ASTContext.cpp revision 5eada844fa70b6e2bc941dd7306f7a4fb1e8529d
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const ClassTemplateSpecializationDecl *CTSD =
89          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
90    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
91    if (TSK == TSK_ImplicitInstantiation ||
92        TSK == TSK_Undeclared)
93      return NULL;
94  }
95
96  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
97    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
98      return NULL;
99  }
100
101  // TODO: handle comments for function parameters properly.
102  if (isa<ParmVarDecl>(D))
103    return NULL;
104
105  // TODO: we could look up template parameter documentation in the template
106  // documentation.
107  if (isa<TemplateTypeParmDecl>(D) ||
108      isa<NonTypeTemplateParmDecl>(D) ||
109      isa<TemplateTemplateParmDecl>(D))
110    return NULL;
111
112  ArrayRef<RawComment *> RawComments = Comments.getComments();
113
114  // If there are no comments anywhere, we won't find anything.
115  if (RawComments.empty())
116    return NULL;
117
118  // Find declaration location.
119  // For Objective-C declarations we generally don't expect to have multiple
120  // declarators, thus use declaration starting location as the "declaration
121  // location".
122  // For all other declarations multiple declarators are used quite frequently,
123  // so we use the location of the identifier as the "declaration location".
124  SourceLocation DeclLoc;
125  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
126      isa<ObjCPropertyDecl>(D) ||
127      isa<RedeclarableTemplateDecl>(D) ||
128      isa<ClassTemplateSpecializationDecl>(D))
129    DeclLoc = D->getLocStart();
130  else
131    DeclLoc = D->getLocation();
132
133  // If the declaration doesn't map directly to a location in a file, we
134  // can't find the comment.
135  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
136    return NULL;
137
138  // Find the comment that occurs just after this declaration.
139  ArrayRef<RawComment *>::iterator Comment;
140  {
141    // When searching for comments during parsing, the comment we are looking
142    // for is usually among the last two comments we parsed -- check them
143    // first.
144    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
145    BeforeThanCompare<RawComment> Compare(SourceMgr);
146    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
147    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
148    if (!Found && RawComments.size() >= 2) {
149      MaybeBeforeDecl--;
150      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
151    }
152
153    if (Found) {
154      Comment = MaybeBeforeDecl + 1;
155      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
156                                         &CommentAtDeclLoc, Compare));
157    } else {
158      // Slow path.
159      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
160                                 &CommentAtDeclLoc, Compare);
161    }
162  }
163
164  // Decompose the location for the declaration and find the beginning of the
165  // file buffer.
166  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
167
168  // First check whether we have a trailing comment.
169  if (Comment != RawComments.end() &&
170      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
171      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
172    std::pair<FileID, unsigned> CommentBeginDecomp
173      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
174    // Check that Doxygen trailing comment comes after the declaration, starts
175    // on the same line and in the same file as the declaration.
176    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
177        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
178          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
179                                     CommentBeginDecomp.second)) {
180      return *Comment;
181    }
182  }
183
184  // The comment just after the declaration was not a trailing comment.
185  // Let's look at the previous comment.
186  if (Comment == RawComments.begin())
187    return NULL;
188  --Comment;
189
190  // Check that we actually have a non-member Doxygen comment.
191  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
192    return NULL;
193
194  // Decompose the end of the comment.
195  std::pair<FileID, unsigned> CommentEndDecomp
196    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
197
198  // If the comment and the declaration aren't in the same file, then they
199  // aren't related.
200  if (DeclLocDecomp.first != CommentEndDecomp.first)
201    return NULL;
202
203  // Get the corresponding buffer.
204  bool Invalid = false;
205  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
206                                               &Invalid).data();
207  if (Invalid)
208    return NULL;
209
210  // Extract text between the comment and declaration.
211  StringRef Text(Buffer + CommentEndDecomp.second,
212                 DeclLocDecomp.second - CommentEndDecomp.second);
213
214  // There should be no other declarations or preprocessor directives between
215  // comment and declaration.
216  if (Text.find_first_of(",;{}#@") != StringRef::npos)
217    return NULL;
218
219  return *Comment;
220}
221
222namespace {
223/// If we have a 'templated' declaration for a template, adjust 'D' to
224/// refer to the actual template.
225/// If we have an implicit instantiation, adjust 'D' to refer to template.
226const Decl *adjustDeclToTemplate(const Decl *D) {
227  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
228    // Is this function declaration part of a function template?
229    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
230      return FTD;
231
232    // Nothing to do if function is not an implicit instantiation.
233    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
234      return D;
235
236    // Function is an implicit instantiation of a function template?
237    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
238      return FTD;
239
240    // Function is instantiated from a member definition of a class template?
241    if (const FunctionDecl *MemberDecl =
242            FD->getInstantiatedFromMemberFunction())
243      return MemberDecl;
244
245    return D;
246  }
247  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
248    // Static data member is instantiated from a member definition of a class
249    // template?
250    if (VD->isStaticDataMember())
251      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
252        return MemberDecl;
253
254    return D;
255  }
256  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
257    // Is this class declaration part of a class template?
258    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
259      return CTD;
260
261    // Class is an implicit instantiation of a class template or partial
262    // specialization?
263    if (const ClassTemplateSpecializationDecl *CTSD =
264            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
265      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
266        return D;
267      llvm::PointerUnion<ClassTemplateDecl *,
268                         ClassTemplatePartialSpecializationDecl *>
269          PU = CTSD->getSpecializedTemplateOrPartial();
270      return PU.is<ClassTemplateDecl*>() ?
271          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
272          static_cast<const Decl*>(
273              PU.get<ClassTemplatePartialSpecializationDecl *>());
274    }
275
276    // Class is instantiated from a member definition of a class template?
277    if (const MemberSpecializationInfo *Info =
278                   CRD->getMemberSpecializationInfo())
279      return Info->getInstantiatedFrom();
280
281    return D;
282  }
283  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
284    // Enum is instantiated from a member definition of a class template?
285    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
286      return MemberDecl;
287
288    return D;
289  }
290  // FIXME: Adjust alias templates?
291  return D;
292}
293} // unnamed namespace
294
295const RawComment *ASTContext::getRawCommentForAnyRedecl(
296                                                const Decl *D,
297                                                const Decl **OriginalDecl) const {
298  D = adjustDeclToTemplate(D);
299
300  // Check whether we have cached a comment for this declaration already.
301  {
302    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
303        RedeclComments.find(D);
304    if (Pos != RedeclComments.end()) {
305      const RawCommentAndCacheFlags &Raw = Pos->second;
306      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
307        if (OriginalDecl)
308          *OriginalDecl = Raw.getOriginalDecl();
309        return Raw.getRaw();
310      }
311    }
312  }
313
314  // Search for comments attached to declarations in the redeclaration chain.
315  const RawComment *RC = NULL;
316  const Decl *OriginalDeclForRC = NULL;
317  for (Decl::redecl_iterator I = D->redecls_begin(),
318                             E = D->redecls_end();
319       I != E; ++I) {
320    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
321        RedeclComments.find(*I);
322    if (Pos != RedeclComments.end()) {
323      const RawCommentAndCacheFlags &Raw = Pos->second;
324      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
325        RC = Raw.getRaw();
326        OriginalDeclForRC = Raw.getOriginalDecl();
327        break;
328      }
329    } else {
330      RC = getRawCommentForDeclNoCache(*I);
331      OriginalDeclForRC = *I;
332      RawCommentAndCacheFlags Raw;
333      if (RC) {
334        Raw.setRaw(RC);
335        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
336      } else
337        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
338      Raw.setOriginalDecl(*I);
339      RedeclComments[*I] = Raw;
340      if (RC)
341        break;
342    }
343  }
344
345  // If we found a comment, it should be a documentation comment.
346  assert(!RC || RC->isDocumentation());
347
348  if (OriginalDecl)
349    *OriginalDecl = OriginalDeclForRC;
350
351  // Update cache for every declaration in the redeclaration chain.
352  RawCommentAndCacheFlags Raw;
353  Raw.setRaw(RC);
354  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
355  Raw.setOriginalDecl(OriginalDeclForRC);
356
357  for (Decl::redecl_iterator I = D->redecls_begin(),
358                             E = D->redecls_end();
359       I != E; ++I) {
360    RawCommentAndCacheFlags &R = RedeclComments[*I];
361    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
362      R = Raw;
363  }
364
365  return RC;
366}
367
368static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
369                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
370  const DeclContext *DC = ObjCMethod->getDeclContext();
371  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
372    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
373    if (!ID)
374      return;
375    // Add redeclared method here.
376    for (ObjCInterfaceDecl::known_extensions_iterator
377           Ext = ID->known_extensions_begin(),
378           ExtEnd = ID->known_extensions_end();
379         Ext != ExtEnd; ++Ext) {
380      if (ObjCMethodDecl *RedeclaredMethod =
381            Ext->getMethod(ObjCMethod->getSelector(),
382                                  ObjCMethod->isInstanceMethod()))
383        Redeclared.push_back(RedeclaredMethod);
384    }
385  }
386}
387
388comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
389                                                    const Decl *D) const {
390  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
391  ThisDeclInfo->CommentDecl = D;
392  ThisDeclInfo->IsFilled = false;
393  ThisDeclInfo->fill();
394  ThisDeclInfo->CommentDecl = FC->getDecl();
395  comments::FullComment *CFC =
396    new (*this) comments::FullComment(FC->getBlocks(),
397                                      ThisDeclInfo);
398  return CFC;
399
400}
401
402comments::FullComment *ASTContext::getCommentForDecl(
403                                              const Decl *D,
404                                              const Preprocessor *PP) const {
405  D = adjustDeclToTemplate(D);
406
407  const Decl *Canonical = D->getCanonicalDecl();
408  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
409      ParsedComments.find(Canonical);
410
411  if (Pos != ParsedComments.end()) {
412    if (Canonical != D) {
413      comments::FullComment *FC = Pos->second;
414      comments::FullComment *CFC = cloneFullComment(FC, D);
415      return CFC;
416    }
417    return Pos->second;
418  }
419
420  const Decl *OriginalDecl;
421
422  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
423  if (!RC) {
424    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
425      SmallVector<const NamedDecl*, 8> Overridden;
426      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
427      if (OMD && OMD->isPropertyAccessor())
428        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
429          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
430            return cloneFullComment(FC, D);
431      if (OMD)
432        addRedeclaredMethods(OMD, Overridden);
433      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
434      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
435        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
436          return cloneFullComment(FC, D);
437    }
438    else if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
439      // Attach any tag type's documentation to its typedef if latter
440      // does not have one of its own.
441      QualType QT = TD->getUnderlyingType();
442      if (const TagType *TT = QT->getAs<TagType>())
443        if (const Decl *TD = TT->getDecl())
444          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
445            return cloneFullComment(FC, D);
446    }
447    return NULL;
448  }
449
450  // If the RawComment was attached to other redeclaration of this Decl, we
451  // should parse the comment in context of that other Decl.  This is important
452  // because comments can contain references to parameter names which can be
453  // different across redeclarations.
454  if (D != OriginalDecl)
455    return getCommentForDecl(OriginalDecl, PP);
456
457  comments::FullComment *FC = RC->parse(*this, PP, D);
458  ParsedComments[Canonical] = FC;
459  return FC;
460}
461
462void
463ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
464                                               TemplateTemplateParmDecl *Parm) {
465  ID.AddInteger(Parm->getDepth());
466  ID.AddInteger(Parm->getPosition());
467  ID.AddBoolean(Parm->isParameterPack());
468
469  TemplateParameterList *Params = Parm->getTemplateParameters();
470  ID.AddInteger(Params->size());
471  for (TemplateParameterList::const_iterator P = Params->begin(),
472                                          PEnd = Params->end();
473       P != PEnd; ++P) {
474    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
475      ID.AddInteger(0);
476      ID.AddBoolean(TTP->isParameterPack());
477      continue;
478    }
479
480    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
481      ID.AddInteger(1);
482      ID.AddBoolean(NTTP->isParameterPack());
483      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
484      if (NTTP->isExpandedParameterPack()) {
485        ID.AddBoolean(true);
486        ID.AddInteger(NTTP->getNumExpansionTypes());
487        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
488          QualType T = NTTP->getExpansionType(I);
489          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
490        }
491      } else
492        ID.AddBoolean(false);
493      continue;
494    }
495
496    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
497    ID.AddInteger(2);
498    Profile(ID, TTP);
499  }
500}
501
502TemplateTemplateParmDecl *
503ASTContext::getCanonicalTemplateTemplateParmDecl(
504                                          TemplateTemplateParmDecl *TTP) const {
505  // Check if we already have a canonical template template parameter.
506  llvm::FoldingSetNodeID ID;
507  CanonicalTemplateTemplateParm::Profile(ID, TTP);
508  void *InsertPos = 0;
509  CanonicalTemplateTemplateParm *Canonical
510    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
511  if (Canonical)
512    return Canonical->getParam();
513
514  // Build a canonical template parameter list.
515  TemplateParameterList *Params = TTP->getTemplateParameters();
516  SmallVector<NamedDecl *, 4> CanonParams;
517  CanonParams.reserve(Params->size());
518  for (TemplateParameterList::const_iterator P = Params->begin(),
519                                          PEnd = Params->end();
520       P != PEnd; ++P) {
521    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
522      CanonParams.push_back(
523                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
524                                               SourceLocation(),
525                                               SourceLocation(),
526                                               TTP->getDepth(),
527                                               TTP->getIndex(), 0, false,
528                                               TTP->isParameterPack()));
529    else if (NonTypeTemplateParmDecl *NTTP
530             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
531      QualType T = getCanonicalType(NTTP->getType());
532      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
533      NonTypeTemplateParmDecl *Param;
534      if (NTTP->isExpandedParameterPack()) {
535        SmallVector<QualType, 2> ExpandedTypes;
536        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
537        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
538          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
539          ExpandedTInfos.push_back(
540                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
541        }
542
543        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
544                                                SourceLocation(),
545                                                SourceLocation(),
546                                                NTTP->getDepth(),
547                                                NTTP->getPosition(), 0,
548                                                T,
549                                                TInfo,
550                                                ExpandedTypes.data(),
551                                                ExpandedTypes.size(),
552                                                ExpandedTInfos.data());
553      } else {
554        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
555                                                SourceLocation(),
556                                                SourceLocation(),
557                                                NTTP->getDepth(),
558                                                NTTP->getPosition(), 0,
559                                                T,
560                                                NTTP->isParameterPack(),
561                                                TInfo);
562      }
563      CanonParams.push_back(Param);
564
565    } else
566      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
567                                           cast<TemplateTemplateParmDecl>(*P)));
568  }
569
570  TemplateTemplateParmDecl *CanonTTP
571    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
572                                       SourceLocation(), TTP->getDepth(),
573                                       TTP->getPosition(),
574                                       TTP->isParameterPack(),
575                                       0,
576                         TemplateParameterList::Create(*this, SourceLocation(),
577                                                       SourceLocation(),
578                                                       CanonParams.data(),
579                                                       CanonParams.size(),
580                                                       SourceLocation()));
581
582  // Get the new insert position for the node we care about.
583  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
584  assert(Canonical == 0 && "Shouldn't be in the map!");
585  (void)Canonical;
586
587  // Create the canonical template template parameter entry.
588  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
589  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
590  return CanonTTP;
591}
592
593CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
594  if (!LangOpts.CPlusPlus) return 0;
595
596  switch (T.getCXXABI().getKind()) {
597  case TargetCXXABI::GenericARM:
598  case TargetCXXABI::iOS:
599    return CreateARMCXXABI(*this);
600  case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
601  case TargetCXXABI::GenericItanium:
602    return CreateItaniumCXXABI(*this);
603  case TargetCXXABI::Microsoft:
604    return CreateMicrosoftCXXABI(*this);
605  }
606  llvm_unreachable("Invalid CXXABI type!");
607}
608
609static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
610                                             const LangOptions &LOpts) {
611  if (LOpts.FakeAddressSpaceMap) {
612    // The fake address space map must have a distinct entry for each
613    // language-specific address space.
614    static const unsigned FakeAddrSpaceMap[] = {
615      1, // opencl_global
616      2, // opencl_local
617      3, // opencl_constant
618      4, // cuda_device
619      5, // cuda_constant
620      6  // cuda_shared
621    };
622    return &FakeAddrSpaceMap;
623  } else {
624    return &T.getAddressSpaceMap();
625  }
626}
627
628ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
629                       const TargetInfo *t,
630                       IdentifierTable &idents, SelectorTable &sels,
631                       Builtin::Context &builtins,
632                       unsigned size_reserve,
633                       bool DelayInitialization)
634  : FunctionProtoTypes(this_()),
635    TemplateSpecializationTypes(this_()),
636    DependentTemplateSpecializationTypes(this_()),
637    SubstTemplateTemplateParmPacks(this_()),
638    GlobalNestedNameSpecifier(0),
639    Int128Decl(0), UInt128Decl(0),
640    BuiltinVaListDecl(0),
641    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
642    BOOLDecl(0),
643    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
644    FILEDecl(0),
645    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
646    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
647    cudaConfigureCallDecl(0),
648    NullTypeSourceInfo(QualType()),
649    FirstLocalImport(), LastLocalImport(),
650    SourceMgr(SM), LangOpts(LOpts),
651    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
652    Idents(idents), Selectors(sels),
653    BuiltinInfo(builtins),
654    DeclarationNames(*this),
655    ExternalSource(0), Listener(0),
656    Comments(SM), CommentsLoaded(false),
657    CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
658    LastSDM(0, 0),
659    UniqueBlockByRefTypeID(0)
660{
661  if (size_reserve > 0) Types.reserve(size_reserve);
662  TUDecl = TranslationUnitDecl::Create(*this);
663
664  if (!DelayInitialization) {
665    assert(t && "No target supplied for ASTContext initialization");
666    InitBuiltinTypes(*t);
667  }
668}
669
670ASTContext::~ASTContext() {
671  // Release the DenseMaps associated with DeclContext objects.
672  // FIXME: Is this the ideal solution?
673  ReleaseDeclContextMaps();
674
675  // Call all of the deallocation functions.
676  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
677    Deallocations[I].first(Deallocations[I].second);
678
679  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
680  // because they can contain DenseMaps.
681  for (llvm::DenseMap<const ObjCContainerDecl*,
682       const ASTRecordLayout*>::iterator
683       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
684    // Increment in loop to prevent using deallocated memory.
685    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
686      R->Destroy(*this);
687
688  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
689       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
690    // Increment in loop to prevent using deallocated memory.
691    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
692      R->Destroy(*this);
693  }
694
695  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
696                                                    AEnd = DeclAttrs.end();
697       A != AEnd; ++A)
698    A->second->~AttrVec();
699}
700
701void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
702  Deallocations.push_back(std::make_pair(Callback, Data));
703}
704
705void
706ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
707  ExternalSource.reset(Source.take());
708}
709
710void ASTContext::PrintStats() const {
711  llvm::errs() << "\n*** AST Context Stats:\n";
712  llvm::errs() << "  " << Types.size() << " types total.\n";
713
714  unsigned counts[] = {
715#define TYPE(Name, Parent) 0,
716#define ABSTRACT_TYPE(Name, Parent)
717#include "clang/AST/TypeNodes.def"
718    0 // Extra
719  };
720
721  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
722    Type *T = Types[i];
723    counts[(unsigned)T->getTypeClass()]++;
724  }
725
726  unsigned Idx = 0;
727  unsigned TotalBytes = 0;
728#define TYPE(Name, Parent)                                              \
729  if (counts[Idx])                                                      \
730    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
731                 << " types\n";                                         \
732  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
733  ++Idx;
734#define ABSTRACT_TYPE(Name, Parent)
735#include "clang/AST/TypeNodes.def"
736
737  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
738
739  // Implicit special member functions.
740  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
741               << NumImplicitDefaultConstructors
742               << " implicit default constructors created\n";
743  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
744               << NumImplicitCopyConstructors
745               << " implicit copy constructors created\n";
746  if (getLangOpts().CPlusPlus)
747    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
748                 << NumImplicitMoveConstructors
749                 << " implicit move constructors created\n";
750  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
751               << NumImplicitCopyAssignmentOperators
752               << " implicit copy assignment operators created\n";
753  if (getLangOpts().CPlusPlus)
754    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
755                 << NumImplicitMoveAssignmentOperators
756                 << " implicit move assignment operators created\n";
757  llvm::errs() << NumImplicitDestructorsDeclared << "/"
758               << NumImplicitDestructors
759               << " implicit destructors created\n";
760
761  if (ExternalSource.get()) {
762    llvm::errs() << "\n";
763    ExternalSource->PrintStats();
764  }
765
766  BumpAlloc.PrintStats();
767}
768
769TypedefDecl *ASTContext::getInt128Decl() const {
770  if (!Int128Decl) {
771    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
772    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
773                                     getTranslationUnitDecl(),
774                                     SourceLocation(),
775                                     SourceLocation(),
776                                     &Idents.get("__int128_t"),
777                                     TInfo);
778  }
779
780  return Int128Decl;
781}
782
783TypedefDecl *ASTContext::getUInt128Decl() const {
784  if (!UInt128Decl) {
785    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
786    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
787                                     getTranslationUnitDecl(),
788                                     SourceLocation(),
789                                     SourceLocation(),
790                                     &Idents.get("__uint128_t"),
791                                     TInfo);
792  }
793
794  return UInt128Decl;
795}
796
797void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
798  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
799  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
800  Types.push_back(Ty);
801}
802
803void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
804  assert((!this->Target || this->Target == &Target) &&
805         "Incorrect target reinitialization");
806  assert(VoidTy.isNull() && "Context reinitialized?");
807
808  this->Target = &Target;
809
810  ABI.reset(createCXXABI(Target));
811  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
812
813  // C99 6.2.5p19.
814  InitBuiltinType(VoidTy,              BuiltinType::Void);
815
816  // C99 6.2.5p2.
817  InitBuiltinType(BoolTy,              BuiltinType::Bool);
818  // C99 6.2.5p3.
819  if (LangOpts.CharIsSigned)
820    InitBuiltinType(CharTy,            BuiltinType::Char_S);
821  else
822    InitBuiltinType(CharTy,            BuiltinType::Char_U);
823  // C99 6.2.5p4.
824  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
825  InitBuiltinType(ShortTy,             BuiltinType::Short);
826  InitBuiltinType(IntTy,               BuiltinType::Int);
827  InitBuiltinType(LongTy,              BuiltinType::Long);
828  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
829
830  // C99 6.2.5p6.
831  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
832  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
833  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
834  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
835  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
836
837  // C99 6.2.5p10.
838  InitBuiltinType(FloatTy,             BuiltinType::Float);
839  InitBuiltinType(DoubleTy,            BuiltinType::Double);
840  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
841
842  // GNU extension, 128-bit integers.
843  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
844  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
845
846  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
847    if (TargetInfo::isTypeSigned(Target.getWCharType()))
848      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
849    else  // -fshort-wchar makes wchar_t be unsigned.
850      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
851  } else // C99 (or C++ using -fno-wchar)
852    WCharTy = getFromTargetType(Target.getWCharType());
853
854  WIntTy = getFromTargetType(Target.getWIntType());
855
856  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
857    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
858  else // C99
859    Char16Ty = getFromTargetType(Target.getChar16Type());
860
861  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
862    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
863  else // C99
864    Char32Ty = getFromTargetType(Target.getChar32Type());
865
866  // Placeholder type for type-dependent expressions whose type is
867  // completely unknown. No code should ever check a type against
868  // DependentTy and users should never see it; however, it is here to
869  // help diagnose failures to properly check for type-dependent
870  // expressions.
871  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
872
873  // Placeholder type for functions.
874  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
875
876  // Placeholder type for bound members.
877  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
878
879  // Placeholder type for pseudo-objects.
880  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
881
882  // "any" type; useful for debugger-like clients.
883  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
884
885  // Placeholder type for unbridged ARC casts.
886  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
887
888  // Placeholder type for builtin functions.
889  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
890
891  // C99 6.2.5p11.
892  FloatComplexTy      = getComplexType(FloatTy);
893  DoubleComplexTy     = getComplexType(DoubleTy);
894  LongDoubleComplexTy = getComplexType(LongDoubleTy);
895
896  // Builtin types for 'id', 'Class', and 'SEL'.
897  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
898  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
899  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
900
901  if (LangOpts.OpenCL) {
902    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
903    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
904    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
905    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
906    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
907    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
908
909    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
910    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
911  }
912
913  // Builtin type for __objc_yes and __objc_no
914  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
915                       SignedCharTy : BoolTy);
916
917  ObjCConstantStringType = QualType();
918
919  ObjCSuperType = QualType();
920
921  // void * type
922  VoidPtrTy = getPointerType(VoidTy);
923
924  // nullptr type (C++0x 2.14.7)
925  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
926
927  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
928  InitBuiltinType(HalfTy, BuiltinType::Half);
929
930  // Builtin type used to help define __builtin_va_list.
931  VaListTagTy = QualType();
932}
933
934DiagnosticsEngine &ASTContext::getDiagnostics() const {
935  return SourceMgr.getDiagnostics();
936}
937
938AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
939  AttrVec *&Result = DeclAttrs[D];
940  if (!Result) {
941    void *Mem = Allocate(sizeof(AttrVec));
942    Result = new (Mem) AttrVec;
943  }
944
945  return *Result;
946}
947
948/// \brief Erase the attributes corresponding to the given declaration.
949void ASTContext::eraseDeclAttrs(const Decl *D) {
950  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
951  if (Pos != DeclAttrs.end()) {
952    Pos->second->~AttrVec();
953    DeclAttrs.erase(Pos);
954  }
955}
956
957MemberSpecializationInfo *
958ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
959  assert(Var->isStaticDataMember() && "Not a static data member");
960  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
961    = InstantiatedFromStaticDataMember.find(Var);
962  if (Pos == InstantiatedFromStaticDataMember.end())
963    return 0;
964
965  return Pos->second;
966}
967
968void
969ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
970                                                TemplateSpecializationKind TSK,
971                                          SourceLocation PointOfInstantiation) {
972  assert(Inst->isStaticDataMember() && "Not a static data member");
973  assert(Tmpl->isStaticDataMember() && "Not a static data member");
974  assert(!InstantiatedFromStaticDataMember[Inst] &&
975         "Already noted what static data member was instantiated from");
976  InstantiatedFromStaticDataMember[Inst]
977    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
978}
979
980FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
981                                                     const FunctionDecl *FD){
982  assert(FD && "Specialization is 0");
983  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
984    = ClassScopeSpecializationPattern.find(FD);
985  if (Pos == ClassScopeSpecializationPattern.end())
986    return 0;
987
988  return Pos->second;
989}
990
991void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
992                                        FunctionDecl *Pattern) {
993  assert(FD && "Specialization is 0");
994  assert(Pattern && "Class scope specialization pattern is 0");
995  ClassScopeSpecializationPattern[FD] = Pattern;
996}
997
998NamedDecl *
999ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1000  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1001    = InstantiatedFromUsingDecl.find(UUD);
1002  if (Pos == InstantiatedFromUsingDecl.end())
1003    return 0;
1004
1005  return Pos->second;
1006}
1007
1008void
1009ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1010  assert((isa<UsingDecl>(Pattern) ||
1011          isa<UnresolvedUsingValueDecl>(Pattern) ||
1012          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1013         "pattern decl is not a using decl");
1014  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1015  InstantiatedFromUsingDecl[Inst] = Pattern;
1016}
1017
1018UsingShadowDecl *
1019ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1020  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1021    = InstantiatedFromUsingShadowDecl.find(Inst);
1022  if (Pos == InstantiatedFromUsingShadowDecl.end())
1023    return 0;
1024
1025  return Pos->second;
1026}
1027
1028void
1029ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1030                                               UsingShadowDecl *Pattern) {
1031  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1032  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1033}
1034
1035FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1036  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1037    = InstantiatedFromUnnamedFieldDecl.find(Field);
1038  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1039    return 0;
1040
1041  return Pos->second;
1042}
1043
1044void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1045                                                     FieldDecl *Tmpl) {
1046  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1047  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1048  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1049         "Already noted what unnamed field was instantiated from");
1050
1051  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1052}
1053
1054bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1055                                    const FieldDecl *LastFD) const {
1056  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1057          FD->getBitWidthValue(*this) == 0);
1058}
1059
1060bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1061                                             const FieldDecl *LastFD) const {
1062  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1063          FD->getBitWidthValue(*this) == 0 &&
1064          LastFD->getBitWidthValue(*this) != 0);
1065}
1066
1067bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1068                                         const FieldDecl *LastFD) const {
1069  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1070          FD->getBitWidthValue(*this) &&
1071          LastFD->getBitWidthValue(*this));
1072}
1073
1074bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1075                                         const FieldDecl *LastFD) const {
1076  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1077          LastFD->getBitWidthValue(*this));
1078}
1079
1080bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1081                                             const FieldDecl *LastFD) const {
1082  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1083          FD->getBitWidthValue(*this));
1084}
1085
1086ASTContext::overridden_cxx_method_iterator
1087ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1088  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1089    = OverriddenMethods.find(Method->getCanonicalDecl());
1090  if (Pos == OverriddenMethods.end())
1091    return 0;
1092
1093  return Pos->second.begin();
1094}
1095
1096ASTContext::overridden_cxx_method_iterator
1097ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1098  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1099    = OverriddenMethods.find(Method->getCanonicalDecl());
1100  if (Pos == OverriddenMethods.end())
1101    return 0;
1102
1103  return Pos->second.end();
1104}
1105
1106unsigned
1107ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1108  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1109    = OverriddenMethods.find(Method->getCanonicalDecl());
1110  if (Pos == OverriddenMethods.end())
1111    return 0;
1112
1113  return Pos->second.size();
1114}
1115
1116void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1117                                     const CXXMethodDecl *Overridden) {
1118  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1119  OverriddenMethods[Method].push_back(Overridden);
1120}
1121
1122void ASTContext::getOverriddenMethods(
1123                      const NamedDecl *D,
1124                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1125  assert(D);
1126
1127  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1128    Overridden.append(CXXMethod->begin_overridden_methods(),
1129                      CXXMethod->end_overridden_methods());
1130    return;
1131  }
1132
1133  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1134  if (!Method)
1135    return;
1136
1137  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1138  Method->getOverriddenMethods(OverDecls);
1139  Overridden.append(OverDecls.begin(), OverDecls.end());
1140}
1141
1142void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1143  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1144  assert(!Import->isFromASTFile() && "Non-local import declaration");
1145  if (!FirstLocalImport) {
1146    FirstLocalImport = Import;
1147    LastLocalImport = Import;
1148    return;
1149  }
1150
1151  LastLocalImport->NextLocalImport = Import;
1152  LastLocalImport = Import;
1153}
1154
1155//===----------------------------------------------------------------------===//
1156//                         Type Sizing and Analysis
1157//===----------------------------------------------------------------------===//
1158
1159/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1160/// scalar floating point type.
1161const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1162  const BuiltinType *BT = T->getAs<BuiltinType>();
1163  assert(BT && "Not a floating point type!");
1164  switch (BT->getKind()) {
1165  default: llvm_unreachable("Not a floating point type!");
1166  case BuiltinType::Half:       return Target->getHalfFormat();
1167  case BuiltinType::Float:      return Target->getFloatFormat();
1168  case BuiltinType::Double:     return Target->getDoubleFormat();
1169  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1170  }
1171}
1172
1173/// getDeclAlign - Return a conservative estimate of the alignment of the
1174/// specified decl.  Note that bitfields do not have a valid alignment, so
1175/// this method will assert on them.
1176/// If @p RefAsPointee, references are treated like their underlying type
1177/// (for alignof), else they're treated like pointers (for CodeGen).
1178CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1179  unsigned Align = Target->getCharWidth();
1180
1181  bool UseAlignAttrOnly = false;
1182  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1183    Align = AlignFromAttr;
1184
1185    // __attribute__((aligned)) can increase or decrease alignment
1186    // *except* on a struct or struct member, where it only increases
1187    // alignment unless 'packed' is also specified.
1188    //
1189    // It is an error for alignas to decrease alignment, so we can
1190    // ignore that possibility;  Sema should diagnose it.
1191    if (isa<FieldDecl>(D)) {
1192      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1193        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1194    } else {
1195      UseAlignAttrOnly = true;
1196    }
1197  }
1198  else if (isa<FieldDecl>(D))
1199      UseAlignAttrOnly =
1200        D->hasAttr<PackedAttr>() ||
1201        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1202
1203  // If we're using the align attribute only, just ignore everything
1204  // else about the declaration and its type.
1205  if (UseAlignAttrOnly) {
1206    // do nothing
1207
1208  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1209    QualType T = VD->getType();
1210    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1211      if (RefAsPointee)
1212        T = RT->getPointeeType();
1213      else
1214        T = getPointerType(RT->getPointeeType());
1215    }
1216    if (!T->isIncompleteType() && !T->isFunctionType()) {
1217      // Adjust alignments of declarations with array type by the
1218      // large-array alignment on the target.
1219      unsigned MinWidth = Target->getLargeArrayMinWidth();
1220      const ArrayType *arrayType;
1221      if (MinWidth && (arrayType = getAsArrayType(T))) {
1222        if (isa<VariableArrayType>(arrayType))
1223          Align = std::max(Align, Target->getLargeArrayAlign());
1224        else if (isa<ConstantArrayType>(arrayType) &&
1225                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1226          Align = std::max(Align, Target->getLargeArrayAlign());
1227
1228        // Walk through any array types while we're at it.
1229        T = getBaseElementType(arrayType);
1230      }
1231      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1232    }
1233
1234    // Fields can be subject to extra alignment constraints, like if
1235    // the field is packed, the struct is packed, or the struct has a
1236    // a max-field-alignment constraint (#pragma pack).  So calculate
1237    // the actual alignment of the field within the struct, and then
1238    // (as we're expected to) constrain that by the alignment of the type.
1239    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1240      // So calculate the alignment of the field.
1241      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1242
1243      // Start with the record's overall alignment.
1244      unsigned fieldAlign = toBits(layout.getAlignment());
1245
1246      // Use the GCD of that and the offset within the record.
1247      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1248      if (offset > 0) {
1249        // Alignment is always a power of 2, so the GCD will be a power of 2,
1250        // which means we get to do this crazy thing instead of Euclid's.
1251        uint64_t lowBitOfOffset = offset & (~offset + 1);
1252        if (lowBitOfOffset < fieldAlign)
1253          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1254      }
1255
1256      Align = std::min(Align, fieldAlign);
1257    }
1258  }
1259
1260  return toCharUnitsFromBits(Align);
1261}
1262
1263// getTypeInfoDataSizeInChars - Return the size of a type, in
1264// chars. If the type is a record, its data size is returned.  This is
1265// the size of the memcpy that's performed when assigning this type
1266// using a trivial copy/move assignment operator.
1267std::pair<CharUnits, CharUnits>
1268ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1269  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1270
1271  // In C++, objects can sometimes be allocated into the tail padding
1272  // of a base-class subobject.  We decide whether that's possible
1273  // during class layout, so here we can just trust the layout results.
1274  if (getLangOpts().CPlusPlus) {
1275    if (const RecordType *RT = T->getAs<RecordType>()) {
1276      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1277      sizeAndAlign.first = layout.getDataSize();
1278    }
1279  }
1280
1281  return sizeAndAlign;
1282}
1283
1284std::pair<CharUnits, CharUnits>
1285ASTContext::getTypeInfoInChars(const Type *T) const {
1286  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1287  return std::make_pair(toCharUnitsFromBits(Info.first),
1288                        toCharUnitsFromBits(Info.second));
1289}
1290
1291std::pair<CharUnits, CharUnits>
1292ASTContext::getTypeInfoInChars(QualType T) const {
1293  return getTypeInfoInChars(T.getTypePtr());
1294}
1295
1296std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1297  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1298  if (it != MemoizedTypeInfo.end())
1299    return it->second;
1300
1301  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1302  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1303  return Info;
1304}
1305
1306/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1307/// method does not work on incomplete types.
1308///
1309/// FIXME: Pointers into different addr spaces could have different sizes and
1310/// alignment requirements: getPointerInfo should take an AddrSpace, this
1311/// should take a QualType, &c.
1312std::pair<uint64_t, unsigned>
1313ASTContext::getTypeInfoImpl(const Type *T) const {
1314  uint64_t Width=0;
1315  unsigned Align=8;
1316  switch (T->getTypeClass()) {
1317#define TYPE(Class, Base)
1318#define ABSTRACT_TYPE(Class, Base)
1319#define NON_CANONICAL_TYPE(Class, Base)
1320#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1321#include "clang/AST/TypeNodes.def"
1322    llvm_unreachable("Should not see dependent types");
1323
1324  case Type::FunctionNoProto:
1325  case Type::FunctionProto:
1326    // GCC extension: alignof(function) = 32 bits
1327    Width = 0;
1328    Align = 32;
1329    break;
1330
1331  case Type::IncompleteArray:
1332  case Type::VariableArray:
1333    Width = 0;
1334    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1335    break;
1336
1337  case Type::ConstantArray: {
1338    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1339
1340    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1341    uint64_t Size = CAT->getSize().getZExtValue();
1342    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1343           "Overflow in array type bit size evaluation");
1344    Width = EltInfo.first*Size;
1345    Align = EltInfo.second;
1346    Width = llvm::RoundUpToAlignment(Width, Align);
1347    break;
1348  }
1349  case Type::ExtVector:
1350  case Type::Vector: {
1351    const VectorType *VT = cast<VectorType>(T);
1352    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1353    Width = EltInfo.first*VT->getNumElements();
1354    Align = Width;
1355    // If the alignment is not a power of 2, round up to the next power of 2.
1356    // This happens for non-power-of-2 length vectors.
1357    if (Align & (Align-1)) {
1358      Align = llvm::NextPowerOf2(Align);
1359      Width = llvm::RoundUpToAlignment(Width, Align);
1360    }
1361    // Adjust the alignment based on the target max.
1362    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1363    if (TargetVectorAlign && TargetVectorAlign < Align)
1364      Align = TargetVectorAlign;
1365    break;
1366  }
1367
1368  case Type::Builtin:
1369    switch (cast<BuiltinType>(T)->getKind()) {
1370    default: llvm_unreachable("Unknown builtin type!");
1371    case BuiltinType::Void:
1372      // GCC extension: alignof(void) = 8 bits.
1373      Width = 0;
1374      Align = 8;
1375      break;
1376
1377    case BuiltinType::Bool:
1378      Width = Target->getBoolWidth();
1379      Align = Target->getBoolAlign();
1380      break;
1381    case BuiltinType::Char_S:
1382    case BuiltinType::Char_U:
1383    case BuiltinType::UChar:
1384    case BuiltinType::SChar:
1385      Width = Target->getCharWidth();
1386      Align = Target->getCharAlign();
1387      break;
1388    case BuiltinType::WChar_S:
1389    case BuiltinType::WChar_U:
1390      Width = Target->getWCharWidth();
1391      Align = Target->getWCharAlign();
1392      break;
1393    case BuiltinType::Char16:
1394      Width = Target->getChar16Width();
1395      Align = Target->getChar16Align();
1396      break;
1397    case BuiltinType::Char32:
1398      Width = Target->getChar32Width();
1399      Align = Target->getChar32Align();
1400      break;
1401    case BuiltinType::UShort:
1402    case BuiltinType::Short:
1403      Width = Target->getShortWidth();
1404      Align = Target->getShortAlign();
1405      break;
1406    case BuiltinType::UInt:
1407    case BuiltinType::Int:
1408      Width = Target->getIntWidth();
1409      Align = Target->getIntAlign();
1410      break;
1411    case BuiltinType::ULong:
1412    case BuiltinType::Long:
1413      Width = Target->getLongWidth();
1414      Align = Target->getLongAlign();
1415      break;
1416    case BuiltinType::ULongLong:
1417    case BuiltinType::LongLong:
1418      Width = Target->getLongLongWidth();
1419      Align = Target->getLongLongAlign();
1420      break;
1421    case BuiltinType::Int128:
1422    case BuiltinType::UInt128:
1423      Width = 128;
1424      Align = 128; // int128_t is 128-bit aligned on all targets.
1425      break;
1426    case BuiltinType::Half:
1427      Width = Target->getHalfWidth();
1428      Align = Target->getHalfAlign();
1429      break;
1430    case BuiltinType::Float:
1431      Width = Target->getFloatWidth();
1432      Align = Target->getFloatAlign();
1433      break;
1434    case BuiltinType::Double:
1435      Width = Target->getDoubleWidth();
1436      Align = Target->getDoubleAlign();
1437      break;
1438    case BuiltinType::LongDouble:
1439      Width = Target->getLongDoubleWidth();
1440      Align = Target->getLongDoubleAlign();
1441      break;
1442    case BuiltinType::NullPtr:
1443      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1444      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1445      break;
1446    case BuiltinType::ObjCId:
1447    case BuiltinType::ObjCClass:
1448    case BuiltinType::ObjCSel:
1449      Width = Target->getPointerWidth(0);
1450      Align = Target->getPointerAlign(0);
1451      break;
1452    case BuiltinType::OCLSampler:
1453      // Samplers are modeled as integers.
1454      Width = Target->getIntWidth();
1455      Align = Target->getIntAlign();
1456      break;
1457    case BuiltinType::OCLEvent:
1458    case BuiltinType::OCLImage1d:
1459    case BuiltinType::OCLImage1dArray:
1460    case BuiltinType::OCLImage1dBuffer:
1461    case BuiltinType::OCLImage2d:
1462    case BuiltinType::OCLImage2dArray:
1463    case BuiltinType::OCLImage3d:
1464      // Currently these types are pointers to opaque types.
1465      Width = Target->getPointerWidth(0);
1466      Align = Target->getPointerAlign(0);
1467      break;
1468    }
1469    break;
1470  case Type::ObjCObjectPointer:
1471    Width = Target->getPointerWidth(0);
1472    Align = Target->getPointerAlign(0);
1473    break;
1474  case Type::BlockPointer: {
1475    unsigned AS = getTargetAddressSpace(
1476        cast<BlockPointerType>(T)->getPointeeType());
1477    Width = Target->getPointerWidth(AS);
1478    Align = Target->getPointerAlign(AS);
1479    break;
1480  }
1481  case Type::LValueReference:
1482  case Type::RValueReference: {
1483    // alignof and sizeof should never enter this code path here, so we go
1484    // the pointer route.
1485    unsigned AS = getTargetAddressSpace(
1486        cast<ReferenceType>(T)->getPointeeType());
1487    Width = Target->getPointerWidth(AS);
1488    Align = Target->getPointerAlign(AS);
1489    break;
1490  }
1491  case Type::Pointer: {
1492    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1493    Width = Target->getPointerWidth(AS);
1494    Align = Target->getPointerAlign(AS);
1495    break;
1496  }
1497  case Type::MemberPointer: {
1498    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1499    std::pair<uint64_t, unsigned> PtrDiffInfo =
1500      getTypeInfo(getPointerDiffType());
1501    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1502    Align = PtrDiffInfo.second;
1503    break;
1504  }
1505  case Type::Complex: {
1506    // Complex types have the same alignment as their elements, but twice the
1507    // size.
1508    std::pair<uint64_t, unsigned> EltInfo =
1509      getTypeInfo(cast<ComplexType>(T)->getElementType());
1510    Width = EltInfo.first*2;
1511    Align = EltInfo.second;
1512    break;
1513  }
1514  case Type::ObjCObject:
1515    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1516  case Type::ObjCInterface: {
1517    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1518    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1519    Width = toBits(Layout.getSize());
1520    Align = toBits(Layout.getAlignment());
1521    break;
1522  }
1523  case Type::Record:
1524  case Type::Enum: {
1525    const TagType *TT = cast<TagType>(T);
1526
1527    if (TT->getDecl()->isInvalidDecl()) {
1528      Width = 8;
1529      Align = 8;
1530      break;
1531    }
1532
1533    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1534      return getTypeInfo(ET->getDecl()->getIntegerType());
1535
1536    const RecordType *RT = cast<RecordType>(TT);
1537    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1538    Width = toBits(Layout.getSize());
1539    Align = toBits(Layout.getAlignment());
1540    break;
1541  }
1542
1543  case Type::SubstTemplateTypeParm:
1544    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1545                       getReplacementType().getTypePtr());
1546
1547  case Type::Auto: {
1548    const AutoType *A = cast<AutoType>(T);
1549    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1550    return getTypeInfo(A->getDeducedType().getTypePtr());
1551  }
1552
1553  case Type::Paren:
1554    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1555
1556  case Type::Typedef: {
1557    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1558    std::pair<uint64_t, unsigned> Info
1559      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1560    // If the typedef has an aligned attribute on it, it overrides any computed
1561    // alignment we have.  This violates the GCC documentation (which says that
1562    // attribute(aligned) can only round up) but matches its implementation.
1563    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1564      Align = AttrAlign;
1565    else
1566      Align = Info.second;
1567    Width = Info.first;
1568    break;
1569  }
1570
1571  case Type::TypeOfExpr:
1572    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1573                         .getTypePtr());
1574
1575  case Type::TypeOf:
1576    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1577
1578  case Type::Decltype:
1579    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1580                        .getTypePtr());
1581
1582  case Type::UnaryTransform:
1583    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1584
1585  case Type::Elaborated:
1586    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1587
1588  case Type::Attributed:
1589    return getTypeInfo(
1590                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1591
1592  case Type::TemplateSpecialization: {
1593    assert(getCanonicalType(T) != T &&
1594           "Cannot request the size of a dependent type");
1595    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1596    // A type alias template specialization may refer to a typedef with the
1597    // aligned attribute on it.
1598    if (TST->isTypeAlias())
1599      return getTypeInfo(TST->getAliasedType().getTypePtr());
1600    else
1601      return getTypeInfo(getCanonicalType(T));
1602  }
1603
1604  case Type::Atomic: {
1605    std::pair<uint64_t, unsigned> Info
1606      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1607    Width = Info.first;
1608    Align = Info.second;
1609    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1610        llvm::isPowerOf2_64(Width)) {
1611      // We can potentially perform lock-free atomic operations for this
1612      // type; promote the alignment appropriately.
1613      // FIXME: We could potentially promote the width here as well...
1614      // is that worthwhile?  (Non-struct atomic types generally have
1615      // power-of-two size anyway, but structs might not.  Requires a bit
1616      // of implementation work to make sure we zero out the extra bits.)
1617      Align = static_cast<unsigned>(Width);
1618    }
1619  }
1620
1621  }
1622
1623  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1624  return std::make_pair(Width, Align);
1625}
1626
1627/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1628CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1629  return CharUnits::fromQuantity(BitSize / getCharWidth());
1630}
1631
1632/// toBits - Convert a size in characters to a size in characters.
1633int64_t ASTContext::toBits(CharUnits CharSize) const {
1634  return CharSize.getQuantity() * getCharWidth();
1635}
1636
1637/// getTypeSizeInChars - Return the size of the specified type, in characters.
1638/// This method does not work on incomplete types.
1639CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1640  return toCharUnitsFromBits(getTypeSize(T));
1641}
1642CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1643  return toCharUnitsFromBits(getTypeSize(T));
1644}
1645
1646/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1647/// characters. This method does not work on incomplete types.
1648CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1649  return toCharUnitsFromBits(getTypeAlign(T));
1650}
1651CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1652  return toCharUnitsFromBits(getTypeAlign(T));
1653}
1654
1655/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1656/// type for the current target in bits.  This can be different than the ABI
1657/// alignment in cases where it is beneficial for performance to overalign
1658/// a data type.
1659unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1660  unsigned ABIAlign = getTypeAlign(T);
1661
1662  // Double and long long should be naturally aligned if possible.
1663  if (const ComplexType* CT = T->getAs<ComplexType>())
1664    T = CT->getElementType().getTypePtr();
1665  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1666      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1667      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1668    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1669
1670  return ABIAlign;
1671}
1672
1673/// DeepCollectObjCIvars -
1674/// This routine first collects all declared, but not synthesized, ivars in
1675/// super class and then collects all ivars, including those synthesized for
1676/// current class. This routine is used for implementation of current class
1677/// when all ivars, declared and synthesized are known.
1678///
1679void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1680                                      bool leafClass,
1681                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1682  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1683    DeepCollectObjCIvars(SuperClass, false, Ivars);
1684  if (!leafClass) {
1685    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1686         E = OI->ivar_end(); I != E; ++I)
1687      Ivars.push_back(*I);
1688  } else {
1689    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1690    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1691         Iv= Iv->getNextIvar())
1692      Ivars.push_back(Iv);
1693  }
1694}
1695
1696/// CollectInheritedProtocols - Collect all protocols in current class and
1697/// those inherited by it.
1698void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1699                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1700  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1701    // We can use protocol_iterator here instead of
1702    // all_referenced_protocol_iterator since we are walking all categories.
1703    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1704         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1705      ObjCProtocolDecl *Proto = (*P);
1706      Protocols.insert(Proto->getCanonicalDecl());
1707      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1708           PE = Proto->protocol_end(); P != PE; ++P) {
1709        Protocols.insert((*P)->getCanonicalDecl());
1710        CollectInheritedProtocols(*P, Protocols);
1711      }
1712    }
1713
1714    // Categories of this Interface.
1715    for (ObjCInterfaceDecl::visible_categories_iterator
1716           Cat = OI->visible_categories_begin(),
1717           CatEnd = OI->visible_categories_end();
1718         Cat != CatEnd; ++Cat) {
1719      CollectInheritedProtocols(*Cat, Protocols);
1720    }
1721
1722    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1723      while (SD) {
1724        CollectInheritedProtocols(SD, Protocols);
1725        SD = SD->getSuperClass();
1726      }
1727  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1728    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1729         PE = OC->protocol_end(); P != PE; ++P) {
1730      ObjCProtocolDecl *Proto = (*P);
1731      Protocols.insert(Proto->getCanonicalDecl());
1732      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1733           PE = Proto->protocol_end(); P != PE; ++P)
1734        CollectInheritedProtocols(*P, Protocols);
1735    }
1736  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1737    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1738         PE = OP->protocol_end(); P != PE; ++P) {
1739      ObjCProtocolDecl *Proto = (*P);
1740      Protocols.insert(Proto->getCanonicalDecl());
1741      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1742           PE = Proto->protocol_end(); P != PE; ++P)
1743        CollectInheritedProtocols(*P, Protocols);
1744    }
1745  }
1746}
1747
1748unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1749  unsigned count = 0;
1750  // Count ivars declared in class extension.
1751  for (ObjCInterfaceDecl::known_extensions_iterator
1752         Ext = OI->known_extensions_begin(),
1753         ExtEnd = OI->known_extensions_end();
1754       Ext != ExtEnd; ++Ext) {
1755    count += Ext->ivar_size();
1756  }
1757
1758  // Count ivar defined in this class's implementation.  This
1759  // includes synthesized ivars.
1760  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1761    count += ImplDecl->ivar_size();
1762
1763  return count;
1764}
1765
1766bool ASTContext::isSentinelNullExpr(const Expr *E) {
1767  if (!E)
1768    return false;
1769
1770  // nullptr_t is always treated as null.
1771  if (E->getType()->isNullPtrType()) return true;
1772
1773  if (E->getType()->isAnyPointerType() &&
1774      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1775                                                Expr::NPC_ValueDependentIsNull))
1776    return true;
1777
1778  // Unfortunately, __null has type 'int'.
1779  if (isa<GNUNullExpr>(E)) return true;
1780
1781  return false;
1782}
1783
1784/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1785ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1786  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1787    I = ObjCImpls.find(D);
1788  if (I != ObjCImpls.end())
1789    return cast<ObjCImplementationDecl>(I->second);
1790  return 0;
1791}
1792/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1793ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1794  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1795    I = ObjCImpls.find(D);
1796  if (I != ObjCImpls.end())
1797    return cast<ObjCCategoryImplDecl>(I->second);
1798  return 0;
1799}
1800
1801/// \brief Set the implementation of ObjCInterfaceDecl.
1802void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1803                           ObjCImplementationDecl *ImplD) {
1804  assert(IFaceD && ImplD && "Passed null params");
1805  ObjCImpls[IFaceD] = ImplD;
1806}
1807/// \brief Set the implementation of ObjCCategoryDecl.
1808void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1809                           ObjCCategoryImplDecl *ImplD) {
1810  assert(CatD && ImplD && "Passed null params");
1811  ObjCImpls[CatD] = ImplD;
1812}
1813
1814const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1815                                              const NamedDecl *ND) const {
1816  if (const ObjCInterfaceDecl *ID =
1817          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1818    return ID;
1819  if (const ObjCCategoryDecl *CD =
1820          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1821    return CD->getClassInterface();
1822  if (const ObjCImplDecl *IMD =
1823          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1824    return IMD->getClassInterface();
1825
1826  return 0;
1827}
1828
1829/// \brief Get the copy initialization expression of VarDecl,or NULL if
1830/// none exists.
1831Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1832  assert(VD && "Passed null params");
1833  assert(VD->hasAttr<BlocksAttr>() &&
1834         "getBlockVarCopyInits - not __block var");
1835  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1836    I = BlockVarCopyInits.find(VD);
1837  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1838}
1839
1840/// \brief Set the copy inialization expression of a block var decl.
1841void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1842  assert(VD && Init && "Passed null params");
1843  assert(VD->hasAttr<BlocksAttr>() &&
1844         "setBlockVarCopyInits - not __block var");
1845  BlockVarCopyInits[VD] = Init;
1846}
1847
1848TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1849                                                 unsigned DataSize) const {
1850  if (!DataSize)
1851    DataSize = TypeLoc::getFullDataSizeForType(T);
1852  else
1853    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1854           "incorrect data size provided to CreateTypeSourceInfo!");
1855
1856  TypeSourceInfo *TInfo =
1857    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1858  new (TInfo) TypeSourceInfo(T);
1859  return TInfo;
1860}
1861
1862TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1863                                                     SourceLocation L) const {
1864  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1865  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1866  return DI;
1867}
1868
1869const ASTRecordLayout &
1870ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1871  return getObjCLayout(D, 0);
1872}
1873
1874const ASTRecordLayout &
1875ASTContext::getASTObjCImplementationLayout(
1876                                        const ObjCImplementationDecl *D) const {
1877  return getObjCLayout(D->getClassInterface(), D);
1878}
1879
1880//===----------------------------------------------------------------------===//
1881//                   Type creation/memoization methods
1882//===----------------------------------------------------------------------===//
1883
1884QualType
1885ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1886  unsigned fastQuals = quals.getFastQualifiers();
1887  quals.removeFastQualifiers();
1888
1889  // Check if we've already instantiated this type.
1890  llvm::FoldingSetNodeID ID;
1891  ExtQuals::Profile(ID, baseType, quals);
1892  void *insertPos = 0;
1893  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1894    assert(eq->getQualifiers() == quals);
1895    return QualType(eq, fastQuals);
1896  }
1897
1898  // If the base type is not canonical, make the appropriate canonical type.
1899  QualType canon;
1900  if (!baseType->isCanonicalUnqualified()) {
1901    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1902    canonSplit.Quals.addConsistentQualifiers(quals);
1903    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1904
1905    // Re-find the insert position.
1906    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1907  }
1908
1909  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1910  ExtQualNodes.InsertNode(eq, insertPos);
1911  return QualType(eq, fastQuals);
1912}
1913
1914QualType
1915ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1916  QualType CanT = getCanonicalType(T);
1917  if (CanT.getAddressSpace() == AddressSpace)
1918    return T;
1919
1920  // If we are composing extended qualifiers together, merge together
1921  // into one ExtQuals node.
1922  QualifierCollector Quals;
1923  const Type *TypeNode = Quals.strip(T);
1924
1925  // If this type already has an address space specified, it cannot get
1926  // another one.
1927  assert(!Quals.hasAddressSpace() &&
1928         "Type cannot be in multiple addr spaces!");
1929  Quals.addAddressSpace(AddressSpace);
1930
1931  return getExtQualType(TypeNode, Quals);
1932}
1933
1934QualType ASTContext::getObjCGCQualType(QualType T,
1935                                       Qualifiers::GC GCAttr) const {
1936  QualType CanT = getCanonicalType(T);
1937  if (CanT.getObjCGCAttr() == GCAttr)
1938    return T;
1939
1940  if (const PointerType *ptr = T->getAs<PointerType>()) {
1941    QualType Pointee = ptr->getPointeeType();
1942    if (Pointee->isAnyPointerType()) {
1943      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1944      return getPointerType(ResultType);
1945    }
1946  }
1947
1948  // If we are composing extended qualifiers together, merge together
1949  // into one ExtQuals node.
1950  QualifierCollector Quals;
1951  const Type *TypeNode = Quals.strip(T);
1952
1953  // If this type already has an ObjCGC specified, it cannot get
1954  // another one.
1955  assert(!Quals.hasObjCGCAttr() &&
1956         "Type cannot have multiple ObjCGCs!");
1957  Quals.addObjCGCAttr(GCAttr);
1958
1959  return getExtQualType(TypeNode, Quals);
1960}
1961
1962const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1963                                                   FunctionType::ExtInfo Info) {
1964  if (T->getExtInfo() == Info)
1965    return T;
1966
1967  QualType Result;
1968  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1969    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1970  } else {
1971    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1972    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1973    EPI.ExtInfo = Info;
1974    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1975                             FPT->getNumArgs(), EPI);
1976  }
1977
1978  return cast<FunctionType>(Result.getTypePtr());
1979}
1980
1981/// getComplexType - Return the uniqued reference to the type for a complex
1982/// number with the specified element type.
1983QualType ASTContext::getComplexType(QualType T) const {
1984  // Unique pointers, to guarantee there is only one pointer of a particular
1985  // structure.
1986  llvm::FoldingSetNodeID ID;
1987  ComplexType::Profile(ID, T);
1988
1989  void *InsertPos = 0;
1990  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1991    return QualType(CT, 0);
1992
1993  // If the pointee type isn't canonical, this won't be a canonical type either,
1994  // so fill in the canonical type field.
1995  QualType Canonical;
1996  if (!T.isCanonical()) {
1997    Canonical = getComplexType(getCanonicalType(T));
1998
1999    // Get the new insert position for the node we care about.
2000    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2001    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2002  }
2003  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2004  Types.push_back(New);
2005  ComplexTypes.InsertNode(New, InsertPos);
2006  return QualType(New, 0);
2007}
2008
2009/// getPointerType - Return the uniqued reference to the type for a pointer to
2010/// the specified type.
2011QualType ASTContext::getPointerType(QualType T) const {
2012  // Unique pointers, to guarantee there is only one pointer of a particular
2013  // structure.
2014  llvm::FoldingSetNodeID ID;
2015  PointerType::Profile(ID, T);
2016
2017  void *InsertPos = 0;
2018  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2019    return QualType(PT, 0);
2020
2021  // If the pointee type isn't canonical, this won't be a canonical type either,
2022  // so fill in the canonical type field.
2023  QualType Canonical;
2024  if (!T.isCanonical()) {
2025    Canonical = getPointerType(getCanonicalType(T));
2026
2027    // Get the new insert position for the node we care about.
2028    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2029    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2030  }
2031  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2032  Types.push_back(New);
2033  PointerTypes.InsertNode(New, InsertPos);
2034  return QualType(New, 0);
2035}
2036
2037/// getBlockPointerType - Return the uniqued reference to the type for
2038/// a pointer to the specified block.
2039QualType ASTContext::getBlockPointerType(QualType T) const {
2040  assert(T->isFunctionType() && "block of function types only");
2041  // Unique pointers, to guarantee there is only one block of a particular
2042  // structure.
2043  llvm::FoldingSetNodeID ID;
2044  BlockPointerType::Profile(ID, T);
2045
2046  void *InsertPos = 0;
2047  if (BlockPointerType *PT =
2048        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2049    return QualType(PT, 0);
2050
2051  // If the block pointee type isn't canonical, this won't be a canonical
2052  // type either so fill in the canonical type field.
2053  QualType Canonical;
2054  if (!T.isCanonical()) {
2055    Canonical = getBlockPointerType(getCanonicalType(T));
2056
2057    // Get the new insert position for the node we care about.
2058    BlockPointerType *NewIP =
2059      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2060    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2061  }
2062  BlockPointerType *New
2063    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2064  Types.push_back(New);
2065  BlockPointerTypes.InsertNode(New, InsertPos);
2066  return QualType(New, 0);
2067}
2068
2069/// getLValueReferenceType - Return the uniqued reference to the type for an
2070/// lvalue reference to the specified type.
2071QualType
2072ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2073  assert(getCanonicalType(T) != OverloadTy &&
2074         "Unresolved overloaded function type");
2075
2076  // Unique pointers, to guarantee there is only one pointer of a particular
2077  // structure.
2078  llvm::FoldingSetNodeID ID;
2079  ReferenceType::Profile(ID, T, SpelledAsLValue);
2080
2081  void *InsertPos = 0;
2082  if (LValueReferenceType *RT =
2083        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2084    return QualType(RT, 0);
2085
2086  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2087
2088  // If the referencee type isn't canonical, this won't be a canonical type
2089  // either, so fill in the canonical type field.
2090  QualType Canonical;
2091  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2092    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2093    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2094
2095    // Get the new insert position for the node we care about.
2096    LValueReferenceType *NewIP =
2097      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2098    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2099  }
2100
2101  LValueReferenceType *New
2102    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2103                                                     SpelledAsLValue);
2104  Types.push_back(New);
2105  LValueReferenceTypes.InsertNode(New, InsertPos);
2106
2107  return QualType(New, 0);
2108}
2109
2110/// getRValueReferenceType - Return the uniqued reference to the type for an
2111/// rvalue reference to the specified type.
2112QualType ASTContext::getRValueReferenceType(QualType T) const {
2113  // Unique pointers, to guarantee there is only one pointer of a particular
2114  // structure.
2115  llvm::FoldingSetNodeID ID;
2116  ReferenceType::Profile(ID, T, false);
2117
2118  void *InsertPos = 0;
2119  if (RValueReferenceType *RT =
2120        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2121    return QualType(RT, 0);
2122
2123  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2124
2125  // If the referencee type isn't canonical, this won't be a canonical type
2126  // either, so fill in the canonical type field.
2127  QualType Canonical;
2128  if (InnerRef || !T.isCanonical()) {
2129    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2130    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2131
2132    // Get the new insert position for the node we care about.
2133    RValueReferenceType *NewIP =
2134      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2135    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2136  }
2137
2138  RValueReferenceType *New
2139    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2140  Types.push_back(New);
2141  RValueReferenceTypes.InsertNode(New, InsertPos);
2142  return QualType(New, 0);
2143}
2144
2145/// getMemberPointerType - Return the uniqued reference to the type for a
2146/// member pointer to the specified type, in the specified class.
2147QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2148  // Unique pointers, to guarantee there is only one pointer of a particular
2149  // structure.
2150  llvm::FoldingSetNodeID ID;
2151  MemberPointerType::Profile(ID, T, Cls);
2152
2153  void *InsertPos = 0;
2154  if (MemberPointerType *PT =
2155      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2156    return QualType(PT, 0);
2157
2158  // If the pointee or class type isn't canonical, this won't be a canonical
2159  // type either, so fill in the canonical type field.
2160  QualType Canonical;
2161  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2162    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2163
2164    // Get the new insert position for the node we care about.
2165    MemberPointerType *NewIP =
2166      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2167    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2168  }
2169  MemberPointerType *New
2170    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2171  Types.push_back(New);
2172  MemberPointerTypes.InsertNode(New, InsertPos);
2173  return QualType(New, 0);
2174}
2175
2176/// getConstantArrayType - Return the unique reference to the type for an
2177/// array of the specified element type.
2178QualType ASTContext::getConstantArrayType(QualType EltTy,
2179                                          const llvm::APInt &ArySizeIn,
2180                                          ArrayType::ArraySizeModifier ASM,
2181                                          unsigned IndexTypeQuals) const {
2182  assert((EltTy->isDependentType() ||
2183          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2184         "Constant array of VLAs is illegal!");
2185
2186  // Convert the array size into a canonical width matching the pointer size for
2187  // the target.
2188  llvm::APInt ArySize(ArySizeIn);
2189  ArySize =
2190    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2191
2192  llvm::FoldingSetNodeID ID;
2193  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2194
2195  void *InsertPos = 0;
2196  if (ConstantArrayType *ATP =
2197      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2198    return QualType(ATP, 0);
2199
2200  // If the element type isn't canonical or has qualifiers, this won't
2201  // be a canonical type either, so fill in the canonical type field.
2202  QualType Canon;
2203  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2204    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2205    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2206                                 ASM, IndexTypeQuals);
2207    Canon = getQualifiedType(Canon, canonSplit.Quals);
2208
2209    // Get the new insert position for the node we care about.
2210    ConstantArrayType *NewIP =
2211      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2212    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2213  }
2214
2215  ConstantArrayType *New = new(*this,TypeAlignment)
2216    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2217  ConstantArrayTypes.InsertNode(New, InsertPos);
2218  Types.push_back(New);
2219  return QualType(New, 0);
2220}
2221
2222/// getVariableArrayDecayedType - Turns the given type, which may be
2223/// variably-modified, into the corresponding type with all the known
2224/// sizes replaced with [*].
2225QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2226  // Vastly most common case.
2227  if (!type->isVariablyModifiedType()) return type;
2228
2229  QualType result;
2230
2231  SplitQualType split = type.getSplitDesugaredType();
2232  const Type *ty = split.Ty;
2233  switch (ty->getTypeClass()) {
2234#define TYPE(Class, Base)
2235#define ABSTRACT_TYPE(Class, Base)
2236#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2237#include "clang/AST/TypeNodes.def"
2238    llvm_unreachable("didn't desugar past all non-canonical types?");
2239
2240  // These types should never be variably-modified.
2241  case Type::Builtin:
2242  case Type::Complex:
2243  case Type::Vector:
2244  case Type::ExtVector:
2245  case Type::DependentSizedExtVector:
2246  case Type::ObjCObject:
2247  case Type::ObjCInterface:
2248  case Type::ObjCObjectPointer:
2249  case Type::Record:
2250  case Type::Enum:
2251  case Type::UnresolvedUsing:
2252  case Type::TypeOfExpr:
2253  case Type::TypeOf:
2254  case Type::Decltype:
2255  case Type::UnaryTransform:
2256  case Type::DependentName:
2257  case Type::InjectedClassName:
2258  case Type::TemplateSpecialization:
2259  case Type::DependentTemplateSpecialization:
2260  case Type::TemplateTypeParm:
2261  case Type::SubstTemplateTypeParmPack:
2262  case Type::Auto:
2263  case Type::PackExpansion:
2264    llvm_unreachable("type should never be variably-modified");
2265
2266  // These types can be variably-modified but should never need to
2267  // further decay.
2268  case Type::FunctionNoProto:
2269  case Type::FunctionProto:
2270  case Type::BlockPointer:
2271  case Type::MemberPointer:
2272    return type;
2273
2274  // These types can be variably-modified.  All these modifications
2275  // preserve structure except as noted by comments.
2276  // TODO: if we ever care about optimizing VLAs, there are no-op
2277  // optimizations available here.
2278  case Type::Pointer:
2279    result = getPointerType(getVariableArrayDecayedType(
2280                              cast<PointerType>(ty)->getPointeeType()));
2281    break;
2282
2283  case Type::LValueReference: {
2284    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2285    result = getLValueReferenceType(
2286                 getVariableArrayDecayedType(lv->getPointeeType()),
2287                                    lv->isSpelledAsLValue());
2288    break;
2289  }
2290
2291  case Type::RValueReference: {
2292    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2293    result = getRValueReferenceType(
2294                 getVariableArrayDecayedType(lv->getPointeeType()));
2295    break;
2296  }
2297
2298  case Type::Atomic: {
2299    const AtomicType *at = cast<AtomicType>(ty);
2300    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2301    break;
2302  }
2303
2304  case Type::ConstantArray: {
2305    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2306    result = getConstantArrayType(
2307                 getVariableArrayDecayedType(cat->getElementType()),
2308                                  cat->getSize(),
2309                                  cat->getSizeModifier(),
2310                                  cat->getIndexTypeCVRQualifiers());
2311    break;
2312  }
2313
2314  case Type::DependentSizedArray: {
2315    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2316    result = getDependentSizedArrayType(
2317                 getVariableArrayDecayedType(dat->getElementType()),
2318                                        dat->getSizeExpr(),
2319                                        dat->getSizeModifier(),
2320                                        dat->getIndexTypeCVRQualifiers(),
2321                                        dat->getBracketsRange());
2322    break;
2323  }
2324
2325  // Turn incomplete types into [*] types.
2326  case Type::IncompleteArray: {
2327    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2328    result = getVariableArrayType(
2329                 getVariableArrayDecayedType(iat->getElementType()),
2330                                  /*size*/ 0,
2331                                  ArrayType::Normal,
2332                                  iat->getIndexTypeCVRQualifiers(),
2333                                  SourceRange());
2334    break;
2335  }
2336
2337  // Turn VLA types into [*] types.
2338  case Type::VariableArray: {
2339    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2340    result = getVariableArrayType(
2341                 getVariableArrayDecayedType(vat->getElementType()),
2342                                  /*size*/ 0,
2343                                  ArrayType::Star,
2344                                  vat->getIndexTypeCVRQualifiers(),
2345                                  vat->getBracketsRange());
2346    break;
2347  }
2348  }
2349
2350  // Apply the top-level qualifiers from the original.
2351  return getQualifiedType(result, split.Quals);
2352}
2353
2354/// getVariableArrayType - Returns a non-unique reference to the type for a
2355/// variable array of the specified element type.
2356QualType ASTContext::getVariableArrayType(QualType EltTy,
2357                                          Expr *NumElts,
2358                                          ArrayType::ArraySizeModifier ASM,
2359                                          unsigned IndexTypeQuals,
2360                                          SourceRange Brackets) const {
2361  // Since we don't unique expressions, it isn't possible to unique VLA's
2362  // that have an expression provided for their size.
2363  QualType Canon;
2364
2365  // Be sure to pull qualifiers off the element type.
2366  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2367    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2368    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2369                                 IndexTypeQuals, Brackets);
2370    Canon = getQualifiedType(Canon, canonSplit.Quals);
2371  }
2372
2373  VariableArrayType *New = new(*this, TypeAlignment)
2374    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2375
2376  VariableArrayTypes.push_back(New);
2377  Types.push_back(New);
2378  return QualType(New, 0);
2379}
2380
2381/// getDependentSizedArrayType - Returns a non-unique reference to
2382/// the type for a dependently-sized array of the specified element
2383/// type.
2384QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2385                                                Expr *numElements,
2386                                                ArrayType::ArraySizeModifier ASM,
2387                                                unsigned elementTypeQuals,
2388                                                SourceRange brackets) const {
2389  assert((!numElements || numElements->isTypeDependent() ||
2390          numElements->isValueDependent()) &&
2391         "Size must be type- or value-dependent!");
2392
2393  // Dependently-sized array types that do not have a specified number
2394  // of elements will have their sizes deduced from a dependent
2395  // initializer.  We do no canonicalization here at all, which is okay
2396  // because they can't be used in most locations.
2397  if (!numElements) {
2398    DependentSizedArrayType *newType
2399      = new (*this, TypeAlignment)
2400          DependentSizedArrayType(*this, elementType, QualType(),
2401                                  numElements, ASM, elementTypeQuals,
2402                                  brackets);
2403    Types.push_back(newType);
2404    return QualType(newType, 0);
2405  }
2406
2407  // Otherwise, we actually build a new type every time, but we
2408  // also build a canonical type.
2409
2410  SplitQualType canonElementType = getCanonicalType(elementType).split();
2411
2412  void *insertPos = 0;
2413  llvm::FoldingSetNodeID ID;
2414  DependentSizedArrayType::Profile(ID, *this,
2415                                   QualType(canonElementType.Ty, 0),
2416                                   ASM, elementTypeQuals, numElements);
2417
2418  // Look for an existing type with these properties.
2419  DependentSizedArrayType *canonTy =
2420    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2421
2422  // If we don't have one, build one.
2423  if (!canonTy) {
2424    canonTy = new (*this, TypeAlignment)
2425      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2426                              QualType(), numElements, ASM, elementTypeQuals,
2427                              brackets);
2428    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2429    Types.push_back(canonTy);
2430  }
2431
2432  // Apply qualifiers from the element type to the array.
2433  QualType canon = getQualifiedType(QualType(canonTy,0),
2434                                    canonElementType.Quals);
2435
2436  // If we didn't need extra canonicalization for the element type,
2437  // then just use that as our result.
2438  if (QualType(canonElementType.Ty, 0) == elementType)
2439    return canon;
2440
2441  // Otherwise, we need to build a type which follows the spelling
2442  // of the element type.
2443  DependentSizedArrayType *sugaredType
2444    = new (*this, TypeAlignment)
2445        DependentSizedArrayType(*this, elementType, canon, numElements,
2446                                ASM, elementTypeQuals, brackets);
2447  Types.push_back(sugaredType);
2448  return QualType(sugaredType, 0);
2449}
2450
2451QualType ASTContext::getIncompleteArrayType(QualType elementType,
2452                                            ArrayType::ArraySizeModifier ASM,
2453                                            unsigned elementTypeQuals) const {
2454  llvm::FoldingSetNodeID ID;
2455  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2456
2457  void *insertPos = 0;
2458  if (IncompleteArrayType *iat =
2459       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2460    return QualType(iat, 0);
2461
2462  // If the element type isn't canonical, this won't be a canonical type
2463  // either, so fill in the canonical type field.  We also have to pull
2464  // qualifiers off the element type.
2465  QualType canon;
2466
2467  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2468    SplitQualType canonSplit = getCanonicalType(elementType).split();
2469    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2470                                   ASM, elementTypeQuals);
2471    canon = getQualifiedType(canon, canonSplit.Quals);
2472
2473    // Get the new insert position for the node we care about.
2474    IncompleteArrayType *existing =
2475      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2476    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2477  }
2478
2479  IncompleteArrayType *newType = new (*this, TypeAlignment)
2480    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2481
2482  IncompleteArrayTypes.InsertNode(newType, insertPos);
2483  Types.push_back(newType);
2484  return QualType(newType, 0);
2485}
2486
2487/// getVectorType - Return the unique reference to a vector type of
2488/// the specified element type and size. VectorType must be a built-in type.
2489QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2490                                   VectorType::VectorKind VecKind) const {
2491  assert(vecType->isBuiltinType());
2492
2493  // Check if we've already instantiated a vector of this type.
2494  llvm::FoldingSetNodeID ID;
2495  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2496
2497  void *InsertPos = 0;
2498  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2499    return QualType(VTP, 0);
2500
2501  // If the element type isn't canonical, this won't be a canonical type either,
2502  // so fill in the canonical type field.
2503  QualType Canonical;
2504  if (!vecType.isCanonical()) {
2505    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2506
2507    // Get the new insert position for the node we care about.
2508    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2509    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2510  }
2511  VectorType *New = new (*this, TypeAlignment)
2512    VectorType(vecType, NumElts, Canonical, VecKind);
2513  VectorTypes.InsertNode(New, InsertPos);
2514  Types.push_back(New);
2515  return QualType(New, 0);
2516}
2517
2518/// getExtVectorType - Return the unique reference to an extended vector type of
2519/// the specified element type and size. VectorType must be a built-in type.
2520QualType
2521ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2522  assert(vecType->isBuiltinType() || vecType->isDependentType());
2523
2524  // Check if we've already instantiated a vector of this type.
2525  llvm::FoldingSetNodeID ID;
2526  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2527                      VectorType::GenericVector);
2528  void *InsertPos = 0;
2529  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2530    return QualType(VTP, 0);
2531
2532  // If the element type isn't canonical, this won't be a canonical type either,
2533  // so fill in the canonical type field.
2534  QualType Canonical;
2535  if (!vecType.isCanonical()) {
2536    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2537
2538    // Get the new insert position for the node we care about.
2539    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2540    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2541  }
2542  ExtVectorType *New = new (*this, TypeAlignment)
2543    ExtVectorType(vecType, NumElts, Canonical);
2544  VectorTypes.InsertNode(New, InsertPos);
2545  Types.push_back(New);
2546  return QualType(New, 0);
2547}
2548
2549QualType
2550ASTContext::getDependentSizedExtVectorType(QualType vecType,
2551                                           Expr *SizeExpr,
2552                                           SourceLocation AttrLoc) const {
2553  llvm::FoldingSetNodeID ID;
2554  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2555                                       SizeExpr);
2556
2557  void *InsertPos = 0;
2558  DependentSizedExtVectorType *Canon
2559    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2560  DependentSizedExtVectorType *New;
2561  if (Canon) {
2562    // We already have a canonical version of this array type; use it as
2563    // the canonical type for a newly-built type.
2564    New = new (*this, TypeAlignment)
2565      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2566                                  SizeExpr, AttrLoc);
2567  } else {
2568    QualType CanonVecTy = getCanonicalType(vecType);
2569    if (CanonVecTy == vecType) {
2570      New = new (*this, TypeAlignment)
2571        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2572                                    AttrLoc);
2573
2574      DependentSizedExtVectorType *CanonCheck
2575        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2576      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2577      (void)CanonCheck;
2578      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2579    } else {
2580      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2581                                                      SourceLocation());
2582      New = new (*this, TypeAlignment)
2583        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2584    }
2585  }
2586
2587  Types.push_back(New);
2588  return QualType(New, 0);
2589}
2590
2591/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2592///
2593QualType
2594ASTContext::getFunctionNoProtoType(QualType ResultTy,
2595                                   const FunctionType::ExtInfo &Info) const {
2596  const CallingConv DefaultCC = Info.getCC();
2597  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2598                               CC_X86StdCall : DefaultCC;
2599  // Unique functions, to guarantee there is only one function of a particular
2600  // structure.
2601  llvm::FoldingSetNodeID ID;
2602  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2603
2604  void *InsertPos = 0;
2605  if (FunctionNoProtoType *FT =
2606        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2607    return QualType(FT, 0);
2608
2609  QualType Canonical;
2610  if (!ResultTy.isCanonical() ||
2611      getCanonicalCallConv(CallConv) != CallConv) {
2612    Canonical =
2613      getFunctionNoProtoType(getCanonicalType(ResultTy),
2614                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2615
2616    // Get the new insert position for the node we care about.
2617    FunctionNoProtoType *NewIP =
2618      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2619    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2620  }
2621
2622  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2623  FunctionNoProtoType *New = new (*this, TypeAlignment)
2624    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2625  Types.push_back(New);
2626  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2627  return QualType(New, 0);
2628}
2629
2630/// \brief Determine whether \p T is canonical as the result type of a function.
2631static bool isCanonicalResultType(QualType T) {
2632  return T.isCanonical() &&
2633         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2634          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2635}
2636
2637/// getFunctionType - Return a normal function type with a typed argument
2638/// list.  isVariadic indicates whether the argument list includes '...'.
2639QualType
2640ASTContext::getFunctionType(QualType ResultTy,
2641                            const QualType *ArgArray, unsigned NumArgs,
2642                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2643  // Unique functions, to guarantee there is only one function of a particular
2644  // structure.
2645  llvm::FoldingSetNodeID ID;
2646  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2647
2648  void *InsertPos = 0;
2649  if (FunctionProtoType *FTP =
2650        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2651    return QualType(FTP, 0);
2652
2653  // Determine whether the type being created is already canonical or not.
2654  bool isCanonical =
2655    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2656    !EPI.HasTrailingReturn;
2657  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2658    if (!ArgArray[i].isCanonicalAsParam())
2659      isCanonical = false;
2660
2661  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2662  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2663                               CC_X86StdCall : DefaultCC;
2664
2665  // If this type isn't canonical, get the canonical version of it.
2666  // The exception spec is not part of the canonical type.
2667  QualType Canonical;
2668  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2669    SmallVector<QualType, 16> CanonicalArgs;
2670    CanonicalArgs.reserve(NumArgs);
2671    for (unsigned i = 0; i != NumArgs; ++i)
2672      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2673
2674    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2675    CanonicalEPI.HasTrailingReturn = false;
2676    CanonicalEPI.ExceptionSpecType = EST_None;
2677    CanonicalEPI.NumExceptions = 0;
2678    CanonicalEPI.ExtInfo
2679      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2680
2681    // Result types do not have ARC lifetime qualifiers.
2682    QualType CanResultTy = getCanonicalType(ResultTy);
2683    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2684      Qualifiers Qs = CanResultTy.getQualifiers();
2685      Qs.removeObjCLifetime();
2686      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2687    }
2688
2689    Canonical = getFunctionType(CanResultTy,
2690                                CanonicalArgs.data(), NumArgs,
2691                                CanonicalEPI);
2692
2693    // Get the new insert position for the node we care about.
2694    FunctionProtoType *NewIP =
2695      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2696    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2697  }
2698
2699  // FunctionProtoType objects are allocated with extra bytes after
2700  // them for three variable size arrays at the end:
2701  //  - parameter types
2702  //  - exception types
2703  //  - consumed-arguments flags
2704  // Instead of the exception types, there could be a noexcept
2705  // expression, or information used to resolve the exception
2706  // specification.
2707  size_t Size = sizeof(FunctionProtoType) +
2708                NumArgs * sizeof(QualType);
2709  if (EPI.ExceptionSpecType == EST_Dynamic) {
2710    Size += EPI.NumExceptions * sizeof(QualType);
2711  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2712    Size += sizeof(Expr*);
2713  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2714    Size += 2 * sizeof(FunctionDecl*);
2715  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2716    Size += sizeof(FunctionDecl*);
2717  }
2718  if (EPI.ConsumedArguments)
2719    Size += NumArgs * sizeof(bool);
2720
2721  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2722  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2723  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2724  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2725  Types.push_back(FTP);
2726  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2727  return QualType(FTP, 0);
2728}
2729
2730#ifndef NDEBUG
2731static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2732  if (!isa<CXXRecordDecl>(D)) return false;
2733  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2734  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2735    return true;
2736  if (RD->getDescribedClassTemplate() &&
2737      !isa<ClassTemplateSpecializationDecl>(RD))
2738    return true;
2739  return false;
2740}
2741#endif
2742
2743/// getInjectedClassNameType - Return the unique reference to the
2744/// injected class name type for the specified templated declaration.
2745QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2746                                              QualType TST) const {
2747  assert(NeedsInjectedClassNameType(Decl));
2748  if (Decl->TypeForDecl) {
2749    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2750  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2751    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2752    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2753    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2754  } else {
2755    Type *newType =
2756      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2757    Decl->TypeForDecl = newType;
2758    Types.push_back(newType);
2759  }
2760  return QualType(Decl->TypeForDecl, 0);
2761}
2762
2763/// getTypeDeclType - Return the unique reference to the type for the
2764/// specified type declaration.
2765QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2766  assert(Decl && "Passed null for Decl param");
2767  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2768
2769  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2770    return getTypedefType(Typedef);
2771
2772  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2773         "Template type parameter types are always available.");
2774
2775  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2776    assert(!Record->getPreviousDecl() &&
2777           "struct/union has previous declaration");
2778    assert(!NeedsInjectedClassNameType(Record));
2779    return getRecordType(Record);
2780  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2781    assert(!Enum->getPreviousDecl() &&
2782           "enum has previous declaration");
2783    return getEnumType(Enum);
2784  } else if (const UnresolvedUsingTypenameDecl *Using =
2785               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2786    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2787    Decl->TypeForDecl = newType;
2788    Types.push_back(newType);
2789  } else
2790    llvm_unreachable("TypeDecl without a type?");
2791
2792  return QualType(Decl->TypeForDecl, 0);
2793}
2794
2795/// getTypedefType - Return the unique reference to the type for the
2796/// specified typedef name decl.
2797QualType
2798ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2799                           QualType Canonical) const {
2800  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2801
2802  if (Canonical.isNull())
2803    Canonical = getCanonicalType(Decl->getUnderlyingType());
2804  TypedefType *newType = new(*this, TypeAlignment)
2805    TypedefType(Type::Typedef, Decl, Canonical);
2806  Decl->TypeForDecl = newType;
2807  Types.push_back(newType);
2808  return QualType(newType, 0);
2809}
2810
2811QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2812  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2813
2814  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2815    if (PrevDecl->TypeForDecl)
2816      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2817
2818  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2819  Decl->TypeForDecl = newType;
2820  Types.push_back(newType);
2821  return QualType(newType, 0);
2822}
2823
2824QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2825  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2826
2827  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2828    if (PrevDecl->TypeForDecl)
2829      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2830
2831  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2832  Decl->TypeForDecl = newType;
2833  Types.push_back(newType);
2834  return QualType(newType, 0);
2835}
2836
2837QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2838                                       QualType modifiedType,
2839                                       QualType equivalentType) {
2840  llvm::FoldingSetNodeID id;
2841  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2842
2843  void *insertPos = 0;
2844  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2845  if (type) return QualType(type, 0);
2846
2847  QualType canon = getCanonicalType(equivalentType);
2848  type = new (*this, TypeAlignment)
2849           AttributedType(canon, attrKind, modifiedType, equivalentType);
2850
2851  Types.push_back(type);
2852  AttributedTypes.InsertNode(type, insertPos);
2853
2854  return QualType(type, 0);
2855}
2856
2857
2858/// \brief Retrieve a substitution-result type.
2859QualType
2860ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2861                                         QualType Replacement) const {
2862  assert(Replacement.isCanonical()
2863         && "replacement types must always be canonical");
2864
2865  llvm::FoldingSetNodeID ID;
2866  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2867  void *InsertPos = 0;
2868  SubstTemplateTypeParmType *SubstParm
2869    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2870
2871  if (!SubstParm) {
2872    SubstParm = new (*this, TypeAlignment)
2873      SubstTemplateTypeParmType(Parm, Replacement);
2874    Types.push_back(SubstParm);
2875    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2876  }
2877
2878  return QualType(SubstParm, 0);
2879}
2880
2881/// \brief Retrieve a
2882QualType ASTContext::getSubstTemplateTypeParmPackType(
2883                                          const TemplateTypeParmType *Parm,
2884                                              const TemplateArgument &ArgPack) {
2885#ifndef NDEBUG
2886  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2887                                    PEnd = ArgPack.pack_end();
2888       P != PEnd; ++P) {
2889    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2890    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2891  }
2892#endif
2893
2894  llvm::FoldingSetNodeID ID;
2895  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2896  void *InsertPos = 0;
2897  if (SubstTemplateTypeParmPackType *SubstParm
2898        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2899    return QualType(SubstParm, 0);
2900
2901  QualType Canon;
2902  if (!Parm->isCanonicalUnqualified()) {
2903    Canon = getCanonicalType(QualType(Parm, 0));
2904    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2905                                             ArgPack);
2906    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2907  }
2908
2909  SubstTemplateTypeParmPackType *SubstParm
2910    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2911                                                               ArgPack);
2912  Types.push_back(SubstParm);
2913  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2914  return QualType(SubstParm, 0);
2915}
2916
2917/// \brief Retrieve the template type parameter type for a template
2918/// parameter or parameter pack with the given depth, index, and (optionally)
2919/// name.
2920QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2921                                             bool ParameterPack,
2922                                             TemplateTypeParmDecl *TTPDecl) const {
2923  llvm::FoldingSetNodeID ID;
2924  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2925  void *InsertPos = 0;
2926  TemplateTypeParmType *TypeParm
2927    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2928
2929  if (TypeParm)
2930    return QualType(TypeParm, 0);
2931
2932  if (TTPDecl) {
2933    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2934    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2935
2936    TemplateTypeParmType *TypeCheck
2937      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2938    assert(!TypeCheck && "Template type parameter canonical type broken");
2939    (void)TypeCheck;
2940  } else
2941    TypeParm = new (*this, TypeAlignment)
2942      TemplateTypeParmType(Depth, Index, ParameterPack);
2943
2944  Types.push_back(TypeParm);
2945  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2946
2947  return QualType(TypeParm, 0);
2948}
2949
2950TypeSourceInfo *
2951ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2952                                              SourceLocation NameLoc,
2953                                        const TemplateArgumentListInfo &Args,
2954                                              QualType Underlying) const {
2955  assert(!Name.getAsDependentTemplateName() &&
2956         "No dependent template names here!");
2957  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2958
2959  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2960  TemplateSpecializationTypeLoc TL =
2961      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
2962  TL.setTemplateKeywordLoc(SourceLocation());
2963  TL.setTemplateNameLoc(NameLoc);
2964  TL.setLAngleLoc(Args.getLAngleLoc());
2965  TL.setRAngleLoc(Args.getRAngleLoc());
2966  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2967    TL.setArgLocInfo(i, Args[i].getLocInfo());
2968  return DI;
2969}
2970
2971QualType
2972ASTContext::getTemplateSpecializationType(TemplateName Template,
2973                                          const TemplateArgumentListInfo &Args,
2974                                          QualType Underlying) const {
2975  assert(!Template.getAsDependentTemplateName() &&
2976         "No dependent template names here!");
2977
2978  unsigned NumArgs = Args.size();
2979
2980  SmallVector<TemplateArgument, 4> ArgVec;
2981  ArgVec.reserve(NumArgs);
2982  for (unsigned i = 0; i != NumArgs; ++i)
2983    ArgVec.push_back(Args[i].getArgument());
2984
2985  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2986                                       Underlying);
2987}
2988
2989#ifndef NDEBUG
2990static bool hasAnyPackExpansions(const TemplateArgument *Args,
2991                                 unsigned NumArgs) {
2992  for (unsigned I = 0; I != NumArgs; ++I)
2993    if (Args[I].isPackExpansion())
2994      return true;
2995
2996  return true;
2997}
2998#endif
2999
3000QualType
3001ASTContext::getTemplateSpecializationType(TemplateName Template,
3002                                          const TemplateArgument *Args,
3003                                          unsigned NumArgs,
3004                                          QualType Underlying) const {
3005  assert(!Template.getAsDependentTemplateName() &&
3006         "No dependent template names here!");
3007  // Look through qualified template names.
3008  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3009    Template = TemplateName(QTN->getTemplateDecl());
3010
3011  bool IsTypeAlias =
3012    Template.getAsTemplateDecl() &&
3013    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3014  QualType CanonType;
3015  if (!Underlying.isNull())
3016    CanonType = getCanonicalType(Underlying);
3017  else {
3018    // We can get here with an alias template when the specialization contains
3019    // a pack expansion that does not match up with a parameter pack.
3020    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3021           "Caller must compute aliased type");
3022    IsTypeAlias = false;
3023    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3024                                                       NumArgs);
3025  }
3026
3027  // Allocate the (non-canonical) template specialization type, but don't
3028  // try to unique it: these types typically have location information that
3029  // we don't unique and don't want to lose.
3030  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3031                       sizeof(TemplateArgument) * NumArgs +
3032                       (IsTypeAlias? sizeof(QualType) : 0),
3033                       TypeAlignment);
3034  TemplateSpecializationType *Spec
3035    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3036                                         IsTypeAlias ? Underlying : QualType());
3037
3038  Types.push_back(Spec);
3039  return QualType(Spec, 0);
3040}
3041
3042QualType
3043ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3044                                                   const TemplateArgument *Args,
3045                                                   unsigned NumArgs) const {
3046  assert(!Template.getAsDependentTemplateName() &&
3047         "No dependent template names here!");
3048
3049  // Look through qualified template names.
3050  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3051    Template = TemplateName(QTN->getTemplateDecl());
3052
3053  // Build the canonical template specialization type.
3054  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3055  SmallVector<TemplateArgument, 4> CanonArgs;
3056  CanonArgs.reserve(NumArgs);
3057  for (unsigned I = 0; I != NumArgs; ++I)
3058    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3059
3060  // Determine whether this canonical template specialization type already
3061  // exists.
3062  llvm::FoldingSetNodeID ID;
3063  TemplateSpecializationType::Profile(ID, CanonTemplate,
3064                                      CanonArgs.data(), NumArgs, *this);
3065
3066  void *InsertPos = 0;
3067  TemplateSpecializationType *Spec
3068    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3069
3070  if (!Spec) {
3071    // Allocate a new canonical template specialization type.
3072    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3073                          sizeof(TemplateArgument) * NumArgs),
3074                         TypeAlignment);
3075    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3076                                                CanonArgs.data(), NumArgs,
3077                                                QualType(), QualType());
3078    Types.push_back(Spec);
3079    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3080  }
3081
3082  assert(Spec->isDependentType() &&
3083         "Non-dependent template-id type must have a canonical type");
3084  return QualType(Spec, 0);
3085}
3086
3087QualType
3088ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3089                              NestedNameSpecifier *NNS,
3090                              QualType NamedType) const {
3091  llvm::FoldingSetNodeID ID;
3092  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3093
3094  void *InsertPos = 0;
3095  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3096  if (T)
3097    return QualType(T, 0);
3098
3099  QualType Canon = NamedType;
3100  if (!Canon.isCanonical()) {
3101    Canon = getCanonicalType(NamedType);
3102    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3103    assert(!CheckT && "Elaborated canonical type broken");
3104    (void)CheckT;
3105  }
3106
3107  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3108  Types.push_back(T);
3109  ElaboratedTypes.InsertNode(T, InsertPos);
3110  return QualType(T, 0);
3111}
3112
3113QualType
3114ASTContext::getParenType(QualType InnerType) const {
3115  llvm::FoldingSetNodeID ID;
3116  ParenType::Profile(ID, InnerType);
3117
3118  void *InsertPos = 0;
3119  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3120  if (T)
3121    return QualType(T, 0);
3122
3123  QualType Canon = InnerType;
3124  if (!Canon.isCanonical()) {
3125    Canon = getCanonicalType(InnerType);
3126    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3127    assert(!CheckT && "Paren canonical type broken");
3128    (void)CheckT;
3129  }
3130
3131  T = new (*this) ParenType(InnerType, Canon);
3132  Types.push_back(T);
3133  ParenTypes.InsertNode(T, InsertPos);
3134  return QualType(T, 0);
3135}
3136
3137QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3138                                          NestedNameSpecifier *NNS,
3139                                          const IdentifierInfo *Name,
3140                                          QualType Canon) const {
3141  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3142
3143  if (Canon.isNull()) {
3144    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3145    ElaboratedTypeKeyword CanonKeyword = Keyword;
3146    if (Keyword == ETK_None)
3147      CanonKeyword = ETK_Typename;
3148
3149    if (CanonNNS != NNS || CanonKeyword != Keyword)
3150      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3151  }
3152
3153  llvm::FoldingSetNodeID ID;
3154  DependentNameType::Profile(ID, Keyword, NNS, Name);
3155
3156  void *InsertPos = 0;
3157  DependentNameType *T
3158    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3159  if (T)
3160    return QualType(T, 0);
3161
3162  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3163  Types.push_back(T);
3164  DependentNameTypes.InsertNode(T, InsertPos);
3165  return QualType(T, 0);
3166}
3167
3168QualType
3169ASTContext::getDependentTemplateSpecializationType(
3170                                 ElaboratedTypeKeyword Keyword,
3171                                 NestedNameSpecifier *NNS,
3172                                 const IdentifierInfo *Name,
3173                                 const TemplateArgumentListInfo &Args) const {
3174  // TODO: avoid this copy
3175  SmallVector<TemplateArgument, 16> ArgCopy;
3176  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3177    ArgCopy.push_back(Args[I].getArgument());
3178  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3179                                                ArgCopy.size(),
3180                                                ArgCopy.data());
3181}
3182
3183QualType
3184ASTContext::getDependentTemplateSpecializationType(
3185                                 ElaboratedTypeKeyword Keyword,
3186                                 NestedNameSpecifier *NNS,
3187                                 const IdentifierInfo *Name,
3188                                 unsigned NumArgs,
3189                                 const TemplateArgument *Args) const {
3190  assert((!NNS || NNS->isDependent()) &&
3191         "nested-name-specifier must be dependent");
3192
3193  llvm::FoldingSetNodeID ID;
3194  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3195                                               Name, NumArgs, Args);
3196
3197  void *InsertPos = 0;
3198  DependentTemplateSpecializationType *T
3199    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3200  if (T)
3201    return QualType(T, 0);
3202
3203  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3204
3205  ElaboratedTypeKeyword CanonKeyword = Keyword;
3206  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3207
3208  bool AnyNonCanonArgs = false;
3209  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3210  for (unsigned I = 0; I != NumArgs; ++I) {
3211    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3212    if (!CanonArgs[I].structurallyEquals(Args[I]))
3213      AnyNonCanonArgs = true;
3214  }
3215
3216  QualType Canon;
3217  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3218    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3219                                                   Name, NumArgs,
3220                                                   CanonArgs.data());
3221
3222    // Find the insert position again.
3223    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3224  }
3225
3226  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3227                        sizeof(TemplateArgument) * NumArgs),
3228                       TypeAlignment);
3229  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3230                                                    Name, NumArgs, Args, Canon);
3231  Types.push_back(T);
3232  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3233  return QualType(T, 0);
3234}
3235
3236QualType ASTContext::getPackExpansionType(QualType Pattern,
3237                                          Optional<unsigned> NumExpansions) {
3238  llvm::FoldingSetNodeID ID;
3239  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3240
3241  assert(Pattern->containsUnexpandedParameterPack() &&
3242         "Pack expansions must expand one or more parameter packs");
3243  void *InsertPos = 0;
3244  PackExpansionType *T
3245    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3246  if (T)
3247    return QualType(T, 0);
3248
3249  QualType Canon;
3250  if (!Pattern.isCanonical()) {
3251    Canon = getCanonicalType(Pattern);
3252    // The canonical type might not contain an unexpanded parameter pack, if it
3253    // contains an alias template specialization which ignores one of its
3254    // parameters.
3255    if (Canon->containsUnexpandedParameterPack()) {
3256      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3257
3258      // Find the insert position again, in case we inserted an element into
3259      // PackExpansionTypes and invalidated our insert position.
3260      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3261    }
3262  }
3263
3264  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3265  Types.push_back(T);
3266  PackExpansionTypes.InsertNode(T, InsertPos);
3267  return QualType(T, 0);
3268}
3269
3270/// CmpProtocolNames - Comparison predicate for sorting protocols
3271/// alphabetically.
3272static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3273                            const ObjCProtocolDecl *RHS) {
3274  return LHS->getDeclName() < RHS->getDeclName();
3275}
3276
3277static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3278                                unsigned NumProtocols) {
3279  if (NumProtocols == 0) return true;
3280
3281  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3282    return false;
3283
3284  for (unsigned i = 1; i != NumProtocols; ++i)
3285    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3286        Protocols[i]->getCanonicalDecl() != Protocols[i])
3287      return false;
3288  return true;
3289}
3290
3291static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3292                                   unsigned &NumProtocols) {
3293  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3294
3295  // Sort protocols, keyed by name.
3296  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3297
3298  // Canonicalize.
3299  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3300    Protocols[I] = Protocols[I]->getCanonicalDecl();
3301
3302  // Remove duplicates.
3303  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3304  NumProtocols = ProtocolsEnd-Protocols;
3305}
3306
3307QualType ASTContext::getObjCObjectType(QualType BaseType,
3308                                       ObjCProtocolDecl * const *Protocols,
3309                                       unsigned NumProtocols) const {
3310  // If the base type is an interface and there aren't any protocols
3311  // to add, then the interface type will do just fine.
3312  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3313    return BaseType;
3314
3315  // Look in the folding set for an existing type.
3316  llvm::FoldingSetNodeID ID;
3317  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3318  void *InsertPos = 0;
3319  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3320    return QualType(QT, 0);
3321
3322  // Build the canonical type, which has the canonical base type and
3323  // a sorted-and-uniqued list of protocols.
3324  QualType Canonical;
3325  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3326  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3327    if (!ProtocolsSorted) {
3328      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3329                                                     Protocols + NumProtocols);
3330      unsigned UniqueCount = NumProtocols;
3331
3332      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3333      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3334                                    &Sorted[0], UniqueCount);
3335    } else {
3336      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3337                                    Protocols, NumProtocols);
3338    }
3339
3340    // Regenerate InsertPos.
3341    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3342  }
3343
3344  unsigned Size = sizeof(ObjCObjectTypeImpl);
3345  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3346  void *Mem = Allocate(Size, TypeAlignment);
3347  ObjCObjectTypeImpl *T =
3348    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3349
3350  Types.push_back(T);
3351  ObjCObjectTypes.InsertNode(T, InsertPos);
3352  return QualType(T, 0);
3353}
3354
3355/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3356/// the given object type.
3357QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3358  llvm::FoldingSetNodeID ID;
3359  ObjCObjectPointerType::Profile(ID, ObjectT);
3360
3361  void *InsertPos = 0;
3362  if (ObjCObjectPointerType *QT =
3363              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3364    return QualType(QT, 0);
3365
3366  // Find the canonical object type.
3367  QualType Canonical;
3368  if (!ObjectT.isCanonical()) {
3369    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3370
3371    // Regenerate InsertPos.
3372    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3373  }
3374
3375  // No match.
3376  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3377  ObjCObjectPointerType *QType =
3378    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3379
3380  Types.push_back(QType);
3381  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3382  return QualType(QType, 0);
3383}
3384
3385/// getObjCInterfaceType - Return the unique reference to the type for the
3386/// specified ObjC interface decl. The list of protocols is optional.
3387QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3388                                          ObjCInterfaceDecl *PrevDecl) const {
3389  if (Decl->TypeForDecl)
3390    return QualType(Decl->TypeForDecl, 0);
3391
3392  if (PrevDecl) {
3393    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3394    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3395    return QualType(PrevDecl->TypeForDecl, 0);
3396  }
3397
3398  // Prefer the definition, if there is one.
3399  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3400    Decl = Def;
3401
3402  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3403  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3404  Decl->TypeForDecl = T;
3405  Types.push_back(T);
3406  return QualType(T, 0);
3407}
3408
3409/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3410/// TypeOfExprType AST's (since expression's are never shared). For example,
3411/// multiple declarations that refer to "typeof(x)" all contain different
3412/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3413/// on canonical type's (which are always unique).
3414QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3415  TypeOfExprType *toe;
3416  if (tofExpr->isTypeDependent()) {
3417    llvm::FoldingSetNodeID ID;
3418    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3419
3420    void *InsertPos = 0;
3421    DependentTypeOfExprType *Canon
3422      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3423    if (Canon) {
3424      // We already have a "canonical" version of an identical, dependent
3425      // typeof(expr) type. Use that as our canonical type.
3426      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3427                                          QualType((TypeOfExprType*)Canon, 0));
3428    } else {
3429      // Build a new, canonical typeof(expr) type.
3430      Canon
3431        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3432      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3433      toe = Canon;
3434    }
3435  } else {
3436    QualType Canonical = getCanonicalType(tofExpr->getType());
3437    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3438  }
3439  Types.push_back(toe);
3440  return QualType(toe, 0);
3441}
3442
3443/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3444/// TypeOfType AST's. The only motivation to unique these nodes would be
3445/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3446/// an issue. This doesn't effect the type checker, since it operates
3447/// on canonical type's (which are always unique).
3448QualType ASTContext::getTypeOfType(QualType tofType) const {
3449  QualType Canonical = getCanonicalType(tofType);
3450  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3451  Types.push_back(tot);
3452  return QualType(tot, 0);
3453}
3454
3455
3456/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3457/// DecltypeType AST's. The only motivation to unique these nodes would be
3458/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3459/// an issue. This doesn't effect the type checker, since it operates
3460/// on canonical types (which are always unique).
3461QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3462  DecltypeType *dt;
3463
3464  // C++0x [temp.type]p2:
3465  //   If an expression e involves a template parameter, decltype(e) denotes a
3466  //   unique dependent type. Two such decltype-specifiers refer to the same
3467  //   type only if their expressions are equivalent (14.5.6.1).
3468  if (e->isInstantiationDependent()) {
3469    llvm::FoldingSetNodeID ID;
3470    DependentDecltypeType::Profile(ID, *this, e);
3471
3472    void *InsertPos = 0;
3473    DependentDecltypeType *Canon
3474      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3475    if (Canon) {
3476      // We already have a "canonical" version of an equivalent, dependent
3477      // decltype type. Use that as our canonical type.
3478      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3479                                       QualType((DecltypeType*)Canon, 0));
3480    } else {
3481      // Build a new, canonical typeof(expr) type.
3482      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3483      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3484      dt = Canon;
3485    }
3486  } else {
3487    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3488                                      getCanonicalType(UnderlyingType));
3489  }
3490  Types.push_back(dt);
3491  return QualType(dt, 0);
3492}
3493
3494/// getUnaryTransformationType - We don't unique these, since the memory
3495/// savings are minimal and these are rare.
3496QualType ASTContext::getUnaryTransformType(QualType BaseType,
3497                                           QualType UnderlyingType,
3498                                           UnaryTransformType::UTTKind Kind)
3499    const {
3500  UnaryTransformType *Ty =
3501    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3502                                                   Kind,
3503                                 UnderlyingType->isDependentType() ?
3504                                 QualType() : getCanonicalType(UnderlyingType));
3505  Types.push_back(Ty);
3506  return QualType(Ty, 0);
3507}
3508
3509/// getAutoType - We only unique auto types after they've been deduced.
3510QualType ASTContext::getAutoType(QualType DeducedType) const {
3511  void *InsertPos = 0;
3512  if (!DeducedType.isNull()) {
3513    // Look in the folding set for an existing type.
3514    llvm::FoldingSetNodeID ID;
3515    AutoType::Profile(ID, DeducedType);
3516    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3517      return QualType(AT, 0);
3518  }
3519
3520  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3521  Types.push_back(AT);
3522  if (InsertPos)
3523    AutoTypes.InsertNode(AT, InsertPos);
3524  return QualType(AT, 0);
3525}
3526
3527/// getAtomicType - Return the uniqued reference to the atomic type for
3528/// the given value type.
3529QualType ASTContext::getAtomicType(QualType T) const {
3530  // Unique pointers, to guarantee there is only one pointer of a particular
3531  // structure.
3532  llvm::FoldingSetNodeID ID;
3533  AtomicType::Profile(ID, T);
3534
3535  void *InsertPos = 0;
3536  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3537    return QualType(AT, 0);
3538
3539  // If the atomic value type isn't canonical, this won't be a canonical type
3540  // either, so fill in the canonical type field.
3541  QualType Canonical;
3542  if (!T.isCanonical()) {
3543    Canonical = getAtomicType(getCanonicalType(T));
3544
3545    // Get the new insert position for the node we care about.
3546    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3547    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3548  }
3549  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3550  Types.push_back(New);
3551  AtomicTypes.InsertNode(New, InsertPos);
3552  return QualType(New, 0);
3553}
3554
3555/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3556QualType ASTContext::getAutoDeductType() const {
3557  if (AutoDeductTy.isNull())
3558    AutoDeductTy = getAutoType(QualType());
3559  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3560  return AutoDeductTy;
3561}
3562
3563/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3564QualType ASTContext::getAutoRRefDeductType() const {
3565  if (AutoRRefDeductTy.isNull())
3566    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3567  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3568  return AutoRRefDeductTy;
3569}
3570
3571/// getTagDeclType - Return the unique reference to the type for the
3572/// specified TagDecl (struct/union/class/enum) decl.
3573QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3574  assert (Decl);
3575  // FIXME: What is the design on getTagDeclType when it requires casting
3576  // away const?  mutable?
3577  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3578}
3579
3580/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3581/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3582/// needs to agree with the definition in <stddef.h>.
3583CanQualType ASTContext::getSizeType() const {
3584  return getFromTargetType(Target->getSizeType());
3585}
3586
3587/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3588CanQualType ASTContext::getIntMaxType() const {
3589  return getFromTargetType(Target->getIntMaxType());
3590}
3591
3592/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3593CanQualType ASTContext::getUIntMaxType() const {
3594  return getFromTargetType(Target->getUIntMaxType());
3595}
3596
3597/// getSignedWCharType - Return the type of "signed wchar_t".
3598/// Used when in C++, as a GCC extension.
3599QualType ASTContext::getSignedWCharType() const {
3600  // FIXME: derive from "Target" ?
3601  return WCharTy;
3602}
3603
3604/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3605/// Used when in C++, as a GCC extension.
3606QualType ASTContext::getUnsignedWCharType() const {
3607  // FIXME: derive from "Target" ?
3608  return UnsignedIntTy;
3609}
3610
3611QualType ASTContext::getIntPtrType() const {
3612  return getFromTargetType(Target->getIntPtrType());
3613}
3614
3615QualType ASTContext::getUIntPtrType() const {
3616  return getCorrespondingUnsignedType(getIntPtrType());
3617}
3618
3619/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3620/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3621QualType ASTContext::getPointerDiffType() const {
3622  return getFromTargetType(Target->getPtrDiffType(0));
3623}
3624
3625/// \brief Return the unique type for "pid_t" defined in
3626/// <sys/types.h>. We need this to compute the correct type for vfork().
3627QualType ASTContext::getProcessIDType() const {
3628  return getFromTargetType(Target->getProcessIDType());
3629}
3630
3631//===----------------------------------------------------------------------===//
3632//                              Type Operators
3633//===----------------------------------------------------------------------===//
3634
3635CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3636  // Push qualifiers into arrays, and then discard any remaining
3637  // qualifiers.
3638  T = getCanonicalType(T);
3639  T = getVariableArrayDecayedType(T);
3640  const Type *Ty = T.getTypePtr();
3641  QualType Result;
3642  if (isa<ArrayType>(Ty)) {
3643    Result = getArrayDecayedType(QualType(Ty,0));
3644  } else if (isa<FunctionType>(Ty)) {
3645    Result = getPointerType(QualType(Ty, 0));
3646  } else {
3647    Result = QualType(Ty, 0);
3648  }
3649
3650  return CanQualType::CreateUnsafe(Result);
3651}
3652
3653QualType ASTContext::getUnqualifiedArrayType(QualType type,
3654                                             Qualifiers &quals) {
3655  SplitQualType splitType = type.getSplitUnqualifiedType();
3656
3657  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3658  // the unqualified desugared type and then drops it on the floor.
3659  // We then have to strip that sugar back off with
3660  // getUnqualifiedDesugaredType(), which is silly.
3661  const ArrayType *AT =
3662    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3663
3664  // If we don't have an array, just use the results in splitType.
3665  if (!AT) {
3666    quals = splitType.Quals;
3667    return QualType(splitType.Ty, 0);
3668  }
3669
3670  // Otherwise, recurse on the array's element type.
3671  QualType elementType = AT->getElementType();
3672  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3673
3674  // If that didn't change the element type, AT has no qualifiers, so we
3675  // can just use the results in splitType.
3676  if (elementType == unqualElementType) {
3677    assert(quals.empty()); // from the recursive call
3678    quals = splitType.Quals;
3679    return QualType(splitType.Ty, 0);
3680  }
3681
3682  // Otherwise, add in the qualifiers from the outermost type, then
3683  // build the type back up.
3684  quals.addConsistentQualifiers(splitType.Quals);
3685
3686  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3687    return getConstantArrayType(unqualElementType, CAT->getSize(),
3688                                CAT->getSizeModifier(), 0);
3689  }
3690
3691  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3692    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3693  }
3694
3695  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3696    return getVariableArrayType(unqualElementType,
3697                                VAT->getSizeExpr(),
3698                                VAT->getSizeModifier(),
3699                                VAT->getIndexTypeCVRQualifiers(),
3700                                VAT->getBracketsRange());
3701  }
3702
3703  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3704  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3705                                    DSAT->getSizeModifier(), 0,
3706                                    SourceRange());
3707}
3708
3709/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3710/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3711/// they point to and return true. If T1 and T2 aren't pointer types
3712/// or pointer-to-member types, or if they are not similar at this
3713/// level, returns false and leaves T1 and T2 unchanged. Top-level
3714/// qualifiers on T1 and T2 are ignored. This function will typically
3715/// be called in a loop that successively "unwraps" pointer and
3716/// pointer-to-member types to compare them at each level.
3717bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3718  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3719                    *T2PtrType = T2->getAs<PointerType>();
3720  if (T1PtrType && T2PtrType) {
3721    T1 = T1PtrType->getPointeeType();
3722    T2 = T2PtrType->getPointeeType();
3723    return true;
3724  }
3725
3726  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3727                          *T2MPType = T2->getAs<MemberPointerType>();
3728  if (T1MPType && T2MPType &&
3729      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3730                             QualType(T2MPType->getClass(), 0))) {
3731    T1 = T1MPType->getPointeeType();
3732    T2 = T2MPType->getPointeeType();
3733    return true;
3734  }
3735
3736  if (getLangOpts().ObjC1) {
3737    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3738                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3739    if (T1OPType && T2OPType) {
3740      T1 = T1OPType->getPointeeType();
3741      T2 = T2OPType->getPointeeType();
3742      return true;
3743    }
3744  }
3745
3746  // FIXME: Block pointers, too?
3747
3748  return false;
3749}
3750
3751DeclarationNameInfo
3752ASTContext::getNameForTemplate(TemplateName Name,
3753                               SourceLocation NameLoc) const {
3754  switch (Name.getKind()) {
3755  case TemplateName::QualifiedTemplate:
3756  case TemplateName::Template:
3757    // DNInfo work in progress: CHECKME: what about DNLoc?
3758    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3759                               NameLoc);
3760
3761  case TemplateName::OverloadedTemplate: {
3762    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3763    // DNInfo work in progress: CHECKME: what about DNLoc?
3764    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3765  }
3766
3767  case TemplateName::DependentTemplate: {
3768    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3769    DeclarationName DName;
3770    if (DTN->isIdentifier()) {
3771      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3772      return DeclarationNameInfo(DName, NameLoc);
3773    } else {
3774      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3775      // DNInfo work in progress: FIXME: source locations?
3776      DeclarationNameLoc DNLoc;
3777      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3778      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3779      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3780    }
3781  }
3782
3783  case TemplateName::SubstTemplateTemplateParm: {
3784    SubstTemplateTemplateParmStorage *subst
3785      = Name.getAsSubstTemplateTemplateParm();
3786    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3787                               NameLoc);
3788  }
3789
3790  case TemplateName::SubstTemplateTemplateParmPack: {
3791    SubstTemplateTemplateParmPackStorage *subst
3792      = Name.getAsSubstTemplateTemplateParmPack();
3793    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3794                               NameLoc);
3795  }
3796  }
3797
3798  llvm_unreachable("bad template name kind!");
3799}
3800
3801TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3802  switch (Name.getKind()) {
3803  case TemplateName::QualifiedTemplate:
3804  case TemplateName::Template: {
3805    TemplateDecl *Template = Name.getAsTemplateDecl();
3806    if (TemplateTemplateParmDecl *TTP
3807          = dyn_cast<TemplateTemplateParmDecl>(Template))
3808      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3809
3810    // The canonical template name is the canonical template declaration.
3811    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3812  }
3813
3814  case TemplateName::OverloadedTemplate:
3815    llvm_unreachable("cannot canonicalize overloaded template");
3816
3817  case TemplateName::DependentTemplate: {
3818    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3819    assert(DTN && "Non-dependent template names must refer to template decls.");
3820    return DTN->CanonicalTemplateName;
3821  }
3822
3823  case TemplateName::SubstTemplateTemplateParm: {
3824    SubstTemplateTemplateParmStorage *subst
3825      = Name.getAsSubstTemplateTemplateParm();
3826    return getCanonicalTemplateName(subst->getReplacement());
3827  }
3828
3829  case TemplateName::SubstTemplateTemplateParmPack: {
3830    SubstTemplateTemplateParmPackStorage *subst
3831                                  = Name.getAsSubstTemplateTemplateParmPack();
3832    TemplateTemplateParmDecl *canonParameter
3833      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3834    TemplateArgument canonArgPack
3835      = getCanonicalTemplateArgument(subst->getArgumentPack());
3836    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3837  }
3838  }
3839
3840  llvm_unreachable("bad template name!");
3841}
3842
3843bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3844  X = getCanonicalTemplateName(X);
3845  Y = getCanonicalTemplateName(Y);
3846  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3847}
3848
3849TemplateArgument
3850ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3851  switch (Arg.getKind()) {
3852    case TemplateArgument::Null:
3853      return Arg;
3854
3855    case TemplateArgument::Expression:
3856      return Arg;
3857
3858    case TemplateArgument::Declaration: {
3859      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3860      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3861    }
3862
3863    case TemplateArgument::NullPtr:
3864      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3865                              /*isNullPtr*/true);
3866
3867    case TemplateArgument::Template:
3868      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3869
3870    case TemplateArgument::TemplateExpansion:
3871      return TemplateArgument(getCanonicalTemplateName(
3872                                         Arg.getAsTemplateOrTemplatePattern()),
3873                              Arg.getNumTemplateExpansions());
3874
3875    case TemplateArgument::Integral:
3876      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3877
3878    case TemplateArgument::Type:
3879      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3880
3881    case TemplateArgument::Pack: {
3882      if (Arg.pack_size() == 0)
3883        return Arg;
3884
3885      TemplateArgument *CanonArgs
3886        = new (*this) TemplateArgument[Arg.pack_size()];
3887      unsigned Idx = 0;
3888      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3889                                        AEnd = Arg.pack_end();
3890           A != AEnd; (void)++A, ++Idx)
3891        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3892
3893      return TemplateArgument(CanonArgs, Arg.pack_size());
3894    }
3895  }
3896
3897  // Silence GCC warning
3898  llvm_unreachable("Unhandled template argument kind");
3899}
3900
3901NestedNameSpecifier *
3902ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3903  if (!NNS)
3904    return 0;
3905
3906  switch (NNS->getKind()) {
3907  case NestedNameSpecifier::Identifier:
3908    // Canonicalize the prefix but keep the identifier the same.
3909    return NestedNameSpecifier::Create(*this,
3910                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3911                                       NNS->getAsIdentifier());
3912
3913  case NestedNameSpecifier::Namespace:
3914    // A namespace is canonical; build a nested-name-specifier with
3915    // this namespace and no prefix.
3916    return NestedNameSpecifier::Create(*this, 0,
3917                                 NNS->getAsNamespace()->getOriginalNamespace());
3918
3919  case NestedNameSpecifier::NamespaceAlias:
3920    // A namespace is canonical; build a nested-name-specifier with
3921    // this namespace and no prefix.
3922    return NestedNameSpecifier::Create(*this, 0,
3923                                    NNS->getAsNamespaceAlias()->getNamespace()
3924                                                      ->getOriginalNamespace());
3925
3926  case NestedNameSpecifier::TypeSpec:
3927  case NestedNameSpecifier::TypeSpecWithTemplate: {
3928    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3929
3930    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3931    // break it apart into its prefix and identifier, then reconsititute those
3932    // as the canonical nested-name-specifier. This is required to canonicalize
3933    // a dependent nested-name-specifier involving typedefs of dependent-name
3934    // types, e.g.,
3935    //   typedef typename T::type T1;
3936    //   typedef typename T1::type T2;
3937    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3938      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3939                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3940
3941    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3942    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3943    // first place?
3944    return NestedNameSpecifier::Create(*this, 0, false,
3945                                       const_cast<Type*>(T.getTypePtr()));
3946  }
3947
3948  case NestedNameSpecifier::Global:
3949    // The global specifier is canonical and unique.
3950    return NNS;
3951  }
3952
3953  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3954}
3955
3956
3957const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3958  // Handle the non-qualified case efficiently.
3959  if (!T.hasLocalQualifiers()) {
3960    // Handle the common positive case fast.
3961    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3962      return AT;
3963  }
3964
3965  // Handle the common negative case fast.
3966  if (!isa<ArrayType>(T.getCanonicalType()))
3967    return 0;
3968
3969  // Apply any qualifiers from the array type to the element type.  This
3970  // implements C99 6.7.3p8: "If the specification of an array type includes
3971  // any type qualifiers, the element type is so qualified, not the array type."
3972
3973  // If we get here, we either have type qualifiers on the type, or we have
3974  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3975  // we must propagate them down into the element type.
3976
3977  SplitQualType split = T.getSplitDesugaredType();
3978  Qualifiers qs = split.Quals;
3979
3980  // If we have a simple case, just return now.
3981  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3982  if (ATy == 0 || qs.empty())
3983    return ATy;
3984
3985  // Otherwise, we have an array and we have qualifiers on it.  Push the
3986  // qualifiers into the array element type and return a new array type.
3987  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3988
3989  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3990    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3991                                                CAT->getSizeModifier(),
3992                                           CAT->getIndexTypeCVRQualifiers()));
3993  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3994    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3995                                                  IAT->getSizeModifier(),
3996                                           IAT->getIndexTypeCVRQualifiers()));
3997
3998  if (const DependentSizedArrayType *DSAT
3999        = dyn_cast<DependentSizedArrayType>(ATy))
4000    return cast<ArrayType>(
4001                     getDependentSizedArrayType(NewEltTy,
4002                                                DSAT->getSizeExpr(),
4003                                                DSAT->getSizeModifier(),
4004                                              DSAT->getIndexTypeCVRQualifiers(),
4005                                                DSAT->getBracketsRange()));
4006
4007  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4008  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4009                                              VAT->getSizeExpr(),
4010                                              VAT->getSizeModifier(),
4011                                              VAT->getIndexTypeCVRQualifiers(),
4012                                              VAT->getBracketsRange()));
4013}
4014
4015QualType ASTContext::getAdjustedParameterType(QualType T) const {
4016  // C99 6.7.5.3p7:
4017  //   A declaration of a parameter as "array of type" shall be
4018  //   adjusted to "qualified pointer to type", where the type
4019  //   qualifiers (if any) are those specified within the [ and ] of
4020  //   the array type derivation.
4021  if (T->isArrayType())
4022    return getArrayDecayedType(T);
4023
4024  // C99 6.7.5.3p8:
4025  //   A declaration of a parameter as "function returning type"
4026  //   shall be adjusted to "pointer to function returning type", as
4027  //   in 6.3.2.1.
4028  if (T->isFunctionType())
4029    return getPointerType(T);
4030
4031  return T;
4032}
4033
4034QualType ASTContext::getSignatureParameterType(QualType T) const {
4035  T = getVariableArrayDecayedType(T);
4036  T = getAdjustedParameterType(T);
4037  return T.getUnqualifiedType();
4038}
4039
4040/// getArrayDecayedType - Return the properly qualified result of decaying the
4041/// specified array type to a pointer.  This operation is non-trivial when
4042/// handling typedefs etc.  The canonical type of "T" must be an array type,
4043/// this returns a pointer to a properly qualified element of the array.
4044///
4045/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4046QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4047  // Get the element type with 'getAsArrayType' so that we don't lose any
4048  // typedefs in the element type of the array.  This also handles propagation
4049  // of type qualifiers from the array type into the element type if present
4050  // (C99 6.7.3p8).
4051  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4052  assert(PrettyArrayType && "Not an array type!");
4053
4054  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4055
4056  // int x[restrict 4] ->  int *restrict
4057  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4058}
4059
4060QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4061  return getBaseElementType(array->getElementType());
4062}
4063
4064QualType ASTContext::getBaseElementType(QualType type) const {
4065  Qualifiers qs;
4066  while (true) {
4067    SplitQualType split = type.getSplitDesugaredType();
4068    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4069    if (!array) break;
4070
4071    type = array->getElementType();
4072    qs.addConsistentQualifiers(split.Quals);
4073  }
4074
4075  return getQualifiedType(type, qs);
4076}
4077
4078/// getConstantArrayElementCount - Returns number of constant array elements.
4079uint64_t
4080ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4081  uint64_t ElementCount = 1;
4082  do {
4083    ElementCount *= CA->getSize().getZExtValue();
4084    CA = dyn_cast_or_null<ConstantArrayType>(
4085      CA->getElementType()->getAsArrayTypeUnsafe());
4086  } while (CA);
4087  return ElementCount;
4088}
4089
4090/// getFloatingRank - Return a relative rank for floating point types.
4091/// This routine will assert if passed a built-in type that isn't a float.
4092static FloatingRank getFloatingRank(QualType T) {
4093  if (const ComplexType *CT = T->getAs<ComplexType>())
4094    return getFloatingRank(CT->getElementType());
4095
4096  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4097  switch (T->getAs<BuiltinType>()->getKind()) {
4098  default: llvm_unreachable("getFloatingRank(): not a floating type");
4099  case BuiltinType::Half:       return HalfRank;
4100  case BuiltinType::Float:      return FloatRank;
4101  case BuiltinType::Double:     return DoubleRank;
4102  case BuiltinType::LongDouble: return LongDoubleRank;
4103  }
4104}
4105
4106/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4107/// point or a complex type (based on typeDomain/typeSize).
4108/// 'typeDomain' is a real floating point or complex type.
4109/// 'typeSize' is a real floating point or complex type.
4110QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4111                                                       QualType Domain) const {
4112  FloatingRank EltRank = getFloatingRank(Size);
4113  if (Domain->isComplexType()) {
4114    switch (EltRank) {
4115    case HalfRank: llvm_unreachable("Complex half is not supported");
4116    case FloatRank:      return FloatComplexTy;
4117    case DoubleRank:     return DoubleComplexTy;
4118    case LongDoubleRank: return LongDoubleComplexTy;
4119    }
4120  }
4121
4122  assert(Domain->isRealFloatingType() && "Unknown domain!");
4123  switch (EltRank) {
4124  case HalfRank:       return HalfTy;
4125  case FloatRank:      return FloatTy;
4126  case DoubleRank:     return DoubleTy;
4127  case LongDoubleRank: return LongDoubleTy;
4128  }
4129  llvm_unreachable("getFloatingRank(): illegal value for rank");
4130}
4131
4132/// getFloatingTypeOrder - Compare the rank of the two specified floating
4133/// point types, ignoring the domain of the type (i.e. 'double' ==
4134/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4135/// LHS < RHS, return -1.
4136int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4137  FloatingRank LHSR = getFloatingRank(LHS);
4138  FloatingRank RHSR = getFloatingRank(RHS);
4139
4140  if (LHSR == RHSR)
4141    return 0;
4142  if (LHSR > RHSR)
4143    return 1;
4144  return -1;
4145}
4146
4147/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4148/// routine will assert if passed a built-in type that isn't an integer or enum,
4149/// or if it is not canonicalized.
4150unsigned ASTContext::getIntegerRank(const Type *T) const {
4151  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4152
4153  switch (cast<BuiltinType>(T)->getKind()) {
4154  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4155  case BuiltinType::Bool:
4156    return 1 + (getIntWidth(BoolTy) << 3);
4157  case BuiltinType::Char_S:
4158  case BuiltinType::Char_U:
4159  case BuiltinType::SChar:
4160  case BuiltinType::UChar:
4161    return 2 + (getIntWidth(CharTy) << 3);
4162  case BuiltinType::Short:
4163  case BuiltinType::UShort:
4164    return 3 + (getIntWidth(ShortTy) << 3);
4165  case BuiltinType::Int:
4166  case BuiltinType::UInt:
4167    return 4 + (getIntWidth(IntTy) << 3);
4168  case BuiltinType::Long:
4169  case BuiltinType::ULong:
4170    return 5 + (getIntWidth(LongTy) << 3);
4171  case BuiltinType::LongLong:
4172  case BuiltinType::ULongLong:
4173    return 6 + (getIntWidth(LongLongTy) << 3);
4174  case BuiltinType::Int128:
4175  case BuiltinType::UInt128:
4176    return 7 + (getIntWidth(Int128Ty) << 3);
4177  }
4178}
4179
4180/// \brief Whether this is a promotable bitfield reference according
4181/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4182///
4183/// \returns the type this bit-field will promote to, or NULL if no
4184/// promotion occurs.
4185QualType ASTContext::isPromotableBitField(Expr *E) const {
4186  if (E->isTypeDependent() || E->isValueDependent())
4187    return QualType();
4188
4189  FieldDecl *Field = E->getBitField();
4190  if (!Field)
4191    return QualType();
4192
4193  QualType FT = Field->getType();
4194
4195  uint64_t BitWidth = Field->getBitWidthValue(*this);
4196  uint64_t IntSize = getTypeSize(IntTy);
4197  // GCC extension compatibility: if the bit-field size is less than or equal
4198  // to the size of int, it gets promoted no matter what its type is.
4199  // For instance, unsigned long bf : 4 gets promoted to signed int.
4200  if (BitWidth < IntSize)
4201    return IntTy;
4202
4203  if (BitWidth == IntSize)
4204    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4205
4206  // Types bigger than int are not subject to promotions, and therefore act
4207  // like the base type.
4208  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4209  // is ridiculous.
4210  return QualType();
4211}
4212
4213/// getPromotedIntegerType - Returns the type that Promotable will
4214/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4215/// integer type.
4216QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4217  assert(!Promotable.isNull());
4218  assert(Promotable->isPromotableIntegerType());
4219  if (const EnumType *ET = Promotable->getAs<EnumType>())
4220    return ET->getDecl()->getPromotionType();
4221
4222  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4223    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4224    // (3.9.1) can be converted to a prvalue of the first of the following
4225    // types that can represent all the values of its underlying type:
4226    // int, unsigned int, long int, unsigned long int, long long int, or
4227    // unsigned long long int [...]
4228    // FIXME: Is there some better way to compute this?
4229    if (BT->getKind() == BuiltinType::WChar_S ||
4230        BT->getKind() == BuiltinType::WChar_U ||
4231        BT->getKind() == BuiltinType::Char16 ||
4232        BT->getKind() == BuiltinType::Char32) {
4233      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4234      uint64_t FromSize = getTypeSize(BT);
4235      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4236                                  LongLongTy, UnsignedLongLongTy };
4237      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4238        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4239        if (FromSize < ToSize ||
4240            (FromSize == ToSize &&
4241             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4242          return PromoteTypes[Idx];
4243      }
4244      llvm_unreachable("char type should fit into long long");
4245    }
4246  }
4247
4248  // At this point, we should have a signed or unsigned integer type.
4249  if (Promotable->isSignedIntegerType())
4250    return IntTy;
4251  uint64_t PromotableSize = getIntWidth(Promotable);
4252  uint64_t IntSize = getIntWidth(IntTy);
4253  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4254  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4255}
4256
4257/// \brief Recurses in pointer/array types until it finds an objc retainable
4258/// type and returns its ownership.
4259Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4260  while (!T.isNull()) {
4261    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4262      return T.getObjCLifetime();
4263    if (T->isArrayType())
4264      T = getBaseElementType(T);
4265    else if (const PointerType *PT = T->getAs<PointerType>())
4266      T = PT->getPointeeType();
4267    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4268      T = RT->getPointeeType();
4269    else
4270      break;
4271  }
4272
4273  return Qualifiers::OCL_None;
4274}
4275
4276/// getIntegerTypeOrder - Returns the highest ranked integer type:
4277/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4278/// LHS < RHS, return -1.
4279int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4280  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4281  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4282  if (LHSC == RHSC) return 0;
4283
4284  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4285  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4286
4287  unsigned LHSRank = getIntegerRank(LHSC);
4288  unsigned RHSRank = getIntegerRank(RHSC);
4289
4290  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4291    if (LHSRank == RHSRank) return 0;
4292    return LHSRank > RHSRank ? 1 : -1;
4293  }
4294
4295  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4296  if (LHSUnsigned) {
4297    // If the unsigned [LHS] type is larger, return it.
4298    if (LHSRank >= RHSRank)
4299      return 1;
4300
4301    // If the signed type can represent all values of the unsigned type, it
4302    // wins.  Because we are dealing with 2's complement and types that are
4303    // powers of two larger than each other, this is always safe.
4304    return -1;
4305  }
4306
4307  // If the unsigned [RHS] type is larger, return it.
4308  if (RHSRank >= LHSRank)
4309    return -1;
4310
4311  // If the signed type can represent all values of the unsigned type, it
4312  // wins.  Because we are dealing with 2's complement and types that are
4313  // powers of two larger than each other, this is always safe.
4314  return 1;
4315}
4316
4317static RecordDecl *
4318CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4319                 DeclContext *DC, IdentifierInfo *Id) {
4320  SourceLocation Loc;
4321  if (Ctx.getLangOpts().CPlusPlus)
4322    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4323  else
4324    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4325}
4326
4327// getCFConstantStringType - Return the type used for constant CFStrings.
4328QualType ASTContext::getCFConstantStringType() const {
4329  if (!CFConstantStringTypeDecl) {
4330    CFConstantStringTypeDecl =
4331      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4332                       &Idents.get("NSConstantString"));
4333    CFConstantStringTypeDecl->startDefinition();
4334
4335    QualType FieldTypes[4];
4336
4337    // const int *isa;
4338    FieldTypes[0] = getPointerType(IntTy.withConst());
4339    // int flags;
4340    FieldTypes[1] = IntTy;
4341    // const char *str;
4342    FieldTypes[2] = getPointerType(CharTy.withConst());
4343    // long length;
4344    FieldTypes[3] = LongTy;
4345
4346    // Create fields
4347    for (unsigned i = 0; i < 4; ++i) {
4348      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4349                                           SourceLocation(),
4350                                           SourceLocation(), 0,
4351                                           FieldTypes[i], /*TInfo=*/0,
4352                                           /*BitWidth=*/0,
4353                                           /*Mutable=*/false,
4354                                           ICIS_NoInit);
4355      Field->setAccess(AS_public);
4356      CFConstantStringTypeDecl->addDecl(Field);
4357    }
4358
4359    CFConstantStringTypeDecl->completeDefinition();
4360  }
4361
4362  return getTagDeclType(CFConstantStringTypeDecl);
4363}
4364
4365QualType ASTContext::getObjCSuperType() const {
4366  if (ObjCSuperType.isNull()) {
4367    RecordDecl *ObjCSuperTypeDecl  =
4368      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4369    TUDecl->addDecl(ObjCSuperTypeDecl);
4370    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4371  }
4372  return ObjCSuperType;
4373}
4374
4375void ASTContext::setCFConstantStringType(QualType T) {
4376  const RecordType *Rec = T->getAs<RecordType>();
4377  assert(Rec && "Invalid CFConstantStringType");
4378  CFConstantStringTypeDecl = Rec->getDecl();
4379}
4380
4381QualType ASTContext::getBlockDescriptorType() const {
4382  if (BlockDescriptorType)
4383    return getTagDeclType(BlockDescriptorType);
4384
4385  RecordDecl *T;
4386  // FIXME: Needs the FlagAppleBlock bit.
4387  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4388                       &Idents.get("__block_descriptor"));
4389  T->startDefinition();
4390
4391  QualType FieldTypes[] = {
4392    UnsignedLongTy,
4393    UnsignedLongTy,
4394  };
4395
4396  const char *FieldNames[] = {
4397    "reserved",
4398    "Size"
4399  };
4400
4401  for (size_t i = 0; i < 2; ++i) {
4402    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4403                                         SourceLocation(),
4404                                         &Idents.get(FieldNames[i]),
4405                                         FieldTypes[i], /*TInfo=*/0,
4406                                         /*BitWidth=*/0,
4407                                         /*Mutable=*/false,
4408                                         ICIS_NoInit);
4409    Field->setAccess(AS_public);
4410    T->addDecl(Field);
4411  }
4412
4413  T->completeDefinition();
4414
4415  BlockDescriptorType = T;
4416
4417  return getTagDeclType(BlockDescriptorType);
4418}
4419
4420QualType ASTContext::getBlockDescriptorExtendedType() const {
4421  if (BlockDescriptorExtendedType)
4422    return getTagDeclType(BlockDescriptorExtendedType);
4423
4424  RecordDecl *T;
4425  // FIXME: Needs the FlagAppleBlock bit.
4426  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4427                       &Idents.get("__block_descriptor_withcopydispose"));
4428  T->startDefinition();
4429
4430  QualType FieldTypes[] = {
4431    UnsignedLongTy,
4432    UnsignedLongTy,
4433    getPointerType(VoidPtrTy),
4434    getPointerType(VoidPtrTy)
4435  };
4436
4437  const char *FieldNames[] = {
4438    "reserved",
4439    "Size",
4440    "CopyFuncPtr",
4441    "DestroyFuncPtr"
4442  };
4443
4444  for (size_t i = 0; i < 4; ++i) {
4445    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4446                                         SourceLocation(),
4447                                         &Idents.get(FieldNames[i]),
4448                                         FieldTypes[i], /*TInfo=*/0,
4449                                         /*BitWidth=*/0,
4450                                         /*Mutable=*/false,
4451                                         ICIS_NoInit);
4452    Field->setAccess(AS_public);
4453    T->addDecl(Field);
4454  }
4455
4456  T->completeDefinition();
4457
4458  BlockDescriptorExtendedType = T;
4459
4460  return getTagDeclType(BlockDescriptorExtendedType);
4461}
4462
4463/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4464/// requires copy/dispose. Note that this must match the logic
4465/// in buildByrefHelpers.
4466bool ASTContext::BlockRequiresCopying(QualType Ty,
4467                                      const VarDecl *D) {
4468  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4469    const Expr *copyExpr = getBlockVarCopyInits(D);
4470    if (!copyExpr && record->hasTrivialDestructor()) return false;
4471
4472    return true;
4473  }
4474
4475  if (!Ty->isObjCRetainableType()) return false;
4476
4477  Qualifiers qs = Ty.getQualifiers();
4478
4479  // If we have lifetime, that dominates.
4480  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4481    assert(getLangOpts().ObjCAutoRefCount);
4482
4483    switch (lifetime) {
4484      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4485
4486      // These are just bits as far as the runtime is concerned.
4487      case Qualifiers::OCL_ExplicitNone:
4488      case Qualifiers::OCL_Autoreleasing:
4489        return false;
4490
4491      // Tell the runtime that this is ARC __weak, called by the
4492      // byref routines.
4493      case Qualifiers::OCL_Weak:
4494      // ARC __strong __block variables need to be retained.
4495      case Qualifiers::OCL_Strong:
4496        return true;
4497    }
4498    llvm_unreachable("fell out of lifetime switch!");
4499  }
4500  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4501          Ty->isObjCObjectPointerType());
4502}
4503
4504bool ASTContext::getByrefLifetime(QualType Ty,
4505                              Qualifiers::ObjCLifetime &LifeTime,
4506                              bool &HasByrefExtendedLayout) const {
4507
4508  if (!getLangOpts().ObjC1 ||
4509      getLangOpts().getGC() != LangOptions::NonGC)
4510    return false;
4511
4512  HasByrefExtendedLayout = false;
4513  if (Ty->isRecordType()) {
4514    HasByrefExtendedLayout = true;
4515    LifeTime = Qualifiers::OCL_None;
4516  }
4517  else if (getLangOpts().ObjCAutoRefCount)
4518    LifeTime = Ty.getObjCLifetime();
4519  // MRR.
4520  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4521    LifeTime = Qualifiers::OCL_ExplicitNone;
4522  else
4523    LifeTime = Qualifiers::OCL_None;
4524  return true;
4525}
4526
4527TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4528  if (!ObjCInstanceTypeDecl)
4529    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4530                                               getTranslationUnitDecl(),
4531                                               SourceLocation(),
4532                                               SourceLocation(),
4533                                               &Idents.get("instancetype"),
4534                                     getTrivialTypeSourceInfo(getObjCIdType()));
4535  return ObjCInstanceTypeDecl;
4536}
4537
4538// This returns true if a type has been typedefed to BOOL:
4539// typedef <type> BOOL;
4540static bool isTypeTypedefedAsBOOL(QualType T) {
4541  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4542    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4543      return II->isStr("BOOL");
4544
4545  return false;
4546}
4547
4548/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4549/// purpose.
4550CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4551  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4552    return CharUnits::Zero();
4553
4554  CharUnits sz = getTypeSizeInChars(type);
4555
4556  // Make all integer and enum types at least as large as an int
4557  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4558    sz = std::max(sz, getTypeSizeInChars(IntTy));
4559  // Treat arrays as pointers, since that's how they're passed in.
4560  else if (type->isArrayType())
4561    sz = getTypeSizeInChars(VoidPtrTy);
4562  return sz;
4563}
4564
4565static inline
4566std::string charUnitsToString(const CharUnits &CU) {
4567  return llvm::itostr(CU.getQuantity());
4568}
4569
4570/// getObjCEncodingForBlock - Return the encoded type for this block
4571/// declaration.
4572std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4573  std::string S;
4574
4575  const BlockDecl *Decl = Expr->getBlockDecl();
4576  QualType BlockTy =
4577      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4578  // Encode result type.
4579  if (getLangOpts().EncodeExtendedBlockSig)
4580    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4581                            BlockTy->getAs<FunctionType>()->getResultType(),
4582                            S, true /*Extended*/);
4583  else
4584    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4585                           S);
4586  // Compute size of all parameters.
4587  // Start with computing size of a pointer in number of bytes.
4588  // FIXME: There might(should) be a better way of doing this computation!
4589  SourceLocation Loc;
4590  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4591  CharUnits ParmOffset = PtrSize;
4592  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4593       E = Decl->param_end(); PI != E; ++PI) {
4594    QualType PType = (*PI)->getType();
4595    CharUnits sz = getObjCEncodingTypeSize(PType);
4596    if (sz.isZero())
4597      continue;
4598    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4599    ParmOffset += sz;
4600  }
4601  // Size of the argument frame
4602  S += charUnitsToString(ParmOffset);
4603  // Block pointer and offset.
4604  S += "@?0";
4605
4606  // Argument types.
4607  ParmOffset = PtrSize;
4608  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4609       Decl->param_end(); PI != E; ++PI) {
4610    ParmVarDecl *PVDecl = *PI;
4611    QualType PType = PVDecl->getOriginalType();
4612    if (const ArrayType *AT =
4613          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4614      // Use array's original type only if it has known number of
4615      // elements.
4616      if (!isa<ConstantArrayType>(AT))
4617        PType = PVDecl->getType();
4618    } else if (PType->isFunctionType())
4619      PType = PVDecl->getType();
4620    if (getLangOpts().EncodeExtendedBlockSig)
4621      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4622                                      S, true /*Extended*/);
4623    else
4624      getObjCEncodingForType(PType, S);
4625    S += charUnitsToString(ParmOffset);
4626    ParmOffset += getObjCEncodingTypeSize(PType);
4627  }
4628
4629  return S;
4630}
4631
4632bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4633                                                std::string& S) {
4634  // Encode result type.
4635  getObjCEncodingForType(Decl->getResultType(), S);
4636  CharUnits ParmOffset;
4637  // Compute size of all parameters.
4638  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4639       E = Decl->param_end(); PI != E; ++PI) {
4640    QualType PType = (*PI)->getType();
4641    CharUnits sz = getObjCEncodingTypeSize(PType);
4642    if (sz.isZero())
4643      continue;
4644
4645    assert (sz.isPositive() &&
4646        "getObjCEncodingForFunctionDecl - Incomplete param type");
4647    ParmOffset += sz;
4648  }
4649  S += charUnitsToString(ParmOffset);
4650  ParmOffset = CharUnits::Zero();
4651
4652  // Argument types.
4653  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4654       E = Decl->param_end(); PI != E; ++PI) {
4655    ParmVarDecl *PVDecl = *PI;
4656    QualType PType = PVDecl->getOriginalType();
4657    if (const ArrayType *AT =
4658          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4659      // Use array's original type only if it has known number of
4660      // elements.
4661      if (!isa<ConstantArrayType>(AT))
4662        PType = PVDecl->getType();
4663    } else if (PType->isFunctionType())
4664      PType = PVDecl->getType();
4665    getObjCEncodingForType(PType, S);
4666    S += charUnitsToString(ParmOffset);
4667    ParmOffset += getObjCEncodingTypeSize(PType);
4668  }
4669
4670  return false;
4671}
4672
4673/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4674/// method parameter or return type. If Extended, include class names and
4675/// block object types.
4676void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4677                                                   QualType T, std::string& S,
4678                                                   bool Extended) const {
4679  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4680  getObjCEncodingForTypeQualifier(QT, S);
4681  // Encode parameter type.
4682  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4683                             true     /*OutermostType*/,
4684                             false    /*EncodingProperty*/,
4685                             false    /*StructField*/,
4686                             Extended /*EncodeBlockParameters*/,
4687                             Extended /*EncodeClassNames*/);
4688}
4689
4690/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4691/// declaration.
4692bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4693                                              std::string& S,
4694                                              bool Extended) const {
4695  // FIXME: This is not very efficient.
4696  // Encode return type.
4697  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4698                                    Decl->getResultType(), S, Extended);
4699  // Compute size of all parameters.
4700  // Start with computing size of a pointer in number of bytes.
4701  // FIXME: There might(should) be a better way of doing this computation!
4702  SourceLocation Loc;
4703  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4704  // The first two arguments (self and _cmd) are pointers; account for
4705  // their size.
4706  CharUnits ParmOffset = 2 * PtrSize;
4707  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4708       E = Decl->sel_param_end(); PI != E; ++PI) {
4709    QualType PType = (*PI)->getType();
4710    CharUnits sz = getObjCEncodingTypeSize(PType);
4711    if (sz.isZero())
4712      continue;
4713
4714    assert (sz.isPositive() &&
4715        "getObjCEncodingForMethodDecl - Incomplete param type");
4716    ParmOffset += sz;
4717  }
4718  S += charUnitsToString(ParmOffset);
4719  S += "@0:";
4720  S += charUnitsToString(PtrSize);
4721
4722  // Argument types.
4723  ParmOffset = 2 * PtrSize;
4724  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4725       E = Decl->sel_param_end(); PI != E; ++PI) {
4726    const ParmVarDecl *PVDecl = *PI;
4727    QualType PType = PVDecl->getOriginalType();
4728    if (const ArrayType *AT =
4729          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4730      // Use array's original type only if it has known number of
4731      // elements.
4732      if (!isa<ConstantArrayType>(AT))
4733        PType = PVDecl->getType();
4734    } else if (PType->isFunctionType())
4735      PType = PVDecl->getType();
4736    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4737                                      PType, S, Extended);
4738    S += charUnitsToString(ParmOffset);
4739    ParmOffset += getObjCEncodingTypeSize(PType);
4740  }
4741
4742  return false;
4743}
4744
4745/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4746/// property declaration. If non-NULL, Container must be either an
4747/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4748/// NULL when getting encodings for protocol properties.
4749/// Property attributes are stored as a comma-delimited C string. The simple
4750/// attributes readonly and bycopy are encoded as single characters. The
4751/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4752/// encoded as single characters, followed by an identifier. Property types
4753/// are also encoded as a parametrized attribute. The characters used to encode
4754/// these attributes are defined by the following enumeration:
4755/// @code
4756/// enum PropertyAttributes {
4757/// kPropertyReadOnly = 'R',   // property is read-only.
4758/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4759/// kPropertyByref = '&',  // property is a reference to the value last assigned
4760/// kPropertyDynamic = 'D',    // property is dynamic
4761/// kPropertyGetter = 'G',     // followed by getter selector name
4762/// kPropertySetter = 'S',     // followed by setter selector name
4763/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4764/// kPropertyType = 'T'              // followed by old-style type encoding.
4765/// kPropertyWeak = 'W'              // 'weak' property
4766/// kPropertyStrong = 'P'            // property GC'able
4767/// kPropertyNonAtomic = 'N'         // property non-atomic
4768/// };
4769/// @endcode
4770void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4771                                                const Decl *Container,
4772                                                std::string& S) const {
4773  // Collect information from the property implementation decl(s).
4774  bool Dynamic = false;
4775  ObjCPropertyImplDecl *SynthesizePID = 0;
4776
4777  // FIXME: Duplicated code due to poor abstraction.
4778  if (Container) {
4779    if (const ObjCCategoryImplDecl *CID =
4780        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4781      for (ObjCCategoryImplDecl::propimpl_iterator
4782             i = CID->propimpl_begin(), e = CID->propimpl_end();
4783           i != e; ++i) {
4784        ObjCPropertyImplDecl *PID = *i;
4785        if (PID->getPropertyDecl() == PD) {
4786          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4787            Dynamic = true;
4788          } else {
4789            SynthesizePID = PID;
4790          }
4791        }
4792      }
4793    } else {
4794      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4795      for (ObjCCategoryImplDecl::propimpl_iterator
4796             i = OID->propimpl_begin(), e = OID->propimpl_end();
4797           i != e; ++i) {
4798        ObjCPropertyImplDecl *PID = *i;
4799        if (PID->getPropertyDecl() == PD) {
4800          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4801            Dynamic = true;
4802          } else {
4803            SynthesizePID = PID;
4804          }
4805        }
4806      }
4807    }
4808  }
4809
4810  // FIXME: This is not very efficient.
4811  S = "T";
4812
4813  // Encode result type.
4814  // GCC has some special rules regarding encoding of properties which
4815  // closely resembles encoding of ivars.
4816  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4817                             true /* outermost type */,
4818                             true /* encoding for property */);
4819
4820  if (PD->isReadOnly()) {
4821    S += ",R";
4822  } else {
4823    switch (PD->getSetterKind()) {
4824    case ObjCPropertyDecl::Assign: break;
4825    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4826    case ObjCPropertyDecl::Retain: S += ",&"; break;
4827    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4828    }
4829  }
4830
4831  // It really isn't clear at all what this means, since properties
4832  // are "dynamic by default".
4833  if (Dynamic)
4834    S += ",D";
4835
4836  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4837    S += ",N";
4838
4839  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4840    S += ",G";
4841    S += PD->getGetterName().getAsString();
4842  }
4843
4844  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4845    S += ",S";
4846    S += PD->getSetterName().getAsString();
4847  }
4848
4849  if (SynthesizePID) {
4850    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4851    S += ",V";
4852    S += OID->getNameAsString();
4853  }
4854
4855  // FIXME: OBJCGC: weak & strong
4856}
4857
4858/// getLegacyIntegralTypeEncoding -
4859/// Another legacy compatibility encoding: 32-bit longs are encoded as
4860/// 'l' or 'L' , but not always.  For typedefs, we need to use
4861/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4862///
4863void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4864  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4865    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4866      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4867        PointeeTy = UnsignedIntTy;
4868      else
4869        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4870          PointeeTy = IntTy;
4871    }
4872  }
4873}
4874
4875void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4876                                        const FieldDecl *Field) const {
4877  // We follow the behavior of gcc, expanding structures which are
4878  // directly pointed to, and expanding embedded structures. Note that
4879  // these rules are sufficient to prevent recursive encoding of the
4880  // same type.
4881  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4882                             true /* outermost type */);
4883}
4884
4885static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
4886                                            BuiltinType::Kind kind) {
4887    switch (kind) {
4888    case BuiltinType::Void:       return 'v';
4889    case BuiltinType::Bool:       return 'B';
4890    case BuiltinType::Char_U:
4891    case BuiltinType::UChar:      return 'C';
4892    case BuiltinType::Char16:
4893    case BuiltinType::UShort:     return 'S';
4894    case BuiltinType::Char32:
4895    case BuiltinType::UInt:       return 'I';
4896    case BuiltinType::ULong:
4897        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
4898    case BuiltinType::UInt128:    return 'T';
4899    case BuiltinType::ULongLong:  return 'Q';
4900    case BuiltinType::Char_S:
4901    case BuiltinType::SChar:      return 'c';
4902    case BuiltinType::Short:      return 's';
4903    case BuiltinType::WChar_S:
4904    case BuiltinType::WChar_U:
4905    case BuiltinType::Int:        return 'i';
4906    case BuiltinType::Long:
4907      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
4908    case BuiltinType::LongLong:   return 'q';
4909    case BuiltinType::Int128:     return 't';
4910    case BuiltinType::Float:      return 'f';
4911    case BuiltinType::Double:     return 'd';
4912    case BuiltinType::LongDouble: return 'D';
4913    case BuiltinType::NullPtr:    return '*'; // like char*
4914
4915    case BuiltinType::Half:
4916      // FIXME: potentially need @encodes for these!
4917      return ' ';
4918
4919    case BuiltinType::ObjCId:
4920    case BuiltinType::ObjCClass:
4921    case BuiltinType::ObjCSel:
4922      llvm_unreachable("@encoding ObjC primitive type");
4923
4924    // OpenCL and placeholder types don't need @encodings.
4925    case BuiltinType::OCLImage1d:
4926    case BuiltinType::OCLImage1dArray:
4927    case BuiltinType::OCLImage1dBuffer:
4928    case BuiltinType::OCLImage2d:
4929    case BuiltinType::OCLImage2dArray:
4930    case BuiltinType::OCLImage3d:
4931    case BuiltinType::OCLEvent:
4932    case BuiltinType::OCLSampler:
4933    case BuiltinType::Dependent:
4934#define BUILTIN_TYPE(KIND, ID)
4935#define PLACEHOLDER_TYPE(KIND, ID) \
4936    case BuiltinType::KIND:
4937#include "clang/AST/BuiltinTypes.def"
4938      llvm_unreachable("invalid builtin type for @encode");
4939    }
4940    llvm_unreachable("invalid BuiltinType::Kind value");
4941}
4942
4943static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4944  EnumDecl *Enum = ET->getDecl();
4945
4946  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4947  if (!Enum->isFixed())
4948    return 'i';
4949
4950  // The encoding of a fixed enum type matches its fixed underlying type.
4951  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
4952  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
4953}
4954
4955static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4956                           QualType T, const FieldDecl *FD) {
4957  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4958  S += 'b';
4959  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4960  // The GNU runtime requires more information; bitfields are encoded as b,
4961  // then the offset (in bits) of the first element, then the type of the
4962  // bitfield, then the size in bits.  For example, in this structure:
4963  //
4964  // struct
4965  // {
4966  //    int integer;
4967  //    int flags:2;
4968  // };
4969  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4970  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4971  // information is not especially sensible, but we're stuck with it for
4972  // compatibility with GCC, although providing it breaks anything that
4973  // actually uses runtime introspection and wants to work on both runtimes...
4974  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4975    const RecordDecl *RD = FD->getParent();
4976    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4977    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4978    if (const EnumType *ET = T->getAs<EnumType>())
4979      S += ObjCEncodingForEnumType(Ctx, ET);
4980    else {
4981      const BuiltinType *BT = T->castAs<BuiltinType>();
4982      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
4983    }
4984  }
4985  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4986}
4987
4988// FIXME: Use SmallString for accumulating string.
4989void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4990                                            bool ExpandPointedToStructures,
4991                                            bool ExpandStructures,
4992                                            const FieldDecl *FD,
4993                                            bool OutermostType,
4994                                            bool EncodingProperty,
4995                                            bool StructField,
4996                                            bool EncodeBlockParameters,
4997                                            bool EncodeClassNames,
4998                                            bool EncodePointerToObjCTypedef) const {
4999  CanQualType CT = getCanonicalType(T);
5000  switch (CT->getTypeClass()) {
5001  case Type::Builtin:
5002  case Type::Enum:
5003    if (FD && FD->isBitField())
5004      return EncodeBitField(this, S, T, FD);
5005    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5006      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5007    else
5008      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5009    return;
5010
5011  case Type::Complex: {
5012    const ComplexType *CT = T->castAs<ComplexType>();
5013    S += 'j';
5014    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5015                               false);
5016    return;
5017  }
5018
5019  case Type::Atomic: {
5020    const AtomicType *AT = T->castAs<AtomicType>();
5021    S += 'A';
5022    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5023                               false, false);
5024    return;
5025  }
5026
5027  // encoding for pointer or reference types.
5028  case Type::Pointer:
5029  case Type::LValueReference:
5030  case Type::RValueReference: {
5031    QualType PointeeTy;
5032    if (isa<PointerType>(CT)) {
5033      const PointerType *PT = T->castAs<PointerType>();
5034      if (PT->isObjCSelType()) {
5035        S += ':';
5036        return;
5037      }
5038      PointeeTy = PT->getPointeeType();
5039    } else {
5040      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5041    }
5042
5043    bool isReadOnly = false;
5044    // For historical/compatibility reasons, the read-only qualifier of the
5045    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5046    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5047    // Also, do not emit the 'r' for anything but the outermost type!
5048    if (isa<TypedefType>(T.getTypePtr())) {
5049      if (OutermostType && T.isConstQualified()) {
5050        isReadOnly = true;
5051        S += 'r';
5052      }
5053    } else if (OutermostType) {
5054      QualType P = PointeeTy;
5055      while (P->getAs<PointerType>())
5056        P = P->getAs<PointerType>()->getPointeeType();
5057      if (P.isConstQualified()) {
5058        isReadOnly = true;
5059        S += 'r';
5060      }
5061    }
5062    if (isReadOnly) {
5063      // Another legacy compatibility encoding. Some ObjC qualifier and type
5064      // combinations need to be rearranged.
5065      // Rewrite "in const" from "nr" to "rn"
5066      if (StringRef(S).endswith("nr"))
5067        S.replace(S.end()-2, S.end(), "rn");
5068    }
5069
5070    if (PointeeTy->isCharType()) {
5071      // char pointer types should be encoded as '*' unless it is a
5072      // type that has been typedef'd to 'BOOL'.
5073      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5074        S += '*';
5075        return;
5076      }
5077    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5078      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5079      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5080        S += '#';
5081        return;
5082      }
5083      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5084      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5085        S += '@';
5086        return;
5087      }
5088      // fall through...
5089    }
5090    S += '^';
5091    getLegacyIntegralTypeEncoding(PointeeTy);
5092
5093    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5094                               NULL);
5095    return;
5096  }
5097
5098  case Type::ConstantArray:
5099  case Type::IncompleteArray:
5100  case Type::VariableArray: {
5101    const ArrayType *AT = cast<ArrayType>(CT);
5102
5103    if (isa<IncompleteArrayType>(AT) && !StructField) {
5104      // Incomplete arrays are encoded as a pointer to the array element.
5105      S += '^';
5106
5107      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5108                                 false, ExpandStructures, FD);
5109    } else {
5110      S += '[';
5111
5112      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5113        if (getTypeSize(CAT->getElementType()) == 0)
5114          S += '0';
5115        else
5116          S += llvm::utostr(CAT->getSize().getZExtValue());
5117      } else {
5118        //Variable length arrays are encoded as a regular array with 0 elements.
5119        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5120               "Unknown array type!");
5121        S += '0';
5122      }
5123
5124      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5125                                 false, ExpandStructures, FD);
5126      S += ']';
5127    }
5128    return;
5129  }
5130
5131  case Type::FunctionNoProto:
5132  case Type::FunctionProto:
5133    S += '?';
5134    return;
5135
5136  case Type::Record: {
5137    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5138    S += RDecl->isUnion() ? '(' : '{';
5139    // Anonymous structures print as '?'
5140    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5141      S += II->getName();
5142      if (ClassTemplateSpecializationDecl *Spec
5143          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5144        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5145        llvm::raw_string_ostream OS(S);
5146        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5147                                            TemplateArgs.data(),
5148                                            TemplateArgs.size(),
5149                                            (*this).getPrintingPolicy());
5150      }
5151    } else {
5152      S += '?';
5153    }
5154    if (ExpandStructures) {
5155      S += '=';
5156      if (!RDecl->isUnion()) {
5157        getObjCEncodingForStructureImpl(RDecl, S, FD);
5158      } else {
5159        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5160                                     FieldEnd = RDecl->field_end();
5161             Field != FieldEnd; ++Field) {
5162          if (FD) {
5163            S += '"';
5164            S += Field->getNameAsString();
5165            S += '"';
5166          }
5167
5168          // Special case bit-fields.
5169          if (Field->isBitField()) {
5170            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5171                                       *Field);
5172          } else {
5173            QualType qt = Field->getType();
5174            getLegacyIntegralTypeEncoding(qt);
5175            getObjCEncodingForTypeImpl(qt, S, false, true,
5176                                       FD, /*OutermostType*/false,
5177                                       /*EncodingProperty*/false,
5178                                       /*StructField*/true);
5179          }
5180        }
5181      }
5182    }
5183    S += RDecl->isUnion() ? ')' : '}';
5184    return;
5185  }
5186
5187  case Type::BlockPointer: {
5188    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5189    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5190    if (EncodeBlockParameters) {
5191      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5192
5193      S += '<';
5194      // Block return type
5195      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5196                                 ExpandPointedToStructures, ExpandStructures,
5197                                 FD,
5198                                 false /* OutermostType */,
5199                                 EncodingProperty,
5200                                 false /* StructField */,
5201                                 EncodeBlockParameters,
5202                                 EncodeClassNames);
5203      // Block self
5204      S += "@?";
5205      // Block parameters
5206      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5207        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5208               E = FPT->arg_type_end(); I && (I != E); ++I) {
5209          getObjCEncodingForTypeImpl(*I, S,
5210                                     ExpandPointedToStructures,
5211                                     ExpandStructures,
5212                                     FD,
5213                                     false /* OutermostType */,
5214                                     EncodingProperty,
5215                                     false /* StructField */,
5216                                     EncodeBlockParameters,
5217                                     EncodeClassNames);
5218        }
5219      }
5220      S += '>';
5221    }
5222    return;
5223  }
5224
5225  case Type::ObjCObject:
5226  case Type::ObjCInterface: {
5227    // Ignore protocol qualifiers when mangling at this level.
5228    T = T->castAs<ObjCObjectType>()->getBaseType();
5229
5230    // The assumption seems to be that this assert will succeed
5231    // because nested levels will have filtered out 'id' and 'Class'.
5232    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5233    // @encode(class_name)
5234    ObjCInterfaceDecl *OI = OIT->getDecl();
5235    S += '{';
5236    const IdentifierInfo *II = OI->getIdentifier();
5237    S += II->getName();
5238    S += '=';
5239    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5240    DeepCollectObjCIvars(OI, true, Ivars);
5241    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5242      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5243      if (Field->isBitField())
5244        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5245      else
5246        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5247                                   false, false, false, false, false,
5248                                   EncodePointerToObjCTypedef);
5249    }
5250    S += '}';
5251    return;
5252  }
5253
5254  case Type::ObjCObjectPointer: {
5255    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5256    if (OPT->isObjCIdType()) {
5257      S += '@';
5258      return;
5259    }
5260
5261    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5262      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5263      // Since this is a binary compatibility issue, need to consult with runtime
5264      // folks. Fortunately, this is a *very* obsure construct.
5265      S += '#';
5266      return;
5267    }
5268
5269    if (OPT->isObjCQualifiedIdType()) {
5270      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5271                                 ExpandPointedToStructures,
5272                                 ExpandStructures, FD);
5273      if (FD || EncodingProperty || EncodeClassNames) {
5274        // Note that we do extended encoding of protocol qualifer list
5275        // Only when doing ivar or property encoding.
5276        S += '"';
5277        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5278             E = OPT->qual_end(); I != E; ++I) {
5279          S += '<';
5280          S += (*I)->getNameAsString();
5281          S += '>';
5282        }
5283        S += '"';
5284      }
5285      return;
5286    }
5287
5288    QualType PointeeTy = OPT->getPointeeType();
5289    if (!EncodingProperty &&
5290        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5291        !EncodePointerToObjCTypedef) {
5292      // Another historical/compatibility reason.
5293      // We encode the underlying type which comes out as
5294      // {...};
5295      S += '^';
5296      getObjCEncodingForTypeImpl(PointeeTy, S,
5297                                 false, ExpandPointedToStructures,
5298                                 NULL,
5299                                 false, false, false, false, false,
5300                                 /*EncodePointerToObjCTypedef*/true);
5301      return;
5302    }
5303
5304    S += '@';
5305    if (OPT->getInterfaceDecl() &&
5306        (FD || EncodingProperty || EncodeClassNames)) {
5307      S += '"';
5308      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5309      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5310           E = OPT->qual_end(); I != E; ++I) {
5311        S += '<';
5312        S += (*I)->getNameAsString();
5313        S += '>';
5314      }
5315      S += '"';
5316    }
5317    return;
5318  }
5319
5320  // gcc just blithely ignores member pointers.
5321  // FIXME: we shoul do better than that.  'M' is available.
5322  case Type::MemberPointer:
5323    return;
5324
5325  case Type::Vector:
5326  case Type::ExtVector:
5327    // This matches gcc's encoding, even though technically it is
5328    // insufficient.
5329    // FIXME. We should do a better job than gcc.
5330    return;
5331
5332#define ABSTRACT_TYPE(KIND, BASE)
5333#define TYPE(KIND, BASE)
5334#define DEPENDENT_TYPE(KIND, BASE) \
5335  case Type::KIND:
5336#define NON_CANONICAL_TYPE(KIND, BASE) \
5337  case Type::KIND:
5338#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5339  case Type::KIND:
5340#include "clang/AST/TypeNodes.def"
5341    llvm_unreachable("@encode for dependent type!");
5342  }
5343  llvm_unreachable("bad type kind!");
5344}
5345
5346void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5347                                                 std::string &S,
5348                                                 const FieldDecl *FD,
5349                                                 bool includeVBases) const {
5350  assert(RDecl && "Expected non-null RecordDecl");
5351  assert(!RDecl->isUnion() && "Should not be called for unions");
5352  if (!RDecl->getDefinition())
5353    return;
5354
5355  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5356  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5357  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5358
5359  if (CXXRec) {
5360    for (CXXRecordDecl::base_class_iterator
5361           BI = CXXRec->bases_begin(),
5362           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5363      if (!BI->isVirtual()) {
5364        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5365        if (base->isEmpty())
5366          continue;
5367        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5368        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5369                                  std::make_pair(offs, base));
5370      }
5371    }
5372  }
5373
5374  unsigned i = 0;
5375  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5376                               FieldEnd = RDecl->field_end();
5377       Field != FieldEnd; ++Field, ++i) {
5378    uint64_t offs = layout.getFieldOffset(i);
5379    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5380                              std::make_pair(offs, *Field));
5381  }
5382
5383  if (CXXRec && includeVBases) {
5384    for (CXXRecordDecl::base_class_iterator
5385           BI = CXXRec->vbases_begin(),
5386           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5387      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5388      if (base->isEmpty())
5389        continue;
5390      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5391      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5392        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5393                                  std::make_pair(offs, base));
5394    }
5395  }
5396
5397  CharUnits size;
5398  if (CXXRec) {
5399    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5400  } else {
5401    size = layout.getSize();
5402  }
5403
5404  uint64_t CurOffs = 0;
5405  std::multimap<uint64_t, NamedDecl *>::iterator
5406    CurLayObj = FieldOrBaseOffsets.begin();
5407
5408  if (CXXRec && CXXRec->isDynamicClass() &&
5409      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5410    if (FD) {
5411      S += "\"_vptr$";
5412      std::string recname = CXXRec->getNameAsString();
5413      if (recname.empty()) recname = "?";
5414      S += recname;
5415      S += '"';
5416    }
5417    S += "^^?";
5418    CurOffs += getTypeSize(VoidPtrTy);
5419  }
5420
5421  if (!RDecl->hasFlexibleArrayMember()) {
5422    // Mark the end of the structure.
5423    uint64_t offs = toBits(size);
5424    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5425                              std::make_pair(offs, (NamedDecl*)0));
5426  }
5427
5428  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5429    assert(CurOffs <= CurLayObj->first);
5430
5431    if (CurOffs < CurLayObj->first) {
5432      uint64_t padding = CurLayObj->first - CurOffs;
5433      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5434      // packing/alignment of members is different that normal, in which case
5435      // the encoding will be out-of-sync with the real layout.
5436      // If the runtime switches to just consider the size of types without
5437      // taking into account alignment, we could make padding explicit in the
5438      // encoding (e.g. using arrays of chars). The encoding strings would be
5439      // longer then though.
5440      CurOffs += padding;
5441    }
5442
5443    NamedDecl *dcl = CurLayObj->second;
5444    if (dcl == 0)
5445      break; // reached end of structure.
5446
5447    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5448      // We expand the bases without their virtual bases since those are going
5449      // in the initial structure. Note that this differs from gcc which
5450      // expands virtual bases each time one is encountered in the hierarchy,
5451      // making the encoding type bigger than it really is.
5452      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5453      assert(!base->isEmpty());
5454      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5455    } else {
5456      FieldDecl *field = cast<FieldDecl>(dcl);
5457      if (FD) {
5458        S += '"';
5459        S += field->getNameAsString();
5460        S += '"';
5461      }
5462
5463      if (field->isBitField()) {
5464        EncodeBitField(this, S, field->getType(), field);
5465        CurOffs += field->getBitWidthValue(*this);
5466      } else {
5467        QualType qt = field->getType();
5468        getLegacyIntegralTypeEncoding(qt);
5469        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5470                                   /*OutermostType*/false,
5471                                   /*EncodingProperty*/false,
5472                                   /*StructField*/true);
5473        CurOffs += getTypeSize(field->getType());
5474      }
5475    }
5476  }
5477}
5478
5479void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5480                                                 std::string& S) const {
5481  if (QT & Decl::OBJC_TQ_In)
5482    S += 'n';
5483  if (QT & Decl::OBJC_TQ_Inout)
5484    S += 'N';
5485  if (QT & Decl::OBJC_TQ_Out)
5486    S += 'o';
5487  if (QT & Decl::OBJC_TQ_Bycopy)
5488    S += 'O';
5489  if (QT & Decl::OBJC_TQ_Byref)
5490    S += 'R';
5491  if (QT & Decl::OBJC_TQ_Oneway)
5492    S += 'V';
5493}
5494
5495TypedefDecl *ASTContext::getObjCIdDecl() const {
5496  if (!ObjCIdDecl) {
5497    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5498    T = getObjCObjectPointerType(T);
5499    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5500    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5501                                     getTranslationUnitDecl(),
5502                                     SourceLocation(), SourceLocation(),
5503                                     &Idents.get("id"), IdInfo);
5504  }
5505
5506  return ObjCIdDecl;
5507}
5508
5509TypedefDecl *ASTContext::getObjCSelDecl() const {
5510  if (!ObjCSelDecl) {
5511    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5512    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5513    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5514                                      getTranslationUnitDecl(),
5515                                      SourceLocation(), SourceLocation(),
5516                                      &Idents.get("SEL"), SelInfo);
5517  }
5518  return ObjCSelDecl;
5519}
5520
5521TypedefDecl *ASTContext::getObjCClassDecl() const {
5522  if (!ObjCClassDecl) {
5523    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5524    T = getObjCObjectPointerType(T);
5525    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5526    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5527                                        getTranslationUnitDecl(),
5528                                        SourceLocation(), SourceLocation(),
5529                                        &Idents.get("Class"), ClassInfo);
5530  }
5531
5532  return ObjCClassDecl;
5533}
5534
5535ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5536  if (!ObjCProtocolClassDecl) {
5537    ObjCProtocolClassDecl
5538      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5539                                  SourceLocation(),
5540                                  &Idents.get("Protocol"),
5541                                  /*PrevDecl=*/0,
5542                                  SourceLocation(), true);
5543  }
5544
5545  return ObjCProtocolClassDecl;
5546}
5547
5548//===----------------------------------------------------------------------===//
5549// __builtin_va_list Construction Functions
5550//===----------------------------------------------------------------------===//
5551
5552static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5553  // typedef char* __builtin_va_list;
5554  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5555  TypeSourceInfo *TInfo
5556    = Context->getTrivialTypeSourceInfo(CharPtrType);
5557
5558  TypedefDecl *VaListTypeDecl
5559    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5560                          Context->getTranslationUnitDecl(),
5561                          SourceLocation(), SourceLocation(),
5562                          &Context->Idents.get("__builtin_va_list"),
5563                          TInfo);
5564  return VaListTypeDecl;
5565}
5566
5567static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5568  // typedef void* __builtin_va_list;
5569  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5570  TypeSourceInfo *TInfo
5571    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5572
5573  TypedefDecl *VaListTypeDecl
5574    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5575                          Context->getTranslationUnitDecl(),
5576                          SourceLocation(), SourceLocation(),
5577                          &Context->Idents.get("__builtin_va_list"),
5578                          TInfo);
5579  return VaListTypeDecl;
5580}
5581
5582static TypedefDecl *
5583CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5584  RecordDecl *VaListTagDecl;
5585  if (Context->getLangOpts().CPlusPlus) {
5586    // namespace std { struct __va_list {
5587    NamespaceDecl *NS;
5588    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5589                               Context->getTranslationUnitDecl(),
5590                               /*Inline*/false, SourceLocation(),
5591                               SourceLocation(), &Context->Idents.get("std"),
5592                               /*PrevDecl*/0);
5593
5594    VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5595                                          Context->getTranslationUnitDecl(),
5596                                          SourceLocation(), SourceLocation(),
5597                                          &Context->Idents.get("__va_list"));
5598    VaListTagDecl->setDeclContext(NS);
5599  } else {
5600    // struct __va_list
5601    VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5602                                   Context->getTranslationUnitDecl(),
5603                                   &Context->Idents.get("__va_list"));
5604  }
5605
5606  VaListTagDecl->startDefinition();
5607
5608  const size_t NumFields = 5;
5609  QualType FieldTypes[NumFields];
5610  const char *FieldNames[NumFields];
5611
5612  // void *__stack;
5613  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5614  FieldNames[0] = "__stack";
5615
5616  // void *__gr_top;
5617  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5618  FieldNames[1] = "__gr_top";
5619
5620  // void *__vr_top;
5621  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5622  FieldNames[2] = "__vr_top";
5623
5624  // int __gr_offs;
5625  FieldTypes[3] = Context->IntTy;
5626  FieldNames[3] = "__gr_offs";
5627
5628  // int __vr_offs;
5629  FieldTypes[4] = Context->IntTy;
5630  FieldNames[4] = "__vr_offs";
5631
5632  // Create fields
5633  for (unsigned i = 0; i < NumFields; ++i) {
5634    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5635                                         VaListTagDecl,
5636                                         SourceLocation(),
5637                                         SourceLocation(),
5638                                         &Context->Idents.get(FieldNames[i]),
5639                                         FieldTypes[i], /*TInfo=*/0,
5640                                         /*BitWidth=*/0,
5641                                         /*Mutable=*/false,
5642                                         ICIS_NoInit);
5643    Field->setAccess(AS_public);
5644    VaListTagDecl->addDecl(Field);
5645  }
5646  VaListTagDecl->completeDefinition();
5647  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5648  Context->VaListTagTy = VaListTagType;
5649
5650  // } __builtin_va_list;
5651  TypedefDecl *VaListTypedefDecl
5652    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5653                          Context->getTranslationUnitDecl(),
5654                          SourceLocation(), SourceLocation(),
5655                          &Context->Idents.get("__builtin_va_list"),
5656                          Context->getTrivialTypeSourceInfo(VaListTagType));
5657
5658  return VaListTypedefDecl;
5659}
5660
5661static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5662  // typedef struct __va_list_tag {
5663  RecordDecl *VaListTagDecl;
5664
5665  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5666                                   Context->getTranslationUnitDecl(),
5667                                   &Context->Idents.get("__va_list_tag"));
5668  VaListTagDecl->startDefinition();
5669
5670  const size_t NumFields = 5;
5671  QualType FieldTypes[NumFields];
5672  const char *FieldNames[NumFields];
5673
5674  //   unsigned char gpr;
5675  FieldTypes[0] = Context->UnsignedCharTy;
5676  FieldNames[0] = "gpr";
5677
5678  //   unsigned char fpr;
5679  FieldTypes[1] = Context->UnsignedCharTy;
5680  FieldNames[1] = "fpr";
5681
5682  //   unsigned short reserved;
5683  FieldTypes[2] = Context->UnsignedShortTy;
5684  FieldNames[2] = "reserved";
5685
5686  //   void* overflow_arg_area;
5687  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5688  FieldNames[3] = "overflow_arg_area";
5689
5690  //   void* reg_save_area;
5691  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5692  FieldNames[4] = "reg_save_area";
5693
5694  // Create fields
5695  for (unsigned i = 0; i < NumFields; ++i) {
5696    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5697                                         SourceLocation(),
5698                                         SourceLocation(),
5699                                         &Context->Idents.get(FieldNames[i]),
5700                                         FieldTypes[i], /*TInfo=*/0,
5701                                         /*BitWidth=*/0,
5702                                         /*Mutable=*/false,
5703                                         ICIS_NoInit);
5704    Field->setAccess(AS_public);
5705    VaListTagDecl->addDecl(Field);
5706  }
5707  VaListTagDecl->completeDefinition();
5708  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5709  Context->VaListTagTy = VaListTagType;
5710
5711  // } __va_list_tag;
5712  TypedefDecl *VaListTagTypedefDecl
5713    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5714                          Context->getTranslationUnitDecl(),
5715                          SourceLocation(), SourceLocation(),
5716                          &Context->Idents.get("__va_list_tag"),
5717                          Context->getTrivialTypeSourceInfo(VaListTagType));
5718  QualType VaListTagTypedefType =
5719    Context->getTypedefType(VaListTagTypedefDecl);
5720
5721  // typedef __va_list_tag __builtin_va_list[1];
5722  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5723  QualType VaListTagArrayType
5724    = Context->getConstantArrayType(VaListTagTypedefType,
5725                                    Size, ArrayType::Normal, 0);
5726  TypeSourceInfo *TInfo
5727    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5728  TypedefDecl *VaListTypedefDecl
5729    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5730                          Context->getTranslationUnitDecl(),
5731                          SourceLocation(), SourceLocation(),
5732                          &Context->Idents.get("__builtin_va_list"),
5733                          TInfo);
5734
5735  return VaListTypedefDecl;
5736}
5737
5738static TypedefDecl *
5739CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5740  // typedef struct __va_list_tag {
5741  RecordDecl *VaListTagDecl;
5742  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5743                                   Context->getTranslationUnitDecl(),
5744                                   &Context->Idents.get("__va_list_tag"));
5745  VaListTagDecl->startDefinition();
5746
5747  const size_t NumFields = 4;
5748  QualType FieldTypes[NumFields];
5749  const char *FieldNames[NumFields];
5750
5751  //   unsigned gp_offset;
5752  FieldTypes[0] = Context->UnsignedIntTy;
5753  FieldNames[0] = "gp_offset";
5754
5755  //   unsigned fp_offset;
5756  FieldTypes[1] = Context->UnsignedIntTy;
5757  FieldNames[1] = "fp_offset";
5758
5759  //   void* overflow_arg_area;
5760  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5761  FieldNames[2] = "overflow_arg_area";
5762
5763  //   void* reg_save_area;
5764  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5765  FieldNames[3] = "reg_save_area";
5766
5767  // Create fields
5768  for (unsigned i = 0; i < NumFields; ++i) {
5769    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5770                                         VaListTagDecl,
5771                                         SourceLocation(),
5772                                         SourceLocation(),
5773                                         &Context->Idents.get(FieldNames[i]),
5774                                         FieldTypes[i], /*TInfo=*/0,
5775                                         /*BitWidth=*/0,
5776                                         /*Mutable=*/false,
5777                                         ICIS_NoInit);
5778    Field->setAccess(AS_public);
5779    VaListTagDecl->addDecl(Field);
5780  }
5781  VaListTagDecl->completeDefinition();
5782  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5783  Context->VaListTagTy = VaListTagType;
5784
5785  // } __va_list_tag;
5786  TypedefDecl *VaListTagTypedefDecl
5787    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5788                          Context->getTranslationUnitDecl(),
5789                          SourceLocation(), SourceLocation(),
5790                          &Context->Idents.get("__va_list_tag"),
5791                          Context->getTrivialTypeSourceInfo(VaListTagType));
5792  QualType VaListTagTypedefType =
5793    Context->getTypedefType(VaListTagTypedefDecl);
5794
5795  // typedef __va_list_tag __builtin_va_list[1];
5796  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5797  QualType VaListTagArrayType
5798    = Context->getConstantArrayType(VaListTagTypedefType,
5799                                      Size, ArrayType::Normal,0);
5800  TypeSourceInfo *TInfo
5801    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5802  TypedefDecl *VaListTypedefDecl
5803    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5804                          Context->getTranslationUnitDecl(),
5805                          SourceLocation(), SourceLocation(),
5806                          &Context->Idents.get("__builtin_va_list"),
5807                          TInfo);
5808
5809  return VaListTypedefDecl;
5810}
5811
5812static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5813  // typedef int __builtin_va_list[4];
5814  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5815  QualType IntArrayType
5816    = Context->getConstantArrayType(Context->IntTy,
5817				    Size, ArrayType::Normal, 0);
5818  TypedefDecl *VaListTypedefDecl
5819    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5820                          Context->getTranslationUnitDecl(),
5821                          SourceLocation(), SourceLocation(),
5822                          &Context->Idents.get("__builtin_va_list"),
5823                          Context->getTrivialTypeSourceInfo(IntArrayType));
5824
5825  return VaListTypedefDecl;
5826}
5827
5828static TypedefDecl *
5829CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5830  RecordDecl *VaListDecl;
5831  if (Context->getLangOpts().CPlusPlus) {
5832    // namespace std { struct __va_list {
5833    NamespaceDecl *NS;
5834    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5835                               Context->getTranslationUnitDecl(),
5836                               /*Inline*/false, SourceLocation(),
5837                               SourceLocation(), &Context->Idents.get("std"),
5838                               /*PrevDecl*/0);
5839
5840    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5841                                       Context->getTranslationUnitDecl(),
5842                                       SourceLocation(), SourceLocation(),
5843                                       &Context->Idents.get("__va_list"));
5844
5845    VaListDecl->setDeclContext(NS);
5846
5847  } else {
5848    // struct __va_list {
5849    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5850                                  Context->getTranslationUnitDecl(),
5851                                  &Context->Idents.get("__va_list"));
5852  }
5853
5854  VaListDecl->startDefinition();
5855
5856  // void * __ap;
5857  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5858                                       VaListDecl,
5859                                       SourceLocation(),
5860                                       SourceLocation(),
5861                                       &Context->Idents.get("__ap"),
5862                                       Context->getPointerType(Context->VoidTy),
5863                                       /*TInfo=*/0,
5864                                       /*BitWidth=*/0,
5865                                       /*Mutable=*/false,
5866                                       ICIS_NoInit);
5867  Field->setAccess(AS_public);
5868  VaListDecl->addDecl(Field);
5869
5870  // };
5871  VaListDecl->completeDefinition();
5872
5873  // typedef struct __va_list __builtin_va_list;
5874  TypeSourceInfo *TInfo
5875    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5876
5877  TypedefDecl *VaListTypeDecl
5878    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5879                          Context->getTranslationUnitDecl(),
5880                          SourceLocation(), SourceLocation(),
5881                          &Context->Idents.get("__builtin_va_list"),
5882                          TInfo);
5883
5884  return VaListTypeDecl;
5885}
5886
5887static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5888                                     TargetInfo::BuiltinVaListKind Kind) {
5889  switch (Kind) {
5890  case TargetInfo::CharPtrBuiltinVaList:
5891    return CreateCharPtrBuiltinVaListDecl(Context);
5892  case TargetInfo::VoidPtrBuiltinVaList:
5893    return CreateVoidPtrBuiltinVaListDecl(Context);
5894  case TargetInfo::AArch64ABIBuiltinVaList:
5895    return CreateAArch64ABIBuiltinVaListDecl(Context);
5896  case TargetInfo::PowerABIBuiltinVaList:
5897    return CreatePowerABIBuiltinVaListDecl(Context);
5898  case TargetInfo::X86_64ABIBuiltinVaList:
5899    return CreateX86_64ABIBuiltinVaListDecl(Context);
5900  case TargetInfo::PNaClABIBuiltinVaList:
5901    return CreatePNaClABIBuiltinVaListDecl(Context);
5902  case TargetInfo::AAPCSABIBuiltinVaList:
5903    return CreateAAPCSABIBuiltinVaListDecl(Context);
5904  }
5905
5906  llvm_unreachable("Unhandled __builtin_va_list type kind");
5907}
5908
5909TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5910  if (!BuiltinVaListDecl)
5911    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5912
5913  return BuiltinVaListDecl;
5914}
5915
5916QualType ASTContext::getVaListTagType() const {
5917  // Force the creation of VaListTagTy by building the __builtin_va_list
5918  // declaration.
5919  if (VaListTagTy.isNull())
5920    (void) getBuiltinVaListDecl();
5921
5922  return VaListTagTy;
5923}
5924
5925void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5926  assert(ObjCConstantStringType.isNull() &&
5927         "'NSConstantString' type already set!");
5928
5929  ObjCConstantStringType = getObjCInterfaceType(Decl);
5930}
5931
5932/// \brief Retrieve the template name that corresponds to a non-empty
5933/// lookup.
5934TemplateName
5935ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5936                                      UnresolvedSetIterator End) const {
5937  unsigned size = End - Begin;
5938  assert(size > 1 && "set is not overloaded!");
5939
5940  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5941                          size * sizeof(FunctionTemplateDecl*));
5942  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5943
5944  NamedDecl **Storage = OT->getStorage();
5945  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5946    NamedDecl *D = *I;
5947    assert(isa<FunctionTemplateDecl>(D) ||
5948           (isa<UsingShadowDecl>(D) &&
5949            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5950    *Storage++ = D;
5951  }
5952
5953  return TemplateName(OT);
5954}
5955
5956/// \brief Retrieve the template name that represents a qualified
5957/// template name such as \c std::vector.
5958TemplateName
5959ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5960                                     bool TemplateKeyword,
5961                                     TemplateDecl *Template) const {
5962  assert(NNS && "Missing nested-name-specifier in qualified template name");
5963
5964  // FIXME: Canonicalization?
5965  llvm::FoldingSetNodeID ID;
5966  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5967
5968  void *InsertPos = 0;
5969  QualifiedTemplateName *QTN =
5970    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5971  if (!QTN) {
5972    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5973        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5974    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5975  }
5976
5977  return TemplateName(QTN);
5978}
5979
5980/// \brief Retrieve the template name that represents a dependent
5981/// template name such as \c MetaFun::template apply.
5982TemplateName
5983ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5984                                     const IdentifierInfo *Name) const {
5985  assert((!NNS || NNS->isDependent()) &&
5986         "Nested name specifier must be dependent");
5987
5988  llvm::FoldingSetNodeID ID;
5989  DependentTemplateName::Profile(ID, NNS, Name);
5990
5991  void *InsertPos = 0;
5992  DependentTemplateName *QTN =
5993    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5994
5995  if (QTN)
5996    return TemplateName(QTN);
5997
5998  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5999  if (CanonNNS == NNS) {
6000    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6001        DependentTemplateName(NNS, Name);
6002  } else {
6003    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6004    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6005        DependentTemplateName(NNS, Name, Canon);
6006    DependentTemplateName *CheckQTN =
6007      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6008    assert(!CheckQTN && "Dependent type name canonicalization broken");
6009    (void)CheckQTN;
6010  }
6011
6012  DependentTemplateNames.InsertNode(QTN, InsertPos);
6013  return TemplateName(QTN);
6014}
6015
6016/// \brief Retrieve the template name that represents a dependent
6017/// template name such as \c MetaFun::template operator+.
6018TemplateName
6019ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6020                                     OverloadedOperatorKind Operator) const {
6021  assert((!NNS || NNS->isDependent()) &&
6022         "Nested name specifier must be dependent");
6023
6024  llvm::FoldingSetNodeID ID;
6025  DependentTemplateName::Profile(ID, NNS, Operator);
6026
6027  void *InsertPos = 0;
6028  DependentTemplateName *QTN
6029    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6030
6031  if (QTN)
6032    return TemplateName(QTN);
6033
6034  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6035  if (CanonNNS == NNS) {
6036    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6037        DependentTemplateName(NNS, Operator);
6038  } else {
6039    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6040    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6041        DependentTemplateName(NNS, Operator, Canon);
6042
6043    DependentTemplateName *CheckQTN
6044      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6045    assert(!CheckQTN && "Dependent template name canonicalization broken");
6046    (void)CheckQTN;
6047  }
6048
6049  DependentTemplateNames.InsertNode(QTN, InsertPos);
6050  return TemplateName(QTN);
6051}
6052
6053TemplateName
6054ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6055                                         TemplateName replacement) const {
6056  llvm::FoldingSetNodeID ID;
6057  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6058
6059  void *insertPos = 0;
6060  SubstTemplateTemplateParmStorage *subst
6061    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6062
6063  if (!subst) {
6064    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6065    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6066  }
6067
6068  return TemplateName(subst);
6069}
6070
6071TemplateName
6072ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6073                                       const TemplateArgument &ArgPack) const {
6074  ASTContext &Self = const_cast<ASTContext &>(*this);
6075  llvm::FoldingSetNodeID ID;
6076  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6077
6078  void *InsertPos = 0;
6079  SubstTemplateTemplateParmPackStorage *Subst
6080    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6081
6082  if (!Subst) {
6083    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6084                                                           ArgPack.pack_size(),
6085                                                         ArgPack.pack_begin());
6086    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6087  }
6088
6089  return TemplateName(Subst);
6090}
6091
6092/// getFromTargetType - Given one of the integer types provided by
6093/// TargetInfo, produce the corresponding type. The unsigned @p Type
6094/// is actually a value of type @c TargetInfo::IntType.
6095CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6096  switch (Type) {
6097  case TargetInfo::NoInt: return CanQualType();
6098  case TargetInfo::SignedShort: return ShortTy;
6099  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6100  case TargetInfo::SignedInt: return IntTy;
6101  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6102  case TargetInfo::SignedLong: return LongTy;
6103  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6104  case TargetInfo::SignedLongLong: return LongLongTy;
6105  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6106  }
6107
6108  llvm_unreachable("Unhandled TargetInfo::IntType value");
6109}
6110
6111//===----------------------------------------------------------------------===//
6112//                        Type Predicates.
6113//===----------------------------------------------------------------------===//
6114
6115/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6116/// garbage collection attribute.
6117///
6118Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6119  if (getLangOpts().getGC() == LangOptions::NonGC)
6120    return Qualifiers::GCNone;
6121
6122  assert(getLangOpts().ObjC1);
6123  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6124
6125  // Default behaviour under objective-C's gc is for ObjC pointers
6126  // (or pointers to them) be treated as though they were declared
6127  // as __strong.
6128  if (GCAttrs == Qualifiers::GCNone) {
6129    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6130      return Qualifiers::Strong;
6131    else if (Ty->isPointerType())
6132      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6133  } else {
6134    // It's not valid to set GC attributes on anything that isn't a
6135    // pointer.
6136#ifndef NDEBUG
6137    QualType CT = Ty->getCanonicalTypeInternal();
6138    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6139      CT = AT->getElementType();
6140    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6141#endif
6142  }
6143  return GCAttrs;
6144}
6145
6146//===----------------------------------------------------------------------===//
6147//                        Type Compatibility Testing
6148//===----------------------------------------------------------------------===//
6149
6150/// areCompatVectorTypes - Return true if the two specified vector types are
6151/// compatible.
6152static bool areCompatVectorTypes(const VectorType *LHS,
6153                                 const VectorType *RHS) {
6154  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6155  return LHS->getElementType() == RHS->getElementType() &&
6156         LHS->getNumElements() == RHS->getNumElements();
6157}
6158
6159bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6160                                          QualType SecondVec) {
6161  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6162  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6163
6164  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6165    return true;
6166
6167  // Treat Neon vector types and most AltiVec vector types as if they are the
6168  // equivalent GCC vector types.
6169  const VectorType *First = FirstVec->getAs<VectorType>();
6170  const VectorType *Second = SecondVec->getAs<VectorType>();
6171  if (First->getNumElements() == Second->getNumElements() &&
6172      hasSameType(First->getElementType(), Second->getElementType()) &&
6173      First->getVectorKind() != VectorType::AltiVecPixel &&
6174      First->getVectorKind() != VectorType::AltiVecBool &&
6175      Second->getVectorKind() != VectorType::AltiVecPixel &&
6176      Second->getVectorKind() != VectorType::AltiVecBool)
6177    return true;
6178
6179  return false;
6180}
6181
6182//===----------------------------------------------------------------------===//
6183// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6184//===----------------------------------------------------------------------===//
6185
6186/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6187/// inheritance hierarchy of 'rProto'.
6188bool
6189ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6190                                           ObjCProtocolDecl *rProto) const {
6191  if (declaresSameEntity(lProto, rProto))
6192    return true;
6193  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6194       E = rProto->protocol_end(); PI != E; ++PI)
6195    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6196      return true;
6197  return false;
6198}
6199
6200/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6201/// return true if lhs's protocols conform to rhs's protocol; false
6202/// otherwise.
6203bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6204  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6205    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6206  return false;
6207}
6208
6209/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6210/// Class<pr1, ...>.
6211bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6212                                                      QualType rhs) {
6213  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6214  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6215  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6216
6217  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6218       E = lhsQID->qual_end(); I != E; ++I) {
6219    bool match = false;
6220    ObjCProtocolDecl *lhsProto = *I;
6221    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6222         E = rhsOPT->qual_end(); J != E; ++J) {
6223      ObjCProtocolDecl *rhsProto = *J;
6224      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6225        match = true;
6226        break;
6227      }
6228    }
6229    if (!match)
6230      return false;
6231  }
6232  return true;
6233}
6234
6235/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6236/// ObjCQualifiedIDType.
6237bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6238                                                   bool compare) {
6239  // Allow id<P..> and an 'id' or void* type in all cases.
6240  if (lhs->isVoidPointerType() ||
6241      lhs->isObjCIdType() || lhs->isObjCClassType())
6242    return true;
6243  else if (rhs->isVoidPointerType() ||
6244           rhs->isObjCIdType() || rhs->isObjCClassType())
6245    return true;
6246
6247  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6248    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6249
6250    if (!rhsOPT) return false;
6251
6252    if (rhsOPT->qual_empty()) {
6253      // If the RHS is a unqualified interface pointer "NSString*",
6254      // make sure we check the class hierarchy.
6255      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6256        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6257             E = lhsQID->qual_end(); I != E; ++I) {
6258          // when comparing an id<P> on lhs with a static type on rhs,
6259          // see if static class implements all of id's protocols, directly or
6260          // through its super class and categories.
6261          if (!rhsID->ClassImplementsProtocol(*I, true))
6262            return false;
6263        }
6264      }
6265      // If there are no qualifiers and no interface, we have an 'id'.
6266      return true;
6267    }
6268    // Both the right and left sides have qualifiers.
6269    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6270         E = lhsQID->qual_end(); I != E; ++I) {
6271      ObjCProtocolDecl *lhsProto = *I;
6272      bool match = false;
6273
6274      // when comparing an id<P> on lhs with a static type on rhs,
6275      // see if static class implements all of id's protocols, directly or
6276      // through its super class and categories.
6277      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6278           E = rhsOPT->qual_end(); J != E; ++J) {
6279        ObjCProtocolDecl *rhsProto = *J;
6280        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6281            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6282          match = true;
6283          break;
6284        }
6285      }
6286      // If the RHS is a qualified interface pointer "NSString<P>*",
6287      // make sure we check the class hierarchy.
6288      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6289        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6290             E = lhsQID->qual_end(); I != E; ++I) {
6291          // when comparing an id<P> on lhs with a static type on rhs,
6292          // see if static class implements all of id's protocols, directly or
6293          // through its super class and categories.
6294          if (rhsID->ClassImplementsProtocol(*I, true)) {
6295            match = true;
6296            break;
6297          }
6298        }
6299      }
6300      if (!match)
6301        return false;
6302    }
6303
6304    return true;
6305  }
6306
6307  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6308  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6309
6310  if (const ObjCObjectPointerType *lhsOPT =
6311        lhs->getAsObjCInterfacePointerType()) {
6312    // If both the right and left sides have qualifiers.
6313    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6314         E = lhsOPT->qual_end(); I != E; ++I) {
6315      ObjCProtocolDecl *lhsProto = *I;
6316      bool match = false;
6317
6318      // when comparing an id<P> on rhs with a static type on lhs,
6319      // see if static class implements all of id's protocols, directly or
6320      // through its super class and categories.
6321      // First, lhs protocols in the qualifier list must be found, direct
6322      // or indirect in rhs's qualifier list or it is a mismatch.
6323      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6324           E = rhsQID->qual_end(); J != E; ++J) {
6325        ObjCProtocolDecl *rhsProto = *J;
6326        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6327            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6328          match = true;
6329          break;
6330        }
6331      }
6332      if (!match)
6333        return false;
6334    }
6335
6336    // Static class's protocols, or its super class or category protocols
6337    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6338    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6339      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6340      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6341      // This is rather dubious but matches gcc's behavior. If lhs has
6342      // no type qualifier and its class has no static protocol(s)
6343      // assume that it is mismatch.
6344      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6345        return false;
6346      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6347           LHSInheritedProtocols.begin(),
6348           E = LHSInheritedProtocols.end(); I != E; ++I) {
6349        bool match = false;
6350        ObjCProtocolDecl *lhsProto = (*I);
6351        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6352             E = rhsQID->qual_end(); J != E; ++J) {
6353          ObjCProtocolDecl *rhsProto = *J;
6354          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6355              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6356            match = true;
6357            break;
6358          }
6359        }
6360        if (!match)
6361          return false;
6362      }
6363    }
6364    return true;
6365  }
6366  return false;
6367}
6368
6369/// canAssignObjCInterfaces - Return true if the two interface types are
6370/// compatible for assignment from RHS to LHS.  This handles validation of any
6371/// protocol qualifiers on the LHS or RHS.
6372///
6373bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6374                                         const ObjCObjectPointerType *RHSOPT) {
6375  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6376  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6377
6378  // If either type represents the built-in 'id' or 'Class' types, return true.
6379  if (LHS->isObjCUnqualifiedIdOrClass() ||
6380      RHS->isObjCUnqualifiedIdOrClass())
6381    return true;
6382
6383  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6384    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6385                                             QualType(RHSOPT,0),
6386                                             false);
6387
6388  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6389    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6390                                                QualType(RHSOPT,0));
6391
6392  // If we have 2 user-defined types, fall into that path.
6393  if (LHS->getInterface() && RHS->getInterface())
6394    return canAssignObjCInterfaces(LHS, RHS);
6395
6396  return false;
6397}
6398
6399/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6400/// for providing type-safety for objective-c pointers used to pass/return
6401/// arguments in block literals. When passed as arguments, passing 'A*' where
6402/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6403/// not OK. For the return type, the opposite is not OK.
6404bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6405                                         const ObjCObjectPointerType *LHSOPT,
6406                                         const ObjCObjectPointerType *RHSOPT,
6407                                         bool BlockReturnType) {
6408  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6409    return true;
6410
6411  if (LHSOPT->isObjCBuiltinType()) {
6412    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6413  }
6414
6415  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6416    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6417                                             QualType(RHSOPT,0),
6418                                             false);
6419
6420  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6421  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6422  if (LHS && RHS)  { // We have 2 user-defined types.
6423    if (LHS != RHS) {
6424      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6425        return BlockReturnType;
6426      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6427        return !BlockReturnType;
6428    }
6429    else
6430      return true;
6431  }
6432  return false;
6433}
6434
6435/// getIntersectionOfProtocols - This routine finds the intersection of set
6436/// of protocols inherited from two distinct objective-c pointer objects.
6437/// It is used to build composite qualifier list of the composite type of
6438/// the conditional expression involving two objective-c pointer objects.
6439static
6440void getIntersectionOfProtocols(ASTContext &Context,
6441                                const ObjCObjectPointerType *LHSOPT,
6442                                const ObjCObjectPointerType *RHSOPT,
6443      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6444
6445  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6446  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6447  assert(LHS->getInterface() && "LHS must have an interface base");
6448  assert(RHS->getInterface() && "RHS must have an interface base");
6449
6450  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6451  unsigned LHSNumProtocols = LHS->getNumProtocols();
6452  if (LHSNumProtocols > 0)
6453    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6454  else {
6455    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6456    Context.CollectInheritedProtocols(LHS->getInterface(),
6457                                      LHSInheritedProtocols);
6458    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6459                                LHSInheritedProtocols.end());
6460  }
6461
6462  unsigned RHSNumProtocols = RHS->getNumProtocols();
6463  if (RHSNumProtocols > 0) {
6464    ObjCProtocolDecl **RHSProtocols =
6465      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6466    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6467      if (InheritedProtocolSet.count(RHSProtocols[i]))
6468        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6469  } else {
6470    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6471    Context.CollectInheritedProtocols(RHS->getInterface(),
6472                                      RHSInheritedProtocols);
6473    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6474         RHSInheritedProtocols.begin(),
6475         E = RHSInheritedProtocols.end(); I != E; ++I)
6476      if (InheritedProtocolSet.count((*I)))
6477        IntersectionOfProtocols.push_back((*I));
6478  }
6479}
6480
6481/// areCommonBaseCompatible - Returns common base class of the two classes if
6482/// one found. Note that this is O'2 algorithm. But it will be called as the
6483/// last type comparison in a ?-exp of ObjC pointer types before a
6484/// warning is issued. So, its invokation is extremely rare.
6485QualType ASTContext::areCommonBaseCompatible(
6486                                          const ObjCObjectPointerType *Lptr,
6487                                          const ObjCObjectPointerType *Rptr) {
6488  const ObjCObjectType *LHS = Lptr->getObjectType();
6489  const ObjCObjectType *RHS = Rptr->getObjectType();
6490  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6491  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6492  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6493    return QualType();
6494
6495  do {
6496    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6497    if (canAssignObjCInterfaces(LHS, RHS)) {
6498      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6499      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6500
6501      QualType Result = QualType(LHS, 0);
6502      if (!Protocols.empty())
6503        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6504      Result = getObjCObjectPointerType(Result);
6505      return Result;
6506    }
6507  } while ((LDecl = LDecl->getSuperClass()));
6508
6509  return QualType();
6510}
6511
6512bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6513                                         const ObjCObjectType *RHS) {
6514  assert(LHS->getInterface() && "LHS is not an interface type");
6515  assert(RHS->getInterface() && "RHS is not an interface type");
6516
6517  // Verify that the base decls are compatible: the RHS must be a subclass of
6518  // the LHS.
6519  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6520    return false;
6521
6522  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6523  // protocol qualified at all, then we are good.
6524  if (LHS->getNumProtocols() == 0)
6525    return true;
6526
6527  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6528  // more detailed analysis is required.
6529  if (RHS->getNumProtocols() == 0) {
6530    // OK, if LHS is a superclass of RHS *and*
6531    // this superclass is assignment compatible with LHS.
6532    // false otherwise.
6533    bool IsSuperClass =
6534      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6535    if (IsSuperClass) {
6536      // OK if conversion of LHS to SuperClass results in narrowing of types
6537      // ; i.e., SuperClass may implement at least one of the protocols
6538      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6539      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6540      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6541      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6542      // If super class has no protocols, it is not a match.
6543      if (SuperClassInheritedProtocols.empty())
6544        return false;
6545
6546      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6547           LHSPE = LHS->qual_end();
6548           LHSPI != LHSPE; LHSPI++) {
6549        bool SuperImplementsProtocol = false;
6550        ObjCProtocolDecl *LHSProto = (*LHSPI);
6551
6552        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6553             SuperClassInheritedProtocols.begin(),
6554             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6555          ObjCProtocolDecl *SuperClassProto = (*I);
6556          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6557            SuperImplementsProtocol = true;
6558            break;
6559          }
6560        }
6561        if (!SuperImplementsProtocol)
6562          return false;
6563      }
6564      return true;
6565    }
6566    return false;
6567  }
6568
6569  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6570                                     LHSPE = LHS->qual_end();
6571       LHSPI != LHSPE; LHSPI++) {
6572    bool RHSImplementsProtocol = false;
6573
6574    // If the RHS doesn't implement the protocol on the left, the types
6575    // are incompatible.
6576    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6577                                       RHSPE = RHS->qual_end();
6578         RHSPI != RHSPE; RHSPI++) {
6579      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6580        RHSImplementsProtocol = true;
6581        break;
6582      }
6583    }
6584    // FIXME: For better diagnostics, consider passing back the protocol name.
6585    if (!RHSImplementsProtocol)
6586      return false;
6587  }
6588  // The RHS implements all protocols listed on the LHS.
6589  return true;
6590}
6591
6592bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6593  // get the "pointed to" types
6594  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6595  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6596
6597  if (!LHSOPT || !RHSOPT)
6598    return false;
6599
6600  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6601         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6602}
6603
6604bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6605  return canAssignObjCInterfaces(
6606                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6607                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6608}
6609
6610/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6611/// both shall have the identically qualified version of a compatible type.
6612/// C99 6.2.7p1: Two types have compatible types if their types are the
6613/// same. See 6.7.[2,3,5] for additional rules.
6614bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6615                                    bool CompareUnqualified) {
6616  if (getLangOpts().CPlusPlus)
6617    return hasSameType(LHS, RHS);
6618
6619  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6620}
6621
6622bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6623  return typesAreCompatible(LHS, RHS);
6624}
6625
6626bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6627  return !mergeTypes(LHS, RHS, true).isNull();
6628}
6629
6630/// mergeTransparentUnionType - if T is a transparent union type and a member
6631/// of T is compatible with SubType, return the merged type, else return
6632/// QualType()
6633QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6634                                               bool OfBlockPointer,
6635                                               bool Unqualified) {
6636  if (const RecordType *UT = T->getAsUnionType()) {
6637    RecordDecl *UD = UT->getDecl();
6638    if (UD->hasAttr<TransparentUnionAttr>()) {
6639      for (RecordDecl::field_iterator it = UD->field_begin(),
6640           itend = UD->field_end(); it != itend; ++it) {
6641        QualType ET = it->getType().getUnqualifiedType();
6642        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6643        if (!MT.isNull())
6644          return MT;
6645      }
6646    }
6647  }
6648
6649  return QualType();
6650}
6651
6652/// mergeFunctionArgumentTypes - merge two types which appear as function
6653/// argument types
6654QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6655                                                bool OfBlockPointer,
6656                                                bool Unqualified) {
6657  // GNU extension: two types are compatible if they appear as a function
6658  // argument, one of the types is a transparent union type and the other
6659  // type is compatible with a union member
6660  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6661                                              Unqualified);
6662  if (!lmerge.isNull())
6663    return lmerge;
6664
6665  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6666                                              Unqualified);
6667  if (!rmerge.isNull())
6668    return rmerge;
6669
6670  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6671}
6672
6673QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6674                                        bool OfBlockPointer,
6675                                        bool Unqualified) {
6676  const FunctionType *lbase = lhs->getAs<FunctionType>();
6677  const FunctionType *rbase = rhs->getAs<FunctionType>();
6678  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6679  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6680  bool allLTypes = true;
6681  bool allRTypes = true;
6682
6683  // Check return type
6684  QualType retType;
6685  if (OfBlockPointer) {
6686    QualType RHS = rbase->getResultType();
6687    QualType LHS = lbase->getResultType();
6688    bool UnqualifiedResult = Unqualified;
6689    if (!UnqualifiedResult)
6690      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6691    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6692  }
6693  else
6694    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6695                         Unqualified);
6696  if (retType.isNull()) return QualType();
6697
6698  if (Unqualified)
6699    retType = retType.getUnqualifiedType();
6700
6701  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6702  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6703  if (Unqualified) {
6704    LRetType = LRetType.getUnqualifiedType();
6705    RRetType = RRetType.getUnqualifiedType();
6706  }
6707
6708  if (getCanonicalType(retType) != LRetType)
6709    allLTypes = false;
6710  if (getCanonicalType(retType) != RRetType)
6711    allRTypes = false;
6712
6713  // FIXME: double check this
6714  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6715  //                           rbase->getRegParmAttr() != 0 &&
6716  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6717  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6718  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6719
6720  // Compatible functions must have compatible calling conventions
6721  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6722    return QualType();
6723
6724  // Regparm is part of the calling convention.
6725  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6726    return QualType();
6727  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6728    return QualType();
6729
6730  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6731    return QualType();
6732
6733  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6734  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6735
6736  if (lbaseInfo.getNoReturn() != NoReturn)
6737    allLTypes = false;
6738  if (rbaseInfo.getNoReturn() != NoReturn)
6739    allRTypes = false;
6740
6741  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6742
6743  if (lproto && rproto) { // two C99 style function prototypes
6744    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6745           "C++ shouldn't be here");
6746    unsigned lproto_nargs = lproto->getNumArgs();
6747    unsigned rproto_nargs = rproto->getNumArgs();
6748
6749    // Compatible functions must have the same number of arguments
6750    if (lproto_nargs != rproto_nargs)
6751      return QualType();
6752
6753    // Variadic and non-variadic functions aren't compatible
6754    if (lproto->isVariadic() != rproto->isVariadic())
6755      return QualType();
6756
6757    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6758      return QualType();
6759
6760    if (LangOpts.ObjCAutoRefCount &&
6761        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6762      return QualType();
6763
6764    // Check argument compatibility
6765    SmallVector<QualType, 10> types;
6766    for (unsigned i = 0; i < lproto_nargs; i++) {
6767      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6768      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6769      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6770                                                    OfBlockPointer,
6771                                                    Unqualified);
6772      if (argtype.isNull()) return QualType();
6773
6774      if (Unqualified)
6775        argtype = argtype.getUnqualifiedType();
6776
6777      types.push_back(argtype);
6778      if (Unqualified) {
6779        largtype = largtype.getUnqualifiedType();
6780        rargtype = rargtype.getUnqualifiedType();
6781      }
6782
6783      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6784        allLTypes = false;
6785      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6786        allRTypes = false;
6787    }
6788
6789    if (allLTypes) return lhs;
6790    if (allRTypes) return rhs;
6791
6792    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6793    EPI.ExtInfo = einfo;
6794    return getFunctionType(retType, types.begin(), types.size(), EPI);
6795  }
6796
6797  if (lproto) allRTypes = false;
6798  if (rproto) allLTypes = false;
6799
6800  const FunctionProtoType *proto = lproto ? lproto : rproto;
6801  if (proto) {
6802    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6803    if (proto->isVariadic()) return QualType();
6804    // Check that the types are compatible with the types that
6805    // would result from default argument promotions (C99 6.7.5.3p15).
6806    // The only types actually affected are promotable integer
6807    // types and floats, which would be passed as a different
6808    // type depending on whether the prototype is visible.
6809    unsigned proto_nargs = proto->getNumArgs();
6810    for (unsigned i = 0; i < proto_nargs; ++i) {
6811      QualType argTy = proto->getArgType(i);
6812
6813      // Look at the converted type of enum types, since that is the type used
6814      // to pass enum values.
6815      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6816        argTy = Enum->getDecl()->getIntegerType();
6817        if (argTy.isNull())
6818          return QualType();
6819      }
6820
6821      if (argTy->isPromotableIntegerType() ||
6822          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6823        return QualType();
6824    }
6825
6826    if (allLTypes) return lhs;
6827    if (allRTypes) return rhs;
6828
6829    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6830    EPI.ExtInfo = einfo;
6831    return getFunctionType(retType, proto->arg_type_begin(),
6832                           proto->getNumArgs(), EPI);
6833  }
6834
6835  if (allLTypes) return lhs;
6836  if (allRTypes) return rhs;
6837  return getFunctionNoProtoType(retType, einfo);
6838}
6839
6840QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6841                                bool OfBlockPointer,
6842                                bool Unqualified, bool BlockReturnType) {
6843  // C++ [expr]: If an expression initially has the type "reference to T", the
6844  // type is adjusted to "T" prior to any further analysis, the expression
6845  // designates the object or function denoted by the reference, and the
6846  // expression is an lvalue unless the reference is an rvalue reference and
6847  // the expression is a function call (possibly inside parentheses).
6848  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6849  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6850
6851  if (Unqualified) {
6852    LHS = LHS.getUnqualifiedType();
6853    RHS = RHS.getUnqualifiedType();
6854  }
6855
6856  QualType LHSCan = getCanonicalType(LHS),
6857           RHSCan = getCanonicalType(RHS);
6858
6859  // If two types are identical, they are compatible.
6860  if (LHSCan == RHSCan)
6861    return LHS;
6862
6863  // If the qualifiers are different, the types aren't compatible... mostly.
6864  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6865  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6866  if (LQuals != RQuals) {
6867    // If any of these qualifiers are different, we have a type
6868    // mismatch.
6869    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6870        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6871        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6872      return QualType();
6873
6874    // Exactly one GC qualifier difference is allowed: __strong is
6875    // okay if the other type has no GC qualifier but is an Objective
6876    // C object pointer (i.e. implicitly strong by default).  We fix
6877    // this by pretending that the unqualified type was actually
6878    // qualified __strong.
6879    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6880    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6881    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6882
6883    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6884      return QualType();
6885
6886    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6887      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6888    }
6889    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6890      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6891    }
6892    return QualType();
6893  }
6894
6895  // Okay, qualifiers are equal.
6896
6897  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6898  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6899
6900  // We want to consider the two function types to be the same for these
6901  // comparisons, just force one to the other.
6902  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6903  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6904
6905  // Same as above for arrays
6906  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6907    LHSClass = Type::ConstantArray;
6908  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6909    RHSClass = Type::ConstantArray;
6910
6911  // ObjCInterfaces are just specialized ObjCObjects.
6912  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6913  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6914
6915  // Canonicalize ExtVector -> Vector.
6916  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6917  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6918
6919  // If the canonical type classes don't match.
6920  if (LHSClass != RHSClass) {
6921    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6922    // a signed integer type, or an unsigned integer type.
6923    // Compatibility is based on the underlying type, not the promotion
6924    // type.
6925    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6926      QualType TINT = ETy->getDecl()->getIntegerType();
6927      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6928        return RHS;
6929    }
6930    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6931      QualType TINT = ETy->getDecl()->getIntegerType();
6932      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6933        return LHS;
6934    }
6935    // allow block pointer type to match an 'id' type.
6936    if (OfBlockPointer && !BlockReturnType) {
6937       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6938         return LHS;
6939      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6940        return RHS;
6941    }
6942
6943    return QualType();
6944  }
6945
6946  // The canonical type classes match.
6947  switch (LHSClass) {
6948#define TYPE(Class, Base)
6949#define ABSTRACT_TYPE(Class, Base)
6950#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6951#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6952#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6953#include "clang/AST/TypeNodes.def"
6954    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6955
6956  case Type::LValueReference:
6957  case Type::RValueReference:
6958  case Type::MemberPointer:
6959    llvm_unreachable("C++ should never be in mergeTypes");
6960
6961  case Type::ObjCInterface:
6962  case Type::IncompleteArray:
6963  case Type::VariableArray:
6964  case Type::FunctionProto:
6965  case Type::ExtVector:
6966    llvm_unreachable("Types are eliminated above");
6967
6968  case Type::Pointer:
6969  {
6970    // Merge two pointer types, while trying to preserve typedef info
6971    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6972    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6973    if (Unqualified) {
6974      LHSPointee = LHSPointee.getUnqualifiedType();
6975      RHSPointee = RHSPointee.getUnqualifiedType();
6976    }
6977    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6978                                     Unqualified);
6979    if (ResultType.isNull()) return QualType();
6980    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6981      return LHS;
6982    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6983      return RHS;
6984    return getPointerType(ResultType);
6985  }
6986  case Type::BlockPointer:
6987  {
6988    // Merge two block pointer types, while trying to preserve typedef info
6989    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6990    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6991    if (Unqualified) {
6992      LHSPointee = LHSPointee.getUnqualifiedType();
6993      RHSPointee = RHSPointee.getUnqualifiedType();
6994    }
6995    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6996                                     Unqualified);
6997    if (ResultType.isNull()) return QualType();
6998    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6999      return LHS;
7000    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7001      return RHS;
7002    return getBlockPointerType(ResultType);
7003  }
7004  case Type::Atomic:
7005  {
7006    // Merge two pointer types, while trying to preserve typedef info
7007    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7008    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7009    if (Unqualified) {
7010      LHSValue = LHSValue.getUnqualifiedType();
7011      RHSValue = RHSValue.getUnqualifiedType();
7012    }
7013    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7014                                     Unqualified);
7015    if (ResultType.isNull()) return QualType();
7016    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7017      return LHS;
7018    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7019      return RHS;
7020    return getAtomicType(ResultType);
7021  }
7022  case Type::ConstantArray:
7023  {
7024    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7025    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7026    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7027      return QualType();
7028
7029    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7030    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7031    if (Unqualified) {
7032      LHSElem = LHSElem.getUnqualifiedType();
7033      RHSElem = RHSElem.getUnqualifiedType();
7034    }
7035
7036    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7037    if (ResultType.isNull()) return QualType();
7038    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7039      return LHS;
7040    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7041      return RHS;
7042    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7043                                          ArrayType::ArraySizeModifier(), 0);
7044    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7045                                          ArrayType::ArraySizeModifier(), 0);
7046    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7047    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7048    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7049      return LHS;
7050    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7051      return RHS;
7052    if (LVAT) {
7053      // FIXME: This isn't correct! But tricky to implement because
7054      // the array's size has to be the size of LHS, but the type
7055      // has to be different.
7056      return LHS;
7057    }
7058    if (RVAT) {
7059      // FIXME: This isn't correct! But tricky to implement because
7060      // the array's size has to be the size of RHS, but the type
7061      // has to be different.
7062      return RHS;
7063    }
7064    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7065    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7066    return getIncompleteArrayType(ResultType,
7067                                  ArrayType::ArraySizeModifier(), 0);
7068  }
7069  case Type::FunctionNoProto:
7070    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7071  case Type::Record:
7072  case Type::Enum:
7073    return QualType();
7074  case Type::Builtin:
7075    // Only exactly equal builtin types are compatible, which is tested above.
7076    return QualType();
7077  case Type::Complex:
7078    // Distinct complex types are incompatible.
7079    return QualType();
7080  case Type::Vector:
7081    // FIXME: The merged type should be an ExtVector!
7082    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7083                             RHSCan->getAs<VectorType>()))
7084      return LHS;
7085    return QualType();
7086  case Type::ObjCObject: {
7087    // Check if the types are assignment compatible.
7088    // FIXME: This should be type compatibility, e.g. whether
7089    // "LHS x; RHS x;" at global scope is legal.
7090    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7091    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7092    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7093      return LHS;
7094
7095    return QualType();
7096  }
7097  case Type::ObjCObjectPointer: {
7098    if (OfBlockPointer) {
7099      if (canAssignObjCInterfacesInBlockPointer(
7100                                          LHS->getAs<ObjCObjectPointerType>(),
7101                                          RHS->getAs<ObjCObjectPointerType>(),
7102                                          BlockReturnType))
7103        return LHS;
7104      return QualType();
7105    }
7106    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7107                                RHS->getAs<ObjCObjectPointerType>()))
7108      return LHS;
7109
7110    return QualType();
7111  }
7112  }
7113
7114  llvm_unreachable("Invalid Type::Class!");
7115}
7116
7117bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7118                   const FunctionProtoType *FromFunctionType,
7119                   const FunctionProtoType *ToFunctionType) {
7120  if (FromFunctionType->hasAnyConsumedArgs() !=
7121      ToFunctionType->hasAnyConsumedArgs())
7122    return false;
7123  FunctionProtoType::ExtProtoInfo FromEPI =
7124    FromFunctionType->getExtProtoInfo();
7125  FunctionProtoType::ExtProtoInfo ToEPI =
7126    ToFunctionType->getExtProtoInfo();
7127  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7128    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7129         ArgIdx != NumArgs; ++ArgIdx)  {
7130      if (FromEPI.ConsumedArguments[ArgIdx] !=
7131          ToEPI.ConsumedArguments[ArgIdx])
7132        return false;
7133    }
7134  return true;
7135}
7136
7137/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7138/// 'RHS' attributes and returns the merged version; including for function
7139/// return types.
7140QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7141  QualType LHSCan = getCanonicalType(LHS),
7142  RHSCan = getCanonicalType(RHS);
7143  // If two types are identical, they are compatible.
7144  if (LHSCan == RHSCan)
7145    return LHS;
7146  if (RHSCan->isFunctionType()) {
7147    if (!LHSCan->isFunctionType())
7148      return QualType();
7149    QualType OldReturnType =
7150      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7151    QualType NewReturnType =
7152      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7153    QualType ResReturnType =
7154      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7155    if (ResReturnType.isNull())
7156      return QualType();
7157    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7158      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7159      // In either case, use OldReturnType to build the new function type.
7160      const FunctionType *F = LHS->getAs<FunctionType>();
7161      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7162        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7163        EPI.ExtInfo = getFunctionExtInfo(LHS);
7164        QualType ResultType
7165          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
7166                            FPT->getNumArgs(), EPI);
7167        return ResultType;
7168      }
7169    }
7170    return QualType();
7171  }
7172
7173  // If the qualifiers are different, the types can still be merged.
7174  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7175  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7176  if (LQuals != RQuals) {
7177    // If any of these qualifiers are different, we have a type mismatch.
7178    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7179        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7180      return QualType();
7181
7182    // Exactly one GC qualifier difference is allowed: __strong is
7183    // okay if the other type has no GC qualifier but is an Objective
7184    // C object pointer (i.e. implicitly strong by default).  We fix
7185    // this by pretending that the unqualified type was actually
7186    // qualified __strong.
7187    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7188    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7189    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7190
7191    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7192      return QualType();
7193
7194    if (GC_L == Qualifiers::Strong)
7195      return LHS;
7196    if (GC_R == Qualifiers::Strong)
7197      return RHS;
7198    return QualType();
7199  }
7200
7201  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7202    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7203    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7204    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7205    if (ResQT == LHSBaseQT)
7206      return LHS;
7207    if (ResQT == RHSBaseQT)
7208      return RHS;
7209  }
7210  return QualType();
7211}
7212
7213//===----------------------------------------------------------------------===//
7214//                         Integer Predicates
7215//===----------------------------------------------------------------------===//
7216
7217unsigned ASTContext::getIntWidth(QualType T) const {
7218  if (const EnumType *ET = dyn_cast<EnumType>(T))
7219    T = ET->getDecl()->getIntegerType();
7220  if (T->isBooleanType())
7221    return 1;
7222  // For builtin types, just use the standard type sizing method
7223  return (unsigned)getTypeSize(T);
7224}
7225
7226QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7227  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7228
7229  // Turn <4 x signed int> -> <4 x unsigned int>
7230  if (const VectorType *VTy = T->getAs<VectorType>())
7231    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7232                         VTy->getNumElements(), VTy->getVectorKind());
7233
7234  // For enums, we return the unsigned version of the base type.
7235  if (const EnumType *ETy = T->getAs<EnumType>())
7236    T = ETy->getDecl()->getIntegerType();
7237
7238  const BuiltinType *BTy = T->getAs<BuiltinType>();
7239  assert(BTy && "Unexpected signed integer type");
7240  switch (BTy->getKind()) {
7241  case BuiltinType::Char_S:
7242  case BuiltinType::SChar:
7243    return UnsignedCharTy;
7244  case BuiltinType::Short:
7245    return UnsignedShortTy;
7246  case BuiltinType::Int:
7247    return UnsignedIntTy;
7248  case BuiltinType::Long:
7249    return UnsignedLongTy;
7250  case BuiltinType::LongLong:
7251    return UnsignedLongLongTy;
7252  case BuiltinType::Int128:
7253    return UnsignedInt128Ty;
7254  default:
7255    llvm_unreachable("Unexpected signed integer type");
7256  }
7257}
7258
7259ASTMutationListener::~ASTMutationListener() { }
7260
7261
7262//===----------------------------------------------------------------------===//
7263//                          Builtin Type Computation
7264//===----------------------------------------------------------------------===//
7265
7266/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7267/// pointer over the consumed characters.  This returns the resultant type.  If
7268/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7269/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7270/// a vector of "i*".
7271///
7272/// RequiresICE is filled in on return to indicate whether the value is required
7273/// to be an Integer Constant Expression.
7274static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7275                                  ASTContext::GetBuiltinTypeError &Error,
7276                                  bool &RequiresICE,
7277                                  bool AllowTypeModifiers) {
7278  // Modifiers.
7279  int HowLong = 0;
7280  bool Signed = false, Unsigned = false;
7281  RequiresICE = false;
7282
7283  // Read the prefixed modifiers first.
7284  bool Done = false;
7285  while (!Done) {
7286    switch (*Str++) {
7287    default: Done = true; --Str; break;
7288    case 'I':
7289      RequiresICE = true;
7290      break;
7291    case 'S':
7292      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7293      assert(!Signed && "Can't use 'S' modifier multiple times!");
7294      Signed = true;
7295      break;
7296    case 'U':
7297      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7298      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7299      Unsigned = true;
7300      break;
7301    case 'L':
7302      assert(HowLong <= 2 && "Can't have LLLL modifier");
7303      ++HowLong;
7304      break;
7305    }
7306  }
7307
7308  QualType Type;
7309
7310  // Read the base type.
7311  switch (*Str++) {
7312  default: llvm_unreachable("Unknown builtin type letter!");
7313  case 'v':
7314    assert(HowLong == 0 && !Signed && !Unsigned &&
7315           "Bad modifiers used with 'v'!");
7316    Type = Context.VoidTy;
7317    break;
7318  case 'f':
7319    assert(HowLong == 0 && !Signed && !Unsigned &&
7320           "Bad modifiers used with 'f'!");
7321    Type = Context.FloatTy;
7322    break;
7323  case 'd':
7324    assert(HowLong < 2 && !Signed && !Unsigned &&
7325           "Bad modifiers used with 'd'!");
7326    if (HowLong)
7327      Type = Context.LongDoubleTy;
7328    else
7329      Type = Context.DoubleTy;
7330    break;
7331  case 's':
7332    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7333    if (Unsigned)
7334      Type = Context.UnsignedShortTy;
7335    else
7336      Type = Context.ShortTy;
7337    break;
7338  case 'i':
7339    if (HowLong == 3)
7340      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7341    else if (HowLong == 2)
7342      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7343    else if (HowLong == 1)
7344      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7345    else
7346      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7347    break;
7348  case 'c':
7349    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7350    if (Signed)
7351      Type = Context.SignedCharTy;
7352    else if (Unsigned)
7353      Type = Context.UnsignedCharTy;
7354    else
7355      Type = Context.CharTy;
7356    break;
7357  case 'b': // boolean
7358    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7359    Type = Context.BoolTy;
7360    break;
7361  case 'z':  // size_t.
7362    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7363    Type = Context.getSizeType();
7364    break;
7365  case 'F':
7366    Type = Context.getCFConstantStringType();
7367    break;
7368  case 'G':
7369    Type = Context.getObjCIdType();
7370    break;
7371  case 'H':
7372    Type = Context.getObjCSelType();
7373    break;
7374  case 'M':
7375    Type = Context.getObjCSuperType();
7376    break;
7377  case 'a':
7378    Type = Context.getBuiltinVaListType();
7379    assert(!Type.isNull() && "builtin va list type not initialized!");
7380    break;
7381  case 'A':
7382    // This is a "reference" to a va_list; however, what exactly
7383    // this means depends on how va_list is defined. There are two
7384    // different kinds of va_list: ones passed by value, and ones
7385    // passed by reference.  An example of a by-value va_list is
7386    // x86, where va_list is a char*. An example of by-ref va_list
7387    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7388    // we want this argument to be a char*&; for x86-64, we want
7389    // it to be a __va_list_tag*.
7390    Type = Context.getBuiltinVaListType();
7391    assert(!Type.isNull() && "builtin va list type not initialized!");
7392    if (Type->isArrayType())
7393      Type = Context.getArrayDecayedType(Type);
7394    else
7395      Type = Context.getLValueReferenceType(Type);
7396    break;
7397  case 'V': {
7398    char *End;
7399    unsigned NumElements = strtoul(Str, &End, 10);
7400    assert(End != Str && "Missing vector size");
7401    Str = End;
7402
7403    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7404                                             RequiresICE, false);
7405    assert(!RequiresICE && "Can't require vector ICE");
7406
7407    // TODO: No way to make AltiVec vectors in builtins yet.
7408    Type = Context.getVectorType(ElementType, NumElements,
7409                                 VectorType::GenericVector);
7410    break;
7411  }
7412  case 'E': {
7413    char *End;
7414
7415    unsigned NumElements = strtoul(Str, &End, 10);
7416    assert(End != Str && "Missing vector size");
7417
7418    Str = End;
7419
7420    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7421                                             false);
7422    Type = Context.getExtVectorType(ElementType, NumElements);
7423    break;
7424  }
7425  case 'X': {
7426    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7427                                             false);
7428    assert(!RequiresICE && "Can't require complex ICE");
7429    Type = Context.getComplexType(ElementType);
7430    break;
7431  }
7432  case 'Y' : {
7433    Type = Context.getPointerDiffType();
7434    break;
7435  }
7436  case 'P':
7437    Type = Context.getFILEType();
7438    if (Type.isNull()) {
7439      Error = ASTContext::GE_Missing_stdio;
7440      return QualType();
7441    }
7442    break;
7443  case 'J':
7444    if (Signed)
7445      Type = Context.getsigjmp_bufType();
7446    else
7447      Type = Context.getjmp_bufType();
7448
7449    if (Type.isNull()) {
7450      Error = ASTContext::GE_Missing_setjmp;
7451      return QualType();
7452    }
7453    break;
7454  case 'K':
7455    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7456    Type = Context.getucontext_tType();
7457
7458    if (Type.isNull()) {
7459      Error = ASTContext::GE_Missing_ucontext;
7460      return QualType();
7461    }
7462    break;
7463  case 'p':
7464    Type = Context.getProcessIDType();
7465    break;
7466  }
7467
7468  // If there are modifiers and if we're allowed to parse them, go for it.
7469  Done = !AllowTypeModifiers;
7470  while (!Done) {
7471    switch (char c = *Str++) {
7472    default: Done = true; --Str; break;
7473    case '*':
7474    case '&': {
7475      // Both pointers and references can have their pointee types
7476      // qualified with an address space.
7477      char *End;
7478      unsigned AddrSpace = strtoul(Str, &End, 10);
7479      if (End != Str && AddrSpace != 0) {
7480        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7481        Str = End;
7482      }
7483      if (c == '*')
7484        Type = Context.getPointerType(Type);
7485      else
7486        Type = Context.getLValueReferenceType(Type);
7487      break;
7488    }
7489    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7490    case 'C':
7491      Type = Type.withConst();
7492      break;
7493    case 'D':
7494      Type = Context.getVolatileType(Type);
7495      break;
7496    case 'R':
7497      Type = Type.withRestrict();
7498      break;
7499    }
7500  }
7501
7502  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7503         "Integer constant 'I' type must be an integer");
7504
7505  return Type;
7506}
7507
7508/// GetBuiltinType - Return the type for the specified builtin.
7509QualType ASTContext::GetBuiltinType(unsigned Id,
7510                                    GetBuiltinTypeError &Error,
7511                                    unsigned *IntegerConstantArgs) const {
7512  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7513
7514  SmallVector<QualType, 8> ArgTypes;
7515
7516  bool RequiresICE = false;
7517  Error = GE_None;
7518  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7519                                       RequiresICE, true);
7520  if (Error != GE_None)
7521    return QualType();
7522
7523  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7524
7525  while (TypeStr[0] && TypeStr[0] != '.') {
7526    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7527    if (Error != GE_None)
7528      return QualType();
7529
7530    // If this argument is required to be an IntegerConstantExpression and the
7531    // caller cares, fill in the bitmask we return.
7532    if (RequiresICE && IntegerConstantArgs)
7533      *IntegerConstantArgs |= 1 << ArgTypes.size();
7534
7535    // Do array -> pointer decay.  The builtin should use the decayed type.
7536    if (Ty->isArrayType())
7537      Ty = getArrayDecayedType(Ty);
7538
7539    ArgTypes.push_back(Ty);
7540  }
7541
7542  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7543         "'.' should only occur at end of builtin type list!");
7544
7545  FunctionType::ExtInfo EI;
7546  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7547
7548  bool Variadic = (TypeStr[0] == '.');
7549
7550  // We really shouldn't be making a no-proto type here, especially in C++.
7551  if (ArgTypes.empty() && Variadic)
7552    return getFunctionNoProtoType(ResType, EI);
7553
7554  FunctionProtoType::ExtProtoInfo EPI;
7555  EPI.ExtInfo = EI;
7556  EPI.Variadic = Variadic;
7557
7558  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
7559}
7560
7561GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7562  GVALinkage External = GVA_StrongExternal;
7563
7564  Linkage L = FD->getLinkage();
7565  switch (L) {
7566  case NoLinkage:
7567  case InternalLinkage:
7568  case UniqueExternalLinkage:
7569    return GVA_Internal;
7570
7571  case ExternalLinkage:
7572    switch (FD->getTemplateSpecializationKind()) {
7573    case TSK_Undeclared:
7574    case TSK_ExplicitSpecialization:
7575      External = GVA_StrongExternal;
7576      break;
7577
7578    case TSK_ExplicitInstantiationDefinition:
7579      return GVA_ExplicitTemplateInstantiation;
7580
7581    case TSK_ExplicitInstantiationDeclaration:
7582    case TSK_ImplicitInstantiation:
7583      External = GVA_TemplateInstantiation;
7584      break;
7585    }
7586  }
7587
7588  if (!FD->isInlined())
7589    return External;
7590
7591  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7592    // GNU or C99 inline semantics. Determine whether this symbol should be
7593    // externally visible.
7594    if (FD->isInlineDefinitionExternallyVisible())
7595      return External;
7596
7597    // C99 inline semantics, where the symbol is not externally visible.
7598    return GVA_C99Inline;
7599  }
7600
7601  // C++0x [temp.explicit]p9:
7602  //   [ Note: The intent is that an inline function that is the subject of
7603  //   an explicit instantiation declaration will still be implicitly
7604  //   instantiated when used so that the body can be considered for
7605  //   inlining, but that no out-of-line copy of the inline function would be
7606  //   generated in the translation unit. -- end note ]
7607  if (FD->getTemplateSpecializationKind()
7608                                       == TSK_ExplicitInstantiationDeclaration)
7609    return GVA_C99Inline;
7610
7611  return GVA_CXXInline;
7612}
7613
7614GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7615  // If this is a static data member, compute the kind of template
7616  // specialization. Otherwise, this variable is not part of a
7617  // template.
7618  TemplateSpecializationKind TSK = TSK_Undeclared;
7619  if (VD->isStaticDataMember())
7620    TSK = VD->getTemplateSpecializationKind();
7621
7622  Linkage L = VD->getLinkage();
7623  assert (!(L == ExternalLinkage && getLangOpts().CPlusPlus &&
7624            VD->getType()->getLinkage() == UniqueExternalLinkage));
7625
7626  switch (L) {
7627  case NoLinkage:
7628  case InternalLinkage:
7629  case UniqueExternalLinkage:
7630    return GVA_Internal;
7631
7632  case ExternalLinkage:
7633    switch (TSK) {
7634    case TSK_Undeclared:
7635    case TSK_ExplicitSpecialization:
7636      return GVA_StrongExternal;
7637
7638    case TSK_ExplicitInstantiationDeclaration:
7639      llvm_unreachable("Variable should not be instantiated");
7640      // Fall through to treat this like any other instantiation.
7641
7642    case TSK_ExplicitInstantiationDefinition:
7643      return GVA_ExplicitTemplateInstantiation;
7644
7645    case TSK_ImplicitInstantiation:
7646      return GVA_TemplateInstantiation;
7647    }
7648  }
7649
7650  llvm_unreachable("Invalid Linkage!");
7651}
7652
7653bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7654  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7655    if (!VD->isFileVarDecl())
7656      return false;
7657  } else if (!isa<FunctionDecl>(D))
7658    return false;
7659
7660  // Weak references don't produce any output by themselves.
7661  if (D->hasAttr<WeakRefAttr>())
7662    return false;
7663
7664  // Aliases and used decls are required.
7665  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7666    return true;
7667
7668  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7669    // Forward declarations aren't required.
7670    if (!FD->doesThisDeclarationHaveABody())
7671      return FD->doesDeclarationForceExternallyVisibleDefinition();
7672
7673    // Constructors and destructors are required.
7674    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7675      return true;
7676
7677    // The key function for a class is required.  This rule only comes
7678    // into play when inline functions can be key functions, though.
7679    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7680      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7681        const CXXRecordDecl *RD = MD->getParent();
7682        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7683          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7684          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7685            return true;
7686        }
7687      }
7688    }
7689
7690    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7691
7692    // static, static inline, always_inline, and extern inline functions can
7693    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7694    // Implicit template instantiations can also be deferred in C++.
7695    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7696        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7697      return false;
7698    return true;
7699  }
7700
7701  const VarDecl *VD = cast<VarDecl>(D);
7702  assert(VD->isFileVarDecl() && "Expected file scoped var");
7703
7704  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7705    return false;
7706
7707  // Variables that can be needed in other TUs are required.
7708  GVALinkage L = GetGVALinkageForVariable(VD);
7709  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7710    return true;
7711
7712  // Variables that have destruction with side-effects are required.
7713  if (VD->getType().isDestructedType())
7714    return true;
7715
7716  // Variables that have initialization with side-effects are required.
7717  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7718    return true;
7719
7720  return false;
7721}
7722
7723CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7724  // Pass through to the C++ ABI object
7725  return ABI->getDefaultMethodCallConv(isVariadic);
7726}
7727
7728CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7729  if (CC == CC_C && !LangOpts.MRTD &&
7730      getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7731    return CC_Default;
7732  return CC;
7733}
7734
7735bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7736  // Pass through to the C++ ABI object
7737  return ABI->isNearlyEmpty(RD);
7738}
7739
7740MangleContext *ASTContext::createMangleContext() {
7741  switch (Target->getCXXABI().getKind()) {
7742  case TargetCXXABI::GenericAArch64:
7743  case TargetCXXABI::GenericItanium:
7744  case TargetCXXABI::GenericARM:
7745  case TargetCXXABI::iOS:
7746    return createItaniumMangleContext(*this, getDiagnostics());
7747  case TargetCXXABI::Microsoft:
7748    return createMicrosoftMangleContext(*this, getDiagnostics());
7749  }
7750  llvm_unreachable("Unsupported ABI");
7751}
7752
7753CXXABI::~CXXABI() {}
7754
7755size_t ASTContext::getSideTableAllocatedMemory() const {
7756  return ASTRecordLayouts.getMemorySize()
7757    + llvm::capacity_in_bytes(ObjCLayouts)
7758    + llvm::capacity_in_bytes(KeyFunctions)
7759    + llvm::capacity_in_bytes(ObjCImpls)
7760    + llvm::capacity_in_bytes(BlockVarCopyInits)
7761    + llvm::capacity_in_bytes(DeclAttrs)
7762    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7763    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7764    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7765    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7766    + llvm::capacity_in_bytes(OverriddenMethods)
7767    + llvm::capacity_in_bytes(Types)
7768    + llvm::capacity_in_bytes(VariableArrayTypes)
7769    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7770}
7771
7772void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7773  // FIXME: This mangling should be applied to function local classes too
7774  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7775      !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
7776    return;
7777
7778  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7779    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7780  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7781}
7782
7783int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7784  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7785    UnnamedMangleNumbers.find(Tag);
7786  return I != UnnamedMangleNumbers.end() ? I->second : -1;
7787}
7788
7789unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7790  CXXRecordDecl *Lambda = CallOperator->getParent();
7791  return LambdaMangleContexts[Lambda->getDeclContext()]
7792           .getManglingNumber(CallOperator);
7793}
7794
7795
7796void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7797  ParamIndices[D] = index;
7798}
7799
7800unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7801  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7802  assert(I != ParamIndices.end() &&
7803         "ParmIndices lacks entry set by ParmVarDecl");
7804  return I->second;
7805}
7806