ASTContext.cpp revision 687abffee40d0459fe5eecf3e5ee6e60be69d93c
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Basic/TargetInfo.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/Support/MemoryBuffer.h"
26using namespace clang;
27
28enum FloatingRank {
29  FloatRank, DoubleRank, LongDoubleRank
30};
31
32ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
33                       TargetInfo &t,
34                       IdentifierTable &idents, SelectorTable &sels,
35                       bool FreeMem, unsigned size_reserve,
36                       bool InitializeBuiltins) :
37  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
38  ObjCFastEnumerationStateTypeDecl(0), SourceMgr(SM), LangOpts(LOpts),
39  FreeMemory(FreeMem), Target(t), Idents(idents), Selectors(sels),
40  ExternalSource(0) {
41  if (size_reserve > 0) Types.reserve(size_reserve);
42  InitBuiltinTypes();
43  TUDecl = TranslationUnitDecl::Create(*this);
44  BuiltinInfo.InitializeTargetBuiltins(Target);
45  if (InitializeBuiltins)
46    this->InitializeBuiltins(idents);
47  PrintingPolicy.CPlusPlus = LangOpts.CPlusPlus;
48}
49
50ASTContext::~ASTContext() {
51  // Deallocate all the types.
52  while (!Types.empty()) {
53    Types.back()->Destroy(*this);
54    Types.pop_back();
55  }
56
57  {
58    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
59      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
60    while (I != E) {
61      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
62      delete R;
63    }
64  }
65
66  {
67    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
68      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
69    while (I != E) {
70      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
71      delete R;
72    }
73  }
74
75  // Destroy nested-name-specifiers.
76  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
77         NNS = NestedNameSpecifiers.begin(),
78         NNSEnd = NestedNameSpecifiers.end();
79       NNS != NNSEnd;
80       /* Increment in loop */)
81    (*NNS++).Destroy(*this);
82
83  if (GlobalNestedNameSpecifier)
84    GlobalNestedNameSpecifier->Destroy(*this);
85
86  TUDecl->Destroy(*this);
87}
88
89void ASTContext::InitializeBuiltins(IdentifierTable &idents) {
90  BuiltinInfo.InitializeBuiltins(idents, LangOpts.NoBuiltin);
91}
92
93void
94ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
95  ExternalSource.reset(Source.take());
96}
97
98void ASTContext::PrintStats() const {
99  fprintf(stderr, "*** AST Context Stats:\n");
100  fprintf(stderr, "  %d types total.\n", (int)Types.size());
101
102  unsigned counts[] = {
103#define TYPE(Name, Parent) 0,
104#define ABSTRACT_TYPE(Name, Parent)
105#include "clang/AST/TypeNodes.def"
106    0 // Extra
107  };
108
109  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
110    Type *T = Types[i];
111    counts[(unsigned)T->getTypeClass()]++;
112  }
113
114  unsigned Idx = 0;
115  unsigned TotalBytes = 0;
116#define TYPE(Name, Parent)                                              \
117  if (counts[Idx])                                                      \
118    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
119  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
120  ++Idx;
121#define ABSTRACT_TYPE(Name, Parent)
122#include "clang/AST/TypeNodes.def"
123
124  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
125
126  if (ExternalSource.get()) {
127    fprintf(stderr, "\n");
128    ExternalSource->PrintStats();
129  }
130}
131
132
133void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
134  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
135}
136
137void ASTContext::InitBuiltinTypes() {
138  assert(VoidTy.isNull() && "Context reinitialized?");
139
140  // C99 6.2.5p19.
141  InitBuiltinType(VoidTy,              BuiltinType::Void);
142
143  // C99 6.2.5p2.
144  InitBuiltinType(BoolTy,              BuiltinType::Bool);
145  // C99 6.2.5p3.
146  if (LangOpts.CharIsSigned)
147    InitBuiltinType(CharTy,            BuiltinType::Char_S);
148  else
149    InitBuiltinType(CharTy,            BuiltinType::Char_U);
150  // C99 6.2.5p4.
151  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
152  InitBuiltinType(ShortTy,             BuiltinType::Short);
153  InitBuiltinType(IntTy,               BuiltinType::Int);
154  InitBuiltinType(LongTy,              BuiltinType::Long);
155  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
156
157  // C99 6.2.5p6.
158  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
159  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
160  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
161  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
162  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
163
164  // C99 6.2.5p10.
165  InitBuiltinType(FloatTy,             BuiltinType::Float);
166  InitBuiltinType(DoubleTy,            BuiltinType::Double);
167  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
168
169  // GNU extension, 128-bit integers.
170  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
171  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
172
173  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
174    InitBuiltinType(WCharTy,           BuiltinType::WChar);
175  else // C99
176    WCharTy = getFromTargetType(Target.getWCharType());
177
178  // Placeholder type for functions.
179  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
180
181  // Placeholder type for type-dependent expressions whose type is
182  // completely unknown. No code should ever check a type against
183  // DependentTy and users should never see it; however, it is here to
184  // help diagnose failures to properly check for type-dependent
185  // expressions.
186  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
187
188  // C99 6.2.5p11.
189  FloatComplexTy      = getComplexType(FloatTy);
190  DoubleComplexTy     = getComplexType(DoubleTy);
191  LongDoubleComplexTy = getComplexType(LongDoubleTy);
192
193  BuiltinVaListType = QualType();
194  ObjCIdType = QualType();
195  IdStructType = 0;
196  ObjCClassType = QualType();
197  ClassStructType = 0;
198
199  ObjCConstantStringType = QualType();
200
201  // void * type
202  VoidPtrTy = getPointerType(VoidTy);
203
204  // nullptr type (C++0x 2.14.7)
205  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
206}
207
208//===----------------------------------------------------------------------===//
209//                         Type Sizing and Analysis
210//===----------------------------------------------------------------------===//
211
212/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
213/// scalar floating point type.
214const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
215  const BuiltinType *BT = T->getAsBuiltinType();
216  assert(BT && "Not a floating point type!");
217  switch (BT->getKind()) {
218  default: assert(0 && "Not a floating point type!");
219  case BuiltinType::Float:      return Target.getFloatFormat();
220  case BuiltinType::Double:     return Target.getDoubleFormat();
221  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
222  }
223}
224
225/// getDeclAlign - Return a conservative estimate of the alignment of the
226/// specified decl.  Note that bitfields do not have a valid alignment, so
227/// this method will assert on them.
228unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
229  unsigned Align = Target.getCharWidth();
230
231  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
232    Align = std::max(Align, AA->getAlignment());
233
234  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
235    QualType T = VD->getType();
236    if (const ReferenceType* RT = T->getAsReferenceType()) {
237      unsigned AS = RT->getPointeeType().getAddressSpace();
238      Align = Target.getPointerAlign(AS);
239    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
240      // Incomplete or function types default to 1.
241      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
242        T = cast<ArrayType>(T)->getElementType();
243
244      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
245    }
246  }
247
248  return Align / Target.getCharWidth();
249}
250
251/// getTypeSize - Return the size of the specified type, in bits.  This method
252/// does not work on incomplete types.
253std::pair<uint64_t, unsigned>
254ASTContext::getTypeInfo(const Type *T) {
255  uint64_t Width=0;
256  unsigned Align=8;
257  switch (T->getTypeClass()) {
258#define TYPE(Class, Base)
259#define ABSTRACT_TYPE(Class, Base)
260#define NON_CANONICAL_TYPE(Class, Base)
261#define DEPENDENT_TYPE(Class, Base) case Type::Class:
262#include "clang/AST/TypeNodes.def"
263    assert(false && "Should not see dependent types");
264    break;
265
266  case Type::FunctionNoProto:
267  case Type::FunctionProto:
268    // GCC extension: alignof(function) = 32 bits
269    Width = 0;
270    Align = 32;
271    break;
272
273  case Type::IncompleteArray:
274  case Type::VariableArray:
275    Width = 0;
276    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
277    break;
278
279  case Type::ConstantArray: {
280    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
281
282    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
283    Width = EltInfo.first*CAT->getSize().getZExtValue();
284    Align = EltInfo.second;
285    break;
286  }
287  case Type::ExtVector:
288  case Type::Vector: {
289    std::pair<uint64_t, unsigned> EltInfo =
290      getTypeInfo(cast<VectorType>(T)->getElementType());
291    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
292    Align = Width;
293    // If the alignment is not a power of 2, round up to the next power of 2.
294    // This happens for non-power-of-2 length vectors.
295    // FIXME: this should probably be a target property.
296    Align = 1 << llvm::Log2_32_Ceil(Align);
297    break;
298  }
299
300  case Type::Builtin:
301    switch (cast<BuiltinType>(T)->getKind()) {
302    default: assert(0 && "Unknown builtin type!");
303    case BuiltinType::Void:
304      // GCC extension: alignof(void) = 8 bits.
305      Width = 0;
306      Align = 8;
307      break;
308
309    case BuiltinType::Bool:
310      Width = Target.getBoolWidth();
311      Align = Target.getBoolAlign();
312      break;
313    case BuiltinType::Char_S:
314    case BuiltinType::Char_U:
315    case BuiltinType::UChar:
316    case BuiltinType::SChar:
317      Width = Target.getCharWidth();
318      Align = Target.getCharAlign();
319      break;
320    case BuiltinType::WChar:
321      Width = Target.getWCharWidth();
322      Align = Target.getWCharAlign();
323      break;
324    case BuiltinType::UShort:
325    case BuiltinType::Short:
326      Width = Target.getShortWidth();
327      Align = Target.getShortAlign();
328      break;
329    case BuiltinType::UInt:
330    case BuiltinType::Int:
331      Width = Target.getIntWidth();
332      Align = Target.getIntAlign();
333      break;
334    case BuiltinType::ULong:
335    case BuiltinType::Long:
336      Width = Target.getLongWidth();
337      Align = Target.getLongAlign();
338      break;
339    case BuiltinType::ULongLong:
340    case BuiltinType::LongLong:
341      Width = Target.getLongLongWidth();
342      Align = Target.getLongLongAlign();
343      break;
344    case BuiltinType::Int128:
345    case BuiltinType::UInt128:
346      Width = 128;
347      Align = 128; // int128_t is 128-bit aligned on all targets.
348      break;
349    case BuiltinType::Float:
350      Width = Target.getFloatWidth();
351      Align = Target.getFloatAlign();
352      break;
353    case BuiltinType::Double:
354      Width = Target.getDoubleWidth();
355      Align = Target.getDoubleAlign();
356      break;
357    case BuiltinType::LongDouble:
358      Width = Target.getLongDoubleWidth();
359      Align = Target.getLongDoubleAlign();
360      break;
361    case BuiltinType::NullPtr:
362      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
363      Align = Target.getPointerAlign(0); //   == sizeof(void*)
364      break;
365    }
366    break;
367  case Type::FixedWidthInt:
368    // FIXME: This isn't precisely correct; the width/alignment should depend
369    // on the available types for the target
370    Width = cast<FixedWidthIntType>(T)->getWidth();
371    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
372    Align = Width;
373    break;
374  case Type::ExtQual:
375    // FIXME: Pointers into different addr spaces could have different sizes and
376    // alignment requirements: getPointerInfo should take an AddrSpace.
377    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
378  case Type::ObjCQualifiedId:
379  case Type::ObjCQualifiedInterface:
380    Width = Target.getPointerWidth(0);
381    Align = Target.getPointerAlign(0);
382    break;
383  case Type::BlockPointer: {
384    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
385    Width = Target.getPointerWidth(AS);
386    Align = Target.getPointerAlign(AS);
387    break;
388  }
389  case Type::Pointer: {
390    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
391    Width = Target.getPointerWidth(AS);
392    Align = Target.getPointerAlign(AS);
393    break;
394  }
395  case Type::LValueReference:
396  case Type::RValueReference:
397    // "When applied to a reference or a reference type, the result is the size
398    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
399    // FIXME: This is wrong for struct layout: a reference in a struct has
400    // pointer size.
401    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
402  case Type::MemberPointer: {
403    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
404    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
405    // If we ever want to support other ABIs this needs to be abstracted.
406
407    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
408    std::pair<uint64_t, unsigned> PtrDiffInfo =
409      getTypeInfo(getPointerDiffType());
410    Width = PtrDiffInfo.first;
411    if (Pointee->isFunctionType())
412      Width *= 2;
413    Align = PtrDiffInfo.second;
414    break;
415  }
416  case Type::Complex: {
417    // Complex types have the same alignment as their elements, but twice the
418    // size.
419    std::pair<uint64_t, unsigned> EltInfo =
420      getTypeInfo(cast<ComplexType>(T)->getElementType());
421    Width = EltInfo.first*2;
422    Align = EltInfo.second;
423    break;
424  }
425  case Type::ObjCInterface: {
426    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
427    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
428    Width = Layout.getSize();
429    Align = Layout.getAlignment();
430    break;
431  }
432  case Type::Record:
433  case Type::Enum: {
434    const TagType *TT = cast<TagType>(T);
435
436    if (TT->getDecl()->isInvalidDecl()) {
437      Width = 1;
438      Align = 1;
439      break;
440    }
441
442    if (const EnumType *ET = dyn_cast<EnumType>(TT))
443      return getTypeInfo(ET->getDecl()->getIntegerType());
444
445    const RecordType *RT = cast<RecordType>(TT);
446    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
447    Width = Layout.getSize();
448    Align = Layout.getAlignment();
449    break;
450  }
451
452  case Type::Typedef: {
453    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
454    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
455      Align = Aligned->getAlignment();
456      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
457    } else
458      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
459    break;
460  }
461
462  case Type::TypeOfExpr:
463    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
464                         .getTypePtr());
465
466  case Type::TypeOf:
467    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
468
469  case Type::QualifiedName:
470    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
471
472  case Type::TemplateSpecialization:
473    assert(getCanonicalType(T) != T &&
474           "Cannot request the size of a dependent type");
475    // FIXME: this is likely to be wrong once we support template
476    // aliases, since a template alias could refer to a typedef that
477    // has an __aligned__ attribute on it.
478    return getTypeInfo(getCanonicalType(T));
479  }
480
481  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
482  return std::make_pair(Width, Align);
483}
484
485/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
486/// type for the current target in bits.  This can be different than the ABI
487/// alignment in cases where it is beneficial for performance to overalign
488/// a data type.
489unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
490  unsigned ABIAlign = getTypeAlign(T);
491
492  // Double and long long should be naturally aligned if possible.
493  if (const ComplexType* CT = T->getAsComplexType())
494    T = CT->getElementType().getTypePtr();
495  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
496      T->isSpecificBuiltinType(BuiltinType::LongLong))
497    return std::max(ABIAlign, (unsigned)getTypeSize(T));
498
499  return ABIAlign;
500}
501
502
503/// LayoutField - Field layout.
504void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
505                                  bool IsUnion, unsigned StructPacking,
506                                  ASTContext &Context) {
507  unsigned FieldPacking = StructPacking;
508  uint64_t FieldOffset = IsUnion ? 0 : Size;
509  uint64_t FieldSize;
510  unsigned FieldAlign;
511
512  // FIXME: Should this override struct packing? Probably we want to
513  // take the minimum?
514  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
515    FieldPacking = PA->getAlignment();
516
517  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
518    // TODO: Need to check this algorithm on other targets!
519    //       (tested on Linux-X86)
520    FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue();
521
522    std::pair<uint64_t, unsigned> FieldInfo =
523      Context.getTypeInfo(FD->getType());
524    uint64_t TypeSize = FieldInfo.first;
525
526    // Determine the alignment of this bitfield. The packing
527    // attributes define a maximum and the alignment attribute defines
528    // a minimum.
529    // FIXME: What is the right behavior when the specified alignment
530    // is smaller than the specified packing?
531    FieldAlign = FieldInfo.second;
532    if (FieldPacking)
533      FieldAlign = std::min(FieldAlign, FieldPacking);
534    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
535      FieldAlign = std::max(FieldAlign, AA->getAlignment());
536
537    // Check if we need to add padding to give the field the correct
538    // alignment.
539    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
540      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
541
542    // Padding members don't affect overall alignment
543    if (!FD->getIdentifier())
544      FieldAlign = 1;
545  } else {
546    if (FD->getType()->isIncompleteArrayType()) {
547      // This is a flexible array member; we can't directly
548      // query getTypeInfo about these, so we figure it out here.
549      // Flexible array members don't have any size, but they
550      // have to be aligned appropriately for their element type.
551      FieldSize = 0;
552      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
553      FieldAlign = Context.getTypeAlign(ATy->getElementType());
554    } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
555      unsigned AS = RT->getPointeeType().getAddressSpace();
556      FieldSize = Context.Target.getPointerWidth(AS);
557      FieldAlign = Context.Target.getPointerAlign(AS);
558    } else {
559      std::pair<uint64_t, unsigned> FieldInfo =
560        Context.getTypeInfo(FD->getType());
561      FieldSize = FieldInfo.first;
562      FieldAlign = FieldInfo.second;
563    }
564
565    // Determine the alignment of this bitfield. The packing
566    // attributes define a maximum and the alignment attribute defines
567    // a minimum. Additionally, the packing alignment must be at least
568    // a byte for non-bitfields.
569    //
570    // FIXME: What is the right behavior when the specified alignment
571    // is smaller than the specified packing?
572    if (FieldPacking)
573      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
574    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
575      FieldAlign = std::max(FieldAlign, AA->getAlignment());
576
577    // Round up the current record size to the field's alignment boundary.
578    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
579  }
580
581  // Place this field at the current location.
582  FieldOffsets[FieldNo] = FieldOffset;
583
584  // Reserve space for this field.
585  if (IsUnion) {
586    Size = std::max(Size, FieldSize);
587  } else {
588    Size = FieldOffset + FieldSize;
589  }
590
591  // Remember the next available offset.
592  NextOffset = Size;
593
594  // Remember max struct/class alignment.
595  Alignment = std::max(Alignment, FieldAlign);
596}
597
598static void CollectLocalObjCIvars(ASTContext *Ctx,
599                                  const ObjCInterfaceDecl *OI,
600                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
601  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
602       E = OI->ivar_end(); I != E; ++I) {
603    ObjCIvarDecl *IVDecl = *I;
604    if (!IVDecl->isInvalidDecl())
605      Fields.push_back(cast<FieldDecl>(IVDecl));
606  }
607}
608
609void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
610                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
611  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
612    CollectObjCIvars(SuperClass, Fields);
613  CollectLocalObjCIvars(this, OI, Fields);
614}
615
616/// ShallowCollectObjCIvars -
617/// Collect all ivars, including those synthesized, in the current class.
618///
619void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
620                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
621                                 bool CollectSynthesized) {
622  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
623         E = OI->ivar_end(); I != E; ++I) {
624     Ivars.push_back(*I);
625  }
626  if (CollectSynthesized)
627    CollectSynthesizedIvars(OI, Ivars);
628}
629
630void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
631                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
632  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(*this),
633       E = PD->prop_end(*this); I != E; ++I)
634    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
635      Ivars.push_back(Ivar);
636
637  // Also look into nested protocols.
638  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
639       E = PD->protocol_end(); P != E; ++P)
640    CollectProtocolSynthesizedIvars(*P, Ivars);
641}
642
643/// CollectSynthesizedIvars -
644/// This routine collect synthesized ivars for the designated class.
645///
646void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
647                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
648  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
649       E = OI->prop_end(*this); I != E; ++I) {
650    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
651      Ivars.push_back(Ivar);
652  }
653  // Also look into interface's protocol list for properties declared
654  // in the protocol and whose ivars are synthesized.
655  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
656       PE = OI->protocol_end(); P != PE; ++P) {
657    ObjCProtocolDecl *PD = (*P);
658    CollectProtocolSynthesizedIvars(PD, Ivars);
659  }
660}
661
662unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
663  unsigned count = 0;
664  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(*this),
665       E = PD->prop_end(*this); I != E; ++I)
666    if ((*I)->getPropertyIvarDecl())
667      ++count;
668
669  // Also look into nested protocols.
670  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
671       E = PD->protocol_end(); P != E; ++P)
672    count += CountProtocolSynthesizedIvars(*P);
673  return count;
674}
675
676unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI)
677{
678  unsigned count = 0;
679  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(*this),
680       E = OI->prop_end(*this); I != E; ++I) {
681    if ((*I)->getPropertyIvarDecl())
682      ++count;
683  }
684  // Also look into interface's protocol list for properties declared
685  // in the protocol and whose ivars are synthesized.
686  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
687       PE = OI->protocol_end(); P != PE; ++P) {
688    ObjCProtocolDecl *PD = (*P);
689    count += CountProtocolSynthesizedIvars(PD);
690  }
691  return count;
692}
693
694/// getInterfaceLayoutImpl - Get or compute information about the
695/// layout of the given interface.
696///
697/// \param Impl - If given, also include the layout of the interface's
698/// implementation. This may differ by including synthesized ivars.
699const ASTRecordLayout &
700ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
701                          const ObjCImplementationDecl *Impl) {
702  assert(!D->isForwardDecl() && "Invalid interface decl!");
703
704  // Look up this layout, if already laid out, return what we have.
705  ObjCContainerDecl *Key =
706    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
707  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
708    return *Entry;
709
710  unsigned FieldCount = D->ivar_size();
711  // Add in synthesized ivar count if laying out an implementation.
712  if (Impl) {
713    unsigned SynthCount = CountSynthesizedIvars(D);
714    FieldCount += SynthCount;
715    // If there aren't any sythesized ivars then reuse the interface
716    // entry. Note we can't cache this because we simply free all
717    // entries later; however we shouldn't look up implementations
718    // frequently.
719    if (SynthCount == 0)
720      return getObjCLayout(D, 0);
721  }
722
723  ASTRecordLayout *NewEntry = NULL;
724  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
725    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
726    unsigned Alignment = SL.getAlignment();
727
728    // We start laying out ivars not at the end of the superclass
729    // structure, but at the next byte following the last field.
730    uint64_t Size = llvm::RoundUpToAlignment(SL.NextOffset, 8);
731
732    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(Size, Alignment);
733    NewEntry->InitializeLayout(FieldCount);
734  } else {
735    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout();
736    NewEntry->InitializeLayout(FieldCount);
737  }
738
739  unsigned StructPacking = 0;
740  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
741    StructPacking = PA->getAlignment();
742
743  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
744    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
745                                    AA->getAlignment()));
746
747  // Layout each ivar sequentially.
748  unsigned i = 0;
749  llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
750  ShallowCollectObjCIvars(D, Ivars, Impl);
751  for (unsigned k = 0, e = Ivars.size(); k != e; ++k)
752       NewEntry->LayoutField(Ivars[k], i++, false, StructPacking, *this);
753
754  // Finally, round the size of the total struct up to the alignment of the
755  // struct itself.
756  NewEntry->FinalizeLayout();
757  return *NewEntry;
758}
759
760const ASTRecordLayout &
761ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
762  return getObjCLayout(D, 0);
763}
764
765const ASTRecordLayout &
766ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
767  return getObjCLayout(D->getClassInterface(), D);
768}
769
770/// getASTRecordLayout - Get or compute information about the layout of the
771/// specified record (struct/union/class), which indicates its size and field
772/// position information.
773const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
774  D = D->getDefinition(*this);
775  assert(D && "Cannot get layout of forward declarations!");
776
777  // Look up this layout, if already laid out, return what we have.
778  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
779  if (Entry) return *Entry;
780
781  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
782  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
783  ASTRecordLayout *NewEntry = new ASTRecordLayout();
784  Entry = NewEntry;
785
786  // FIXME: Avoid linear walk through the fields, if possible.
787  NewEntry->InitializeLayout(std::distance(D->field_begin(*this),
788                                           D->field_end(*this)));
789  bool IsUnion = D->isUnion();
790
791  unsigned StructPacking = 0;
792  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
793    StructPacking = PA->getAlignment();
794
795  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
796    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
797                                    AA->getAlignment()));
798
799  // Layout each field, for now, just sequentially, respecting alignment.  In
800  // the future, this will need to be tweakable by targets.
801  unsigned FieldIdx = 0;
802  for (RecordDecl::field_iterator Field = D->field_begin(*this),
803                               FieldEnd = D->field_end(*this);
804       Field != FieldEnd; (void)++Field, ++FieldIdx)
805    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
806
807  // Finally, round the size of the total struct up to the alignment of the
808  // struct itself.
809  NewEntry->FinalizeLayout(getLangOptions().CPlusPlus);
810  return *NewEntry;
811}
812
813//===----------------------------------------------------------------------===//
814//                   Type creation/memoization methods
815//===----------------------------------------------------------------------===//
816
817QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
818  QualType CanT = getCanonicalType(T);
819  if (CanT.getAddressSpace() == AddressSpace)
820    return T;
821
822  // If we are composing extended qualifiers together, merge together into one
823  // ExtQualType node.
824  unsigned CVRQuals = T.getCVRQualifiers();
825  QualType::GCAttrTypes GCAttr = QualType::GCNone;
826  Type *TypeNode = T.getTypePtr();
827
828  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
829    // If this type already has an address space specified, it cannot get
830    // another one.
831    assert(EQT->getAddressSpace() == 0 &&
832           "Type cannot be in multiple addr spaces!");
833    GCAttr = EQT->getObjCGCAttr();
834    TypeNode = EQT->getBaseType();
835  }
836
837  // Check if we've already instantiated this type.
838  llvm::FoldingSetNodeID ID;
839  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
840  void *InsertPos = 0;
841  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
842    return QualType(EXTQy, CVRQuals);
843
844  // If the base type isn't canonical, this won't be a canonical type either,
845  // so fill in the canonical type field.
846  QualType Canonical;
847  if (!TypeNode->isCanonical()) {
848    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
849
850    // Update InsertPos, the previous call could have invalidated it.
851    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
852    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
853  }
854  ExtQualType *New =
855    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
856  ExtQualTypes.InsertNode(New, InsertPos);
857  Types.push_back(New);
858  return QualType(New, CVRQuals);
859}
860
861QualType ASTContext::getObjCGCQualType(QualType T,
862                                       QualType::GCAttrTypes GCAttr) {
863  QualType CanT = getCanonicalType(T);
864  if (CanT.getObjCGCAttr() == GCAttr)
865    return T;
866
867  if (T->isPointerType()) {
868    QualType Pointee = T->getAsPointerType()->getPointeeType();
869    if (Pointee->isPointerType()) {
870      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
871      return getPointerType(ResultType);
872    }
873  }
874  // If we are composing extended qualifiers together, merge together into one
875  // ExtQualType node.
876  unsigned CVRQuals = T.getCVRQualifiers();
877  Type *TypeNode = T.getTypePtr();
878  unsigned AddressSpace = 0;
879
880  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
881    // If this type already has an address space specified, it cannot get
882    // another one.
883    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
884           "Type cannot be in multiple addr spaces!");
885    AddressSpace = EQT->getAddressSpace();
886    TypeNode = EQT->getBaseType();
887  }
888
889  // Check if we've already instantiated an gc qual'd type of this type.
890  llvm::FoldingSetNodeID ID;
891  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
892  void *InsertPos = 0;
893  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
894    return QualType(EXTQy, CVRQuals);
895
896  // If the base type isn't canonical, this won't be a canonical type either,
897  // so fill in the canonical type field.
898  // FIXME: Isn't this also not canonical if the base type is a array
899  // or pointer type?  I can't find any documentation for objc_gc, though...
900  QualType Canonical;
901  if (!T->isCanonical()) {
902    Canonical = getObjCGCQualType(CanT, GCAttr);
903
904    // Update InsertPos, the previous call could have invalidated it.
905    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
906    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
907  }
908  ExtQualType *New =
909    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
910  ExtQualTypes.InsertNode(New, InsertPos);
911  Types.push_back(New);
912  return QualType(New, CVRQuals);
913}
914
915/// getComplexType - Return the uniqued reference to the type for a complex
916/// number with the specified element type.
917QualType ASTContext::getComplexType(QualType T) {
918  // Unique pointers, to guarantee there is only one pointer of a particular
919  // structure.
920  llvm::FoldingSetNodeID ID;
921  ComplexType::Profile(ID, T);
922
923  void *InsertPos = 0;
924  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
925    return QualType(CT, 0);
926
927  // If the pointee type isn't canonical, this won't be a canonical type either,
928  // so fill in the canonical type field.
929  QualType Canonical;
930  if (!T->isCanonical()) {
931    Canonical = getComplexType(getCanonicalType(T));
932
933    // Get the new insert position for the node we care about.
934    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
935    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
936  }
937  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
938  Types.push_back(New);
939  ComplexTypes.InsertNode(New, InsertPos);
940  return QualType(New, 0);
941}
942
943QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
944  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
945     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
946  FixedWidthIntType *&Entry = Map[Width];
947  if (!Entry)
948    Entry = new FixedWidthIntType(Width, Signed);
949  return QualType(Entry, 0);
950}
951
952/// getPointerType - Return the uniqued reference to the type for a pointer to
953/// the specified type.
954QualType ASTContext::getPointerType(QualType T) {
955  // Unique pointers, to guarantee there is only one pointer of a particular
956  // structure.
957  llvm::FoldingSetNodeID ID;
958  PointerType::Profile(ID, T);
959
960  void *InsertPos = 0;
961  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
962    return QualType(PT, 0);
963
964  // If the pointee type isn't canonical, this won't be a canonical type either,
965  // so fill in the canonical type field.
966  QualType Canonical;
967  if (!T->isCanonical()) {
968    Canonical = getPointerType(getCanonicalType(T));
969
970    // Get the new insert position for the node we care about.
971    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
972    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
973  }
974  PointerType *New = new (*this,8) PointerType(T, Canonical);
975  Types.push_back(New);
976  PointerTypes.InsertNode(New, InsertPos);
977  return QualType(New, 0);
978}
979
980/// getBlockPointerType - Return the uniqued reference to the type for
981/// a pointer to the specified block.
982QualType ASTContext::getBlockPointerType(QualType T) {
983  assert(T->isFunctionType() && "block of function types only");
984  // Unique pointers, to guarantee there is only one block of a particular
985  // structure.
986  llvm::FoldingSetNodeID ID;
987  BlockPointerType::Profile(ID, T);
988
989  void *InsertPos = 0;
990  if (BlockPointerType *PT =
991        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
992    return QualType(PT, 0);
993
994  // If the block pointee type isn't canonical, this won't be a canonical
995  // type either so fill in the canonical type field.
996  QualType Canonical;
997  if (!T->isCanonical()) {
998    Canonical = getBlockPointerType(getCanonicalType(T));
999
1000    // Get the new insert position for the node we care about.
1001    BlockPointerType *NewIP =
1002      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1003    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1004  }
1005  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1006  Types.push_back(New);
1007  BlockPointerTypes.InsertNode(New, InsertPos);
1008  return QualType(New, 0);
1009}
1010
1011/// getLValueReferenceType - Return the uniqued reference to the type for an
1012/// lvalue reference to the specified type.
1013QualType ASTContext::getLValueReferenceType(QualType T) {
1014  // Unique pointers, to guarantee there is only one pointer of a particular
1015  // structure.
1016  llvm::FoldingSetNodeID ID;
1017  ReferenceType::Profile(ID, T);
1018
1019  void *InsertPos = 0;
1020  if (LValueReferenceType *RT =
1021        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1022    return QualType(RT, 0);
1023
1024  // If the referencee type isn't canonical, this won't be a canonical type
1025  // either, so fill in the canonical type field.
1026  QualType Canonical;
1027  if (!T->isCanonical()) {
1028    Canonical = getLValueReferenceType(getCanonicalType(T));
1029
1030    // Get the new insert position for the node we care about.
1031    LValueReferenceType *NewIP =
1032      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1033    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1034  }
1035
1036  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1037  Types.push_back(New);
1038  LValueReferenceTypes.InsertNode(New, InsertPos);
1039  return QualType(New, 0);
1040}
1041
1042/// getRValueReferenceType - Return the uniqued reference to the type for an
1043/// rvalue reference to the specified type.
1044QualType ASTContext::getRValueReferenceType(QualType T) {
1045  // Unique pointers, to guarantee there is only one pointer of a particular
1046  // structure.
1047  llvm::FoldingSetNodeID ID;
1048  ReferenceType::Profile(ID, T);
1049
1050  void *InsertPos = 0;
1051  if (RValueReferenceType *RT =
1052        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1053    return QualType(RT, 0);
1054
1055  // If the referencee type isn't canonical, this won't be a canonical type
1056  // either, so fill in the canonical type field.
1057  QualType Canonical;
1058  if (!T->isCanonical()) {
1059    Canonical = getRValueReferenceType(getCanonicalType(T));
1060
1061    // Get the new insert position for the node we care about.
1062    RValueReferenceType *NewIP =
1063      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1064    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1065  }
1066
1067  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1068  Types.push_back(New);
1069  RValueReferenceTypes.InsertNode(New, InsertPos);
1070  return QualType(New, 0);
1071}
1072
1073/// getMemberPointerType - Return the uniqued reference to the type for a
1074/// member pointer to the specified type, in the specified class.
1075QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1076{
1077  // Unique pointers, to guarantee there is only one pointer of a particular
1078  // structure.
1079  llvm::FoldingSetNodeID ID;
1080  MemberPointerType::Profile(ID, T, Cls);
1081
1082  void *InsertPos = 0;
1083  if (MemberPointerType *PT =
1084      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1085    return QualType(PT, 0);
1086
1087  // If the pointee or class type isn't canonical, this won't be a canonical
1088  // type either, so fill in the canonical type field.
1089  QualType Canonical;
1090  if (!T->isCanonical()) {
1091    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1092
1093    // Get the new insert position for the node we care about.
1094    MemberPointerType *NewIP =
1095      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1096    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1097  }
1098  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1099  Types.push_back(New);
1100  MemberPointerTypes.InsertNode(New, InsertPos);
1101  return QualType(New, 0);
1102}
1103
1104/// getConstantArrayType - Return the unique reference to the type for an
1105/// array of the specified element type.
1106QualType ASTContext::getConstantArrayType(QualType EltTy,
1107                                          const llvm::APInt &ArySizeIn,
1108                                          ArrayType::ArraySizeModifier ASM,
1109                                          unsigned EltTypeQuals) {
1110  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1111         "Constant array of VLAs is illegal!");
1112
1113  // Convert the array size into a canonical width matching the pointer size for
1114  // the target.
1115  llvm::APInt ArySize(ArySizeIn);
1116  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1117
1118  llvm::FoldingSetNodeID ID;
1119  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1120
1121  void *InsertPos = 0;
1122  if (ConstantArrayType *ATP =
1123      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1124    return QualType(ATP, 0);
1125
1126  // If the element type isn't canonical, this won't be a canonical type either,
1127  // so fill in the canonical type field.
1128  QualType Canonical;
1129  if (!EltTy->isCanonical()) {
1130    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1131                                     ASM, EltTypeQuals);
1132    // Get the new insert position for the node we care about.
1133    ConstantArrayType *NewIP =
1134      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1135    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1136  }
1137
1138  ConstantArrayType *New =
1139    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1140  ConstantArrayTypes.InsertNode(New, InsertPos);
1141  Types.push_back(New);
1142  return QualType(New, 0);
1143}
1144
1145/// getVariableArrayType - Returns a non-unique reference to the type for a
1146/// variable array of the specified element type.
1147QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts,
1148                                          ArrayType::ArraySizeModifier ASM,
1149                                          unsigned EltTypeQuals) {
1150  // Since we don't unique expressions, it isn't possible to unique VLA's
1151  // that have an expression provided for their size.
1152
1153  VariableArrayType *New =
1154    new(*this,8)VariableArrayType(EltTy,QualType(), NumElts, ASM, EltTypeQuals);
1155
1156  VariableArrayTypes.push_back(New);
1157  Types.push_back(New);
1158  return QualType(New, 0);
1159}
1160
1161/// getDependentSizedArrayType - Returns a non-unique reference to
1162/// the type for a dependently-sized array of the specified element
1163/// type. FIXME: We will need these to be uniqued, or at least
1164/// comparable, at some point.
1165QualType ASTContext::getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1166                                                ArrayType::ArraySizeModifier ASM,
1167                                                unsigned EltTypeQuals) {
1168  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1169         "Size must be type- or value-dependent!");
1170
1171  // Since we don't unique expressions, it isn't possible to unique
1172  // dependently-sized array types.
1173
1174  DependentSizedArrayType *New =
1175      new (*this,8) DependentSizedArrayType(EltTy, QualType(), NumElts,
1176                                            ASM, EltTypeQuals);
1177
1178  DependentSizedArrayTypes.push_back(New);
1179  Types.push_back(New);
1180  return QualType(New, 0);
1181}
1182
1183QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1184                                            ArrayType::ArraySizeModifier ASM,
1185                                            unsigned EltTypeQuals) {
1186  llvm::FoldingSetNodeID ID;
1187  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1188
1189  void *InsertPos = 0;
1190  if (IncompleteArrayType *ATP =
1191       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1192    return QualType(ATP, 0);
1193
1194  // If the element type isn't canonical, this won't be a canonical type
1195  // either, so fill in the canonical type field.
1196  QualType Canonical;
1197
1198  if (!EltTy->isCanonical()) {
1199    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1200                                       ASM, EltTypeQuals);
1201
1202    // Get the new insert position for the node we care about.
1203    IncompleteArrayType *NewIP =
1204      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1205    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1206  }
1207
1208  IncompleteArrayType *New = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1209                                                           ASM, EltTypeQuals);
1210
1211  IncompleteArrayTypes.InsertNode(New, InsertPos);
1212  Types.push_back(New);
1213  return QualType(New, 0);
1214}
1215
1216/// getVectorType - Return the unique reference to a vector type of
1217/// the specified element type and size. VectorType must be a built-in type.
1218QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1219  BuiltinType *baseType;
1220
1221  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1222  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1223
1224  // Check if we've already instantiated a vector of this type.
1225  llvm::FoldingSetNodeID ID;
1226  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1227  void *InsertPos = 0;
1228  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1229    return QualType(VTP, 0);
1230
1231  // If the element type isn't canonical, this won't be a canonical type either,
1232  // so fill in the canonical type field.
1233  QualType Canonical;
1234  if (!vecType->isCanonical()) {
1235    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1236
1237    // Get the new insert position for the node we care about.
1238    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1239    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1240  }
1241  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1242  VectorTypes.InsertNode(New, InsertPos);
1243  Types.push_back(New);
1244  return QualType(New, 0);
1245}
1246
1247/// getExtVectorType - Return the unique reference to an extended vector type of
1248/// the specified element type and size. VectorType must be a built-in type.
1249QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1250  BuiltinType *baseType;
1251
1252  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1253  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1254
1255  // Check if we've already instantiated a vector of this type.
1256  llvm::FoldingSetNodeID ID;
1257  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1258  void *InsertPos = 0;
1259  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1260    return QualType(VTP, 0);
1261
1262  // If the element type isn't canonical, this won't be a canonical type either,
1263  // so fill in the canonical type field.
1264  QualType Canonical;
1265  if (!vecType->isCanonical()) {
1266    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1267
1268    // Get the new insert position for the node we care about.
1269    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1270    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1271  }
1272  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1273  VectorTypes.InsertNode(New, InsertPos);
1274  Types.push_back(New);
1275  return QualType(New, 0);
1276}
1277
1278/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1279///
1280QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1281  // Unique functions, to guarantee there is only one function of a particular
1282  // structure.
1283  llvm::FoldingSetNodeID ID;
1284  FunctionNoProtoType::Profile(ID, ResultTy);
1285
1286  void *InsertPos = 0;
1287  if (FunctionNoProtoType *FT =
1288        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1289    return QualType(FT, 0);
1290
1291  QualType Canonical;
1292  if (!ResultTy->isCanonical()) {
1293    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1294
1295    // Get the new insert position for the node we care about.
1296    FunctionNoProtoType *NewIP =
1297      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1298    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1299  }
1300
1301  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1302  Types.push_back(New);
1303  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1304  return QualType(New, 0);
1305}
1306
1307/// getFunctionType - Return a normal function type with a typed argument
1308/// list.  isVariadic indicates whether the argument list includes '...'.
1309QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1310                                     unsigned NumArgs, bool isVariadic,
1311                                     unsigned TypeQuals, bool hasExceptionSpec,
1312                                     bool hasAnyExceptionSpec, unsigned NumExs,
1313                                     const QualType *ExArray) {
1314  // Unique functions, to guarantee there is only one function of a particular
1315  // structure.
1316  llvm::FoldingSetNodeID ID;
1317  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1318                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1319                             NumExs, ExArray);
1320
1321  void *InsertPos = 0;
1322  if (FunctionProtoType *FTP =
1323        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1324    return QualType(FTP, 0);
1325
1326  // Determine whether the type being created is already canonical or not.
1327  bool isCanonical = ResultTy->isCanonical();
1328  if (hasExceptionSpec)
1329    isCanonical = false;
1330  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1331    if (!ArgArray[i]->isCanonical())
1332      isCanonical = false;
1333
1334  // If this type isn't canonical, get the canonical version of it.
1335  // The exception spec is not part of the canonical type.
1336  QualType Canonical;
1337  if (!isCanonical) {
1338    llvm::SmallVector<QualType, 16> CanonicalArgs;
1339    CanonicalArgs.reserve(NumArgs);
1340    for (unsigned i = 0; i != NumArgs; ++i)
1341      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1342
1343    Canonical = getFunctionType(getCanonicalType(ResultTy),
1344                                CanonicalArgs.data(), NumArgs,
1345                                isVariadic, TypeQuals);
1346
1347    // Get the new insert position for the node we care about.
1348    FunctionProtoType *NewIP =
1349      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1350    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1351  }
1352
1353  // FunctionProtoType objects are allocated with extra bytes after them
1354  // for two variable size arrays (for parameter and exception types) at the
1355  // end of them.
1356  FunctionProtoType *FTP =
1357    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1358                                 NumArgs*sizeof(QualType) +
1359                                 NumExs*sizeof(QualType), 8);
1360  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1361                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1362                              ExArray, NumExs, Canonical);
1363  Types.push_back(FTP);
1364  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1365  return QualType(FTP, 0);
1366}
1367
1368/// getTypeDeclType - Return the unique reference to the type for the
1369/// specified type declaration.
1370QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1371  assert(Decl && "Passed null for Decl param");
1372  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1373
1374  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1375    return getTypedefType(Typedef);
1376  else if (isa<TemplateTypeParmDecl>(Decl)) {
1377    assert(false && "Template type parameter types are always available.");
1378  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1379    return getObjCInterfaceType(ObjCInterface);
1380
1381  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1382    if (PrevDecl)
1383      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1384    else
1385      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1386  }
1387  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1388    if (PrevDecl)
1389      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1390    else
1391      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1392  }
1393  else
1394    assert(false && "TypeDecl without a type?");
1395
1396  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1397  return QualType(Decl->TypeForDecl, 0);
1398}
1399
1400/// getTypedefType - Return the unique reference to the type for the
1401/// specified typename decl.
1402QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1403  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1404
1405  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1406  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1407  Types.push_back(Decl->TypeForDecl);
1408  return QualType(Decl->TypeForDecl, 0);
1409}
1410
1411/// getObjCInterfaceType - Return the unique reference to the type for the
1412/// specified ObjC interface decl.
1413QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
1414  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1415
1416  ObjCInterfaceDecl *OID = const_cast<ObjCInterfaceDecl*>(Decl);
1417  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, OID);
1418  Types.push_back(Decl->TypeForDecl);
1419  return QualType(Decl->TypeForDecl, 0);
1420}
1421
1422/// \brief Retrieve the template type parameter type for a template
1423/// parameter with the given depth, index, and (optionally) name.
1424QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1425                                             IdentifierInfo *Name) {
1426  llvm::FoldingSetNodeID ID;
1427  TemplateTypeParmType::Profile(ID, Depth, Index, Name);
1428  void *InsertPos = 0;
1429  TemplateTypeParmType *TypeParm
1430    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1431
1432  if (TypeParm)
1433    return QualType(TypeParm, 0);
1434
1435  if (Name)
1436    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, Name,
1437                                         getTemplateTypeParmType(Depth, Index));
1438  else
1439    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index);
1440
1441  Types.push_back(TypeParm);
1442  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1443
1444  return QualType(TypeParm, 0);
1445}
1446
1447QualType
1448ASTContext::getTemplateSpecializationType(TemplateName Template,
1449                                          const TemplateArgument *Args,
1450                                          unsigned NumArgs,
1451                                          QualType Canon) {
1452  if (!Canon.isNull())
1453    Canon = getCanonicalType(Canon);
1454
1455  llvm::FoldingSetNodeID ID;
1456  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1457
1458  void *InsertPos = 0;
1459  TemplateSpecializationType *Spec
1460    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1461
1462  if (Spec)
1463    return QualType(Spec, 0);
1464
1465  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1466                        sizeof(TemplateArgument) * NumArgs),
1467                       8);
1468  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1469  Types.push_back(Spec);
1470  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1471
1472  return QualType(Spec, 0);
1473}
1474
1475QualType
1476ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1477                                 QualType NamedType) {
1478  llvm::FoldingSetNodeID ID;
1479  QualifiedNameType::Profile(ID, NNS, NamedType);
1480
1481  void *InsertPos = 0;
1482  QualifiedNameType *T
1483    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1484  if (T)
1485    return QualType(T, 0);
1486
1487  T = new (*this) QualifiedNameType(NNS, NamedType,
1488                                    getCanonicalType(NamedType));
1489  Types.push_back(T);
1490  QualifiedNameTypes.InsertNode(T, InsertPos);
1491  return QualType(T, 0);
1492}
1493
1494QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1495                                     const IdentifierInfo *Name,
1496                                     QualType Canon) {
1497  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1498
1499  if (Canon.isNull()) {
1500    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1501    if (CanonNNS != NNS)
1502      Canon = getTypenameType(CanonNNS, Name);
1503  }
1504
1505  llvm::FoldingSetNodeID ID;
1506  TypenameType::Profile(ID, NNS, Name);
1507
1508  void *InsertPos = 0;
1509  TypenameType *T
1510    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1511  if (T)
1512    return QualType(T, 0);
1513
1514  T = new (*this) TypenameType(NNS, Name, Canon);
1515  Types.push_back(T);
1516  TypenameTypes.InsertNode(T, InsertPos);
1517  return QualType(T, 0);
1518}
1519
1520QualType
1521ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1522                            const TemplateSpecializationType *TemplateId,
1523                            QualType Canon) {
1524  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1525
1526  if (Canon.isNull()) {
1527    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1528    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1529    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1530      const TemplateSpecializationType *CanonTemplateId
1531        = CanonType->getAsTemplateSpecializationType();
1532      assert(CanonTemplateId &&
1533             "Canonical type must also be a template specialization type");
1534      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1535    }
1536  }
1537
1538  llvm::FoldingSetNodeID ID;
1539  TypenameType::Profile(ID, NNS, TemplateId);
1540
1541  void *InsertPos = 0;
1542  TypenameType *T
1543    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1544  if (T)
1545    return QualType(T, 0);
1546
1547  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1548  Types.push_back(T);
1549  TypenameTypes.InsertNode(T, InsertPos);
1550  return QualType(T, 0);
1551}
1552
1553/// CmpProtocolNames - Comparison predicate for sorting protocols
1554/// alphabetically.
1555static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1556                            const ObjCProtocolDecl *RHS) {
1557  return LHS->getDeclName() < RHS->getDeclName();
1558}
1559
1560static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1561                                   unsigned &NumProtocols) {
1562  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1563
1564  // Sort protocols, keyed by name.
1565  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1566
1567  // Remove duplicates.
1568  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1569  NumProtocols = ProtocolsEnd-Protocols;
1570}
1571
1572
1573/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1574/// the given interface decl and the conforming protocol list.
1575QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1576                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1577  // Sort the protocol list alphabetically to canonicalize it.
1578  SortAndUniqueProtocols(Protocols, NumProtocols);
1579
1580  llvm::FoldingSetNodeID ID;
1581  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1582
1583  void *InsertPos = 0;
1584  if (ObjCQualifiedInterfaceType *QT =
1585      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1586    return QualType(QT, 0);
1587
1588  // No Match;
1589  ObjCQualifiedInterfaceType *QType =
1590    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1591
1592  Types.push_back(QType);
1593  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1594  return QualType(QType, 0);
1595}
1596
1597/// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for the 'id' decl
1598/// and the conforming protocol list.
1599QualType ASTContext::getObjCQualifiedIdType(ObjCProtocolDecl **Protocols,
1600                                            unsigned NumProtocols) {
1601  // Sort the protocol list alphabetically to canonicalize it.
1602  SortAndUniqueProtocols(Protocols, NumProtocols);
1603
1604  llvm::FoldingSetNodeID ID;
1605  ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols);
1606
1607  void *InsertPos = 0;
1608  if (ObjCQualifiedIdType *QT =
1609        ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos))
1610    return QualType(QT, 0);
1611
1612  // No Match;
1613  ObjCQualifiedIdType *QType =
1614    new (*this,8) ObjCQualifiedIdType(Protocols, NumProtocols);
1615  Types.push_back(QType);
1616  ObjCQualifiedIdTypes.InsertNode(QType, InsertPos);
1617  return QualType(QType, 0);
1618}
1619
1620/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1621/// TypeOfExprType AST's (since expression's are never shared). For example,
1622/// multiple declarations that refer to "typeof(x)" all contain different
1623/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1624/// on canonical type's (which are always unique).
1625QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1626  QualType Canonical = getCanonicalType(tofExpr->getType());
1627  TypeOfExprType *toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1628  Types.push_back(toe);
1629  return QualType(toe, 0);
1630}
1631
1632/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1633/// TypeOfType AST's. The only motivation to unique these nodes would be
1634/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1635/// an issue. This doesn't effect the type checker, since it operates
1636/// on canonical type's (which are always unique).
1637QualType ASTContext::getTypeOfType(QualType tofType) {
1638  QualType Canonical = getCanonicalType(tofType);
1639  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1640  Types.push_back(tot);
1641  return QualType(tot, 0);
1642}
1643
1644/// getTagDeclType - Return the unique reference to the type for the
1645/// specified TagDecl (struct/union/class/enum) decl.
1646QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1647  assert (Decl);
1648  return getTypeDeclType(Decl);
1649}
1650
1651/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1652/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1653/// needs to agree with the definition in <stddef.h>.
1654QualType ASTContext::getSizeType() const {
1655  return getFromTargetType(Target.getSizeType());
1656}
1657
1658/// getSignedWCharType - Return the type of "signed wchar_t".
1659/// Used when in C++, as a GCC extension.
1660QualType ASTContext::getSignedWCharType() const {
1661  // FIXME: derive from "Target" ?
1662  return WCharTy;
1663}
1664
1665/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1666/// Used when in C++, as a GCC extension.
1667QualType ASTContext::getUnsignedWCharType() const {
1668  // FIXME: derive from "Target" ?
1669  return UnsignedIntTy;
1670}
1671
1672/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1673/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1674QualType ASTContext::getPointerDiffType() const {
1675  return getFromTargetType(Target.getPtrDiffType(0));
1676}
1677
1678//===----------------------------------------------------------------------===//
1679//                              Type Operators
1680//===----------------------------------------------------------------------===//
1681
1682/// getCanonicalType - Return the canonical (structural) type corresponding to
1683/// the specified potentially non-canonical type.  The non-canonical version
1684/// of a type may have many "decorated" versions of types.  Decorators can
1685/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1686/// to be free of any of these, allowing two canonical types to be compared
1687/// for exact equality with a simple pointer comparison.
1688QualType ASTContext::getCanonicalType(QualType T) {
1689  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1690
1691  // If the result has type qualifiers, make sure to canonicalize them as well.
1692  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1693  if (TypeQuals == 0) return CanType;
1694
1695  // If the type qualifiers are on an array type, get the canonical type of the
1696  // array with the qualifiers applied to the element type.
1697  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1698  if (!AT)
1699    return CanType.getQualifiedType(TypeQuals);
1700
1701  // Get the canonical version of the element with the extra qualifiers on it.
1702  // This can recursively sink qualifiers through multiple levels of arrays.
1703  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1704  NewEltTy = getCanonicalType(NewEltTy);
1705
1706  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1707    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1708                                CAT->getIndexTypeQualifier());
1709  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1710    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1711                                  IAT->getIndexTypeQualifier());
1712
1713  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1714    return getDependentSizedArrayType(NewEltTy, DSAT->getSizeExpr(),
1715                                      DSAT->getSizeModifier(),
1716                                      DSAT->getIndexTypeQualifier());
1717
1718  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1719  return getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1720                              VAT->getSizeModifier(),
1721                              VAT->getIndexTypeQualifier());
1722}
1723
1724Decl *ASTContext::getCanonicalDecl(Decl *D) {
1725  if (!D)
1726    return 0;
1727
1728  if (TagDecl *Tag = dyn_cast<TagDecl>(D)) {
1729    QualType T = getTagDeclType(Tag);
1730    return cast<TagDecl>(cast<TagType>(T.getTypePtr()->CanonicalType)
1731                         ->getDecl());
1732  }
1733
1734  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(D)) {
1735    while (Template->getPreviousDeclaration())
1736      Template = Template->getPreviousDeclaration();
1737    return Template;
1738  }
1739
1740  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1741    while (Function->getPreviousDeclaration())
1742      Function = Function->getPreviousDeclaration();
1743    return const_cast<FunctionDecl *>(Function);
1744  }
1745
1746  if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1747    while (Var->getPreviousDeclaration())
1748      Var = Var->getPreviousDeclaration();
1749    return const_cast<VarDecl *>(Var);
1750  }
1751
1752  return D;
1753}
1754
1755TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
1756  // If this template name refers to a template, the canonical
1757  // template name merely stores the template itself.
1758  if (TemplateDecl *Template = Name.getAsTemplateDecl())
1759    return TemplateName(cast<TemplateDecl>(getCanonicalDecl(Template)));
1760
1761  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
1762  assert(DTN && "Non-dependent template names must refer to template decls.");
1763  return DTN->CanonicalTemplateName;
1764}
1765
1766NestedNameSpecifier *
1767ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
1768  if (!NNS)
1769    return 0;
1770
1771  switch (NNS->getKind()) {
1772  case NestedNameSpecifier::Identifier:
1773    // Canonicalize the prefix but keep the identifier the same.
1774    return NestedNameSpecifier::Create(*this,
1775                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
1776                                       NNS->getAsIdentifier());
1777
1778  case NestedNameSpecifier::Namespace:
1779    // A namespace is canonical; build a nested-name-specifier with
1780    // this namespace and no prefix.
1781    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
1782
1783  case NestedNameSpecifier::TypeSpec:
1784  case NestedNameSpecifier::TypeSpecWithTemplate: {
1785    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
1786    NestedNameSpecifier *Prefix = 0;
1787
1788    // FIXME: This isn't the right check!
1789    if (T->isDependentType())
1790      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
1791
1792    return NestedNameSpecifier::Create(*this, Prefix,
1793                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
1794                                       T.getTypePtr());
1795  }
1796
1797  case NestedNameSpecifier::Global:
1798    // The global specifier is canonical and unique.
1799    return NNS;
1800  }
1801
1802  // Required to silence a GCC warning
1803  return 0;
1804}
1805
1806
1807const ArrayType *ASTContext::getAsArrayType(QualType T) {
1808  // Handle the non-qualified case efficiently.
1809  if (T.getCVRQualifiers() == 0) {
1810    // Handle the common positive case fast.
1811    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1812      return AT;
1813  }
1814
1815  // Handle the common negative case fast, ignoring CVR qualifiers.
1816  QualType CType = T->getCanonicalTypeInternal();
1817
1818  // Make sure to look through type qualifiers (like ExtQuals) for the negative
1819  // test.
1820  if (!isa<ArrayType>(CType) &&
1821      !isa<ArrayType>(CType.getUnqualifiedType()))
1822    return 0;
1823
1824  // Apply any CVR qualifiers from the array type to the element type.  This
1825  // implements C99 6.7.3p8: "If the specification of an array type includes
1826  // any type qualifiers, the element type is so qualified, not the array type."
1827
1828  // If we get here, we either have type qualifiers on the type, or we have
1829  // sugar such as a typedef in the way.  If we have type qualifiers on the type
1830  // we must propagate them down into the elemeng type.
1831  unsigned CVRQuals = T.getCVRQualifiers();
1832  unsigned AddrSpace = 0;
1833  Type *Ty = T.getTypePtr();
1834
1835  // Rip through ExtQualType's and typedefs to get to a concrete type.
1836  while (1) {
1837    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
1838      AddrSpace = EXTQT->getAddressSpace();
1839      Ty = EXTQT->getBaseType();
1840    } else {
1841      T = Ty->getDesugaredType();
1842      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
1843        break;
1844      CVRQuals |= T.getCVRQualifiers();
1845      Ty = T.getTypePtr();
1846    }
1847  }
1848
1849  // If we have a simple case, just return now.
1850  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1851  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
1852    return ATy;
1853
1854  // Otherwise, we have an array and we have qualifiers on it.  Push the
1855  // qualifiers into the array element type and return a new array type.
1856  // Get the canonical version of the element with the extra qualifiers on it.
1857  // This can recursively sink qualifiers through multiple levels of arrays.
1858  QualType NewEltTy = ATy->getElementType();
1859  if (AddrSpace)
1860    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
1861  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
1862
1863  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
1864    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
1865                                                CAT->getSizeModifier(),
1866                                                CAT->getIndexTypeQualifier()));
1867  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
1868    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
1869                                                  IAT->getSizeModifier(),
1870                                                 IAT->getIndexTypeQualifier()));
1871
1872  if (const DependentSizedArrayType *DSAT
1873        = dyn_cast<DependentSizedArrayType>(ATy))
1874    return cast<ArrayType>(
1875                     getDependentSizedArrayType(NewEltTy,
1876                                                DSAT->getSizeExpr(),
1877                                                DSAT->getSizeModifier(),
1878                                                DSAT->getIndexTypeQualifier()));
1879
1880  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
1881  return cast<ArrayType>(getVariableArrayType(NewEltTy, VAT->getSizeExpr(),
1882                                              VAT->getSizeModifier(),
1883                                              VAT->getIndexTypeQualifier()));
1884}
1885
1886
1887/// getArrayDecayedType - Return the properly qualified result of decaying the
1888/// specified array type to a pointer.  This operation is non-trivial when
1889/// handling typedefs etc.  The canonical type of "T" must be an array type,
1890/// this returns a pointer to a properly qualified element of the array.
1891///
1892/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1893QualType ASTContext::getArrayDecayedType(QualType Ty) {
1894  // Get the element type with 'getAsArrayType' so that we don't lose any
1895  // typedefs in the element type of the array.  This also handles propagation
1896  // of type qualifiers from the array type into the element type if present
1897  // (C99 6.7.3p8).
1898  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
1899  assert(PrettyArrayType && "Not an array type!");
1900
1901  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
1902
1903  // int x[restrict 4] ->  int *restrict
1904  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
1905}
1906
1907QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
1908  QualType ElemTy = VAT->getElementType();
1909
1910  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
1911    return getBaseElementType(VAT);
1912
1913  return ElemTy;
1914}
1915
1916/// getFloatingRank - Return a relative rank for floating point types.
1917/// This routine will assert if passed a built-in type that isn't a float.
1918static FloatingRank getFloatingRank(QualType T) {
1919  if (const ComplexType *CT = T->getAsComplexType())
1920    return getFloatingRank(CT->getElementType());
1921
1922  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
1923  switch (T->getAsBuiltinType()->getKind()) {
1924  default: assert(0 && "getFloatingRank(): not a floating type");
1925  case BuiltinType::Float:      return FloatRank;
1926  case BuiltinType::Double:     return DoubleRank;
1927  case BuiltinType::LongDouble: return LongDoubleRank;
1928  }
1929}
1930
1931/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1932/// point or a complex type (based on typeDomain/typeSize).
1933/// 'typeDomain' is a real floating point or complex type.
1934/// 'typeSize' is a real floating point or complex type.
1935QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
1936                                                       QualType Domain) const {
1937  FloatingRank EltRank = getFloatingRank(Size);
1938  if (Domain->isComplexType()) {
1939    switch (EltRank) {
1940    default: assert(0 && "getFloatingRank(): illegal value for rank");
1941    case FloatRank:      return FloatComplexTy;
1942    case DoubleRank:     return DoubleComplexTy;
1943    case LongDoubleRank: return LongDoubleComplexTy;
1944    }
1945  }
1946
1947  assert(Domain->isRealFloatingType() && "Unknown domain!");
1948  switch (EltRank) {
1949  default: assert(0 && "getFloatingRank(): illegal value for rank");
1950  case FloatRank:      return FloatTy;
1951  case DoubleRank:     return DoubleTy;
1952  case LongDoubleRank: return LongDoubleTy;
1953  }
1954}
1955
1956/// getFloatingTypeOrder - Compare the rank of the two specified floating
1957/// point types, ignoring the domain of the type (i.e. 'double' ==
1958/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1959/// LHS < RHS, return -1.
1960int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
1961  FloatingRank LHSR = getFloatingRank(LHS);
1962  FloatingRank RHSR = getFloatingRank(RHS);
1963
1964  if (LHSR == RHSR)
1965    return 0;
1966  if (LHSR > RHSR)
1967    return 1;
1968  return -1;
1969}
1970
1971/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
1972/// routine will assert if passed a built-in type that isn't an integer or enum,
1973/// or if it is not canonicalized.
1974unsigned ASTContext::getIntegerRank(Type *T) {
1975  assert(T->isCanonical() && "T should be canonicalized");
1976  if (EnumType* ET = dyn_cast<EnumType>(T))
1977    T = ET->getDecl()->getIntegerType().getTypePtr();
1978
1979  // There are two things which impact the integer rank: the width, and
1980  // the ordering of builtins.  The builtin ordering is encoded in the
1981  // bottom three bits; the width is encoded in the bits above that.
1982  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
1983    return FWIT->getWidth() << 3;
1984  }
1985
1986  switch (cast<BuiltinType>(T)->getKind()) {
1987  default: assert(0 && "getIntegerRank(): not a built-in integer");
1988  case BuiltinType::Bool:
1989    return 1 + (getIntWidth(BoolTy) << 3);
1990  case BuiltinType::Char_S:
1991  case BuiltinType::Char_U:
1992  case BuiltinType::SChar:
1993  case BuiltinType::UChar:
1994    return 2 + (getIntWidth(CharTy) << 3);
1995  case BuiltinType::Short:
1996  case BuiltinType::UShort:
1997    return 3 + (getIntWidth(ShortTy) << 3);
1998  case BuiltinType::Int:
1999  case BuiltinType::UInt:
2000    return 4 + (getIntWidth(IntTy) << 3);
2001  case BuiltinType::Long:
2002  case BuiltinType::ULong:
2003    return 5 + (getIntWidth(LongTy) << 3);
2004  case BuiltinType::LongLong:
2005  case BuiltinType::ULongLong:
2006    return 6 + (getIntWidth(LongLongTy) << 3);
2007  case BuiltinType::Int128:
2008  case BuiltinType::UInt128:
2009    return 7 + (getIntWidth(Int128Ty) << 3);
2010  }
2011}
2012
2013/// getIntegerTypeOrder - Returns the highest ranked integer type:
2014/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2015/// LHS < RHS, return -1.
2016int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2017  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2018  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2019  if (LHSC == RHSC) return 0;
2020
2021  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2022  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2023
2024  unsigned LHSRank = getIntegerRank(LHSC);
2025  unsigned RHSRank = getIntegerRank(RHSC);
2026
2027  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2028    if (LHSRank == RHSRank) return 0;
2029    return LHSRank > RHSRank ? 1 : -1;
2030  }
2031
2032  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2033  if (LHSUnsigned) {
2034    // If the unsigned [LHS] type is larger, return it.
2035    if (LHSRank >= RHSRank)
2036      return 1;
2037
2038    // If the signed type can represent all values of the unsigned type, it
2039    // wins.  Because we are dealing with 2's complement and types that are
2040    // powers of two larger than each other, this is always safe.
2041    return -1;
2042  }
2043
2044  // If the unsigned [RHS] type is larger, return it.
2045  if (RHSRank >= LHSRank)
2046    return -1;
2047
2048  // If the signed type can represent all values of the unsigned type, it
2049  // wins.  Because we are dealing with 2's complement and types that are
2050  // powers of two larger than each other, this is always safe.
2051  return 1;
2052}
2053
2054// getCFConstantStringType - Return the type used for constant CFStrings.
2055QualType ASTContext::getCFConstantStringType() {
2056  if (!CFConstantStringTypeDecl) {
2057    CFConstantStringTypeDecl =
2058      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2059                         &Idents.get("NSConstantString"));
2060    QualType FieldTypes[4];
2061
2062    // const int *isa;
2063    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2064    // int flags;
2065    FieldTypes[1] = IntTy;
2066    // const char *str;
2067    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2068    // long length;
2069    FieldTypes[3] = LongTy;
2070
2071    // Create fields
2072    for (unsigned i = 0; i < 4; ++i) {
2073      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2074                                           SourceLocation(), 0,
2075                                           FieldTypes[i], /*BitWidth=*/0,
2076                                           /*Mutable=*/false);
2077      CFConstantStringTypeDecl->addDecl(*this, Field);
2078    }
2079
2080    CFConstantStringTypeDecl->completeDefinition(*this);
2081  }
2082
2083  return getTagDeclType(CFConstantStringTypeDecl);
2084}
2085
2086void ASTContext::setCFConstantStringType(QualType T) {
2087  const RecordType *Rec = T->getAsRecordType();
2088  assert(Rec && "Invalid CFConstantStringType");
2089  CFConstantStringTypeDecl = Rec->getDecl();
2090}
2091
2092QualType ASTContext::getObjCFastEnumerationStateType()
2093{
2094  if (!ObjCFastEnumerationStateTypeDecl) {
2095    ObjCFastEnumerationStateTypeDecl =
2096      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2097                         &Idents.get("__objcFastEnumerationState"));
2098
2099    QualType FieldTypes[] = {
2100      UnsignedLongTy,
2101      getPointerType(ObjCIdType),
2102      getPointerType(UnsignedLongTy),
2103      getConstantArrayType(UnsignedLongTy,
2104                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2105    };
2106
2107    for (size_t i = 0; i < 4; ++i) {
2108      FieldDecl *Field = FieldDecl::Create(*this,
2109                                           ObjCFastEnumerationStateTypeDecl,
2110                                           SourceLocation(), 0,
2111                                           FieldTypes[i], /*BitWidth=*/0,
2112                                           /*Mutable=*/false);
2113      ObjCFastEnumerationStateTypeDecl->addDecl(*this, Field);
2114    }
2115
2116    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2117  }
2118
2119  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2120}
2121
2122void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2123  const RecordType *Rec = T->getAsRecordType();
2124  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2125  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2126}
2127
2128// This returns true if a type has been typedefed to BOOL:
2129// typedef <type> BOOL;
2130static bool isTypeTypedefedAsBOOL(QualType T) {
2131  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2132    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2133      return II->isStr("BOOL");
2134
2135  return false;
2136}
2137
2138/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2139/// purpose.
2140int ASTContext::getObjCEncodingTypeSize(QualType type) {
2141  uint64_t sz = getTypeSize(type);
2142
2143  // Make all integer and enum types at least as large as an int
2144  if (sz > 0 && type->isIntegralType())
2145    sz = std::max(sz, getTypeSize(IntTy));
2146  // Treat arrays as pointers, since that's how they're passed in.
2147  else if (type->isArrayType())
2148    sz = getTypeSize(VoidPtrTy);
2149  return sz / getTypeSize(CharTy);
2150}
2151
2152/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2153/// declaration.
2154void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2155                                              std::string& S) {
2156  // FIXME: This is not very efficient.
2157  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2158  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2159  // Encode result type.
2160  getObjCEncodingForType(Decl->getResultType(), S);
2161  // Compute size of all parameters.
2162  // Start with computing size of a pointer in number of bytes.
2163  // FIXME: There might(should) be a better way of doing this computation!
2164  SourceLocation Loc;
2165  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2166  // The first two arguments (self and _cmd) are pointers; account for
2167  // their size.
2168  int ParmOffset = 2 * PtrSize;
2169  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2170       E = Decl->param_end(); PI != E; ++PI) {
2171    QualType PType = (*PI)->getType();
2172    int sz = getObjCEncodingTypeSize(PType);
2173    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2174    ParmOffset += sz;
2175  }
2176  S += llvm::utostr(ParmOffset);
2177  S += "@0:";
2178  S += llvm::utostr(PtrSize);
2179
2180  // Argument types.
2181  ParmOffset = 2 * PtrSize;
2182  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2183       E = Decl->param_end(); PI != E; ++PI) {
2184    ParmVarDecl *PVDecl = *PI;
2185    QualType PType = PVDecl->getOriginalType();
2186    if (const ArrayType *AT =
2187          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2188      // Use array's original type only if it has known number of
2189      // elements.
2190      if (!isa<ConstantArrayType>(AT))
2191        PType = PVDecl->getType();
2192    } else if (PType->isFunctionType())
2193      PType = PVDecl->getType();
2194    // Process argument qualifiers for user supplied arguments; such as,
2195    // 'in', 'inout', etc.
2196    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2197    getObjCEncodingForType(PType, S);
2198    S += llvm::utostr(ParmOffset);
2199    ParmOffset += getObjCEncodingTypeSize(PType);
2200  }
2201}
2202
2203/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2204/// property declaration. If non-NULL, Container must be either an
2205/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2206/// NULL when getting encodings for protocol properties.
2207/// Property attributes are stored as a comma-delimited C string. The simple
2208/// attributes readonly and bycopy are encoded as single characters. The
2209/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2210/// encoded as single characters, followed by an identifier. Property types
2211/// are also encoded as a parametrized attribute. The characters used to encode
2212/// these attributes are defined by the following enumeration:
2213/// @code
2214/// enum PropertyAttributes {
2215/// kPropertyReadOnly = 'R',   // property is read-only.
2216/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2217/// kPropertyByref = '&',  // property is a reference to the value last assigned
2218/// kPropertyDynamic = 'D',    // property is dynamic
2219/// kPropertyGetter = 'G',     // followed by getter selector name
2220/// kPropertySetter = 'S',     // followed by setter selector name
2221/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2222/// kPropertyType = 't'              // followed by old-style type encoding.
2223/// kPropertyWeak = 'W'              // 'weak' property
2224/// kPropertyStrong = 'P'            // property GC'able
2225/// kPropertyNonAtomic = 'N'         // property non-atomic
2226/// };
2227/// @endcode
2228void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2229                                                const Decl *Container,
2230                                                std::string& S) {
2231  // Collect information from the property implementation decl(s).
2232  bool Dynamic = false;
2233  ObjCPropertyImplDecl *SynthesizePID = 0;
2234
2235  // FIXME: Duplicated code due to poor abstraction.
2236  if (Container) {
2237    if (const ObjCCategoryImplDecl *CID =
2238        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2239      for (ObjCCategoryImplDecl::propimpl_iterator
2240             i = CID->propimpl_begin(*this), e = CID->propimpl_end(*this);
2241           i != e; ++i) {
2242        ObjCPropertyImplDecl *PID = *i;
2243        if (PID->getPropertyDecl() == PD) {
2244          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2245            Dynamic = true;
2246          } else {
2247            SynthesizePID = PID;
2248          }
2249        }
2250      }
2251    } else {
2252      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2253      for (ObjCCategoryImplDecl::propimpl_iterator
2254             i = OID->propimpl_begin(*this), e = OID->propimpl_end(*this);
2255           i != e; ++i) {
2256        ObjCPropertyImplDecl *PID = *i;
2257        if (PID->getPropertyDecl() == PD) {
2258          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2259            Dynamic = true;
2260          } else {
2261            SynthesizePID = PID;
2262          }
2263        }
2264      }
2265    }
2266  }
2267
2268  // FIXME: This is not very efficient.
2269  S = "T";
2270
2271  // Encode result type.
2272  // GCC has some special rules regarding encoding of properties which
2273  // closely resembles encoding of ivars.
2274  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2275                             true /* outermost type */,
2276                             true /* encoding for property */);
2277
2278  if (PD->isReadOnly()) {
2279    S += ",R";
2280  } else {
2281    switch (PD->getSetterKind()) {
2282    case ObjCPropertyDecl::Assign: break;
2283    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2284    case ObjCPropertyDecl::Retain: S += ",&"; break;
2285    }
2286  }
2287
2288  // It really isn't clear at all what this means, since properties
2289  // are "dynamic by default".
2290  if (Dynamic)
2291    S += ",D";
2292
2293  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2294    S += ",N";
2295
2296  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2297    S += ",G";
2298    S += PD->getGetterName().getAsString();
2299  }
2300
2301  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2302    S += ",S";
2303    S += PD->getSetterName().getAsString();
2304  }
2305
2306  if (SynthesizePID) {
2307    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2308    S += ",V";
2309    S += OID->getNameAsString();
2310  }
2311
2312  // FIXME: OBJCGC: weak & strong
2313}
2314
2315/// getLegacyIntegralTypeEncoding -
2316/// Another legacy compatibility encoding: 32-bit longs are encoded as
2317/// 'l' or 'L' , but not always.  For typedefs, we need to use
2318/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2319///
2320void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2321  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2322    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2323      if (BT->getKind() == BuiltinType::ULong &&
2324          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2325        PointeeTy = UnsignedIntTy;
2326      else
2327        if (BT->getKind() == BuiltinType::Long &&
2328            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2329          PointeeTy = IntTy;
2330    }
2331  }
2332}
2333
2334void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2335                                        const FieldDecl *Field) {
2336  // We follow the behavior of gcc, expanding structures which are
2337  // directly pointed to, and expanding embedded structures. Note that
2338  // these rules are sufficient to prevent recursive encoding of the
2339  // same type.
2340  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2341                             true /* outermost type */);
2342}
2343
2344static void EncodeBitField(const ASTContext *Context, std::string& S,
2345                           const FieldDecl *FD) {
2346  const Expr *E = FD->getBitWidth();
2347  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2348  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2349  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2350  S += 'b';
2351  S += llvm::utostr(N);
2352}
2353
2354void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2355                                            bool ExpandPointedToStructures,
2356                                            bool ExpandStructures,
2357                                            const FieldDecl *FD,
2358                                            bool OutermostType,
2359                                            bool EncodingProperty) {
2360  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2361    if (FD && FD->isBitField()) {
2362      EncodeBitField(this, S, FD);
2363    }
2364    else {
2365      char encoding;
2366      switch (BT->getKind()) {
2367      default: assert(0 && "Unhandled builtin type kind");
2368      case BuiltinType::Void:       encoding = 'v'; break;
2369      case BuiltinType::Bool:       encoding = 'B'; break;
2370      case BuiltinType::Char_U:
2371      case BuiltinType::UChar:      encoding = 'C'; break;
2372      case BuiltinType::UShort:     encoding = 'S'; break;
2373      case BuiltinType::UInt:       encoding = 'I'; break;
2374      case BuiltinType::ULong:
2375          encoding =
2376            (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2377          break;
2378      case BuiltinType::UInt128:    encoding = 'T'; break;
2379      case BuiltinType::ULongLong:  encoding = 'Q'; break;
2380      case BuiltinType::Char_S:
2381      case BuiltinType::SChar:      encoding = 'c'; break;
2382      case BuiltinType::Short:      encoding = 's'; break;
2383      case BuiltinType::Int:        encoding = 'i'; break;
2384      case BuiltinType::Long:
2385        encoding =
2386          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2387        break;
2388      case BuiltinType::LongLong:   encoding = 'q'; break;
2389      case BuiltinType::Int128:     encoding = 't'; break;
2390      case BuiltinType::Float:      encoding = 'f'; break;
2391      case BuiltinType::Double:     encoding = 'd'; break;
2392      case BuiltinType::LongDouble: encoding = 'd'; break;
2393      }
2394
2395      S += encoding;
2396    }
2397  } else if (const ComplexType *CT = T->getAsComplexType()) {
2398    S += 'j';
2399    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2400                               false);
2401  } else if (T->isObjCQualifiedIdType()) {
2402    getObjCEncodingForTypeImpl(getObjCIdType(), S,
2403                               ExpandPointedToStructures,
2404                               ExpandStructures, FD);
2405    if (FD || EncodingProperty) {
2406      // Note that we do extended encoding of protocol qualifer list
2407      // Only when doing ivar or property encoding.
2408      const ObjCQualifiedIdType *QIDT = T->getAsObjCQualifiedIdType();
2409      S += '"';
2410      for (ObjCQualifiedIdType::qual_iterator I = QIDT->qual_begin(),
2411           E = QIDT->qual_end(); I != E; ++I) {
2412        S += '<';
2413        S += (*I)->getNameAsString();
2414        S += '>';
2415      }
2416      S += '"';
2417    }
2418    return;
2419  }
2420  else if (const PointerType *PT = T->getAsPointerType()) {
2421    QualType PointeeTy = PT->getPointeeType();
2422    bool isReadOnly = false;
2423    // For historical/compatibility reasons, the read-only qualifier of the
2424    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2425    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2426    // Also, do not emit the 'r' for anything but the outermost type!
2427    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2428      if (OutermostType && T.isConstQualified()) {
2429        isReadOnly = true;
2430        S += 'r';
2431      }
2432    }
2433    else if (OutermostType) {
2434      QualType P = PointeeTy;
2435      while (P->getAsPointerType())
2436        P = P->getAsPointerType()->getPointeeType();
2437      if (P.isConstQualified()) {
2438        isReadOnly = true;
2439        S += 'r';
2440      }
2441    }
2442    if (isReadOnly) {
2443      // Another legacy compatibility encoding. Some ObjC qualifier and type
2444      // combinations need to be rearranged.
2445      // Rewrite "in const" from "nr" to "rn"
2446      const char * s = S.c_str();
2447      int len = S.length();
2448      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2449        std::string replace = "rn";
2450        S.replace(S.end()-2, S.end(), replace);
2451      }
2452    }
2453    if (isObjCIdStructType(PointeeTy)) {
2454      S += '@';
2455      return;
2456    }
2457    else if (PointeeTy->isObjCInterfaceType()) {
2458      if (!EncodingProperty &&
2459          isa<TypedefType>(PointeeTy.getTypePtr())) {
2460        // Another historical/compatibility reason.
2461        // We encode the underlying type which comes out as
2462        // {...};
2463        S += '^';
2464        getObjCEncodingForTypeImpl(PointeeTy, S,
2465                                   false, ExpandPointedToStructures,
2466                                   NULL);
2467        return;
2468      }
2469      S += '@';
2470      if (FD || EncodingProperty) {
2471        const ObjCInterfaceType *OIT =
2472                PointeeTy.getUnqualifiedType()->getAsObjCInterfaceType();
2473        ObjCInterfaceDecl *OI = OIT->getDecl();
2474        S += '"';
2475        S += OI->getNameAsCString();
2476        for (ObjCInterfaceType::qual_iterator I = OIT->qual_begin(),
2477             E = OIT->qual_end(); I != E; ++I) {
2478          S += '<';
2479          S += (*I)->getNameAsString();
2480          S += '>';
2481        }
2482        S += '"';
2483      }
2484      return;
2485    } else if (isObjCClassStructType(PointeeTy)) {
2486      S += '#';
2487      return;
2488    } else if (isObjCSelType(PointeeTy)) {
2489      S += ':';
2490      return;
2491    }
2492
2493    if (PointeeTy->isCharType()) {
2494      // char pointer types should be encoded as '*' unless it is a
2495      // type that has been typedef'd to 'BOOL'.
2496      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2497        S += '*';
2498        return;
2499      }
2500    }
2501
2502    S += '^';
2503    getLegacyIntegralTypeEncoding(PointeeTy);
2504
2505    getObjCEncodingForTypeImpl(PointeeTy, S,
2506                               false, ExpandPointedToStructures,
2507                               NULL);
2508  } else if (const ArrayType *AT =
2509               // Ignore type qualifiers etc.
2510               dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2511    if (isa<IncompleteArrayType>(AT)) {
2512      // Incomplete arrays are encoded as a pointer to the array element.
2513      S += '^';
2514
2515      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2516                                 false, ExpandStructures, FD);
2517    } else {
2518      S += '[';
2519
2520      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2521        S += llvm::utostr(CAT->getSize().getZExtValue());
2522      else {
2523        //Variable length arrays are encoded as a regular array with 0 elements.
2524        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2525        S += '0';
2526      }
2527
2528      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2529                                 false, ExpandStructures, FD);
2530      S += ']';
2531    }
2532  } else if (T->getAsFunctionType()) {
2533    S += '?';
2534  } else if (const RecordType *RTy = T->getAsRecordType()) {
2535    RecordDecl *RDecl = RTy->getDecl();
2536    S += RDecl->isUnion() ? '(' : '{';
2537    // Anonymous structures print as '?'
2538    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2539      S += II->getName();
2540    } else {
2541      S += '?';
2542    }
2543    if (ExpandStructures) {
2544      S += '=';
2545      for (RecordDecl::field_iterator Field = RDecl->field_begin(*this),
2546                                   FieldEnd = RDecl->field_end(*this);
2547           Field != FieldEnd; ++Field) {
2548        if (FD) {
2549          S += '"';
2550          S += Field->getNameAsString();
2551          S += '"';
2552        }
2553
2554        // Special case bit-fields.
2555        if (Field->isBitField()) {
2556          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2557                                     (*Field));
2558        } else {
2559          QualType qt = Field->getType();
2560          getLegacyIntegralTypeEncoding(qt);
2561          getObjCEncodingForTypeImpl(qt, S, false, true,
2562                                     FD);
2563        }
2564      }
2565    }
2566    S += RDecl->isUnion() ? ')' : '}';
2567  } else if (T->isEnumeralType()) {
2568    if (FD && FD->isBitField())
2569      EncodeBitField(this, S, FD);
2570    else
2571      S += 'i';
2572  } else if (T->isBlockPointerType()) {
2573    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2574  } else if (T->isObjCInterfaceType()) {
2575    // @encode(class_name)
2576    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2577    S += '{';
2578    const IdentifierInfo *II = OI->getIdentifier();
2579    S += II->getName();
2580    S += '=';
2581    llvm::SmallVector<FieldDecl*, 32> RecFields;
2582    CollectObjCIvars(OI, RecFields);
2583    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2584      if (RecFields[i]->isBitField())
2585        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2586                                   RecFields[i]);
2587      else
2588        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2589                                   FD);
2590    }
2591    S += '}';
2592  }
2593  else
2594    assert(0 && "@encode for type not implemented!");
2595}
2596
2597void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2598                                                 std::string& S) const {
2599  if (QT & Decl::OBJC_TQ_In)
2600    S += 'n';
2601  if (QT & Decl::OBJC_TQ_Inout)
2602    S += 'N';
2603  if (QT & Decl::OBJC_TQ_Out)
2604    S += 'o';
2605  if (QT & Decl::OBJC_TQ_Bycopy)
2606    S += 'O';
2607  if (QT & Decl::OBJC_TQ_Byref)
2608    S += 'R';
2609  if (QT & Decl::OBJC_TQ_Oneway)
2610    S += 'V';
2611}
2612
2613void ASTContext::setBuiltinVaListType(QualType T)
2614{
2615  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2616
2617  BuiltinVaListType = T;
2618}
2619
2620void ASTContext::setObjCIdType(QualType T)
2621{
2622  ObjCIdType = T;
2623
2624  const TypedefType *TT = T->getAsTypedefType();
2625  if (!TT)
2626    return;
2627
2628  TypedefDecl *TD = TT->getDecl();
2629
2630  // typedef struct objc_object *id;
2631  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2632  // User error - caller will issue diagnostics.
2633  if (!ptr)
2634    return;
2635  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2636  // User error - caller will issue diagnostics.
2637  if (!rec)
2638    return;
2639  IdStructType = rec;
2640}
2641
2642void ASTContext::setObjCSelType(QualType T)
2643{
2644  ObjCSelType = T;
2645
2646  const TypedefType *TT = T->getAsTypedefType();
2647  if (!TT)
2648    return;
2649  TypedefDecl *TD = TT->getDecl();
2650
2651  // typedef struct objc_selector *SEL;
2652  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2653  if (!ptr)
2654    return;
2655  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2656  if (!rec)
2657    return;
2658  SelStructType = rec;
2659}
2660
2661void ASTContext::setObjCProtoType(QualType QT)
2662{
2663  ObjCProtoType = QT;
2664}
2665
2666void ASTContext::setObjCClassType(QualType T)
2667{
2668  ObjCClassType = T;
2669
2670  const TypedefType *TT = T->getAsTypedefType();
2671  if (!TT)
2672    return;
2673  TypedefDecl *TD = TT->getDecl();
2674
2675  // typedef struct objc_class *Class;
2676  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2677  assert(ptr && "'Class' incorrectly typed");
2678  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2679  assert(rec && "'Class' incorrectly typed");
2680  ClassStructType = rec;
2681}
2682
2683void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2684  assert(ObjCConstantStringType.isNull() &&
2685         "'NSConstantString' type already set!");
2686
2687  ObjCConstantStringType = getObjCInterfaceType(Decl);
2688}
2689
2690/// \brief Retrieve the template name that represents a qualified
2691/// template name such as \c std::vector.
2692TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2693                                                  bool TemplateKeyword,
2694                                                  TemplateDecl *Template) {
2695  llvm::FoldingSetNodeID ID;
2696  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2697
2698  void *InsertPos = 0;
2699  QualifiedTemplateName *QTN =
2700    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2701  if (!QTN) {
2702    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2703    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2704  }
2705
2706  return TemplateName(QTN);
2707}
2708
2709/// \brief Retrieve the template name that represents a dependent
2710/// template name such as \c MetaFun::template apply.
2711TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2712                                                  const IdentifierInfo *Name) {
2713  assert(NNS->isDependent() && "Nested name specifier must be dependent");
2714
2715  llvm::FoldingSetNodeID ID;
2716  DependentTemplateName::Profile(ID, NNS, Name);
2717
2718  void *InsertPos = 0;
2719  DependentTemplateName *QTN =
2720    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2721
2722  if (QTN)
2723    return TemplateName(QTN);
2724
2725  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2726  if (CanonNNS == NNS) {
2727    QTN = new (*this,4) DependentTemplateName(NNS, Name);
2728  } else {
2729    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
2730    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
2731  }
2732
2733  DependentTemplateNames.InsertNode(QTN, InsertPos);
2734  return TemplateName(QTN);
2735}
2736
2737/// getFromTargetType - Given one of the integer types provided by
2738/// TargetInfo, produce the corresponding type. The unsigned @p Type
2739/// is actually a value of type @c TargetInfo::IntType.
2740QualType ASTContext::getFromTargetType(unsigned Type) const {
2741  switch (Type) {
2742  case TargetInfo::NoInt: return QualType();
2743  case TargetInfo::SignedShort: return ShortTy;
2744  case TargetInfo::UnsignedShort: return UnsignedShortTy;
2745  case TargetInfo::SignedInt: return IntTy;
2746  case TargetInfo::UnsignedInt: return UnsignedIntTy;
2747  case TargetInfo::SignedLong: return LongTy;
2748  case TargetInfo::UnsignedLong: return UnsignedLongTy;
2749  case TargetInfo::SignedLongLong: return LongLongTy;
2750  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
2751  }
2752
2753  assert(false && "Unhandled TargetInfo::IntType value");
2754  return QualType();
2755}
2756
2757//===----------------------------------------------------------------------===//
2758//                        Type Predicates.
2759//===----------------------------------------------------------------------===//
2760
2761/// isObjCNSObjectType - Return true if this is an NSObject object using
2762/// NSObject attribute on a c-style pointer type.
2763/// FIXME - Make it work directly on types.
2764///
2765bool ASTContext::isObjCNSObjectType(QualType Ty) const {
2766  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2767    if (TypedefDecl *TD = TDT->getDecl())
2768      if (TD->getAttr<ObjCNSObjectAttr>())
2769        return true;
2770  }
2771  return false;
2772}
2773
2774/// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
2775/// to an object type.  This includes "id" and "Class" (two 'special' pointers
2776/// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
2777/// ID type).
2778bool ASTContext::isObjCObjectPointerType(QualType Ty) const {
2779  if (Ty->isObjCQualifiedIdType())
2780    return true;
2781
2782  // Blocks are objects.
2783  if (Ty->isBlockPointerType())
2784    return true;
2785
2786  // All other object types are pointers.
2787  const PointerType *PT = Ty->getAsPointerType();
2788  if (PT == 0)
2789    return false;
2790
2791  // If this a pointer to an interface (e.g. NSString*), it is ok.
2792  if (PT->getPointeeType()->isObjCInterfaceType() ||
2793      // If is has NSObject attribute, OK as well.
2794      isObjCNSObjectType(Ty))
2795    return true;
2796
2797  // Check to see if this is 'id' or 'Class', both of which are typedefs for
2798  // pointer types.  This looks for the typedef specifically, not for the
2799  // underlying type.  Iteratively strip off typedefs so that we can handle
2800  // typedefs of typedefs.
2801  while (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
2802    if (Ty.getUnqualifiedType() == getObjCIdType() ||
2803        Ty.getUnqualifiedType() == getObjCClassType())
2804      return true;
2805
2806    Ty = TDT->getDecl()->getUnderlyingType();
2807  }
2808
2809  return false;
2810}
2811
2812/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
2813/// garbage collection attribute.
2814///
2815QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
2816  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
2817  if (getLangOptions().ObjC1 &&
2818      getLangOptions().getGCMode() != LangOptions::NonGC) {
2819    GCAttrs = Ty.getObjCGCAttr();
2820    // Default behavious under objective-c's gc is for objective-c pointers
2821    // (or pointers to them) be treated as though they were declared
2822    // as __strong.
2823    if (GCAttrs == QualType::GCNone) {
2824      if (isObjCObjectPointerType(Ty))
2825        GCAttrs = QualType::Strong;
2826      else if (Ty->isPointerType())
2827        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
2828    }
2829    // Non-pointers have none gc'able attribute regardless of the attribute
2830    // set on them.
2831    else if (!Ty->isPointerType() && !isObjCObjectPointerType(Ty))
2832      return QualType::GCNone;
2833  }
2834  return GCAttrs;
2835}
2836
2837//===----------------------------------------------------------------------===//
2838//                        Type Compatibility Testing
2839//===----------------------------------------------------------------------===//
2840
2841/// typesAreBlockCompatible - This routine is called when comparing two
2842/// block types. Types must be strictly compatible here. For example,
2843/// C unfortunately doesn't produce an error for the following:
2844///
2845///   int (*emptyArgFunc)();
2846///   int (*intArgList)(int) = emptyArgFunc;
2847///
2848/// For blocks, we will produce an error for the following (similar to C++):
2849///
2850///   int (^emptyArgBlock)();
2851///   int (^intArgBlock)(int) = emptyArgBlock;
2852///
2853/// FIXME: When the dust settles on this integration, fold this into mergeTypes.
2854///
2855bool ASTContext::typesAreBlockCompatible(QualType lhs, QualType rhs) {
2856  return !mergeTypes(lhs, rhs).isNull();
2857}
2858
2859/// areCompatVectorTypes - Return true if the two specified vector types are
2860/// compatible.
2861static bool areCompatVectorTypes(const VectorType *LHS,
2862                                 const VectorType *RHS) {
2863  assert(LHS->isCanonical() && RHS->isCanonical());
2864  return LHS->getElementType() == RHS->getElementType() &&
2865         LHS->getNumElements() == RHS->getNumElements();
2866}
2867
2868/// canAssignObjCInterfaces - Return true if the two interface types are
2869/// compatible for assignment from RHS to LHS.  This handles validation of any
2870/// protocol qualifiers on the LHS or RHS.
2871///
2872bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
2873                                         const ObjCInterfaceType *RHS) {
2874  // Verify that the base decls are compatible: the RHS must be a subclass of
2875  // the LHS.
2876  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
2877    return false;
2878
2879  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
2880  // protocol qualified at all, then we are good.
2881  if (!isa<ObjCQualifiedInterfaceType>(LHS))
2882    return true;
2883
2884  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
2885  // isn't a superset.
2886  if (!isa<ObjCQualifiedInterfaceType>(RHS))
2887    return true;  // FIXME: should return false!
2888
2889  // Finally, we must have two protocol-qualified interfaces.
2890  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
2891  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
2892
2893  // All LHS protocols must have a presence on the RHS.
2894  assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
2895
2896  for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
2897                                                 LHSPE = LHSP->qual_end();
2898       LHSPI != LHSPE; LHSPI++) {
2899    bool RHSImplementsProtocol = false;
2900
2901    // If the RHS doesn't implement the protocol on the left, the types
2902    // are incompatible.
2903    for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
2904                                                   RHSPE = RHSP->qual_end();
2905         !RHSImplementsProtocol && (RHSPI != RHSPE); RHSPI++) {
2906      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier()))
2907        RHSImplementsProtocol = true;
2908    }
2909    // FIXME: For better diagnostics, consider passing back the protocol name.
2910    if (!RHSImplementsProtocol)
2911      return false;
2912  }
2913  // The RHS implements all protocols listed on the LHS.
2914  return true;
2915}
2916
2917bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
2918  // get the "pointed to" types
2919  const PointerType *LHSPT = LHS->getAsPointerType();
2920  const PointerType *RHSPT = RHS->getAsPointerType();
2921
2922  if (!LHSPT || !RHSPT)
2923    return false;
2924
2925  QualType lhptee = LHSPT->getPointeeType();
2926  QualType rhptee = RHSPT->getPointeeType();
2927  const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
2928  const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
2929  // ID acts sort of like void* for ObjC interfaces
2930  if (LHSIface && isObjCIdStructType(rhptee))
2931    return true;
2932  if (RHSIface && isObjCIdStructType(lhptee))
2933    return true;
2934  if (!LHSIface || !RHSIface)
2935    return false;
2936  return canAssignObjCInterfaces(LHSIface, RHSIface) ||
2937         canAssignObjCInterfaces(RHSIface, LHSIface);
2938}
2939
2940/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
2941/// both shall have the identically qualified version of a compatible type.
2942/// C99 6.2.7p1: Two types have compatible types if their types are the
2943/// same. See 6.7.[2,3,5] for additional rules.
2944bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
2945  return !mergeTypes(LHS, RHS).isNull();
2946}
2947
2948QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
2949  const FunctionType *lbase = lhs->getAsFunctionType();
2950  const FunctionType *rbase = rhs->getAsFunctionType();
2951  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
2952  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
2953  bool allLTypes = true;
2954  bool allRTypes = true;
2955
2956  // Check return type
2957  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
2958  if (retType.isNull()) return QualType();
2959  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
2960    allLTypes = false;
2961  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
2962    allRTypes = false;
2963
2964  if (lproto && rproto) { // two C99 style function prototypes
2965    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
2966           "C++ shouldn't be here");
2967    unsigned lproto_nargs = lproto->getNumArgs();
2968    unsigned rproto_nargs = rproto->getNumArgs();
2969
2970    // Compatible functions must have the same number of arguments
2971    if (lproto_nargs != rproto_nargs)
2972      return QualType();
2973
2974    // Variadic and non-variadic functions aren't compatible
2975    if (lproto->isVariadic() != rproto->isVariadic())
2976      return QualType();
2977
2978    if (lproto->getTypeQuals() != rproto->getTypeQuals())
2979      return QualType();
2980
2981    // Check argument compatibility
2982    llvm::SmallVector<QualType, 10> types;
2983    for (unsigned i = 0; i < lproto_nargs; i++) {
2984      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
2985      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
2986      QualType argtype = mergeTypes(largtype, rargtype);
2987      if (argtype.isNull()) return QualType();
2988      types.push_back(argtype);
2989      if (getCanonicalType(argtype) != getCanonicalType(largtype))
2990        allLTypes = false;
2991      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
2992        allRTypes = false;
2993    }
2994    if (allLTypes) return lhs;
2995    if (allRTypes) return rhs;
2996    return getFunctionType(retType, types.begin(), types.size(),
2997                           lproto->isVariadic(), lproto->getTypeQuals());
2998  }
2999
3000  if (lproto) allRTypes = false;
3001  if (rproto) allLTypes = false;
3002
3003  const FunctionProtoType *proto = lproto ? lproto : rproto;
3004  if (proto) {
3005    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3006    if (proto->isVariadic()) return QualType();
3007    // Check that the types are compatible with the types that
3008    // would result from default argument promotions (C99 6.7.5.3p15).
3009    // The only types actually affected are promotable integer
3010    // types and floats, which would be passed as a different
3011    // type depending on whether the prototype is visible.
3012    unsigned proto_nargs = proto->getNumArgs();
3013    for (unsigned i = 0; i < proto_nargs; ++i) {
3014      QualType argTy = proto->getArgType(i);
3015      if (argTy->isPromotableIntegerType() ||
3016          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3017        return QualType();
3018    }
3019
3020    if (allLTypes) return lhs;
3021    if (allRTypes) return rhs;
3022    return getFunctionType(retType, proto->arg_type_begin(),
3023                           proto->getNumArgs(), lproto->isVariadic(),
3024                           lproto->getTypeQuals());
3025  }
3026
3027  if (allLTypes) return lhs;
3028  if (allRTypes) return rhs;
3029  return getFunctionNoProtoType(retType);
3030}
3031
3032QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3033  // C++ [expr]: If an expression initially has the type "reference to T", the
3034  // type is adjusted to "T" prior to any further analysis, the expression
3035  // designates the object or function denoted by the reference, and the
3036  // expression is an lvalue unless the reference is an rvalue reference and
3037  // the expression is a function call (possibly inside parentheses).
3038  // FIXME: C++ shouldn't be going through here!  The rules are different
3039  // enough that they should be handled separately.
3040  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3041  // shouldn't be going through here!
3042  if (const ReferenceType *RT = LHS->getAsReferenceType())
3043    LHS = RT->getPointeeType();
3044  if (const ReferenceType *RT = RHS->getAsReferenceType())
3045    RHS = RT->getPointeeType();
3046
3047  QualType LHSCan = getCanonicalType(LHS),
3048           RHSCan = getCanonicalType(RHS);
3049
3050  // If two types are identical, they are compatible.
3051  if (LHSCan == RHSCan)
3052    return LHS;
3053
3054  // If the qualifiers are different, the types aren't compatible
3055  // Note that we handle extended qualifiers later, in the
3056  // case for ExtQualType.
3057  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3058    return QualType();
3059
3060  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3061  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3062
3063  // We want to consider the two function types to be the same for these
3064  // comparisons, just force one to the other.
3065  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3066  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3067
3068  // Strip off objc_gc attributes off the top level so they can be merged.
3069  // This is a complete mess, but the attribute itself doesn't make much sense.
3070  if (RHSClass == Type::ExtQual) {
3071    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3072    if (GCAttr != QualType::GCNone) {
3073      QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3074      // __weak attribute must appear on both declarations.
3075      // __strong attribue is redundant if other decl is an objective-c
3076      // object pointer (or decorated with __strong attribute); otherwise
3077      // issue error.
3078      if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3079          (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3080           LHSCan->isPointerType() && !isObjCObjectPointerType(LHSCan) &&
3081           !isObjCIdStructType(LHSCan->getAsPointerType()->getPointeeType())))
3082        return QualType();
3083
3084      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3085                     RHS.getCVRQualifiers());
3086      QualType Result = mergeTypes(LHS, RHS);
3087      if (!Result.isNull()) {
3088        if (Result.getObjCGCAttr() == QualType::GCNone)
3089          Result = getObjCGCQualType(Result, GCAttr);
3090        else if (Result.getObjCGCAttr() != GCAttr)
3091          Result = QualType();
3092      }
3093      return Result;
3094    }
3095  }
3096  if (LHSClass == Type::ExtQual) {
3097    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3098    if (GCAttr != QualType::GCNone) {
3099      QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3100      // __weak attribute must appear on both declarations. __strong
3101      // __strong attribue is redundant if other decl is an objective-c
3102      // object pointer (or decorated with __strong attribute); otherwise
3103      // issue error.
3104      if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3105          (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3106           RHSCan->isPointerType() && !isObjCObjectPointerType(RHSCan) &&
3107           !isObjCIdStructType(RHSCan->getAsPointerType()->getPointeeType())))
3108        return QualType();
3109
3110      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3111                     LHS.getCVRQualifiers());
3112      QualType Result = mergeTypes(LHS, RHS);
3113      if (!Result.isNull()) {
3114        if (Result.getObjCGCAttr() == QualType::GCNone)
3115          Result = getObjCGCQualType(Result, GCAttr);
3116        else if (Result.getObjCGCAttr() != GCAttr)
3117          Result = QualType();
3118      }
3119      return Result;
3120    }
3121  }
3122
3123  // Same as above for arrays
3124  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3125    LHSClass = Type::ConstantArray;
3126  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3127    RHSClass = Type::ConstantArray;
3128
3129  // Canonicalize ExtVector -> Vector.
3130  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3131  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3132
3133  // Consider qualified interfaces and interfaces the same.
3134  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
3135  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
3136
3137  // If the canonical type classes don't match.
3138  if (LHSClass != RHSClass) {
3139    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3140    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3141
3142    // 'id' and 'Class' act sort of like void* for ObjC interfaces
3143    if (LHSIface && (isObjCIdStructType(RHS) || isObjCClassStructType(RHS)))
3144      return LHS;
3145    if (RHSIface && (isObjCIdStructType(LHS) || isObjCClassStructType(LHS)))
3146      return RHS;
3147
3148    // ID is compatible with all qualified id types.
3149    if (LHS->isObjCQualifiedIdType()) {
3150      if (const PointerType *PT = RHS->getAsPointerType()) {
3151        QualType pType = PT->getPointeeType();
3152        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3153          return LHS;
3154        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3155        // Unfortunately, this API is part of Sema (which we don't have access
3156        // to. Need to refactor. The following check is insufficient, since we
3157        // need to make sure the class implements the protocol.
3158        if (pType->isObjCInterfaceType())
3159          return LHS;
3160      }
3161    }
3162    if (RHS->isObjCQualifiedIdType()) {
3163      if (const PointerType *PT = LHS->getAsPointerType()) {
3164        QualType pType = PT->getPointeeType();
3165        if (isObjCIdStructType(pType) || isObjCClassStructType(pType))
3166          return RHS;
3167        // FIXME: need to use ObjCQualifiedIdTypesAreCompatible(LHS, RHS, true).
3168        // Unfortunately, this API is part of Sema (which we don't have access
3169        // to. Need to refactor. The following check is insufficient, since we
3170        // need to make sure the class implements the protocol.
3171        if (pType->isObjCInterfaceType())
3172          return RHS;
3173      }
3174    }
3175    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3176    // a signed integer type, or an unsigned integer type.
3177    if (const EnumType* ETy = LHS->getAsEnumType()) {
3178      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3179        return RHS;
3180    }
3181    if (const EnumType* ETy = RHS->getAsEnumType()) {
3182      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3183        return LHS;
3184    }
3185
3186    return QualType();
3187  }
3188
3189  // The canonical type classes match.
3190  switch (LHSClass) {
3191#define TYPE(Class, Base)
3192#define ABSTRACT_TYPE(Class, Base)
3193#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3194#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3195#include "clang/AST/TypeNodes.def"
3196    assert(false && "Non-canonical and dependent types shouldn't get here");
3197    return QualType();
3198
3199  case Type::LValueReference:
3200  case Type::RValueReference:
3201  case Type::MemberPointer:
3202    assert(false && "C++ should never be in mergeTypes");
3203    return QualType();
3204
3205  case Type::IncompleteArray:
3206  case Type::VariableArray:
3207  case Type::FunctionProto:
3208  case Type::ExtVector:
3209  case Type::ObjCQualifiedInterface:
3210    assert(false && "Types are eliminated above");
3211    return QualType();
3212
3213  case Type::Pointer:
3214  {
3215    // Merge two pointer types, while trying to preserve typedef info
3216    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3217    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3218    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3219    if (ResultType.isNull()) return QualType();
3220    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3221      return LHS;
3222    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3223      return RHS;
3224    return getPointerType(ResultType);
3225  }
3226  case Type::BlockPointer:
3227  {
3228    // Merge two block pointer types, while trying to preserve typedef info
3229    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3230    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3231    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3232    if (ResultType.isNull()) return QualType();
3233    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3234      return LHS;
3235    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3236      return RHS;
3237    return getBlockPointerType(ResultType);
3238  }
3239  case Type::ConstantArray:
3240  {
3241    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3242    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3243    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3244      return QualType();
3245
3246    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3247    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3248    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3249    if (ResultType.isNull()) return QualType();
3250    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3251      return LHS;
3252    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3253      return RHS;
3254    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3255                                          ArrayType::ArraySizeModifier(), 0);
3256    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3257                                          ArrayType::ArraySizeModifier(), 0);
3258    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3259    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3260    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3261      return LHS;
3262    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3263      return RHS;
3264    if (LVAT) {
3265      // FIXME: This isn't correct! But tricky to implement because
3266      // the array's size has to be the size of LHS, but the type
3267      // has to be different.
3268      return LHS;
3269    }
3270    if (RVAT) {
3271      // FIXME: This isn't correct! But tricky to implement because
3272      // the array's size has to be the size of RHS, but the type
3273      // has to be different.
3274      return RHS;
3275    }
3276    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3277    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3278    return getIncompleteArrayType(ResultType, ArrayType::ArraySizeModifier(),0);
3279  }
3280  case Type::FunctionNoProto:
3281    return mergeFunctionTypes(LHS, RHS);
3282  case Type::Record:
3283  case Type::Enum:
3284    // FIXME: Why are these compatible?
3285    if (isObjCIdStructType(LHS) && isObjCClassStructType(RHS)) return LHS;
3286    if (isObjCClassStructType(LHS) && isObjCIdStructType(RHS)) return LHS;
3287    return QualType();
3288  case Type::Builtin:
3289    // Only exactly equal builtin types are compatible, which is tested above.
3290    return QualType();
3291  case Type::Complex:
3292    // Distinct complex types are incompatible.
3293    return QualType();
3294  case Type::Vector:
3295    // FIXME: The merged type should be an ExtVector!
3296    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3297      return LHS;
3298    return QualType();
3299  case Type::ObjCInterface: {
3300    // Check if the interfaces are assignment compatible.
3301    // FIXME: This should be type compatibility, e.g. whether
3302    // "LHS x; RHS x;" at global scope is legal.
3303    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3304    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3305    if (LHSIface && RHSIface &&
3306        canAssignObjCInterfaces(LHSIface, RHSIface))
3307      return LHS;
3308
3309    return QualType();
3310  }
3311  case Type::ObjCQualifiedId:
3312    // Distinct qualified id's are not compatible.
3313    return QualType();
3314  case Type::FixedWidthInt:
3315    // Distinct fixed-width integers are not compatible.
3316    return QualType();
3317  case Type::ExtQual:
3318    // FIXME: ExtQual types can be compatible even if they're not
3319    // identical!
3320    return QualType();
3321    // First attempt at an implementation, but I'm not really sure it's
3322    // right...
3323#if 0
3324    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3325    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3326    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3327        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3328      return QualType();
3329    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3330    LHSBase = QualType(LQual->getBaseType(), 0);
3331    RHSBase = QualType(RQual->getBaseType(), 0);
3332    ResultType = mergeTypes(LHSBase, RHSBase);
3333    if (ResultType.isNull()) return QualType();
3334    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3335    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3336      return LHS;
3337    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3338      return RHS;
3339    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3340    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3341    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3342    return ResultType;
3343#endif
3344
3345  case Type::TemplateSpecialization:
3346    assert(false && "Dependent types have no size");
3347    break;
3348  }
3349
3350  return QualType();
3351}
3352
3353//===----------------------------------------------------------------------===//
3354//                         Integer Predicates
3355//===----------------------------------------------------------------------===//
3356
3357unsigned ASTContext::getIntWidth(QualType T) {
3358  if (T == BoolTy)
3359    return 1;
3360  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3361    return FWIT->getWidth();
3362  }
3363  // For builtin types, just use the standard type sizing method
3364  return (unsigned)getTypeSize(T);
3365}
3366
3367QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3368  assert(T->isSignedIntegerType() && "Unexpected type");
3369  if (const EnumType* ETy = T->getAsEnumType())
3370    T = ETy->getDecl()->getIntegerType();
3371  const BuiltinType* BTy = T->getAsBuiltinType();
3372  assert (BTy && "Unexpected signed integer type");
3373  switch (BTy->getKind()) {
3374  case BuiltinType::Char_S:
3375  case BuiltinType::SChar:
3376    return UnsignedCharTy;
3377  case BuiltinType::Short:
3378    return UnsignedShortTy;
3379  case BuiltinType::Int:
3380    return UnsignedIntTy;
3381  case BuiltinType::Long:
3382    return UnsignedLongTy;
3383  case BuiltinType::LongLong:
3384    return UnsignedLongLongTy;
3385  case BuiltinType::Int128:
3386    return UnsignedInt128Ty;
3387  default:
3388    assert(0 && "Unexpected signed integer type");
3389    return QualType();
3390  }
3391}
3392
3393ExternalASTSource::~ExternalASTSource() { }
3394
3395void ExternalASTSource::PrintStats() { }
3396