ASTContext.cpp revision 5bfe232d1f07a6fd160fcf82c277c055a412a1c0
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Support/raw_ostream.h"
32#include "CXXABI.h"
33
34using namespace clang;
35
36unsigned ASTContext::NumImplicitDefaultConstructors;
37unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
38unsigned ASTContext::NumImplicitCopyConstructors;
39unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
40unsigned ASTContext::NumImplicitCopyAssignmentOperators;
41unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
42unsigned ASTContext::NumImplicitDestructors;
43unsigned ASTContext::NumImplicitDestructorsDeclared;
44
45enum FloatingRank {
46  FloatRank, DoubleRank, LongDoubleRank
47};
48
49void
50ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
51                                               TemplateTemplateParmDecl *Parm) {
52  ID.AddInteger(Parm->getDepth());
53  ID.AddInteger(Parm->getPosition());
54  // FIXME: Parameter pack
55
56  TemplateParameterList *Params = Parm->getTemplateParameters();
57  ID.AddInteger(Params->size());
58  for (TemplateParameterList::const_iterator P = Params->begin(),
59                                          PEnd = Params->end();
60       P != PEnd; ++P) {
61    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
62      ID.AddInteger(0);
63      ID.AddBoolean(TTP->isParameterPack());
64      continue;
65    }
66
67    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
68      ID.AddInteger(1);
69      // FIXME: Parameter pack
70      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
71      continue;
72    }
73
74    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
75    ID.AddInteger(2);
76    Profile(ID, TTP);
77  }
78}
79
80TemplateTemplateParmDecl *
81ASTContext::getCanonicalTemplateTemplateParmDecl(
82                                                 TemplateTemplateParmDecl *TTP) {
83  // Check if we already have a canonical template template parameter.
84  llvm::FoldingSetNodeID ID;
85  CanonicalTemplateTemplateParm::Profile(ID, TTP);
86  void *InsertPos = 0;
87  CanonicalTemplateTemplateParm *Canonical
88    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
89  if (Canonical)
90    return Canonical->getParam();
91
92  // Build a canonical template parameter list.
93  TemplateParameterList *Params = TTP->getTemplateParameters();
94  llvm::SmallVector<NamedDecl *, 4> CanonParams;
95  CanonParams.reserve(Params->size());
96  for (TemplateParameterList::const_iterator P = Params->begin(),
97                                          PEnd = Params->end();
98       P != PEnd; ++P) {
99    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
100      CanonParams.push_back(
101                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
102                                               SourceLocation(), TTP->getDepth(),
103                                               TTP->getIndex(), 0, false,
104                                               TTP->isParameterPack()));
105    else if (NonTypeTemplateParmDecl *NTTP
106             = dyn_cast<NonTypeTemplateParmDecl>(*P))
107      CanonParams.push_back(
108            NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
109                                            SourceLocation(), NTTP->getDepth(),
110                                            NTTP->getPosition(), 0,
111                                            getCanonicalType(NTTP->getType()),
112                                            0));
113    else
114      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
115                                           cast<TemplateTemplateParmDecl>(*P)));
116  }
117
118  TemplateTemplateParmDecl *CanonTTP
119    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
120                                       SourceLocation(), TTP->getDepth(),
121                                       TTP->getPosition(), 0,
122                         TemplateParameterList::Create(*this, SourceLocation(),
123                                                       SourceLocation(),
124                                                       CanonParams.data(),
125                                                       CanonParams.size(),
126                                                       SourceLocation()));
127
128  // Get the new insert position for the node we care about.
129  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
130  assert(Canonical == 0 && "Shouldn't be in the map!");
131  (void)Canonical;
132
133  // Create the canonical template template parameter entry.
134  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
135  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
136  return CanonTTP;
137}
138
139CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
140  if (!LangOpts.CPlusPlus) return 0;
141
142  switch (T.getCXXABI()) {
143  case CXXABI_ARM:
144    return CreateARMCXXABI(*this);
145  case CXXABI_Itanium:
146    return CreateItaniumCXXABI(*this);
147  case CXXABI_Microsoft:
148    return CreateMicrosoftCXXABI(*this);
149  }
150  return 0;
151}
152
153ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
154                       const TargetInfo &t,
155                       IdentifierTable &idents, SelectorTable &sels,
156                       Builtin::Context &builtins,
157                       unsigned size_reserve) :
158  TemplateSpecializationTypes(this_()),
159  DependentTemplateSpecializationTypes(this_()),
160  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
161  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
162  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
163  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
164  NullTypeSourceInfo(QualType()),
165  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)), Target(t),
166  Idents(idents), Selectors(sels),
167  BuiltinInfo(builtins),
168  DeclarationNames(*this),
169  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
170  LastSDM(0, 0),
171  UniqueBlockByRefTypeID(0), UniqueBlockParmTypeID(0) {
172  ObjCIdRedefinitionType = QualType();
173  ObjCClassRedefinitionType = QualType();
174  ObjCSelRedefinitionType = QualType();
175  if (size_reserve > 0) Types.reserve(size_reserve);
176  TUDecl = TranslationUnitDecl::Create(*this);
177  InitBuiltinTypes();
178}
179
180ASTContext::~ASTContext() {
181  // Release the DenseMaps associated with DeclContext objects.
182  // FIXME: Is this the ideal solution?
183  ReleaseDeclContextMaps();
184
185  // Call all of the deallocation functions.
186  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
187    Deallocations[I].first(Deallocations[I].second);
188
189  // Release all of the memory associated with overridden C++ methods.
190  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
191         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
192       OM != OMEnd; ++OM)
193    OM->second.Destroy();
194
195  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
196  // because they can contain DenseMaps.
197  for (llvm::DenseMap<const ObjCContainerDecl*,
198       const ASTRecordLayout*>::iterator
199       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
200    // Increment in loop to prevent using deallocated memory.
201    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
202      R->Destroy(*this);
203
204  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
205       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
206    // Increment in loop to prevent using deallocated memory.
207    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
208      R->Destroy(*this);
209  }
210
211  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
212                                                    AEnd = DeclAttrs.end();
213       A != AEnd; ++A)
214    A->second->~AttrVec();
215}
216
217void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
218  Deallocations.push_back(std::make_pair(Callback, Data));
219}
220
221void
222ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
223  ExternalSource.reset(Source.take());
224}
225
226void ASTContext::PrintStats() const {
227  fprintf(stderr, "*** AST Context Stats:\n");
228  fprintf(stderr, "  %d types total.\n", (int)Types.size());
229
230  unsigned counts[] = {
231#define TYPE(Name, Parent) 0,
232#define ABSTRACT_TYPE(Name, Parent)
233#include "clang/AST/TypeNodes.def"
234    0 // Extra
235  };
236
237  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
238    Type *T = Types[i];
239    counts[(unsigned)T->getTypeClass()]++;
240  }
241
242  unsigned Idx = 0;
243  unsigned TotalBytes = 0;
244#define TYPE(Name, Parent)                                              \
245  if (counts[Idx])                                                      \
246    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
247  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
248  ++Idx;
249#define ABSTRACT_TYPE(Name, Parent)
250#include "clang/AST/TypeNodes.def"
251
252  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
253
254  // Implicit special member functions.
255  fprintf(stderr, "  %u/%u implicit default constructors created\n",
256          NumImplicitDefaultConstructorsDeclared,
257          NumImplicitDefaultConstructors);
258  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
259          NumImplicitCopyConstructorsDeclared,
260          NumImplicitCopyConstructors);
261  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
262          NumImplicitCopyAssignmentOperatorsDeclared,
263          NumImplicitCopyAssignmentOperators);
264  fprintf(stderr, "  %u/%u implicit destructors created\n",
265          NumImplicitDestructorsDeclared, NumImplicitDestructors);
266
267  if (ExternalSource.get()) {
268    fprintf(stderr, "\n");
269    ExternalSource->PrintStats();
270  }
271
272  BumpAlloc.PrintStats();
273}
274
275
276void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
277  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
278  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
279  Types.push_back(Ty);
280}
281
282void ASTContext::InitBuiltinTypes() {
283  assert(VoidTy.isNull() && "Context reinitialized?");
284
285  // C99 6.2.5p19.
286  InitBuiltinType(VoidTy,              BuiltinType::Void);
287
288  // C99 6.2.5p2.
289  InitBuiltinType(BoolTy,              BuiltinType::Bool);
290  // C99 6.2.5p3.
291  if (LangOpts.CharIsSigned)
292    InitBuiltinType(CharTy,            BuiltinType::Char_S);
293  else
294    InitBuiltinType(CharTy,            BuiltinType::Char_U);
295  // C99 6.2.5p4.
296  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
297  InitBuiltinType(ShortTy,             BuiltinType::Short);
298  InitBuiltinType(IntTy,               BuiltinType::Int);
299  InitBuiltinType(LongTy,              BuiltinType::Long);
300  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
301
302  // C99 6.2.5p6.
303  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
304  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
305  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
306  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
307  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
308
309  // C99 6.2.5p10.
310  InitBuiltinType(FloatTy,             BuiltinType::Float);
311  InitBuiltinType(DoubleTy,            BuiltinType::Double);
312  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
313
314  // GNU extension, 128-bit integers.
315  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
316  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
317
318  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
319    InitBuiltinType(WCharTy,           BuiltinType::WChar);
320  else // C99
321    WCharTy = getFromTargetType(Target.getWCharType());
322
323  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
324    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
325  else // C99
326    Char16Ty = getFromTargetType(Target.getChar16Type());
327
328  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
329    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
330  else // C99
331    Char32Ty = getFromTargetType(Target.getChar32Type());
332
333  // Placeholder type for type-dependent expressions whose type is
334  // completely unknown. No code should ever check a type against
335  // DependentTy and users should never see it; however, it is here to
336  // help diagnose failures to properly check for type-dependent
337  // expressions.
338  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
339
340  // Placeholder type for functions.
341  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
342
343  // Placeholder type for C++0x auto declarations whose real type has
344  // not yet been deduced.
345  InitBuiltinType(UndeducedAutoTy,     BuiltinType::UndeducedAuto);
346
347  // C99 6.2.5p11.
348  FloatComplexTy      = getComplexType(FloatTy);
349  DoubleComplexTy     = getComplexType(DoubleTy);
350  LongDoubleComplexTy = getComplexType(LongDoubleTy);
351
352  BuiltinVaListType = QualType();
353
354  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
355  ObjCIdTypedefType = QualType();
356  ObjCClassTypedefType = QualType();
357  ObjCSelTypedefType = QualType();
358
359  // Builtin types for 'id', 'Class', and 'SEL'.
360  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
361  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
362  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
363
364  ObjCConstantStringType = QualType();
365
366  // void * type
367  VoidPtrTy = getPointerType(VoidTy);
368
369  // nullptr type (C++0x 2.14.7)
370  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
371}
372
373Diagnostic &ASTContext::getDiagnostics() const {
374  return SourceMgr.getDiagnostics();
375}
376
377AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
378  AttrVec *&Result = DeclAttrs[D];
379  if (!Result) {
380    void *Mem = Allocate(sizeof(AttrVec));
381    Result = new (Mem) AttrVec;
382  }
383
384  return *Result;
385}
386
387/// \brief Erase the attributes corresponding to the given declaration.
388void ASTContext::eraseDeclAttrs(const Decl *D) {
389  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
390  if (Pos != DeclAttrs.end()) {
391    Pos->second->~AttrVec();
392    DeclAttrs.erase(Pos);
393  }
394}
395
396
397MemberSpecializationInfo *
398ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
399  assert(Var->isStaticDataMember() && "Not a static data member");
400  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
401    = InstantiatedFromStaticDataMember.find(Var);
402  if (Pos == InstantiatedFromStaticDataMember.end())
403    return 0;
404
405  return Pos->second;
406}
407
408void
409ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
410                                                TemplateSpecializationKind TSK,
411                                          SourceLocation PointOfInstantiation) {
412  assert(Inst->isStaticDataMember() && "Not a static data member");
413  assert(Tmpl->isStaticDataMember() && "Not a static data member");
414  assert(!InstantiatedFromStaticDataMember[Inst] &&
415         "Already noted what static data member was instantiated from");
416  InstantiatedFromStaticDataMember[Inst]
417    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
418}
419
420NamedDecl *
421ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
422  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
423    = InstantiatedFromUsingDecl.find(UUD);
424  if (Pos == InstantiatedFromUsingDecl.end())
425    return 0;
426
427  return Pos->second;
428}
429
430void
431ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
432  assert((isa<UsingDecl>(Pattern) ||
433          isa<UnresolvedUsingValueDecl>(Pattern) ||
434          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
435         "pattern decl is not a using decl");
436  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
437  InstantiatedFromUsingDecl[Inst] = Pattern;
438}
439
440UsingShadowDecl *
441ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
442  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
443    = InstantiatedFromUsingShadowDecl.find(Inst);
444  if (Pos == InstantiatedFromUsingShadowDecl.end())
445    return 0;
446
447  return Pos->second;
448}
449
450void
451ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
452                                               UsingShadowDecl *Pattern) {
453  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
454  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
455}
456
457FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
458  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
459    = InstantiatedFromUnnamedFieldDecl.find(Field);
460  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
461    return 0;
462
463  return Pos->second;
464}
465
466void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
467                                                     FieldDecl *Tmpl) {
468  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
469  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
470  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
471         "Already noted what unnamed field was instantiated from");
472
473  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
474}
475
476ASTContext::overridden_cxx_method_iterator
477ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
478  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
479    = OverriddenMethods.find(Method);
480  if (Pos == OverriddenMethods.end())
481    return 0;
482
483  return Pos->second.begin();
484}
485
486ASTContext::overridden_cxx_method_iterator
487ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
488  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
489    = OverriddenMethods.find(Method);
490  if (Pos == OverriddenMethods.end())
491    return 0;
492
493  return Pos->second.end();
494}
495
496unsigned
497ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
498  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
499    = OverriddenMethods.find(Method);
500  if (Pos == OverriddenMethods.end())
501    return 0;
502
503  return Pos->second.size();
504}
505
506void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
507                                     const CXXMethodDecl *Overridden) {
508  OverriddenMethods[Method].push_back(Overridden);
509}
510
511//===----------------------------------------------------------------------===//
512//                         Type Sizing and Analysis
513//===----------------------------------------------------------------------===//
514
515/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
516/// scalar floating point type.
517const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
518  const BuiltinType *BT = T->getAs<BuiltinType>();
519  assert(BT && "Not a floating point type!");
520  switch (BT->getKind()) {
521  default: assert(0 && "Not a floating point type!");
522  case BuiltinType::Float:      return Target.getFloatFormat();
523  case BuiltinType::Double:     return Target.getDoubleFormat();
524  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
525  }
526}
527
528/// getDeclAlign - Return a conservative estimate of the alignment of the
529/// specified decl.  Note that bitfields do not have a valid alignment, so
530/// this method will assert on them.
531/// If @p RefAsPointee, references are treated like their underlying type
532/// (for alignof), else they're treated like pointers (for CodeGen).
533CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
534  unsigned Align = Target.getCharWidth();
535
536  bool UseAlignAttrOnly = false;
537  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
538    Align = AlignFromAttr;
539
540    // __attribute__((aligned)) can increase or decrease alignment
541    // *except* on a struct or struct member, where it only increases
542    // alignment unless 'packed' is also specified.
543    //
544    // It is an error for [[align]] to decrease alignment, so we can
545    // ignore that possibility;  Sema should diagnose it.
546    if (isa<FieldDecl>(D)) {
547      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
548        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
549    } else {
550      UseAlignAttrOnly = true;
551    }
552  }
553
554  if (UseAlignAttrOnly) {
555    // ignore type of value
556  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
557    QualType T = VD->getType();
558    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
559      if (RefAsPointee)
560        T = RT->getPointeeType();
561      else
562        T = getPointerType(RT->getPointeeType());
563    }
564    if (!T->isIncompleteType() && !T->isFunctionType()) {
565      unsigned MinWidth = Target.getLargeArrayMinWidth();
566      unsigned ArrayAlign = Target.getLargeArrayAlign();
567      if (isa<VariableArrayType>(T) && MinWidth != 0)
568        Align = std::max(Align, ArrayAlign);
569      if (ConstantArrayType *CT = dyn_cast<ConstantArrayType>(T)) {
570        unsigned Size = getTypeSize(CT);
571        if (MinWidth != 0 && MinWidth <= Size)
572          Align = std::max(Align, ArrayAlign);
573      }
574      // Incomplete or function types default to 1.
575      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
576        T = cast<ArrayType>(T)->getElementType();
577
578      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
579    }
580    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
581      // In the case of a field in a packed struct, we want the minimum
582      // of the alignment of the field and the alignment of the struct.
583      Align = std::min(Align,
584        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
585    }
586  }
587
588  return CharUnits::fromQuantity(Align / Target.getCharWidth());
589}
590
591std::pair<CharUnits, CharUnits>
592ASTContext::getTypeInfoInChars(const Type *T) {
593  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
594  return std::make_pair(CharUnits::fromQuantity(Info.first / getCharWidth()),
595                        CharUnits::fromQuantity(Info.second / getCharWidth()));
596}
597
598std::pair<CharUnits, CharUnits>
599ASTContext::getTypeInfoInChars(QualType T) {
600  return getTypeInfoInChars(T.getTypePtr());
601}
602
603/// getTypeSize - Return the size of the specified type, in bits.  This method
604/// does not work on incomplete types.
605///
606/// FIXME: Pointers into different addr spaces could have different sizes and
607/// alignment requirements: getPointerInfo should take an AddrSpace, this
608/// should take a QualType, &c.
609std::pair<uint64_t, unsigned>
610ASTContext::getTypeInfo(const Type *T) {
611  uint64_t Width=0;
612  unsigned Align=8;
613  switch (T->getTypeClass()) {
614#define TYPE(Class, Base)
615#define ABSTRACT_TYPE(Class, Base)
616#define NON_CANONICAL_TYPE(Class, Base)
617#define DEPENDENT_TYPE(Class, Base) case Type::Class:
618#include "clang/AST/TypeNodes.def"
619    assert(false && "Should not see dependent types");
620    break;
621
622  case Type::FunctionNoProto:
623  case Type::FunctionProto:
624    // GCC extension: alignof(function) = 32 bits
625    Width = 0;
626    Align = 32;
627    break;
628
629  case Type::IncompleteArray:
630  case Type::VariableArray:
631    Width = 0;
632    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
633    break;
634
635  case Type::ConstantArray: {
636    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
637
638    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
639    Width = EltInfo.first*CAT->getSize().getZExtValue();
640    Align = EltInfo.second;
641    break;
642  }
643  case Type::ExtVector:
644  case Type::Vector: {
645    const VectorType *VT = cast<VectorType>(T);
646    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
647    Width = EltInfo.first*VT->getNumElements();
648    Align = Width;
649    // If the alignment is not a power of 2, round up to the next power of 2.
650    // This happens for non-power-of-2 length vectors.
651    if (Align & (Align-1)) {
652      Align = llvm::NextPowerOf2(Align);
653      Width = llvm::RoundUpToAlignment(Width, Align);
654    }
655    break;
656  }
657
658  case Type::Builtin:
659    switch (cast<BuiltinType>(T)->getKind()) {
660    default: assert(0 && "Unknown builtin type!");
661    case BuiltinType::Void:
662      // GCC extension: alignof(void) = 8 bits.
663      Width = 0;
664      Align = 8;
665      break;
666
667    case BuiltinType::Bool:
668      Width = Target.getBoolWidth();
669      Align = Target.getBoolAlign();
670      break;
671    case BuiltinType::Char_S:
672    case BuiltinType::Char_U:
673    case BuiltinType::UChar:
674    case BuiltinType::SChar:
675      Width = Target.getCharWidth();
676      Align = Target.getCharAlign();
677      break;
678    case BuiltinType::WChar:
679      Width = Target.getWCharWidth();
680      Align = Target.getWCharAlign();
681      break;
682    case BuiltinType::Char16:
683      Width = Target.getChar16Width();
684      Align = Target.getChar16Align();
685      break;
686    case BuiltinType::Char32:
687      Width = Target.getChar32Width();
688      Align = Target.getChar32Align();
689      break;
690    case BuiltinType::UShort:
691    case BuiltinType::Short:
692      Width = Target.getShortWidth();
693      Align = Target.getShortAlign();
694      break;
695    case BuiltinType::UInt:
696    case BuiltinType::Int:
697      Width = Target.getIntWidth();
698      Align = Target.getIntAlign();
699      break;
700    case BuiltinType::ULong:
701    case BuiltinType::Long:
702      Width = Target.getLongWidth();
703      Align = Target.getLongAlign();
704      break;
705    case BuiltinType::ULongLong:
706    case BuiltinType::LongLong:
707      Width = Target.getLongLongWidth();
708      Align = Target.getLongLongAlign();
709      break;
710    case BuiltinType::Int128:
711    case BuiltinType::UInt128:
712      Width = 128;
713      Align = 128; // int128_t is 128-bit aligned on all targets.
714      break;
715    case BuiltinType::Float:
716      Width = Target.getFloatWidth();
717      Align = Target.getFloatAlign();
718      break;
719    case BuiltinType::Double:
720      Width = Target.getDoubleWidth();
721      Align = Target.getDoubleAlign();
722      break;
723    case BuiltinType::LongDouble:
724      Width = Target.getLongDoubleWidth();
725      Align = Target.getLongDoubleAlign();
726      break;
727    case BuiltinType::NullPtr:
728      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
729      Align = Target.getPointerAlign(0); //   == sizeof(void*)
730      break;
731    case BuiltinType::ObjCId:
732    case BuiltinType::ObjCClass:
733    case BuiltinType::ObjCSel:
734      Width = Target.getPointerWidth(0);
735      Align = Target.getPointerAlign(0);
736      break;
737    }
738    break;
739  case Type::ObjCObjectPointer:
740    Width = Target.getPointerWidth(0);
741    Align = Target.getPointerAlign(0);
742    break;
743  case Type::BlockPointer: {
744    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
745    Width = Target.getPointerWidth(AS);
746    Align = Target.getPointerAlign(AS);
747    break;
748  }
749  case Type::LValueReference:
750  case Type::RValueReference: {
751    // alignof and sizeof should never enter this code path here, so we go
752    // the pointer route.
753    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
754    Width = Target.getPointerWidth(AS);
755    Align = Target.getPointerAlign(AS);
756    break;
757  }
758  case Type::Pointer: {
759    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
760    Width = Target.getPointerWidth(AS);
761    Align = Target.getPointerAlign(AS);
762    break;
763  }
764  case Type::MemberPointer: {
765    const MemberPointerType *MPT = cast<MemberPointerType>(T);
766    std::pair<uint64_t, unsigned> PtrDiffInfo =
767      getTypeInfo(getPointerDiffType());
768    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
769    Align = PtrDiffInfo.second;
770    break;
771  }
772  case Type::Complex: {
773    // Complex types have the same alignment as their elements, but twice the
774    // size.
775    std::pair<uint64_t, unsigned> EltInfo =
776      getTypeInfo(cast<ComplexType>(T)->getElementType());
777    Width = EltInfo.first*2;
778    Align = EltInfo.second;
779    break;
780  }
781  case Type::ObjCObject:
782    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
783  case Type::ObjCInterface: {
784    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
785    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
786    Width = Layout.getSize();
787    Align = Layout.getAlignment();
788    break;
789  }
790  case Type::Record:
791  case Type::Enum: {
792    const TagType *TT = cast<TagType>(T);
793
794    if (TT->getDecl()->isInvalidDecl()) {
795      Width = 1;
796      Align = 1;
797      break;
798    }
799
800    if (const EnumType *ET = dyn_cast<EnumType>(TT))
801      return getTypeInfo(ET->getDecl()->getIntegerType());
802
803    const RecordType *RT = cast<RecordType>(TT);
804    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
805    Width = Layout.getSize();
806    Align = Layout.getAlignment();
807    break;
808  }
809
810  case Type::SubstTemplateTypeParm:
811    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
812                       getReplacementType().getTypePtr());
813
814  case Type::Paren:
815    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
816
817  case Type::Typedef: {
818    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
819    std::pair<uint64_t, unsigned> Info
820      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
821    Align = std::max(Typedef->getMaxAlignment(), Info.second);
822    Width = Info.first;
823    break;
824  }
825
826  case Type::TypeOfExpr:
827    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
828                         .getTypePtr());
829
830  case Type::TypeOf:
831    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
832
833  case Type::Decltype:
834    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
835                        .getTypePtr());
836
837  case Type::Elaborated:
838    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
839
840  case Type::TemplateSpecialization:
841    assert(getCanonicalType(T) != T &&
842           "Cannot request the size of a dependent type");
843    // FIXME: this is likely to be wrong once we support template
844    // aliases, since a template alias could refer to a typedef that
845    // has an __aligned__ attribute on it.
846    return getTypeInfo(getCanonicalType(T));
847  }
848
849  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
850  return std::make_pair(Width, Align);
851}
852
853/// getTypeSizeInChars - Return the size of the specified type, in characters.
854/// This method does not work on incomplete types.
855CharUnits ASTContext::getTypeSizeInChars(QualType T) {
856  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
857}
858CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
859  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
860}
861
862/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
863/// characters. This method does not work on incomplete types.
864CharUnits ASTContext::getTypeAlignInChars(QualType T) {
865  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
866}
867CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
868  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
869}
870
871/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
872/// type for the current target in bits.  This can be different than the ABI
873/// alignment in cases where it is beneficial for performance to overalign
874/// a data type.
875unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
876  unsigned ABIAlign = getTypeAlign(T);
877
878  // Double and long long should be naturally aligned if possible.
879  if (const ComplexType* CT = T->getAs<ComplexType>())
880    T = CT->getElementType().getTypePtr();
881  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
882      T->isSpecificBuiltinType(BuiltinType::LongLong))
883    return std::max(ABIAlign, (unsigned)getTypeSize(T));
884
885  return ABIAlign;
886}
887
888/// ShallowCollectObjCIvars -
889/// Collect all ivars, including those synthesized, in the current class.
890///
891void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
892                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
893  // FIXME. This need be removed but there are two many places which
894  // assume const-ness of ObjCInterfaceDecl
895  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
896  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
897        Iv= Iv->getNextIvar())
898    Ivars.push_back(Iv);
899}
900
901/// DeepCollectObjCIvars -
902/// This routine first collects all declared, but not synthesized, ivars in
903/// super class and then collects all ivars, including those synthesized for
904/// current class. This routine is used for implementation of current class
905/// when all ivars, declared and synthesized are known.
906///
907void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
908                                      bool leafClass,
909                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
910  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
911    DeepCollectObjCIvars(SuperClass, false, Ivars);
912  if (!leafClass) {
913    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
914         E = OI->ivar_end(); I != E; ++I)
915      Ivars.push_back(*I);
916  }
917  else
918    ShallowCollectObjCIvars(OI, Ivars);
919}
920
921/// CollectInheritedProtocols - Collect all protocols in current class and
922/// those inherited by it.
923void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
924                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
925  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
926    // We can use protocol_iterator here instead of
927    // all_referenced_protocol_iterator since we are walking all categories.
928    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
929         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
930      ObjCProtocolDecl *Proto = (*P);
931      Protocols.insert(Proto);
932      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
933           PE = Proto->protocol_end(); P != PE; ++P) {
934        Protocols.insert(*P);
935        CollectInheritedProtocols(*P, Protocols);
936      }
937    }
938
939    // Categories of this Interface.
940    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
941         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
942      CollectInheritedProtocols(CDeclChain, Protocols);
943    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
944      while (SD) {
945        CollectInheritedProtocols(SD, Protocols);
946        SD = SD->getSuperClass();
947      }
948  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
949    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
950         PE = OC->protocol_end(); P != PE; ++P) {
951      ObjCProtocolDecl *Proto = (*P);
952      Protocols.insert(Proto);
953      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
954           PE = Proto->protocol_end(); P != PE; ++P)
955        CollectInheritedProtocols(*P, Protocols);
956    }
957  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
958    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
959         PE = OP->protocol_end(); P != PE; ++P) {
960      ObjCProtocolDecl *Proto = (*P);
961      Protocols.insert(Proto);
962      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
963           PE = Proto->protocol_end(); P != PE; ++P)
964        CollectInheritedProtocols(*P, Protocols);
965    }
966  }
967}
968
969unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
970  unsigned count = 0;
971  // Count ivars declared in class extension.
972  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
973       CDecl = CDecl->getNextClassExtension())
974    count += CDecl->ivar_size();
975
976  // Count ivar defined in this class's implementation.  This
977  // includes synthesized ivars.
978  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
979    count += ImplDecl->ivar_size();
980
981  return count;
982}
983
984/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
985ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
986  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
987    I = ObjCImpls.find(D);
988  if (I != ObjCImpls.end())
989    return cast<ObjCImplementationDecl>(I->second);
990  return 0;
991}
992/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
993ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
994  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
995    I = ObjCImpls.find(D);
996  if (I != ObjCImpls.end())
997    return cast<ObjCCategoryImplDecl>(I->second);
998  return 0;
999}
1000
1001/// \brief Set the implementation of ObjCInterfaceDecl.
1002void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1003                           ObjCImplementationDecl *ImplD) {
1004  assert(IFaceD && ImplD && "Passed null params");
1005  ObjCImpls[IFaceD] = ImplD;
1006}
1007/// \brief Set the implementation of ObjCCategoryDecl.
1008void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1009                           ObjCCategoryImplDecl *ImplD) {
1010  assert(CatD && ImplD && "Passed null params");
1011  ObjCImpls[CatD] = ImplD;
1012}
1013
1014/// \brief Get the copy initialization expression of VarDecl,or NULL if
1015/// none exists.
1016Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1017  assert(VD && "Passed null params");
1018  assert(VD->hasAttr<BlocksAttr>() &&
1019         "getBlockVarCopyInits - not __block var");
1020  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1021    I = BlockVarCopyInits.find(VD);
1022  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1023}
1024
1025/// \brief Set the copy inialization expression of a block var decl.
1026void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1027  assert(VD && Init && "Passed null params");
1028  assert(VD->hasAttr<BlocksAttr>() &&
1029         "setBlockVarCopyInits - not __block var");
1030  BlockVarCopyInits[VD] = Init;
1031}
1032
1033/// \brief Allocate an uninitialized TypeSourceInfo.
1034///
1035/// The caller should initialize the memory held by TypeSourceInfo using
1036/// the TypeLoc wrappers.
1037///
1038/// \param T the type that will be the basis for type source info. This type
1039/// should refer to how the declarator was written in source code, not to
1040/// what type semantic analysis resolved the declarator to.
1041TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1042                                                 unsigned DataSize) {
1043  if (!DataSize)
1044    DataSize = TypeLoc::getFullDataSizeForType(T);
1045  else
1046    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1047           "incorrect data size provided to CreateTypeSourceInfo!");
1048
1049  TypeSourceInfo *TInfo =
1050    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1051  new (TInfo) TypeSourceInfo(T);
1052  return TInfo;
1053}
1054
1055TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1056                                                     SourceLocation L) {
1057  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1058  DI->getTypeLoc().initialize(L);
1059  return DI;
1060}
1061
1062const ASTRecordLayout &
1063ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1064  return getObjCLayout(D, 0);
1065}
1066
1067const ASTRecordLayout &
1068ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1069  return getObjCLayout(D->getClassInterface(), D);
1070}
1071
1072//===----------------------------------------------------------------------===//
1073//                   Type creation/memoization methods
1074//===----------------------------------------------------------------------===//
1075
1076QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1077  unsigned Fast = Quals.getFastQualifiers();
1078  Quals.removeFastQualifiers();
1079
1080  // Check if we've already instantiated this type.
1081  llvm::FoldingSetNodeID ID;
1082  ExtQuals::Profile(ID, TypeNode, Quals);
1083  void *InsertPos = 0;
1084  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1085    assert(EQ->getQualifiers() == Quals);
1086    QualType T = QualType(EQ, Fast);
1087    return T;
1088  }
1089
1090  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(TypeNode, Quals);
1091  ExtQualNodes.InsertNode(New, InsertPos);
1092  QualType T = QualType(New, Fast);
1093  return T;
1094}
1095
1096QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1097  QualType CanT = getCanonicalType(T);
1098  if (CanT.getAddressSpace() == AddressSpace)
1099    return T;
1100
1101  // If we are composing extended qualifiers together, merge together
1102  // into one ExtQuals node.
1103  QualifierCollector Quals;
1104  const Type *TypeNode = Quals.strip(T);
1105
1106  // If this type already has an address space specified, it cannot get
1107  // another one.
1108  assert(!Quals.hasAddressSpace() &&
1109         "Type cannot be in multiple addr spaces!");
1110  Quals.addAddressSpace(AddressSpace);
1111
1112  return getExtQualType(TypeNode, Quals);
1113}
1114
1115QualType ASTContext::getObjCGCQualType(QualType T,
1116                                       Qualifiers::GC GCAttr) {
1117  QualType CanT = getCanonicalType(T);
1118  if (CanT.getObjCGCAttr() == GCAttr)
1119    return T;
1120
1121  if (T->isPointerType()) {
1122    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1123    if (Pointee->isAnyPointerType()) {
1124      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1125      return getPointerType(ResultType);
1126    }
1127  }
1128
1129  // If we are composing extended qualifiers together, merge together
1130  // into one ExtQuals node.
1131  QualifierCollector Quals;
1132  const Type *TypeNode = Quals.strip(T);
1133
1134  // If this type already has an ObjCGC specified, it cannot get
1135  // another one.
1136  assert(!Quals.hasObjCGCAttr() &&
1137         "Type cannot have multiple ObjCGCs!");
1138  Quals.addObjCGCAttr(GCAttr);
1139
1140  return getExtQualType(TypeNode, Quals);
1141}
1142
1143static QualType getExtFunctionType(ASTContext& Context, QualType T,
1144                                        const FunctionType::ExtInfo &Info) {
1145  QualType ResultType;
1146  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1147    QualType Pointee = Pointer->getPointeeType();
1148    ResultType = getExtFunctionType(Context, Pointee, Info);
1149    if (ResultType == Pointee)
1150      return T;
1151
1152    ResultType = Context.getPointerType(ResultType);
1153  } else if (const ParenType *Paren = T->getAs<ParenType>()) {
1154    QualType Inner = Paren->getInnerType();
1155    ResultType = getExtFunctionType(Context, Inner, Info);
1156    if (ResultType == Inner)
1157      return T;
1158
1159    ResultType = Context.getParenType(ResultType);
1160  } else if (const BlockPointerType *BlockPointer
1161                                              = T->getAs<BlockPointerType>()) {
1162    QualType Pointee = BlockPointer->getPointeeType();
1163    ResultType = getExtFunctionType(Context, Pointee, Info);
1164    if (ResultType == Pointee)
1165      return T;
1166
1167    ResultType = Context.getBlockPointerType(ResultType);
1168  } else if (const MemberPointerType *MemberPointer
1169                                            = T->getAs<MemberPointerType>()) {
1170    QualType Pointee = MemberPointer->getPointeeType();
1171    ResultType = getExtFunctionType(Context, Pointee, Info);
1172    if (ResultType == Pointee)
1173      return T;
1174
1175    ResultType = Context.getMemberPointerType(ResultType,
1176                                              MemberPointer->getClass());
1177   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1178    if (F->getExtInfo() == Info)
1179      return T;
1180
1181    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1182      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1183                                                  Info);
1184    } else {
1185      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1186      ResultType
1187        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1188                                  FPT->getNumArgs(), FPT->isVariadic(),
1189                                  FPT->getTypeQuals(),
1190                                  FPT->hasExceptionSpec(),
1191                                  FPT->hasAnyExceptionSpec(),
1192                                  FPT->getNumExceptions(),
1193                                  FPT->exception_begin(),
1194                                  Info);
1195    }
1196  } else
1197    return T;
1198
1199  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1200}
1201
1202QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1203  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1204  return getExtFunctionType(*this, T,
1205                                 Info.withNoReturn(AddNoReturn));
1206}
1207
1208QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1209  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1210  return getExtFunctionType(*this, T,
1211                            Info.withCallingConv(CallConv));
1212}
1213
1214QualType ASTContext::getRegParmType(QualType T, unsigned RegParm) {
1215  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1216  return getExtFunctionType(*this, T,
1217                                 Info.withRegParm(RegParm));
1218}
1219
1220/// getComplexType - Return the uniqued reference to the type for a complex
1221/// number with the specified element type.
1222QualType ASTContext::getComplexType(QualType T) {
1223  // Unique pointers, to guarantee there is only one pointer of a particular
1224  // structure.
1225  llvm::FoldingSetNodeID ID;
1226  ComplexType::Profile(ID, T);
1227
1228  void *InsertPos = 0;
1229  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1230    return QualType(CT, 0);
1231
1232  // If the pointee type isn't canonical, this won't be a canonical type either,
1233  // so fill in the canonical type field.
1234  QualType Canonical;
1235  if (!T.isCanonical()) {
1236    Canonical = getComplexType(getCanonicalType(T));
1237
1238    // Get the new insert position for the node we care about.
1239    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1240    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1241  }
1242  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1243  Types.push_back(New);
1244  ComplexTypes.InsertNode(New, InsertPos);
1245  return QualType(New, 0);
1246}
1247
1248/// getPointerType - Return the uniqued reference to the type for a pointer to
1249/// the specified type.
1250QualType ASTContext::getPointerType(QualType T) {
1251  // Unique pointers, to guarantee there is only one pointer of a particular
1252  // structure.
1253  llvm::FoldingSetNodeID ID;
1254  PointerType::Profile(ID, T);
1255
1256  void *InsertPos = 0;
1257  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1258    return QualType(PT, 0);
1259
1260  // If the pointee type isn't canonical, this won't be a canonical type either,
1261  // so fill in the canonical type field.
1262  QualType Canonical;
1263  if (!T.isCanonical()) {
1264    Canonical = getPointerType(getCanonicalType(T));
1265
1266    // Get the new insert position for the node we care about.
1267    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1268    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1269  }
1270  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1271  Types.push_back(New);
1272  PointerTypes.InsertNode(New, InsertPos);
1273  return QualType(New, 0);
1274}
1275
1276/// getBlockPointerType - Return the uniqued reference to the type for
1277/// a pointer to the specified block.
1278QualType ASTContext::getBlockPointerType(QualType T) {
1279  assert(T->isFunctionType() && "block of function types only");
1280  // Unique pointers, to guarantee there is only one block of a particular
1281  // structure.
1282  llvm::FoldingSetNodeID ID;
1283  BlockPointerType::Profile(ID, T);
1284
1285  void *InsertPos = 0;
1286  if (BlockPointerType *PT =
1287        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1288    return QualType(PT, 0);
1289
1290  // If the block pointee type isn't canonical, this won't be a canonical
1291  // type either so fill in the canonical type field.
1292  QualType Canonical;
1293  if (!T.isCanonical()) {
1294    Canonical = getBlockPointerType(getCanonicalType(T));
1295
1296    // Get the new insert position for the node we care about.
1297    BlockPointerType *NewIP =
1298      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1299    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1300  }
1301  BlockPointerType *New
1302    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1303  Types.push_back(New);
1304  BlockPointerTypes.InsertNode(New, InsertPos);
1305  return QualType(New, 0);
1306}
1307
1308/// getLValueReferenceType - Return the uniqued reference to the type for an
1309/// lvalue reference to the specified type.
1310QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1311  // Unique pointers, to guarantee there is only one pointer of a particular
1312  // structure.
1313  llvm::FoldingSetNodeID ID;
1314  ReferenceType::Profile(ID, T, SpelledAsLValue);
1315
1316  void *InsertPos = 0;
1317  if (LValueReferenceType *RT =
1318        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1319    return QualType(RT, 0);
1320
1321  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1322
1323  // If the referencee type isn't canonical, this won't be a canonical type
1324  // either, so fill in the canonical type field.
1325  QualType Canonical;
1326  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1327    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1328    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1329
1330    // Get the new insert position for the node we care about.
1331    LValueReferenceType *NewIP =
1332      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1333    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1334  }
1335
1336  LValueReferenceType *New
1337    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1338                                                     SpelledAsLValue);
1339  Types.push_back(New);
1340  LValueReferenceTypes.InsertNode(New, InsertPos);
1341
1342  return QualType(New, 0);
1343}
1344
1345/// getRValueReferenceType - Return the uniqued reference to the type for an
1346/// rvalue reference to the specified type.
1347QualType ASTContext::getRValueReferenceType(QualType T) {
1348  // Unique pointers, to guarantee there is only one pointer of a particular
1349  // structure.
1350  llvm::FoldingSetNodeID ID;
1351  ReferenceType::Profile(ID, T, false);
1352
1353  void *InsertPos = 0;
1354  if (RValueReferenceType *RT =
1355        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1356    return QualType(RT, 0);
1357
1358  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1359
1360  // If the referencee type isn't canonical, this won't be a canonical type
1361  // either, so fill in the canonical type field.
1362  QualType Canonical;
1363  if (InnerRef || !T.isCanonical()) {
1364    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1365    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1366
1367    // Get the new insert position for the node we care about.
1368    RValueReferenceType *NewIP =
1369      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1370    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1371  }
1372
1373  RValueReferenceType *New
1374    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1375  Types.push_back(New);
1376  RValueReferenceTypes.InsertNode(New, InsertPos);
1377  return QualType(New, 0);
1378}
1379
1380/// getMemberPointerType - Return the uniqued reference to the type for a
1381/// member pointer to the specified type, in the specified class.
1382QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1383  // Unique pointers, to guarantee there is only one pointer of a particular
1384  // structure.
1385  llvm::FoldingSetNodeID ID;
1386  MemberPointerType::Profile(ID, T, Cls);
1387
1388  void *InsertPos = 0;
1389  if (MemberPointerType *PT =
1390      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1391    return QualType(PT, 0);
1392
1393  // If the pointee or class type isn't canonical, this won't be a canonical
1394  // type either, so fill in the canonical type field.
1395  QualType Canonical;
1396  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1397    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1398
1399    // Get the new insert position for the node we care about.
1400    MemberPointerType *NewIP =
1401      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1402    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1403  }
1404  MemberPointerType *New
1405    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1406  Types.push_back(New);
1407  MemberPointerTypes.InsertNode(New, InsertPos);
1408  return QualType(New, 0);
1409}
1410
1411/// getConstantArrayType - Return the unique reference to the type for an
1412/// array of the specified element type.
1413QualType ASTContext::getConstantArrayType(QualType EltTy,
1414                                          const llvm::APInt &ArySizeIn,
1415                                          ArrayType::ArraySizeModifier ASM,
1416                                          unsigned EltTypeQuals) {
1417  assert((EltTy->isDependentType() ||
1418          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1419         "Constant array of VLAs is illegal!");
1420
1421  // Convert the array size into a canonical width matching the pointer size for
1422  // the target.
1423  llvm::APInt ArySize(ArySizeIn);
1424  ArySize =
1425    ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1426
1427  llvm::FoldingSetNodeID ID;
1428  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1429
1430  void *InsertPos = 0;
1431  if (ConstantArrayType *ATP =
1432      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1433    return QualType(ATP, 0);
1434
1435  // If the element type isn't canonical, this won't be a canonical type either,
1436  // so fill in the canonical type field.
1437  QualType Canonical;
1438  if (!EltTy.isCanonical()) {
1439    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1440                                     ASM, EltTypeQuals);
1441    // Get the new insert position for the node we care about.
1442    ConstantArrayType *NewIP =
1443      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1444    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1445  }
1446
1447  ConstantArrayType *New = new(*this,TypeAlignment)
1448    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1449  ConstantArrayTypes.InsertNode(New, InsertPos);
1450  Types.push_back(New);
1451  return QualType(New, 0);
1452}
1453
1454/// getIncompleteArrayType - Returns a unique reference to the type for a
1455/// incomplete array of the specified element type.
1456QualType ASTContext::getUnknownSizeVariableArrayType(QualType Ty) {
1457  QualType ElemTy = getBaseElementType(Ty);
1458  DeclarationName Name;
1459  llvm::SmallVector<QualType, 8> ATypes;
1460  QualType ATy = Ty;
1461  while (const ArrayType *AT = getAsArrayType(ATy)) {
1462    ATypes.push_back(ATy);
1463    ATy = AT->getElementType();
1464  }
1465  for (int i = ATypes.size() - 1; i >= 0; i--) {
1466    if (const VariableArrayType *VAT = getAsVariableArrayType(ATypes[i])) {
1467      ElemTy = getVariableArrayType(ElemTy, /*ArraySize*/0, ArrayType::Star,
1468                                    0, VAT->getBracketsRange());
1469    }
1470    else if (const ConstantArrayType *CAT = getAsConstantArrayType(ATypes[i])) {
1471      llvm::APSInt ConstVal(CAT->getSize());
1472      ElemTy = getConstantArrayType(ElemTy, ConstVal, ArrayType::Normal, 0);
1473    }
1474    else if (getAsIncompleteArrayType(ATypes[i])) {
1475      ElemTy = getVariableArrayType(ElemTy, /*ArraySize*/0, ArrayType::Normal,
1476                                    0, SourceRange());
1477    }
1478    else
1479      assert(false && "DependentArrayType is seen");
1480  }
1481  return ElemTy;
1482}
1483
1484/// getVariableArrayDecayedType - Returns a vla type where known sizes
1485/// are replaced with [*]
1486QualType ASTContext::getVariableArrayDecayedType(QualType Ty) {
1487  if (Ty->isPointerType()) {
1488    QualType BaseType = Ty->getAs<PointerType>()->getPointeeType();
1489    if (isa<VariableArrayType>(BaseType)) {
1490      ArrayType *AT = dyn_cast<ArrayType>(BaseType);
1491      VariableArrayType *VAT = cast<VariableArrayType>(AT);
1492      if (VAT->getSizeExpr()) {
1493        Ty = getUnknownSizeVariableArrayType(BaseType);
1494        Ty = getPointerType(Ty);
1495      }
1496    }
1497  }
1498  return Ty;
1499}
1500
1501
1502/// getVariableArrayType - Returns a non-unique reference to the type for a
1503/// variable array of the specified element type.
1504QualType ASTContext::getVariableArrayType(QualType EltTy,
1505                                          Expr *NumElts,
1506                                          ArrayType::ArraySizeModifier ASM,
1507                                          unsigned EltTypeQuals,
1508                                          SourceRange Brackets) {
1509  // Since we don't unique expressions, it isn't possible to unique VLA's
1510  // that have an expression provided for their size.
1511  QualType CanonType;
1512
1513  if (!EltTy.isCanonical()) {
1514    CanonType = getVariableArrayType(getCanonicalType(EltTy), NumElts, ASM,
1515                                     EltTypeQuals, Brackets);
1516  }
1517
1518  VariableArrayType *New = new(*this, TypeAlignment)
1519    VariableArrayType(EltTy, CanonType, NumElts, ASM, EltTypeQuals, Brackets);
1520
1521  VariableArrayTypes.push_back(New);
1522  Types.push_back(New);
1523  return QualType(New, 0);
1524}
1525
1526/// getDependentSizedArrayType - Returns a non-unique reference to
1527/// the type for a dependently-sized array of the specified element
1528/// type.
1529QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1530                                                Expr *NumElts,
1531                                                ArrayType::ArraySizeModifier ASM,
1532                                                unsigned EltTypeQuals,
1533                                                SourceRange Brackets) {
1534  assert((!NumElts || NumElts->isTypeDependent() ||
1535          NumElts->isValueDependent()) &&
1536         "Size must be type- or value-dependent!");
1537
1538  void *InsertPos = 0;
1539  DependentSizedArrayType *Canon = 0;
1540  llvm::FoldingSetNodeID ID;
1541
1542  QualType CanonicalEltTy = getCanonicalType(EltTy);
1543  if (NumElts) {
1544    // Dependently-sized array types that do not have a specified
1545    // number of elements will have their sizes deduced from an
1546    // initializer.
1547    DependentSizedArrayType::Profile(ID, *this, CanonicalEltTy, ASM,
1548                                     EltTypeQuals, NumElts);
1549
1550    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1551  }
1552
1553  DependentSizedArrayType *New;
1554  if (Canon) {
1555    // We already have a canonical version of this array type; use it as
1556    // the canonical type for a newly-built type.
1557    New = new (*this, TypeAlignment)
1558      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1559                              NumElts, ASM, EltTypeQuals, Brackets);
1560  } else if (CanonicalEltTy == EltTy) {
1561    // This is a canonical type. Record it.
1562    New = new (*this, TypeAlignment)
1563      DependentSizedArrayType(*this, EltTy, QualType(),
1564                              NumElts, ASM, EltTypeQuals, Brackets);
1565
1566    if (NumElts) {
1567#ifndef NDEBUG
1568      DependentSizedArrayType *CanonCheck
1569        = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1570      assert(!CanonCheck && "Dependent-sized canonical array type broken");
1571      (void)CanonCheck;
1572#endif
1573      DependentSizedArrayTypes.InsertNode(New, InsertPos);
1574    }
1575  } else {
1576    QualType Canon = getDependentSizedArrayType(CanonicalEltTy, NumElts,
1577                                                ASM, EltTypeQuals,
1578                                                SourceRange());
1579    New = new (*this, TypeAlignment)
1580      DependentSizedArrayType(*this, EltTy, Canon,
1581                              NumElts, ASM, EltTypeQuals, Brackets);
1582  }
1583
1584  Types.push_back(New);
1585  return QualType(New, 0);
1586}
1587
1588QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1589                                            ArrayType::ArraySizeModifier ASM,
1590                                            unsigned EltTypeQuals) {
1591  llvm::FoldingSetNodeID ID;
1592  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1593
1594  void *InsertPos = 0;
1595  if (IncompleteArrayType *ATP =
1596       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1597    return QualType(ATP, 0);
1598
1599  // If the element type isn't canonical, this won't be a canonical type
1600  // either, so fill in the canonical type field.
1601  QualType Canonical;
1602
1603  if (!EltTy.isCanonical()) {
1604    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1605                                       ASM, EltTypeQuals);
1606
1607    // Get the new insert position for the node we care about.
1608    IncompleteArrayType *NewIP =
1609      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1610    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1611  }
1612
1613  IncompleteArrayType *New = new (*this, TypeAlignment)
1614    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1615
1616  IncompleteArrayTypes.InsertNode(New, InsertPos);
1617  Types.push_back(New);
1618  return QualType(New, 0);
1619}
1620
1621/// getVectorType - Return the unique reference to a vector type of
1622/// the specified element type and size. VectorType must be a built-in type.
1623QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1624                                   VectorType::VectorKind VecKind) {
1625  BuiltinType *BaseType;
1626
1627  BaseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1628  assert(BaseType != 0 && "getVectorType(): Expecting a built-in type");
1629
1630  // Check if we've already instantiated a vector of this type.
1631  llvm::FoldingSetNodeID ID;
1632  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1633
1634  void *InsertPos = 0;
1635  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1636    return QualType(VTP, 0);
1637
1638  // If the element type isn't canonical, this won't be a canonical type either,
1639  // so fill in the canonical type field.
1640  QualType Canonical;
1641  if (!vecType.isCanonical()) {
1642    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1643
1644    // Get the new insert position for the node we care about.
1645    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1646    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1647  }
1648  VectorType *New = new (*this, TypeAlignment)
1649    VectorType(vecType, NumElts, Canonical, VecKind);
1650  VectorTypes.InsertNode(New, InsertPos);
1651  Types.push_back(New);
1652  return QualType(New, 0);
1653}
1654
1655/// getExtVectorType - Return the unique reference to an extended vector type of
1656/// the specified element type and size. VectorType must be a built-in type.
1657QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1658  BuiltinType *baseType;
1659
1660  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1661  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1662
1663  // Check if we've already instantiated a vector of this type.
1664  llvm::FoldingSetNodeID ID;
1665  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1666                      VectorType::GenericVector);
1667  void *InsertPos = 0;
1668  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1669    return QualType(VTP, 0);
1670
1671  // If the element type isn't canonical, this won't be a canonical type either,
1672  // so fill in the canonical type field.
1673  QualType Canonical;
1674  if (!vecType.isCanonical()) {
1675    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1676
1677    // Get the new insert position for the node we care about.
1678    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1679    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1680  }
1681  ExtVectorType *New = new (*this, TypeAlignment)
1682    ExtVectorType(vecType, NumElts, Canonical);
1683  VectorTypes.InsertNode(New, InsertPos);
1684  Types.push_back(New);
1685  return QualType(New, 0);
1686}
1687
1688QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1689                                                    Expr *SizeExpr,
1690                                                    SourceLocation AttrLoc) {
1691  llvm::FoldingSetNodeID ID;
1692  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1693                                       SizeExpr);
1694
1695  void *InsertPos = 0;
1696  DependentSizedExtVectorType *Canon
1697    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1698  DependentSizedExtVectorType *New;
1699  if (Canon) {
1700    // We already have a canonical version of this array type; use it as
1701    // the canonical type for a newly-built type.
1702    New = new (*this, TypeAlignment)
1703      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1704                                  SizeExpr, AttrLoc);
1705  } else {
1706    QualType CanonVecTy = getCanonicalType(vecType);
1707    if (CanonVecTy == vecType) {
1708      New = new (*this, TypeAlignment)
1709        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1710                                    AttrLoc);
1711
1712      DependentSizedExtVectorType *CanonCheck
1713        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1714      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1715      (void)CanonCheck;
1716      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1717    } else {
1718      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1719                                                      SourceLocation());
1720      New = new (*this, TypeAlignment)
1721        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1722    }
1723  }
1724
1725  Types.push_back(New);
1726  return QualType(New, 0);
1727}
1728
1729/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1730///
1731QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
1732                                            const FunctionType::ExtInfo &Info) {
1733  const CallingConv CallConv = Info.getCC();
1734  // Unique functions, to guarantee there is only one function of a particular
1735  // structure.
1736  llvm::FoldingSetNodeID ID;
1737  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1738
1739  void *InsertPos = 0;
1740  if (FunctionNoProtoType *FT =
1741        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1742    return QualType(FT, 0);
1743
1744  QualType Canonical;
1745  if (!ResultTy.isCanonical() ||
1746      getCanonicalCallConv(CallConv) != CallConv) {
1747    Canonical =
1748      getFunctionNoProtoType(getCanonicalType(ResultTy),
1749                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1750
1751    // Get the new insert position for the node we care about.
1752    FunctionNoProtoType *NewIP =
1753      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1754    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1755  }
1756
1757  FunctionNoProtoType *New = new (*this, TypeAlignment)
1758    FunctionNoProtoType(ResultTy, Canonical, Info);
1759  Types.push_back(New);
1760  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1761  return QualType(New, 0);
1762}
1763
1764/// getFunctionType - Return a normal function type with a typed argument
1765/// list.  isVariadic indicates whether the argument list includes '...'.
1766QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1767                                     unsigned NumArgs, bool isVariadic,
1768                                     unsigned TypeQuals, bool hasExceptionSpec,
1769                                     bool hasAnyExceptionSpec, unsigned NumExs,
1770                                     const QualType *ExArray,
1771                                     const FunctionType::ExtInfo &Info) {
1772
1773  const CallingConv CallConv= Info.getCC();
1774  // Unique functions, to guarantee there is only one function of a particular
1775  // structure.
1776  llvm::FoldingSetNodeID ID;
1777  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1778                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1779                             NumExs, ExArray, Info);
1780
1781  void *InsertPos = 0;
1782  if (FunctionProtoType *FTP =
1783        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1784    return QualType(FTP, 0);
1785
1786  // Determine whether the type being created is already canonical or not.
1787  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1788  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1789    if (!ArgArray[i].isCanonicalAsParam())
1790      isCanonical = false;
1791
1792  // If this type isn't canonical, get the canonical version of it.
1793  // The exception spec is not part of the canonical type.
1794  QualType Canonical;
1795  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1796    llvm::SmallVector<QualType, 16> CanonicalArgs;
1797    CanonicalArgs.reserve(NumArgs);
1798    for (unsigned i = 0; i != NumArgs; ++i)
1799      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1800
1801    Canonical = getFunctionType(getCanonicalType(ResultTy),
1802                                CanonicalArgs.data(), NumArgs,
1803                                isVariadic, TypeQuals, false,
1804                                false, 0, 0,
1805                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1806
1807    // Get the new insert position for the node we care about.
1808    FunctionProtoType *NewIP =
1809      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1810    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1811  }
1812
1813  // FunctionProtoType objects are allocated with extra bytes after them
1814  // for two variable size arrays (for parameter and exception types) at the
1815  // end of them.
1816  FunctionProtoType *FTP =
1817    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1818                                 NumArgs*sizeof(QualType) +
1819                                 NumExs*sizeof(QualType), TypeAlignment);
1820  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1821                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1822                              ExArray, NumExs, Canonical, Info);
1823  Types.push_back(FTP);
1824  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1825  return QualType(FTP, 0);
1826}
1827
1828#ifndef NDEBUG
1829static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1830  if (!isa<CXXRecordDecl>(D)) return false;
1831  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1832  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1833    return true;
1834  if (RD->getDescribedClassTemplate() &&
1835      !isa<ClassTemplateSpecializationDecl>(RD))
1836    return true;
1837  return false;
1838}
1839#endif
1840
1841/// getInjectedClassNameType - Return the unique reference to the
1842/// injected class name type for the specified templated declaration.
1843QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1844                                              QualType TST) {
1845  assert(NeedsInjectedClassNameType(Decl));
1846  if (Decl->TypeForDecl) {
1847    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1848  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
1849    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1850    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1851    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1852  } else {
1853    Decl->TypeForDecl =
1854      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1855    Types.push_back(Decl->TypeForDecl);
1856  }
1857  return QualType(Decl->TypeForDecl, 0);
1858}
1859
1860/// getTypeDeclType - Return the unique reference to the type for the
1861/// specified type declaration.
1862QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1863  assert(Decl && "Passed null for Decl param");
1864  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1865
1866  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1867    return getTypedefType(Typedef);
1868
1869  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1870         "Template type parameter types are always available.");
1871
1872  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1873    assert(!Record->getPreviousDeclaration() &&
1874           "struct/union has previous declaration");
1875    assert(!NeedsInjectedClassNameType(Record));
1876    return getRecordType(Record);
1877  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1878    assert(!Enum->getPreviousDeclaration() &&
1879           "enum has previous declaration");
1880    return getEnumType(Enum);
1881  } else if (const UnresolvedUsingTypenameDecl *Using =
1882               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1883    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1884  } else
1885    llvm_unreachable("TypeDecl without a type?");
1886
1887  Types.push_back(Decl->TypeForDecl);
1888  return QualType(Decl->TypeForDecl, 0);
1889}
1890
1891/// getTypedefType - Return the unique reference to the type for the
1892/// specified typename decl.
1893QualType
1894ASTContext::getTypedefType(const TypedefDecl *Decl, QualType Canonical) {
1895  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1896
1897  if (Canonical.isNull())
1898    Canonical = getCanonicalType(Decl->getUnderlyingType());
1899  Decl->TypeForDecl = new(*this, TypeAlignment)
1900    TypedefType(Type::Typedef, Decl, Canonical);
1901  Types.push_back(Decl->TypeForDecl);
1902  return QualType(Decl->TypeForDecl, 0);
1903}
1904
1905QualType ASTContext::getRecordType(const RecordDecl *Decl) {
1906  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1907
1908  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
1909    if (PrevDecl->TypeForDecl)
1910      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
1911
1912  Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Decl);
1913  Types.push_back(Decl->TypeForDecl);
1914  return QualType(Decl->TypeForDecl, 0);
1915}
1916
1917QualType ASTContext::getEnumType(const EnumDecl *Decl) {
1918  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1919
1920  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
1921    if (PrevDecl->TypeForDecl)
1922      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
1923
1924  Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Decl);
1925  Types.push_back(Decl->TypeForDecl);
1926  return QualType(Decl->TypeForDecl, 0);
1927}
1928
1929/// \brief Retrieve a substitution-result type.
1930QualType
1931ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1932                                         QualType Replacement) {
1933  assert(Replacement.isCanonical()
1934         && "replacement types must always be canonical");
1935
1936  llvm::FoldingSetNodeID ID;
1937  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1938  void *InsertPos = 0;
1939  SubstTemplateTypeParmType *SubstParm
1940    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1941
1942  if (!SubstParm) {
1943    SubstParm = new (*this, TypeAlignment)
1944      SubstTemplateTypeParmType(Parm, Replacement);
1945    Types.push_back(SubstParm);
1946    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1947  }
1948
1949  return QualType(SubstParm, 0);
1950}
1951
1952/// \brief Retrieve the template type parameter type for a template
1953/// parameter or parameter pack with the given depth, index, and (optionally)
1954/// name.
1955QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1956                                             bool ParameterPack,
1957                                             IdentifierInfo *Name) {
1958  llvm::FoldingSetNodeID ID;
1959  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1960  void *InsertPos = 0;
1961  TemplateTypeParmType *TypeParm
1962    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1963
1964  if (TypeParm)
1965    return QualType(TypeParm, 0);
1966
1967  if (Name) {
1968    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1969    TypeParm = new (*this, TypeAlignment)
1970      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1971
1972    TemplateTypeParmType *TypeCheck
1973      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1974    assert(!TypeCheck && "Template type parameter canonical type broken");
1975    (void)TypeCheck;
1976  } else
1977    TypeParm = new (*this, TypeAlignment)
1978      TemplateTypeParmType(Depth, Index, ParameterPack);
1979
1980  Types.push_back(TypeParm);
1981  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1982
1983  return QualType(TypeParm, 0);
1984}
1985
1986TypeSourceInfo *
1987ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
1988                                              SourceLocation NameLoc,
1989                                        const TemplateArgumentListInfo &Args,
1990                                              QualType CanonType) {
1991  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
1992
1993  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
1994  TemplateSpecializationTypeLoc TL
1995    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1996  TL.setTemplateNameLoc(NameLoc);
1997  TL.setLAngleLoc(Args.getLAngleLoc());
1998  TL.setRAngleLoc(Args.getRAngleLoc());
1999  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2000    TL.setArgLocInfo(i, Args[i].getLocInfo());
2001  return DI;
2002}
2003
2004QualType
2005ASTContext::getTemplateSpecializationType(TemplateName Template,
2006                                          const TemplateArgumentListInfo &Args,
2007                                          QualType Canon) {
2008  unsigned NumArgs = Args.size();
2009
2010  llvm::SmallVector<TemplateArgument, 4> ArgVec;
2011  ArgVec.reserve(NumArgs);
2012  for (unsigned i = 0; i != NumArgs; ++i)
2013    ArgVec.push_back(Args[i].getArgument());
2014
2015  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2016                                       Canon);
2017}
2018
2019QualType
2020ASTContext::getTemplateSpecializationType(TemplateName Template,
2021                                          const TemplateArgument *Args,
2022                                          unsigned NumArgs,
2023                                          QualType Canon) {
2024  if (!Canon.isNull())
2025    Canon = getCanonicalType(Canon);
2026  else
2027    Canon = getCanonicalTemplateSpecializationType(Template, Args, NumArgs);
2028
2029  // Allocate the (non-canonical) template specialization type, but don't
2030  // try to unique it: these types typically have location information that
2031  // we don't unique and don't want to lose.
2032  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2033                        sizeof(TemplateArgument) * NumArgs),
2034                       TypeAlignment);
2035  TemplateSpecializationType *Spec
2036    = new (Mem) TemplateSpecializationType(Template,
2037                                           Args, NumArgs,
2038                                           Canon);
2039
2040  Types.push_back(Spec);
2041  return QualType(Spec, 0);
2042}
2043
2044QualType
2045ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2046                                                   const TemplateArgument *Args,
2047                                                   unsigned NumArgs) {
2048  // Build the canonical template specialization type.
2049  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2050  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2051  CanonArgs.reserve(NumArgs);
2052  for (unsigned I = 0; I != NumArgs; ++I)
2053    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2054
2055  // Determine whether this canonical template specialization type already
2056  // exists.
2057  llvm::FoldingSetNodeID ID;
2058  TemplateSpecializationType::Profile(ID, CanonTemplate,
2059                                      CanonArgs.data(), NumArgs, *this);
2060
2061  void *InsertPos = 0;
2062  TemplateSpecializationType *Spec
2063    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2064
2065  if (!Spec) {
2066    // Allocate a new canonical template specialization type.
2067    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2068                          sizeof(TemplateArgument) * NumArgs),
2069                         TypeAlignment);
2070    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2071                                                CanonArgs.data(), NumArgs,
2072                                                QualType());
2073    Types.push_back(Spec);
2074    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2075  }
2076
2077  assert(Spec->isDependentType() &&
2078         "Non-dependent template-id type must have a canonical type");
2079  return QualType(Spec, 0);
2080}
2081
2082QualType
2083ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2084                              NestedNameSpecifier *NNS,
2085                              QualType NamedType) {
2086  llvm::FoldingSetNodeID ID;
2087  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2088
2089  void *InsertPos = 0;
2090  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2091  if (T)
2092    return QualType(T, 0);
2093
2094  QualType Canon = NamedType;
2095  if (!Canon.isCanonical()) {
2096    Canon = getCanonicalType(NamedType);
2097    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2098    assert(!CheckT && "Elaborated canonical type broken");
2099    (void)CheckT;
2100  }
2101
2102  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2103  Types.push_back(T);
2104  ElaboratedTypes.InsertNode(T, InsertPos);
2105  return QualType(T, 0);
2106}
2107
2108QualType
2109ASTContext::getParenType(QualType InnerType) {
2110  llvm::FoldingSetNodeID ID;
2111  ParenType::Profile(ID, InnerType);
2112
2113  void *InsertPos = 0;
2114  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2115  if (T)
2116    return QualType(T, 0);
2117
2118  QualType Canon = InnerType;
2119  if (!Canon.isCanonical()) {
2120    Canon = getCanonicalType(InnerType);
2121    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2122    assert(!CheckT && "Paren canonical type broken");
2123    (void)CheckT;
2124  }
2125
2126  T = new (*this) ParenType(InnerType, Canon);
2127  Types.push_back(T);
2128  ParenTypes.InsertNode(T, InsertPos);
2129  return QualType(T, 0);
2130}
2131
2132QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2133                                          NestedNameSpecifier *NNS,
2134                                          const IdentifierInfo *Name,
2135                                          QualType Canon) {
2136  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2137
2138  if (Canon.isNull()) {
2139    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2140    ElaboratedTypeKeyword CanonKeyword = Keyword;
2141    if (Keyword == ETK_None)
2142      CanonKeyword = ETK_Typename;
2143
2144    if (CanonNNS != NNS || CanonKeyword != Keyword)
2145      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2146  }
2147
2148  llvm::FoldingSetNodeID ID;
2149  DependentNameType::Profile(ID, Keyword, NNS, Name);
2150
2151  void *InsertPos = 0;
2152  DependentNameType *T
2153    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2154  if (T)
2155    return QualType(T, 0);
2156
2157  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2158  Types.push_back(T);
2159  DependentNameTypes.InsertNode(T, InsertPos);
2160  return QualType(T, 0);
2161}
2162
2163QualType
2164ASTContext::getDependentTemplateSpecializationType(
2165                                 ElaboratedTypeKeyword Keyword,
2166                                 NestedNameSpecifier *NNS,
2167                                 const IdentifierInfo *Name,
2168                                 const TemplateArgumentListInfo &Args) {
2169  // TODO: avoid this copy
2170  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2171  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2172    ArgCopy.push_back(Args[I].getArgument());
2173  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2174                                                ArgCopy.size(),
2175                                                ArgCopy.data());
2176}
2177
2178QualType
2179ASTContext::getDependentTemplateSpecializationType(
2180                                 ElaboratedTypeKeyword Keyword,
2181                                 NestedNameSpecifier *NNS,
2182                                 const IdentifierInfo *Name,
2183                                 unsigned NumArgs,
2184                                 const TemplateArgument *Args) {
2185  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2186
2187  llvm::FoldingSetNodeID ID;
2188  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2189                                               Name, NumArgs, Args);
2190
2191  void *InsertPos = 0;
2192  DependentTemplateSpecializationType *T
2193    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2194  if (T)
2195    return QualType(T, 0);
2196
2197  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2198
2199  ElaboratedTypeKeyword CanonKeyword = Keyword;
2200  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2201
2202  bool AnyNonCanonArgs = false;
2203  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2204  for (unsigned I = 0; I != NumArgs; ++I) {
2205    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2206    if (!CanonArgs[I].structurallyEquals(Args[I]))
2207      AnyNonCanonArgs = true;
2208  }
2209
2210  QualType Canon;
2211  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2212    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2213                                                   Name, NumArgs,
2214                                                   CanonArgs.data());
2215
2216    // Find the insert position again.
2217    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2218  }
2219
2220  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2221                        sizeof(TemplateArgument) * NumArgs),
2222                       TypeAlignment);
2223  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2224                                                    Name, NumArgs, Args, Canon);
2225  Types.push_back(T);
2226  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2227  return QualType(T, 0);
2228}
2229
2230/// CmpProtocolNames - Comparison predicate for sorting protocols
2231/// alphabetically.
2232static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2233                            const ObjCProtocolDecl *RHS) {
2234  return LHS->getDeclName() < RHS->getDeclName();
2235}
2236
2237static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2238                                unsigned NumProtocols) {
2239  if (NumProtocols == 0) return true;
2240
2241  for (unsigned i = 1; i != NumProtocols; ++i)
2242    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2243      return false;
2244  return true;
2245}
2246
2247static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2248                                   unsigned &NumProtocols) {
2249  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2250
2251  // Sort protocols, keyed by name.
2252  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2253
2254  // Remove duplicates.
2255  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2256  NumProtocols = ProtocolsEnd-Protocols;
2257}
2258
2259QualType ASTContext::getObjCObjectType(QualType BaseType,
2260                                       ObjCProtocolDecl * const *Protocols,
2261                                       unsigned NumProtocols) {
2262  // If the base type is an interface and there aren't any protocols
2263  // to add, then the interface type will do just fine.
2264  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2265    return BaseType;
2266
2267  // Look in the folding set for an existing type.
2268  llvm::FoldingSetNodeID ID;
2269  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2270  void *InsertPos = 0;
2271  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2272    return QualType(QT, 0);
2273
2274  // Build the canonical type, which has the canonical base type and
2275  // a sorted-and-uniqued list of protocols.
2276  QualType Canonical;
2277  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2278  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2279    if (!ProtocolsSorted) {
2280      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2281                                                     Protocols + NumProtocols);
2282      unsigned UniqueCount = NumProtocols;
2283
2284      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2285      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2286                                    &Sorted[0], UniqueCount);
2287    } else {
2288      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2289                                    Protocols, NumProtocols);
2290    }
2291
2292    // Regenerate InsertPos.
2293    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2294  }
2295
2296  unsigned Size = sizeof(ObjCObjectTypeImpl);
2297  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2298  void *Mem = Allocate(Size, TypeAlignment);
2299  ObjCObjectTypeImpl *T =
2300    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2301
2302  Types.push_back(T);
2303  ObjCObjectTypes.InsertNode(T, InsertPos);
2304  return QualType(T, 0);
2305}
2306
2307/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2308/// the given object type.
2309QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) {
2310  llvm::FoldingSetNodeID ID;
2311  ObjCObjectPointerType::Profile(ID, ObjectT);
2312
2313  void *InsertPos = 0;
2314  if (ObjCObjectPointerType *QT =
2315              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2316    return QualType(QT, 0);
2317
2318  // Find the canonical object type.
2319  QualType Canonical;
2320  if (!ObjectT.isCanonical()) {
2321    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2322
2323    // Regenerate InsertPos.
2324    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2325  }
2326
2327  // No match.
2328  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2329  ObjCObjectPointerType *QType =
2330    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2331
2332  Types.push_back(QType);
2333  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2334  return QualType(QType, 0);
2335}
2336
2337/// getObjCInterfaceType - Return the unique reference to the type for the
2338/// specified ObjC interface decl. The list of protocols is optional.
2339QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
2340  if (Decl->TypeForDecl)
2341    return QualType(Decl->TypeForDecl, 0);
2342
2343  // FIXME: redeclarations?
2344  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2345  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2346  Decl->TypeForDecl = T;
2347  Types.push_back(T);
2348  return QualType(T, 0);
2349}
2350
2351/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2352/// TypeOfExprType AST's (since expression's are never shared). For example,
2353/// multiple declarations that refer to "typeof(x)" all contain different
2354/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2355/// on canonical type's (which are always unique).
2356QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2357  TypeOfExprType *toe;
2358  if (tofExpr->isTypeDependent()) {
2359    llvm::FoldingSetNodeID ID;
2360    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2361
2362    void *InsertPos = 0;
2363    DependentTypeOfExprType *Canon
2364      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2365    if (Canon) {
2366      // We already have a "canonical" version of an identical, dependent
2367      // typeof(expr) type. Use that as our canonical type.
2368      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2369                                          QualType((TypeOfExprType*)Canon, 0));
2370    }
2371    else {
2372      // Build a new, canonical typeof(expr) type.
2373      Canon
2374        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2375      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2376      toe = Canon;
2377    }
2378  } else {
2379    QualType Canonical = getCanonicalType(tofExpr->getType());
2380    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2381  }
2382  Types.push_back(toe);
2383  return QualType(toe, 0);
2384}
2385
2386/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2387/// TypeOfType AST's. The only motivation to unique these nodes would be
2388/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2389/// an issue. This doesn't effect the type checker, since it operates
2390/// on canonical type's (which are always unique).
2391QualType ASTContext::getTypeOfType(QualType tofType) {
2392  QualType Canonical = getCanonicalType(tofType);
2393  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2394  Types.push_back(tot);
2395  return QualType(tot, 0);
2396}
2397
2398/// getDecltypeForExpr - Given an expr, will return the decltype for that
2399/// expression, according to the rules in C++0x [dcl.type.simple]p4
2400static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2401  if (e->isTypeDependent())
2402    return Context.DependentTy;
2403
2404  // If e is an id expression or a class member access, decltype(e) is defined
2405  // as the type of the entity named by e.
2406  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2407    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2408      return VD->getType();
2409  }
2410  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2411    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2412      return FD->getType();
2413  }
2414  // If e is a function call or an invocation of an overloaded operator,
2415  // (parentheses around e are ignored), decltype(e) is defined as the
2416  // return type of that function.
2417  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2418    return CE->getCallReturnType();
2419
2420  QualType T = e->getType();
2421
2422  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2423  // defined as T&, otherwise decltype(e) is defined as T.
2424  if (e->isLValue())
2425    T = Context.getLValueReferenceType(T);
2426
2427  return T;
2428}
2429
2430/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2431/// DecltypeType AST's. The only motivation to unique these nodes would be
2432/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2433/// an issue. This doesn't effect the type checker, since it operates
2434/// on canonical type's (which are always unique).
2435QualType ASTContext::getDecltypeType(Expr *e) {
2436  DecltypeType *dt;
2437  if (e->isTypeDependent()) {
2438    llvm::FoldingSetNodeID ID;
2439    DependentDecltypeType::Profile(ID, *this, e);
2440
2441    void *InsertPos = 0;
2442    DependentDecltypeType *Canon
2443      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2444    if (Canon) {
2445      // We already have a "canonical" version of an equivalent, dependent
2446      // decltype type. Use that as our canonical type.
2447      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2448                                       QualType((DecltypeType*)Canon, 0));
2449    }
2450    else {
2451      // Build a new, canonical typeof(expr) type.
2452      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2453      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2454      dt = Canon;
2455    }
2456  } else {
2457    QualType T = getDecltypeForExpr(e, *this);
2458    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2459  }
2460  Types.push_back(dt);
2461  return QualType(dt, 0);
2462}
2463
2464/// getTagDeclType - Return the unique reference to the type for the
2465/// specified TagDecl (struct/union/class/enum) decl.
2466QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2467  assert (Decl);
2468  // FIXME: What is the design on getTagDeclType when it requires casting
2469  // away const?  mutable?
2470  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2471}
2472
2473/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2474/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2475/// needs to agree with the definition in <stddef.h>.
2476CanQualType ASTContext::getSizeType() const {
2477  return getFromTargetType(Target.getSizeType());
2478}
2479
2480/// getSignedWCharType - Return the type of "signed wchar_t".
2481/// Used when in C++, as a GCC extension.
2482QualType ASTContext::getSignedWCharType() const {
2483  // FIXME: derive from "Target" ?
2484  return WCharTy;
2485}
2486
2487/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2488/// Used when in C++, as a GCC extension.
2489QualType ASTContext::getUnsignedWCharType() const {
2490  // FIXME: derive from "Target" ?
2491  return UnsignedIntTy;
2492}
2493
2494/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2495/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2496QualType ASTContext::getPointerDiffType() const {
2497  return getFromTargetType(Target.getPtrDiffType(0));
2498}
2499
2500//===----------------------------------------------------------------------===//
2501//                              Type Operators
2502//===----------------------------------------------------------------------===//
2503
2504CanQualType ASTContext::getCanonicalParamType(QualType T) {
2505  // Push qualifiers into arrays, and then discard any remaining
2506  // qualifiers.
2507  T = getCanonicalType(T);
2508  T = getVariableArrayDecayedType(T);
2509  const Type *Ty = T.getTypePtr();
2510  QualType Result;
2511  if (isa<ArrayType>(Ty)) {
2512    Result = getArrayDecayedType(QualType(Ty,0));
2513  } else if (isa<FunctionType>(Ty)) {
2514    Result = getPointerType(QualType(Ty, 0));
2515  } else {
2516    Result = QualType(Ty, 0);
2517  }
2518
2519  return CanQualType::CreateUnsafe(Result);
2520}
2521
2522/// getCanonicalType - Return the canonical (structural) type corresponding to
2523/// the specified potentially non-canonical type.  The non-canonical version
2524/// of a type may have many "decorated" versions of types.  Decorators can
2525/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2526/// to be free of any of these, allowing two canonical types to be compared
2527/// for exact equality with a simple pointer comparison.
2528CanQualType ASTContext::getCanonicalType(QualType T) {
2529  QualifierCollector Quals;
2530  const Type *Ptr = Quals.strip(T);
2531  QualType CanType = Ptr->getCanonicalTypeInternal();
2532
2533  // The canonical internal type will be the canonical type *except*
2534  // that we push type qualifiers down through array types.
2535
2536  // If there are no new qualifiers to push down, stop here.
2537  if (!Quals.hasQualifiers())
2538    return CanQualType::CreateUnsafe(CanType);
2539
2540  // If the type qualifiers are on an array type, get the canonical
2541  // type of the array with the qualifiers applied to the element
2542  // type.
2543  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2544  if (!AT)
2545    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2546
2547  // Get the canonical version of the element with the extra qualifiers on it.
2548  // This can recursively sink qualifiers through multiple levels of arrays.
2549  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2550  NewEltTy = getCanonicalType(NewEltTy);
2551
2552  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2553    return CanQualType::CreateUnsafe(
2554             getConstantArrayType(NewEltTy, CAT->getSize(),
2555                                  CAT->getSizeModifier(),
2556                                  CAT->getIndexTypeCVRQualifiers()));
2557  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2558    return CanQualType::CreateUnsafe(
2559             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2560                                    IAT->getIndexTypeCVRQualifiers()));
2561
2562  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2563    return CanQualType::CreateUnsafe(
2564             getDependentSizedArrayType(NewEltTy,
2565                                        DSAT->getSizeExpr(),
2566                                        DSAT->getSizeModifier(),
2567                                        DSAT->getIndexTypeCVRQualifiers(),
2568                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2569
2570  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2571  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2572                                                        VAT->getSizeExpr(),
2573                                                        VAT->getSizeModifier(),
2574                                              VAT->getIndexTypeCVRQualifiers(),
2575                                                     VAT->getBracketsRange()));
2576}
2577
2578QualType ASTContext::getUnqualifiedArrayType(QualType T,
2579                                             Qualifiers &Quals) {
2580  Quals = T.getQualifiers();
2581  const ArrayType *AT = getAsArrayType(T);
2582  if (!AT) {
2583    return T.getUnqualifiedType();
2584  }
2585
2586  QualType Elt = AT->getElementType();
2587  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2588  if (Elt == UnqualElt)
2589    return T;
2590
2591  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2592    return getConstantArrayType(UnqualElt, CAT->getSize(),
2593                                CAT->getSizeModifier(), 0);
2594  }
2595
2596  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2597    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2598  }
2599
2600  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2601    return getVariableArrayType(UnqualElt,
2602                                VAT->getSizeExpr(),
2603                                VAT->getSizeModifier(),
2604                                VAT->getIndexTypeCVRQualifiers(),
2605                                VAT->getBracketsRange());
2606  }
2607
2608  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2609  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr(),
2610                                    DSAT->getSizeModifier(), 0,
2611                                    SourceRange());
2612}
2613
2614/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2615/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2616/// they point to and return true. If T1 and T2 aren't pointer types
2617/// or pointer-to-member types, or if they are not similar at this
2618/// level, returns false and leaves T1 and T2 unchanged. Top-level
2619/// qualifiers on T1 and T2 are ignored. This function will typically
2620/// be called in a loop that successively "unwraps" pointer and
2621/// pointer-to-member types to compare them at each level.
2622bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2623  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2624                    *T2PtrType = T2->getAs<PointerType>();
2625  if (T1PtrType && T2PtrType) {
2626    T1 = T1PtrType->getPointeeType();
2627    T2 = T2PtrType->getPointeeType();
2628    return true;
2629  }
2630
2631  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2632                          *T2MPType = T2->getAs<MemberPointerType>();
2633  if (T1MPType && T2MPType &&
2634      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2635                             QualType(T2MPType->getClass(), 0))) {
2636    T1 = T1MPType->getPointeeType();
2637    T2 = T2MPType->getPointeeType();
2638    return true;
2639  }
2640
2641  if (getLangOptions().ObjC1) {
2642    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2643                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2644    if (T1OPType && T2OPType) {
2645      T1 = T1OPType->getPointeeType();
2646      T2 = T2OPType->getPointeeType();
2647      return true;
2648    }
2649  }
2650
2651  // FIXME: Block pointers, too?
2652
2653  return false;
2654}
2655
2656DeclarationNameInfo ASTContext::getNameForTemplate(TemplateName Name,
2657                                                   SourceLocation NameLoc) {
2658  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2659    // DNInfo work in progress: CHECKME: what about DNLoc?
2660    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
2661
2662  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2663    DeclarationName DName;
2664    if (DTN->isIdentifier()) {
2665      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
2666      return DeclarationNameInfo(DName, NameLoc);
2667    } else {
2668      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
2669      // DNInfo work in progress: FIXME: source locations?
2670      DeclarationNameLoc DNLoc;
2671      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
2672      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
2673      return DeclarationNameInfo(DName, NameLoc, DNLoc);
2674    }
2675  }
2676
2677  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2678  assert(Storage);
2679  // DNInfo work in progress: CHECKME: what about DNLoc?
2680  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
2681}
2682
2683TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2684  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2685    if (TemplateTemplateParmDecl *TTP
2686                              = dyn_cast<TemplateTemplateParmDecl>(Template))
2687      Template = getCanonicalTemplateTemplateParmDecl(TTP);
2688
2689    // The canonical template name is the canonical template declaration.
2690    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2691  }
2692
2693  assert(!Name.getAsOverloadedTemplate());
2694
2695  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2696  assert(DTN && "Non-dependent template names must refer to template decls.");
2697  return DTN->CanonicalTemplateName;
2698}
2699
2700bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2701  X = getCanonicalTemplateName(X);
2702  Y = getCanonicalTemplateName(Y);
2703  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2704}
2705
2706TemplateArgument
2707ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2708  switch (Arg.getKind()) {
2709    case TemplateArgument::Null:
2710      return Arg;
2711
2712    case TemplateArgument::Expression:
2713      return Arg;
2714
2715    case TemplateArgument::Declaration:
2716      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2717
2718    case TemplateArgument::Template:
2719      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2720
2721    case TemplateArgument::Integral:
2722      return TemplateArgument(*Arg.getAsIntegral(),
2723                              getCanonicalType(Arg.getIntegralType()));
2724
2725    case TemplateArgument::Type:
2726      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2727
2728    case TemplateArgument::Pack: {
2729      TemplateArgument *CanonArgs
2730        = new (*this) TemplateArgument[Arg.pack_size()];
2731      unsigned Idx = 0;
2732      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2733                                        AEnd = Arg.pack_end();
2734           A != AEnd; (void)++A, ++Idx)
2735        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2736
2737      return TemplateArgument(CanonArgs, Arg.pack_size());
2738    }
2739  }
2740
2741  // Silence GCC warning
2742  assert(false && "Unhandled template argument kind");
2743  return TemplateArgument();
2744}
2745
2746NestedNameSpecifier *
2747ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2748  if (!NNS)
2749    return 0;
2750
2751  switch (NNS->getKind()) {
2752  case NestedNameSpecifier::Identifier:
2753    // Canonicalize the prefix but keep the identifier the same.
2754    return NestedNameSpecifier::Create(*this,
2755                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2756                                       NNS->getAsIdentifier());
2757
2758  case NestedNameSpecifier::Namespace:
2759    // A namespace is canonical; build a nested-name-specifier with
2760    // this namespace and no prefix.
2761    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2762
2763  case NestedNameSpecifier::TypeSpec:
2764  case NestedNameSpecifier::TypeSpecWithTemplate: {
2765    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2766
2767    // If we have some kind of dependent-named type (e.g., "typename T::type"),
2768    // break it apart into its prefix and identifier, then reconsititute those
2769    // as the canonical nested-name-specifier. This is required to canonicalize
2770    // a dependent nested-name-specifier involving typedefs of dependent-name
2771    // types, e.g.,
2772    //   typedef typename T::type T1;
2773    //   typedef typename T1::type T2;
2774    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
2775      NestedNameSpecifier *Prefix
2776        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
2777      return NestedNameSpecifier::Create(*this, Prefix,
2778                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
2779    }
2780
2781    // Do the same thing as above, but with dependent-named specializations.
2782    if (const DependentTemplateSpecializationType *DTST
2783          = T->getAs<DependentTemplateSpecializationType>()) {
2784      NestedNameSpecifier *Prefix
2785        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
2786      TemplateName Name
2787        = getDependentTemplateName(Prefix, DTST->getIdentifier());
2788      T = getTemplateSpecializationType(Name,
2789                                        DTST->getArgs(), DTST->getNumArgs());
2790      T = getCanonicalType(T);
2791    }
2792
2793    return NestedNameSpecifier::Create(*this, 0, false, T.getTypePtr());
2794  }
2795
2796  case NestedNameSpecifier::Global:
2797    // The global specifier is canonical and unique.
2798    return NNS;
2799  }
2800
2801  // Required to silence a GCC warning
2802  return 0;
2803}
2804
2805
2806const ArrayType *ASTContext::getAsArrayType(QualType T) {
2807  // Handle the non-qualified case efficiently.
2808  if (!T.hasLocalQualifiers()) {
2809    // Handle the common positive case fast.
2810    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2811      return AT;
2812  }
2813
2814  // Handle the common negative case fast.
2815  QualType CType = T->getCanonicalTypeInternal();
2816  if (!isa<ArrayType>(CType))
2817    return 0;
2818
2819  // Apply any qualifiers from the array type to the element type.  This
2820  // implements C99 6.7.3p8: "If the specification of an array type includes
2821  // any type qualifiers, the element type is so qualified, not the array type."
2822
2823  // If we get here, we either have type qualifiers on the type, or we have
2824  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2825  // we must propagate them down into the element type.
2826
2827  QualifierCollector Qs;
2828  const Type *Ty = Qs.strip(T.getDesugaredType(*this));
2829
2830  // If we have a simple case, just return now.
2831  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2832  if (ATy == 0 || Qs.empty())
2833    return ATy;
2834
2835  // Otherwise, we have an array and we have qualifiers on it.  Push the
2836  // qualifiers into the array element type and return a new array type.
2837  // Get the canonical version of the element with the extra qualifiers on it.
2838  // This can recursively sink qualifiers through multiple levels of arrays.
2839  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2840
2841  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2842    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2843                                                CAT->getSizeModifier(),
2844                                           CAT->getIndexTypeCVRQualifiers()));
2845  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2846    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2847                                                  IAT->getSizeModifier(),
2848                                           IAT->getIndexTypeCVRQualifiers()));
2849
2850  if (const DependentSizedArrayType *DSAT
2851        = dyn_cast<DependentSizedArrayType>(ATy))
2852    return cast<ArrayType>(
2853                     getDependentSizedArrayType(NewEltTy,
2854                                                DSAT->getSizeExpr(),
2855                                                DSAT->getSizeModifier(),
2856                                              DSAT->getIndexTypeCVRQualifiers(),
2857                                                DSAT->getBracketsRange()));
2858
2859  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2860  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2861                                              VAT->getSizeExpr(),
2862                                              VAT->getSizeModifier(),
2863                                              VAT->getIndexTypeCVRQualifiers(),
2864                                              VAT->getBracketsRange()));
2865}
2866
2867/// getArrayDecayedType - Return the properly qualified result of decaying the
2868/// specified array type to a pointer.  This operation is non-trivial when
2869/// handling typedefs etc.  The canonical type of "T" must be an array type,
2870/// this returns a pointer to a properly qualified element of the array.
2871///
2872/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2873QualType ASTContext::getArrayDecayedType(QualType Ty) {
2874  // Get the element type with 'getAsArrayType' so that we don't lose any
2875  // typedefs in the element type of the array.  This also handles propagation
2876  // of type qualifiers from the array type into the element type if present
2877  // (C99 6.7.3p8).
2878  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2879  assert(PrettyArrayType && "Not an array type!");
2880
2881  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2882
2883  // int x[restrict 4] ->  int *restrict
2884  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2885}
2886
2887QualType ASTContext::getBaseElementType(QualType QT) {
2888  QualifierCollector Qs;
2889  while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
2890    QT = AT->getElementType();
2891  return Qs.apply(*this, QT);
2892}
2893
2894QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2895  QualType ElemTy = AT->getElementType();
2896
2897  if (const ArrayType *AT = getAsArrayType(ElemTy))
2898    return getBaseElementType(AT);
2899
2900  return ElemTy;
2901}
2902
2903/// getConstantArrayElementCount - Returns number of constant array elements.
2904uint64_t
2905ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2906  uint64_t ElementCount = 1;
2907  do {
2908    ElementCount *= CA->getSize().getZExtValue();
2909    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2910  } while (CA);
2911  return ElementCount;
2912}
2913
2914/// getFloatingRank - Return a relative rank for floating point types.
2915/// This routine will assert if passed a built-in type that isn't a float.
2916static FloatingRank getFloatingRank(QualType T) {
2917  if (const ComplexType *CT = T->getAs<ComplexType>())
2918    return getFloatingRank(CT->getElementType());
2919
2920  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2921  switch (T->getAs<BuiltinType>()->getKind()) {
2922  default: assert(0 && "getFloatingRank(): not a floating type");
2923  case BuiltinType::Float:      return FloatRank;
2924  case BuiltinType::Double:     return DoubleRank;
2925  case BuiltinType::LongDouble: return LongDoubleRank;
2926  }
2927}
2928
2929/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2930/// point or a complex type (based on typeDomain/typeSize).
2931/// 'typeDomain' is a real floating point or complex type.
2932/// 'typeSize' is a real floating point or complex type.
2933QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2934                                                       QualType Domain) const {
2935  FloatingRank EltRank = getFloatingRank(Size);
2936  if (Domain->isComplexType()) {
2937    switch (EltRank) {
2938    default: assert(0 && "getFloatingRank(): illegal value for rank");
2939    case FloatRank:      return FloatComplexTy;
2940    case DoubleRank:     return DoubleComplexTy;
2941    case LongDoubleRank: return LongDoubleComplexTy;
2942    }
2943  }
2944
2945  assert(Domain->isRealFloatingType() && "Unknown domain!");
2946  switch (EltRank) {
2947  default: assert(0 && "getFloatingRank(): illegal value for rank");
2948  case FloatRank:      return FloatTy;
2949  case DoubleRank:     return DoubleTy;
2950  case LongDoubleRank: return LongDoubleTy;
2951  }
2952}
2953
2954/// getFloatingTypeOrder - Compare the rank of the two specified floating
2955/// point types, ignoring the domain of the type (i.e. 'double' ==
2956/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2957/// LHS < RHS, return -1.
2958int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2959  FloatingRank LHSR = getFloatingRank(LHS);
2960  FloatingRank RHSR = getFloatingRank(RHS);
2961
2962  if (LHSR == RHSR)
2963    return 0;
2964  if (LHSR > RHSR)
2965    return 1;
2966  return -1;
2967}
2968
2969/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2970/// routine will assert if passed a built-in type that isn't an integer or enum,
2971/// or if it is not canonicalized.
2972unsigned ASTContext::getIntegerRank(Type *T) {
2973  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2974  if (EnumType* ET = dyn_cast<EnumType>(T))
2975    T = ET->getDecl()->getPromotionType().getTypePtr();
2976
2977  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2978    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2979
2980  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2981    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2982
2983  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2984    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2985
2986  switch (cast<BuiltinType>(T)->getKind()) {
2987  default: assert(0 && "getIntegerRank(): not a built-in integer");
2988  case BuiltinType::Bool:
2989    return 1 + (getIntWidth(BoolTy) << 3);
2990  case BuiltinType::Char_S:
2991  case BuiltinType::Char_U:
2992  case BuiltinType::SChar:
2993  case BuiltinType::UChar:
2994    return 2 + (getIntWidth(CharTy) << 3);
2995  case BuiltinType::Short:
2996  case BuiltinType::UShort:
2997    return 3 + (getIntWidth(ShortTy) << 3);
2998  case BuiltinType::Int:
2999  case BuiltinType::UInt:
3000    return 4 + (getIntWidth(IntTy) << 3);
3001  case BuiltinType::Long:
3002  case BuiltinType::ULong:
3003    return 5 + (getIntWidth(LongTy) << 3);
3004  case BuiltinType::LongLong:
3005  case BuiltinType::ULongLong:
3006    return 6 + (getIntWidth(LongLongTy) << 3);
3007  case BuiltinType::Int128:
3008  case BuiltinType::UInt128:
3009    return 7 + (getIntWidth(Int128Ty) << 3);
3010  }
3011}
3012
3013/// \brief Whether this is a promotable bitfield reference according
3014/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3015///
3016/// \returns the type this bit-field will promote to, or NULL if no
3017/// promotion occurs.
3018QualType ASTContext::isPromotableBitField(Expr *E) {
3019  if (E->isTypeDependent() || E->isValueDependent())
3020    return QualType();
3021
3022  FieldDecl *Field = E->getBitField();
3023  if (!Field)
3024    return QualType();
3025
3026  QualType FT = Field->getType();
3027
3028  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3029  uint64_t BitWidth = BitWidthAP.getZExtValue();
3030  uint64_t IntSize = getTypeSize(IntTy);
3031  // GCC extension compatibility: if the bit-field size is less than or equal
3032  // to the size of int, it gets promoted no matter what its type is.
3033  // For instance, unsigned long bf : 4 gets promoted to signed int.
3034  if (BitWidth < IntSize)
3035    return IntTy;
3036
3037  if (BitWidth == IntSize)
3038    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3039
3040  // Types bigger than int are not subject to promotions, and therefore act
3041  // like the base type.
3042  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3043  // is ridiculous.
3044  return QualType();
3045}
3046
3047/// getPromotedIntegerType - Returns the type that Promotable will
3048/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3049/// integer type.
3050QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
3051  assert(!Promotable.isNull());
3052  assert(Promotable->isPromotableIntegerType());
3053  if (const EnumType *ET = Promotable->getAs<EnumType>())
3054    return ET->getDecl()->getPromotionType();
3055  if (Promotable->isSignedIntegerType())
3056    return IntTy;
3057  uint64_t PromotableSize = getTypeSize(Promotable);
3058  uint64_t IntSize = getTypeSize(IntTy);
3059  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3060  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3061}
3062
3063/// getIntegerTypeOrder - Returns the highest ranked integer type:
3064/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3065/// LHS < RHS, return -1.
3066int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
3067  Type *LHSC = getCanonicalType(LHS).getTypePtr();
3068  Type *RHSC = getCanonicalType(RHS).getTypePtr();
3069  if (LHSC == RHSC) return 0;
3070
3071  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3072  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3073
3074  unsigned LHSRank = getIntegerRank(LHSC);
3075  unsigned RHSRank = getIntegerRank(RHSC);
3076
3077  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3078    if (LHSRank == RHSRank) return 0;
3079    return LHSRank > RHSRank ? 1 : -1;
3080  }
3081
3082  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3083  if (LHSUnsigned) {
3084    // If the unsigned [LHS] type is larger, return it.
3085    if (LHSRank >= RHSRank)
3086      return 1;
3087
3088    // If the signed type can represent all values of the unsigned type, it
3089    // wins.  Because we are dealing with 2's complement and types that are
3090    // powers of two larger than each other, this is always safe.
3091    return -1;
3092  }
3093
3094  // If the unsigned [RHS] type is larger, return it.
3095  if (RHSRank >= LHSRank)
3096    return -1;
3097
3098  // If the signed type can represent all values of the unsigned type, it
3099  // wins.  Because we are dealing with 2's complement and types that are
3100  // powers of two larger than each other, this is always safe.
3101  return 1;
3102}
3103
3104static RecordDecl *
3105CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
3106                 SourceLocation L, IdentifierInfo *Id) {
3107  if (Ctx.getLangOptions().CPlusPlus)
3108    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
3109  else
3110    return RecordDecl::Create(Ctx, TK, DC, L, Id);
3111}
3112
3113// getCFConstantStringType - Return the type used for constant CFStrings.
3114QualType ASTContext::getCFConstantStringType() {
3115  if (!CFConstantStringTypeDecl) {
3116    CFConstantStringTypeDecl =
3117      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3118                       &Idents.get("NSConstantString"));
3119    CFConstantStringTypeDecl->startDefinition();
3120
3121    QualType FieldTypes[4];
3122
3123    // const int *isa;
3124    FieldTypes[0] = getPointerType(IntTy.withConst());
3125    // int flags;
3126    FieldTypes[1] = IntTy;
3127    // const char *str;
3128    FieldTypes[2] = getPointerType(CharTy.withConst());
3129    // long length;
3130    FieldTypes[3] = LongTy;
3131
3132    // Create fields
3133    for (unsigned i = 0; i < 4; ++i) {
3134      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3135                                           SourceLocation(), 0,
3136                                           FieldTypes[i], /*TInfo=*/0,
3137                                           /*BitWidth=*/0,
3138                                           /*Mutable=*/false);
3139      Field->setAccess(AS_public);
3140      CFConstantStringTypeDecl->addDecl(Field);
3141    }
3142
3143    CFConstantStringTypeDecl->completeDefinition();
3144  }
3145
3146  return getTagDeclType(CFConstantStringTypeDecl);
3147}
3148
3149void ASTContext::setCFConstantStringType(QualType T) {
3150  const RecordType *Rec = T->getAs<RecordType>();
3151  assert(Rec && "Invalid CFConstantStringType");
3152  CFConstantStringTypeDecl = Rec->getDecl();
3153}
3154
3155// getNSConstantStringType - Return the type used for constant NSStrings.
3156QualType ASTContext::getNSConstantStringType() {
3157  if (!NSConstantStringTypeDecl) {
3158    NSConstantStringTypeDecl =
3159    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3160                     &Idents.get("__builtin_NSString"));
3161    NSConstantStringTypeDecl->startDefinition();
3162
3163    QualType FieldTypes[3];
3164
3165    // const int *isa;
3166    FieldTypes[0] = getPointerType(IntTy.withConst());
3167    // const char *str;
3168    FieldTypes[1] = getPointerType(CharTy.withConst());
3169    // unsigned int length;
3170    FieldTypes[2] = UnsignedIntTy;
3171
3172    // Create fields
3173    for (unsigned i = 0; i < 3; ++i) {
3174      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3175                                           SourceLocation(), 0,
3176                                           FieldTypes[i], /*TInfo=*/0,
3177                                           /*BitWidth=*/0,
3178                                           /*Mutable=*/false);
3179      Field->setAccess(AS_public);
3180      NSConstantStringTypeDecl->addDecl(Field);
3181    }
3182
3183    NSConstantStringTypeDecl->completeDefinition();
3184  }
3185
3186  return getTagDeclType(NSConstantStringTypeDecl);
3187}
3188
3189void ASTContext::setNSConstantStringType(QualType T) {
3190  const RecordType *Rec = T->getAs<RecordType>();
3191  assert(Rec && "Invalid NSConstantStringType");
3192  NSConstantStringTypeDecl = Rec->getDecl();
3193}
3194
3195QualType ASTContext::getObjCFastEnumerationStateType() {
3196  if (!ObjCFastEnumerationStateTypeDecl) {
3197    ObjCFastEnumerationStateTypeDecl =
3198      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3199                       &Idents.get("__objcFastEnumerationState"));
3200    ObjCFastEnumerationStateTypeDecl->startDefinition();
3201
3202    QualType FieldTypes[] = {
3203      UnsignedLongTy,
3204      getPointerType(ObjCIdTypedefType),
3205      getPointerType(UnsignedLongTy),
3206      getConstantArrayType(UnsignedLongTy,
3207                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3208    };
3209
3210    for (size_t i = 0; i < 4; ++i) {
3211      FieldDecl *Field = FieldDecl::Create(*this,
3212                                           ObjCFastEnumerationStateTypeDecl,
3213                                           SourceLocation(), 0,
3214                                           FieldTypes[i], /*TInfo=*/0,
3215                                           /*BitWidth=*/0,
3216                                           /*Mutable=*/false);
3217      Field->setAccess(AS_public);
3218      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3219    }
3220
3221    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3222  }
3223
3224  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3225}
3226
3227QualType ASTContext::getBlockDescriptorType() {
3228  if (BlockDescriptorType)
3229    return getTagDeclType(BlockDescriptorType);
3230
3231  RecordDecl *T;
3232  // FIXME: Needs the FlagAppleBlock bit.
3233  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3234                       &Idents.get("__block_descriptor"));
3235  T->startDefinition();
3236
3237  QualType FieldTypes[] = {
3238    UnsignedLongTy,
3239    UnsignedLongTy,
3240  };
3241
3242  const char *FieldNames[] = {
3243    "reserved",
3244    "Size"
3245  };
3246
3247  for (size_t i = 0; i < 2; ++i) {
3248    FieldDecl *Field = FieldDecl::Create(*this,
3249                                         T,
3250                                         SourceLocation(),
3251                                         &Idents.get(FieldNames[i]),
3252                                         FieldTypes[i], /*TInfo=*/0,
3253                                         /*BitWidth=*/0,
3254                                         /*Mutable=*/false);
3255    Field->setAccess(AS_public);
3256    T->addDecl(Field);
3257  }
3258
3259  T->completeDefinition();
3260
3261  BlockDescriptorType = T;
3262
3263  return getTagDeclType(BlockDescriptorType);
3264}
3265
3266void ASTContext::setBlockDescriptorType(QualType T) {
3267  const RecordType *Rec = T->getAs<RecordType>();
3268  assert(Rec && "Invalid BlockDescriptorType");
3269  BlockDescriptorType = Rec->getDecl();
3270}
3271
3272QualType ASTContext::getBlockDescriptorExtendedType() {
3273  if (BlockDescriptorExtendedType)
3274    return getTagDeclType(BlockDescriptorExtendedType);
3275
3276  RecordDecl *T;
3277  // FIXME: Needs the FlagAppleBlock bit.
3278  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3279                       &Idents.get("__block_descriptor_withcopydispose"));
3280  T->startDefinition();
3281
3282  QualType FieldTypes[] = {
3283    UnsignedLongTy,
3284    UnsignedLongTy,
3285    getPointerType(VoidPtrTy),
3286    getPointerType(VoidPtrTy)
3287  };
3288
3289  const char *FieldNames[] = {
3290    "reserved",
3291    "Size",
3292    "CopyFuncPtr",
3293    "DestroyFuncPtr"
3294  };
3295
3296  for (size_t i = 0; i < 4; ++i) {
3297    FieldDecl *Field = FieldDecl::Create(*this,
3298                                         T,
3299                                         SourceLocation(),
3300                                         &Idents.get(FieldNames[i]),
3301                                         FieldTypes[i], /*TInfo=*/0,
3302                                         /*BitWidth=*/0,
3303                                         /*Mutable=*/false);
3304    Field->setAccess(AS_public);
3305    T->addDecl(Field);
3306  }
3307
3308  T->completeDefinition();
3309
3310  BlockDescriptorExtendedType = T;
3311
3312  return getTagDeclType(BlockDescriptorExtendedType);
3313}
3314
3315void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3316  const RecordType *Rec = T->getAs<RecordType>();
3317  assert(Rec && "Invalid BlockDescriptorType");
3318  BlockDescriptorExtendedType = Rec->getDecl();
3319}
3320
3321bool ASTContext::BlockRequiresCopying(QualType Ty) {
3322  if (Ty->isBlockPointerType())
3323    return true;
3324  if (isObjCNSObjectType(Ty))
3325    return true;
3326  if (Ty->isObjCObjectPointerType())
3327    return true;
3328  if (getLangOptions().CPlusPlus) {
3329    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3330      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3331      return RD->hasConstCopyConstructor(*this);
3332
3333    }
3334  }
3335  return false;
3336}
3337
3338QualType ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) {
3339  //  type = struct __Block_byref_1_X {
3340  //    void *__isa;
3341  //    struct __Block_byref_1_X *__forwarding;
3342  //    unsigned int __flags;
3343  //    unsigned int __size;
3344  //    void *__copy_helper;            // as needed
3345  //    void *__destroy_help            // as needed
3346  //    int X;
3347  //  } *
3348
3349  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3350
3351  // FIXME: Move up
3352  llvm::SmallString<36> Name;
3353  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3354                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3355  RecordDecl *T;
3356  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3357                       &Idents.get(Name.str()));
3358  T->startDefinition();
3359  QualType Int32Ty = IntTy;
3360  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3361  QualType FieldTypes[] = {
3362    getPointerType(VoidPtrTy),
3363    getPointerType(getTagDeclType(T)),
3364    Int32Ty,
3365    Int32Ty,
3366    getPointerType(VoidPtrTy),
3367    getPointerType(VoidPtrTy),
3368    Ty
3369  };
3370
3371  llvm::StringRef FieldNames[] = {
3372    "__isa",
3373    "__forwarding",
3374    "__flags",
3375    "__size",
3376    "__copy_helper",
3377    "__destroy_helper",
3378    DeclName,
3379  };
3380
3381  for (size_t i = 0; i < 7; ++i) {
3382    if (!HasCopyAndDispose && i >=4 && i <= 5)
3383      continue;
3384    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3385                                         &Idents.get(FieldNames[i]),
3386                                         FieldTypes[i], /*TInfo=*/0,
3387                                         /*BitWidth=*/0, /*Mutable=*/false);
3388    Field->setAccess(AS_public);
3389    T->addDecl(Field);
3390  }
3391
3392  T->completeDefinition();
3393
3394  return getPointerType(getTagDeclType(T));
3395}
3396
3397
3398QualType ASTContext::getBlockParmType(
3399  bool BlockHasCopyDispose,
3400  llvm::SmallVectorImpl<const Expr *> &Layout) {
3401
3402  // FIXME: Move up
3403  llvm::SmallString<36> Name;
3404  llvm::raw_svector_ostream(Name) << "__block_literal_"
3405                                  << ++UniqueBlockParmTypeID;
3406  RecordDecl *T;
3407  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3408                       &Idents.get(Name.str()));
3409  T->startDefinition();
3410  QualType FieldTypes[] = {
3411    getPointerType(VoidPtrTy),
3412    IntTy,
3413    IntTy,
3414    getPointerType(VoidPtrTy),
3415    (BlockHasCopyDispose ?
3416     getPointerType(getBlockDescriptorExtendedType()) :
3417     getPointerType(getBlockDescriptorType()))
3418  };
3419
3420  const char *FieldNames[] = {
3421    "__isa",
3422    "__flags",
3423    "__reserved",
3424    "__FuncPtr",
3425    "__descriptor"
3426  };
3427
3428  for (size_t i = 0; i < 5; ++i) {
3429    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3430                                         &Idents.get(FieldNames[i]),
3431                                         FieldTypes[i], /*TInfo=*/0,
3432                                         /*BitWidth=*/0, /*Mutable=*/false);
3433    Field->setAccess(AS_public);
3434    T->addDecl(Field);
3435  }
3436
3437  for (unsigned i = 0; i < Layout.size(); ++i) {
3438    const Expr *E = Layout[i];
3439
3440    QualType FieldType = E->getType();
3441    IdentifierInfo *FieldName = 0;
3442    if (isa<CXXThisExpr>(E)) {
3443      FieldName = &Idents.get("this");
3444    } else if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) {
3445      const ValueDecl *D = BDRE->getDecl();
3446      FieldName = D->getIdentifier();
3447      if (BDRE->isByRef())
3448        FieldType = BuildByRefType(D->getName(), FieldType);
3449    } else {
3450      // Padding.
3451      assert(isa<ConstantArrayType>(FieldType) &&
3452             isa<DeclRefExpr>(E) &&
3453             !cast<DeclRefExpr>(E)->getDecl()->getDeclName() &&
3454             "doesn't match characteristics of padding decl");
3455    }
3456
3457    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3458                                         FieldName, FieldType, /*TInfo=*/0,
3459                                         /*BitWidth=*/0, /*Mutable=*/false);
3460    Field->setAccess(AS_public);
3461    T->addDecl(Field);
3462  }
3463
3464  T->completeDefinition();
3465
3466  return getPointerType(getTagDeclType(T));
3467}
3468
3469void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3470  const RecordType *Rec = T->getAs<RecordType>();
3471  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3472  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3473}
3474
3475// This returns true if a type has been typedefed to BOOL:
3476// typedef <type> BOOL;
3477static bool isTypeTypedefedAsBOOL(QualType T) {
3478  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3479    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3480      return II->isStr("BOOL");
3481
3482  return false;
3483}
3484
3485/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3486/// purpose.
3487CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3488  CharUnits sz = getTypeSizeInChars(type);
3489
3490  // Make all integer and enum types at least as large as an int
3491  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3492    sz = std::max(sz, getTypeSizeInChars(IntTy));
3493  // Treat arrays as pointers, since that's how they're passed in.
3494  else if (type->isArrayType())
3495    sz = getTypeSizeInChars(VoidPtrTy);
3496  return sz;
3497}
3498
3499static inline
3500std::string charUnitsToString(const CharUnits &CU) {
3501  return llvm::itostr(CU.getQuantity());
3502}
3503
3504/// getObjCEncodingForBlockDecl - Return the encoded type for this block
3505/// declaration.
3506void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3507                                             std::string& S) {
3508  const BlockDecl *Decl = Expr->getBlockDecl();
3509  QualType BlockTy =
3510      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3511  // Encode result type.
3512  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3513  // Compute size of all parameters.
3514  // Start with computing size of a pointer in number of bytes.
3515  // FIXME: There might(should) be a better way of doing this computation!
3516  SourceLocation Loc;
3517  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3518  CharUnits ParmOffset = PtrSize;
3519  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3520       E = Decl->param_end(); PI != E; ++PI) {
3521    QualType PType = (*PI)->getType();
3522    CharUnits sz = getObjCEncodingTypeSize(PType);
3523    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3524    ParmOffset += sz;
3525  }
3526  // Size of the argument frame
3527  S += charUnitsToString(ParmOffset);
3528  // Block pointer and offset.
3529  S += "@?0";
3530  ParmOffset = PtrSize;
3531
3532  // Argument types.
3533  ParmOffset = PtrSize;
3534  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3535       Decl->param_end(); PI != E; ++PI) {
3536    ParmVarDecl *PVDecl = *PI;
3537    QualType PType = PVDecl->getOriginalType();
3538    if (const ArrayType *AT =
3539          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3540      // Use array's original type only if it has known number of
3541      // elements.
3542      if (!isa<ConstantArrayType>(AT))
3543        PType = PVDecl->getType();
3544    } else if (PType->isFunctionType())
3545      PType = PVDecl->getType();
3546    getObjCEncodingForType(PType, S);
3547    S += charUnitsToString(ParmOffset);
3548    ParmOffset += getObjCEncodingTypeSize(PType);
3549  }
3550}
3551
3552/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3553/// declaration.
3554void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3555                                              std::string& S) {
3556  // FIXME: This is not very efficient.
3557  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3558  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3559  // Encode result type.
3560  getObjCEncodingForType(Decl->getResultType(), S);
3561  // Compute size of all parameters.
3562  // Start with computing size of a pointer in number of bytes.
3563  // FIXME: There might(should) be a better way of doing this computation!
3564  SourceLocation Loc;
3565  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3566  // The first two arguments (self and _cmd) are pointers; account for
3567  // their size.
3568  CharUnits ParmOffset = 2 * PtrSize;
3569  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3570       E = Decl->sel_param_end(); PI != E; ++PI) {
3571    QualType PType = (*PI)->getType();
3572    CharUnits sz = getObjCEncodingTypeSize(PType);
3573    assert (sz.isPositive() &&
3574        "getObjCEncodingForMethodDecl - Incomplete param type");
3575    ParmOffset += sz;
3576  }
3577  S += charUnitsToString(ParmOffset);
3578  S += "@0:";
3579  S += charUnitsToString(PtrSize);
3580
3581  // Argument types.
3582  ParmOffset = 2 * PtrSize;
3583  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3584       E = Decl->sel_param_end(); PI != E; ++PI) {
3585    ParmVarDecl *PVDecl = *PI;
3586    QualType PType = PVDecl->getOriginalType();
3587    if (const ArrayType *AT =
3588          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3589      // Use array's original type only if it has known number of
3590      // elements.
3591      if (!isa<ConstantArrayType>(AT))
3592        PType = PVDecl->getType();
3593    } else if (PType->isFunctionType())
3594      PType = PVDecl->getType();
3595    // Process argument qualifiers for user supplied arguments; such as,
3596    // 'in', 'inout', etc.
3597    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3598    getObjCEncodingForType(PType, S);
3599    S += charUnitsToString(ParmOffset);
3600    ParmOffset += getObjCEncodingTypeSize(PType);
3601  }
3602}
3603
3604/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3605/// property declaration. If non-NULL, Container must be either an
3606/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3607/// NULL when getting encodings for protocol properties.
3608/// Property attributes are stored as a comma-delimited C string. The simple
3609/// attributes readonly and bycopy are encoded as single characters. The
3610/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3611/// encoded as single characters, followed by an identifier. Property types
3612/// are also encoded as a parametrized attribute. The characters used to encode
3613/// these attributes are defined by the following enumeration:
3614/// @code
3615/// enum PropertyAttributes {
3616/// kPropertyReadOnly = 'R',   // property is read-only.
3617/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3618/// kPropertyByref = '&',  // property is a reference to the value last assigned
3619/// kPropertyDynamic = 'D',    // property is dynamic
3620/// kPropertyGetter = 'G',     // followed by getter selector name
3621/// kPropertySetter = 'S',     // followed by setter selector name
3622/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3623/// kPropertyType = 't'              // followed by old-style type encoding.
3624/// kPropertyWeak = 'W'              // 'weak' property
3625/// kPropertyStrong = 'P'            // property GC'able
3626/// kPropertyNonAtomic = 'N'         // property non-atomic
3627/// };
3628/// @endcode
3629void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3630                                                const Decl *Container,
3631                                                std::string& S) {
3632  // Collect information from the property implementation decl(s).
3633  bool Dynamic = false;
3634  ObjCPropertyImplDecl *SynthesizePID = 0;
3635
3636  // FIXME: Duplicated code due to poor abstraction.
3637  if (Container) {
3638    if (const ObjCCategoryImplDecl *CID =
3639        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3640      for (ObjCCategoryImplDecl::propimpl_iterator
3641             i = CID->propimpl_begin(), e = CID->propimpl_end();
3642           i != e; ++i) {
3643        ObjCPropertyImplDecl *PID = *i;
3644        if (PID->getPropertyDecl() == PD) {
3645          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3646            Dynamic = true;
3647          } else {
3648            SynthesizePID = PID;
3649          }
3650        }
3651      }
3652    } else {
3653      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3654      for (ObjCCategoryImplDecl::propimpl_iterator
3655             i = OID->propimpl_begin(), e = OID->propimpl_end();
3656           i != e; ++i) {
3657        ObjCPropertyImplDecl *PID = *i;
3658        if (PID->getPropertyDecl() == PD) {
3659          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3660            Dynamic = true;
3661          } else {
3662            SynthesizePID = PID;
3663          }
3664        }
3665      }
3666    }
3667  }
3668
3669  // FIXME: This is not very efficient.
3670  S = "T";
3671
3672  // Encode result type.
3673  // GCC has some special rules regarding encoding of properties which
3674  // closely resembles encoding of ivars.
3675  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3676                             true /* outermost type */,
3677                             true /* encoding for property */);
3678
3679  if (PD->isReadOnly()) {
3680    S += ",R";
3681  } else {
3682    switch (PD->getSetterKind()) {
3683    case ObjCPropertyDecl::Assign: break;
3684    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3685    case ObjCPropertyDecl::Retain: S += ",&"; break;
3686    }
3687  }
3688
3689  // It really isn't clear at all what this means, since properties
3690  // are "dynamic by default".
3691  if (Dynamic)
3692    S += ",D";
3693
3694  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3695    S += ",N";
3696
3697  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3698    S += ",G";
3699    S += PD->getGetterName().getAsString();
3700  }
3701
3702  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3703    S += ",S";
3704    S += PD->getSetterName().getAsString();
3705  }
3706
3707  if (SynthesizePID) {
3708    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3709    S += ",V";
3710    S += OID->getNameAsString();
3711  }
3712
3713  // FIXME: OBJCGC: weak & strong
3714}
3715
3716/// getLegacyIntegralTypeEncoding -
3717/// Another legacy compatibility encoding: 32-bit longs are encoded as
3718/// 'l' or 'L' , but not always.  For typedefs, we need to use
3719/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3720///
3721void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3722  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3723    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3724      if (BT->getKind() == BuiltinType::ULong &&
3725          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3726        PointeeTy = UnsignedIntTy;
3727      else
3728        if (BT->getKind() == BuiltinType::Long &&
3729            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3730          PointeeTy = IntTy;
3731    }
3732  }
3733}
3734
3735void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3736                                        const FieldDecl *Field) {
3737  // We follow the behavior of gcc, expanding structures which are
3738  // directly pointed to, and expanding embedded structures. Note that
3739  // these rules are sufficient to prevent recursive encoding of the
3740  // same type.
3741  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3742                             true /* outermost type */);
3743}
3744
3745static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3746    switch (T->getAs<BuiltinType>()->getKind()) {
3747    default: assert(0 && "Unhandled builtin type kind");
3748    case BuiltinType::Void:       return 'v';
3749    case BuiltinType::Bool:       return 'B';
3750    case BuiltinType::Char_U:
3751    case BuiltinType::UChar:      return 'C';
3752    case BuiltinType::UShort:     return 'S';
3753    case BuiltinType::UInt:       return 'I';
3754    case BuiltinType::ULong:
3755        return
3756          (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'L' : 'Q';
3757    case BuiltinType::UInt128:    return 'T';
3758    case BuiltinType::ULongLong:  return 'Q';
3759    case BuiltinType::Char_S:
3760    case BuiltinType::SChar:      return 'c';
3761    case BuiltinType::Short:      return 's';
3762    case BuiltinType::WChar:
3763    case BuiltinType::Int:        return 'i';
3764    case BuiltinType::Long:
3765      return
3766        (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'l' : 'q';
3767    case BuiltinType::LongLong:   return 'q';
3768    case BuiltinType::Int128:     return 't';
3769    case BuiltinType::Float:      return 'f';
3770    case BuiltinType::Double:     return 'd';
3771    case BuiltinType::LongDouble: return 'D';
3772    }
3773}
3774
3775static void EncodeBitField(const ASTContext *Context, std::string& S,
3776                           QualType T, const FieldDecl *FD) {
3777  const Expr *E = FD->getBitWidth();
3778  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3779  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3780  S += 'b';
3781  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3782  // The GNU runtime requires more information; bitfields are encoded as b,
3783  // then the offset (in bits) of the first element, then the type of the
3784  // bitfield, then the size in bits.  For example, in this structure:
3785  //
3786  // struct
3787  // {
3788  //    int integer;
3789  //    int flags:2;
3790  // };
3791  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
3792  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
3793  // information is not especially sensible, but we're stuck with it for
3794  // compatibility with GCC, although providing it breaks anything that
3795  // actually uses runtime introspection and wants to work on both runtimes...
3796  if (!Ctx->getLangOptions().NeXTRuntime) {
3797    const RecordDecl *RD = FD->getParent();
3798    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
3799    // FIXME: This same linear search is also used in ExprConstant - it might
3800    // be better if the FieldDecl stored its offset.  We'd be increasing the
3801    // size of the object slightly, but saving some time every time it is used.
3802    unsigned i = 0;
3803    for (RecordDecl::field_iterator Field = RD->field_begin(),
3804                                 FieldEnd = RD->field_end();
3805         Field != FieldEnd; (void)++Field, ++i) {
3806      if (*Field == FD)
3807        break;
3808    }
3809    S += llvm::utostr(RL.getFieldOffset(i));
3810    S += ObjCEncodingForPrimitiveKind(Context, T);
3811  }
3812  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3813  S += llvm::utostr(N);
3814}
3815
3816// FIXME: Use SmallString for accumulating string.
3817void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3818                                            bool ExpandPointedToStructures,
3819                                            bool ExpandStructures,
3820                                            const FieldDecl *FD,
3821                                            bool OutermostType,
3822                                            bool EncodingProperty) {
3823  if (T->getAs<BuiltinType>()) {
3824    if (FD && FD->isBitField())
3825      return EncodeBitField(this, S, T, FD);
3826    S += ObjCEncodingForPrimitiveKind(this, T);
3827    return;
3828  }
3829
3830  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3831    S += 'j';
3832    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3833                               false);
3834    return;
3835  }
3836
3837  // encoding for pointer or r3eference types.
3838  QualType PointeeTy;
3839  if (const PointerType *PT = T->getAs<PointerType>()) {
3840    if (PT->isObjCSelType()) {
3841      S += ':';
3842      return;
3843    }
3844    PointeeTy = PT->getPointeeType();
3845  }
3846  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3847    PointeeTy = RT->getPointeeType();
3848  if (!PointeeTy.isNull()) {
3849    bool isReadOnly = false;
3850    // For historical/compatibility reasons, the read-only qualifier of the
3851    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3852    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3853    // Also, do not emit the 'r' for anything but the outermost type!
3854    if (isa<TypedefType>(T.getTypePtr())) {
3855      if (OutermostType && T.isConstQualified()) {
3856        isReadOnly = true;
3857        S += 'r';
3858      }
3859    } else if (OutermostType) {
3860      QualType P = PointeeTy;
3861      while (P->getAs<PointerType>())
3862        P = P->getAs<PointerType>()->getPointeeType();
3863      if (P.isConstQualified()) {
3864        isReadOnly = true;
3865        S += 'r';
3866      }
3867    }
3868    if (isReadOnly) {
3869      // Another legacy compatibility encoding. Some ObjC qualifier and type
3870      // combinations need to be rearranged.
3871      // Rewrite "in const" from "nr" to "rn"
3872      if (llvm::StringRef(S).endswith("nr"))
3873        S.replace(S.end()-2, S.end(), "rn");
3874    }
3875
3876    if (PointeeTy->isCharType()) {
3877      // char pointer types should be encoded as '*' unless it is a
3878      // type that has been typedef'd to 'BOOL'.
3879      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3880        S += '*';
3881        return;
3882      }
3883    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3884      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3885      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3886        S += '#';
3887        return;
3888      }
3889      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3890      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3891        S += '@';
3892        return;
3893      }
3894      // fall through...
3895    }
3896    S += '^';
3897    getLegacyIntegralTypeEncoding(PointeeTy);
3898
3899    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3900                               NULL);
3901    return;
3902  }
3903
3904  if (const ArrayType *AT =
3905      // Ignore type qualifiers etc.
3906        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3907    if (isa<IncompleteArrayType>(AT)) {
3908      // Incomplete arrays are encoded as a pointer to the array element.
3909      S += '^';
3910
3911      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3912                                 false, ExpandStructures, FD);
3913    } else {
3914      S += '[';
3915
3916      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3917        S += llvm::utostr(CAT->getSize().getZExtValue());
3918      else {
3919        //Variable length arrays are encoded as a regular array with 0 elements.
3920        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3921        S += '0';
3922      }
3923
3924      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3925                                 false, ExpandStructures, FD);
3926      S += ']';
3927    }
3928    return;
3929  }
3930
3931  if (T->getAs<FunctionType>()) {
3932    S += '?';
3933    return;
3934  }
3935
3936  if (const RecordType *RTy = T->getAs<RecordType>()) {
3937    RecordDecl *RDecl = RTy->getDecl();
3938    S += RDecl->isUnion() ? '(' : '{';
3939    // Anonymous structures print as '?'
3940    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3941      S += II->getName();
3942      if (ClassTemplateSpecializationDecl *Spec
3943          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
3944        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3945        std::string TemplateArgsStr
3946          = TemplateSpecializationType::PrintTemplateArgumentList(
3947                                            TemplateArgs.data(),
3948                                            TemplateArgs.size(),
3949                                            (*this).PrintingPolicy);
3950
3951        S += TemplateArgsStr;
3952      }
3953    } else {
3954      S += '?';
3955    }
3956    if (ExpandStructures) {
3957      S += '=';
3958      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3959                                   FieldEnd = RDecl->field_end();
3960           Field != FieldEnd; ++Field) {
3961        if (FD) {
3962          S += '"';
3963          S += Field->getNameAsString();
3964          S += '"';
3965        }
3966
3967        // Special case bit-fields.
3968        if (Field->isBitField()) {
3969          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3970                                     (*Field));
3971        } else {
3972          QualType qt = Field->getType();
3973          getLegacyIntegralTypeEncoding(qt);
3974          getObjCEncodingForTypeImpl(qt, S, false, true,
3975                                     FD);
3976        }
3977      }
3978    }
3979    S += RDecl->isUnion() ? ')' : '}';
3980    return;
3981  }
3982
3983  if (T->isEnumeralType()) {
3984    if (FD && FD->isBitField())
3985      EncodeBitField(this, S, T, FD);
3986    else
3987      S += 'i';
3988    return;
3989  }
3990
3991  if (T->isBlockPointerType()) {
3992    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3993    return;
3994  }
3995
3996  // Ignore protocol qualifiers when mangling at this level.
3997  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
3998    T = OT->getBaseType();
3999
4000  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4001    // @encode(class_name)
4002    ObjCInterfaceDecl *OI = OIT->getDecl();
4003    S += '{';
4004    const IdentifierInfo *II = OI->getIdentifier();
4005    S += II->getName();
4006    S += '=';
4007    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
4008    DeepCollectObjCIvars(OI, true, Ivars);
4009    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4010      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4011      if (Field->isBitField())
4012        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4013      else
4014        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4015    }
4016    S += '}';
4017    return;
4018  }
4019
4020  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4021    if (OPT->isObjCIdType()) {
4022      S += '@';
4023      return;
4024    }
4025
4026    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4027      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4028      // Since this is a binary compatibility issue, need to consult with runtime
4029      // folks. Fortunately, this is a *very* obsure construct.
4030      S += '#';
4031      return;
4032    }
4033
4034    if (OPT->isObjCQualifiedIdType()) {
4035      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4036                                 ExpandPointedToStructures,
4037                                 ExpandStructures, FD);
4038      if (FD || EncodingProperty) {
4039        // Note that we do extended encoding of protocol qualifer list
4040        // Only when doing ivar or property encoding.
4041        S += '"';
4042        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4043             E = OPT->qual_end(); I != E; ++I) {
4044          S += '<';
4045          S += (*I)->getNameAsString();
4046          S += '>';
4047        }
4048        S += '"';
4049      }
4050      return;
4051    }
4052
4053    QualType PointeeTy = OPT->getPointeeType();
4054    if (!EncodingProperty &&
4055        isa<TypedefType>(PointeeTy.getTypePtr())) {
4056      // Another historical/compatibility reason.
4057      // We encode the underlying type which comes out as
4058      // {...};
4059      S += '^';
4060      getObjCEncodingForTypeImpl(PointeeTy, S,
4061                                 false, ExpandPointedToStructures,
4062                                 NULL);
4063      return;
4064    }
4065
4066    S += '@';
4067    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4068      S += '"';
4069      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4070      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4071           E = OPT->qual_end(); I != E; ++I) {
4072        S += '<';
4073        S += (*I)->getNameAsString();
4074        S += '>';
4075      }
4076      S += '"';
4077    }
4078    return;
4079  }
4080
4081  // gcc just blithely ignores member pointers.
4082  // TODO: maybe there should be a mangling for these
4083  if (T->getAs<MemberPointerType>())
4084    return;
4085
4086  if (T->isVectorType()) {
4087    // This matches gcc's encoding, even though technically it is
4088    // insufficient.
4089    // FIXME. We should do a better job than gcc.
4090    return;
4091  }
4092
4093  assert(0 && "@encode for type not implemented!");
4094}
4095
4096void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4097                                                 std::string& S) const {
4098  if (QT & Decl::OBJC_TQ_In)
4099    S += 'n';
4100  if (QT & Decl::OBJC_TQ_Inout)
4101    S += 'N';
4102  if (QT & Decl::OBJC_TQ_Out)
4103    S += 'o';
4104  if (QT & Decl::OBJC_TQ_Bycopy)
4105    S += 'O';
4106  if (QT & Decl::OBJC_TQ_Byref)
4107    S += 'R';
4108  if (QT & Decl::OBJC_TQ_Oneway)
4109    S += 'V';
4110}
4111
4112void ASTContext::setBuiltinVaListType(QualType T) {
4113  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4114
4115  BuiltinVaListType = T;
4116}
4117
4118void ASTContext::setObjCIdType(QualType T) {
4119  ObjCIdTypedefType = T;
4120}
4121
4122void ASTContext::setObjCSelType(QualType T) {
4123  ObjCSelTypedefType = T;
4124}
4125
4126void ASTContext::setObjCProtoType(QualType QT) {
4127  ObjCProtoType = QT;
4128}
4129
4130void ASTContext::setObjCClassType(QualType T) {
4131  ObjCClassTypedefType = T;
4132}
4133
4134void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4135  assert(ObjCConstantStringType.isNull() &&
4136         "'NSConstantString' type already set!");
4137
4138  ObjCConstantStringType = getObjCInterfaceType(Decl);
4139}
4140
4141/// \brief Retrieve the template name that corresponds to a non-empty
4142/// lookup.
4143TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4144                                                   UnresolvedSetIterator End) {
4145  unsigned size = End - Begin;
4146  assert(size > 1 && "set is not overloaded!");
4147
4148  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4149                          size * sizeof(FunctionTemplateDecl*));
4150  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4151
4152  NamedDecl **Storage = OT->getStorage();
4153  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4154    NamedDecl *D = *I;
4155    assert(isa<FunctionTemplateDecl>(D) ||
4156           (isa<UsingShadowDecl>(D) &&
4157            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4158    *Storage++ = D;
4159  }
4160
4161  return TemplateName(OT);
4162}
4163
4164/// \brief Retrieve the template name that represents a qualified
4165/// template name such as \c std::vector.
4166TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4167                                                  bool TemplateKeyword,
4168                                                  TemplateDecl *Template) {
4169  // FIXME: Canonicalization?
4170  llvm::FoldingSetNodeID ID;
4171  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4172
4173  void *InsertPos = 0;
4174  QualifiedTemplateName *QTN =
4175    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4176  if (!QTN) {
4177    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4178    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4179  }
4180
4181  return TemplateName(QTN);
4182}
4183
4184/// \brief Retrieve the template name that represents a dependent
4185/// template name such as \c MetaFun::template apply.
4186TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4187                                                  const IdentifierInfo *Name) {
4188  assert((!NNS || NNS->isDependent()) &&
4189         "Nested name specifier must be dependent");
4190
4191  llvm::FoldingSetNodeID ID;
4192  DependentTemplateName::Profile(ID, NNS, Name);
4193
4194  void *InsertPos = 0;
4195  DependentTemplateName *QTN =
4196    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4197
4198  if (QTN)
4199    return TemplateName(QTN);
4200
4201  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4202  if (CanonNNS == NNS) {
4203    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4204  } else {
4205    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4206    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4207    DependentTemplateName *CheckQTN =
4208      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4209    assert(!CheckQTN && "Dependent type name canonicalization broken");
4210    (void)CheckQTN;
4211  }
4212
4213  DependentTemplateNames.InsertNode(QTN, InsertPos);
4214  return TemplateName(QTN);
4215}
4216
4217/// \brief Retrieve the template name that represents a dependent
4218/// template name such as \c MetaFun::template operator+.
4219TemplateName
4220ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4221                                     OverloadedOperatorKind Operator) {
4222  assert((!NNS || NNS->isDependent()) &&
4223         "Nested name specifier must be dependent");
4224
4225  llvm::FoldingSetNodeID ID;
4226  DependentTemplateName::Profile(ID, NNS, Operator);
4227
4228  void *InsertPos = 0;
4229  DependentTemplateName *QTN
4230    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4231
4232  if (QTN)
4233    return TemplateName(QTN);
4234
4235  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4236  if (CanonNNS == NNS) {
4237    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4238  } else {
4239    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4240    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4241
4242    DependentTemplateName *CheckQTN
4243      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4244    assert(!CheckQTN && "Dependent template name canonicalization broken");
4245    (void)CheckQTN;
4246  }
4247
4248  DependentTemplateNames.InsertNode(QTN, InsertPos);
4249  return TemplateName(QTN);
4250}
4251
4252/// getFromTargetType - Given one of the integer types provided by
4253/// TargetInfo, produce the corresponding type. The unsigned @p Type
4254/// is actually a value of type @c TargetInfo::IntType.
4255CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4256  switch (Type) {
4257  case TargetInfo::NoInt: return CanQualType();
4258  case TargetInfo::SignedShort: return ShortTy;
4259  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4260  case TargetInfo::SignedInt: return IntTy;
4261  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4262  case TargetInfo::SignedLong: return LongTy;
4263  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4264  case TargetInfo::SignedLongLong: return LongLongTy;
4265  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4266  }
4267
4268  assert(false && "Unhandled TargetInfo::IntType value");
4269  return CanQualType();
4270}
4271
4272//===----------------------------------------------------------------------===//
4273//                        Type Predicates.
4274//===----------------------------------------------------------------------===//
4275
4276/// isObjCNSObjectType - Return true if this is an NSObject object using
4277/// NSObject attribute on a c-style pointer type.
4278/// FIXME - Make it work directly on types.
4279/// FIXME: Move to Type.
4280///
4281bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4282  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4283    if (TypedefDecl *TD = TDT->getDecl())
4284      if (TD->getAttr<ObjCNSObjectAttr>())
4285        return true;
4286  }
4287  return false;
4288}
4289
4290/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4291/// garbage collection attribute.
4292///
4293Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
4294  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
4295  if (getLangOptions().ObjC1 &&
4296      getLangOptions().getGCMode() != LangOptions::NonGC) {
4297    GCAttrs = Ty.getObjCGCAttr();
4298    // Default behavious under objective-c's gc is for objective-c pointers
4299    // (or pointers to them) be treated as though they were declared
4300    // as __strong.
4301    if (GCAttrs == Qualifiers::GCNone) {
4302      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4303        GCAttrs = Qualifiers::Strong;
4304      else if (Ty->isPointerType())
4305        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4306    }
4307    // Non-pointers have none gc'able attribute regardless of the attribute
4308    // set on them.
4309    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
4310      return Qualifiers::GCNone;
4311  }
4312  return GCAttrs;
4313}
4314
4315//===----------------------------------------------------------------------===//
4316//                        Type Compatibility Testing
4317//===----------------------------------------------------------------------===//
4318
4319/// areCompatVectorTypes - Return true if the two specified vector types are
4320/// compatible.
4321static bool areCompatVectorTypes(const VectorType *LHS,
4322                                 const VectorType *RHS) {
4323  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4324  return LHS->getElementType() == RHS->getElementType() &&
4325         LHS->getNumElements() == RHS->getNumElements();
4326}
4327
4328bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4329                                          QualType SecondVec) {
4330  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4331  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4332
4333  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4334    return true;
4335
4336  // Treat Neon vector types and most AltiVec vector types as if they are the
4337  // equivalent GCC vector types.
4338  const VectorType *First = FirstVec->getAs<VectorType>();
4339  const VectorType *Second = SecondVec->getAs<VectorType>();
4340  if (First->getNumElements() == Second->getNumElements() &&
4341      hasSameType(First->getElementType(), Second->getElementType()) &&
4342      First->getVectorKind() != VectorType::AltiVecPixel &&
4343      First->getVectorKind() != VectorType::AltiVecBool &&
4344      Second->getVectorKind() != VectorType::AltiVecPixel &&
4345      Second->getVectorKind() != VectorType::AltiVecBool)
4346    return true;
4347
4348  return false;
4349}
4350
4351//===----------------------------------------------------------------------===//
4352// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4353//===----------------------------------------------------------------------===//
4354
4355/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4356/// inheritance hierarchy of 'rProto'.
4357bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4358                                                ObjCProtocolDecl *rProto) {
4359  if (lProto == rProto)
4360    return true;
4361  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4362       E = rProto->protocol_end(); PI != E; ++PI)
4363    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4364      return true;
4365  return false;
4366}
4367
4368/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4369/// return true if lhs's protocols conform to rhs's protocol; false
4370/// otherwise.
4371bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4372  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4373    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4374  return false;
4375}
4376
4377/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4378/// Class<p1, ...>.
4379bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4380                                                      QualType rhs) {
4381  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4382  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4383  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4384
4385  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4386       E = lhsQID->qual_end(); I != E; ++I) {
4387    bool match = false;
4388    ObjCProtocolDecl *lhsProto = *I;
4389    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4390         E = rhsOPT->qual_end(); J != E; ++J) {
4391      ObjCProtocolDecl *rhsProto = *J;
4392      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4393        match = true;
4394        break;
4395      }
4396    }
4397    if (!match)
4398      return false;
4399  }
4400  return true;
4401}
4402
4403/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4404/// ObjCQualifiedIDType.
4405bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4406                                                   bool compare) {
4407  // Allow id<P..> and an 'id' or void* type in all cases.
4408  if (lhs->isVoidPointerType() ||
4409      lhs->isObjCIdType() || lhs->isObjCClassType())
4410    return true;
4411  else if (rhs->isVoidPointerType() ||
4412           rhs->isObjCIdType() || rhs->isObjCClassType())
4413    return true;
4414
4415  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4416    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4417
4418    if (!rhsOPT) return false;
4419
4420    if (rhsOPT->qual_empty()) {
4421      // If the RHS is a unqualified interface pointer "NSString*",
4422      // make sure we check the class hierarchy.
4423      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4424        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4425             E = lhsQID->qual_end(); I != E; ++I) {
4426          // when comparing an id<P> on lhs with a static type on rhs,
4427          // see if static class implements all of id's protocols, directly or
4428          // through its super class and categories.
4429          if (!rhsID->ClassImplementsProtocol(*I, true))
4430            return false;
4431        }
4432      }
4433      // If there are no qualifiers and no interface, we have an 'id'.
4434      return true;
4435    }
4436    // Both the right and left sides have qualifiers.
4437    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4438         E = lhsQID->qual_end(); I != E; ++I) {
4439      ObjCProtocolDecl *lhsProto = *I;
4440      bool match = false;
4441
4442      // when comparing an id<P> on lhs with a static type on rhs,
4443      // see if static class implements all of id's protocols, directly or
4444      // through its super class and categories.
4445      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4446           E = rhsOPT->qual_end(); J != E; ++J) {
4447        ObjCProtocolDecl *rhsProto = *J;
4448        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4449            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4450          match = true;
4451          break;
4452        }
4453      }
4454      // If the RHS is a qualified interface pointer "NSString<P>*",
4455      // make sure we check the class hierarchy.
4456      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4457        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4458             E = lhsQID->qual_end(); I != E; ++I) {
4459          // when comparing an id<P> on lhs with a static type on rhs,
4460          // see if static class implements all of id's protocols, directly or
4461          // through its super class and categories.
4462          if (rhsID->ClassImplementsProtocol(*I, true)) {
4463            match = true;
4464            break;
4465          }
4466        }
4467      }
4468      if (!match)
4469        return false;
4470    }
4471
4472    return true;
4473  }
4474
4475  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4476  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4477
4478  if (const ObjCObjectPointerType *lhsOPT =
4479        lhs->getAsObjCInterfacePointerType()) {
4480    // If both the right and left sides have qualifiers.
4481    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4482         E = lhsOPT->qual_end(); I != E; ++I) {
4483      ObjCProtocolDecl *lhsProto = *I;
4484      bool match = false;
4485
4486      // when comparing an id<P> on rhs with a static type on lhs,
4487      // see if static class implements all of id's protocols, directly or
4488      // through its super class and categories.
4489      // First, lhs protocols in the qualifier list must be found, direct
4490      // or indirect in rhs's qualifier list or it is a mismatch.
4491      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4492           E = rhsQID->qual_end(); J != E; ++J) {
4493        ObjCProtocolDecl *rhsProto = *J;
4494        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4495            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4496          match = true;
4497          break;
4498        }
4499      }
4500      if (!match)
4501        return false;
4502    }
4503
4504    // Static class's protocols, or its super class or category protocols
4505    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
4506    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4507      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4508      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
4509      // This is rather dubious but matches gcc's behavior. If lhs has
4510      // no type qualifier and its class has no static protocol(s)
4511      // assume that it is mismatch.
4512      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
4513        return false;
4514      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4515           LHSInheritedProtocols.begin(),
4516           E = LHSInheritedProtocols.end(); I != E; ++I) {
4517        bool match = false;
4518        ObjCProtocolDecl *lhsProto = (*I);
4519        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4520             E = rhsQID->qual_end(); J != E; ++J) {
4521          ObjCProtocolDecl *rhsProto = *J;
4522          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4523              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4524            match = true;
4525            break;
4526          }
4527        }
4528        if (!match)
4529          return false;
4530      }
4531    }
4532    return true;
4533  }
4534  return false;
4535}
4536
4537/// canAssignObjCInterfaces - Return true if the two interface types are
4538/// compatible for assignment from RHS to LHS.  This handles validation of any
4539/// protocol qualifiers on the LHS or RHS.
4540///
4541bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4542                                         const ObjCObjectPointerType *RHSOPT) {
4543  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4544  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4545
4546  // If either type represents the built-in 'id' or 'Class' types, return true.
4547  if (LHS->isObjCUnqualifiedIdOrClass() ||
4548      RHS->isObjCUnqualifiedIdOrClass())
4549    return true;
4550
4551  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4552    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4553                                             QualType(RHSOPT,0),
4554                                             false);
4555
4556  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
4557    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
4558                                                QualType(RHSOPT,0));
4559
4560  // If we have 2 user-defined types, fall into that path.
4561  if (LHS->getInterface() && RHS->getInterface())
4562    return canAssignObjCInterfaces(LHS, RHS);
4563
4564  return false;
4565}
4566
4567/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4568/// for providing type-safty for objective-c pointers used to pass/return
4569/// arguments in block literals. When passed as arguments, passing 'A*' where
4570/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4571/// not OK. For the return type, the opposite is not OK.
4572bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4573                                         const ObjCObjectPointerType *LHSOPT,
4574                                         const ObjCObjectPointerType *RHSOPT) {
4575  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4576    return true;
4577
4578  if (LHSOPT->isObjCBuiltinType()) {
4579    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4580  }
4581
4582  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4583    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4584                                             QualType(RHSOPT,0),
4585                                             false);
4586
4587  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4588  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4589  if (LHS && RHS)  { // We have 2 user-defined types.
4590    if (LHS != RHS) {
4591      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4592        return false;
4593      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4594        return true;
4595    }
4596    else
4597      return true;
4598  }
4599  return false;
4600}
4601
4602/// getIntersectionOfProtocols - This routine finds the intersection of set
4603/// of protocols inherited from two distinct objective-c pointer objects.
4604/// It is used to build composite qualifier list of the composite type of
4605/// the conditional expression involving two objective-c pointer objects.
4606static
4607void getIntersectionOfProtocols(ASTContext &Context,
4608                                const ObjCObjectPointerType *LHSOPT,
4609                                const ObjCObjectPointerType *RHSOPT,
4610      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4611
4612  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4613  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4614  assert(LHS->getInterface() && "LHS must have an interface base");
4615  assert(RHS->getInterface() && "RHS must have an interface base");
4616
4617  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4618  unsigned LHSNumProtocols = LHS->getNumProtocols();
4619  if (LHSNumProtocols > 0)
4620    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4621  else {
4622    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4623    Context.CollectInheritedProtocols(LHS->getInterface(),
4624                                      LHSInheritedProtocols);
4625    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4626                                LHSInheritedProtocols.end());
4627  }
4628
4629  unsigned RHSNumProtocols = RHS->getNumProtocols();
4630  if (RHSNumProtocols > 0) {
4631    ObjCProtocolDecl **RHSProtocols =
4632      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4633    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4634      if (InheritedProtocolSet.count(RHSProtocols[i]))
4635        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4636  }
4637  else {
4638    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4639    Context.CollectInheritedProtocols(RHS->getInterface(),
4640                                      RHSInheritedProtocols);
4641    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4642         RHSInheritedProtocols.begin(),
4643         E = RHSInheritedProtocols.end(); I != E; ++I)
4644      if (InheritedProtocolSet.count((*I)))
4645        IntersectionOfProtocols.push_back((*I));
4646  }
4647}
4648
4649/// areCommonBaseCompatible - Returns common base class of the two classes if
4650/// one found. Note that this is O'2 algorithm. But it will be called as the
4651/// last type comparison in a ?-exp of ObjC pointer types before a
4652/// warning is issued. So, its invokation is extremely rare.
4653QualType ASTContext::areCommonBaseCompatible(
4654                                          const ObjCObjectPointerType *Lptr,
4655                                          const ObjCObjectPointerType *Rptr) {
4656  const ObjCObjectType *LHS = Lptr->getObjectType();
4657  const ObjCObjectType *RHS = Rptr->getObjectType();
4658  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4659  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4660  if (!LDecl || !RDecl)
4661    return QualType();
4662
4663  while ((LDecl = LDecl->getSuperClass())) {
4664    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4665    if (canAssignObjCInterfaces(LHS, RHS)) {
4666      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4667      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4668
4669      QualType Result = QualType(LHS, 0);
4670      if (!Protocols.empty())
4671        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4672      Result = getObjCObjectPointerType(Result);
4673      return Result;
4674    }
4675  }
4676
4677  return QualType();
4678}
4679
4680bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4681                                         const ObjCObjectType *RHS) {
4682  assert(LHS->getInterface() && "LHS is not an interface type");
4683  assert(RHS->getInterface() && "RHS is not an interface type");
4684
4685  // Verify that the base decls are compatible: the RHS must be a subclass of
4686  // the LHS.
4687  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4688    return false;
4689
4690  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4691  // protocol qualified at all, then we are good.
4692  if (LHS->getNumProtocols() == 0)
4693    return true;
4694
4695  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4696  // isn't a superset.
4697  if (RHS->getNumProtocols() == 0)
4698    return true;  // FIXME: should return false!
4699
4700  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4701                                     LHSPE = LHS->qual_end();
4702       LHSPI != LHSPE; LHSPI++) {
4703    bool RHSImplementsProtocol = false;
4704
4705    // If the RHS doesn't implement the protocol on the left, the types
4706    // are incompatible.
4707    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4708                                       RHSPE = RHS->qual_end();
4709         RHSPI != RHSPE; RHSPI++) {
4710      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4711        RHSImplementsProtocol = true;
4712        break;
4713      }
4714    }
4715    // FIXME: For better diagnostics, consider passing back the protocol name.
4716    if (!RHSImplementsProtocol)
4717      return false;
4718  }
4719  // The RHS implements all protocols listed on the LHS.
4720  return true;
4721}
4722
4723bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4724  // get the "pointed to" types
4725  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4726  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4727
4728  if (!LHSOPT || !RHSOPT)
4729    return false;
4730
4731  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4732         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4733}
4734
4735bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
4736  return canAssignObjCInterfaces(
4737                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
4738                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
4739}
4740
4741/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4742/// both shall have the identically qualified version of a compatible type.
4743/// C99 6.2.7p1: Two types have compatible types if their types are the
4744/// same. See 6.7.[2,3,5] for additional rules.
4745bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
4746                                    bool CompareUnqualified) {
4747  if (getLangOptions().CPlusPlus)
4748    return hasSameType(LHS, RHS);
4749
4750  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
4751}
4752
4753bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4754  return !mergeTypes(LHS, RHS, true).isNull();
4755}
4756
4757/// mergeTransparentUnionType - if T is a transparent union type and a member
4758/// of T is compatible with SubType, return the merged type, else return
4759/// QualType()
4760QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
4761                                               bool OfBlockPointer,
4762                                               bool Unqualified) {
4763  if (const RecordType *UT = T->getAsUnionType()) {
4764    RecordDecl *UD = UT->getDecl();
4765    if (UD->hasAttr<TransparentUnionAttr>()) {
4766      for (RecordDecl::field_iterator it = UD->field_begin(),
4767           itend = UD->field_end(); it != itend; ++it) {
4768        QualType ET = it->getType().getUnqualifiedType();
4769        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
4770        if (!MT.isNull())
4771          return MT;
4772      }
4773    }
4774  }
4775
4776  return QualType();
4777}
4778
4779/// mergeFunctionArgumentTypes - merge two types which appear as function
4780/// argument types
4781QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
4782                                                bool OfBlockPointer,
4783                                                bool Unqualified) {
4784  // GNU extension: two types are compatible if they appear as a function
4785  // argument, one of the types is a transparent union type and the other
4786  // type is compatible with a union member
4787  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
4788                                              Unqualified);
4789  if (!lmerge.isNull())
4790    return lmerge;
4791
4792  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
4793                                              Unqualified);
4794  if (!rmerge.isNull())
4795    return rmerge;
4796
4797  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
4798}
4799
4800QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4801                                        bool OfBlockPointer,
4802                                        bool Unqualified) {
4803  const FunctionType *lbase = lhs->getAs<FunctionType>();
4804  const FunctionType *rbase = rhs->getAs<FunctionType>();
4805  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4806  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4807  bool allLTypes = true;
4808  bool allRTypes = true;
4809
4810  // Check return type
4811  QualType retType;
4812  if (OfBlockPointer)
4813    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true,
4814                         Unqualified);
4815  else
4816   retType = mergeTypes(lbase->getResultType(), rbase->getResultType(),
4817                        false, Unqualified);
4818  if (retType.isNull()) return QualType();
4819
4820  if (Unqualified)
4821    retType = retType.getUnqualifiedType();
4822
4823  CanQualType LRetType = getCanonicalType(lbase->getResultType());
4824  CanQualType RRetType = getCanonicalType(rbase->getResultType());
4825  if (Unqualified) {
4826    LRetType = LRetType.getUnqualifiedType();
4827    RRetType = RRetType.getUnqualifiedType();
4828  }
4829
4830  if (getCanonicalType(retType) != LRetType)
4831    allLTypes = false;
4832  if (getCanonicalType(retType) != RRetType)
4833    allRTypes = false;
4834  // FIXME: double check this
4835  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4836  //                           rbase->getRegParmAttr() != 0 &&
4837  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4838  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4839  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4840  unsigned RegParm = lbaseInfo.getRegParm() == 0 ? rbaseInfo.getRegParm() :
4841      lbaseInfo.getRegParm();
4842  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4843  if (NoReturn != lbaseInfo.getNoReturn() ||
4844      RegParm != lbaseInfo.getRegParm())
4845    allLTypes = false;
4846  if (NoReturn != rbaseInfo.getNoReturn() ||
4847      RegParm != rbaseInfo.getRegParm())
4848    allRTypes = false;
4849  CallingConv lcc = lbaseInfo.getCC();
4850  CallingConv rcc = rbaseInfo.getCC();
4851  // Compatible functions must have compatible calling conventions
4852  if (!isSameCallConv(lcc, rcc))
4853    return QualType();
4854
4855  if (lproto && rproto) { // two C99 style function prototypes
4856    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4857           "C++ shouldn't be here");
4858    unsigned lproto_nargs = lproto->getNumArgs();
4859    unsigned rproto_nargs = rproto->getNumArgs();
4860
4861    // Compatible functions must have the same number of arguments
4862    if (lproto_nargs != rproto_nargs)
4863      return QualType();
4864
4865    // Variadic and non-variadic functions aren't compatible
4866    if (lproto->isVariadic() != rproto->isVariadic())
4867      return QualType();
4868
4869    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4870      return QualType();
4871
4872    // Check argument compatibility
4873    llvm::SmallVector<QualType, 10> types;
4874    for (unsigned i = 0; i < lproto_nargs; i++) {
4875      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4876      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4877      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
4878                                                    OfBlockPointer,
4879                                                    Unqualified);
4880      if (argtype.isNull()) return QualType();
4881
4882      if (Unqualified)
4883        argtype = argtype.getUnqualifiedType();
4884
4885      types.push_back(argtype);
4886      if (Unqualified) {
4887        largtype = largtype.getUnqualifiedType();
4888        rargtype = rargtype.getUnqualifiedType();
4889      }
4890
4891      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4892        allLTypes = false;
4893      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4894        allRTypes = false;
4895    }
4896    if (allLTypes) return lhs;
4897    if (allRTypes) return rhs;
4898    return getFunctionType(retType, types.begin(), types.size(),
4899                           lproto->isVariadic(), lproto->getTypeQuals(),
4900                           false, false, 0, 0,
4901                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4902  }
4903
4904  if (lproto) allRTypes = false;
4905  if (rproto) allLTypes = false;
4906
4907  const FunctionProtoType *proto = lproto ? lproto : rproto;
4908  if (proto) {
4909    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4910    if (proto->isVariadic()) return QualType();
4911    // Check that the types are compatible with the types that
4912    // would result from default argument promotions (C99 6.7.5.3p15).
4913    // The only types actually affected are promotable integer
4914    // types and floats, which would be passed as a different
4915    // type depending on whether the prototype is visible.
4916    unsigned proto_nargs = proto->getNumArgs();
4917    for (unsigned i = 0; i < proto_nargs; ++i) {
4918      QualType argTy = proto->getArgType(i);
4919
4920      // Look at the promotion type of enum types, since that is the type used
4921      // to pass enum values.
4922      if (const EnumType *Enum = argTy->getAs<EnumType>())
4923        argTy = Enum->getDecl()->getPromotionType();
4924
4925      if (argTy->isPromotableIntegerType() ||
4926          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4927        return QualType();
4928    }
4929
4930    if (allLTypes) return lhs;
4931    if (allRTypes) return rhs;
4932    return getFunctionType(retType, proto->arg_type_begin(),
4933                           proto->getNumArgs(), proto->isVariadic(),
4934                           proto->getTypeQuals(),
4935                           false, false, 0, 0,
4936                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4937  }
4938
4939  if (allLTypes) return lhs;
4940  if (allRTypes) return rhs;
4941  FunctionType::ExtInfo Info(NoReturn, RegParm, lcc);
4942  return getFunctionNoProtoType(retType, Info);
4943}
4944
4945QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
4946                                bool OfBlockPointer,
4947                                bool Unqualified) {
4948  // C++ [expr]: If an expression initially has the type "reference to T", the
4949  // type is adjusted to "T" prior to any further analysis, the expression
4950  // designates the object or function denoted by the reference, and the
4951  // expression is an lvalue unless the reference is an rvalue reference and
4952  // the expression is a function call (possibly inside parentheses).
4953  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4954  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4955
4956  if (Unqualified) {
4957    LHS = LHS.getUnqualifiedType();
4958    RHS = RHS.getUnqualifiedType();
4959  }
4960
4961  QualType LHSCan = getCanonicalType(LHS),
4962           RHSCan = getCanonicalType(RHS);
4963
4964  // If two types are identical, they are compatible.
4965  if (LHSCan == RHSCan)
4966    return LHS;
4967
4968  // If the qualifiers are different, the types aren't compatible... mostly.
4969  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4970  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4971  if (LQuals != RQuals) {
4972    // If any of these qualifiers are different, we have a type
4973    // mismatch.
4974    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4975        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4976      return QualType();
4977
4978    // Exactly one GC qualifier difference is allowed: __strong is
4979    // okay if the other type has no GC qualifier but is an Objective
4980    // C object pointer (i.e. implicitly strong by default).  We fix
4981    // this by pretending that the unqualified type was actually
4982    // qualified __strong.
4983    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4984    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4985    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4986
4987    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4988      return QualType();
4989
4990    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4991      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4992    }
4993    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4994      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4995    }
4996    return QualType();
4997  }
4998
4999  // Okay, qualifiers are equal.
5000
5001  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5002  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5003
5004  // We want to consider the two function types to be the same for these
5005  // comparisons, just force one to the other.
5006  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5007  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5008
5009  // Same as above for arrays
5010  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5011    LHSClass = Type::ConstantArray;
5012  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5013    RHSClass = Type::ConstantArray;
5014
5015  // ObjCInterfaces are just specialized ObjCObjects.
5016  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5017  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5018
5019  // Canonicalize ExtVector -> Vector.
5020  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5021  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5022
5023  // If the canonical type classes don't match.
5024  if (LHSClass != RHSClass) {
5025    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5026    // a signed integer type, or an unsigned integer type.
5027    // Compatibility is based on the underlying type, not the promotion
5028    // type.
5029    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5030      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5031        return RHS;
5032    }
5033    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5034      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5035        return LHS;
5036    }
5037
5038    return QualType();
5039  }
5040
5041  // The canonical type classes match.
5042  switch (LHSClass) {
5043#define TYPE(Class, Base)
5044#define ABSTRACT_TYPE(Class, Base)
5045#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5046#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5047#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5048#include "clang/AST/TypeNodes.def"
5049    assert(false && "Non-canonical and dependent types shouldn't get here");
5050    return QualType();
5051
5052  case Type::LValueReference:
5053  case Type::RValueReference:
5054  case Type::MemberPointer:
5055    assert(false && "C++ should never be in mergeTypes");
5056    return QualType();
5057
5058  case Type::ObjCInterface:
5059  case Type::IncompleteArray:
5060  case Type::VariableArray:
5061  case Type::FunctionProto:
5062  case Type::ExtVector:
5063    assert(false && "Types are eliminated above");
5064    return QualType();
5065
5066  case Type::Pointer:
5067  {
5068    // Merge two pointer types, while trying to preserve typedef info
5069    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5070    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5071    if (Unqualified) {
5072      LHSPointee = LHSPointee.getUnqualifiedType();
5073      RHSPointee = RHSPointee.getUnqualifiedType();
5074    }
5075    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5076                                     Unqualified);
5077    if (ResultType.isNull()) return QualType();
5078    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5079      return LHS;
5080    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5081      return RHS;
5082    return getPointerType(ResultType);
5083  }
5084  case Type::BlockPointer:
5085  {
5086    // Merge two block pointer types, while trying to preserve typedef info
5087    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5088    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5089    if (Unqualified) {
5090      LHSPointee = LHSPointee.getUnqualifiedType();
5091      RHSPointee = RHSPointee.getUnqualifiedType();
5092    }
5093    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5094                                     Unqualified);
5095    if (ResultType.isNull()) return QualType();
5096    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5097      return LHS;
5098    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5099      return RHS;
5100    return getBlockPointerType(ResultType);
5101  }
5102  case Type::ConstantArray:
5103  {
5104    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5105    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5106    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5107      return QualType();
5108
5109    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5110    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5111    if (Unqualified) {
5112      LHSElem = LHSElem.getUnqualifiedType();
5113      RHSElem = RHSElem.getUnqualifiedType();
5114    }
5115
5116    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5117    if (ResultType.isNull()) return QualType();
5118    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5119      return LHS;
5120    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5121      return RHS;
5122    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5123                                          ArrayType::ArraySizeModifier(), 0);
5124    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5125                                          ArrayType::ArraySizeModifier(), 0);
5126    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5127    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5128    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5129      return LHS;
5130    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5131      return RHS;
5132    if (LVAT) {
5133      // FIXME: This isn't correct! But tricky to implement because
5134      // the array's size has to be the size of LHS, but the type
5135      // has to be different.
5136      return LHS;
5137    }
5138    if (RVAT) {
5139      // FIXME: This isn't correct! But tricky to implement because
5140      // the array's size has to be the size of RHS, but the type
5141      // has to be different.
5142      return RHS;
5143    }
5144    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5145    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5146    return getIncompleteArrayType(ResultType,
5147                                  ArrayType::ArraySizeModifier(), 0);
5148  }
5149  case Type::FunctionNoProto:
5150    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5151  case Type::Record:
5152  case Type::Enum:
5153    return QualType();
5154  case Type::Builtin:
5155    // Only exactly equal builtin types are compatible, which is tested above.
5156    return QualType();
5157  case Type::Complex:
5158    // Distinct complex types are incompatible.
5159    return QualType();
5160  case Type::Vector:
5161    // FIXME: The merged type should be an ExtVector!
5162    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5163                             RHSCan->getAs<VectorType>()))
5164      return LHS;
5165    return QualType();
5166  case Type::ObjCObject: {
5167    // Check if the types are assignment compatible.
5168    // FIXME: This should be type compatibility, e.g. whether
5169    // "LHS x; RHS x;" at global scope is legal.
5170    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5171    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5172    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5173      return LHS;
5174
5175    return QualType();
5176  }
5177  case Type::ObjCObjectPointer: {
5178    if (OfBlockPointer) {
5179      if (canAssignObjCInterfacesInBlockPointer(
5180                                          LHS->getAs<ObjCObjectPointerType>(),
5181                                          RHS->getAs<ObjCObjectPointerType>()))
5182      return LHS;
5183      return QualType();
5184    }
5185    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5186                                RHS->getAs<ObjCObjectPointerType>()))
5187      return LHS;
5188
5189    return QualType();
5190    }
5191  }
5192
5193  return QualType();
5194}
5195
5196/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5197/// 'RHS' attributes and returns the merged version; including for function
5198/// return types.
5199QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5200  QualType LHSCan = getCanonicalType(LHS),
5201  RHSCan = getCanonicalType(RHS);
5202  // If two types are identical, they are compatible.
5203  if (LHSCan == RHSCan)
5204    return LHS;
5205  if (RHSCan->isFunctionType()) {
5206    if (!LHSCan->isFunctionType())
5207      return QualType();
5208    QualType OldReturnType =
5209      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5210    QualType NewReturnType =
5211      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5212    QualType ResReturnType =
5213      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5214    if (ResReturnType.isNull())
5215      return QualType();
5216    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5217      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5218      // In either case, use OldReturnType to build the new function type.
5219      const FunctionType *F = LHS->getAs<FunctionType>();
5220      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5221        FunctionType::ExtInfo Info = getFunctionExtInfo(LHS);
5222        QualType ResultType
5223          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5224                                  FPT->getNumArgs(), FPT->isVariadic(),
5225                                  FPT->getTypeQuals(),
5226                                  FPT->hasExceptionSpec(),
5227                                  FPT->hasAnyExceptionSpec(),
5228                                  FPT->getNumExceptions(),
5229                                  FPT->exception_begin(),
5230                                  Info);
5231        return ResultType;
5232      }
5233    }
5234    return QualType();
5235  }
5236
5237  // If the qualifiers are different, the types can still be merged.
5238  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5239  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5240  if (LQuals != RQuals) {
5241    // If any of these qualifiers are different, we have a type mismatch.
5242    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5243        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5244      return QualType();
5245
5246    // Exactly one GC qualifier difference is allowed: __strong is
5247    // okay if the other type has no GC qualifier but is an Objective
5248    // C object pointer (i.e. implicitly strong by default).  We fix
5249    // this by pretending that the unqualified type was actually
5250    // qualified __strong.
5251    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5252    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5253    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5254
5255    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5256      return QualType();
5257
5258    if (GC_L == Qualifiers::Strong)
5259      return LHS;
5260    if (GC_R == Qualifiers::Strong)
5261      return RHS;
5262    return QualType();
5263  }
5264
5265  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5266    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5267    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5268    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5269    if (ResQT == LHSBaseQT)
5270      return LHS;
5271    if (ResQT == RHSBaseQT)
5272      return RHS;
5273  }
5274  return QualType();
5275}
5276
5277//===----------------------------------------------------------------------===//
5278//                         Integer Predicates
5279//===----------------------------------------------------------------------===//
5280
5281unsigned ASTContext::getIntWidth(QualType T) {
5282  if (EnumType *ET = dyn_cast<EnumType>(T))
5283    T = ET->getDecl()->getIntegerType();
5284  if (T->isBooleanType())
5285    return 1;
5286  // For builtin types, just use the standard type sizing method
5287  return (unsigned)getTypeSize(T);
5288}
5289
5290QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5291  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5292
5293  // Turn <4 x signed int> -> <4 x unsigned int>
5294  if (const VectorType *VTy = T->getAs<VectorType>())
5295    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5296                         VTy->getNumElements(), VTy->getVectorKind());
5297
5298  // For enums, we return the unsigned version of the base type.
5299  if (const EnumType *ETy = T->getAs<EnumType>())
5300    T = ETy->getDecl()->getIntegerType();
5301
5302  const BuiltinType *BTy = T->getAs<BuiltinType>();
5303  assert(BTy && "Unexpected signed integer type");
5304  switch (BTy->getKind()) {
5305  case BuiltinType::Char_S:
5306  case BuiltinType::SChar:
5307    return UnsignedCharTy;
5308  case BuiltinType::Short:
5309    return UnsignedShortTy;
5310  case BuiltinType::Int:
5311    return UnsignedIntTy;
5312  case BuiltinType::Long:
5313    return UnsignedLongTy;
5314  case BuiltinType::LongLong:
5315    return UnsignedLongLongTy;
5316  case BuiltinType::Int128:
5317    return UnsignedInt128Ty;
5318  default:
5319    assert(0 && "Unexpected signed integer type");
5320    return QualType();
5321  }
5322}
5323
5324ExternalASTSource::~ExternalASTSource() { }
5325
5326void ExternalASTSource::PrintStats() { }
5327
5328ASTMutationListener::~ASTMutationListener() { }
5329
5330
5331//===----------------------------------------------------------------------===//
5332//                          Builtin Type Computation
5333//===----------------------------------------------------------------------===//
5334
5335/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5336/// pointer over the consumed characters.  This returns the resultant type.  If
5337/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
5338/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
5339/// a vector of "i*".
5340///
5341/// RequiresICE is filled in on return to indicate whether the value is required
5342/// to be an Integer Constant Expression.
5343static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
5344                                  ASTContext::GetBuiltinTypeError &Error,
5345                                  bool &RequiresICE,
5346                                  bool AllowTypeModifiers) {
5347  // Modifiers.
5348  int HowLong = 0;
5349  bool Signed = false, Unsigned = false;
5350  RequiresICE = false;
5351
5352  // Read the prefixed modifiers first.
5353  bool Done = false;
5354  while (!Done) {
5355    switch (*Str++) {
5356    default: Done = true; --Str; break;
5357    case 'I':
5358      RequiresICE = true;
5359      break;
5360    case 'S':
5361      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5362      assert(!Signed && "Can't use 'S' modifier multiple times!");
5363      Signed = true;
5364      break;
5365    case 'U':
5366      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5367      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5368      Unsigned = true;
5369      break;
5370    case 'L':
5371      assert(HowLong <= 2 && "Can't have LLLL modifier");
5372      ++HowLong;
5373      break;
5374    }
5375  }
5376
5377  QualType Type;
5378
5379  // Read the base type.
5380  switch (*Str++) {
5381  default: assert(0 && "Unknown builtin type letter!");
5382  case 'v':
5383    assert(HowLong == 0 && !Signed && !Unsigned &&
5384           "Bad modifiers used with 'v'!");
5385    Type = Context.VoidTy;
5386    break;
5387  case 'f':
5388    assert(HowLong == 0 && !Signed && !Unsigned &&
5389           "Bad modifiers used with 'f'!");
5390    Type = Context.FloatTy;
5391    break;
5392  case 'd':
5393    assert(HowLong < 2 && !Signed && !Unsigned &&
5394           "Bad modifiers used with 'd'!");
5395    if (HowLong)
5396      Type = Context.LongDoubleTy;
5397    else
5398      Type = Context.DoubleTy;
5399    break;
5400  case 's':
5401    assert(HowLong == 0 && "Bad modifiers used with 's'!");
5402    if (Unsigned)
5403      Type = Context.UnsignedShortTy;
5404    else
5405      Type = Context.ShortTy;
5406    break;
5407  case 'i':
5408    if (HowLong == 3)
5409      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
5410    else if (HowLong == 2)
5411      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
5412    else if (HowLong == 1)
5413      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
5414    else
5415      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
5416    break;
5417  case 'c':
5418    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
5419    if (Signed)
5420      Type = Context.SignedCharTy;
5421    else if (Unsigned)
5422      Type = Context.UnsignedCharTy;
5423    else
5424      Type = Context.CharTy;
5425    break;
5426  case 'b': // boolean
5427    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
5428    Type = Context.BoolTy;
5429    break;
5430  case 'z':  // size_t.
5431    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
5432    Type = Context.getSizeType();
5433    break;
5434  case 'F':
5435    Type = Context.getCFConstantStringType();
5436    break;
5437  case 'G':
5438    Type = Context.getObjCIdType();
5439    break;
5440  case 'H':
5441    Type = Context.getObjCSelType();
5442    break;
5443  case 'a':
5444    Type = Context.getBuiltinVaListType();
5445    assert(!Type.isNull() && "builtin va list type not initialized!");
5446    break;
5447  case 'A':
5448    // This is a "reference" to a va_list; however, what exactly
5449    // this means depends on how va_list is defined. There are two
5450    // different kinds of va_list: ones passed by value, and ones
5451    // passed by reference.  An example of a by-value va_list is
5452    // x86, where va_list is a char*. An example of by-ref va_list
5453    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
5454    // we want this argument to be a char*&; for x86-64, we want
5455    // it to be a __va_list_tag*.
5456    Type = Context.getBuiltinVaListType();
5457    assert(!Type.isNull() && "builtin va list type not initialized!");
5458    if (Type->isArrayType())
5459      Type = Context.getArrayDecayedType(Type);
5460    else
5461      Type = Context.getLValueReferenceType(Type);
5462    break;
5463  case 'V': {
5464    char *End;
5465    unsigned NumElements = strtoul(Str, &End, 10);
5466    assert(End != Str && "Missing vector size");
5467    Str = End;
5468
5469    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
5470                                             RequiresICE, false);
5471    assert(!RequiresICE && "Can't require vector ICE");
5472
5473    // TODO: No way to make AltiVec vectors in builtins yet.
5474    Type = Context.getVectorType(ElementType, NumElements,
5475                                 VectorType::GenericVector);
5476    break;
5477  }
5478  case 'X': {
5479    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
5480                                             false);
5481    assert(!RequiresICE && "Can't require complex ICE");
5482    Type = Context.getComplexType(ElementType);
5483    break;
5484  }
5485  case 'P':
5486    Type = Context.getFILEType();
5487    if (Type.isNull()) {
5488      Error = ASTContext::GE_Missing_stdio;
5489      return QualType();
5490    }
5491    break;
5492  case 'J':
5493    if (Signed)
5494      Type = Context.getsigjmp_bufType();
5495    else
5496      Type = Context.getjmp_bufType();
5497
5498    if (Type.isNull()) {
5499      Error = ASTContext::GE_Missing_setjmp;
5500      return QualType();
5501    }
5502    break;
5503  }
5504
5505  // If there are modifiers and if we're allowed to parse them, go for it.
5506  Done = !AllowTypeModifiers;
5507  while (!Done) {
5508    switch (char c = *Str++) {
5509    default: Done = true; --Str; break;
5510    case '*':
5511    case '&': {
5512      // Both pointers and references can have their pointee types
5513      // qualified with an address space.
5514      char *End;
5515      unsigned AddrSpace = strtoul(Str, &End, 10);
5516      if (End != Str && AddrSpace != 0) {
5517        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5518        Str = End;
5519      }
5520      if (c == '*')
5521        Type = Context.getPointerType(Type);
5522      else
5523        Type = Context.getLValueReferenceType(Type);
5524      break;
5525    }
5526    // FIXME: There's no way to have a built-in with an rvalue ref arg.
5527    case 'C':
5528      Type = Type.withConst();
5529      break;
5530    case 'D':
5531      Type = Context.getVolatileType(Type);
5532      break;
5533    }
5534  }
5535
5536  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
5537         "Integer constant 'I' type must be an integer");
5538
5539  return Type;
5540}
5541
5542/// GetBuiltinType - Return the type for the specified builtin.
5543QualType ASTContext::GetBuiltinType(unsigned Id,
5544                                    GetBuiltinTypeError &Error,
5545                                    unsigned *IntegerConstantArgs) {
5546  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
5547
5548  llvm::SmallVector<QualType, 8> ArgTypes;
5549
5550  bool RequiresICE = false;
5551  Error = GE_None;
5552  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
5553                                       RequiresICE, true);
5554  if (Error != GE_None)
5555    return QualType();
5556
5557  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
5558
5559  while (TypeStr[0] && TypeStr[0] != '.') {
5560    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
5561    if (Error != GE_None)
5562      return QualType();
5563
5564    // If this argument is required to be an IntegerConstantExpression and the
5565    // caller cares, fill in the bitmask we return.
5566    if (RequiresICE && IntegerConstantArgs)
5567      *IntegerConstantArgs |= 1 << ArgTypes.size();
5568
5569    // Do array -> pointer decay.  The builtin should use the decayed type.
5570    if (Ty->isArrayType())
5571      Ty = getArrayDecayedType(Ty);
5572
5573    ArgTypes.push_back(Ty);
5574  }
5575
5576  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5577         "'.' should only occur at end of builtin type list!");
5578
5579  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
5580  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
5581    return getFunctionNoProtoType(ResType);
5582
5583  // FIXME: Should we create noreturn types?
5584  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
5585                         TypeStr[0] == '.', 0, false, false, 0, 0,
5586                         FunctionType::ExtInfo());
5587}
5588
5589GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
5590  GVALinkage External = GVA_StrongExternal;
5591
5592  Linkage L = FD->getLinkage();
5593  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5594      FD->getType()->getLinkage() == UniqueExternalLinkage)
5595    L = UniqueExternalLinkage;
5596
5597  switch (L) {
5598  case NoLinkage:
5599  case InternalLinkage:
5600  case UniqueExternalLinkage:
5601    return GVA_Internal;
5602
5603  case ExternalLinkage:
5604    switch (FD->getTemplateSpecializationKind()) {
5605    case TSK_Undeclared:
5606    case TSK_ExplicitSpecialization:
5607      External = GVA_StrongExternal;
5608      break;
5609
5610    case TSK_ExplicitInstantiationDefinition:
5611      return GVA_ExplicitTemplateInstantiation;
5612
5613    case TSK_ExplicitInstantiationDeclaration:
5614    case TSK_ImplicitInstantiation:
5615      External = GVA_TemplateInstantiation;
5616      break;
5617    }
5618  }
5619
5620  if (!FD->isInlined())
5621    return External;
5622
5623  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
5624    // GNU or C99 inline semantics. Determine whether this symbol should be
5625    // externally visible.
5626    if (FD->isInlineDefinitionExternallyVisible())
5627      return External;
5628
5629    // C99 inline semantics, where the symbol is not externally visible.
5630    return GVA_C99Inline;
5631  }
5632
5633  // C++0x [temp.explicit]p9:
5634  //   [ Note: The intent is that an inline function that is the subject of
5635  //   an explicit instantiation declaration will still be implicitly
5636  //   instantiated when used so that the body can be considered for
5637  //   inlining, but that no out-of-line copy of the inline function would be
5638  //   generated in the translation unit. -- end note ]
5639  if (FD->getTemplateSpecializationKind()
5640                                       == TSK_ExplicitInstantiationDeclaration)
5641    return GVA_C99Inline;
5642
5643  return GVA_CXXInline;
5644}
5645
5646GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
5647  // If this is a static data member, compute the kind of template
5648  // specialization. Otherwise, this variable is not part of a
5649  // template.
5650  TemplateSpecializationKind TSK = TSK_Undeclared;
5651  if (VD->isStaticDataMember())
5652    TSK = VD->getTemplateSpecializationKind();
5653
5654  Linkage L = VD->getLinkage();
5655  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5656      VD->getType()->getLinkage() == UniqueExternalLinkage)
5657    L = UniqueExternalLinkage;
5658
5659  switch (L) {
5660  case NoLinkage:
5661  case InternalLinkage:
5662  case UniqueExternalLinkage:
5663    return GVA_Internal;
5664
5665  case ExternalLinkage:
5666    switch (TSK) {
5667    case TSK_Undeclared:
5668    case TSK_ExplicitSpecialization:
5669      return GVA_StrongExternal;
5670
5671    case TSK_ExplicitInstantiationDeclaration:
5672      llvm_unreachable("Variable should not be instantiated");
5673      // Fall through to treat this like any other instantiation.
5674
5675    case TSK_ExplicitInstantiationDefinition:
5676      return GVA_ExplicitTemplateInstantiation;
5677
5678    case TSK_ImplicitInstantiation:
5679      return GVA_TemplateInstantiation;
5680    }
5681  }
5682
5683  return GVA_StrongExternal;
5684}
5685
5686bool ASTContext::DeclMustBeEmitted(const Decl *D) {
5687  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
5688    if (!VD->isFileVarDecl())
5689      return false;
5690  } else if (!isa<FunctionDecl>(D))
5691    return false;
5692
5693  // Weak references don't produce any output by themselves.
5694  if (D->hasAttr<WeakRefAttr>())
5695    return false;
5696
5697  // Aliases and used decls are required.
5698  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
5699    return true;
5700
5701  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5702    // Forward declarations aren't required.
5703    if (!FD->isThisDeclarationADefinition())
5704      return false;
5705
5706    // Constructors and destructors are required.
5707    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
5708      return true;
5709
5710    // The key function for a class is required.
5711    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5712      const CXXRecordDecl *RD = MD->getParent();
5713      if (MD->isOutOfLine() && RD->isDynamicClass()) {
5714        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
5715        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
5716          return true;
5717      }
5718    }
5719
5720    GVALinkage Linkage = GetGVALinkageForFunction(FD);
5721
5722    // static, static inline, always_inline, and extern inline functions can
5723    // always be deferred.  Normal inline functions can be deferred in C99/C++.
5724    // Implicit template instantiations can also be deferred in C++.
5725    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
5726        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
5727      return false;
5728    return true;
5729  }
5730
5731  const VarDecl *VD = cast<VarDecl>(D);
5732  assert(VD->isFileVarDecl() && "Expected file scoped var");
5733
5734  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
5735    return false;
5736
5737  // Structs that have non-trivial constructors or destructors are required.
5738
5739  // FIXME: Handle references.
5740  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
5741    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5742      if (RD->hasDefinition() &&
5743          (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()))
5744        return true;
5745    }
5746  }
5747
5748  GVALinkage L = GetGVALinkageForVariable(VD);
5749  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
5750    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
5751      return false;
5752  }
5753
5754  return true;
5755}
5756
5757CallingConv ASTContext::getDefaultMethodCallConv() {
5758  // Pass through to the C++ ABI object
5759  return ABI->getDefaultMethodCallConv();
5760}
5761
5762bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) {
5763  // Pass through to the C++ ABI object
5764  return ABI->isNearlyEmpty(RD);
5765}
5766
5767CXXABI::~CXXABI() {}
5768