ASTContext.cpp revision 68584ed35ad819a1668e3f527ba7f5dd4ae6a333
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27using namespace clang;
28
29enum FloatingRank {
30  FloatRank, DoubleRank, LongDoubleRank
31};
32
33ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
34                       TargetInfo &t,
35                       IdentifierTable &idents, SelectorTable &sels,
36                       Builtin::Context &builtins,
37                       bool FreeMem, unsigned size_reserve) :
38  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
39  ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
40  FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels),
41  BuiltinInfo(builtins), ExternalSource(0) {
42  if (size_reserve > 0) Types.reserve(size_reserve);
43  InitBuiltinTypes();
44  TUDecl = TranslationUnitDecl::Create(*this);
45  PrintingPolicy.CPlusPlus = LangOpts.CPlusPlus;
46}
47
48ASTContext::~ASTContext() {
49  // Deallocate all the types.
50  while (!Types.empty()) {
51    Types.back()->Destroy(*this);
52    Types.pop_back();
53  }
54
55  {
56    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
57      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
58    while (I != E) {
59      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
60      delete R;
61    }
62  }
63
64  {
65    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
66      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
67    while (I != E) {
68      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
69      delete R;
70    }
71  }
72
73  // Destroy nested-name-specifiers.
74  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
75         NNS = NestedNameSpecifiers.begin(),
76         NNSEnd = NestedNameSpecifiers.end();
77       NNS != NNSEnd;
78       /* Increment in loop */)
79    (*NNS++).Destroy(*this);
80
81  if (GlobalNestedNameSpecifier)
82    GlobalNestedNameSpecifier->Destroy(*this);
83
84  TUDecl->Destroy(*this);
85}
86
87void
88ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
89  ExternalSource.reset(Source.take());
90}
91
92void ASTContext::PrintStats() const {
93  fprintf(stderr, "*** AST Context Stats:\n");
94  fprintf(stderr, "  %d types total.\n", (int)Types.size());
95
96  unsigned counts[] = {
97#define TYPE(Name, Parent) 0,
98#define ABSTRACT_TYPE(Name, Parent)
99#include "clang/AST/TypeNodes.def"
100    0 // Extra
101  };
102
103  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
104    Type *T = Types[i];
105    counts[(unsigned)T->getTypeClass()]++;
106  }
107
108  unsigned Idx = 0;
109  unsigned TotalBytes = 0;
110#define TYPE(Name, Parent)                                              \
111  if (counts[Idx])                                                      \
112    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
113  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
114  ++Idx;
115#define ABSTRACT_TYPE(Name, Parent)
116#include "clang/AST/TypeNodes.def"
117
118  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
119
120  if (ExternalSource.get()) {
121    fprintf(stderr, "\n");
122    ExternalSource->PrintStats();
123  }
124}
125
126
127void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
128  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
129}
130
131void ASTContext::InitBuiltinTypes() {
132  assert(VoidTy.isNull() && "Context reinitialized?");
133
134  // C99 6.2.5p19.
135  InitBuiltinType(VoidTy,              BuiltinType::Void);
136
137  // C99 6.2.5p2.
138  InitBuiltinType(BoolTy,              BuiltinType::Bool);
139  // C99 6.2.5p3.
140  if (LangOpts.CharIsSigned)
141    InitBuiltinType(CharTy,            BuiltinType::Char_S);
142  else
143    InitBuiltinType(CharTy,            BuiltinType::Char_U);
144  // C99 6.2.5p4.
145  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
146  InitBuiltinType(ShortTy,             BuiltinType::Short);
147  InitBuiltinType(IntTy,               BuiltinType::Int);
148  InitBuiltinType(LongTy,              BuiltinType::Long);
149  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
150
151  // C99 6.2.5p6.
152  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
153  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
154  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
155  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
156  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
157
158  // C99 6.2.5p10.
159  InitBuiltinType(FloatTy,             BuiltinType::Float);
160  InitBuiltinType(DoubleTy,            BuiltinType::Double);
161  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
162
163  // GNU extension, 128-bit integers.
164  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
165  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
166
167  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
168    InitBuiltinType(WCharTy,           BuiltinType::WChar);
169  else // C99
170    WCharTy = getFromTargetType(Target.getWCharType());
171
172  // Placeholder type for functions.
173  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
174
175  // Placeholder type for type-dependent expressions whose type is
176  // completely unknown. No code should ever check a type against
177  // DependentTy and users should never see it; however, it is here to
178  // help diagnose failures to properly check for type-dependent
179  // expressions.
180  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
181
182  // C99 6.2.5p11.
183  FloatComplexTy      = getComplexType(FloatTy);
184  DoubleComplexTy     = getComplexType(DoubleTy);
185  LongDoubleComplexTy = getComplexType(LongDoubleTy);
186
187  BuiltinVaListType = QualType();
188  ObjCIdType = QualType();
189  IdStructType = 0;
190  ObjCClassType = QualType();
191  ClassStructType = 0;
192
193  ObjCConstantStringType = QualType();
194
195  // void * type
196  VoidPtrTy = getPointerType(VoidTy);
197
198  // nullptr type (C++0x 2.14.7)
199  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
200}
201
202//===----------------------------------------------------------------------===//
203//                         Type Sizing and Analysis
204//===----------------------------------------------------------------------===//
205
206/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
207/// scalar floating point type.
208const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
209  const BuiltinType *BT = T->getAsBuiltinType();
210  assert(BT && "Not a floating point type!");
211  switch (BT->getKind()) {
212  default: assert(0 && "Not a floating point type!");
213  case BuiltinType::Float:      return Target.getFloatFormat();
214  case BuiltinType::Double:     return Target.getDoubleFormat();
215  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
216  }
217}
218
219/// getDeclAlign - Return a conservative estimate of the alignment of the
220/// specified decl.  Note that bitfields do not have a valid alignment, so
221/// this method will assert on them.
222unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
223  unsigned Align = Target.getCharWidth();
224
225  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>(*this))
226    Align = std::max(Align, AA->getAlignment());
227
228  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
229    QualType T = VD->getType();
230    if (const ReferenceType* RT = T->getAsReferenceType()) {
231      unsigned AS = RT->getPointeeType().getAddressSpace();
232      Align = Target.getPointerAlign(AS);
233    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
234      // Incomplete or function types default to 1.
235      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
236        T = cast<ArrayType>(T)->getElementType();
237
238      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
239    }
240  }
241
242  return Align / Target.getCharWidth();
243}
244
245/// getTypeSize - Return the size of the specified type, in bits.  This method
246/// does not work on incomplete types.
247std::pair<uint64_t, unsigned>
248ASTContext::getTypeInfo(const Type *T) {
249  uint64_t Width=0;
250  unsigned Align=8;
251  switch (T->getTypeClass()) {
252#define TYPE(Class, Base)
253#define ABSTRACT_TYPE(Class, Base)
254#define NON_CANONICAL_TYPE(Class, Base)
255#define DEPENDENT_TYPE(Class, Base) case Type::Class:
256#include "clang/AST/TypeNodes.def"
257    assert(false && "Should not see dependent types");
258    break;
259
260  case Type::FunctionNoProto:
261  case Type::FunctionProto:
262    // GCC extension: alignof(function) = 32 bits
263    Width = 0;
264    Align = 32;
265    break;
266
267  case Type::IncompleteArray:
268  case Type::VariableArray:
269    Width = 0;
270    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
271    break;
272
273  case Type::ConstantArray: {
274    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
275
276    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
277    Width = EltInfo.first*CAT->getSize().getZExtValue();
278    Align = EltInfo.second;
279    break;
280  }
281  case Type::ExtVector:
282  case Type::Vector: {
283    std::pair<uint64_t, unsigned> EltInfo =
284      getTypeInfo(cast<VectorType>(T)->getElementType());
285    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
286    Align = Width;
287    // If the alignment is not a power of 2, round up to the next power of 2.
288    // This happens for non-power-of-2 length vectors.
289    // FIXME: this should probably be a target property.
290    Align = 1 << llvm::Log2_32_Ceil(Align);
291    break;
292  }
293
294  case Type::Builtin:
295    switch (cast<BuiltinType>(T)->getKind()) {
296    default: assert(0 && "Unknown builtin type!");
297    case BuiltinType::Void:
298      // GCC extension: alignof(void) = 8 bits.
299      Width = 0;
300      Align = 8;
301      break;
302
303    case BuiltinType::Bool:
304      Width = Target.getBoolWidth();
305      Align = Target.getBoolAlign();
306      break;
307    case BuiltinType::Char_S:
308    case BuiltinType::Char_U:
309    case BuiltinType::UChar:
310    case BuiltinType::SChar:
311      Width = Target.getCharWidth();
312      Align = Target.getCharAlign();
313      break;
314    case BuiltinType::WChar:
315      Width = Target.getWCharWidth();
316      Align = Target.getWCharAlign();
317      break;
318    case BuiltinType::UShort:
319    case BuiltinType::Short:
320      Width = Target.getShortWidth();
321      Align = Target.getShortAlign();
322      break;
323    case BuiltinType::UInt:
324    case BuiltinType::Int:
325      Width = Target.getIntWidth();
326      Align = Target.getIntAlign();
327      break;
328    case BuiltinType::ULong:
329    case BuiltinType::Long:
330      Width = Target.getLongWidth();
331      Align = Target.getLongAlign();
332      break;
333    case BuiltinType::ULongLong:
334    case BuiltinType::LongLong:
335      Width = Target.getLongLongWidth();
336      Align = Target.getLongLongAlign();
337      break;
338    case BuiltinType::Int128:
339    case BuiltinType::UInt128:
340      Width = 128;
341      Align = 128; // int128_t is 128-bit aligned on all targets.
342      break;
343    case BuiltinType::Float:
344      Width = Target.getFloatWidth();
345      Align = Target.getFloatAlign();
346      break;
347    case BuiltinType::Double:
348      Width = Target.getDoubleWidth();
349      Align = Target.getDoubleAlign();
350      break;
351    case BuiltinType::LongDouble:
352      Width = Target.getLongDoubleWidth();
353      Align = Target.getLongDoubleAlign();
354      break;
355    case BuiltinType::NullPtr:
356      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
357      Align = Target.getPointerAlign(0); //   == sizeof(void*)
358      break;
359    }
360    break;
361  case Type::FixedWidthInt:
362    // FIXME: This isn't precisely correct; the width/alignment should depend
363    // on the available types for the target
364    Width = cast<FixedWidthIntType>(T)->getWidth();
365    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
366    Align = Width;
367    break;
368  case Type::ExtQual:
369    // FIXME: Pointers into different addr spaces could have different sizes and
370    // alignment requirements: getPointerInfo should take an AddrSpace.
371    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
372  case Type::ObjCObjectPointer:
373  case Type::ObjCQualifiedInterface:
374    Width = Target.getPointerWidth(0);
375    Align = Target.getPointerAlign(0);
376    break;
377  case Type::BlockPointer: {
378    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
379    Width = Target.getPointerWidth(AS);
380    Align = Target.getPointerAlign(AS);
381    break;
382  }
383  case Type::Pointer: {
384    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
385    Width = Target.getPointerWidth(AS);
386    Align = Target.getPointerAlign(AS);
387    break;
388  }
389  case Type::LValueReference:
390  case Type::RValueReference:
391    // "When applied to a reference or a reference type, the result is the size
392    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
393    // FIXME: This is wrong for struct layout: a reference in a struct has
394    // pointer size.
395    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
396  case Type::MemberPointer: {
397    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
398    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
399    // If we ever want to support other ABIs this needs to be abstracted.
400
401    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
402    std::pair<uint64_t, unsigned> PtrDiffInfo =
403      getTypeInfo(getPointerDiffType());
404    Width = PtrDiffInfo.first;
405    if (Pointee->isFunctionType())
406      Width *= 2;
407    Align = PtrDiffInfo.second;
408    break;
409  }
410  case Type::Complex: {
411    // Complex types have the same alignment as their elements, but twice the
412    // size.
413    std::pair<uint64_t, unsigned> EltInfo =
414      getTypeInfo(cast<ComplexType>(T)->getElementType());
415    Width = EltInfo.first*2;
416    Align = EltInfo.second;
417    break;
418  }
419  case Type::ObjCInterface: {
420    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
421    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
422    Width = Layout.getSize();
423    Align = Layout.getAlignment();
424    break;
425  }
426  case Type::Record:
427  case Type::Enum: {
428    const TagType *TT = cast<TagType>(T);
429
430    if (TT->getDecl()->isInvalidDecl()) {
431      Width = 1;
432      Align = 1;
433      break;
434    }
435
436    if (const EnumType *ET = dyn_cast<EnumType>(TT))
437      return getTypeInfo(ET->getDecl()->getIntegerType());
438
439    const RecordType *RT = cast<RecordType>(TT);
440    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
441    Width = Layout.getSize();
442    Align = Layout.getAlignment();
443    break;
444  }
445
446  case Type::Typedef: {
447    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
448    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>(*this)) {
449      Align = Aligned->getAlignment();
450      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
451    } else
452      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
453    break;
454  }
455
456  case Type::TypeOfExpr:
457    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
458                         .getTypePtr());
459
460  case Type::TypeOf:
461    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
462
463  case Type::QualifiedName:
464    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
465
466  case Type::TemplateSpecialization:
467    assert(getCanonicalType(T) != T &&
468           "Cannot request the size of a dependent type");
469    // FIXME: this is likely to be wrong once we support template
470    // aliases, since a template alias could refer to a typedef that
471    // has an __aligned__ attribute on it.
472    return getTypeInfo(getCanonicalType(T));
473  }
474
475  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
476  return std::make_pair(Width, Align);
477}
478
479/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
480/// type for the current target in bits.  This can be different than the ABI
481/// alignment in cases where it is beneficial for performance to overalign
482/// a data type.
483unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
484  unsigned ABIAlign = getTypeAlign(T);
485
486  // Double and long long should be naturally aligned if possible.
487  if (const ComplexType* CT = T->getAsComplexType())
488    T = CT->getElementType().getTypePtr();
489  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
490      T->isSpecificBuiltinType(BuiltinType::LongLong))
491    return std::max(ABIAlign, (unsigned)getTypeSize(T));
492
493  return ABIAlign;
494}
495
496
497/// LayoutField - Field layout.
498void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
499                                  bool IsUnion, unsigned StructPacking,
500                                  ASTContext &Context) {
501  unsigned FieldPacking = StructPacking;
502  uint64_t FieldOffset = IsUnion ? 0 : Size;
503  uint64_t FieldSize;
504  unsigned FieldAlign;
505
506  // FIXME: Should this override struct packing? Probably we want to
507  // take the minimum?
508  if (const PackedAttr *PA = FD->getAttr<PackedAttr>(Context))
509    FieldPacking = PA->getAlignment();
510
511  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
512    // TODO: Need to check this algorithm on other targets!
513    //       (tested on Linux-X86)
514    FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue();
515
516    std::pair<uint64_t, unsigned> FieldInfo =
517      Context.getTypeInfo(FD->getType());
518    uint64_t TypeSize = FieldInfo.first;
519
520    // Determine the alignment of this bitfield. The packing
521    // attributes define a maximum and the alignment attribute defines
522    // a minimum.
523    // FIXME: What is the right behavior when the specified alignment
524    // is smaller than the specified packing?
525    FieldAlign = FieldInfo.second;
526    if (FieldPacking)
527      FieldAlign = std::min(FieldAlign, FieldPacking);
528    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>(Context))
529      FieldAlign = std::max(FieldAlign, AA->getAlignment());
530
531    // Check if we need to add padding to give the field the correct
532    // alignment.
533    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
534      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
535
536    // Padding members don't affect overall alignment
537    if (!FD->getIdentifier())
538      FieldAlign = 1;
539  } else {
540    if (FD->getType()->isIncompleteArrayType()) {
541      // This is a flexible array member; we can't directly
542      // query getTypeInfo about these, so we figure it out here.
543      // Flexible array members don't have any size, but they
544      // have to be aligned appropriately for their element type.
545      FieldSize = 0;
546      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
547      FieldAlign = Context.getTypeAlign(ATy->getElementType());
548    } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
549      unsigned AS = RT->getPointeeType().getAddressSpace();
550      FieldSize = Context.Target.getPointerWidth(AS);
551      FieldAlign = Context.Target.getPointerAlign(AS);
552    } else {
553      std::pair<uint64_t, unsigned> FieldInfo =
554        Context.getTypeInfo(FD->getType());
555      FieldSize = FieldInfo.first;
556      FieldAlign = FieldInfo.second;
557    }
558
559    // Determine the alignment of this bitfield. The packing
560    // attributes define a maximum and the alignment attribute defines
561    // a minimum. Additionally, the packing alignment must be at least
562    // a byte for non-bitfields.
563    //
564    // FIXME: What is the right behavior when the specified alignment
565    // is smaller than the specified packing?
566    if (FieldPacking)
567      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
568    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>(Context))
569      FieldAlign = std::max(FieldAlign, AA->getAlignment());
570
571    // Round up the current record size to the field's alignment boundary.
572    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
573  }
574
575  // Place this field at the current location.
576  FieldOffsets[FieldNo] = FieldOffset;
577
578  // Reserve space for this field.
579  if (IsUnion) {
580    Size = std::max(Size, FieldSize);
581  } else {
582    Size = FieldOffset + FieldSize;
583  }
584
585  // Remember the next available offset.
586  NextOffset = Size;
587
588  // Remember max struct/class alignment.
589  Alignment = std::max(Alignment, FieldAlign);
590}
591
592static void CollectLocalObjCIvars(ASTContext *Ctx,
593                                  const ObjCInterfaceDecl *OI,
594                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
595  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
596       E = OI->ivar_end(); I != E; ++I) {
597    ObjCIvarDecl *IVDecl = *I;
598    if (!IVDecl->isInvalidDecl())
599      Fields.push_back(cast<FieldDecl>(IVDecl));
600  }
601}
602
603void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
604                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
605  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
606    CollectObjCIvars(SuperClass, Fields);
607  CollectLocalObjCIvars(this, OI, Fields);
608}
609
610/// ShallowCollectObjCIvars -
611/// Collect all ivars, including those synthesized, in the current class.
612///
613void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
614                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
615                                 bool CollectSynthesized) {
616  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
617         E = OI->ivar_end(); I != E; ++I) {
618     Ivars.push_back(*I);
619  }
620  if (CollectSynthesized)
621    CollectSynthesizedIvars(OI, Ivars);
622}
623
624void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
625                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
626  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(*this),
627       E = PD->prop_end(*this); I != E; ++I)
628    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
629      Ivars.push_back(Ivar);
630
631  // Also look into nested protocols.
632  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
633       E = PD->protocol_end(); P != E; ++P)
634    CollectProtocolSynthesizedIvars(*P, Ivars);
635}
636
637/// CollectSynthesizedIvars -
638/// This routine collect synthesized ivars for the designated class.
639///
640void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
641                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
642  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
643       E = OI->prop_end(*this); I != E; ++I) {
644    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
645      Ivars.push_back(Ivar);
646  }
647  // Also look into interface's protocol list for properties declared
648  // in the protocol and whose ivars are synthesized.
649  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
650       PE = OI->protocol_end(); P != PE; ++P) {
651    ObjCProtocolDecl *PD = (*P);
652    CollectProtocolSynthesizedIvars(PD, Ivars);
653  }
654}
655
656unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
657  unsigned count = 0;
658  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(*this),
659       E = PD->prop_end(*this); I != E; ++I)
660    if ((*I)->getPropertyIvarDecl())
661      ++count;
662
663  // Also look into nested protocols.
664  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
665       E = PD->protocol_end(); P != E; ++P)
666    count += CountProtocolSynthesizedIvars(*P);
667  return count;
668}
669
670unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI)
671{
672  unsigned count = 0;
673  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
674       E = OI->prop_end(*this); I != E; ++I) {
675    if ((*I)->getPropertyIvarDecl())
676      ++count;
677  }
678  // Also look into interface's protocol list for properties declared
679  // in the protocol and whose ivars are synthesized.
680  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
681       PE = OI->protocol_end(); P != PE; ++P) {
682    ObjCProtocolDecl *PD = (*P);
683    count += CountProtocolSynthesizedIvars(PD);
684  }
685  return count;
686}
687
688/// getInterfaceLayoutImpl - Get or compute information about the
689/// layout of the given interface.
690///
691/// \param Impl - If given, also include the layout of the interface's
692/// implementation. This may differ by including synthesized ivars.
693const ASTRecordLayout &
694ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
695                          const ObjCImplementationDecl *Impl) {
696  assert(!D->isForwardDecl() && "Invalid interface decl!");
697
698  // Look up this layout, if already laid out, return what we have.
699  ObjCContainerDecl *Key =
700    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
701  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
702    return *Entry;
703
704  unsigned FieldCount = D->ivar_size();
705  // Add in synthesized ivar count if laying out an implementation.
706  if (Impl) {
707    unsigned SynthCount = CountSynthesizedIvars(D);
708    FieldCount += SynthCount;
709    // If there aren't any sythesized ivars then reuse the interface
710    // entry. Note we can't cache this because we simply free all
711    // entries later; however we shouldn't look up implementations
712    // frequently.
713    if (SynthCount == 0)
714      return getObjCLayout(D, 0);
715  }
716
717  ASTRecordLayout *NewEntry = NULL;
718  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
719    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
720    unsigned Alignment = SL.getAlignment();
721
722    // We start laying out ivars not at the end of the superclass
723    // structure, but at the next byte following the last field.
724    uint64_t Size = llvm::RoundUpToAlignment(SL.NextOffset, 8);
725
726    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(Size, Alignment);
727    NewEntry->InitializeLayout(FieldCount);
728  } else {
729    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout();
730    NewEntry->InitializeLayout(FieldCount);
731  }
732
733  unsigned StructPacking = 0;
734  if (const PackedAttr *PA = D->getAttr<PackedAttr>(*this))
735    StructPacking = PA->getAlignment();
736
737  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>(*this))
738    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
739                                    AA->getAlignment()));
740
741  // Layout each ivar sequentially.
742  unsigned i = 0;
743  llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
744  ShallowCollectObjCIvars(D, Ivars, Impl);
745  for (unsigned k = 0, e = Ivars.size(); k != e; ++k)
746       NewEntry->LayoutField(Ivars[k], i++, false, StructPacking, *this);
747
748  // Finally, round the size of the total struct up to the alignment of the
749  // struct itself.
750  NewEntry->FinalizeLayout();
751  return *NewEntry;
752}
753
754const ASTRecordLayout &
755ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
756  return getObjCLayout(D, 0);
757}
758
759const ASTRecordLayout &
760ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
761  return getObjCLayout(D->getClassInterface(), D);
762}
763
764/// getASTRecordLayout - Get or compute information about the layout of the
765/// specified record (struct/union/class), which indicates its size and field
766/// position information.
767const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
768  D = D->getDefinition(*this);
769  assert(D && "Cannot get layout of forward declarations!");
770
771  // Look up this layout, if already laid out, return what we have.
772  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
773  if (Entry) return *Entry;
774
775  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
776  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
777  ASTRecordLayout *NewEntry = new ASTRecordLayout();
778  Entry = NewEntry;
779
780  // FIXME: Avoid linear walk through the fields, if possible.
781  NewEntry->InitializeLayout(std::distance(D->field_begin(*this),
782                                           D->field_end(*this)));
783  bool IsUnion = D->isUnion();
784
785  unsigned StructPacking = 0;
786  if (const PackedAttr *PA = D->getAttr<PackedAttr>(*this))
787    StructPacking = PA->getAlignment();
788
789  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>(*this))
790    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
791                                    AA->getAlignment()));
792
793  // Layout each field, for now, just sequentially, respecting alignment.  In
794  // the future, this will need to be tweakable by targets.
795  unsigned FieldIdx = 0;
796  for (RecordDecl::field_iterator Field = D->field_begin(*this),
797                               FieldEnd = D->field_end(*this);
798       Field != FieldEnd; (void)++Field, ++FieldIdx)
799    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
800
801  // Finally, round the size of the total struct up to the alignment of the
802  // struct itself.
803  NewEntry->FinalizeLayout(getLangOptions().CPlusPlus);
804  return *NewEntry;
805}
806
807//===----------------------------------------------------------------------===//
808//                   Type creation/memoization methods
809//===----------------------------------------------------------------------===//
810
811QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
812  QualType CanT = getCanonicalType(T);
813  if (CanT.getAddressSpace() == AddressSpace)
814    return T;
815
816  // If we are composing extended qualifiers together, merge together into one
817  // ExtQualType node.
818  unsigned CVRQuals = T.getCVRQualifiers();
819  QualType::GCAttrTypes GCAttr = QualType::GCNone;
820  Type *TypeNode = T.getTypePtr();
821
822  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
823    // If this type already has an address space specified, it cannot get
824    // another one.
825    assert(EQT->getAddressSpace() == 0 &&
826           "Type cannot be in multiple addr spaces!");
827    GCAttr = EQT->getObjCGCAttr();
828    TypeNode = EQT->getBaseType();
829  }
830
831  // Check if we've already instantiated this type.
832  llvm::FoldingSetNodeID ID;
833  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
834  void *InsertPos = 0;
835  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
836    return QualType(EXTQy, CVRQuals);
837
838  // If the base type isn't canonical, this won't be a canonical type either,
839  // so fill in the canonical type field.
840  QualType Canonical;
841  if (!TypeNode->isCanonical()) {
842    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
843
844    // Update InsertPos, the previous call could have invalidated it.
845    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
846    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
847  }
848  ExtQualType *New =
849    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
850  ExtQualTypes.InsertNode(New, InsertPos);
851  Types.push_back(New);
852  return QualType(New, CVRQuals);
853}
854
855QualType ASTContext::getObjCGCQualType(QualType T,
856                                       QualType::GCAttrTypes GCAttr) {
857  QualType CanT = getCanonicalType(T);
858  if (CanT.getObjCGCAttr() == GCAttr)
859    return T;
860
861  if (T->isPointerType()) {
862    QualType Pointee = T->getAsPointerType()->getPointeeType();
863    if (Pointee->isPointerType()) {
864      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
865      return getPointerType(ResultType);
866    }
867  }
868  // If we are composing extended qualifiers together, merge together into one
869  // ExtQualType node.
870  unsigned CVRQuals = T.getCVRQualifiers();
871  Type *TypeNode = T.getTypePtr();
872  unsigned AddressSpace = 0;
873
874  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
875    // If this type already has an address space specified, it cannot get
876    // another one.
877    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
878           "Type cannot be in multiple addr spaces!");
879    AddressSpace = EQT->getAddressSpace();
880    TypeNode = EQT->getBaseType();
881  }
882
883  // Check if we've already instantiated an gc qual'd type of this type.
884  llvm::FoldingSetNodeID ID;
885  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
886  void *InsertPos = 0;
887  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
888    return QualType(EXTQy, CVRQuals);
889
890  // If the base type isn't canonical, this won't be a canonical type either,
891  // so fill in the canonical type field.
892  // FIXME: Isn't this also not canonical if the base type is a array
893  // or pointer type?  I can't find any documentation for objc_gc, though...
894  QualType Canonical;
895  if (!T->isCanonical()) {
896    Canonical = getObjCGCQualType(CanT, GCAttr);
897
898    // Update InsertPos, the previous call could have invalidated it.
899    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
900    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
901  }
902  ExtQualType *New =
903    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
904  ExtQualTypes.InsertNode(New, InsertPos);
905  Types.push_back(New);
906  return QualType(New, CVRQuals);
907}
908
909/// getComplexType - Return the uniqued reference to the type for a complex
910/// number with the specified element type.
911QualType ASTContext::getComplexType(QualType T) {
912  // Unique pointers, to guarantee there is only one pointer of a particular
913  // structure.
914  llvm::FoldingSetNodeID ID;
915  ComplexType::Profile(ID, T);
916
917  void *InsertPos = 0;
918  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
919    return QualType(CT, 0);
920
921  // If the pointee type isn't canonical, this won't be a canonical type either,
922  // so fill in the canonical type field.
923  QualType Canonical;
924  if (!T->isCanonical()) {
925    Canonical = getComplexType(getCanonicalType(T));
926
927    // Get the new insert position for the node we care about.
928    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
929    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
930  }
931  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
932  Types.push_back(New);
933  ComplexTypes.InsertNode(New, InsertPos);
934  return QualType(New, 0);
935}
936
937QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
938  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
939     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
940  FixedWidthIntType *&Entry = Map[Width];
941  if (!Entry)
942    Entry = new FixedWidthIntType(Width, Signed);
943  return QualType(Entry, 0);
944}
945
946/// getPointerType - Return the uniqued reference to the type for a pointer to
947/// the specified type.
948QualType ASTContext::getPointerType(QualType T) {
949  // Unique pointers, to guarantee there is only one pointer of a particular
950  // structure.
951  llvm::FoldingSetNodeID ID;
952  PointerType::Profile(ID, T);
953
954  void *InsertPos = 0;
955  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
956    return QualType(PT, 0);
957
958  // If the pointee type isn't canonical, this won't be a canonical type either,
959  // so fill in the canonical type field.
960  QualType Canonical;
961  if (!T->isCanonical()) {
962    Canonical = getPointerType(getCanonicalType(T));
963
964    // Get the new insert position for the node we care about.
965    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
966    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
967  }
968  PointerType *New = new (*this,8) PointerType(T, Canonical);
969  Types.push_back(New);
970  PointerTypes.InsertNode(New, InsertPos);
971  return QualType(New, 0);
972}
973
974/// getBlockPointerType - Return the uniqued reference to the type for
975/// a pointer to the specified block.
976QualType ASTContext::getBlockPointerType(QualType T) {
977  assert(T->isFunctionType() && "block of function types only");
978  // Unique pointers, to guarantee there is only one block of a particular
979  // structure.
980  llvm::FoldingSetNodeID ID;
981  BlockPointerType::Profile(ID, T);
982
983  void *InsertPos = 0;
984  if (BlockPointerType *PT =
985        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
986    return QualType(PT, 0);
987
988  // If the block pointee type isn't canonical, this won't be a canonical
989  // type either so fill in the canonical type field.
990  QualType Canonical;
991  if (!T->isCanonical()) {
992    Canonical = getBlockPointerType(getCanonicalType(T));
993
994    // Get the new insert position for the node we care about.
995    BlockPointerType *NewIP =
996      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
997    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
998  }
999  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1000  Types.push_back(New);
1001  BlockPointerTypes.InsertNode(New, InsertPos);
1002  return QualType(New, 0);
1003}
1004
1005/// getLValueReferenceType - Return the uniqued reference to the type for an
1006/// lvalue reference to the specified type.
1007QualType ASTContext::getLValueReferenceType(QualType T) {
1008  // Unique pointers, to guarantee there is only one pointer of a particular
1009  // structure.
1010  llvm::FoldingSetNodeID ID;
1011  ReferenceType::Profile(ID, T);
1012
1013  void *InsertPos = 0;
1014  if (LValueReferenceType *RT =
1015        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1016    return QualType(RT, 0);
1017
1018  // If the referencee type isn't canonical, this won't be a canonical type
1019  // either, so fill in the canonical type field.
1020  QualType Canonical;
1021  if (!T->isCanonical()) {
1022    Canonical = getLValueReferenceType(getCanonicalType(T));
1023
1024    // Get the new insert position for the node we care about.
1025    LValueReferenceType *NewIP =
1026      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1027    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1028  }
1029
1030  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1031  Types.push_back(New);
1032  LValueReferenceTypes.InsertNode(New, InsertPos);
1033  return QualType(New, 0);
1034}
1035
1036/// getRValueReferenceType - Return the uniqued reference to the type for an
1037/// rvalue reference to the specified type.
1038QualType ASTContext::getRValueReferenceType(QualType T) {
1039  // Unique pointers, to guarantee there is only one pointer of a particular
1040  // structure.
1041  llvm::FoldingSetNodeID ID;
1042  ReferenceType::Profile(ID, T);
1043
1044  void *InsertPos = 0;
1045  if (RValueReferenceType *RT =
1046        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1047    return QualType(RT, 0);
1048
1049  // If the referencee type isn't canonical, this won't be a canonical type
1050  // either, so fill in the canonical type field.
1051  QualType Canonical;
1052  if (!T->isCanonical()) {
1053    Canonical = getRValueReferenceType(getCanonicalType(T));
1054
1055    // Get the new insert position for the node we care about.
1056    RValueReferenceType *NewIP =
1057      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1058    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1059  }
1060
1061  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1062  Types.push_back(New);
1063  RValueReferenceTypes.InsertNode(New, InsertPos);
1064  return QualType(New, 0);
1065}
1066
1067/// getMemberPointerType - Return the uniqued reference to the type for a
1068/// member pointer to the specified type, in the specified class.
1069QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1070{
1071  // Unique pointers, to guarantee there is only one pointer of a particular
1072  // structure.
1073  llvm::FoldingSetNodeID ID;
1074  MemberPointerType::Profile(ID, T, Cls);
1075
1076  void *InsertPos = 0;
1077  if (MemberPointerType *PT =
1078      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1079    return QualType(PT, 0);
1080
1081  // If the pointee or class type isn't canonical, this won't be a canonical
1082  // type either, so fill in the canonical type field.
1083  QualType Canonical;
1084  if (!T->isCanonical()) {
1085    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1086
1087    // Get the new insert position for the node we care about.
1088    MemberPointerType *NewIP =
1089      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1090    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1091  }
1092  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1093  Types.push_back(New);
1094  MemberPointerTypes.InsertNode(New, InsertPos);
1095  return QualType(New, 0);
1096}
1097
1098/// getConstantArrayType - Return the unique reference to the type for an
1099/// array of the specified element type.
1100QualType ASTContext::getConstantArrayType(QualType EltTy,
1101                                          const llvm::APInt &ArySizeIn,
1102                                          ArrayType::ArraySizeModifier ASM,
1103                                          unsigned EltTypeQuals) {
1104  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1105         "Constant array of VLAs is illegal!");
1106
1107  // Convert the array size into a canonical width matching the pointer size for
1108  // the target.
1109  llvm::APInt ArySize(ArySizeIn);
1110  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1111
1112  llvm::FoldingSetNodeID ID;
1113  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1114
1115  void *InsertPos = 0;
1116  if (ConstantArrayType *ATP =
1117      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1118    return QualType(ATP, 0);
1119
1120  // If the element type isn't canonical, this won't be a canonical type either,
1121  // so fill in the canonical type field.
1122  QualType Canonical;
1123  if (!EltTy->isCanonical()) {
1124    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1125                                     ASM, EltTypeQuals);
1126    // Get the new insert position for the node we care about.
1127    ConstantArrayType *NewIP =
1128      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1129    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1130  }
1131
1132  ConstantArrayType *New =
1133    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1134  ConstantArrayTypes.InsertNode(New, InsertPos);
1135  Types.push_back(New);
1136  return QualType(New, 0);
1137}
1138
1139/// getVariableArrayType - Returns a non-unique reference to the type for a
1140/// variable array of the specified element type.
1141QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
1142                                          ArrayType::ArraySizeModifier ASM,
1143                                          unsigned EltTypeQuals) {
1144  // Since we don't unique expressions, it isn't possible to unique VLA's
1145  // that have an expression provided for their size.
1146
1147  VariableArrayType *New =
1148    new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
1149
1150  VariableArrayTypes.push_back(New);
1151  Types.push_back(New);
1152  return QualType(New, 0);
1153}
1154
1155/// getDependentSizedArrayType - Returns a non-unique reference to
1156/// the type for a dependently-sized array of the specified element
1157/// type. FIXME: We will need these to be uniqued, or at least
1158/// comparable, at some point.
1159QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1160                                                ArrayType::ArraySizeModifier ASM,
1161                                                unsigned EltTypeQuals) {
1162  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1163         "Size must be type- or value-dependent!");
1164
1165  // Since we don't unique expressions, it isn't possible to unique
1166  // dependently-sized array types.
1167
1168  DependentSizedArrayType *New =
1169      new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
1170                                            ASM, EltTypeQuals);
1171
1172  DependentSizedArrayTypes.push_back(New);
1173  Types.push_back(New);
1174  return QualType(New, 0);
1175}
1176
1177QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1178                                            ArrayType::ArraySizeModifier ASM,
1179                                            unsigned EltTypeQuals) {
1180  llvm::FoldingSetNodeID ID;
1181  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1182
1183  void *InsertPos = 0;
1184  if (IncompleteArrayType *ATP =
1185       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1186    return QualType(ATP, 0);
1187
1188  // If the element type isn't canonical, this won't be a canonical type
1189  // either, so fill in the canonical type field.
1190  QualType Canonical;
1191
1192  if (!EltTy->isCanonical()) {
1193    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1194                                       ASM, EltTypeQuals);
1195
1196    // Get the new insert position for the node we care about.
1197    IncompleteArrayType *NewIP =
1198      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1199    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1200  }
1201
1202  IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1203                                                           ASM, EltTypeQuals);
1204
1205  IncompleteArrayTypes.InsertNode(New, InsertPos);
1206  Types.push_back(New);
1207  return QualType(New, 0);
1208}
1209
1210/// getVectorType - Return the unique reference to a vector type of
1211/// the specified element type and size. VectorType must be a built-in type.
1212QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1213  BuiltinType *baseType;
1214
1215  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1216  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1217
1218  // Check if we've already instantiated a vector of this type.
1219  llvm::FoldingSetNodeID ID;
1220  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1221  void *InsertPos = 0;
1222  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1223    return QualType(VTP, 0);
1224
1225  // If the element type isn't canonical, this won't be a canonical type either,
1226  // so fill in the canonical type field.
1227  QualType Canonical;
1228  if (!vecType->isCanonical()) {
1229    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1230
1231    // Get the new insert position for the node we care about.
1232    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1233    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1234  }
1235  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1236  VectorTypes.InsertNode(New, InsertPos);
1237  Types.push_back(New);
1238  return QualType(New, 0);
1239}
1240
1241/// getExtVectorType - Return the unique reference to an extended vector type of
1242/// the specified element type and size. VectorType must be a built-in type.
1243QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1244  BuiltinType *baseType;
1245
1246  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1247  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1248
1249  // Check if we've already instantiated a vector of this type.
1250  llvm::FoldingSetNodeID ID;
1251  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1252  void *InsertPos = 0;
1253  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1254    return QualType(VTP, 0);
1255
1256  // If the element type isn't canonical, this won't be a canonical type either,
1257  // so fill in the canonical type field.
1258  QualType Canonical;
1259  if (!vecType->isCanonical()) {
1260    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1261
1262    // Get the new insert position for the node we care about.
1263    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1264    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1265  }
1266  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1267  VectorTypes.InsertNode(New, InsertPos);
1268  Types.push_back(New);
1269  return QualType(New, 0);
1270}
1271
1272QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1273                                                    Expr *SizeExpr,
1274                                                    SourceLocation AttrLoc) {
1275  DependentSizedExtVectorType *New =
1276      new (*this,8) DependentSizedExtVectorType(vecType, QualType(),
1277                                                SizeExpr, AttrLoc);
1278
1279  DependentSizedExtVectorTypes.push_back(New);
1280  Types.push_back(New);
1281  return QualType(New, 0);
1282}
1283
1284/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1285///
1286QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1287  // Unique functions, to guarantee there is only one function of a particular
1288  // structure.
1289  llvm::FoldingSetNodeID ID;
1290  FunctionNoProtoType::Profile(ID, ResultTy);
1291
1292  void *InsertPos = 0;
1293  if (FunctionNoProtoType *FT =
1294        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1295    return QualType(FT, 0);
1296
1297  QualType Canonical;
1298  if (!ResultTy->isCanonical()) {
1299    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1300
1301    // Get the new insert position for the node we care about.
1302    FunctionNoProtoType *NewIP =
1303      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1304    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1305  }
1306
1307  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1308  Types.push_back(New);
1309  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1310  return QualType(New, 0);
1311}
1312
1313/// getFunctionType - Return a normal function type with a typed argument
1314/// list.  isVariadic indicates whether the argument list includes '...'.
1315QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1316                                     unsigned NumArgs, bool isVariadic,
1317                                     unsigned TypeQuals, bool hasExceptionSpec,
1318                                     bool hasAnyExceptionSpec, unsigned NumExs,
1319                                     const QualType *ExArray) {
1320  // Unique functions, to guarantee there is only one function of a particular
1321  // structure.
1322  llvm::FoldingSetNodeID ID;
1323  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1324                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1325                             NumExs, ExArray);
1326
1327  void *InsertPos = 0;
1328  if (FunctionProtoType *FTP =
1329        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1330    return QualType(FTP, 0);
1331
1332  // Determine whether the type being created is already canonical or not.
1333  bool isCanonical = ResultTy->isCanonical();
1334  if (hasExceptionSpec)
1335    isCanonical = false;
1336  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1337    if (!ArgArray[i]->isCanonical())
1338      isCanonical = false;
1339
1340  // If this type isn't canonical, get the canonical version of it.
1341  // The exception spec is not part of the canonical type.
1342  QualType Canonical;
1343  if (!isCanonical) {
1344    llvm::SmallVector<QualType, 16> CanonicalArgs;
1345    CanonicalArgs.reserve(NumArgs);
1346    for (unsigned i = 0; i != NumArgs; ++i)
1347      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1348
1349    Canonical = getFunctionType(getCanonicalType(ResultTy),
1350                                CanonicalArgs.data(), NumArgs,
1351                                isVariadic, TypeQuals);
1352
1353    // Get the new insert position for the node we care about.
1354    FunctionProtoType *NewIP =
1355      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1356    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1357  }
1358
1359  // FunctionProtoType objects are allocated with extra bytes after them
1360  // for two variable size arrays (for parameter and exception types) at the
1361  // end of them.
1362  FunctionProtoType *FTP =
1363    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1364                                 NumArgs*sizeof(QualType) +
1365                                 NumExs*sizeof(QualType), 8);
1366  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1367                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1368                              ExArray, NumExs, Canonical);
1369  Types.push_back(FTP);
1370  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1371  return QualType(FTP, 0);
1372}
1373
1374/// getTypeDeclType - Return the unique reference to the type for the
1375/// specified type declaration.
1376QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1377  assert(Decl && "Passed null for Decl param");
1378  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1379
1380  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1381    return getTypedefType(Typedef);
1382  else if (isa<TemplateTypeParmDecl>(Decl)) {
1383    assert(false && "Template type parameter types are always available.");
1384  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1385    return getObjCInterfaceType(ObjCInterface);
1386
1387  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1388    if (PrevDecl)
1389      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1390    else
1391      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1392  }
1393  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1394    if (PrevDecl)
1395      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1396    else
1397      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1398  }
1399  else
1400    assert(false && "TypeDecl without a type?");
1401
1402  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1403  return QualType(Decl->TypeForDecl, 0);
1404}
1405
1406/// getTypedefType - Return the unique reference to the type for the
1407/// specified typename decl.
1408QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1409  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1410
1411  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1412  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1413  Types.push_back(Decl->TypeForDecl);
1414  return QualType(Decl->TypeForDecl, 0);
1415}
1416
1417/// getObjCInterfaceType - Return the unique reference to the type for the
1418/// specified ObjC interface decl.
1419QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
1420  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1421
1422  ObjCInterfaceDecl *OID = const_cast<ObjCInterfaceDecl*>(Decl);
1423  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, OID);
1424  Types.push_back(Decl->TypeForDecl);
1425  return QualType(Decl->TypeForDecl, 0);
1426}
1427
1428/// \brief Retrieve the template type parameter type for a template
1429/// parameter or parameter pack with the given depth, index, and (optionally)
1430/// name.
1431QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1432                                             bool ParameterPack,
1433                                             IdentifierInfo *Name) {
1434  llvm::FoldingSetNodeID ID;
1435  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1436  void *InsertPos = 0;
1437  TemplateTypeParmType *TypeParm
1438    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1439
1440  if (TypeParm)
1441    return QualType(TypeParm, 0);
1442
1443  if (Name) {
1444    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1445    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack,
1446                                                   Name, Canon);
1447  } else
1448    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack);
1449
1450  Types.push_back(TypeParm);
1451  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1452
1453  return QualType(TypeParm, 0);
1454}
1455
1456QualType
1457ASTContext::getTemplateSpecializationType(TemplateName Template,
1458                                          const TemplateArgument *Args,
1459                                          unsigned NumArgs,
1460                                          QualType Canon) {
1461  if (!Canon.isNull())
1462    Canon = getCanonicalType(Canon);
1463
1464  llvm::FoldingSetNodeID ID;
1465  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1466
1467  void *InsertPos = 0;
1468  TemplateSpecializationType *Spec
1469    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1470
1471  if (Spec)
1472    return QualType(Spec, 0);
1473
1474  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1475                        sizeof(TemplateArgument) * NumArgs),
1476                       8);
1477  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1478  Types.push_back(Spec);
1479  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1480
1481  return QualType(Spec, 0);
1482}
1483
1484QualType
1485ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1486                                 QualType NamedType) {
1487  llvm::FoldingSetNodeID ID;
1488  QualifiedNameType::Profile(ID, NNS, NamedType);
1489
1490  void *InsertPos = 0;
1491  QualifiedNameType *T
1492    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1493  if (T)
1494    return QualType(T, 0);
1495
1496  T = new (*this) QualifiedNameType(NNS, NamedType,
1497                                    getCanonicalType(NamedType));
1498  Types.push_back(T);
1499  QualifiedNameTypes.InsertNode(T, InsertPos);
1500  return QualType(T, 0);
1501}
1502
1503QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1504                                     const IdentifierInfo *Name,
1505                                     QualType Canon) {
1506  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1507
1508  if (Canon.isNull()) {
1509    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1510    if (CanonNNS != NNS)
1511      Canon = getTypenameType(CanonNNS, Name);
1512  }
1513
1514  llvm::FoldingSetNodeID ID;
1515  TypenameType::Profile(ID, NNS, Name);
1516
1517  void *InsertPos = 0;
1518  TypenameType *T
1519    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1520  if (T)
1521    return QualType(T, 0);
1522
1523  T = new (*this) TypenameType(NNS, Name, Canon);
1524  Types.push_back(T);
1525  TypenameTypes.InsertNode(T, InsertPos);
1526  return QualType(T, 0);
1527}
1528
1529QualType
1530ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1531                            const TemplateSpecializationType *TemplateId,
1532                            QualType Canon) {
1533  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1534
1535  if (Canon.isNull()) {
1536    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1537    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1538    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1539      const TemplateSpecializationType *CanonTemplateId
1540        = CanonType->getAsTemplateSpecializationType();
1541      assert(CanonTemplateId &&
1542             "Canonical type must also be a template specialization type");
1543      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1544    }
1545  }
1546
1547  llvm::FoldingSetNodeID ID;
1548  TypenameType::Profile(ID, NNS, TemplateId);
1549
1550  void *InsertPos = 0;
1551  TypenameType *T
1552    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1553  if (T)
1554    return QualType(T, 0);
1555
1556  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1557  Types.push_back(T);
1558  TypenameTypes.InsertNode(T, InsertPos);
1559  return QualType(T, 0);
1560}
1561
1562/// CmpProtocolNames - Comparison predicate for sorting protocols
1563/// alphabetically.
1564static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1565                            const ObjCProtocolDecl *RHS) {
1566  return LHS->getDeclName() < RHS->getDeclName();
1567}
1568
1569static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1570                                   unsigned &NumProtocols) {
1571  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1572
1573  // Sort protocols, keyed by name.
1574  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1575
1576  // Remove duplicates.
1577  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1578  NumProtocols = ProtocolsEnd-Protocols;
1579}
1580
1581/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1582/// the given interface decl and the conforming protocol list.
1583QualType ASTContext::getObjCObjectPointerType(ObjCInterfaceDecl *Decl,
1584                                              ObjCProtocolDecl **Protocols,
1585                                              unsigned NumProtocols) {
1586  // Sort the protocol list alphabetically to canonicalize it.
1587  if (NumProtocols)
1588    SortAndUniqueProtocols(Protocols, NumProtocols);
1589
1590  llvm::FoldingSetNodeID ID;
1591  ObjCObjectPointerType::Profile(ID, Decl, Protocols, NumProtocols);
1592
1593  void *InsertPos = 0;
1594  if (ObjCObjectPointerType *QT =
1595              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1596    return QualType(QT, 0);
1597
1598  // No Match;
1599  ObjCObjectPointerType *QType =
1600    new (*this,8) ObjCObjectPointerType(Decl, Protocols, NumProtocols);
1601
1602  Types.push_back(QType);
1603  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1604  return QualType(QType, 0);
1605}
1606
1607/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1608/// the given interface decl and the conforming protocol list.
1609QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1610                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1611  // Sort the protocol list alphabetically to canonicalize it.
1612  SortAndUniqueProtocols(Protocols, NumProtocols);
1613
1614  llvm::FoldingSetNodeID ID;
1615  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1616
1617  void *InsertPos = 0;
1618  if (ObjCQualifiedInterfaceType *QT =
1619      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1620    return QualType(QT, 0);
1621
1622  // No Match;
1623  ObjCQualifiedInterfaceType *QType =
1624    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1625
1626  Types.push_back(QType);
1627  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1628  return QualType(QType, 0);
1629}
1630
1631/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
1632/// and the conforming protocol list.
1633QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
1634                                            unsigned NumProtocols) {
1635  return getObjCObjectPointerType(0, Protocols, NumProtocols);
1636}
1637
1638/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1639/// TypeOfExprType AST's (since expression's are never shared). For example,
1640/// multiple declarations that refer to "typeof(x)" all contain different
1641/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1642/// on canonical type's (which are always unique).
1643QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1644  QualType Canonical = getCanonicalType(tofExpr->getType());
1645  TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1646  Types.push_back(toe);
1647  return QualType(toe, 0);
1648}
1649
1650/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1651/// TypeOfType AST's. The only motivation to unique these nodes would be
1652/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1653/// an issue. This doesn't effect the type checker, since it operates
1654/// on canonical type's (which are always unique).
1655QualType ASTContext::getTypeOfType(QualType tofType) {
1656  QualType Canonical = getCanonicalType(tofType);
1657  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1658  Types.push_back(tot);
1659  return QualType(tot, 0);
1660}
1661
1662/// getTagDeclType - Return the unique reference to the type for the
1663/// specified TagDecl (struct/union/class/enum) decl.
1664QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1665  assert (Decl);
1666  return getTypeDeclType(Decl);
1667}
1668
1669/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1670/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1671/// needs to agree with the definition in <stddef.h>.
1672QualType ASTContext::getSizeType() const {
1673  return getFromTargetType(Target.getSizeType());
1674}
1675
1676/// getSignedWCharType - Return the type of "signed wchar_t".
1677/// Used when in C++, as a GCC extension.
1678QualType ASTContext::getSignedWCharType() const {
1679  // FIXME: derive from "Target" ?
1680  return WCharTy;
1681}
1682
1683/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1684/// Used when in C++, as a GCC extension.
1685QualType ASTContext::getUnsignedWCharType() const {
1686  // FIXME: derive from "Target" ?
1687  return UnsignedIntTy;
1688}
1689
1690/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1691/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1692QualType ASTContext::getPointerDiffType() const {
1693  return getFromTargetType(Target.getPtrDiffType(0));
1694}
1695
1696//===----------------------------------------------------------------------===//
1697//                              Type Operators
1698//===----------------------------------------------------------------------===//
1699
1700/// getCanonicalType - Return the canonical (structural) type corresponding to
1701/// the specified potentially non-canonical type.  The non-canonical version
1702/// of a type may have many "decorated" versions of types.  Decorators can
1703/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1704/// to be free of any of these, allowing two canonical types to be compared
1705/// for exact equality with a simple pointer comparison.
1706QualType ASTContext::getCanonicalType(QualType T) {
1707  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1708
1709  // If the result has type qualifiers, make sure to canonicalize them as well.
1710  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1711  if (TypeQuals == 0) return CanType;
1712
1713  // If the type qualifiers are on an array type, get the canonical type of the
1714  // array with the qualifiers applied to the element type.
1715  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1716  if (!AT)
1717    return CanType.getQualifiedType(TypeQuals);
1718
1719  // Get the canonical version of the element with the extra qualifiers on it.
1720  // This can recursively sink qualifiers through multiple levels of arrays.
1721  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1722  NewEltTy = getCanonicalType(NewEltTy);
1723
1724  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1725    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1726                                CAT->getIndexTypeQualifier());
1727  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1728    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1729                                  IAT->getIndexTypeQualifier());
1730
1731  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1732    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1733                                      DSAT->getSizeModifier(),
1734                                      DSAT->getIndexTypeQualifier());
1735
1736  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1737  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1738                              VAT->getSizeModifier(),
1739                              VAT->getIndexTypeQualifier());
1740}
1741
1742Decl *ASTContext::getCanonicalDecl(Decl *D) {
1743  if (!D)
1744    return 0;
1745
1746  if (TagDecl *Tag = dyn_cast<TagDecl>(D)) {
1747    QualType T = getTagDeclType(Tag);
1748    return cast<TagDecl>(cast<TagType>(T.getTypePtr()->CanonicalType)
1749                         ->getDecl());
1750  }
1751
1752  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(D)) {
1753    while (Template->getPreviousDeclaration())
1754      Template = Template->getPreviousDeclaration();
1755    return Template;
1756  }
1757
1758  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1759    while (Function->getPreviousDeclaration())
1760      Function = Function->getPreviousDeclaration();
1761    return const_cast<FunctionDecl *>(Function);
1762  }
1763
1764  if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1765    while (Var->getPreviousDeclaration())
1766      Var = Var->getPreviousDeclaration();
1767    return const_cast<VarDecl *>(Var);
1768  }
1769
1770  return D;
1771}
1772
1773TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
1774  // If this template name refers to a template, the canonical
1775  // template name merely stores the template itself.
1776  if (TemplateDecl *Template = Name.getAsTemplateDecl())
1777    return TemplateName(cast<TemplateDecl>(getCanonicalDecl(Template)));
1778
1779  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
1780  assert(DTN && "Non-dependent template names must refer to template decls.");
1781  return DTN->CanonicalTemplateName;
1782}
1783
1784NestedNameSpecifier *
1785ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
1786  if (!NNS)
1787    return 0;
1788
1789  switch (NNS->getKind()) {
1790  case NestedNameSpecifier::Identifier:
1791    // Canonicalize the prefix but keep the identifier the same.
1792    return NestedNameSpecifier::Create(*this,
1793                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
1794                                       NNS->getAsIdentifier());
1795
1796  case NestedNameSpecifier::Namespace:
1797    // A namespace is canonical; build a nested-name-specifier with
1798    // this namespace and no prefix.
1799    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
1800
1801  case NestedNameSpecifier::TypeSpec:
1802  case NestedNameSpecifier::TypeSpecWithTemplate: {
1803    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
1804    NestedNameSpecifier *Prefix = 0;
1805
1806    // FIXME: This isn't the right check!
1807    if (T->isDependentType())
1808      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
1809
1810    return NestedNameSpecifier::Create(*this, Prefix,
1811                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
1812                                       T.getTypePtr());
1813  }
1814
1815  case NestedNameSpecifier::Global:
1816    // The global specifier is canonical and unique.
1817    return NNS;
1818  }
1819
1820  // Required to silence a GCC warning
1821  return 0;
1822}
1823
1824
1825const ArrayType *ASTContext::getAsArrayType(QualType T) {
1826  // Handle the non-qualified case efficiently.
1827  if (T.getCVRQualifiers() == 0) {
1828    // Handle the common positive case fast.
1829    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1830      return AT;
1831  }
1832
1833  // Handle the common negative case fast, ignoring CVR qualifiers.
1834  QualType CType = T->getCanonicalTypeInternal();
1835
1836  // Make sure to look through type qualifiers (like ExtQuals) for the negative
1837  // test.
1838  if (!isa<ArrayType>(CType) &&
1839      !isa<ArrayType>(CType.getUnqualifiedType()))
1840    return 0;
1841
1842  // Apply any CVR qualifiers from the array type to the element type.  This
1843  // implements C99 6.7.3p8: "If the specification of an array type includes
1844  // any type qualifiers, the element type is so qualified, not the array type."
1845
1846  // If we get here, we either have type qualifiers on the type, or we have
1847  // sugar such as a typedef in the way.  If we have type qualifiers on the type
1848  // we must propagate them down into the elemeng type.
1849  unsigned CVRQuals = T.getCVRQualifiers();
1850  unsigned AddrSpace = 0;
1851  Type *Ty = T.getTypePtr();
1852
1853  // Rip through ExtQualType's and typedefs to get to a concrete type.
1854  while (1) {
1855    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
1856      AddrSpace = EXTQT->getAddressSpace();
1857      Ty = EXTQT->getBaseType();
1858    } else {
1859      T = Ty->getDesugaredType();
1860      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1861        break;
1862      CVRQuals |= T.getCVRQualifiers();
1863      Ty = T.getTypePtr();
1864    }
1865  }
1866
1867  // If we have a simple case, just return now.
1868  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1869  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1870    return ATy;
1871
1872  // Otherwise, we have an array and we have qualifiers on it.  Push the
1873  // qualifiers into the array element type and return a new array type.
1874  // Get the canonical version of the element with the extra qualifiers on it.
1875  // This can recursively sink qualifiers through multiple levels of arrays.
1876  QualType NewEltTy = ATy->getElementType();
1877  if (AddrSpace)
1878    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
1879  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1880
1881  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1882    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1883                                                CAT->getSizeModifier(),
1884                                                CAT->getIndexTypeQualifier()));
1885  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1886    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1887                                                  IAT->getSizeModifier(),
1888                                                 IAT->getIndexTypeQualifier()));
1889
1890  if (const DependentSizedArrayType *DSAT
1891        = dyn_cast<DependentSizedArrayType>(ATy))
1892    return cast<ArrayType>(
1893                     getDependentSizedArrayType(NewEltTy,
1894                                                DSAT->getSizeExpr(),
1895                                                DSAT->getSizeModifier(),
1896                                                DSAT->getIndexTypeQualifier()));
1897
1898  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1899  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1900                                              VAT->getSizeModifier(),
1901                                              VAT->getIndexTypeQualifier()));
1902}
1903
1904
1905/// getArrayDecayedType - Return the properly qualified result of decaying the
1906/// specified array type to a pointer.  This operation is non-trivial when
1907/// handling typedefs etc.  The canonical type of "T" must be an array type,
1908/// this returns a pointer to a properly qualified element of the array.
1909///
1910/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1911QualType ASTContext::getArrayDecayedType(QualType Ty) {
1912  // Get the element type with 'getAsArrayType' so that we don't lose any
1913  // typedefs in the element type of the array.  This also handles propagation
1914  // of type qualifiers from the array type into the element type if present
1915  // (C99 6.7.3p8).
1916  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1917  assert(PrettyArrayType && "Not an array type!");
1918
1919  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1920
1921  // int x[restrict 4] ->  int *restrict
1922  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1923}
1924
1925QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
1926  QualType ElemTy = VAT->getElementType();
1927
1928  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
1929    return getBaseElementType(VAT);
1930
1931  return ElemTy;
1932}
1933
1934/// getFloatingRank - Return a relative rank for floating point types.
1935/// This routine will assert if passed a built-in type that isn't a float.
1936static FloatingRank getFloatingRank(QualType T) {
1937  if (const ComplexType *CT = T->getAsComplexType())
1938    return getFloatingRank(CT->getElementType());
1939
1940  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
1941  switch (T->getAsBuiltinType()->getKind()) {
1942  default: assert(0 && "getFloatingRank(): not a floating type");
1943  case BuiltinType::Float:      return FloatRank;
1944  case BuiltinType::Double:     return DoubleRank;
1945  case BuiltinType::LongDouble: return LongDoubleRank;
1946  }
1947}
1948
1949/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1950/// point or a complex type (based on typeDomain/typeSize).
1951/// 'typeDomain' is a real floating point or complex type.
1952/// 'typeSize' is a real floating point or complex type.
1953QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1954                                                       QualType Domain) const {
1955  FloatingRank EltRank = getFloatingRank(Size);
1956  if (Domain->isComplexType()) {
1957    switch (EltRank) {
1958    default: assert(0 && "getFloatingRank(): illegal value for rank");
1959    case FloatRank:      return FloatComplexTy;
1960    case DoubleRank:     return DoubleComplexTy;
1961    case LongDoubleRank: return LongDoubleComplexTy;
1962    }
1963  }
1964
1965  assert(Domain->isRealFloatingType() && "Unknown domain!");
1966  switch (EltRank) {
1967  default: assert(0 && "getFloatingRank(): illegal value for rank");
1968  case FloatRank:      return FloatTy;
1969  case DoubleRank:     return DoubleTy;
1970  case LongDoubleRank: return LongDoubleTy;
1971  }
1972}
1973
1974/// getFloatingTypeOrder - Compare the rank of the two specified floating
1975/// point types, ignoring the domain of the type (i.e. 'double' ==
1976/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1977/// LHS < RHS, return -1.
1978int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1979  FloatingRank LHSR = getFloatingRank(LHS);
1980  FloatingRank RHSR = getFloatingRank(RHS);
1981
1982  if (LHSR == RHSR)
1983    return 0;
1984  if (LHSR > RHSR)
1985    return 1;
1986  return -1;
1987}
1988
1989/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1990/// routine will assert if passed a built-in type that isn't an integer or enum,
1991/// or if it is not canonicalized.
1992unsigned ASTContext::getIntegerRank(Type *T) {
1993  assert(T->isCanonical() && "T should be canonicalized");
1994  if (EnumType* ET = dyn_cast<EnumType>(T))
1995    T = ET->getDecl()->getIntegerType().getTypePtr();
1996
1997  // There are two things which impact the integer rank: the width, and
1998  // the ordering of builtins.  The builtin ordering is encoded in the
1999  // bottom three bits; the width is encoded in the bits above that.
2000  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2001    return FWIT->getWidth() << 3;
2002
2003  switch (cast<BuiltinType>(T)->getKind()) {
2004  default: assert(0 && "getIntegerRank(): not a built-in integer");
2005  case BuiltinType::Bool:
2006    return 1 + (getIntWidth(BoolTy) << 3);
2007  case BuiltinType::Char_S:
2008  case BuiltinType::Char_U:
2009  case BuiltinType::SChar:
2010  case BuiltinType::UChar:
2011    return 2 + (getIntWidth(CharTy) << 3);
2012  case BuiltinType::Short:
2013  case BuiltinType::UShort:
2014    return 3 + (getIntWidth(ShortTy) << 3);
2015  case BuiltinType::Int:
2016  case BuiltinType::UInt:
2017    return 4 + (getIntWidth(IntTy) << 3);
2018  case BuiltinType::Long:
2019  case BuiltinType::ULong:
2020    return 5 + (getIntWidth(LongTy) << 3);
2021  case BuiltinType::LongLong:
2022  case BuiltinType::ULongLong:
2023    return 6 + (getIntWidth(LongLongTy) << 3);
2024  case BuiltinType::Int128:
2025  case BuiltinType::UInt128:
2026    return 7 + (getIntWidth(Int128Ty) << 3);
2027  }
2028}
2029
2030/// getIntegerTypeOrder - Returns the highest ranked integer type:
2031/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2032/// LHS < RHS, return -1.
2033int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2034  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2035  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2036  if (LHSC == RHSC) return 0;
2037
2038  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2039  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2040
2041  unsigned LHSRank = getIntegerRank(LHSC);
2042  unsigned RHSRank = getIntegerRank(RHSC);
2043
2044  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2045    if (LHSRank == RHSRank) return 0;
2046    return LHSRank > RHSRank ? 1 : -1;
2047  }
2048
2049  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2050  if (LHSUnsigned) {
2051    // If the unsigned [LHS] type is larger, return it.
2052    if (LHSRank >= RHSRank)
2053      return 1;
2054
2055    // If the signed type can represent all values of the unsigned type, it
2056    // wins.  Because we are dealing with 2's complement and types that are
2057    // powers of two larger than each other, this is always safe.
2058    return -1;
2059  }
2060
2061  // If the unsigned [RHS] type is larger, return it.
2062  if (RHSRank >= LHSRank)
2063    return -1;
2064
2065  // If the signed type can represent all values of the unsigned type, it
2066  // wins.  Because we are dealing with 2's complement and types that are
2067  // powers of two larger than each other, this is always safe.
2068  return 1;
2069}
2070
2071// getCFConstantStringType - Return the type used for constant CFStrings.
2072QualType ASTContext::getCFConstantStringType() {
2073  if (!CFConstantStringTypeDecl) {
2074    CFConstantStringTypeDecl =
2075      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2076                         &Idents.get("NSConstantString"));
2077    QualType FieldTypes[4];
2078
2079    // const int *isa;
2080    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2081    // int flags;
2082    FieldTypes[1] = IntTy;
2083    // const char *str;
2084    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2085    // long length;
2086    FieldTypes[3] = LongTy;
2087
2088    // Create fields
2089    for (unsigned i = 0; i < 4; ++i) {
2090      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2091                                           SourceLocation(), 0,
2092                                           FieldTypes[i], /*BitWidth=*/0,
2093                                           /*Mutable=*/false);
2094      CFConstantStringTypeDecl->addDecl(*this, Field);
2095    }
2096
2097    CFConstantStringTypeDecl->completeDefinition(*this);
2098  }
2099
2100  return getTagDeclType(CFConstantStringTypeDecl);
2101}
2102
2103void ASTContext::setCFConstantStringType(QualType T) {
2104  const RecordType *Rec = T->getAsRecordType();
2105  assert(Rec && "Invalid CFConstantStringType");
2106  CFConstantStringTypeDecl = Rec->getDecl();
2107}
2108
2109QualType ASTContext::getObjCFastEnumerationStateType()
2110{
2111  if (!ObjCFastEnumerationStateTypeDecl) {
2112    ObjCFastEnumerationStateTypeDecl =
2113      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2114                         &Idents.get("__objcFastEnumerationState"));
2115
2116    QualType FieldTypes[] = {
2117      UnsignedLongTy,
2118      getPointerType(ObjCIdType),
2119      getPointerType(UnsignedLongTy),
2120      getConstantArrayType(UnsignedLongTy,
2121                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2122    };
2123
2124    for (size_t i = 0; i < 4; ++i) {
2125      FieldDecl *Field = FieldDecl::Create(*this,
2126                                           ObjCFastEnumerationStateTypeDecl,
2127                                           SourceLocation(), 0,
2128                                           FieldTypes[i], /*BitWidth=*/0,
2129                                           /*Mutable=*/false);
2130      ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field);
2131    }
2132
2133    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2134  }
2135
2136  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2137}
2138
2139void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2140  const RecordType *Rec = T->getAsRecordType();
2141  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2142  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2143}
2144
2145// This returns true if a type has been typedefed to BOOL:
2146// typedef <type> BOOL;
2147static bool isTypeTypedefedAsBOOL(QualType T) {
2148  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2149    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2150      return II->isStr("BOOL");
2151
2152  return false;
2153}
2154
2155/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2156/// purpose.
2157int ASTContext::getObjCEncodingTypeSize(QualType type) {
2158  uint64_t sz = getTypeSize(type);
2159
2160  // Make all integer and enum types at least as large as an int
2161  if (sz > 0 && type->isIntegralType())
2162    sz = std::max(sz, getTypeSize(IntTy));
2163  // Treat arrays as pointers, since that's how they're passed in.
2164  else if (type->isArrayType())
2165    sz = getTypeSize(VoidPtrTy);
2166  return sz / getTypeSize(CharTy);
2167}
2168
2169/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2170/// declaration.
2171void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2172                                              std::string& S) {
2173  // FIXME: This is not very efficient.
2174  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2175  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2176  // Encode result type.
2177  getObjCEncodingForType(Decl->getResultType(), S);
2178  // Compute size of all parameters.
2179  // Start with computing size of a pointer in number of bytes.
2180  // FIXME: There might(should) be a better way of doing this computation!
2181  SourceLocation Loc;
2182  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2183  // The first two arguments (self and _cmd) are pointers; account for
2184  // their size.
2185  int ParmOffset = 2 * PtrSize;
2186  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2187       E = Decl->param_end(); PI != E; ++PI) {
2188    QualType PType = (*PI)->getType();
2189    int sz = getObjCEncodingTypeSize(PType);
2190    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2191    ParmOffset += sz;
2192  }
2193  S += llvm::utostr(ParmOffset);
2194  S += "@0:";
2195  S += llvm::utostr(PtrSize);
2196
2197  // Argument types.
2198  ParmOffset = 2 * PtrSize;
2199  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2200       E = Decl->param_end(); PI != E; ++PI) {
2201    ParmVarDecl *PVDecl = *PI;
2202    QualType PType = PVDecl->getOriginalType();
2203    if (const ArrayType *AT =
2204          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2205      // Use array's original type only if it has known number of
2206      // elements.
2207      if (!isa<ConstantArrayType>(AT))
2208        PType = PVDecl->getType();
2209    } else if (PType->isFunctionType())
2210      PType = PVDecl->getType();
2211    // Process argument qualifiers for user supplied arguments; such as,
2212    // 'in', 'inout', etc.
2213    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2214    getObjCEncodingForType(PType, S);
2215    S += llvm::utostr(ParmOffset);
2216    ParmOffset += getObjCEncodingTypeSize(PType);
2217  }
2218}
2219
2220/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2221/// property declaration. If non-NULL, Container must be either an
2222/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2223/// NULL when getting encodings for protocol properties.
2224/// Property attributes are stored as a comma-delimited C string. The simple
2225/// attributes readonly and bycopy are encoded as single characters. The
2226/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2227/// encoded as single characters, followed by an identifier. Property types
2228/// are also encoded as a parametrized attribute. The characters used to encode
2229/// these attributes are defined by the following enumeration:
2230/// @code
2231/// enum PropertyAttributes {
2232/// kPropertyReadOnly = 'R',   // property is read-only.
2233/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2234/// kPropertyByref = '&',  // property is a reference to the value last assigned
2235/// kPropertyDynamic = 'D',    // property is dynamic
2236/// kPropertyGetter = 'G',     // followed by getter selector name
2237/// kPropertySetter = 'S',     // followed by setter selector name
2238/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2239/// kPropertyType = 't'              // followed by old-style type encoding.
2240/// kPropertyWeak = 'W'              // 'weak' property
2241/// kPropertyStrong = 'P'            // property GC'able
2242/// kPropertyNonAtomic = 'N'         // property non-atomic
2243/// };
2244/// @endcode
2245void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2246                                                const Decl *Container,
2247                                                std::string& S) {
2248  // Collect information from the property implementation decl(s).
2249  bool Dynamic = false;
2250  ObjCPropertyImplDecl *SynthesizePID = 0;
2251
2252  // FIXME: Duplicated code due to poor abstraction.
2253  if (Container) {
2254    if (const ObjCCategoryImplDecl *CID =
2255        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2256      for (ObjCCategoryImplDecl::propimpl_iterator
2257             i = CID->propimpl_begin(*this), e = CID->propimpl_end(*this);
2258           i != e; ++i) {
2259        ObjCPropertyImplDecl *PID = *i;
2260        if (PID->getPropertyDecl() == PD) {
2261          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2262            Dynamic = true;
2263          } else {
2264            SynthesizePID = PID;
2265          }
2266        }
2267      }
2268    } else {
2269      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2270      for (ObjCCategoryImplDecl::propimpl_iterator
2271             i = OID->propimpl_begin(*this), e = OID->propimpl_end(*this);
2272           i != e; ++i) {
2273        ObjCPropertyImplDecl *PID = *i;
2274        if (PID->getPropertyDecl() == PD) {
2275          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2276            Dynamic = true;
2277          } else {
2278            SynthesizePID = PID;
2279          }
2280        }
2281      }
2282    }
2283  }
2284
2285  // FIXME: This is not very efficient.
2286  S = "T";
2287
2288  // Encode result type.
2289  // GCC has some special rules regarding encoding of properties which
2290  // closely resembles encoding of ivars.
2291  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2292                             true /* outermost type */,
2293                             true /* encoding for property */);
2294
2295  if (PD->isReadOnly()) {
2296    S += ",R";
2297  } else {
2298    switch (PD->getSetterKind()) {
2299    case ObjCPropertyDecl::Assign: break;
2300    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2301    case ObjCPropertyDecl::Retain: S += ",&"; break;
2302    }
2303  }
2304
2305  // It really isn't clear at all what this means, since properties
2306  // are "dynamic by default".
2307  if (Dynamic)
2308    S += ",D";
2309
2310  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2311    S += ",N";
2312
2313  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2314    S += ",G";
2315    S += PD->getGetterName().getAsString();
2316  }
2317
2318  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2319    S += ",S";
2320    S += PD->getSetterName().getAsString();
2321  }
2322
2323  if (SynthesizePID) {
2324    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2325    S += ",V";
2326    S += OID->getNameAsString();
2327  }
2328
2329  // FIXME: OBJCGC: weak & strong
2330}
2331
2332/// getLegacyIntegralTypeEncoding -
2333/// Another legacy compatibility encoding: 32-bit longs are encoded as
2334/// 'l' or 'L' , but not always.  For typedefs, we need to use
2335/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2336///
2337void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2338  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2339    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2340      if (BT->getKind() == BuiltinType::ULong &&
2341          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2342        PointeeTy = UnsignedIntTy;
2343      else
2344        if (BT->getKind() == BuiltinType::Long &&
2345            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2346          PointeeTy = IntTy;
2347    }
2348  }
2349}
2350
2351void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2352                                        const FieldDecl *Field) {
2353  // We follow the behavior of gcc, expanding structures which are
2354  // directly pointed to, and expanding embedded structures. Note that
2355  // these rules are sufficient to prevent recursive encoding of the
2356  // same type.
2357  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2358                             true /* outermost type */);
2359}
2360
2361static void EncodeBitField(const ASTContext *Context, std::string& S,
2362                           const FieldDecl *FD) {
2363  const Expr *E = FD->getBitWidth();
2364  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2365  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2366  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2367  S += 'b';
2368  S += llvm::utostr(N);
2369}
2370
2371void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2372                                            bool ExpandPointedToStructures,
2373                                            bool ExpandStructures,
2374                                            const FieldDecl *FD,
2375                                            bool OutermostType,
2376                                            bool EncodingProperty) {
2377  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2378    if (FD && FD->isBitField()) {
2379      EncodeBitField(this, S, FD);
2380    }
2381    else {
2382      char encoding;
2383      switch (BT->getKind()) {
2384      default: assert(0 && "Unhandled builtin type kind");
2385      case BuiltinType::Void:       encoding = 'v'; break;
2386      case BuiltinType::Bool:       encoding = 'B'; break;
2387      case BuiltinType::Char_U:
2388      case BuiltinType::UChar:      encoding = 'C'; break;
2389      case BuiltinType::UShort:     encoding = 'S'; break;
2390      case BuiltinType::UInt:       encoding = 'I'; break;
2391      case BuiltinType::ULong:
2392          encoding =
2393            (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2394          break;
2395      case BuiltinType::UInt128:    encoding = 'T'; break;
2396      case BuiltinType::ULongLong:  encoding = 'Q'; break;
2397      case BuiltinType::Char_S:
2398      case BuiltinType::SChar:      encoding = 'c'; break;
2399      case BuiltinType::Short:      encoding = 's'; break;
2400      case BuiltinType::Int:        encoding = 'i'; break;
2401      case BuiltinType::Long:
2402        encoding =
2403          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2404        break;
2405      case BuiltinType::LongLong:   encoding = 'q'; break;
2406      case BuiltinType::Int128:     encoding = 't'; break;
2407      case BuiltinType::Float:      encoding = 'f'; break;
2408      case BuiltinType::Double:     encoding = 'd'; break;
2409      case BuiltinType::LongDouble: encoding = 'd'; break;
2410      }
2411
2412      S += encoding;
2413    }
2414  } else if (const ComplexType *CT = T->getAsComplexType()) {
2415    S += 'j';
2416    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2417                               false);
2418  } else if (T->isObjCQualifiedIdType()) {
2419    getObjCEncodingForTypeImpl(getObjCIdType(), S,
2420                               ExpandPointedToStructures,
2421                               ExpandStructures, FD);
2422    if (FD || EncodingProperty) {
2423      // Note that we do extended encoding of protocol qualifer list
2424      // Only when doing ivar or property encoding.
2425      const ObjCObjectPointerType *QIDT = T->getAsObjCQualifiedIdType();
2426      S += '"';
2427      for (ObjCObjectPointerType::qual_iterator I = QIDT->qual_begin(),
2428           E = QIDT->qual_end(); I != E; ++I) {
2429        S += '<';
2430        S += (*I)->getNameAsString();
2431        S += '>';
2432      }
2433      S += '"';
2434    }
2435    return;
2436  }
2437  else if (const PointerType *PT = T->getAsPointerType()) {
2438    QualType PointeeTy = PT->getPointeeType();
2439    bool isReadOnly = false;
2440    // For historical/compatibility reasons, the read-only qualifier of the
2441    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2442    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2443    // Also, do not emit the 'r' for anything but the outermost type!
2444    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2445      if (OutermostType && T.isConstQualified()) {
2446        isReadOnly = true;
2447        S += 'r';
2448      }
2449    }
2450    else if (OutermostType) {
2451      QualType P = PointeeTy;
2452      while (P->getAsPointerType())
2453        P = P->getAsPointerType()->getPointeeType();
2454      if (P.isConstQualified()) {
2455        isReadOnly = true;
2456        S += 'r';
2457      }
2458    }
2459    if (isReadOnly) {
2460      // Another legacy compatibility encoding. Some ObjC qualifier and type
2461      // combinations need to be rearranged.
2462      // Rewrite "in const" from "nr" to "rn"
2463      const char * s = S.c_str();
2464      int len = S.length();
2465      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2466        std::string replace = "rn";
2467        S.replace(S.end()-2, S.end(), replace);
2468      }
2469    }
2470    if (isObjCIdStructType(PointeeTy)) {
2471      S += '@';
2472      return;
2473    }
2474    else if (PointeeTy->isObjCInterfaceType()) {
2475      if (!EncodingProperty &&
2476          isa<TypedefType>(PointeeTy.getTypePtr())) {
2477        // Another historical/compatibility reason.
2478        // We encode the underlying type which comes out as
2479        // {...};
2480        S += '^';
2481        getObjCEncodingForTypeImpl(PointeeTy, S,
2482                                   false, ExpandPointedToStructures,
2483                                   NULL);
2484        return;
2485      }
2486      S += '@';
2487      if (FD || EncodingProperty) {
2488        const ObjCInterfaceType *OIT =
2489                PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
2490        ObjCInterfaceDecl *OI = OIT->getDecl();
2491        S += '"';
2492        S += OI->getNameAsCString();
2493        for (ObjCInterfaceType::qual_iterator I = OIT->qual_begin(),
2494             E = OIT->qual_end(); I != E; ++I) {
2495          S += '<';
2496          S += (*I)->getNameAsString();
2497          S += '>';
2498        }
2499        S += '"';
2500      }
2501      return;
2502    } else if (isObjCClassStructType(PointeeTy)) {
2503      S += '#';
2504      return;
2505    } else if (isObjCSelType(PointeeTy)) {
2506      S += ':';
2507      return;
2508    }
2509
2510    if (PointeeTy->isCharType()) {
2511      // char pointer types should be encoded as '*' unless it is a
2512      // type that has been typedef'd to 'BOOL'.
2513      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2514        S += '*';
2515        return;
2516      }
2517    }
2518
2519    S += '^';
2520    getLegacyIntegralTypeEncoding(PointeeTy);
2521
2522    getObjCEncodingForTypeImpl(PointeeTy, S,
2523                               false, ExpandPointedToStructures,
2524                               NULL);
2525  } else if (const ArrayType *AT =
2526               // Ignore type qualifiers etc.
2527               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2528    if (isa<IncompleteArrayType>(AT)) {
2529      // Incomplete arrays are encoded as a pointer to the array element.
2530      S += '^';
2531
2532      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2533                                 false, ExpandStructures, FD);
2534    } else {
2535      S += '[';
2536
2537      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2538        S += llvm::utostr(CAT->getSize().getZExtValue());
2539      else {
2540        //Variable length arrays are encoded as a regular array with 0 elements.
2541        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2542        S += '0';
2543      }
2544
2545      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2546                                 false, ExpandStructures, FD);
2547      S += ']';
2548    }
2549  } else if (T->getAsFunctionType()) {
2550    S += '?';
2551  } else if (const RecordType *RTy = T->getAsRecordType()) {
2552    RecordDecl *RDecl = RTy->getDecl();
2553    S += RDecl->isUnion() ? '(' : '{';
2554    // Anonymous structures print as '?'
2555    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2556      S += II->getName();
2557    } else {
2558      S += '?';
2559    }
2560    if (ExpandStructures) {
2561      S += '=';
2562      for (RecordDecl::field_iterator Field = RDecl->field_begin(*this),
2563                                   FieldEnd = RDecl->field_end(*this);
2564           Field != FieldEnd; ++Field) {
2565        if (FD) {
2566          S += '"';
2567          S += Field->getNameAsString();
2568          S += '"';
2569        }
2570
2571        // Special case bit-fields.
2572        if (Field->isBitField()) {
2573          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2574                                     (*Field));
2575        } else {
2576          QualType qt = Field->getType();
2577          getLegacyIntegralTypeEncoding(qt);
2578          getObjCEncodingForTypeImpl(qt, S, false, true,
2579                                     FD);
2580        }
2581      }
2582    }
2583    S += RDecl->isUnion() ? ')' : '}';
2584  } else if (T->isEnumeralType()) {
2585    if (FD && FD->isBitField())
2586      EncodeBitField(this, S, FD);
2587    else
2588      S += 'i';
2589  } else if (T->isBlockPointerType()) {
2590    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2591  } else if (T->isObjCInterfaceType()) {
2592    // @encode(class_name)
2593    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2594    S += '{';
2595    const IdentifierInfo *II = OI->getIdentifier();
2596    S += II->getName();
2597    S += '=';
2598    llvm::SmallVector<FieldDecl*, 32> RecFields;
2599    CollectObjCIvars(OI, RecFields);
2600    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2601      if (RecFields[i]->isBitField())
2602        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2603                                   RecFields[i]);
2604      else
2605        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2606                                   FD);
2607    }
2608    S += '}';
2609  }
2610  else
2611    assert(0 && "@encode for type not implemented!");
2612}
2613
2614void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2615                                                 std::string& S) const {
2616  if (QT & Decl::OBJC_TQ_In)
2617    S += 'n';
2618  if (QT & Decl::OBJC_TQ_Inout)
2619    S += 'N';
2620  if (QT & Decl::OBJC_TQ_Out)
2621    S += 'o';
2622  if (QT & Decl::OBJC_TQ_Bycopy)
2623    S += 'O';
2624  if (QT & Decl::OBJC_TQ_Byref)
2625    S += 'R';
2626  if (QT & Decl::OBJC_TQ_Oneway)
2627    S += 'V';
2628}
2629
2630void ASTContext::setBuiltinVaListType(QualType T)
2631{
2632  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2633
2634  BuiltinVaListType = T;
2635}
2636
2637void ASTContext::setObjCIdType(QualType T)
2638{
2639  ObjCIdType = T;
2640
2641  const TypedefType *TT = T->getAsTypedefType();
2642  if (!TT)
2643    return;
2644
2645  TypedefDecl *TD = TT->getDecl();
2646
2647  // typedef struct objc_object *id;
2648  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2649  // User error - caller will issue diagnostics.
2650  if (!ptr)
2651    return;
2652  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2653  // User error - caller will issue diagnostics.
2654  if (!rec)
2655    return;
2656  IdStructType = rec;
2657}
2658
2659void ASTContext::setObjCSelType(QualType T)
2660{
2661  ObjCSelType = T;
2662
2663  const TypedefType *TT = T->getAsTypedefType();
2664  if (!TT)
2665    return;
2666  TypedefDecl *TD = TT->getDecl();
2667
2668  // typedef struct objc_selector *SEL;
2669  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2670  if (!ptr)
2671    return;
2672  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2673  if (!rec)
2674    return;
2675  SelStructType = rec;
2676}
2677
2678void ASTContext::setObjCProtoType(QualType QT)
2679{
2680  ObjCProtoType = QT;
2681}
2682
2683void ASTContext::setObjCClassType(QualType T)
2684{
2685  ObjCClassType = T;
2686
2687  const TypedefType *TT = T->getAsTypedefType();
2688  if (!TT)
2689    return;
2690  TypedefDecl *TD = TT->getDecl();
2691
2692  // typedef struct objc_class *Class;
2693  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2694  assert(ptr && "'Class' incorrectly typed");
2695  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2696  assert(rec && "'Class' incorrectly typed");
2697  ClassStructType = rec;
2698}
2699
2700void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2701  assert(ObjCConstantStringType.isNull() &&
2702         "'NSConstantString' type already set!");
2703
2704  ObjCConstantStringType = getObjCInterfaceType(Decl);
2705}
2706
2707/// \brief Retrieve the template name that represents a qualified
2708/// template name such as \c std::vector.
2709TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2710                                                  bool TemplateKeyword,
2711                                                  TemplateDecl *Template) {
2712  llvm::FoldingSetNodeID ID;
2713  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2714
2715  void *InsertPos = 0;
2716  QualifiedTemplateName *QTN =
2717    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2718  if (!QTN) {
2719    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2720    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2721  }
2722
2723  return TemplateName(QTN);
2724}
2725
2726/// \brief Retrieve the template name that represents a dependent
2727/// template name such as \c MetaFun::template apply.
2728TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2729                                                  const IdentifierInfo *Name) {
2730  assert(NNS->isDependent() && "Nested name specifier must be dependent");
2731
2732  llvm::FoldingSetNodeID ID;
2733  DependentTemplateName::Profile(ID, NNS, Name);
2734
2735  void *InsertPos = 0;
2736  DependentTemplateName *QTN =
2737    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2738
2739  if (QTN)
2740    return TemplateName(QTN);
2741
2742  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2743  if (CanonNNS == NNS) {
2744    QTN = new (*this,4) DependentTemplateName(NNS, Name);
2745  } else {
2746    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
2747    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
2748  }
2749
2750  DependentTemplateNames.InsertNode(QTN, InsertPos);
2751  return TemplateName(QTN);
2752}
2753
2754/// getFromTargetType - Given one of the integer types provided by
2755/// TargetInfo, produce the corresponding type. The unsigned @p Type
2756/// is actually a value of type @c TargetInfo::IntType.
2757QualType ASTContext::getFromTargetType(unsigned Type) const {
2758  switch (Type) {
2759  case TargetInfo::NoInt: return QualType();
2760  case TargetInfo::SignedShort: return ShortTy;
2761  case TargetInfo::UnsignedShort: return UnsignedShortTy;
2762  case TargetInfo::SignedInt: return IntTy;
2763  case TargetInfo::UnsignedInt: return UnsignedIntTy;
2764  case TargetInfo::SignedLong: return LongTy;
2765  case TargetInfo::UnsignedLong: return UnsignedLongTy;
2766  case TargetInfo::SignedLongLong: return LongLongTy;
2767  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2768  }
2769
2770  assert(false && "Unhandled TargetInfo::IntType value");
2771  return QualType();
2772}
2773
2774//===----------------------------------------------------------------------===//
2775//                        Type Predicates.
2776//===----------------------------------------------------------------------===//
2777
2778/// isObjCNSObjectType - Return true if this is an NSObject object using
2779/// NSObject attribute on a c-style pointer type.
2780/// FIXME - Make it work directly on types.
2781///
2782bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2783  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2784    if (TypedefDecl *TD = TDT->getDecl())
2785      if (TD->getAttr<ObjCNSObjectAttr>(*const_cast<ASTContext*>(this)))
2786        return true;
2787  }
2788  return false;
2789}
2790
2791/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
2792/// to an object type.  This includes "id" and "Class" (two 'special' pointers
2793/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
2794/// ID type).
2795bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
2796  if (Ty->isObjCQualifiedIdType())
2797    return true;
2798
2799  // Blocks are objects.
2800  if (Ty->isBlockPointerType())
2801    return true;
2802
2803  // All other object types are pointers.
2804  const PointerType *PT = Ty->getAsPointerType();
2805  if (PT == 0)
2806    return false;
2807
2808  // If this a pointer to an interface (e.g. NSString*), it is ok.
2809  if (PT->getPointeeType()->isObjCInterfaceType() ||
2810      // If is has NSObject attribute, OK as well.
2811      isObjCNSObjectType(Ty))
2812    return true;
2813
2814  // Check to see if this is 'id' or 'Class', both of which are typedefs for
2815  // pointer types.  This looks for the typedef specifically, not for the
2816  // underlying type.  Iteratively strip off typedefs so that we can handle
2817  // typedefs of typedefs.
2818  while (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2819    if (Ty.getUnqualifiedType() == getObjCIdType() ||
2820        Ty.getUnqualifiedType() == getObjCClassType())
2821      return true;
2822
2823    Ty = TDT->getDecl()->getUnderlyingType();
2824  }
2825
2826  return false;
2827}
2828
2829/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
2830/// garbage collection attribute.
2831///
2832QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
2833  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
2834  if (getLangOptions().ObjC1 &&
2835      getLangOptions().getGCMode() != LangOptions::NonGC) {
2836    GCAttrs = Ty.getObjCGCAttr();
2837    // Default behavious under objective-c's gc is for objective-c pointers
2838    // (or pointers to them) be treated as though they were declared
2839    // as __strong.
2840    if (GCAttrs == QualType::GCNone) {
2841      if (isObjCObjectPointerType(Ty))
2842        GCAttrs = QualType::Strong;
2843      else if (Ty->isPointerType())
2844        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
2845    }
2846    // Non-pointers have none gc'able attribute regardless of the attribute
2847    // set on them.
2848    else if (!Ty->isPointerType() && !isObjCObjectPointerType(Ty))
2849      return QualType::GCNone;
2850  }
2851  return GCAttrs;
2852}
2853
2854//===----------------------------------------------------------------------===//
2855//                        Type Compatibility Testing
2856//===----------------------------------------------------------------------===//
2857
2858/// areCompatVectorTypes - Return true if the two specified vector types are
2859/// compatible.
2860static bool areCompatVectorTypes(const VectorType *LHS,
2861                                 const VectorType *RHS) {
2862  assert(LHS->isCanonical() && RHS->isCanonical());
2863  return LHS->getElementType() == RHS->getElementType() &&
2864         LHS->getNumElements() == RHS->getNumElements();
2865}
2866
2867/// canAssignObjCInterfaces - Return true if the two interface types are
2868/// compatible for assignment from RHS to LHS.  This handles validation of any
2869/// protocol qualifiers on the LHS or RHS.
2870///
2871bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
2872                                         const ObjCInterfaceType *RHS) {
2873  // Verify that the base decls are compatible: the RHS must be a subclass of
2874  // the LHS.
2875  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
2876    return false;
2877
2878  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
2879  // protocol qualified at all, then we are good.
2880  if (!isa<ObjCQualifiedInterfaceType>(LHS))
2881    return true;
2882
2883  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
2884  // isn't a superset.
2885  if (!isa<ObjCQualifiedInterfaceType>(RHS))
2886    return true;  // FIXME: should return false!
2887
2888  // Finally, we must have two protocol-qualified interfaces.
2889  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
2890  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
2891
2892  // All LHS protocols must have a presence on the RHS.
2893  assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
2894
2895  for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
2896                                                 LHSPE = LHSP->qual_end();
2897       LHSPI != LHSPE; LHSPI++) {
2898    bool RHSImplementsProtocol = false;
2899
2900    // If the RHS doesn't implement the protocol on the left, the types
2901    // are incompatible.
2902    for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
2903                                                   RHSPE = RHSP->qual_end();
2904         !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
2905      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
2906        RHSImplementsProtocol = true;
2907    }
2908    // FIXME: For better diagnostics, consider passing back the protocol name.
2909    if (!RHSImplementsProtocol)
2910      return false;
2911  }
2912  // The RHS implements all protocols listed on the LHS.
2913  return true;
2914}
2915
2916bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
2917  // get the "pointed to" types
2918  const PointerType *LHSPT = LHS->getAsPointerType();
2919  const PointerType *RHSPT = RHS->getAsPointerType();
2920
2921  if (!LHSPT || !RHSPT)
2922    return false;
2923
2924  QualType lhptee = LHSPT->getPointeeType();
2925  QualType rhptee = RHSPT->getPointeeType();
2926  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2927  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2928  // ID acts sort of like void* for ObjC interfaces
2929  if (LHSIface && isObjCIdStructType(rhptee))
2930    return true;
2931  if (RHSIface && isObjCIdStructType(lhptee))
2932    return true;
2933  if (!LHSIface || !RHSIface)
2934    return false;
2935  return canAssignObjCInterfaces(LHSIface, RHSIface) ||
2936         canAssignObjCInterfaces(RHSIface, LHSIface);
2937}
2938
2939/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
2940/// both shall have the identically qualified version of a compatible type.
2941/// C99 6.2.7p1: Two types have compatible types if their types are the
2942/// same. See 6.7.[2,3,5] for additional rules.
2943bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
2944  return !mergeTypes(LHS, RHS).isNull();
2945}
2946
2947QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
2948  const FunctionType *lbase = lhs->getAsFunctionType();
2949  const FunctionType *rbase = rhs->getAsFunctionType();
2950  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2951  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2952  bool allLTypes = true;
2953  bool allRTypes = true;
2954
2955  // Check return type
2956  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
2957  if (retType.isNull()) return QualType();
2958  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
2959    allLTypes = false;
2960  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
2961    allRTypes = false;
2962
2963  if (lproto && rproto) { // two C99 style function prototypes
2964    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
2965           "C++ shouldn't be here");
2966    unsigned lproto_nargs = lproto->getNumArgs();
2967    unsigned rproto_nargs = rproto->getNumArgs();
2968
2969    // Compatible functions must have the same number of arguments
2970    if (lproto_nargs != rproto_nargs)
2971      return QualType();
2972
2973    // Variadic and non-variadic functions aren't compatible
2974    if (lproto->isVariadic() != rproto->isVariadic())
2975      return QualType();
2976
2977    if (lproto->getTypeQuals() != rproto->getTypeQuals())
2978      return QualType();
2979
2980    // Check argument compatibility
2981    llvm::SmallVector<QualType, 10> types;
2982    for (unsigned i = 0; i < lproto_nargs; i++) {
2983      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
2984      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
2985      QualType argtype = mergeTypes(largtype, rargtype);
2986      if (argtype.isNull()) return QualType();
2987      types.push_back(argtype);
2988      if (getCanonicalType(argtype) != getCanonicalType(largtype))
2989        allLTypes = false;
2990      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
2991        allRTypes = false;
2992    }
2993    if (allLTypes) return lhs;
2994    if (allRTypes) return rhs;
2995    return getFunctionType(retType, types.begin(), types.size(),
2996                           lproto->isVariadic(), lproto->getTypeQuals());
2997  }
2998
2999  if (lproto) allRTypes = false;
3000  if (rproto) allLTypes = false;
3001
3002  const FunctionProtoType *proto = lproto ? lproto : rproto;
3003  if (proto) {
3004    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3005    if (proto->isVariadic()) return QualType();
3006    // Check that the types are compatible with the types that
3007    // would result from default argument promotions (C99 6.7.5.3p15).
3008    // The only types actually affected are promotable integer
3009    // types and floats, which would be passed as a different
3010    // type depending on whether the prototype is visible.
3011    unsigned proto_nargs = proto->getNumArgs();
3012    for (unsigned i = 0; i < proto_nargs; ++i) {
3013      QualType argTy = proto->getArgType(i);
3014      if (argTy->isPromotableIntegerType() ||
3015          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3016        return QualType();
3017    }
3018
3019    if (allLTypes) return lhs;
3020    if (allRTypes) return rhs;
3021    return getFunctionType(retType, proto->arg_type_begin(),
3022                           proto->getNumArgs(), lproto->isVariadic(),
3023                           lproto->getTypeQuals());
3024  }
3025
3026  if (allLTypes) return lhs;
3027  if (allRTypes) return rhs;
3028  return getFunctionNoProtoType(retType);
3029}
3030
3031QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3032  // C++ [expr]: If an expression initially has the type "reference to T", the
3033  // type is adjusted to "T" prior to any further analysis, the expression
3034  // designates the object or function denoted by the reference, and the
3035  // expression is an lvalue unless the reference is an rvalue reference and
3036  // the expression is a function call (possibly inside parentheses).
3037  // FIXME: C++ shouldn't be going through here!  The rules are different
3038  // enough that they should be handled separately.
3039  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3040  // shouldn't be going through here!
3041  if (const ReferenceType *RT = LHS->getAsReferenceType())
3042    LHS = RT->getPointeeType();
3043  if (const ReferenceType *RT = RHS->getAsReferenceType())
3044    RHS = RT->getPointeeType();
3045
3046  QualType LHSCan = getCanonicalType(LHS),
3047           RHSCan = getCanonicalType(RHS);
3048
3049  // If two types are identical, they are compatible.
3050  if (LHSCan == RHSCan)
3051    return LHS;
3052
3053  // If the qualifiers are different, the types aren't compatible
3054  // Note that we handle extended qualifiers later, in the
3055  // case for ExtQualType.
3056  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3057    return QualType();
3058
3059  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3060  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3061
3062  // We want to consider the two function types to be the same for these
3063  // comparisons, just force one to the other.
3064  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3065  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3066
3067  // Strip off objc_gc attributes off the top level so they can be merged.
3068  // This is a complete mess, but the attribute itself doesn't make much sense.
3069  if (RHSClass == Type::ExtQual) {
3070    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3071    if (GCAttr != QualType::GCNone) {
3072      QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3073      // __weak attribute must appear on both declarations.
3074      // __strong attribue is redundant if other decl is an objective-c
3075      // object pointer (or decorated with __strong attribute); otherwise
3076      // issue error.
3077      if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3078          (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3079           LHSCan->isPointerType() && !isObjCObjectPointerType(LHSCan) &&
3080           !isObjCIdStructType(LHSCan->getAsPointerType()->getPointeeType())))
3081        return QualType();
3082
3083      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3084                     RHS.getCVRQualifiers());
3085      QualType Result = mergeTypes(LHS, RHS);
3086      if (!Result.isNull()) {
3087        if (Result.getObjCGCAttr() == QualType::GCNone)
3088          Result = getObjCGCQualType(Result, GCAttr);
3089        else if (Result.getObjCGCAttr() != GCAttr)
3090          Result = QualType();
3091      }
3092      return Result;
3093    }
3094  }
3095  if (LHSClass == Type::ExtQual) {
3096    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3097    if (GCAttr != QualType::GCNone) {
3098      QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3099      // __weak attribute must appear on both declarations. __strong
3100      // __strong attribue is redundant if other decl is an objective-c
3101      // object pointer (or decorated with __strong attribute); otherwise
3102      // issue error.
3103      if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3104          (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3105           RHSCan->isPointerType() && !isObjCObjectPointerType(RHSCan) &&
3106           !isObjCIdStructType(RHSCan->getAsPointerType()->getPointeeType())))
3107        return QualType();
3108
3109      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3110                     LHS.getCVRQualifiers());
3111      QualType Result = mergeTypes(LHS, RHS);
3112      if (!Result.isNull()) {
3113        if (Result.getObjCGCAttr() == QualType::GCNone)
3114          Result = getObjCGCQualType(Result, GCAttr);
3115        else if (Result.getObjCGCAttr() != GCAttr)
3116          Result = QualType();
3117      }
3118      return Result;
3119    }
3120  }
3121
3122  // Same as above for arrays
3123  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3124    LHSClass = Type::ConstantArray;
3125  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3126    RHSClass = Type::ConstantArray;
3127
3128  // Canonicalize ExtVector -> Vector.
3129  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3130  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3131
3132  // Consider qualified interfaces and interfaces the same.
3133  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
3134  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
3135
3136  // If the canonical type classes don't match.
3137  if (LHSClass != RHSClass) {
3138    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3139    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3140
3141    // 'id' and 'Class' act sort of like void* for ObjC interfaces
3142    if (LHSIface && (isObjCIdStructType(RHS) || isObjCClassStructType(RHS)))
3143      return LHS;
3144    if (RHSIface && (isObjCIdStructType(LHS) || isObjCClassStructType(LHS)))
3145      return RHS;
3146
3147    // ID is compatible with all qualified id types.
3148    if (LHS->isObjCQualifiedIdType()) {
3149      if (const PointerType *PT = RHS->getAsPointerType()) {
3150        QualType pType = PT->getPointeeType();
3151        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3152          return LHS;
3153        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3154        // Unfortunately, this API is part of Sema (which we don't have access
3155        // to. Need to refactor. The following check is insufficient, since we
3156        // need to make sure the class implements the protocol.
3157        if (pType->isObjCInterfaceType())
3158          return LHS;
3159      }
3160    }
3161    if (RHS->isObjCQualifiedIdType()) {
3162      if (const PointerType *PT = LHS->getAsPointerType()) {
3163        QualType pType = PT->getPointeeType();
3164        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3165          return RHS;
3166        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3167        // Unfortunately, this API is part of Sema (which we don't have access
3168        // to. Need to refactor. The following check is insufficient, since we
3169        // need to make sure the class implements the protocol.
3170        if (pType->isObjCInterfaceType())
3171          return RHS;
3172      }
3173    }
3174    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3175    // a signed integer type, or an unsigned integer type.
3176    if (const EnumType* ETy = LHS->getAsEnumType()) {
3177      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3178        return RHS;
3179    }
3180    if (const EnumType* ETy = RHS->getAsEnumType()) {
3181      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3182        return LHS;
3183    }
3184
3185    return QualType();
3186  }
3187
3188  // The canonical type classes match.
3189  switch (LHSClass) {
3190#define TYPE(Class, Base)
3191#define ABSTRACT_TYPE(Class, Base)
3192#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3193#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3194#include "clang/AST/TypeNodes.def"
3195    assert(false && "Non-canonical and dependent types shouldn't get here");
3196    return QualType();
3197
3198  case Type::LValueReference:
3199  case Type::RValueReference:
3200  case Type::MemberPointer:
3201    assert(false && "C++ should never be in mergeTypes");
3202    return QualType();
3203
3204  case Type::IncompleteArray:
3205  case Type::VariableArray:
3206  case Type::FunctionProto:
3207  case Type::ExtVector:
3208  case Type::ObjCQualifiedInterface:
3209    assert(false && "Types are eliminated above");
3210    return QualType();
3211
3212  case Type::Pointer:
3213  {
3214    // Merge two pointer types, while trying to preserve typedef info
3215    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3216    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3217    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3218    if (ResultType.isNull()) return QualType();
3219    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3220      return LHS;
3221    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3222      return RHS;
3223    return getPointerType(ResultType);
3224  }
3225  case Type::BlockPointer:
3226  {
3227    // Merge two block pointer types, while trying to preserve typedef info
3228    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3229    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3230    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3231    if (ResultType.isNull()) return QualType();
3232    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3233      return LHS;
3234    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3235      return RHS;
3236    return getBlockPointerType(ResultType);
3237  }
3238  case Type::ConstantArray:
3239  {
3240    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3241    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3242    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3243      return QualType();
3244
3245    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3246    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3247    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3248    if (ResultType.isNull()) return QualType();
3249    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3250      return LHS;
3251    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3252      return RHS;
3253    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3254                                          ArrayType::ArraySizeModifier(), 0);
3255    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3256                                          ArrayType::ArraySizeModifier(), 0);
3257    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3258    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3259    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3260      return LHS;
3261    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3262      return RHS;
3263    if (LVAT) {
3264      // FIXME: This isn't correct! But tricky to implement because
3265      // the array's size has to be the size of LHS, but the type
3266      // has to be different.
3267      return LHS;
3268    }
3269    if (RVAT) {
3270      // FIXME: This isn't correct! But tricky to implement because
3271      // the array's size has to be the size of RHS, but the type
3272      // has to be different.
3273      return RHS;
3274    }
3275    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3276    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3277    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
3278  }
3279  case Type::FunctionNoProto:
3280    return mergeFunctionTypes(LHS, RHS);
3281  case Type::Record:
3282  case Type::Enum:
3283    // FIXME: Why are these compatible?
3284    if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
3285    if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
3286    return QualType();
3287  case Type::Builtin:
3288    // Only exactly equal builtin types are compatible, which is tested above.
3289    return QualType();
3290  case Type::Complex:
3291    // Distinct complex types are incompatible.
3292    return QualType();
3293  case Type::Vector:
3294    // FIXME: The merged type should be an ExtVector!
3295    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3296      return LHS;
3297    return QualType();
3298  case Type::ObjCInterface: {
3299    // Check if the interfaces are assignment compatible.
3300    // FIXME: This should be type compatibility, e.g. whether
3301    // "LHS x; RHS x;" at global scope is legal.
3302    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3303    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3304    if (LHSIface && RHSIface &&
3305        canAssignObjCInterfaces(LHSIface, RHSIface))
3306      return LHS;
3307
3308    return QualType();
3309  }
3310  case Type::ObjCObjectPointer:
3311    // FIXME: finish
3312    // Distinct qualified id's are not compatible.
3313    return QualType();
3314  case Type::FixedWidthInt:
3315    // Distinct fixed-width integers are not compatible.
3316    return QualType();
3317  case Type::ExtQual:
3318    // FIXME: ExtQual types can be compatible even if they're not
3319    // identical!
3320    return QualType();
3321    // First attempt at an implementation, but I'm not really sure it's
3322    // right...
3323#if 0
3324    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3325    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3326    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3327        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3328      return QualType();
3329    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3330    LHSBase = QualType(LQual->getBaseType(), 0);
3331    RHSBase = QualType(RQual->getBaseType(), 0);
3332    ResultType = mergeTypes(LHSBase, RHSBase);
3333    if (ResultType.isNull()) return QualType();
3334    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3335    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3336      return LHS;
3337    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3338      return RHS;
3339    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3340    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3341    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3342    return ResultType;
3343#endif
3344
3345  case Type::TemplateSpecialization:
3346    assert(false && "Dependent types have no size");
3347    break;
3348  }
3349
3350  return QualType();
3351}
3352
3353//===----------------------------------------------------------------------===//
3354//                         Integer Predicates
3355//===----------------------------------------------------------------------===//
3356
3357unsigned ASTContext::getIntWidth(QualType T) {
3358  if (T == BoolTy)
3359    return 1;
3360  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3361    return FWIT->getWidth();
3362  }
3363  // For builtin types, just use the standard type sizing method
3364  return (unsigned)getTypeSize(T);
3365}
3366
3367QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3368  assert(T->isSignedIntegerType() && "Unexpected type");
3369  if (const EnumType* ETy = T->getAsEnumType())
3370    T = ETy->getDecl()->getIntegerType();
3371  const BuiltinType* BTy = T->getAsBuiltinType();
3372  assert (BTy && "Unexpected signed integer type");
3373  switch (BTy->getKind()) {
3374  case BuiltinType::Char_S:
3375  case BuiltinType::SChar:
3376    return UnsignedCharTy;
3377  case BuiltinType::Short:
3378    return UnsignedShortTy;
3379  case BuiltinType::Int:
3380    return UnsignedIntTy;
3381  case BuiltinType::Long:
3382    return UnsignedLongTy;
3383  case BuiltinType::LongLong:
3384    return UnsignedLongLongTy;
3385  case BuiltinType::Int128:
3386    return UnsignedInt128Ty;
3387  default:
3388    assert(0 && "Unexpected signed integer type");
3389    return QualType();
3390  }
3391}
3392
3393ExternalASTSource::~ExternalASTSource() { }
3394
3395void ExternalASTSource::PrintStats() { }
3396
3397
3398//===----------------------------------------------------------------------===//
3399//                          Builtin Type Computation
3400//===----------------------------------------------------------------------===//
3401
3402/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
3403/// pointer over the consumed characters.  This returns the resultant type.
3404static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
3405                                  ASTContext::GetBuiltinTypeError &Error,
3406                                  bool AllowTypeModifiers = true) {
3407  // Modifiers.
3408  int HowLong = 0;
3409  bool Signed = false, Unsigned = false;
3410
3411  // Read the modifiers first.
3412  bool Done = false;
3413  while (!Done) {
3414    switch (*Str++) {
3415    default: Done = true; --Str; break;
3416    case 'S':
3417      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
3418      assert(!Signed && "Can't use 'S' modifier multiple times!");
3419      Signed = true;
3420      break;
3421    case 'U':
3422      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
3423      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
3424      Unsigned = true;
3425      break;
3426    case 'L':
3427      assert(HowLong <= 2 && "Can't have LLLL modifier");
3428      ++HowLong;
3429      break;
3430    }
3431  }
3432
3433  QualType Type;
3434
3435  // Read the base type.
3436  switch (*Str++) {
3437  default: assert(0 && "Unknown builtin type letter!");
3438  case 'v':
3439    assert(HowLong == 0 && !Signed && !Unsigned &&
3440           "Bad modifiers used with 'v'!");
3441    Type = Context.VoidTy;
3442    break;
3443  case 'f':
3444    assert(HowLong == 0 && !Signed && !Unsigned &&
3445           "Bad modifiers used with 'f'!");
3446    Type = Context.FloatTy;
3447    break;
3448  case 'd':
3449    assert(HowLong < 2 && !Signed && !Unsigned &&
3450           "Bad modifiers used with 'd'!");
3451    if (HowLong)
3452      Type = Context.LongDoubleTy;
3453    else
3454      Type = Context.DoubleTy;
3455    break;
3456  case 's':
3457    assert(HowLong == 0 && "Bad modifiers used with 's'!");
3458    if (Unsigned)
3459      Type = Context.UnsignedShortTy;
3460    else
3461      Type = Context.ShortTy;
3462    break;
3463  case 'i':
3464    if (HowLong == 3)
3465      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
3466    else if (HowLong == 2)
3467      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
3468    else if (HowLong == 1)
3469      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
3470    else
3471      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
3472    break;
3473  case 'c':
3474    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
3475    if (Signed)
3476      Type = Context.SignedCharTy;
3477    else if (Unsigned)
3478      Type = Context.UnsignedCharTy;
3479    else
3480      Type = Context.CharTy;
3481    break;
3482  case 'b': // boolean
3483    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
3484    Type = Context.BoolTy;
3485    break;
3486  case 'z':  // size_t.
3487    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
3488    Type = Context.getSizeType();
3489    break;
3490  case 'F':
3491    Type = Context.getCFConstantStringType();
3492    break;
3493  case 'a':
3494    Type = Context.getBuiltinVaListType();
3495    assert(!Type.isNull() && "builtin va list type not initialized!");
3496    break;
3497  case 'A':
3498    // This is a "reference" to a va_list; however, what exactly
3499    // this means depends on how va_list is defined. There are two
3500    // different kinds of va_list: ones passed by value, and ones
3501    // passed by reference.  An example of a by-value va_list is
3502    // x86, where va_list is a char*. An example of by-ref va_list
3503    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
3504    // we want this argument to be a char*&; for x86-64, we want
3505    // it to be a __va_list_tag*.
3506    Type = Context.getBuiltinVaListType();
3507    assert(!Type.isNull() && "builtin va list type not initialized!");
3508    if (Type->isArrayType()) {
3509      Type = Context.getArrayDecayedType(Type);
3510    } else {
3511      Type = Context.getLValueReferenceType(Type);
3512    }
3513    break;
3514  case 'V': {
3515    char *End;
3516
3517    unsigned NumElements = strtoul(Str, &End, 10);
3518    assert(End != Str && "Missing vector size");
3519
3520    Str = End;
3521
3522    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
3523    Type = Context.getVectorType(ElementType, NumElements);
3524    break;
3525  }
3526  case 'P': {
3527    IdentifierInfo *II = &Context.Idents.get("FILE");
3528    DeclContext::lookup_result Lookup
3529      = Context.getTranslationUnitDecl()->lookup(Context, II);
3530    if (Lookup.first != Lookup.second && isa<TypeDecl>(*Lookup.first)) {
3531      Type = Context.getTypeDeclType(cast<TypeDecl>(*Lookup.first));
3532      break;
3533    }
3534    else {
3535      Error = ASTContext::GE_Missing_FILE;
3536      return QualType();
3537    }
3538  }
3539  }
3540
3541  if (!AllowTypeModifiers)
3542    return Type;
3543
3544  Done = false;
3545  while (!Done) {
3546    switch (*Str++) {
3547      default: Done = true; --Str; break;
3548      case '*':
3549        Type = Context.getPointerType(Type);
3550        break;
3551      case '&':
3552        Type = Context.getLValueReferenceType(Type);
3553        break;
3554      // FIXME: There's no way to have a built-in with an rvalue ref arg.
3555      case 'C':
3556        Type = Type.getQualifiedType(QualType::Const);
3557        break;
3558    }
3559  }
3560
3561  return Type;
3562}
3563
3564/// GetBuiltinType - Return the type for the specified builtin.
3565QualType ASTContext::GetBuiltinType(unsigned id,
3566                                    GetBuiltinTypeError &Error) {
3567  const char *TypeStr = BuiltinInfo.GetTypeString(id);
3568
3569  llvm::SmallVector<QualType, 8> ArgTypes;
3570
3571  Error = GE_None;
3572  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
3573  if (Error != GE_None)
3574    return QualType();
3575  while (TypeStr[0] && TypeStr[0] != '.') {
3576    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
3577    if (Error != GE_None)
3578      return QualType();
3579
3580    // Do array -> pointer decay.  The builtin should use the decayed type.
3581    if (Ty->isArrayType())
3582      Ty = getArrayDecayedType(Ty);
3583
3584    ArgTypes.push_back(Ty);
3585  }
3586
3587  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
3588         "'.' should only occur at end of builtin type list!");
3589
3590  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
3591  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
3592    return getFunctionNoProtoType(ResType);
3593  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
3594                         TypeStr[0] == '.', 0);
3595}
3596