specifier in qualified template name");
4974
4975  // FIXME: Canonicalization?
4976  llvm::FoldingSetNodeID ID;
4977  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4978
4979  void *InsertPos = 0;
4980  QualifiedTemplateName *QTN =
4981    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4982  if (!QTN) {
4983    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4984    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4985  }
4986
4987  return TemplateName(QTN);
4988}
4989
4990/// \brief Retrieve the template name that represents a dependent
4991/// template name such as \c MetaFun::template apply.
4992TemplateName
4993ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4994                                     const IdentifierInfo *Name) const {
4995  assert((!NNS || NNS->isDependent()) &&
4996         "Nested name specifier must be dependent");
4997
4998  llvm::FoldingSetNodeID ID;
4999  DependentTemplateName::Profile(ID, NNS, Name);
5000
5001  void *InsertPos = 0;
5002  DependentTemplateName *QTN =
5003    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5004
5005  if (QTN)
5006    return TemplateName(QTN);
5007
5008  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5009  if (CanonNNS == NNS) {
5010    QTN = new (*this,4) DependentTemplateName(NNS, Name);
5011  } else {
5012    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5013    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
5014    DependentTemplateName *CheckQTN =
5015      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5016    assert(!CheckQTN && "Dependent type name canonicalization broken");
5017    (void)CheckQTN;
5018  }
5019
5020  DependentTemplateNames.InsertNode(QTN, InsertPos);
5021  return TemplateName(QTN);
5022}
5023
5024/// \brief Retrieve the template name that represents a dependent
5025/// template name such as \c MetaFun::template operator+.
5026TemplateName
5027ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5028                                     OverloadedOperatorKind Operator) const {
5029  assert((!NNS || NNS->isDependent()) &&
5030         "Nested name specifier must be dependent");
5031
5032  llvm::FoldingSetNodeID ID;
5033  DependentTemplateName::Profile(ID, NNS, Operator);
5034
5035  void *InsertPos = 0;
5036  DependentTemplateName *QTN
5037    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5038
5039  if (QTN)
5040    return TemplateName(QTN);
5041
5042  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5043  if (CanonNNS == NNS) {
5044    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5045  } else {
5046    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5047    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5048
5049    DependentTemplateName *CheckQTN
5050      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5051    assert(!CheckQTN && "Dependent template name canonicalization broken");
5052    (void)CheckQTN;
5053  }
5054
5055  DependentTemplateNames.InsertNode(QTN, InsertPos);
5056  return TemplateName(QTN);
5057}
5058
5059TemplateName
5060ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5061                                         TemplateName replacement) const {
5062  llvm::FoldingSetNodeID ID;
5063  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5064
5065  void *insertPos = 0;
5066  SubstTemplateTemplateParmStorage *subst
5067    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5068
5069  if (!subst) {
5070    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5071    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5072  }
5073
5074  return TemplateName(subst);
5075}
5076
5077TemplateName
5078ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5079                                       const TemplateArgument &ArgPack) const {
5080  ASTContext &Self = const_cast<ASTContext &>(*this);
5081  llvm::FoldingSetNodeID ID;
5082  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5083
5084  void *InsertPos = 0;
5085  SubstTemplateTemplateParmPackStorage *Subst
5086    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5087
5088  if (!Subst) {
5089    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5090                                                           ArgPack.pack_size(),
5091                                                         ArgPack.pack_begin());
5092    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5093  }
5094
5095  return TemplateName(Subst);
5096}
5097
5098/// getFromTargetType - Given one of the integer types provided by
5099/// TargetInfo, produce the corresponding type. The unsigned @p Type
5100/// is actually a value of type @c TargetInfo::IntType.
5101CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5102  switch (Type) {
5103  case TargetInfo::NoInt: return CanQualType();
5104  case TargetInfo::SignedShort: return ShortTy;
5105  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5106  case TargetInfo::SignedInt: return IntTy;
5107  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5108  case TargetInfo::SignedLong: return LongTy;
5109  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5110  case TargetInfo::SignedLongLong: return LongLongTy;
5111  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5112  }
5113
5114  llvm_unreachable("Unhandled TargetInfo::IntType value");
5115}
5116
5117//===----------------------------------------------------------------------===//
5118//                        Type Predicates.
5119//===----------------------------------------------------------------------===//
5120
5121/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5122/// garbage collection attribute.
5123///
5124Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5125  if (getLangOpts().getGC() == LangOptions::NonGC)
5126    return Qualifiers::GCNone;
5127
5128  assert(getLangOpts().ObjC1);
5129  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5130
5131  // Default behaviour under objective-C's gc is for ObjC pointers
5132  // (or pointers to them) be treated as though they were declared
5133  // as __strong.
5134  if (GCAttrs == Qualifiers::GCNone) {
5135    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5136      return Qualifiers::Strong;
5137    else if (Ty->isPointerType())
5138      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5139  } else {
5140    // It's not valid to set GC attributes on anything that isn't a
5141    // pointer.
5142#ifndef NDEBUG
5143    QualType CT = Ty->getCanonicalTypeInternal();
5144    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5145      CT = AT->getElementType();
5146    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5147#endif
5148  }
5149  return GCAttrs;
5150}
5151
5152//===----------------------------------------------------------------------===//
5153//                        Type Compatibility Testing
5154//===----------------------------------------------------------------------===//
5155
5156/// areCompatVectorTypes - Return true if the two specified vector types are
5157/// compatible.
5158static bool areCompatVectorTypes(const VectorType *LHS,
5159                                 const VectorType *RHS) {
5160  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5161  return LHS->getElementType() == RHS->getElementType() &&
5162         LHS->getNumElements() == RHS->getNumElements();
5163}
5164
5165bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5166                                          QualType SecondVec) {
5167  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5168  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5169
5170  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5171    return true;
5172
5173  // Treat Neon vector types and most AltiVec vector types as if they are the
5174  // equivalent GCC vector types.
5175  const VectorType *First = FirstVec->getAs<VectorType>();
5176  const VectorType *Second = SecondVec->getAs<VectorType>();
5177  if (First->getNumElements() == Second->getNumElements() &&
5178      hasSameType(First->getElementType(), Second->getElementType()) &&
5179      First->getVectorKind() != VectorType::AltiVecPixel &&
5180      First->getVectorKind() != VectorType::AltiVecBool &&
5181      Second->getVectorKind() != VectorType::AltiVecPixel &&
5182      Second->getVectorKind() != VectorType::AltiVecBool)
5183    return true;
5184
5185  return false;
5186}
5187
5188//===----------------------------------------------------------------------===//
5189// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5190//===----------------------------------------------------------------------===//
5191
5192/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5193/// inheritance hierarchy of 'rProto'.
5194bool
5195ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5196                                           ObjCProtocolDecl *rProto) const {
5197  if (declaresSameEntity(lProto, rProto))
5198    return true;
5199  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5200       E = rProto->protocol_end(); PI != E; ++PI)
5201    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5202      return true;
5203  return false;
5204}
5205
5206/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5207/// return true if lhs's protocols conform to rhs's protocol; false
5208/// otherwise.
5209bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5210  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5211    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5212  return false;
5213}
5214
5215/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5216/// Class<p1, ...>.
5217bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5218                                                      QualType rhs) {
5219  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5220  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5221  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5222
5223  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5224       E = lhsQID->qual_end(); I != E; ++I) {
5225    bool match = false;
5226    ObjCProtocolDecl *lhsProto = *I;
5227    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5228         E = rhsOPT->qual_end(); J != E; ++J) {
5229      ObjCProtocolDecl *rhsProto = *J;
5230      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5231        match = true;
5232        break;
5233      }
5234    }
5235    if (!match)
5236      return false;
5237  }
5238  return true;
5239}
5240
5241/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5242/// ObjCQualifiedIDType.
5243bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5244                                                   bool compare) {
5245  // Allow id<P..> and an 'id' or void* type in all cases.
5246  if (lhs->isVoidPointerType() ||
5247      lhs->isObjCIdType() || lhs->isObjCClassType())
5248    return true;
5249  else if (rhs->isVoidPointerType() ||
5250           rhs->isObjCIdType() || rhs->isObjCClassType())
5251    return true;
5252
5253  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5254    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5255
5256    if (!rhsOPT) return false;
5257
5258    if (rhsOPT->qual_empty()) {
5259      // If the RHS is a unqualified interface pointer "NSString*",
5260      // make sure we check the class hierarchy.
5261      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5262        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5263             E = lhsQID->qual_end(); I != E; ++I) {
5264          // when comparing an id<P> on lhs with a static type on rhs,
5265          // see if static class implements all of id's protocols, directly or
5266          // through its super class and categories.
5267          if (!rhsID->ClassImplementsProtocol(*I, true))
5268            return false;
5269        }
5270      }
5271      // If there are no qualifiers and no interface, we have an 'id'.
5272      return true;
5273    }
5274    // Both the right and left sides have qualifiers.
5275    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5276         E = lhsQID->qual_end(); I != E; ++I) {
5277      ObjCProtocolDecl *lhsProto = *I;
5278      bool match = false;
5279
5280      // when comparing an id<P> on lhs with a static type on rhs,
5281      // see if static class implements all of id's protocols, directly or
5282      // through its super class and categories.
5283      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5284           E = rhsOPT->qual_end(); J != E; ++J) {
5285        ObjCProtocolDecl *rhsProto = *J;
5286        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5287            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5288          match = true;
5289          break;
5290        }
5291      }
5292      // If the RHS is a qualified interface pointer "NSString<P>*",
5293      // make sure we check the class hierarchy.
5294      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5295        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5296             E = lhsQID->qual_end(); I != E; ++I) {
5297          // when comparing an id<P> on lhs with a static type on rhs,
5298          // see if static class implements all of id's protocols, directly or
5299          // through its super class and categories.
5300          if (rhsID->ClassImplementsProtocol(*I, true)) {
5301            match = true;
5302            break;
5303          }
5304        }
5305      }
5306      if (!match)
5307        return false;
5308    }
5309
5310    return true;
5311  }
5312
5313  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5314  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5315
5316  if (const ObjCObjectPointerType *lhsOPT =
5317        lhs->getAsObjCInterfacePointerType()) {
5318    // If both the right and left sides have qualifiers.
5319    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5320         E = lhsOPT->qual_end(); I != E; ++I) {
5321      ObjCProtocolDecl *lhsProto = *I;
5322      bool match = false;
5323
5324      // when comparing an id<P> on rhs with a static type on lhs,
5325      // see if static class implements all of id's protocols, directly or
5326      // through its super class and categories.
5327      // First, lhs protocols in the qualifier list must be found, direct
5328      // or indirect in rhs's qualifier list or it is a mismatch.
5329      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5330           E = rhsQID->qual_end(); J != E; ++J) {
5331        ObjCProtocolDecl *rhsProto = *J;
5332        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5333            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5334          match = true;
5335          break;
5336        }
5337      }
5338      if (!match)
5339        return false;
5340    }
5341
5342    // Static class's protocols, or its super class or category protocols
5343    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5344    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5345      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5346      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5347      // This is rather dubious but matches gcc's behavior. If lhs has
5348      // no type qualifier and its class has no static protocol(s)
5349      // assume that it is mismatch.
5350      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5351        return false;
5352      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5353           LHSInheritedProtocols.begin(),
5354           E = LHSInheritedProtocols.end(); I != E; ++I) {
5355        bool match = false;
5356        ObjCProtocolDecl *lhsProto = (*I);
5357        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5358             E = rhsQID->qual_end(); J != E; ++J) {
5359          ObjCProtocolDecl *rhsProto = *J;
5360          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5361              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5362            match = true;
5363            break;
5364          }
5365        }
5366        if (!match)
5367          return false;
5368      }
5369    }
5370    return true;
5371  }
5372  return false;
5373}
5374
5375/// canAssignObjCInterfaces - Return true if the two interface types are
5376/// compatible for assignment from RHS to LHS.  This handles validation of any
5377/// protocol qualifiers on the LHS or RHS.
5378///
5379bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5380                                         const ObjCObjectPointerType *RHSOPT) {
5381  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5382  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5383
5384  // If either type represents the built-in 'id' or 'Class' types, return true.
5385  if (LHS->isObjCUnqualifiedIdOrClass() ||
5386      RHS->isObjCUnqualifiedIdOrClass())
5387    return true;
5388
5389  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5390    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5391                                             QualType(RHSOPT,0),
5392                                             false);
5393
5394  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5395    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5396                                                QualType(RHSOPT,0));
5397
5398  // If we have 2 user-defined types, fall into that path.
5399  if (LHS->getInterface() && RHS->getInterface())
5400    return canAssignObjCInterfaces(LHS, RHS);
5401
5402  return false;
5403}
5404
5405/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5406/// for providing type-safety for objective-c pointers used to pass/return
5407/// arguments in block literals. When passed as arguments, passing 'A*' where
5408/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5409/// not OK. For the return type, the opposite is not OK.
5410bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5411                                         const ObjCObjectPointerType *LHSOPT,
5412                                         const ObjCObjectPointerType *RHSOPT,
5413                                         bool BlockReturnType) {
5414  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5415    return true;
5416
5417  if (LHSOPT->isObjCBuiltinType()) {
5418    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5419  }
5420
5421  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5422    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5423                                             QualType(RHSOPT,0),
5424                                             false);
5425
5426  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5427  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5428  if (LHS && RHS)  { // We have 2 user-defined types.
5429    if (LHS != RHS) {
5430      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5431        return BlockReturnType;
5432      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5433        return !BlockReturnType;
5434    }
5435    else
5436      return true;
5437  }
5438  return false;
5439}
5440
5441/// getIntersectionOfProtocols - This routine finds the intersection of set
5442/// of protocols inherited from two distinct objective-c pointer objects.
5443/// It is used to build composite qualifier list of the composite type of
5444/// the conditional expression involving two objective-c pointer objects.
5445static
5446void getIntersectionOfProtocols(ASTContext &Context,
5447                                const ObjCObjectPointerType *LHSOPT,
5448                                const ObjCObjectPointerType *RHSOPT,
5449      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5450
5451  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5452  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5453  assert(LHS->getInterface() && "LHS must have an interface base");
5454  assert(RHS->getInterface() && "RHS must have an interface base");
5455
5456  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5457  unsigned LHSNumProtocols = LHS->getNumProtocols();
5458  if (LHSNumProtocols > 0)
5459    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5460  else {
5461    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5462    Context.CollectInheritedProtocols(LHS->getInterface(),
5463                                      LHSInheritedProtocols);
5464    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5465                                LHSInheritedProtocols.end());
5466  }
5467
5468  unsigned RHSNumProtocols = RHS->getNumProtocols();
5469  if (RHSNumProtocols > 0) {
5470    ObjCProtocolDecl **RHSProtocols =
5471      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5472    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5473      if (InheritedProtocolSet.count(RHSProtocols[i]))
5474        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5475  } else {
5476    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5477    Context.CollectInheritedProtocols(RHS->getInterface(),
5478                                      RHSInheritedProtocols);
5479    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5480         RHSInheritedProtocols.begin(),
5481         E = RHSInheritedProtocols.end(); I != E; ++I)
5482      if (InheritedProtocolSet.count((*I)))
5483        IntersectionOfProtocols.push_back((*I));
5484  }
5485}
5486
5487/// areCommonBaseCompatible - Returns common base class of the two classes if
5488/// one found. Note that this is O'2 algorithm. But it will be called as the
5489/// last type comparison in a ?-exp of ObjC pointer types before a
5490/// warning is issued. So, its invokation is extremely rare.
5491QualType ASTContext::areCommonBaseCompatible(
5492                                          const ObjCObjectPointerType *Lptr,
5493                                          const ObjCObjectPointerType *Rptr) {
5494  const ObjCObjectType *LHS = Lptr->getObjectType();
5495  const ObjCObjectType *RHS = Rptr->getObjectType();
5496  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5497  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5498  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5499    return QualType();
5500
5501  do {
5502    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5503    if (canAssignObjCInterfaces(LHS, RHS)) {
5504      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5505      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5506
5507      QualType Result = QualType(LHS, 0);
5508      if (!Protocols.empty())
5509        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5510      Result = getObjCObjectPointerType(Result);
5511      return Result;
5512    }
5513  } while ((LDecl = LDecl->getSuperClass()));
5514
5515  return QualType();
5516}
5517
5518bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5519                                         const ObjCObjectType *RHS) {
5520  assert(LHS->getInterface() && "LHS is not an interface type");
5521  assert(RHS->getInterface() && "RHS is not an interface type");
5522
5523  // Verify that the base decls are compatible: the RHS must be a subclass of
5524  // the LHS.
5525  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5526    return false;
5527
5528  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5529  // protocol qualified at all, then we are good.
5530  if (LHS->getNumProtocols() == 0)
5531    return true;
5532
5533  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5534  // more detailed analysis is required.
5535  if (RHS->getNumProtocols() == 0) {
5536    // OK, if LHS is a superclass of RHS *and*
5537    // this superclass is assignment compatible with LHS.
5538    // false otherwise.
5539    bool IsSuperClass =
5540      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5541    if (IsSuperClass) {
5542      // OK if conversion of LHS to SuperClass results in narrowing of types
5543      // ; i.e., SuperClass may implement at least one of the protocols
5544      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5545      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5546      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5547      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5548      // If super class has no protocols, it is not a match.
5549      if (SuperClassInheritedProtocols.empty())
5550        return false;
5551
5552      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5553           LHSPE = LHS->qual_end();
5554           LHSPI != LHSPE; LHSPI++) {
5555        bool SuperImplementsProtocol = false;
5556        ObjCProtocolDecl *LHSProto = (*LHSPI);
5557
5558        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5559             SuperClassInheritedProtocols.begin(),
5560             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5561          ObjCProtocolDecl *SuperClassProto = (*I);
5562          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5563            SuperImplementsProtocol = true;
5564            break;
5565          }
5566        }
5567        if (!SuperImplementsProtocol)
5568          return false;
5569      }
5570      return true;
5571    }
5572    return false;
5573  }
5574
5575  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5576                                     LHSPE = LHS->qual_end();
5577       LHSPI != LHSPE; LHSPI++) {
5578    bool RHSImplementsProtocol = false;
5579
5580    // If the RHS doesn't implement the protocol on the left, the types
5581    // are incompatible.
5582    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5583                                       RHSPE = RHS->qual_end();
5584         RHSPI != RHSPE; RHSPI++) {
5585      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5586        RHSImplementsProtocol = true;
5587        break;
5588      }
5589    }
5590    // FIXME: For better diagnostics, consider passing back the protocol name.
5591    if (!RHSImplementsProtocol)
5592      return false;
5593  }
5594  // The RHS implements all protocols listed on the LHS.
5595  return true;
5596}
5597
5598bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5599  // get the "pointed to" types
5600  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5601  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5602
5603  if (!LHSOPT || !RHSOPT)
5604    return false;
5605
5606  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5607         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5608}
5609
5610bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5611  return canAssignObjCInterfaces(
5612                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5613                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5614}
5615
5616/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5617/// both shall have the identically qualified version of a compatible type.
5618/// C99 6.2.7p1: Two types have compatible types if their types are the
5619/// same. See 6.7.[2,3,5] for additional rules.
5620bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5621                                    bool CompareUnqualified) {
5622  if (getLangOpts().CPlusPlus)
5623    return hasSameType(LHS, RHS);
5624
5625  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5626}
5627
5628bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5629  return typesAreCompatible(LHS, RHS);
5630}
5631
5632bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5633  return !mergeTypes(LHS, RHS, true).isNull();
5634}
5635
5636/// mergeTransparentUnionType - if T is a transparent union type and a member
5637/// of T is compatible with SubType, return the merged type, else return
5638/// QualType()
5639QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5640                                               bool OfBlockPointer,
5641                                               bool Unqualified) {
5642  if (const RecordType *UT = T->getAsUnionType()) {
5643    RecordDecl *UD = UT->getDecl();
5644    if (UD->hasAttr<TransparentUnionAttr>()) {
5645      for (RecordDecl::field_iterator it = UD->field_begin(),
5646           itend = UD->field_end(); it != itend; ++it) {
5647        QualType ET = it->getType().getUnqualifiedType();
5648        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5649        if (!MT.isNull())
5650          return MT;
5651      }
5652    }
5653  }
5654
5655  return QualType();
5656}
5657
5658/// mergeFunctionArgumentTypes - merge two types which appear as function
5659/// argument types
5660QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5661                                                bool OfBlockPointer,
5662                                                bool Unqualified) {
5663  // GNU extension: two types are compatible if they appear as a function
5664  // argument, one of the types is a transparent union type and the other
5665  // type is compatible with a union member
5666  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5667                                              Unqualified);
5668  if (!lmerge.isNull())
5669    return lmerge;
5670
5671  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5672                                              Unqualified);
5673  if (!rmerge.isNull())
5674    return rmerge;
5675
5676  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5677}
5678
5679QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5680                                        bool OfBlockPointer,
5681                                        bool Unqualified) {
5682  const FunctionType *lbase = lhs->getAs<FunctionType>();
5683  const FunctionType *rbase = rhs->getAs<FunctionType>();
5684  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5685  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5686  bool allLTypes = true;
5687  bool allRTypes = true;
5688
5689  // Check return type
5690  QualType retType;
5691  if (OfBlockPointer) {
5692    QualType RHS = rbase->getResultType();
5693    QualType LHS = lbase->getResultType();
5694    bool UnqualifiedResult = Unqualified;
5695    if (!UnqualifiedResult)
5696      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5697    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5698  }
5699  else
5700    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5701                         Unqualified);
5702  if (retType.isNull()) return QualType();
5703
5704  if (Unqualified)
5705    retType = retType.getUnqualifiedType();
5706
5707  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5708  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5709  if (Unqualified) {
5710    LRetType = LRetType.getUnqualifiedType();
5711    RRetType = RRetType.getUnqualifiedType();
5712  }
5713
5714  if (getCanonicalType(retType) != LRetType)
5715    allLTypes = false;
5716  if (getCanonicalType(retType) != RRetType)
5717    allRTypes = false;
5718
5719  // FIXME: double check this
5720  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5721  //                           rbase->getRegParmAttr() != 0 &&
5722  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5723  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5724  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5725
5726  // Compatible functions must have compatible calling conventions
5727  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5728    return QualType();
5729
5730  // Regparm is part of the calling convention.
5731  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5732    return QualType();
5733  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5734    return QualType();
5735
5736  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5737    return QualType();
5738
5739  // functypes which return are preferred over those that do not.
5740  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
5741    allLTypes = false;
5742  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
5743    allRTypes = false;
5744  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5745  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5746
5747  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5748
5749  if (lproto && rproto) { // two C99 style function prototypes
5750    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5751           "C++ shouldn't be here");
5752    unsigned lproto_nargs = lproto->getNumArgs();
5753    unsigned rproto_nargs = rproto->getNumArgs();
5754
5755    // Compatible functions must have the same number of arguments
5756    if (lproto_nargs != rproto_nargs)
5757      return QualType();
5758
5759    // Variadic and non-variadic functions aren't compatible
5760    if (lproto->isVariadic() != rproto->isVariadic())
5761      return QualType();
5762
5763    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5764      return QualType();
5765
5766    if (LangOpts.ObjCAutoRefCount &&
5767        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
5768      return QualType();
5769
5770    // Check argument compatibility
5771    SmallVector<QualType, 10> types;
5772    for (unsigned i = 0; i < lproto_nargs; i++) {
5773      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5774      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5775      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5776                                                    OfBlockPointer,
5777                                                    Unqualified);
5778      if (argtype.isNull()) return QualType();
5779
5780      if (Unqualified)
5781        argtype = argtype.getUnqualifiedType();
5782
5783      types.push_back(argtype);
5784      if (Unqualified) {
5785        largtype = largtype.getUnqualifiedType();
5786        rargtype = rargtype.getUnqualifiedType();
5787      }
5788
5789      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5790        allLTypes = false;
5791      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5792        allRTypes = false;
5793    }
5794
5795    if (allLTypes) return lhs;
5796    if (allRTypes) return rhs;
5797
5798    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5799    EPI.ExtInfo = einfo;
5800    return getFunctionType(retType, types.begin(), types.size(), EPI);
5801  }
5802
5803  if (lproto) allRTypes = false;
5804  if (rproto) allLTypes = false;
5805
5806  const FunctionProtoType *proto = lproto ? lproto : rproto;
5807  if (proto) {
5808    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5809    if (proto->isVariadic()) return QualType();
5810    // Check that the types are compatible with the types that
5811    // would result from default argument promotions (C99 6.7.5.3p15).
5812    // The only types actually affected are promotable integer
5813    // types and floats, which would be passed as a different
5814    // type depending on whether the prototype is visible.
5815    unsigned proto_nargs = proto->getNumArgs();
5816    for (unsigned i = 0; i < proto_nargs; ++i) {
5817      QualType argTy = proto->getArgType(i);
5818
5819      // Look at the promotion type of enum types, since that is the type used
5820      // to pass enum values.
5821      if (const EnumType *Enum = argTy->getAs<EnumType>())
5822        argTy = Enum->getDecl()->getPromotionType();
5823
5824      if (argTy->isPromotableIntegerType() ||
5825          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5826        return QualType();
5827    }
5828
5829    if (allLTypes) return lhs;
5830    if (allRTypes) return rhs;
5831
5832    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5833    EPI.ExtInfo = einfo;
5834    return getFunctionType(retType, proto->arg_type_begin(),
5835                           proto->getNumArgs(), EPI);
5836  }
5837
5838  if (allLTypes) return lhs;
5839  if (allRTypes) return rhs;
5840  return getFunctionNoProtoType(retType, einfo);
5841}
5842
5843QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5844                                bool OfBlockPointer,
5845                                bool Unqualified, bool BlockReturnType) {
5846  // C++ [expr]: If an expression initially has the type "reference to T", the
5847  // type is adjusted to "T" prior to any further analysis, the expression
5848  // designates the object or function denoted by the reference, and the
5849  // expression is an lvalue unless the reference is an rvalue reference and
5850  // the expression is a function call (possibly inside parentheses).
5851  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5852  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5853
5854  if (Unqualified) {
5855    LHS = LHS.getUnqualifiedType();
5856    RHS = RHS.getUnqualifiedType();
5857  }
5858
5859  QualType LHSCan = getCanonicalType(LHS),
5860           RHSCan = getCanonicalType(RHS);
5861
5862  // If two types are identical, they are compatible.
5863  if (LHSCan == RHSCan)
5864    return LHS;
5865
5866  // If the qualifiers are different, the types aren't compatible... mostly.
5867  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5868  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5869  if (LQuals != RQuals) {
5870    // If any of these qualifiers are different, we have a type
5871    // mismatch.
5872    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5873        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5874        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5875      return QualType();
5876
5877    // Exactly one GC qualifier difference is allowed: __strong is
5878    // okay if the other type has no GC qualifier but is an Objective
5879    // C object pointer (i.e. implicitly strong by default).  We fix
5880    // this by pretending that the unqualified type was actually
5881    // qualified __strong.
5882    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5883    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5884    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5885
5886    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5887      return QualType();
5888
5889    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5890      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5891    }
5892    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5893      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5894    }
5895    return QualType();
5896  }
5897
5898  // Okay, qualifiers are equal.
5899
5900  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5901  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5902
5903  // We want to consider the two function types to be the same for these
5904  // comparisons, just force one to the other.
5905  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5906  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5907
5908  // Same as above for arrays
5909  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5910    LHSClass = Type::ConstantArray;
5911  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5912    RHSClass = Type::ConstantArray;
5913
5914  // ObjCInterfaces are just specialized ObjCObjects.
5915  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5916  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5917
5918  // Canonicalize ExtVector -> Vector.
5919  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5920  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5921
5922  // If the canonical type classes don't match.
5923  if (LHSClass != RHSClass) {
5924    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5925    // a signed integer type, or an unsigned integer type.
5926    // Compatibility is based on the underlying type, not the promotion
5927    // type.
5928    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5929      QualType TINT = ETy->getDecl()->getIntegerType();
5930      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
5931        return RHS;
5932    }
5933    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5934      QualType TINT = ETy->getDecl()->getIntegerType();
5935      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
5936        return LHS;
5937    }
5938    // allow block pointer type to match an 'id' type.
5939    if (OfBlockPointer && !BlockReturnType) {
5940       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
5941         return LHS;
5942      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
5943        return RHS;
5944    }
5945
5946    return QualType();
5947  }
5948
5949  // The canonical type classes match.
5950  switch (LHSClass) {
5951#define TYPE(Class, Base)
5952#define ABSTRACT_TYPE(Class, Base)
5953#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5954#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5955#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5956#include "clang/AST/TypeNodes.def"
5957    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
5958
5959  case Type::LValueReference:
5960  case Type::RValueReference:
5961  case Type::MemberPointer:
5962    llvm_unreachable("C++ should never be in mergeTypes");
5963
5964  case Type::ObjCInterface:
5965  case Type::IncompleteArray:
5966  case Type::VariableArray:
5967  case Type::FunctionProto:
5968  case Type::ExtVector:
5969    llvm_unreachable("Types are eliminated above");
5970
5971  case Type::Pointer:
5972  {
5973    // Merge two pointer types, while trying to preserve typedef info
5974    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5975    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5976    if (Unqualified) {
5977      LHSPointee = LHSPointee.getUnqualifiedType();
5978      RHSPointee = RHSPointee.getUnqualifiedType();
5979    }
5980    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5981                                     Unqualified);
5982    if (ResultType.isNull()) return QualType();
5983    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5984      return LHS;
5985    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5986      return RHS;
5987    return getPointerType(ResultType);
5988  }
5989  case Type::BlockPointer:
5990  {
5991    // Merge two block pointer types, while trying to preserve typedef info
5992    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5993    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5994    if (Unqualified) {
5995      LHSPointee = LHSPointee.getUnqualifiedType();
5996      RHSPointee = RHSPointee.getUnqualifiedType();
5997    }
5998    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5999                                     Unqualified);
6000    if (ResultType.isNull()) return QualType();
6001    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6002      return LHS;
6003    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6004      return RHS;
6005    return getBlockPointerType(ResultType);
6006  }
6007  case Type::Atomic:
6008  {
6009    // Merge two pointer types, while trying to preserve typedef info
6010    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6011    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6012    if (Unqualified) {
6013      LHSValue = LHSValue.getUnqualifiedType();
6014      RHSValue = RHSValue.getUnqualifiedType();
6015    }
6016    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6017                                     Unqualified);
6018    if (ResultType.isNull()) return QualType();
6019    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6020      return LHS;
6021    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6022      return RHS;
6023    return getAtomicType(ResultType);
6024  }
6025  case Type::ConstantArray:
6026  {
6027    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6028    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6029    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6030      return QualType();
6031
6032    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6033    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6034    if (Unqualified) {
6035      LHSElem = LHSElem.getUnqualifiedType();
6036      RHSElem = RHSElem.getUnqualifiedType();
6037    }
6038
6039    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6040    if (ResultType.isNull()) return QualType();
6041    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6042      return LHS;
6043    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6044      return RHS;
6045    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6046                                          ArrayType::ArraySizeModifier(), 0);
6047    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6048                                          ArrayType::ArraySizeModifier(), 0);
6049    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6050    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6051    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6052      return LHS;
6053    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6054      return RHS;
6055    if (LVAT) {
6056      // FIXME: This isn't correct! But tricky to implement because
6057      // the array's size has to be the size of LHS, but the type
6058      // has to be different.
6059      return LHS;
6060    }
6061    if (RVAT) {
6062      // FIXME: This isn't correct! But tricky to implement because
6063      // the array's size has to be the size of RHS, but the type
6064      // has to be different.
6065      return RHS;
6066    }
6067    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6068    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6069    return getIncompleteArrayType(ResultType,
6070                                  ArrayType::ArraySizeModifier(), 0);
6071  }
6072  case Type::FunctionNoProto:
6073    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6074  case Type::Record:
6075  case Type::Enum:
6076    return QualType();
6077  case Type::Builtin:
6078    // Only exactly equal builtin types are compatible, which is tested above.
6079    return QualType();
6080  case Type::Complex:
6081    // Distinct complex types are incompatible.
6082    return QualType();
6083  case Type::Vector:
6084    // FIXME: The merged type should be an ExtVector!
6085    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6086                             RHSCan->getAs<VectorType>()))
6087      return LHS;
6088    return QualType();
6089  case Type::ObjCObject: {
6090    // Check if the types are assignment compatible.
6091    // FIXME: This should be type compatibility, e.g. whether
6092    // "LHS x; RHS x;" at global scope is legal.
6093    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6094    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6095    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6096      return LHS;
6097
6098    return QualType();
6099  }
6100  case Type::ObjCObjectPointer: {
6101    if (OfBlockPointer) {
6102      if (canAssignObjCInterfacesInBlockPointer(
6103                                          LHS->getAs<ObjCObjectPointerType>(),
6104                                          RHS->getAs<ObjCObjectPointerType>(),
6105                                          BlockReturnType))
6106        return LHS;
6107      return QualType();
6108    }
6109    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6110                                RHS->getAs<ObjCObjectPointerType>()))
6111      return LHS;
6112
6113    return QualType();
6114  }
6115  }
6116
6117  llvm_unreachable("Invalid Type::Class!");
6118}
6119
6120bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6121                   const FunctionProtoType *FromFunctionType,
6122                   const FunctionProtoType *ToFunctionType) {
6123  if (FromFunctionType->hasAnyConsumedArgs() !=
6124      ToFunctionType->hasAnyConsumedArgs())
6125    return false;
6126  FunctionProtoType::ExtProtoInfo FromEPI =
6127    FromFunctionType->getExtProtoInfo();
6128  FunctionProtoType::ExtProtoInfo ToEPI =
6129    ToFunctionType->getExtProtoInfo();
6130  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6131    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6132         ArgIdx != NumArgs; ++ArgIdx)  {
6133      if (FromEPI.ConsumedArguments[ArgIdx] !=
6134          ToEPI.ConsumedArguments[ArgIdx])
6135        return false;
6136    }
6137  return true;
6138}
6139
6140/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6141/// 'RHS' attributes and returns the merged version; including for function
6142/// return types.
6143QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6144  QualType LHSCan = getCanonicalType(LHS),
6145  RHSCan = getCanonicalType(RHS);
6146  // If two types are identical, they are compatible.
6147  if (LHSCan == RHSCan)
6148    return LHS;
6149  if (RHSCan->isFunctionType()) {
6150    if (!LHSCan->isFunctionType())
6151      return QualType();
6152    QualType OldReturnType =
6153      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6154    QualType NewReturnType =
6155      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6156    QualType ResReturnType =
6157      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6158    if (ResReturnType.isNull())
6159      return QualType();
6160    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6161      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6162      // In either case, use OldReturnType to build the new function type.
6163      const FunctionType *F = LHS->getAs<FunctionType>();
6164      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6165        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6166        EPI.ExtInfo = getFunctionExtInfo(LHS);
6167        QualType ResultType
6168          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6169                            FPT->getNumArgs(), EPI);
6170        return ResultType;
6171      }
6172    }
6173    return QualType();
6174  }
6175
6176  // If the qualifiers are different, the types can still be merged.
6177  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6178  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6179  if (LQuals != RQuals) {
6180    // If any of these qualifiers are different, we have a type mismatch.
6181    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6182        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6183      return QualType();
6184
6185    // Exactly one GC qualifier difference is allowed: __strong is
6186    // okay if the other type has no GC qualifier but is an Objective
6187    // C object pointer (i.e. implicitly strong by default).  We fix
6188    // this by pretending that the unqualified type was actually
6189    // qualified __strong.
6190    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6191    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6192    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6193
6194    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6195      return QualType();
6196
6197    if (GC_L == Qualifiers::Strong)
6198      return LHS;
6199    if (GC_R == Qualifiers::Strong)
6200      return RHS;
6201    return QualType();
6202  }
6203
6204  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6205    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6206    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6207    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6208    if (ResQT == LHSBaseQT)
6209      return LHS;
6210    if (ResQT == RHSBaseQT)
6211      return RHS;
6212  }
6213  return QualType();
6214}
6215
6216//===----------------------------------------------------------------------===//
6217//                         Integer Predicates
6218//===----------------------------------------------------------------------===//
6219
6220unsigned ASTContext::getIntWidth(QualType T) const {
6221  if (const EnumType *ET = dyn_cast<EnumType>(T))
6222    T = ET->getDecl()->getIntegerType();
6223  if (T->isBooleanType())
6224    return 1;
6225  // For builtin types, just use the standard type sizing method
6226  return (unsigned)getTypeSize(T);
6227}
6228
6229QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6230  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6231
6232  // Turn <4 x signed int> -> <4 x unsigned int>
6233  if (const VectorType *VTy = T->getAs<VectorType>())
6234    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6235                         VTy->getNumElements(), VTy->getVectorKind());
6236
6237  // For enums, we return the unsigned version of the base type.
6238  if (const EnumType *ETy = T->getAs<EnumType>())
6239    T = ETy->getDecl()->getIntegerType();
6240
6241  const BuiltinType *BTy = T->getAs<BuiltinType>();
6242  assert(BTy && "Unexpected signed integer type");
6243  switch (BTy->getKind()) {
6244  case BuiltinType::Char_S:
6245  case BuiltinType::SChar:
6246    return UnsignedCharTy;
6247  case BuiltinType::Short:
6248    return UnsignedShortTy;
6249  case BuiltinType::Int:
6250    return UnsignedIntTy;
6251  case BuiltinType::Long:
6252    return UnsignedLongTy;
6253  case BuiltinType::LongLong:
6254    return UnsignedLongLongTy;
6255  case BuiltinType::Int128:
6256    return UnsignedInt128Ty;
6257  default:
6258    llvm_unreachable("Unexpected signed integer type");
6259  }
6260}
6261
6262ASTMutationListener::~ASTMutationListener() { }
6263
6264
6265//===----------------------------------------------------------------------===//
6266//                          Builtin Type Computation
6267//===----------------------------------------------------------------------===//
6268
6269/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6270/// pointer over the consumed characters.  This returns the resultant type.  If
6271/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6272/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6273/// a vector of "i*".
6274///
6275/// RequiresICE is filled in on return to indicate whether the value is required
6276/// to be an Integer Constant Expression.
6277static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6278                                  ASTContext::GetBuiltinTypeError &Error,
6279                                  bool &RequiresICE,
6280                                  bool AllowTypeModifiers) {
6281  // Modifiers.
6282  int HowLong = 0;
6283  bool Signed = false, Unsigned = false;
6284  RequiresICE = false;
6285
6286  // Read the prefixed modifiers first.
6287  bool Done = false;
6288  while (!Done) {
6289    switch (*Str++) {
6290    default: Done = true; --Str; break;
6291    case 'I':
6292      RequiresICE = true;
6293      break;
6294    case 'S':
6295      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6296      assert(!Signed && "Can't use 'S' modifier multiple times!");
6297      Signed = true;
6298      break;
6299    case 'U':
6300      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6301      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6302      Unsigned = true;
6303      break;
6304    case 'L':
6305      assert(HowLong <= 2 && "Can't have LLLL modifier");
6306      ++HowLong;
6307      break;
6308    }
6309  }
6310
6311  QualType Type;
6312
6313  // Read the base type.
6314  switch (*Str++) {
6315  default: llvm_unreachable("Unknown builtin type letter!");
6316  case 'v':
6317    assert(HowLong == 0 && !Signed && !Unsigned &&
6318           "Bad modifiers used with 'v'!");
6319    Type = Context.VoidTy;
6320    break;
6321  case 'f':
6322    assert(HowLong == 0 && !Signed && !Unsigned &&
6323           "Bad modifiers used with 'f'!");
6324    Type = Context.FloatTy;
6325    break;
6326  case 'd':
6327    assert(HowLong < 2 && !Signed && !Unsigned &&
6328           "Bad modifiers used with 'd'!");
6329    if (HowLong)
6330      Type = Context.LongDoubleTy;
6331    else
6332      Type = Context.DoubleTy;
6333    break;
6334  case 's':
6335    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6336    if (Unsigned)
6337      Type = Context.UnsignedShortTy;
6338    else
6339      Type = Context.ShortTy;
6340    break;
6341  case 'i':
6342    if (HowLong == 3)
6343      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6344    else if (HowLong == 2)
6345      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6346    else if (HowLong == 1)
6347      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6348    else
6349      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6350    break;
6351  case 'c':
6352    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6353    if (Signed)
6354      Type = Context.SignedCharTy;
6355    else if (Unsigned)
6356      Type = Context.UnsignedCharTy;
6357    else
6358      Type = Context.CharTy;
6359    break;
6360  case 'b': // boolean
6361    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6362    Type = Context.BoolTy;
6363    break;
6364  case 'z':  // size_t.
6365    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6366    Type = Context.getSizeType();
6367    break;
6368  case 'F':
6369    Type = Context.getCFConstantStringType();
6370    break;
6371  case 'G':
6372    Type = Context.getObjCIdType();
6373    break;
6374  case 'H':
6375    Type = Context.getObjCSelType();
6376    break;
6377  case 'a':
6378    Type = Context.getBuiltinVaListType();
6379    assert(!Type.isNull() && "builtin va list type not initialized!");
6380    break;
6381  case 'A':
6382    // This is a "reference" to a va_list; however, what exactly
6383    // this means depends on how va_list is defined. There are two
6384    // different kinds of va_list: ones passed by value, and ones
6385    // passed by reference.  An example of a by-value va_list is
6386    // x86, where va_list is a char*. An example of by-ref va_list
6387    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6388    // we want this argument to be a char*&; for x86-64, we want
6389    // it to be a __va_list_tag*.
6390    Type = Context.getBuiltinVaListType();
6391    assert(!Type.isNull() && "builtin va list type not initialized!");
6392    if (Type->isArrayType())
6393      Type = Context.getArrayDecayedType(Type);
6394    else
6395      Type = Context.getLValueReferenceType(Type);
6396    break;
6397  case 'V': {
6398    char *End;
6399    unsigned NumElements = strtoul(Str, &End, 10);
6400    assert(End != Str && "Missing vector size");
6401    Str = End;
6402
6403    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6404                                             RequiresICE, false);
6405    assert(!RequiresICE && "Can't require vector ICE");
6406
6407    // TODO: No way to make AltiVec vectors in builtins yet.
6408    Type = Context.getVectorType(ElementType, NumElements,
6409                                 VectorType::GenericVector);
6410    break;
6411  }
6412  case 'X': {
6413    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6414                                             false);
6415    assert(!RequiresICE && "Can't require complex ICE");
6416    Type = Context.getComplexType(ElementType);
6417    break;
6418  }
6419  case 'Y' : {
6420    Type = Context.getPointerDiffType();
6421    break;
6422  }
6423  case 'P':
6424    Type = Context.getFILEType();
6425    if (Type.isNull()) {
6426      Error = ASTContext::GE_Missing_stdio;
6427      return QualType();
6428    }
6429    break;
6430  case 'J':
6431    if (Signed)
6432      Type = Context.getsigjmp_bufType();
6433    else
6434      Type = Context.getjmp_bufType();
6435
6436    if (Type.isNull()) {
6437      Error = ASTContext::GE_Missing_setjmp;
6438      return QualType();
6439    }
6440    break;
6441  case 'K':
6442    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6443    Type = Context.getucontext_tType();
6444
6445    if (Type.isNull()) {
6446      Error = ASTContext::GE_Missing_ucontext;
6447      return QualType();
6448    }
6449    break;
6450  }
6451
6452  // If there are modifiers and if we're allowed to parse them, go for it.
6453  Done = !AllowTypeModifiers;
6454  while (!Done) {
6455    switch (char c = *Str++) {
6456    default: Done = true; --Str; break;
6457    case '*':
6458    case '&': {
6459      // Both pointers and references can have their pointee types
6460      // qualified with an address space.
6461      char *End;
6462      unsigned AddrSpace = strtoul(Str, &End, 10);
6463      if (End != Str && AddrSpace != 0) {
6464        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6465        Str = End;
6466      }
6467      if (c == '*')
6468        Type = Context.getPointerType(Type);
6469      else
6470        Type = Context.getLValueReferenceType(Type);
6471      break;
6472    }
6473    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6474    case 'C':
6475      Type = Type.withConst();
6476      break;
6477    case 'D':
6478      Type = Context.getVolatileType(Type);
6479      break;
6480    case 'R':
6481      Type = Type.withRestrict();
6482      break;
6483    }
6484  }
6485
6486  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6487         "Integer constant 'I' type must be an integer");
6488
6489  return Type;
6490}
6491
6492/// GetBuiltinType - Return the type for the specified builtin.
6493QualType ASTContext::GetBuiltinType(unsigned Id,
6494                                    GetBuiltinTypeError &Error,
6495                                    unsigned *IntegerConstantArgs) const {
6496  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6497
6498  SmallVector<QualType, 8> ArgTypes;
6499
6500  bool RequiresICE = false;
6501  Error = GE_None;
6502  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6503                                       RequiresICE, true);
6504  if (Error != GE_None)
6505    return QualType();
6506
6507  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6508
6509  while (TypeStr[0] && TypeStr[0] != '.') {
6510    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6511    if (Error != GE_None)
6512      return QualType();
6513
6514    // If this argument is required to be an IntegerConstantExpression and the
6515    // caller cares, fill in the bitmask we return.
6516    if (RequiresICE && IntegerConstantArgs)
6517      *IntegerConstantArgs |= 1 << ArgTypes.size();
6518
6519    // Do array -> pointer decay.  The builtin should use the decayed type.
6520    if (Ty->isArrayType())
6521      Ty = getArrayDecayedType(Ty);
6522
6523    ArgTypes.push_back(Ty);
6524  }
6525
6526  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6527         "'.' should only occur at end of builtin type list!");
6528
6529  FunctionType::ExtInfo EI;
6530  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6531
6532  bool Variadic = (TypeStr[0] == '.');
6533
6534  // We really shouldn't be making a no-proto type here, especially in C++.
6535  if (ArgTypes.empty() && Variadic)
6536    return getFunctionNoProtoType(ResType, EI);
6537
6538  FunctionProtoType::ExtProtoInfo EPI;
6539  EPI.ExtInfo = EI;
6540  EPI.Variadic = Variadic;
6541
6542  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6543}
6544
6545GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6546  GVALinkage External = GVA_StrongExternal;
6547
6548  Linkage L = FD->getLinkage();
6549  switch (L) {
6550  case NoLinkage:
6551  case InternalLinkage:
6552  case UniqueExternalLinkage:
6553    return GVA_Internal;
6554
6555  case ExternalLinkage:
6556    switch (FD->getTemplateSpecializationKind()) {
6557    case TSK_Undeclared:
6558    case TSK_ExplicitSpecialization:
6559      External = GVA_StrongExternal;
6560      break;
6561
6562    case TSK_ExplicitInstantiationDefinition:
6563      return GVA_ExplicitTemplateInstantiation;
6564
6565    case TSK_ExplicitInstantiationDeclaration:
6566    case TSK_ImplicitInstantiation:
6567      External = GVA_TemplateInstantiation;
6568      break;
6569    }
6570  }
6571
6572  if (!FD->isInlined())
6573    return External;
6574
6575  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6576    // GNU or C99 inline semantics. Determine whether this symbol should be
6577    // externally visible.
6578    if (FD->isInlineDefinitionExternallyVisible())
6579      return External;
6580
6581    // C99 inline semantics, where the symbol is not externally visible.
6582    return GVA_C99Inline;
6583  }
6584
6585  // C++0x [temp.explicit]p9:
6586  //   [ Note: The intent is that an inline function that is the subject of
6587  //   an explicit instantiation declaration will still be implicitly
6588  //   instantiated when used so that the body can be considered for
6589  //   inlining, but that no out-of-line copy of the inline function would be
6590  //   generated in the translation unit. -- end note ]
6591  if (FD->getTemplateSpecializationKind()
6592                                       == TSK_ExplicitInstantiationDeclaration)
6593    return GVA_C99Inline;
6594
6595  return GVA_CXXInline;
6596}
6597
6598GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6599  // If this is a static data member, compute the kind of template
6600  // specialization. Otherwise, this variable is not part of a
6601  // template.
6602  TemplateSpecializationKind TSK = TSK_Undeclared;
6603  if (VD->isStaticDataMember())
6604    TSK = VD->getTemplateSpecializationKind();
6605
6606  Linkage L = VD->getLinkage();
6607  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
6608      VD->getType()->getLinkage() == UniqueExternalLinkage)
6609    L = UniqueExternalLinkage;
6610
6611  switch (L) {
6612  case NoLinkage:
6613  case InternalLinkage:
6614  case UniqueExternalLinkage:
6615    return GVA_Internal;
6616
6617  case ExternalLinkage:
6618    switch (TSK) {
6619    case TSK_Undeclared:
6620    case TSK_ExplicitSpecialization:
6621      return GVA_StrongExternal;
6622
6623    case TSK_ExplicitInstantiationDeclaration:
6624      llvm_unreachable("Variable should not be instantiated");
6625      // Fall through to treat this like any other instantiation.
6626
6627    case TSK_ExplicitInstantiationDefinition:
6628      return GVA_ExplicitTemplateInstantiation;
6629
6630    case TSK_ImplicitInstantiation:
6631      return GVA_TemplateInstantiation;
6632    }
6633  }
6634
6635  llvm_unreachable("Invalid Linkage!");
6636}
6637
6638bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6639  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6640    if (!VD->isFileVarDecl())
6641      return false;
6642  } else if (!isa<FunctionDecl>(D))
6643    return false;
6644
6645  // Weak references don't produce any output by themselves.
6646  if (D->hasAttr<WeakRefAttr>())
6647    return false;
6648
6649  // Aliases and used decls are required.
6650  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6651    return true;
6652
6653  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6654    // Forward declarations aren't required.
6655    if (!FD->doesThisDeclarationHaveABody())
6656      return FD->doesDeclarationForceExternallyVisibleDefinition();
6657
6658    // Constructors and destructors are required.
6659    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6660      return true;
6661
6662    // The key function for a class is required.
6663    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6664      const CXXRecordDecl *RD = MD->getParent();
6665      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6666        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6667        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6668          return true;
6669      }
6670    }
6671
6672    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6673
6674    // static, static inline, always_inline, and extern inline functions can
6675    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6676    // Implicit template instantiations can also be deferred in C++.
6677    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6678        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6679      return false;
6680    return true;
6681  }
6682
6683  const VarDecl *VD = cast<VarDecl>(D);
6684  assert(VD->isFileVarDecl() && "Expected file scoped var");
6685
6686  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6687    return false;
6688
6689  // Structs that have non-trivial constructors or destructors are required.
6690
6691  // FIXME: Handle references.
6692  // FIXME: Be more selective about which constructors we care about.
6693  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6694    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6695      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6696                                   RD->hasTrivialCopyConstructor() &&
6697                                   RD->hasTrivialMoveConstructor() &&
6698                                   RD->hasTrivialDestructor()))
6699        return true;
6700    }
6701  }
6702
6703  GVALinkage L = GetGVALinkageForVariable(VD);
6704  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6705    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6706      return false;
6707  }
6708
6709  return true;
6710}
6711
6712CallingConv ASTContext::getDefaultMethodCallConv() {
6713  // Pass through to the C++ ABI object
6714  return ABI->getDefaultMethodCallConv();
6715}
6716
6717bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6718  // Pass through to the C++ ABI object
6719  return ABI->isNearlyEmpty(RD);
6720}
6721
6722MangleContext *ASTContext::createMangleContext() {
6723  switch (Target->getCXXABI()) {
6724  case CXXABI_ARM:
6725  case CXXABI_Itanium:
6726    return createItaniumMangleContext(*this, getDiagnostics());
6727  case CXXABI_Microsoft:
6728    return createMicrosoftMangleContext(*this, getDiagnostics());
6729  }
6730  llvm_unreachable("Unsupported ABI");
6731}
6732
6733CXXABI::~CXXABI() {}
6734
6735size_t ASTContext::getSideTableAllocatedMemory() const {
6736  return ASTRecordLayouts.getMemorySize()
6737    + llvm::capacity_in_bytes(ObjCLayouts)
6738    + llvm::capacity_in_bytes(KeyFunctions)
6739    + llvm::capacity_in_bytes(ObjCImpls)
6740    + llvm::capacity_in_bytes(BlockVarCopyInits)
6741    + llvm::capacity_in_bytes(DeclAttrs)
6742    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
6743    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
6744    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
6745    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
6746    + llvm::capacity_in_bytes(OverriddenMethods)
6747    + llvm::capacity_in_bytes(Types)
6748    + llvm::capacity_in_bytes(VariableArrayTypes)
6749    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
6750}
6751
6752unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
6753  CXXRecordDecl *Lambda = CallOperator->getParent();
6754  return LambdaMangleContexts[Lambda->getDeclContext()]
6755           .getManglingNumber(CallOperator);
6756}
6757
6758
6759void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
6760  ParamIndices[D] = index;
6761}
6762
6763unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
6764  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
6765  assert(I != ParamIndices.end() &&
6766         "ParmIndices lacks entry set by ParmVarDecl");
6767  return I->second;
6768}
6769