ASTContext.cpp revision 6cd8087e66d706f2317865f86c865fd9bc6969c9
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  TemplateSpecializationTypes(this_()),
44  DependentTemplateSpecializationTypes(this_()),
45  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
46  NSConstantStringTypeDecl(0),
47  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
48  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
49  NullTypeSourceInfo(QualType()),
50  SourceMgr(SM), LangOpts(LOpts), FreeMemory(FreeMem), Target(t),
51  Idents(idents), Selectors(sels),
52  BuiltinInfo(builtins),
53  DeclarationNames(*this),
54  ExternalSource(0), PrintingPolicy(LOpts),
55  LastSDM(0, 0) {
56  ObjCIdRedefinitionType = QualType();
57  ObjCClassRedefinitionType = QualType();
58  ObjCSelRedefinitionType = QualType();
59  if (size_reserve > 0) Types.reserve(size_reserve);
60  TUDecl = TranslationUnitDecl::Create(*this);
61  InitBuiltinTypes();
62}
63
64ASTContext::~ASTContext() {
65  // Release the DenseMaps associated with DeclContext objects.
66  // FIXME: Is this the ideal solution?
67  ReleaseDeclContextMaps();
68
69  if (!FreeMemory) {
70    // Call all of the deallocation functions.
71    for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
72      Deallocations[I].first(Deallocations[I].second);
73  }
74
75  // Release all of the memory associated with overridden C++ methods.
76  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
77         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
78       OM != OMEnd; ++OM)
79    OM->second.Destroy();
80
81  if (FreeMemory) {
82    // Deallocate all the types.
83    while (!Types.empty()) {
84      Types.back()->Destroy(*this);
85      Types.pop_back();
86    }
87
88    for (llvm::FoldingSet<ExtQuals>::iterator
89         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
90      // Increment in loop to prevent using deallocated memory.
91      Deallocate(&*I++);
92    }
93
94    for (llvm::DenseMap<const ObjCContainerDecl*,
95         const ASTRecordLayout*>::iterator
96         I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
97      // Increment in loop to prevent using deallocated memory.
98      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
99        R->Destroy(*this);
100    }
101  }
102
103  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
104  // even when using the BumpPtrAllocator because they can contain
105  // DenseMaps.
106  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
107       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
108    // Increment in loop to prevent using deallocated memory.
109    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
110      R->Destroy(*this);
111  }
112
113  // Destroy nested-name-specifiers.
114  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
115         NNS = NestedNameSpecifiers.begin(),
116         NNSEnd = NestedNameSpecifiers.end();
117       NNS != NNSEnd; ) {
118    // Increment in loop to prevent using deallocated memory.
119    (*NNS++).Destroy(*this);
120  }
121
122  if (GlobalNestedNameSpecifier)
123    GlobalNestedNameSpecifier->Destroy(*this);
124
125  TUDecl->Destroy(*this);
126}
127
128void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
129  Deallocations.push_back(std::make_pair(Callback, Data));
130}
131
132void
133ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
134  ExternalSource.reset(Source.take());
135}
136
137void ASTContext::PrintStats() const {
138  fprintf(stderr, "*** AST Context Stats:\n");
139  fprintf(stderr, "  %d types total.\n", (int)Types.size());
140
141  unsigned counts[] = {
142#define TYPE(Name, Parent) 0,
143#define ABSTRACT_TYPE(Name, Parent)
144#include "clang/AST/TypeNodes.def"
145    0 // Extra
146  };
147
148  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
149    Type *T = Types[i];
150    counts[(unsigned)T->getTypeClass()]++;
151  }
152
153  unsigned Idx = 0;
154  unsigned TotalBytes = 0;
155#define TYPE(Name, Parent)                                              \
156  if (counts[Idx])                                                      \
157    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
158  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
159  ++Idx;
160#define ABSTRACT_TYPE(Name, Parent)
161#include "clang/AST/TypeNodes.def"
162
163  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
164
165  if (ExternalSource.get()) {
166    fprintf(stderr, "\n");
167    ExternalSource->PrintStats();
168  }
169}
170
171
172void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
173  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
174  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
175  Types.push_back(Ty);
176}
177
178void ASTContext::InitBuiltinTypes() {
179  assert(VoidTy.isNull() && "Context reinitialized?");
180
181  // C99 6.2.5p19.
182  InitBuiltinType(VoidTy,              BuiltinType::Void);
183
184  // C99 6.2.5p2.
185  InitBuiltinType(BoolTy,              BuiltinType::Bool);
186  // C99 6.2.5p3.
187  if (LangOpts.CharIsSigned)
188    InitBuiltinType(CharTy,            BuiltinType::Char_S);
189  else
190    InitBuiltinType(CharTy,            BuiltinType::Char_U);
191  // C99 6.2.5p4.
192  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
193  InitBuiltinType(ShortTy,             BuiltinType::Short);
194  InitBuiltinType(IntTy,               BuiltinType::Int);
195  InitBuiltinType(LongTy,              BuiltinType::Long);
196  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
197
198  // C99 6.2.5p6.
199  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
200  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
201  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
202  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
203  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
204
205  // C99 6.2.5p10.
206  InitBuiltinType(FloatTy,             BuiltinType::Float);
207  InitBuiltinType(DoubleTy,            BuiltinType::Double);
208  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
209
210  // GNU extension, 128-bit integers.
211  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
212  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
213
214  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
215    InitBuiltinType(WCharTy,           BuiltinType::WChar);
216  else // C99
217    WCharTy = getFromTargetType(Target.getWCharType());
218
219  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
220    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
221  else // C99
222    Char16Ty = getFromTargetType(Target.getChar16Type());
223
224  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
225    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
226  else // C99
227    Char32Ty = getFromTargetType(Target.getChar32Type());
228
229  // Placeholder type for functions.
230  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
231
232  // Placeholder type for type-dependent expressions whose type is
233  // completely unknown. No code should ever check a type against
234  // DependentTy and users should never see it; however, it is here to
235  // help diagnose failures to properly check for type-dependent
236  // expressions.
237  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
238
239  // Placeholder type for C++0x auto declarations whose real type has
240  // not yet been deduced.
241  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
242
243  // C99 6.2.5p11.
244  FloatComplexTy      = getComplexType(FloatTy);
245  DoubleComplexTy     = getComplexType(DoubleTy);
246  LongDoubleComplexTy = getComplexType(LongDoubleTy);
247
248  BuiltinVaListType = QualType();
249
250  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
251  ObjCIdTypedefType = QualType();
252  ObjCClassTypedefType = QualType();
253  ObjCSelTypedefType = QualType();
254
255  // Builtin types for 'id', 'Class', and 'SEL'.
256  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
257  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
258  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
259
260  ObjCConstantStringType = QualType();
261
262  // void * type
263  VoidPtrTy = getPointerType(VoidTy);
264
265  // nullptr type (C++0x 2.14.7)
266  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
267}
268
269MemberSpecializationInfo *
270ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
271  assert(Var->isStaticDataMember() && "Not a static data member");
272  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
273    = InstantiatedFromStaticDataMember.find(Var);
274  if (Pos == InstantiatedFromStaticDataMember.end())
275    return 0;
276
277  return Pos->second;
278}
279
280void
281ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
282                                                TemplateSpecializationKind TSK) {
283  assert(Inst->isStaticDataMember() && "Not a static data member");
284  assert(Tmpl->isStaticDataMember() && "Not a static data member");
285  assert(!InstantiatedFromStaticDataMember[Inst] &&
286         "Already noted what static data member was instantiated from");
287  InstantiatedFromStaticDataMember[Inst]
288    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
289}
290
291NamedDecl *
292ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
293  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
294    = InstantiatedFromUsingDecl.find(UUD);
295  if (Pos == InstantiatedFromUsingDecl.end())
296    return 0;
297
298  return Pos->second;
299}
300
301void
302ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
303  assert((isa<UsingDecl>(Pattern) ||
304          isa<UnresolvedUsingValueDecl>(Pattern) ||
305          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
306         "pattern decl is not a using decl");
307  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
308  InstantiatedFromUsingDecl[Inst] = Pattern;
309}
310
311UsingShadowDecl *
312ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
313  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
314    = InstantiatedFromUsingShadowDecl.find(Inst);
315  if (Pos == InstantiatedFromUsingShadowDecl.end())
316    return 0;
317
318  return Pos->second;
319}
320
321void
322ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
323                                               UsingShadowDecl *Pattern) {
324  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
325  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
326}
327
328FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
329  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
330    = InstantiatedFromUnnamedFieldDecl.find(Field);
331  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
332    return 0;
333
334  return Pos->second;
335}
336
337void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
338                                                     FieldDecl *Tmpl) {
339  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
340  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
341  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
342         "Already noted what unnamed field was instantiated from");
343
344  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
345}
346
347ASTContext::overridden_cxx_method_iterator
348ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
349  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
350    = OverriddenMethods.find(Method);
351  if (Pos == OverriddenMethods.end())
352    return 0;
353
354  return Pos->second.begin();
355}
356
357ASTContext::overridden_cxx_method_iterator
358ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
359  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
360    = OverriddenMethods.find(Method);
361  if (Pos == OverriddenMethods.end())
362    return 0;
363
364  return Pos->second.end();
365}
366
367void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
368                                     const CXXMethodDecl *Overridden) {
369  OverriddenMethods[Method].push_back(Overridden);
370}
371
372namespace {
373  class BeforeInTranslationUnit
374    : std::binary_function<SourceRange, SourceRange, bool> {
375    SourceManager *SourceMgr;
376
377  public:
378    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
379
380    bool operator()(SourceRange X, SourceRange Y) {
381      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
382    }
383  };
384}
385
386//===----------------------------------------------------------------------===//
387//                         Type Sizing and Analysis
388//===----------------------------------------------------------------------===//
389
390/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
391/// scalar floating point type.
392const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
393  const BuiltinType *BT = T->getAs<BuiltinType>();
394  assert(BT && "Not a floating point type!");
395  switch (BT->getKind()) {
396  default: assert(0 && "Not a floating point type!");
397  case BuiltinType::Float:      return Target.getFloatFormat();
398  case BuiltinType::Double:     return Target.getDoubleFormat();
399  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
400  }
401}
402
403/// getDeclAlign - Return a conservative estimate of the alignment of the
404/// specified decl.  Note that bitfields do not have a valid alignment, so
405/// this method will assert on them.
406/// If @p RefAsPointee, references are treated like their underlying type
407/// (for alignof), else they're treated like pointers (for CodeGen).
408CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
409  unsigned Align = Target.getCharWidth();
410
411  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
412    Align = std::max(Align, AA->getMaxAlignment());
413
414  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
415    QualType T = VD->getType();
416    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
417      if (RefAsPointee)
418        T = RT->getPointeeType();
419      else
420        T = getPointerType(RT->getPointeeType());
421    }
422    if (!T->isIncompleteType() && !T->isFunctionType()) {
423      unsigned MinWidth = Target.getLargeArrayMinWidth();
424      unsigned ArrayAlign = Target.getLargeArrayAlign();
425      if (isa<VariableArrayType>(T) && MinWidth != 0)
426        Align = std::max(Align, ArrayAlign);
427      if (ConstantArrayType *CT = dyn_cast<ConstantArrayType>(T)) {
428        unsigned Size = getTypeSize(CT);
429        if (MinWidth != 0 && MinWidth <= Size)
430          Align = std::max(Align, ArrayAlign);
431      }
432      // Incomplete or function types default to 1.
433      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
434        T = cast<ArrayType>(T)->getElementType();
435
436      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
437    }
438    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
439      // In the case of a field in a packed struct, we want the minimum
440      // of the alignment of the field and the alignment of the struct.
441      Align = std::min(Align,
442        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
443    }
444  }
445
446  return CharUnits::fromQuantity(Align / Target.getCharWidth());
447}
448
449std::pair<CharUnits, CharUnits>
450ASTContext::getTypeInfoInChars(const Type *T) {
451  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
452  return std::make_pair(CharUnits::fromQuantity(Info.first / getCharWidth()),
453                        CharUnits::fromQuantity(Info.second / getCharWidth()));
454}
455
456std::pair<CharUnits, CharUnits>
457ASTContext::getTypeInfoInChars(QualType T) {
458  return getTypeInfoInChars(T.getTypePtr());
459}
460
461/// getTypeSize - Return the size of the specified type, in bits.  This method
462/// does not work on incomplete types.
463///
464/// FIXME: Pointers into different addr spaces could have different sizes and
465/// alignment requirements: getPointerInfo should take an AddrSpace, this
466/// should take a QualType, &c.
467std::pair<uint64_t, unsigned>
468ASTContext::getTypeInfo(const Type *T) {
469  uint64_t Width=0;
470  unsigned Align=8;
471  switch (T->getTypeClass()) {
472#define TYPE(Class, Base)
473#define ABSTRACT_TYPE(Class, Base)
474#define NON_CANONICAL_TYPE(Class, Base)
475#define DEPENDENT_TYPE(Class, Base) case Type::Class:
476#include "clang/AST/TypeNodes.def"
477    assert(false && "Should not see dependent types");
478    break;
479
480  case Type::FunctionNoProto:
481  case Type::FunctionProto:
482    // GCC extension: alignof(function) = 32 bits
483    Width = 0;
484    Align = 32;
485    break;
486
487  case Type::IncompleteArray:
488  case Type::VariableArray:
489    Width = 0;
490    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
491    break;
492
493  case Type::ConstantArray: {
494    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
495
496    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
497    Width = EltInfo.first*CAT->getSize().getZExtValue();
498    Align = EltInfo.second;
499    break;
500  }
501  case Type::ExtVector:
502  case Type::Vector: {
503    const VectorType *VT = cast<VectorType>(T);
504    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
505    Width = EltInfo.first*VT->getNumElements();
506    Align = Width;
507    // If the alignment is not a power of 2, round up to the next power of 2.
508    // This happens for non-power-of-2 length vectors.
509    if (Align & (Align-1)) {
510      Align = llvm::NextPowerOf2(Align);
511      Width = llvm::RoundUpToAlignment(Width, Align);
512    }
513    break;
514  }
515
516  case Type::Builtin:
517    switch (cast<BuiltinType>(T)->getKind()) {
518    default: assert(0 && "Unknown builtin type!");
519    case BuiltinType::Void:
520      // GCC extension: alignof(void) = 8 bits.
521      Width = 0;
522      Align = 8;
523      break;
524
525    case BuiltinType::Bool:
526      Width = Target.getBoolWidth();
527      Align = Target.getBoolAlign();
528      break;
529    case BuiltinType::Char_S:
530    case BuiltinType::Char_U:
531    case BuiltinType::UChar:
532    case BuiltinType::SChar:
533      Width = Target.getCharWidth();
534      Align = Target.getCharAlign();
535      break;
536    case BuiltinType::WChar:
537      Width = Target.getWCharWidth();
538      Align = Target.getWCharAlign();
539      break;
540    case BuiltinType::Char16:
541      Width = Target.getChar16Width();
542      Align = Target.getChar16Align();
543      break;
544    case BuiltinType::Char32:
545      Width = Target.getChar32Width();
546      Align = Target.getChar32Align();
547      break;
548    case BuiltinType::UShort:
549    case BuiltinType::Short:
550      Width = Target.getShortWidth();
551      Align = Target.getShortAlign();
552      break;
553    case BuiltinType::UInt:
554    case BuiltinType::Int:
555      Width = Target.getIntWidth();
556      Align = Target.getIntAlign();
557      break;
558    case BuiltinType::ULong:
559    case BuiltinType::Long:
560      Width = Target.getLongWidth();
561      Align = Target.getLongAlign();
562      break;
563    case BuiltinType::ULongLong:
564    case BuiltinType::LongLong:
565      Width = Target.getLongLongWidth();
566      Align = Target.getLongLongAlign();
567      break;
568    case BuiltinType::Int128:
569    case BuiltinType::UInt128:
570      Width = 128;
571      Align = 128; // int128_t is 128-bit aligned on all targets.
572      break;
573    case BuiltinType::Float:
574      Width = Target.getFloatWidth();
575      Align = Target.getFloatAlign();
576      break;
577    case BuiltinType::Double:
578      Width = Target.getDoubleWidth();
579      Align = Target.getDoubleAlign();
580      break;
581    case BuiltinType::LongDouble:
582      Width = Target.getLongDoubleWidth();
583      Align = Target.getLongDoubleAlign();
584      break;
585    case BuiltinType::NullPtr:
586      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
587      Align = Target.getPointerAlign(0); //   == sizeof(void*)
588      break;
589    }
590    break;
591  case Type::ObjCObjectPointer:
592    Width = Target.getPointerWidth(0);
593    Align = Target.getPointerAlign(0);
594    break;
595  case Type::BlockPointer: {
596    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
597    Width = Target.getPointerWidth(AS);
598    Align = Target.getPointerAlign(AS);
599    break;
600  }
601  case Type::LValueReference:
602  case Type::RValueReference: {
603    // alignof and sizeof should never enter this code path here, so we go
604    // the pointer route.
605    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
606    Width = Target.getPointerWidth(AS);
607    Align = Target.getPointerAlign(AS);
608    break;
609  }
610  case Type::Pointer: {
611    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
612    Width = Target.getPointerWidth(AS);
613    Align = Target.getPointerAlign(AS);
614    break;
615  }
616  case Type::MemberPointer: {
617    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
618    std::pair<uint64_t, unsigned> PtrDiffInfo =
619      getTypeInfo(getPointerDiffType());
620    Width = PtrDiffInfo.first;
621    if (Pointee->isFunctionType())
622      Width *= 2;
623    Align = PtrDiffInfo.second;
624    break;
625  }
626  case Type::Complex: {
627    // Complex types have the same alignment as their elements, but twice the
628    // size.
629    std::pair<uint64_t, unsigned> EltInfo =
630      getTypeInfo(cast<ComplexType>(T)->getElementType());
631    Width = EltInfo.first*2;
632    Align = EltInfo.second;
633    break;
634  }
635  case Type::ObjCObject:
636    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
637  case Type::ObjCInterface: {
638    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
639    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
640    Width = Layout.getSize();
641    Align = Layout.getAlignment();
642    break;
643  }
644  case Type::Record:
645  case Type::Enum: {
646    const TagType *TT = cast<TagType>(T);
647
648    if (TT->getDecl()->isInvalidDecl()) {
649      Width = 1;
650      Align = 1;
651      break;
652    }
653
654    if (const EnumType *ET = dyn_cast<EnumType>(TT))
655      return getTypeInfo(ET->getDecl()->getIntegerType());
656
657    const RecordType *RT = cast<RecordType>(TT);
658    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
659    Width = Layout.getSize();
660    Align = Layout.getAlignment();
661    break;
662  }
663
664  case Type::SubstTemplateTypeParm:
665    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
666                       getReplacementType().getTypePtr());
667
668  case Type::Typedef: {
669    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
670    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
671      Align = std::max(Aligned->getMaxAlignment(),
672                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
673      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
674    } else
675      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
676    break;
677  }
678
679  case Type::TypeOfExpr:
680    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
681                         .getTypePtr());
682
683  case Type::TypeOf:
684    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
685
686  case Type::Decltype:
687    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
688                        .getTypePtr());
689
690  case Type::Elaborated:
691    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
692
693  case Type::TemplateSpecialization:
694    assert(getCanonicalType(T) != T &&
695           "Cannot request the size of a dependent type");
696    // FIXME: this is likely to be wrong once we support template
697    // aliases, since a template alias could refer to a typedef that
698    // has an __aligned__ attribute on it.
699    return getTypeInfo(getCanonicalType(T));
700  }
701
702  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
703  return std::make_pair(Width, Align);
704}
705
706/// getTypeSizeInChars - Return the size of the specified type, in characters.
707/// This method does not work on incomplete types.
708CharUnits ASTContext::getTypeSizeInChars(QualType T) {
709  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
710}
711CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
712  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
713}
714
715/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
716/// characters. This method does not work on incomplete types.
717CharUnits ASTContext::getTypeAlignInChars(QualType T) {
718  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
719}
720CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
721  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
722}
723
724/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
725/// type for the current target in bits.  This can be different than the ABI
726/// alignment in cases where it is beneficial for performance to overalign
727/// a data type.
728unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
729  unsigned ABIAlign = getTypeAlign(T);
730
731  // Double and long long should be naturally aligned if possible.
732  if (const ComplexType* CT = T->getAs<ComplexType>())
733    T = CT->getElementType().getTypePtr();
734  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
735      T->isSpecificBuiltinType(BuiltinType::LongLong))
736    return std::max(ABIAlign, (unsigned)getTypeSize(T));
737
738  return ABIAlign;
739}
740
741static void CollectLocalObjCIvars(ASTContext *Ctx,
742                                  const ObjCInterfaceDecl *OI,
743                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
744  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
745       E = OI->ivar_end(); I != E; ++I) {
746    ObjCIvarDecl *IVDecl = *I;
747    if (!IVDecl->isInvalidDecl())
748      Fields.push_back(cast<FieldDecl>(IVDecl));
749  }
750}
751
752void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
753                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
754  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
755    CollectObjCIvars(SuperClass, Fields);
756  CollectLocalObjCIvars(this, OI, Fields);
757}
758
759/// ShallowCollectObjCIvars -
760/// Collect all ivars, including those synthesized, in the current class.
761///
762void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
763                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
764  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
765         E = OI->ivar_end(); I != E; ++I) {
766     Ivars.push_back(*I);
767  }
768
769  CollectNonClassIvars(OI, Ivars);
770}
771
772/// CollectNonClassIvars -
773/// This routine collects all other ivars which are not declared in the class.
774/// This includes synthesized ivars (via @synthesize) and those in
775//  class's @implementation.
776///
777void ASTContext::CollectNonClassIvars(const ObjCInterfaceDecl *OI,
778                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
779  // Find ivars declared in class extension.
780  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) {
781    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
782         E = CDecl->ivar_end(); I != E; ++I) {
783      Ivars.push_back(*I);
784    }
785  }
786
787  // Also add any ivar defined in this class's implementation.  This
788  // includes synthesized ivars.
789  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
790    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
791         E = ImplDecl->ivar_end(); I != E; ++I)
792      Ivars.push_back(*I);
793  }
794}
795
796/// CollectInheritedProtocols - Collect all protocols in current class and
797/// those inherited by it.
798void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
799                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
800  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
801    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
802         PE = OI->protocol_end(); P != PE; ++P) {
803      ObjCProtocolDecl *Proto = (*P);
804      Protocols.insert(Proto);
805      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
806           PE = Proto->protocol_end(); P != PE; ++P) {
807        Protocols.insert(*P);
808        CollectInheritedProtocols(*P, Protocols);
809      }
810    }
811
812    // Categories of this Interface.
813    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
814         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
815      CollectInheritedProtocols(CDeclChain, Protocols);
816    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
817      while (SD) {
818        CollectInheritedProtocols(SD, Protocols);
819        SD = SD->getSuperClass();
820      }
821  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
822    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
823         PE = OC->protocol_end(); P != PE; ++P) {
824      ObjCProtocolDecl *Proto = (*P);
825      Protocols.insert(Proto);
826      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
827           PE = Proto->protocol_end(); P != PE; ++P)
828        CollectInheritedProtocols(*P, Protocols);
829    }
830  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
831    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
832         PE = OP->protocol_end(); P != PE; ++P) {
833      ObjCProtocolDecl *Proto = (*P);
834      Protocols.insert(Proto);
835      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
836           PE = Proto->protocol_end(); P != PE; ++P)
837        CollectInheritedProtocols(*P, Protocols);
838    }
839  }
840}
841
842unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
843  unsigned count = 0;
844  // Count ivars declared in class extension.
845  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension())
846    count += CDecl->ivar_size();
847
848  // Count ivar defined in this class's implementation.  This
849  // includes synthesized ivars.
850  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
851    count += ImplDecl->ivar_size();
852
853  return count;
854}
855
856/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
857ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
858  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
859    I = ObjCImpls.find(D);
860  if (I != ObjCImpls.end())
861    return cast<ObjCImplementationDecl>(I->second);
862  return 0;
863}
864/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
865ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
866  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
867    I = ObjCImpls.find(D);
868  if (I != ObjCImpls.end())
869    return cast<ObjCCategoryImplDecl>(I->second);
870  return 0;
871}
872
873/// \brief Set the implementation of ObjCInterfaceDecl.
874void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
875                           ObjCImplementationDecl *ImplD) {
876  assert(IFaceD && ImplD && "Passed null params");
877  ObjCImpls[IFaceD] = ImplD;
878}
879/// \brief Set the implementation of ObjCCategoryDecl.
880void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
881                           ObjCCategoryImplDecl *ImplD) {
882  assert(CatD && ImplD && "Passed null params");
883  ObjCImpls[CatD] = ImplD;
884}
885
886/// \brief Allocate an uninitialized TypeSourceInfo.
887///
888/// The caller should initialize the memory held by TypeSourceInfo using
889/// the TypeLoc wrappers.
890///
891/// \param T the type that will be the basis for type source info. This type
892/// should refer to how the declarator was written in source code, not to
893/// what type semantic analysis resolved the declarator to.
894TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
895                                                 unsigned DataSize) {
896  if (!DataSize)
897    DataSize = TypeLoc::getFullDataSizeForType(T);
898  else
899    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
900           "incorrect data size provided to CreateTypeSourceInfo!");
901
902  TypeSourceInfo *TInfo =
903    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
904  new (TInfo) TypeSourceInfo(T);
905  return TInfo;
906}
907
908TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
909                                                     SourceLocation L) {
910  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
911  DI->getTypeLoc().initialize(L);
912  return DI;
913}
914
915const ASTRecordLayout &
916ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
917  return getObjCLayout(D, 0);
918}
919
920const ASTRecordLayout &
921ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
922  return getObjCLayout(D->getClassInterface(), D);
923}
924
925//===----------------------------------------------------------------------===//
926//                   Type creation/memoization methods
927//===----------------------------------------------------------------------===//
928
929QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
930  unsigned Fast = Quals.getFastQualifiers();
931  Quals.removeFastQualifiers();
932
933  // Check if we've already instantiated this type.
934  llvm::FoldingSetNodeID ID;
935  ExtQuals::Profile(ID, TypeNode, Quals);
936  void *InsertPos = 0;
937  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
938    assert(EQ->getQualifiers() == Quals);
939    QualType T = QualType(EQ, Fast);
940    return T;
941  }
942
943  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
944  ExtQualNodes.InsertNode(New, InsertPos);
945  QualType T = QualType(New, Fast);
946  return T;
947}
948
949QualType ASTContext::getVolatileType(QualType T) {
950  QualType CanT = getCanonicalType(T);
951  if (CanT.isVolatileQualified()) return T;
952
953  QualifierCollector Quals;
954  const Type *TypeNode = Quals.strip(T);
955  Quals.addVolatile();
956
957  return getExtQualType(TypeNode, Quals);
958}
959
960QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
961  QualType CanT = getCanonicalType(T);
962  if (CanT.getAddressSpace() == AddressSpace)
963    return T;
964
965  // If we are composing extended qualifiers together, merge together
966  // into one ExtQuals node.
967  QualifierCollector Quals;
968  const Type *TypeNode = Quals.strip(T);
969
970  // If this type already has an address space specified, it cannot get
971  // another one.
972  assert(!Quals.hasAddressSpace() &&
973         "Type cannot be in multiple addr spaces!");
974  Quals.addAddressSpace(AddressSpace);
975
976  return getExtQualType(TypeNode, Quals);
977}
978
979QualType ASTContext::getObjCGCQualType(QualType T,
980                                       Qualifiers::GC GCAttr) {
981  QualType CanT = getCanonicalType(T);
982  if (CanT.getObjCGCAttr() == GCAttr)
983    return T;
984
985  if (T->isPointerType()) {
986    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
987    if (Pointee->isAnyPointerType()) {
988      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
989      return getPointerType(ResultType);
990    }
991  }
992
993  // If we are composing extended qualifiers together, merge together
994  // into one ExtQuals node.
995  QualifierCollector Quals;
996  const Type *TypeNode = Quals.strip(T);
997
998  // If this type already has an ObjCGC specified, it cannot get
999  // another one.
1000  assert(!Quals.hasObjCGCAttr() &&
1001         "Type cannot have multiple ObjCGCs!");
1002  Quals.addObjCGCAttr(GCAttr);
1003
1004  return getExtQualType(TypeNode, Quals);
1005}
1006
1007static QualType getExtFunctionType(ASTContext& Context, QualType T,
1008                                        const FunctionType::ExtInfo &Info) {
1009  QualType ResultType;
1010  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1011    QualType Pointee = Pointer->getPointeeType();
1012    ResultType = getExtFunctionType(Context, Pointee, Info);
1013    if (ResultType == Pointee)
1014      return T;
1015
1016    ResultType = Context.getPointerType(ResultType);
1017  } else if (const BlockPointerType *BlockPointer
1018                                              = T->getAs<BlockPointerType>()) {
1019    QualType Pointee = BlockPointer->getPointeeType();
1020    ResultType = getExtFunctionType(Context, Pointee, Info);
1021    if (ResultType == Pointee)
1022      return T;
1023
1024    ResultType = Context.getBlockPointerType(ResultType);
1025   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1026    if (F->getExtInfo() == Info)
1027      return T;
1028
1029    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1030      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1031                                                  Info);
1032    } else {
1033      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1034      ResultType
1035        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1036                                  FPT->getNumArgs(), FPT->isVariadic(),
1037                                  FPT->getTypeQuals(),
1038                                  FPT->hasExceptionSpec(),
1039                                  FPT->hasAnyExceptionSpec(),
1040                                  FPT->getNumExceptions(),
1041                                  FPT->exception_begin(),
1042                                  Info);
1043    }
1044  } else
1045    return T;
1046
1047  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1048}
1049
1050QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1051  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1052  return getExtFunctionType(*this, T,
1053                                 Info.withNoReturn(AddNoReturn));
1054}
1055
1056QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1057  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1058  return getExtFunctionType(*this, T,
1059                            Info.withCallingConv(CallConv));
1060}
1061
1062QualType ASTContext::getRegParmType(QualType T, unsigned RegParm) {
1063  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1064  return getExtFunctionType(*this, T,
1065                                 Info.withRegParm(RegParm));
1066}
1067
1068/// getComplexType - Return the uniqued reference to the type for a complex
1069/// number with the specified element type.
1070QualType ASTContext::getComplexType(QualType T) {
1071  // Unique pointers, to guarantee there is only one pointer of a particular
1072  // structure.
1073  llvm::FoldingSetNodeID ID;
1074  ComplexType::Profile(ID, T);
1075
1076  void *InsertPos = 0;
1077  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1078    return QualType(CT, 0);
1079
1080  // If the pointee type isn't canonical, this won't be a canonical type either,
1081  // so fill in the canonical type field.
1082  QualType Canonical;
1083  if (!T.isCanonical()) {
1084    Canonical = getComplexType(getCanonicalType(T));
1085
1086    // Get the new insert position for the node we care about.
1087    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1088    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1089  }
1090  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1091  Types.push_back(New);
1092  ComplexTypes.InsertNode(New, InsertPos);
1093  return QualType(New, 0);
1094}
1095
1096/// getPointerType - Return the uniqued reference to the type for a pointer to
1097/// the specified type.
1098QualType ASTContext::getPointerType(QualType T) {
1099  // Unique pointers, to guarantee there is only one pointer of a particular
1100  // structure.
1101  llvm::FoldingSetNodeID ID;
1102  PointerType::Profile(ID, T);
1103
1104  void *InsertPos = 0;
1105  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1106    return QualType(PT, 0);
1107
1108  // If the pointee type isn't canonical, this won't be a canonical type either,
1109  // so fill in the canonical type field.
1110  QualType Canonical;
1111  if (!T.isCanonical()) {
1112    Canonical = getPointerType(getCanonicalType(T));
1113
1114    // Get the new insert position for the node we care about.
1115    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1116    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1117  }
1118  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1119  Types.push_back(New);
1120  PointerTypes.InsertNode(New, InsertPos);
1121  return QualType(New, 0);
1122}
1123
1124/// getBlockPointerType - Return the uniqued reference to the type for
1125/// a pointer to the specified block.
1126QualType ASTContext::getBlockPointerType(QualType T) {
1127  assert(T->isFunctionType() && "block of function types only");
1128  // Unique pointers, to guarantee there is only one block of a particular
1129  // structure.
1130  llvm::FoldingSetNodeID ID;
1131  BlockPointerType::Profile(ID, T);
1132
1133  void *InsertPos = 0;
1134  if (BlockPointerType *PT =
1135        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1136    return QualType(PT, 0);
1137
1138  // If the block pointee type isn't canonical, this won't be a canonical
1139  // type either so fill in the canonical type field.
1140  QualType Canonical;
1141  if (!T.isCanonical()) {
1142    Canonical = getBlockPointerType(getCanonicalType(T));
1143
1144    // Get the new insert position for the node we care about.
1145    BlockPointerType *NewIP =
1146      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1147    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1148  }
1149  BlockPointerType *New
1150    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1151  Types.push_back(New);
1152  BlockPointerTypes.InsertNode(New, InsertPos);
1153  return QualType(New, 0);
1154}
1155
1156/// getLValueReferenceType - Return the uniqued reference to the type for an
1157/// lvalue reference to the specified type.
1158QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1159  // Unique pointers, to guarantee there is only one pointer of a particular
1160  // structure.
1161  llvm::FoldingSetNodeID ID;
1162  ReferenceType::Profile(ID, T, SpelledAsLValue);
1163
1164  void *InsertPos = 0;
1165  if (LValueReferenceType *RT =
1166        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1167    return QualType(RT, 0);
1168
1169  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1170
1171  // If the referencee type isn't canonical, this won't be a canonical type
1172  // either, so fill in the canonical type field.
1173  QualType Canonical;
1174  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1175    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1176    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1177
1178    // Get the new insert position for the node we care about.
1179    LValueReferenceType *NewIP =
1180      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1181    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1182  }
1183
1184  LValueReferenceType *New
1185    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1186                                                     SpelledAsLValue);
1187  Types.push_back(New);
1188  LValueReferenceTypes.InsertNode(New, InsertPos);
1189
1190  return QualType(New, 0);
1191}
1192
1193/// getRValueReferenceType - Return the uniqued reference to the type for an
1194/// rvalue reference to the specified type.
1195QualType ASTContext::getRValueReferenceType(QualType T) {
1196  // Unique pointers, to guarantee there is only one pointer of a particular
1197  // structure.
1198  llvm::FoldingSetNodeID ID;
1199  ReferenceType::Profile(ID, T, false);
1200
1201  void *InsertPos = 0;
1202  if (RValueReferenceType *RT =
1203        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1204    return QualType(RT, 0);
1205
1206  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1207
1208  // If the referencee type isn't canonical, this won't be a canonical type
1209  // either, so fill in the canonical type field.
1210  QualType Canonical;
1211  if (InnerRef || !T.isCanonical()) {
1212    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1213    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1214
1215    // Get the new insert position for the node we care about.
1216    RValueReferenceType *NewIP =
1217      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1218    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1219  }
1220
1221  RValueReferenceType *New
1222    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1223  Types.push_back(New);
1224  RValueReferenceTypes.InsertNode(New, InsertPos);
1225  return QualType(New, 0);
1226}
1227
1228/// getMemberPointerType - Return the uniqued reference to the type for a
1229/// member pointer to the specified type, in the specified class.
1230QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1231  // Unique pointers, to guarantee there is only one pointer of a particular
1232  // structure.
1233  llvm::FoldingSetNodeID ID;
1234  MemberPointerType::Profile(ID, T, Cls);
1235
1236  void *InsertPos = 0;
1237  if (MemberPointerType *PT =
1238      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1239    return QualType(PT, 0);
1240
1241  // If the pointee or class type isn't canonical, this won't be a canonical
1242  // type either, so fill in the canonical type field.
1243  QualType Canonical;
1244  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1245    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1246
1247    // Get the new insert position for the node we care about.
1248    MemberPointerType *NewIP =
1249      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1250    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1251  }
1252  MemberPointerType *New
1253    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1254  Types.push_back(New);
1255  MemberPointerTypes.InsertNode(New, InsertPos);
1256  return QualType(New, 0);
1257}
1258
1259/// getConstantArrayType - Return the unique reference to the type for an
1260/// array of the specified element type.
1261QualType ASTContext::getConstantArrayType(QualType EltTy,
1262                                          const llvm::APInt &ArySizeIn,
1263                                          ArrayType::ArraySizeModifier ASM,
1264                                          unsigned EltTypeQuals) {
1265  assert((EltTy->isDependentType() ||
1266          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1267         "Constant array of VLAs is illegal!");
1268
1269  // Convert the array size into a canonical width matching the pointer size for
1270  // the target.
1271  llvm::APInt ArySize(ArySizeIn);
1272  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1273
1274  llvm::FoldingSetNodeID ID;
1275  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1276
1277  void *InsertPos = 0;
1278  if (ConstantArrayType *ATP =
1279      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1280    return QualType(ATP, 0);
1281
1282  // If the element type isn't canonical, this won't be a canonical type either,
1283  // so fill in the canonical type field.
1284  QualType Canonical;
1285  if (!EltTy.isCanonical()) {
1286    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1287                                     ASM, EltTypeQuals);
1288    // Get the new insert position for the node we care about.
1289    ConstantArrayType *NewIP =
1290      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1291    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1292  }
1293
1294  ConstantArrayType *New = new(*this,TypeAlignment)
1295    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1296  ConstantArrayTypes.InsertNode(New, InsertPos);
1297  Types.push_back(New);
1298  return QualType(New, 0);
1299}
1300
1301/// getVariableArrayType - Returns a non-unique reference to the type for a
1302/// variable array of the specified element type.
1303QualType ASTContext::getVariableArrayType(QualType EltTy,
1304                                          Expr *NumElts,
1305                                          ArrayType::ArraySizeModifier ASM,
1306                                          unsigned EltTypeQuals,
1307                                          SourceRange Brackets) {
1308  // Since we don't unique expressions, it isn't possible to unique VLA's
1309  // that have an expression provided for their size.
1310  QualType CanonType;
1311
1312  if (!EltTy.isCanonical()) {
1313    if (NumElts)
1314      NumElts->Retain();
1315    CanonType = getVariableArrayType(getCanonicalType(EltTy), NumElts, ASM,
1316                                     EltTypeQuals, Brackets);
1317  }
1318
1319  VariableArrayType *New = new(*this, TypeAlignment)
1320    VariableArrayType(EltTy, CanonType, NumElts, ASM, EltTypeQuals, Brackets);
1321
1322  VariableArrayTypes.push_back(New);
1323  Types.push_back(New);
1324  return QualType(New, 0);
1325}
1326
1327/// getDependentSizedArrayType - Returns a non-unique reference to
1328/// the type for a dependently-sized array of the specified element
1329/// type.
1330QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1331                                                Expr *NumElts,
1332                                                ArrayType::ArraySizeModifier ASM,
1333                                                unsigned EltTypeQuals,
1334                                                SourceRange Brackets) {
1335  assert((!NumElts || NumElts->isTypeDependent() ||
1336          NumElts->isValueDependent()) &&
1337         "Size must be type- or value-dependent!");
1338
1339  void *InsertPos = 0;
1340  DependentSizedArrayType *Canon = 0;
1341  llvm::FoldingSetNodeID ID;
1342
1343  if (NumElts) {
1344    // Dependently-sized array types that do not have a specified
1345    // number of elements will have their sizes deduced from an
1346    // initializer.
1347    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1348                                     EltTypeQuals, NumElts);
1349
1350    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1351  }
1352
1353  DependentSizedArrayType *New;
1354  if (Canon) {
1355    // We already have a canonical version of this array type; use it as
1356    // the canonical type for a newly-built type.
1357    New = new (*this, TypeAlignment)
1358      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1359                              NumElts, ASM, EltTypeQuals, Brackets);
1360  } else {
1361    QualType CanonEltTy = getCanonicalType(EltTy);
1362    if (CanonEltTy == EltTy) {
1363      New = new (*this, TypeAlignment)
1364        DependentSizedArrayType(*this, EltTy, QualType(),
1365                                NumElts, ASM, EltTypeQuals, Brackets);
1366
1367      if (NumElts) {
1368        DependentSizedArrayType *CanonCheck
1369          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1370        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1371        (void)CanonCheck;
1372        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1373      }
1374    } else {
1375      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1376                                                  ASM, EltTypeQuals,
1377                                                  SourceRange());
1378      New = new (*this, TypeAlignment)
1379        DependentSizedArrayType(*this, EltTy, Canon,
1380                                NumElts, ASM, EltTypeQuals, Brackets);
1381    }
1382  }
1383
1384  Types.push_back(New);
1385  return QualType(New, 0);
1386}
1387
1388QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1389                                            ArrayType::ArraySizeModifier ASM,
1390                                            unsigned EltTypeQuals) {
1391  llvm::FoldingSetNodeID ID;
1392  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1393
1394  void *InsertPos = 0;
1395  if (IncompleteArrayType *ATP =
1396       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1397    return QualType(ATP, 0);
1398
1399  // If the element type isn't canonical, this won't be a canonical type
1400  // either, so fill in the canonical type field.
1401  QualType Canonical;
1402
1403  if (!EltTy.isCanonical()) {
1404    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1405                                       ASM, EltTypeQuals);
1406
1407    // Get the new insert position for the node we care about.
1408    IncompleteArrayType *NewIP =
1409      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1410    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1411  }
1412
1413  IncompleteArrayType *New = new (*this, TypeAlignment)
1414    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1415
1416  IncompleteArrayTypes.InsertNode(New, InsertPos);
1417  Types.push_back(New);
1418  return QualType(New, 0);
1419}
1420
1421/// getVectorType - Return the unique reference to a vector type of
1422/// the specified element type and size. VectorType must be a built-in type.
1423QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1424                                   bool IsAltiVec, bool IsPixel) {
1425  BuiltinType *baseType;
1426
1427  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1428  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1429
1430  // Check if we've already instantiated a vector of this type.
1431  llvm::FoldingSetNodeID ID;
1432  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1433    IsAltiVec, IsPixel);
1434  void *InsertPos = 0;
1435  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1436    return QualType(VTP, 0);
1437
1438  // If the element type isn't canonical, this won't be a canonical type either,
1439  // so fill in the canonical type field.
1440  QualType Canonical;
1441  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1442    Canonical = getVectorType(getCanonicalType(vecType),
1443      NumElts, false, false);
1444
1445    // Get the new insert position for the node we care about.
1446    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1447    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1448  }
1449  VectorType *New = new (*this, TypeAlignment)
1450    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1451  VectorTypes.InsertNode(New, InsertPos);
1452  Types.push_back(New);
1453  return QualType(New, 0);
1454}
1455
1456/// getExtVectorType - Return the unique reference to an extended vector type of
1457/// the specified element type and size. VectorType must be a built-in type.
1458QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1459  BuiltinType *baseType;
1460
1461  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1462  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1463
1464  // Check if we've already instantiated a vector of this type.
1465  llvm::FoldingSetNodeID ID;
1466  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1467  void *InsertPos = 0;
1468  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1469    return QualType(VTP, 0);
1470
1471  // If the element type isn't canonical, this won't be a canonical type either,
1472  // so fill in the canonical type field.
1473  QualType Canonical;
1474  if (!vecType.isCanonical()) {
1475    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1476
1477    // Get the new insert position for the node we care about.
1478    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1479    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1480  }
1481  ExtVectorType *New = new (*this, TypeAlignment)
1482    ExtVectorType(vecType, NumElts, Canonical);
1483  VectorTypes.InsertNode(New, InsertPos);
1484  Types.push_back(New);
1485  return QualType(New, 0);
1486}
1487
1488QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1489                                                    Expr *SizeExpr,
1490                                                    SourceLocation AttrLoc) {
1491  llvm::FoldingSetNodeID ID;
1492  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1493                                       SizeExpr);
1494
1495  void *InsertPos = 0;
1496  DependentSizedExtVectorType *Canon
1497    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1498  DependentSizedExtVectorType *New;
1499  if (Canon) {
1500    // We already have a canonical version of this array type; use it as
1501    // the canonical type for a newly-built type.
1502    New = new (*this, TypeAlignment)
1503      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1504                                  SizeExpr, AttrLoc);
1505  } else {
1506    QualType CanonVecTy = getCanonicalType(vecType);
1507    if (CanonVecTy == vecType) {
1508      New = new (*this, TypeAlignment)
1509        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1510                                    AttrLoc);
1511
1512      DependentSizedExtVectorType *CanonCheck
1513        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1514      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1515      (void)CanonCheck;
1516      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1517    } else {
1518      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1519                                                      SourceLocation());
1520      New = new (*this, TypeAlignment)
1521        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1522    }
1523  }
1524
1525  Types.push_back(New);
1526  return QualType(New, 0);
1527}
1528
1529/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1530///
1531QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
1532                                            const FunctionType::ExtInfo &Info) {
1533  const CallingConv CallConv = Info.getCC();
1534  // Unique functions, to guarantee there is only one function of a particular
1535  // structure.
1536  llvm::FoldingSetNodeID ID;
1537  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1538
1539  void *InsertPos = 0;
1540  if (FunctionNoProtoType *FT =
1541        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1542    return QualType(FT, 0);
1543
1544  QualType Canonical;
1545  if (!ResultTy.isCanonical() ||
1546      getCanonicalCallConv(CallConv) != CallConv) {
1547    Canonical =
1548      getFunctionNoProtoType(getCanonicalType(ResultTy),
1549                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1550
1551    // Get the new insert position for the node we care about.
1552    FunctionNoProtoType *NewIP =
1553      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1554    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1555  }
1556
1557  FunctionNoProtoType *New = new (*this, TypeAlignment)
1558    FunctionNoProtoType(ResultTy, Canonical, Info);
1559  Types.push_back(New);
1560  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1561  return QualType(New, 0);
1562}
1563
1564/// getFunctionType - Return a normal function type with a typed argument
1565/// list.  isVariadic indicates whether the argument list includes '...'.
1566QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1567                                     unsigned NumArgs, bool isVariadic,
1568                                     unsigned TypeQuals, bool hasExceptionSpec,
1569                                     bool hasAnyExceptionSpec, unsigned NumExs,
1570                                     const QualType *ExArray,
1571                                     const FunctionType::ExtInfo &Info) {
1572  const CallingConv CallConv= Info.getCC();
1573  // Unique functions, to guarantee there is only one function of a particular
1574  // structure.
1575  llvm::FoldingSetNodeID ID;
1576  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1577                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1578                             NumExs, ExArray, Info);
1579
1580  void *InsertPos = 0;
1581  if (FunctionProtoType *FTP =
1582        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1583    return QualType(FTP, 0);
1584
1585  // Determine whether the type being created is already canonical or not.
1586  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1587  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1588    if (!ArgArray[i].isCanonicalAsParam())
1589      isCanonical = false;
1590
1591  // If this type isn't canonical, get the canonical version of it.
1592  // The exception spec is not part of the canonical type.
1593  QualType Canonical;
1594  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1595    llvm::SmallVector<QualType, 16> CanonicalArgs;
1596    CanonicalArgs.reserve(NumArgs);
1597    for (unsigned i = 0; i != NumArgs; ++i)
1598      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1599
1600    Canonical = getFunctionType(getCanonicalType(ResultTy),
1601                                CanonicalArgs.data(), NumArgs,
1602                                isVariadic, TypeQuals, false,
1603                                false, 0, 0,
1604                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1605
1606    // Get the new insert position for the node we care about.
1607    FunctionProtoType *NewIP =
1608      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1609    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1610  }
1611
1612  // FunctionProtoType objects are allocated with extra bytes after them
1613  // for two variable size arrays (for parameter and exception types) at the
1614  // end of them.
1615  FunctionProtoType *FTP =
1616    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1617                                 NumArgs*sizeof(QualType) +
1618                                 NumExs*sizeof(QualType), TypeAlignment);
1619  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1620                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1621                              ExArray, NumExs, Canonical, Info);
1622  Types.push_back(FTP);
1623  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1624  return QualType(FTP, 0);
1625}
1626
1627#ifndef NDEBUG
1628static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1629  if (!isa<CXXRecordDecl>(D)) return false;
1630  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1631  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1632    return true;
1633  if (RD->getDescribedClassTemplate() &&
1634      !isa<ClassTemplateSpecializationDecl>(RD))
1635    return true;
1636  return false;
1637}
1638#endif
1639
1640/// getInjectedClassNameType - Return the unique reference to the
1641/// injected class name type for the specified templated declaration.
1642QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1643                                              QualType TST) {
1644  assert(NeedsInjectedClassNameType(Decl));
1645  if (Decl->TypeForDecl) {
1646    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1647  } else if (CXXRecordDecl *PrevDecl
1648               = cast_or_null<CXXRecordDecl>(Decl->getPreviousDeclaration())) {
1649    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1650    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1651    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1652  } else {
1653    Decl->TypeForDecl =
1654      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1655    Types.push_back(Decl->TypeForDecl);
1656  }
1657  return QualType(Decl->TypeForDecl, 0);
1658}
1659
1660/// getTypeDeclType - Return the unique reference to the type for the
1661/// specified type declaration.
1662QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1663  assert(Decl && "Passed null for Decl param");
1664  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1665
1666  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1667    return getTypedefType(Typedef);
1668
1669  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1670         "Template type parameter types are always available.");
1671
1672  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1673    assert(!Record->getPreviousDeclaration() &&
1674           "struct/union has previous declaration");
1675    assert(!NeedsInjectedClassNameType(Record));
1676    Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1677  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1678    assert(!Enum->getPreviousDeclaration() &&
1679           "enum has previous declaration");
1680    Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1681  } else if (const UnresolvedUsingTypenameDecl *Using =
1682               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1683    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1684  } else
1685    llvm_unreachable("TypeDecl without a type?");
1686
1687  Types.push_back(Decl->TypeForDecl);
1688  return QualType(Decl->TypeForDecl, 0);
1689}
1690
1691/// getTypedefType - Return the unique reference to the type for the
1692/// specified typename decl.
1693QualType ASTContext::getTypedefType(const TypedefDecl *Decl) {
1694  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1695
1696  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1697  Decl->TypeForDecl = new(*this, TypeAlignment)
1698    TypedefType(Type::Typedef, Decl, Canonical);
1699  Types.push_back(Decl->TypeForDecl);
1700  return QualType(Decl->TypeForDecl, 0);
1701}
1702
1703/// \brief Retrieve a substitution-result type.
1704QualType
1705ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1706                                         QualType Replacement) {
1707  assert(Replacement.isCanonical()
1708         && "replacement types must always be canonical");
1709
1710  llvm::FoldingSetNodeID ID;
1711  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1712  void *InsertPos = 0;
1713  SubstTemplateTypeParmType *SubstParm
1714    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1715
1716  if (!SubstParm) {
1717    SubstParm = new (*this, TypeAlignment)
1718      SubstTemplateTypeParmType(Parm, Replacement);
1719    Types.push_back(SubstParm);
1720    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1721  }
1722
1723  return QualType(SubstParm, 0);
1724}
1725
1726/// \brief Retrieve the template type parameter type for a template
1727/// parameter or parameter pack with the given depth, index, and (optionally)
1728/// name.
1729QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1730                                             bool ParameterPack,
1731                                             TemplateTypeParmDecl *TTPDecl) {
1732  llvm::FoldingSetNodeID ID;
1733  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
1734  void *InsertPos = 0;
1735  TemplateTypeParmType *TypeParm
1736    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1737
1738  if (TypeParm)
1739    return QualType(TypeParm, 0);
1740
1741  if (TTPDecl) {
1742    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1743    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
1744
1745    TemplateTypeParmType *TypeCheck
1746      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1747    assert(!TypeCheck && "Template type parameter canonical type broken");
1748    (void)TypeCheck;
1749  } else
1750    TypeParm = new (*this, TypeAlignment)
1751      TemplateTypeParmType(Depth, Index, ParameterPack);
1752
1753  Types.push_back(TypeParm);
1754  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1755
1756  return QualType(TypeParm, 0);
1757}
1758
1759TypeSourceInfo *
1760ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
1761                                              SourceLocation NameLoc,
1762                                        const TemplateArgumentListInfo &Args,
1763                                              QualType CanonType) {
1764  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
1765
1766  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
1767  TemplateSpecializationTypeLoc TL
1768    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1769  TL.setTemplateNameLoc(NameLoc);
1770  TL.setLAngleLoc(Args.getLAngleLoc());
1771  TL.setRAngleLoc(Args.getRAngleLoc());
1772  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1773    TL.setArgLocInfo(i, Args[i].getLocInfo());
1774  return DI;
1775}
1776
1777QualType
1778ASTContext::getTemplateSpecializationType(TemplateName Template,
1779                                          const TemplateArgumentListInfo &Args,
1780                                          QualType Canon) {
1781  unsigned NumArgs = Args.size();
1782
1783  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1784  ArgVec.reserve(NumArgs);
1785  for (unsigned i = 0; i != NumArgs; ++i)
1786    ArgVec.push_back(Args[i].getArgument());
1787
1788  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
1789                                       Canon);
1790}
1791
1792QualType
1793ASTContext::getTemplateSpecializationType(TemplateName Template,
1794                                          const TemplateArgument *Args,
1795                                          unsigned NumArgs,
1796                                          QualType Canon) {
1797  if (!Canon.isNull())
1798    Canon = getCanonicalType(Canon);
1799  else {
1800    // Build the canonical template specialization type.
1801    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1802    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1803    CanonArgs.reserve(NumArgs);
1804    for (unsigned I = 0; I != NumArgs; ++I)
1805      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1806
1807    // Determine whether this canonical template specialization type already
1808    // exists.
1809    llvm::FoldingSetNodeID ID;
1810    TemplateSpecializationType::Profile(ID, CanonTemplate,
1811                                        CanonArgs.data(), NumArgs, *this);
1812
1813    void *InsertPos = 0;
1814    TemplateSpecializationType *Spec
1815      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1816
1817    if (!Spec) {
1818      // Allocate a new canonical template specialization type.
1819      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1820                            sizeof(TemplateArgument) * NumArgs),
1821                           TypeAlignment);
1822      Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
1823                                                  CanonArgs.data(), NumArgs,
1824                                                  Canon);
1825      Types.push_back(Spec);
1826      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1827    }
1828
1829    if (Canon.isNull())
1830      Canon = QualType(Spec, 0);
1831    assert(Canon->isDependentType() &&
1832           "Non-dependent template-id type must have a canonical type");
1833  }
1834
1835  // Allocate the (non-canonical) template specialization type, but don't
1836  // try to unique it: these types typically have location information that
1837  // we don't unique and don't want to lose.
1838  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1839                        sizeof(TemplateArgument) * NumArgs),
1840                       TypeAlignment);
1841  TemplateSpecializationType *Spec
1842    = new (Mem) TemplateSpecializationType(Template,
1843                                           Args, NumArgs,
1844                                           Canon);
1845
1846  Types.push_back(Spec);
1847  return QualType(Spec, 0);
1848}
1849
1850QualType
1851ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
1852                              NestedNameSpecifier *NNS,
1853                              QualType NamedType) {
1854  llvm::FoldingSetNodeID ID;
1855  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
1856
1857  void *InsertPos = 0;
1858  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1859  if (T)
1860    return QualType(T, 0);
1861
1862  QualType Canon = NamedType;
1863  if (!Canon.isCanonical()) {
1864    Canon = getCanonicalType(NamedType);
1865    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1866    assert(!CheckT && "Elaborated canonical type broken");
1867    (void)CheckT;
1868  }
1869
1870  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
1871  Types.push_back(T);
1872  ElaboratedTypes.InsertNode(T, InsertPos);
1873  return QualType(T, 0);
1874}
1875
1876QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
1877                                          NestedNameSpecifier *NNS,
1878                                          const IdentifierInfo *Name,
1879                                          QualType Canon) {
1880  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1881
1882  if (Canon.isNull()) {
1883    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1884    ElaboratedTypeKeyword CanonKeyword = Keyword;
1885    if (Keyword == ETK_None)
1886      CanonKeyword = ETK_Typename;
1887
1888    if (CanonNNS != NNS || CanonKeyword != Keyword)
1889      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
1890  }
1891
1892  llvm::FoldingSetNodeID ID;
1893  DependentNameType::Profile(ID, Keyword, NNS, Name);
1894
1895  void *InsertPos = 0;
1896  DependentNameType *T
1897    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1898  if (T)
1899    return QualType(T, 0);
1900
1901  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
1902  Types.push_back(T);
1903  DependentNameTypes.InsertNode(T, InsertPos);
1904  return QualType(T, 0);
1905}
1906
1907QualType
1908ASTContext::getDependentTemplateSpecializationType(
1909                                 ElaboratedTypeKeyword Keyword,
1910                                 NestedNameSpecifier *NNS,
1911                                 const IdentifierInfo *Name,
1912                                 const TemplateArgumentListInfo &Args) {
1913  // TODO: avoid this copy
1914  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
1915  for (unsigned I = 0, E = Args.size(); I != E; ++I)
1916    ArgCopy.push_back(Args[I].getArgument());
1917  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
1918                                                ArgCopy.size(),
1919                                                ArgCopy.data());
1920}
1921
1922QualType
1923ASTContext::getDependentTemplateSpecializationType(
1924                                 ElaboratedTypeKeyword Keyword,
1925                                 NestedNameSpecifier *NNS,
1926                                 const IdentifierInfo *Name,
1927                                 unsigned NumArgs,
1928                                 const TemplateArgument *Args) {
1929  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1930
1931  llvm::FoldingSetNodeID ID;
1932  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
1933                                               Name, NumArgs, Args);
1934
1935  void *InsertPos = 0;
1936  DependentTemplateSpecializationType *T
1937    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1938  if (T)
1939    return QualType(T, 0);
1940
1941  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1942
1943  ElaboratedTypeKeyword CanonKeyword = Keyword;
1944  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
1945
1946  bool AnyNonCanonArgs = false;
1947  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
1948  for (unsigned I = 0; I != NumArgs; ++I) {
1949    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
1950    if (!CanonArgs[I].structurallyEquals(Args[I]))
1951      AnyNonCanonArgs = true;
1952  }
1953
1954  QualType Canon;
1955  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
1956    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
1957                                                   Name, NumArgs,
1958                                                   CanonArgs.data());
1959
1960    // Find the insert position again.
1961    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1962  }
1963
1964  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
1965                        sizeof(TemplateArgument) * NumArgs),
1966                       TypeAlignment);
1967  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
1968                                                    Name, NumArgs, Args, Canon);
1969  Types.push_back(T);
1970  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
1971  return QualType(T, 0);
1972}
1973
1974/// CmpProtocolNames - Comparison predicate for sorting protocols
1975/// alphabetically.
1976static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1977                            const ObjCProtocolDecl *RHS) {
1978  return LHS->getDeclName() < RHS->getDeclName();
1979}
1980
1981static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
1982                                unsigned NumProtocols) {
1983  if (NumProtocols == 0) return true;
1984
1985  for (unsigned i = 1; i != NumProtocols; ++i)
1986    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
1987      return false;
1988  return true;
1989}
1990
1991static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
1992                                   unsigned &NumProtocols) {
1993  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1994
1995  // Sort protocols, keyed by name.
1996  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1997
1998  // Remove duplicates.
1999  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2000  NumProtocols = ProtocolsEnd-Protocols;
2001}
2002
2003QualType ASTContext::getObjCObjectType(QualType BaseType,
2004                                       ObjCProtocolDecl * const *Protocols,
2005                                       unsigned NumProtocols) {
2006  // If the base type is an interface and there aren't any protocols
2007  // to add, then the interface type will do just fine.
2008  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2009    return BaseType;
2010
2011  // Look in the folding set for an existing type.
2012  llvm::FoldingSetNodeID ID;
2013  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2014  void *InsertPos = 0;
2015  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2016    return QualType(QT, 0);
2017
2018  // Build the canonical type, which has the canonical base type and
2019  // a sorted-and-uniqued list of protocols.
2020  QualType Canonical;
2021  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2022  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2023    if (!ProtocolsSorted) {
2024      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2025                                                     Protocols + NumProtocols);
2026      unsigned UniqueCount = NumProtocols;
2027
2028      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2029      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2030                                    &Sorted[0], UniqueCount);
2031    } else {
2032      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2033                                    Protocols, NumProtocols);
2034    }
2035
2036    // Regenerate InsertPos.
2037    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2038  }
2039
2040  unsigned Size = sizeof(ObjCObjectTypeImpl);
2041  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2042  void *Mem = Allocate(Size, TypeAlignment);
2043  ObjCObjectTypeImpl *T =
2044    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2045
2046  Types.push_back(T);
2047  ObjCObjectTypes.InsertNode(T, InsertPos);
2048  return QualType(T, 0);
2049}
2050
2051/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2052/// the given object type.
2053QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) {
2054  llvm::FoldingSetNodeID ID;
2055  ObjCObjectPointerType::Profile(ID, ObjectT);
2056
2057  void *InsertPos = 0;
2058  if (ObjCObjectPointerType *QT =
2059              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2060    return QualType(QT, 0);
2061
2062  // Find the canonical object type.
2063  QualType Canonical;
2064  if (!ObjectT.isCanonical()) {
2065    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2066
2067    // Regenerate InsertPos.
2068    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2069  }
2070
2071  // No match.
2072  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2073  ObjCObjectPointerType *QType =
2074    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2075
2076  Types.push_back(QType);
2077  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2078  return QualType(QType, 0);
2079}
2080
2081/// getObjCInterfaceType - Return the unique reference to the type for the
2082/// specified ObjC interface decl. The list of protocols is optional.
2083QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
2084  if (Decl->TypeForDecl)
2085    return QualType(Decl->TypeForDecl, 0);
2086
2087  // FIXME: redeclarations?
2088  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2089  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2090  Decl->TypeForDecl = T;
2091  Types.push_back(T);
2092  return QualType(T, 0);
2093}
2094
2095/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2096/// TypeOfExprType AST's (since expression's are never shared). For example,
2097/// multiple declarations that refer to "typeof(x)" all contain different
2098/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2099/// on canonical type's (which are always unique).
2100QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2101  TypeOfExprType *toe;
2102  if (tofExpr->isTypeDependent()) {
2103    llvm::FoldingSetNodeID ID;
2104    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2105
2106    void *InsertPos = 0;
2107    DependentTypeOfExprType *Canon
2108      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2109    if (Canon) {
2110      // We already have a "canonical" version of an identical, dependent
2111      // typeof(expr) type. Use that as our canonical type.
2112      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2113                                          QualType((TypeOfExprType*)Canon, 0));
2114    }
2115    else {
2116      // Build a new, canonical typeof(expr) type.
2117      Canon
2118        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2119      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2120      toe = Canon;
2121    }
2122  } else {
2123    QualType Canonical = getCanonicalType(tofExpr->getType());
2124    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2125  }
2126  Types.push_back(toe);
2127  return QualType(toe, 0);
2128}
2129
2130/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2131/// TypeOfType AST's. The only motivation to unique these nodes would be
2132/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2133/// an issue. This doesn't effect the type checker, since it operates
2134/// on canonical type's (which are always unique).
2135QualType ASTContext::getTypeOfType(QualType tofType) {
2136  QualType Canonical = getCanonicalType(tofType);
2137  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2138  Types.push_back(tot);
2139  return QualType(tot, 0);
2140}
2141
2142/// getDecltypeForExpr - Given an expr, will return the decltype for that
2143/// expression, according to the rules in C++0x [dcl.type.simple]p4
2144static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2145  if (e->isTypeDependent())
2146    return Context.DependentTy;
2147
2148  // If e is an id expression or a class member access, decltype(e) is defined
2149  // as the type of the entity named by e.
2150  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2151    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2152      return VD->getType();
2153  }
2154  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2155    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2156      return FD->getType();
2157  }
2158  // If e is a function call or an invocation of an overloaded operator,
2159  // (parentheses around e are ignored), decltype(e) is defined as the
2160  // return type of that function.
2161  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2162    return CE->getCallReturnType();
2163
2164  QualType T = e->getType();
2165
2166  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2167  // defined as T&, otherwise decltype(e) is defined as T.
2168  if (e->isLvalue(Context) == Expr::LV_Valid)
2169    T = Context.getLValueReferenceType(T);
2170
2171  return T;
2172}
2173
2174/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2175/// DecltypeType AST's. The only motivation to unique these nodes would be
2176/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2177/// an issue. This doesn't effect the type checker, since it operates
2178/// on canonical type's (which are always unique).
2179QualType ASTContext::getDecltypeType(Expr *e) {
2180  DecltypeType *dt;
2181  if (e->isTypeDependent()) {
2182    llvm::FoldingSetNodeID ID;
2183    DependentDecltypeType::Profile(ID, *this, e);
2184
2185    void *InsertPos = 0;
2186    DependentDecltypeType *Canon
2187      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2188    if (Canon) {
2189      // We already have a "canonical" version of an equivalent, dependent
2190      // decltype type. Use that as our canonical type.
2191      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2192                                       QualType((DecltypeType*)Canon, 0));
2193    }
2194    else {
2195      // Build a new, canonical typeof(expr) type.
2196      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2197      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2198      dt = Canon;
2199    }
2200  } else {
2201    QualType T = getDecltypeForExpr(e, *this);
2202    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2203  }
2204  Types.push_back(dt);
2205  return QualType(dt, 0);
2206}
2207
2208/// getTagDeclType - Return the unique reference to the type for the
2209/// specified TagDecl (struct/union/class/enum) decl.
2210QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2211  assert (Decl);
2212  // FIXME: What is the design on getTagDeclType when it requires casting
2213  // away const?  mutable?
2214  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2215}
2216
2217/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2218/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2219/// needs to agree with the definition in <stddef.h>.
2220CanQualType ASTContext::getSizeType() const {
2221  return getFromTargetType(Target.getSizeType());
2222}
2223
2224/// getSignedWCharType - Return the type of "signed wchar_t".
2225/// Used when in C++, as a GCC extension.
2226QualType ASTContext::getSignedWCharType() const {
2227  // FIXME: derive from "Target" ?
2228  return WCharTy;
2229}
2230
2231/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2232/// Used when in C++, as a GCC extension.
2233QualType ASTContext::getUnsignedWCharType() const {
2234  // FIXME: derive from "Target" ?
2235  return UnsignedIntTy;
2236}
2237
2238/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2239/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2240QualType ASTContext::getPointerDiffType() const {
2241  return getFromTargetType(Target.getPtrDiffType(0));
2242}
2243
2244//===----------------------------------------------------------------------===//
2245//                              Type Operators
2246//===----------------------------------------------------------------------===//
2247
2248CanQualType ASTContext::getCanonicalParamType(QualType T) {
2249  // Push qualifiers into arrays, and then discard any remaining
2250  // qualifiers.
2251  T = getCanonicalType(T);
2252  const Type *Ty = T.getTypePtr();
2253
2254  QualType Result;
2255  if (isa<ArrayType>(Ty)) {
2256    Result = getArrayDecayedType(QualType(Ty,0));
2257  } else if (isa<FunctionType>(Ty)) {
2258    Result = getPointerType(QualType(Ty, 0));
2259  } else {
2260    Result = QualType(Ty, 0);
2261  }
2262
2263  return CanQualType::CreateUnsafe(Result);
2264}
2265
2266/// getCanonicalType - Return the canonical (structural) type corresponding to
2267/// the specified potentially non-canonical type.  The non-canonical version
2268/// of a type may have many "decorated" versions of types.  Decorators can
2269/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2270/// to be free of any of these, allowing two canonical types to be compared
2271/// for exact equality with a simple pointer comparison.
2272CanQualType ASTContext::getCanonicalType(QualType T) {
2273  QualifierCollector Quals;
2274  const Type *Ptr = Quals.strip(T);
2275  QualType CanType = Ptr->getCanonicalTypeInternal();
2276
2277  // The canonical internal type will be the canonical type *except*
2278  // that we push type qualifiers down through array types.
2279
2280  // If there are no new qualifiers to push down, stop here.
2281  if (!Quals.hasQualifiers())
2282    return CanQualType::CreateUnsafe(CanType);
2283
2284  // If the type qualifiers are on an array type, get the canonical
2285  // type of the array with the qualifiers applied to the element
2286  // type.
2287  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2288  if (!AT)
2289    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2290
2291  // Get the canonical version of the element with the extra qualifiers on it.
2292  // This can recursively sink qualifiers through multiple levels of arrays.
2293  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2294  NewEltTy = getCanonicalType(NewEltTy);
2295
2296  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2297    return CanQualType::CreateUnsafe(
2298             getConstantArrayType(NewEltTy, CAT->getSize(),
2299                                  CAT->getSizeModifier(),
2300                                  CAT->getIndexTypeCVRQualifiers()));
2301  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2302    return CanQualType::CreateUnsafe(
2303             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2304                                    IAT->getIndexTypeCVRQualifiers()));
2305
2306  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2307    return CanQualType::CreateUnsafe(
2308             getDependentSizedArrayType(NewEltTy,
2309                                        DSAT->getSizeExpr() ?
2310                                          DSAT->getSizeExpr()->Retain() : 0,
2311                                        DSAT->getSizeModifier(),
2312                                        DSAT->getIndexTypeCVRQualifiers(),
2313                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2314
2315  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2316  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2317                                                        VAT->getSizeExpr() ?
2318                                              VAT->getSizeExpr()->Retain() : 0,
2319                                                        VAT->getSizeModifier(),
2320                                              VAT->getIndexTypeCVRQualifiers(),
2321                                                     VAT->getBracketsRange()));
2322}
2323
2324QualType ASTContext::getUnqualifiedArrayType(QualType T,
2325                                             Qualifiers &Quals) {
2326  Quals = T.getQualifiers();
2327  const ArrayType *AT = getAsArrayType(T);
2328  if (!AT) {
2329    return T.getUnqualifiedType();
2330  }
2331
2332  QualType Elt = AT->getElementType();
2333  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2334  if (Elt == UnqualElt)
2335    return T;
2336
2337  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2338    return getConstantArrayType(UnqualElt, CAT->getSize(),
2339                                CAT->getSizeModifier(), 0);
2340  }
2341
2342  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2343    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2344  }
2345
2346  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2347    return getVariableArrayType(UnqualElt,
2348                                VAT->getSizeExpr() ?
2349                                VAT->getSizeExpr()->Retain() : 0,
2350                                VAT->getSizeModifier(),
2351                                VAT->getIndexTypeCVRQualifiers(),
2352                                VAT->getBracketsRange());
2353  }
2354
2355  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2356  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2357                                    DSAT->getSizeModifier(), 0,
2358                                    SourceRange());
2359}
2360
2361/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2362/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2363/// they point to and return true. If T1 and T2 aren't pointer types
2364/// or pointer-to-member types, or if they are not similar at this
2365/// level, returns false and leaves T1 and T2 unchanged. Top-level
2366/// qualifiers on T1 and T2 are ignored. This function will typically
2367/// be called in a loop that successively "unwraps" pointer and
2368/// pointer-to-member types to compare them at each level.
2369bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2370  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2371                    *T2PtrType = T2->getAs<PointerType>();
2372  if (T1PtrType && T2PtrType) {
2373    T1 = T1PtrType->getPointeeType();
2374    T2 = T2PtrType->getPointeeType();
2375    return true;
2376  }
2377
2378  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2379                          *T2MPType = T2->getAs<MemberPointerType>();
2380  if (T1MPType && T2MPType &&
2381      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2382                             QualType(T2MPType->getClass(), 0))) {
2383    T1 = T1MPType->getPointeeType();
2384    T2 = T2MPType->getPointeeType();
2385    return true;
2386  }
2387
2388  if (getLangOptions().ObjC1) {
2389    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2390                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2391    if (T1OPType && T2OPType) {
2392      T1 = T1OPType->getPointeeType();
2393      T2 = T2OPType->getPointeeType();
2394      return true;
2395    }
2396  }
2397
2398  // FIXME: Block pointers, too?
2399
2400  return false;
2401}
2402
2403DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2404  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2405    return TD->getDeclName();
2406
2407  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2408    if (DTN->isIdentifier()) {
2409      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2410    } else {
2411      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2412    }
2413  }
2414
2415  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2416  assert(Storage);
2417  return (*Storage->begin())->getDeclName();
2418}
2419
2420TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2421  // If this template name refers to a template, the canonical
2422  // template name merely stores the template itself.
2423  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2424    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2425
2426  assert(!Name.getAsOverloadedTemplate());
2427
2428  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2429  assert(DTN && "Non-dependent template names must refer to template decls.");
2430  return DTN->CanonicalTemplateName;
2431}
2432
2433bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2434  X = getCanonicalTemplateName(X);
2435  Y = getCanonicalTemplateName(Y);
2436  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2437}
2438
2439TemplateArgument
2440ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2441  switch (Arg.getKind()) {
2442    case TemplateArgument::Null:
2443      return Arg;
2444
2445    case TemplateArgument::Expression:
2446      return Arg;
2447
2448    case TemplateArgument::Declaration:
2449      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2450
2451    case TemplateArgument::Template:
2452      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2453
2454    case TemplateArgument::Integral:
2455      return TemplateArgument(*Arg.getAsIntegral(),
2456                              getCanonicalType(Arg.getIntegralType()));
2457
2458    case TemplateArgument::Type:
2459      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2460
2461    case TemplateArgument::Pack: {
2462      // FIXME: Allocate in ASTContext
2463      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2464      unsigned Idx = 0;
2465      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2466                                        AEnd = Arg.pack_end();
2467           A != AEnd; (void)++A, ++Idx)
2468        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2469
2470      TemplateArgument Result;
2471      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2472      return Result;
2473    }
2474  }
2475
2476  // Silence GCC warning
2477  assert(false && "Unhandled template argument kind");
2478  return TemplateArgument();
2479}
2480
2481NestedNameSpecifier *
2482ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2483  if (!NNS)
2484    return 0;
2485
2486  switch (NNS->getKind()) {
2487  case NestedNameSpecifier::Identifier:
2488    // Canonicalize the prefix but keep the identifier the same.
2489    return NestedNameSpecifier::Create(*this,
2490                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2491                                       NNS->getAsIdentifier());
2492
2493  case NestedNameSpecifier::Namespace:
2494    // A namespace is canonical; build a nested-name-specifier with
2495    // this namespace and no prefix.
2496    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2497
2498  case NestedNameSpecifier::TypeSpec:
2499  case NestedNameSpecifier::TypeSpecWithTemplate: {
2500    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2501    return NestedNameSpecifier::Create(*this, 0,
2502                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2503                                       T.getTypePtr());
2504  }
2505
2506  case NestedNameSpecifier::Global:
2507    // The global specifier is canonical and unique.
2508    return NNS;
2509  }
2510
2511  // Required to silence a GCC warning
2512  return 0;
2513}
2514
2515
2516const ArrayType *ASTContext::getAsArrayType(QualType T) {
2517  // Handle the non-qualified case efficiently.
2518  if (!T.hasLocalQualifiers()) {
2519    // Handle the common positive case fast.
2520    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2521      return AT;
2522  }
2523
2524  // Handle the common negative case fast.
2525  QualType CType = T->getCanonicalTypeInternal();
2526  if (!isa<ArrayType>(CType))
2527    return 0;
2528
2529  // Apply any qualifiers from the array type to the element type.  This
2530  // implements C99 6.7.3p8: "If the specification of an array type includes
2531  // any type qualifiers, the element type is so qualified, not the array type."
2532
2533  // If we get here, we either have type qualifiers on the type, or we have
2534  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2535  // we must propagate them down into the element type.
2536
2537  QualifierCollector Qs;
2538  const Type *Ty = Qs.strip(T.getDesugaredType());
2539
2540  // If we have a simple case, just return now.
2541  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2542  if (ATy == 0 || Qs.empty())
2543    return ATy;
2544
2545  // Otherwise, we have an array and we have qualifiers on it.  Push the
2546  // qualifiers into the array element type and return a new array type.
2547  // Get the canonical version of the element with the extra qualifiers on it.
2548  // This can recursively sink qualifiers through multiple levels of arrays.
2549  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2550
2551  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2552    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2553                                                CAT->getSizeModifier(),
2554                                           CAT->getIndexTypeCVRQualifiers()));
2555  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2556    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2557                                                  IAT->getSizeModifier(),
2558                                           IAT->getIndexTypeCVRQualifiers()));
2559
2560  if (const DependentSizedArrayType *DSAT
2561        = dyn_cast<DependentSizedArrayType>(ATy))
2562    return cast<ArrayType>(
2563                     getDependentSizedArrayType(NewEltTy,
2564                                                DSAT->getSizeExpr() ?
2565                                              DSAT->getSizeExpr()->Retain() : 0,
2566                                                DSAT->getSizeModifier(),
2567                                              DSAT->getIndexTypeCVRQualifiers(),
2568                                                DSAT->getBracketsRange()));
2569
2570  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2571  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2572                                              VAT->getSizeExpr() ?
2573                                              VAT->getSizeExpr()->Retain() : 0,
2574                                              VAT->getSizeModifier(),
2575                                              VAT->getIndexTypeCVRQualifiers(),
2576                                              VAT->getBracketsRange()));
2577}
2578
2579
2580/// getArrayDecayedType - Return the properly qualified result of decaying the
2581/// specified array type to a pointer.  This operation is non-trivial when
2582/// handling typedefs etc.  The canonical type of "T" must be an array type,
2583/// this returns a pointer to a properly qualified element of the array.
2584///
2585/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2586QualType ASTContext::getArrayDecayedType(QualType Ty) {
2587  // Get the element type with 'getAsArrayType' so that we don't lose any
2588  // typedefs in the element type of the array.  This also handles propagation
2589  // of type qualifiers from the array type into the element type if present
2590  // (C99 6.7.3p8).
2591  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2592  assert(PrettyArrayType && "Not an array type!");
2593
2594  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2595
2596  // int x[restrict 4] ->  int *restrict
2597  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2598}
2599
2600QualType ASTContext::getBaseElementType(QualType QT) {
2601  QualifierCollector Qs;
2602  while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
2603    QT = AT->getElementType();
2604  return Qs.apply(QT);
2605}
2606
2607QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2608  QualType ElemTy = AT->getElementType();
2609
2610  if (const ArrayType *AT = getAsArrayType(ElemTy))
2611    return getBaseElementType(AT);
2612
2613  return ElemTy;
2614}
2615
2616/// getConstantArrayElementCount - Returns number of constant array elements.
2617uint64_t
2618ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2619  uint64_t ElementCount = 1;
2620  do {
2621    ElementCount *= CA->getSize().getZExtValue();
2622    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2623  } while (CA);
2624  return ElementCount;
2625}
2626
2627/// getFloatingRank - Return a relative rank for floating point types.
2628/// This routine will assert if passed a built-in type that isn't a float.
2629static FloatingRank getFloatingRank(QualType T) {
2630  if (const ComplexType *CT = T->getAs<ComplexType>())
2631    return getFloatingRank(CT->getElementType());
2632
2633  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2634  switch (T->getAs<BuiltinType>()->getKind()) {
2635  default: assert(0 && "getFloatingRank(): not a floating type");
2636  case BuiltinType::Float:      return FloatRank;
2637  case BuiltinType::Double:     return DoubleRank;
2638  case BuiltinType::LongDouble: return LongDoubleRank;
2639  }
2640}
2641
2642/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2643/// point or a complex type (based on typeDomain/typeSize).
2644/// 'typeDomain' is a real floating point or complex type.
2645/// 'typeSize' is a real floating point or complex type.
2646QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2647                                                       QualType Domain) const {
2648  FloatingRank EltRank = getFloatingRank(Size);
2649  if (Domain->isComplexType()) {
2650    switch (EltRank) {
2651    default: assert(0 && "getFloatingRank(): illegal value for rank");
2652    case FloatRank:      return FloatComplexTy;
2653    case DoubleRank:     return DoubleComplexTy;
2654    case LongDoubleRank: return LongDoubleComplexTy;
2655    }
2656  }
2657
2658  assert(Domain->isRealFloatingType() && "Unknown domain!");
2659  switch (EltRank) {
2660  default: assert(0 && "getFloatingRank(): illegal value for rank");
2661  case FloatRank:      return FloatTy;
2662  case DoubleRank:     return DoubleTy;
2663  case LongDoubleRank: return LongDoubleTy;
2664  }
2665}
2666
2667/// getFloatingTypeOrder - Compare the rank of the two specified floating
2668/// point types, ignoring the domain of the type (i.e. 'double' ==
2669/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2670/// LHS < RHS, return -1.
2671int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2672  FloatingRank LHSR = getFloatingRank(LHS);
2673  FloatingRank RHSR = getFloatingRank(RHS);
2674
2675  if (LHSR == RHSR)
2676    return 0;
2677  if (LHSR > RHSR)
2678    return 1;
2679  return -1;
2680}
2681
2682/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2683/// routine will assert if passed a built-in type that isn't an integer or enum,
2684/// or if it is not canonicalized.
2685unsigned ASTContext::getIntegerRank(Type *T) {
2686  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2687  if (EnumType* ET = dyn_cast<EnumType>(T))
2688    T = ET->getDecl()->getPromotionType().getTypePtr();
2689
2690  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2691    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2692
2693  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2694    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2695
2696  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2697    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2698
2699  switch (cast<BuiltinType>(T)->getKind()) {
2700  default: assert(0 && "getIntegerRank(): not a built-in integer");
2701  case BuiltinType::Bool:
2702    return 1 + (getIntWidth(BoolTy) << 3);
2703  case BuiltinType::Char_S:
2704  case BuiltinType::Char_U:
2705  case BuiltinType::SChar:
2706  case BuiltinType::UChar:
2707    return 2 + (getIntWidth(CharTy) << 3);
2708  case BuiltinType::Short:
2709  case BuiltinType::UShort:
2710    return 3 + (getIntWidth(ShortTy) << 3);
2711  case BuiltinType::Int:
2712  case BuiltinType::UInt:
2713    return 4 + (getIntWidth(IntTy) << 3);
2714  case BuiltinType::Long:
2715  case BuiltinType::ULong:
2716    return 5 + (getIntWidth(LongTy) << 3);
2717  case BuiltinType::LongLong:
2718  case BuiltinType::ULongLong:
2719    return 6 + (getIntWidth(LongLongTy) << 3);
2720  case BuiltinType::Int128:
2721  case BuiltinType::UInt128:
2722    return 7 + (getIntWidth(Int128Ty) << 3);
2723  }
2724}
2725
2726/// \brief Whether this is a promotable bitfield reference according
2727/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2728///
2729/// \returns the type this bit-field will promote to, or NULL if no
2730/// promotion occurs.
2731QualType ASTContext::isPromotableBitField(Expr *E) {
2732  if (E->isTypeDependent() || E->isValueDependent())
2733    return QualType();
2734
2735  FieldDecl *Field = E->getBitField();
2736  if (!Field)
2737    return QualType();
2738
2739  QualType FT = Field->getType();
2740
2741  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2742  uint64_t BitWidth = BitWidthAP.getZExtValue();
2743  uint64_t IntSize = getTypeSize(IntTy);
2744  // GCC extension compatibility: if the bit-field size is less than or equal
2745  // to the size of int, it gets promoted no matter what its type is.
2746  // For instance, unsigned long bf : 4 gets promoted to signed int.
2747  if (BitWidth < IntSize)
2748    return IntTy;
2749
2750  if (BitWidth == IntSize)
2751    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2752
2753  // Types bigger than int are not subject to promotions, and therefore act
2754  // like the base type.
2755  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2756  // is ridiculous.
2757  return QualType();
2758}
2759
2760/// getPromotedIntegerType - Returns the type that Promotable will
2761/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2762/// integer type.
2763QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2764  assert(!Promotable.isNull());
2765  assert(Promotable->isPromotableIntegerType());
2766  if (const EnumType *ET = Promotable->getAs<EnumType>())
2767    return ET->getDecl()->getPromotionType();
2768  if (Promotable->isSignedIntegerType())
2769    return IntTy;
2770  uint64_t PromotableSize = getTypeSize(Promotable);
2771  uint64_t IntSize = getTypeSize(IntTy);
2772  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2773  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2774}
2775
2776/// getIntegerTypeOrder - Returns the highest ranked integer type:
2777/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2778/// LHS < RHS, return -1.
2779int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2780  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2781  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2782  if (LHSC == RHSC) return 0;
2783
2784  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2785  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2786
2787  unsigned LHSRank = getIntegerRank(LHSC);
2788  unsigned RHSRank = getIntegerRank(RHSC);
2789
2790  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2791    if (LHSRank == RHSRank) return 0;
2792    return LHSRank > RHSRank ? 1 : -1;
2793  }
2794
2795  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2796  if (LHSUnsigned) {
2797    // If the unsigned [LHS] type is larger, return it.
2798    if (LHSRank >= RHSRank)
2799      return 1;
2800
2801    // If the signed type can represent all values of the unsigned type, it
2802    // wins.  Because we are dealing with 2's complement and types that are
2803    // powers of two larger than each other, this is always safe.
2804    return -1;
2805  }
2806
2807  // If the unsigned [RHS] type is larger, return it.
2808  if (RHSRank >= LHSRank)
2809    return -1;
2810
2811  // If the signed type can represent all values of the unsigned type, it
2812  // wins.  Because we are dealing with 2's complement and types that are
2813  // powers of two larger than each other, this is always safe.
2814  return 1;
2815}
2816
2817static RecordDecl *
2818CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2819                 SourceLocation L, IdentifierInfo *Id) {
2820  if (Ctx.getLangOptions().CPlusPlus)
2821    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2822  else
2823    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2824}
2825
2826// getCFConstantStringType - Return the type used for constant CFStrings.
2827QualType ASTContext::getCFConstantStringType() {
2828  if (!CFConstantStringTypeDecl) {
2829    CFConstantStringTypeDecl =
2830      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2831                       &Idents.get("NSConstantString"));
2832    CFConstantStringTypeDecl->startDefinition();
2833
2834    QualType FieldTypes[4];
2835
2836    // const int *isa;
2837    FieldTypes[0] = getPointerType(IntTy.withConst());
2838    // int flags;
2839    FieldTypes[1] = IntTy;
2840    // const char *str;
2841    FieldTypes[2] = getPointerType(CharTy.withConst());
2842    // long length;
2843    FieldTypes[3] = LongTy;
2844
2845    // Create fields
2846    for (unsigned i = 0; i < 4; ++i) {
2847      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2848                                           SourceLocation(), 0,
2849                                           FieldTypes[i], /*TInfo=*/0,
2850                                           /*BitWidth=*/0,
2851                                           /*Mutable=*/false);
2852      Field->setAccess(AS_public);
2853      CFConstantStringTypeDecl->addDecl(Field);
2854    }
2855
2856    CFConstantStringTypeDecl->completeDefinition();
2857  }
2858
2859  return getTagDeclType(CFConstantStringTypeDecl);
2860}
2861
2862void ASTContext::setCFConstantStringType(QualType T) {
2863  const RecordType *Rec = T->getAs<RecordType>();
2864  assert(Rec && "Invalid CFConstantStringType");
2865  CFConstantStringTypeDecl = Rec->getDecl();
2866}
2867
2868// getNSConstantStringType - Return the type used for constant NSStrings.
2869QualType ASTContext::getNSConstantStringType() {
2870  if (!NSConstantStringTypeDecl) {
2871    NSConstantStringTypeDecl =
2872    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2873                     &Idents.get("__builtin_NSString"));
2874    NSConstantStringTypeDecl->startDefinition();
2875
2876    QualType FieldTypes[3];
2877
2878    // const int *isa;
2879    FieldTypes[0] = getPointerType(IntTy.withConst());
2880    // const char *str;
2881    FieldTypes[1] = getPointerType(CharTy.withConst());
2882    // unsigned int length;
2883    FieldTypes[2] = UnsignedIntTy;
2884
2885    // Create fields
2886    for (unsigned i = 0; i < 3; ++i) {
2887      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
2888                                           SourceLocation(), 0,
2889                                           FieldTypes[i], /*TInfo=*/0,
2890                                           /*BitWidth=*/0,
2891                                           /*Mutable=*/false);
2892      Field->setAccess(AS_public);
2893      NSConstantStringTypeDecl->addDecl(Field);
2894    }
2895
2896    NSConstantStringTypeDecl->completeDefinition();
2897  }
2898
2899  return getTagDeclType(NSConstantStringTypeDecl);
2900}
2901
2902void ASTContext::setNSConstantStringType(QualType T) {
2903  const RecordType *Rec = T->getAs<RecordType>();
2904  assert(Rec && "Invalid NSConstantStringType");
2905  NSConstantStringTypeDecl = Rec->getDecl();
2906}
2907
2908QualType ASTContext::getObjCFastEnumerationStateType() {
2909  if (!ObjCFastEnumerationStateTypeDecl) {
2910    ObjCFastEnumerationStateTypeDecl =
2911      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2912                       &Idents.get("__objcFastEnumerationState"));
2913    ObjCFastEnumerationStateTypeDecl->startDefinition();
2914
2915    QualType FieldTypes[] = {
2916      UnsignedLongTy,
2917      getPointerType(ObjCIdTypedefType),
2918      getPointerType(UnsignedLongTy),
2919      getConstantArrayType(UnsignedLongTy,
2920                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2921    };
2922
2923    for (size_t i = 0; i < 4; ++i) {
2924      FieldDecl *Field = FieldDecl::Create(*this,
2925                                           ObjCFastEnumerationStateTypeDecl,
2926                                           SourceLocation(), 0,
2927                                           FieldTypes[i], /*TInfo=*/0,
2928                                           /*BitWidth=*/0,
2929                                           /*Mutable=*/false);
2930      Field->setAccess(AS_public);
2931      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2932    }
2933    if (getLangOptions().CPlusPlus)
2934      if (CXXRecordDecl *CXXRD =
2935            dyn_cast<CXXRecordDecl>(ObjCFastEnumerationStateTypeDecl))
2936        CXXRD->setEmpty(false);
2937
2938    ObjCFastEnumerationStateTypeDecl->completeDefinition();
2939  }
2940
2941  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2942}
2943
2944QualType ASTContext::getBlockDescriptorType() {
2945  if (BlockDescriptorType)
2946    return getTagDeclType(BlockDescriptorType);
2947
2948  RecordDecl *T;
2949  // FIXME: Needs the FlagAppleBlock bit.
2950  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2951                       &Idents.get("__block_descriptor"));
2952  T->startDefinition();
2953
2954  QualType FieldTypes[] = {
2955    UnsignedLongTy,
2956    UnsignedLongTy,
2957  };
2958
2959  const char *FieldNames[] = {
2960    "reserved",
2961    "Size"
2962  };
2963
2964  for (size_t i = 0; i < 2; ++i) {
2965    FieldDecl *Field = FieldDecl::Create(*this,
2966                                         T,
2967                                         SourceLocation(),
2968                                         &Idents.get(FieldNames[i]),
2969                                         FieldTypes[i], /*TInfo=*/0,
2970                                         /*BitWidth=*/0,
2971                                         /*Mutable=*/false);
2972    Field->setAccess(AS_public);
2973    T->addDecl(Field);
2974  }
2975
2976  T->completeDefinition();
2977
2978  BlockDescriptorType = T;
2979
2980  return getTagDeclType(BlockDescriptorType);
2981}
2982
2983void ASTContext::setBlockDescriptorType(QualType T) {
2984  const RecordType *Rec = T->getAs<RecordType>();
2985  assert(Rec && "Invalid BlockDescriptorType");
2986  BlockDescriptorType = Rec->getDecl();
2987}
2988
2989QualType ASTContext::getBlockDescriptorExtendedType() {
2990  if (BlockDescriptorExtendedType)
2991    return getTagDeclType(BlockDescriptorExtendedType);
2992
2993  RecordDecl *T;
2994  // FIXME: Needs the FlagAppleBlock bit.
2995  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2996                       &Idents.get("__block_descriptor_withcopydispose"));
2997  T->startDefinition();
2998
2999  QualType FieldTypes[] = {
3000    UnsignedLongTy,
3001    UnsignedLongTy,
3002    getPointerType(VoidPtrTy),
3003    getPointerType(VoidPtrTy)
3004  };
3005
3006  const char *FieldNames[] = {
3007    "reserved",
3008    "Size",
3009    "CopyFuncPtr",
3010    "DestroyFuncPtr"
3011  };
3012
3013  for (size_t i = 0; i < 4; ++i) {
3014    FieldDecl *Field = FieldDecl::Create(*this,
3015                                         T,
3016                                         SourceLocation(),
3017                                         &Idents.get(FieldNames[i]),
3018                                         FieldTypes[i], /*TInfo=*/0,
3019                                         /*BitWidth=*/0,
3020                                         /*Mutable=*/false);
3021    Field->setAccess(AS_public);
3022    T->addDecl(Field);
3023  }
3024
3025  T->completeDefinition();
3026
3027  BlockDescriptorExtendedType = T;
3028
3029  return getTagDeclType(BlockDescriptorExtendedType);
3030}
3031
3032void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3033  const RecordType *Rec = T->getAs<RecordType>();
3034  assert(Rec && "Invalid BlockDescriptorType");
3035  BlockDescriptorExtendedType = Rec->getDecl();
3036}
3037
3038bool ASTContext::BlockRequiresCopying(QualType Ty) {
3039  if (Ty->isBlockPointerType())
3040    return true;
3041  if (isObjCNSObjectType(Ty))
3042    return true;
3043  if (Ty->isObjCObjectPointerType())
3044    return true;
3045  return false;
3046}
3047
3048QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3049  //  type = struct __Block_byref_1_X {
3050  //    void *__isa;
3051  //    struct __Block_byref_1_X *__forwarding;
3052  //    unsigned int __flags;
3053  //    unsigned int __size;
3054  //    void *__copy_helper;		// as needed
3055  //    void *__destroy_help		// as needed
3056  //    int X;
3057  //  } *
3058
3059  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3060
3061  // FIXME: Move up
3062  static unsigned int UniqueBlockByRefTypeID = 0;
3063  llvm::SmallString<36> Name;
3064  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3065                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3066  RecordDecl *T;
3067  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3068                       &Idents.get(Name.str()));
3069  T->startDefinition();
3070  QualType Int32Ty = IntTy;
3071  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3072  QualType FieldTypes[] = {
3073    getPointerType(VoidPtrTy),
3074    getPointerType(getTagDeclType(T)),
3075    Int32Ty,
3076    Int32Ty,
3077    getPointerType(VoidPtrTy),
3078    getPointerType(VoidPtrTy),
3079    Ty
3080  };
3081
3082  const char *FieldNames[] = {
3083    "__isa",
3084    "__forwarding",
3085    "__flags",
3086    "__size",
3087    "__copy_helper",
3088    "__destroy_helper",
3089    DeclName,
3090  };
3091
3092  for (size_t i = 0; i < 7; ++i) {
3093    if (!HasCopyAndDispose && i >=4 && i <= 5)
3094      continue;
3095    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3096                                         &Idents.get(FieldNames[i]),
3097                                         FieldTypes[i], /*TInfo=*/0,
3098                                         /*BitWidth=*/0, /*Mutable=*/false);
3099    Field->setAccess(AS_public);
3100    T->addDecl(Field);
3101  }
3102
3103  T->completeDefinition();
3104
3105  return getPointerType(getTagDeclType(T));
3106}
3107
3108
3109QualType ASTContext::getBlockParmType(
3110  bool BlockHasCopyDispose,
3111  llvm::SmallVectorImpl<const Expr *> &Layout) {
3112
3113  // FIXME: Move up
3114  static unsigned int UniqueBlockParmTypeID = 0;
3115  llvm::SmallString<36> Name;
3116  llvm::raw_svector_ostream(Name) << "__block_literal_"
3117                                  << ++UniqueBlockParmTypeID;
3118  RecordDecl *T;
3119  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3120                       &Idents.get(Name.str()));
3121  T->startDefinition();
3122  QualType FieldTypes[] = {
3123    getPointerType(VoidPtrTy),
3124    IntTy,
3125    IntTy,
3126    getPointerType(VoidPtrTy),
3127    (BlockHasCopyDispose ?
3128     getPointerType(getBlockDescriptorExtendedType()) :
3129     getPointerType(getBlockDescriptorType()))
3130  };
3131
3132  const char *FieldNames[] = {
3133    "__isa",
3134    "__flags",
3135    "__reserved",
3136    "__FuncPtr",
3137    "__descriptor"
3138  };
3139
3140  for (size_t i = 0; i < 5; ++i) {
3141    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3142                                         &Idents.get(FieldNames[i]),
3143                                         FieldTypes[i], /*TInfo=*/0,
3144                                         /*BitWidth=*/0, /*Mutable=*/false);
3145    Field->setAccess(AS_public);
3146    T->addDecl(Field);
3147  }
3148
3149  for (unsigned i = 0; i < Layout.size(); ++i) {
3150    const Expr *E = Layout[i];
3151
3152    QualType FieldType = E->getType();
3153    IdentifierInfo *FieldName = 0;
3154    if (isa<CXXThisExpr>(E)) {
3155      FieldName = &Idents.get("this");
3156    } else if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) {
3157      const ValueDecl *D = BDRE->getDecl();
3158      FieldName = D->getIdentifier();
3159      if (BDRE->isByRef())
3160        FieldType = BuildByRefType(D->getNameAsCString(), FieldType);
3161    } else {
3162      // Padding.
3163      assert(isa<ConstantArrayType>(FieldType) &&
3164             isa<DeclRefExpr>(E) &&
3165             !cast<DeclRefExpr>(E)->getDecl()->getDeclName() &&
3166             "doesn't match characteristics of padding decl");
3167    }
3168
3169    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3170                                         FieldName, FieldType, /*TInfo=*/0,
3171                                         /*BitWidth=*/0, /*Mutable=*/false);
3172    Field->setAccess(AS_public);
3173    T->addDecl(Field);
3174  }
3175
3176  T->completeDefinition();
3177
3178  return getPointerType(getTagDeclType(T));
3179}
3180
3181void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3182  const RecordType *Rec = T->getAs<RecordType>();
3183  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3184  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3185}
3186
3187// This returns true if a type has been typedefed to BOOL:
3188// typedef <type> BOOL;
3189static bool isTypeTypedefedAsBOOL(QualType T) {
3190  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3191    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3192      return II->isStr("BOOL");
3193
3194  return false;
3195}
3196
3197/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3198/// purpose.
3199CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3200  CharUnits sz = getTypeSizeInChars(type);
3201
3202  // Make all integer and enum types at least as large as an int
3203  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3204    sz = std::max(sz, getTypeSizeInChars(IntTy));
3205  // Treat arrays as pointers, since that's how they're passed in.
3206  else if (type->isArrayType())
3207    sz = getTypeSizeInChars(VoidPtrTy);
3208  return sz;
3209}
3210
3211static inline
3212std::string charUnitsToString(const CharUnits &CU) {
3213  return llvm::itostr(CU.getQuantity());
3214}
3215
3216/// getObjCEncodingForBlockDecl - Return the encoded type for this block
3217/// declaration.
3218void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3219                                             std::string& S) {
3220  const BlockDecl *Decl = Expr->getBlockDecl();
3221  QualType BlockTy =
3222      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3223  // Encode result type.
3224  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3225  // Compute size of all parameters.
3226  // Start with computing size of a pointer in number of bytes.
3227  // FIXME: There might(should) be a better way of doing this computation!
3228  SourceLocation Loc;
3229  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3230  CharUnits ParmOffset = PtrSize;
3231  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3232       E = Decl->param_end(); PI != E; ++PI) {
3233    QualType PType = (*PI)->getType();
3234    CharUnits sz = getObjCEncodingTypeSize(PType);
3235    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3236    ParmOffset += sz;
3237  }
3238  // Size of the argument frame
3239  S += charUnitsToString(ParmOffset);
3240  // Block pointer and offset.
3241  S += "@?0";
3242  ParmOffset = PtrSize;
3243
3244  // Argument types.
3245  ParmOffset = PtrSize;
3246  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3247       Decl->param_end(); PI != E; ++PI) {
3248    ParmVarDecl *PVDecl = *PI;
3249    QualType PType = PVDecl->getOriginalType();
3250    if (const ArrayType *AT =
3251          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3252      // Use array's original type only if it has known number of
3253      // elements.
3254      if (!isa<ConstantArrayType>(AT))
3255        PType = PVDecl->getType();
3256    } else if (PType->isFunctionType())
3257      PType = PVDecl->getType();
3258    getObjCEncodingForType(PType, S);
3259    S += charUnitsToString(ParmOffset);
3260    ParmOffset += getObjCEncodingTypeSize(PType);
3261  }
3262}
3263
3264/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3265/// declaration.
3266void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3267                                              std::string& S) {
3268  // FIXME: This is not very efficient.
3269  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3270  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3271  // Encode result type.
3272  getObjCEncodingForType(Decl->getResultType(), S);
3273  // Compute size of all parameters.
3274  // Start with computing size of a pointer in number of bytes.
3275  // FIXME: There might(should) be a better way of doing this computation!
3276  SourceLocation Loc;
3277  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3278  // The first two arguments (self and _cmd) are pointers; account for
3279  // their size.
3280  CharUnits ParmOffset = 2 * PtrSize;
3281  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3282       E = Decl->sel_param_end(); PI != E; ++PI) {
3283    QualType PType = (*PI)->getType();
3284    CharUnits sz = getObjCEncodingTypeSize(PType);
3285    assert (sz.isPositive() &&
3286        "getObjCEncodingForMethodDecl - Incomplete param type");
3287    ParmOffset += sz;
3288  }
3289  S += charUnitsToString(ParmOffset);
3290  S += "@0:";
3291  S += charUnitsToString(PtrSize);
3292
3293  // Argument types.
3294  ParmOffset = 2 * PtrSize;
3295  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3296       E = Decl->sel_param_end(); PI != E; ++PI) {
3297    ParmVarDecl *PVDecl = *PI;
3298    QualType PType = PVDecl->getOriginalType();
3299    if (const ArrayType *AT =
3300          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3301      // Use array's original type only if it has known number of
3302      // elements.
3303      if (!isa<ConstantArrayType>(AT))
3304        PType = PVDecl->getType();
3305    } else if (PType->isFunctionType())
3306      PType = PVDecl->getType();
3307    // Process argument qualifiers for user supplied arguments; such as,
3308    // 'in', 'inout', etc.
3309    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3310    getObjCEncodingForType(PType, S);
3311    S += charUnitsToString(ParmOffset);
3312    ParmOffset += getObjCEncodingTypeSize(PType);
3313  }
3314}
3315
3316/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3317/// property declaration. If non-NULL, Container must be either an
3318/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3319/// NULL when getting encodings for protocol properties.
3320/// Property attributes are stored as a comma-delimited C string. The simple
3321/// attributes readonly and bycopy are encoded as single characters. The
3322/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3323/// encoded as single characters, followed by an identifier. Property types
3324/// are also encoded as a parametrized attribute. The characters used to encode
3325/// these attributes are defined by the following enumeration:
3326/// @code
3327/// enum PropertyAttributes {
3328/// kPropertyReadOnly = 'R',   // property is read-only.
3329/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3330/// kPropertyByref = '&',  // property is a reference to the value last assigned
3331/// kPropertyDynamic = 'D',    // property is dynamic
3332/// kPropertyGetter = 'G',     // followed by getter selector name
3333/// kPropertySetter = 'S',     // followed by setter selector name
3334/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3335/// kPropertyType = 't'              // followed by old-style type encoding.
3336/// kPropertyWeak = 'W'              // 'weak' property
3337/// kPropertyStrong = 'P'            // property GC'able
3338/// kPropertyNonAtomic = 'N'         // property non-atomic
3339/// };
3340/// @endcode
3341void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3342                                                const Decl *Container,
3343                                                std::string& S) {
3344  // Collect information from the property implementation decl(s).
3345  bool Dynamic = false;
3346  ObjCPropertyImplDecl *SynthesizePID = 0;
3347
3348  // FIXME: Duplicated code due to poor abstraction.
3349  if (Container) {
3350    if (const ObjCCategoryImplDecl *CID =
3351        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3352      for (ObjCCategoryImplDecl::propimpl_iterator
3353             i = CID->propimpl_begin(), e = CID->propimpl_end();
3354           i != e; ++i) {
3355        ObjCPropertyImplDecl *PID = *i;
3356        if (PID->getPropertyDecl() == PD) {
3357          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3358            Dynamic = true;
3359          } else {
3360            SynthesizePID = PID;
3361          }
3362        }
3363      }
3364    } else {
3365      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3366      for (ObjCCategoryImplDecl::propimpl_iterator
3367             i = OID->propimpl_begin(), e = OID->propimpl_end();
3368           i != e; ++i) {
3369        ObjCPropertyImplDecl *PID = *i;
3370        if (PID->getPropertyDecl() == PD) {
3371          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3372            Dynamic = true;
3373          } else {
3374            SynthesizePID = PID;
3375          }
3376        }
3377      }
3378    }
3379  }
3380
3381  // FIXME: This is not very efficient.
3382  S = "T";
3383
3384  // Encode result type.
3385  // GCC has some special rules regarding encoding of properties which
3386  // closely resembles encoding of ivars.
3387  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3388                             true /* outermost type */,
3389                             true /* encoding for property */);
3390
3391  if (PD->isReadOnly()) {
3392    S += ",R";
3393  } else {
3394    switch (PD->getSetterKind()) {
3395    case ObjCPropertyDecl::Assign: break;
3396    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3397    case ObjCPropertyDecl::Retain: S += ",&"; break;
3398    }
3399  }
3400
3401  // It really isn't clear at all what this means, since properties
3402  // are "dynamic by default".
3403  if (Dynamic)
3404    S += ",D";
3405
3406  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3407    S += ",N";
3408
3409  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3410    S += ",G";
3411    S += PD->getGetterName().getAsString();
3412  }
3413
3414  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3415    S += ",S";
3416    S += PD->getSetterName().getAsString();
3417  }
3418
3419  if (SynthesizePID) {
3420    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3421    S += ",V";
3422    S += OID->getNameAsString();
3423  }
3424
3425  // FIXME: OBJCGC: weak & strong
3426}
3427
3428/// getLegacyIntegralTypeEncoding -
3429/// Another legacy compatibility encoding: 32-bit longs are encoded as
3430/// 'l' or 'L' , but not always.  For typedefs, we need to use
3431/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3432///
3433void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3434  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3435    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3436      if (BT->getKind() == BuiltinType::ULong &&
3437          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3438        PointeeTy = UnsignedIntTy;
3439      else
3440        if (BT->getKind() == BuiltinType::Long &&
3441            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3442          PointeeTy = IntTy;
3443    }
3444  }
3445}
3446
3447void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3448                                        const FieldDecl *Field) {
3449  // We follow the behavior of gcc, expanding structures which are
3450  // directly pointed to, and expanding embedded structures. Note that
3451  // these rules are sufficient to prevent recursive encoding of the
3452  // same type.
3453  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3454                             true /* outermost type */);
3455}
3456
3457static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3458    switch (T->getAs<BuiltinType>()->getKind()) {
3459    default: assert(0 && "Unhandled builtin type kind");
3460    case BuiltinType::Void:       return 'v';
3461    case BuiltinType::Bool:       return 'B';
3462    case BuiltinType::Char_U:
3463    case BuiltinType::UChar:      return 'C';
3464    case BuiltinType::UShort:     return 'S';
3465    case BuiltinType::UInt:       return 'I';
3466    case BuiltinType::ULong:
3467        return
3468          (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'L' : 'Q';
3469    case BuiltinType::UInt128:    return 'T';
3470    case BuiltinType::ULongLong:  return 'Q';
3471    case BuiltinType::Char_S:
3472    case BuiltinType::SChar:      return 'c';
3473    case BuiltinType::Short:      return 's';
3474    case BuiltinType::WChar:
3475    case BuiltinType::Int:        return 'i';
3476    case BuiltinType::Long:
3477      return
3478        (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'l' : 'q';
3479    case BuiltinType::LongLong:   return 'q';
3480    case BuiltinType::Int128:     return 't';
3481    case BuiltinType::Float:      return 'f';
3482    case BuiltinType::Double:     return 'd';
3483    case BuiltinType::LongDouble: return 'd';
3484    }
3485}
3486
3487static void EncodeBitField(const ASTContext *Context, std::string& S,
3488                           QualType T, const FieldDecl *FD) {
3489  const Expr *E = FD->getBitWidth();
3490  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3491  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3492  S += 'b';
3493  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3494  // The GNU runtime requires more information; bitfields are encoded as b,
3495  // then the offset (in bits) of the first element, then the type of the
3496  // bitfield, then the size in bits.  For example, in this structure:
3497  //
3498  // struct
3499  // {
3500  //    int integer;
3501  //    int flags:2;
3502  // };
3503  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
3504  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
3505  // information is not especially sensible, but we're stuck with it for
3506  // compatibility with GCC, although providing it breaks anything that
3507  // actually uses runtime introspection and wants to work on both runtimes...
3508  if (!Ctx->getLangOptions().NeXTRuntime) {
3509    const RecordDecl *RD = FD->getParent();
3510    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
3511    // FIXME: This same linear search is also used in ExprConstant - it might
3512    // be better if the FieldDecl stored its offset.  We'd be increasing the
3513    // size of the object slightly, but saving some time every time it is used.
3514    unsigned i = 0;
3515    for (RecordDecl::field_iterator Field = RD->field_begin(),
3516                                 FieldEnd = RD->field_end();
3517         Field != FieldEnd; (void)++Field, ++i) {
3518      if (*Field == FD)
3519        break;
3520    }
3521    S += llvm::utostr(RL.getFieldOffset(i));
3522    S += ObjCEncodingForPrimitiveKind(Context, T);
3523  }
3524  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3525  S += llvm::utostr(N);
3526}
3527
3528// FIXME: Use SmallString for accumulating string.
3529void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3530                                            bool ExpandPointedToStructures,
3531                                            bool ExpandStructures,
3532                                            const FieldDecl *FD,
3533                                            bool OutermostType,
3534                                            bool EncodingProperty) {
3535  if (T->getAs<BuiltinType>()) {
3536    if (FD && FD->isBitField())
3537      return EncodeBitField(this, S, T, FD);
3538    S += ObjCEncodingForPrimitiveKind(this, T);
3539    return;
3540  }
3541
3542  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3543    S += 'j';
3544    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3545                               false);
3546    return;
3547  }
3548
3549  // encoding for pointer or r3eference types.
3550  QualType PointeeTy;
3551  if (const PointerType *PT = T->getAs<PointerType>()) {
3552    if (PT->isObjCSelType()) {
3553      S += ':';
3554      return;
3555    }
3556    PointeeTy = PT->getPointeeType();
3557  }
3558  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3559    PointeeTy = RT->getPointeeType();
3560  if (!PointeeTy.isNull()) {
3561    bool isReadOnly = false;
3562    // For historical/compatibility reasons, the read-only qualifier of the
3563    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3564    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3565    // Also, do not emit the 'r' for anything but the outermost type!
3566    if (isa<TypedefType>(T.getTypePtr())) {
3567      if (OutermostType && T.isConstQualified()) {
3568        isReadOnly = true;
3569        S += 'r';
3570      }
3571    } else if (OutermostType) {
3572      QualType P = PointeeTy;
3573      while (P->getAs<PointerType>())
3574        P = P->getAs<PointerType>()->getPointeeType();
3575      if (P.isConstQualified()) {
3576        isReadOnly = true;
3577        S += 'r';
3578      }
3579    }
3580    if (isReadOnly) {
3581      // Another legacy compatibility encoding. Some ObjC qualifier and type
3582      // combinations need to be rearranged.
3583      // Rewrite "in const" from "nr" to "rn"
3584      if (llvm::StringRef(S).endswith("nr"))
3585        S.replace(S.end()-2, S.end(), "rn");
3586    }
3587
3588    if (PointeeTy->isCharType()) {
3589      // char pointer types should be encoded as '*' unless it is a
3590      // type that has been typedef'd to 'BOOL'.
3591      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3592        S += '*';
3593        return;
3594      }
3595    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3596      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3597      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3598        S += '#';
3599        return;
3600      }
3601      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3602      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3603        S += '@';
3604        return;
3605      }
3606      // fall through...
3607    }
3608    S += '^';
3609    getLegacyIntegralTypeEncoding(PointeeTy);
3610
3611    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3612                               NULL);
3613    return;
3614  }
3615
3616  if (const ArrayType *AT =
3617      // Ignore type qualifiers etc.
3618        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3619    if (isa<IncompleteArrayType>(AT)) {
3620      // Incomplete arrays are encoded as a pointer to the array element.
3621      S += '^';
3622
3623      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3624                                 false, ExpandStructures, FD);
3625    } else {
3626      S += '[';
3627
3628      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3629        S += llvm::utostr(CAT->getSize().getZExtValue());
3630      else {
3631        //Variable length arrays are encoded as a regular array with 0 elements.
3632        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3633        S += '0';
3634      }
3635
3636      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3637                                 false, ExpandStructures, FD);
3638      S += ']';
3639    }
3640    return;
3641  }
3642
3643  if (T->getAs<FunctionType>()) {
3644    S += '?';
3645    return;
3646  }
3647
3648  if (const RecordType *RTy = T->getAs<RecordType>()) {
3649    RecordDecl *RDecl = RTy->getDecl();
3650    S += RDecl->isUnion() ? '(' : '{';
3651    // Anonymous structures print as '?'
3652    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3653      S += II->getName();
3654      if (ClassTemplateSpecializationDecl *Spec
3655          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
3656        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3657        std::string TemplateArgsStr
3658          = TemplateSpecializationType::PrintTemplateArgumentList(
3659                                            TemplateArgs.getFlatArgumentList(),
3660                                            TemplateArgs.flat_size(),
3661                                            (*this).PrintingPolicy);
3662
3663        S += TemplateArgsStr;
3664      }
3665    } else {
3666      S += '?';
3667    }
3668    if (ExpandStructures) {
3669      S += '=';
3670      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3671                                   FieldEnd = RDecl->field_end();
3672           Field != FieldEnd; ++Field) {
3673        if (FD) {
3674          S += '"';
3675          S += Field->getNameAsString();
3676          S += '"';
3677        }
3678
3679        // Special case bit-fields.
3680        if (Field->isBitField()) {
3681          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3682                                     (*Field));
3683        } else {
3684          QualType qt = Field->getType();
3685          getLegacyIntegralTypeEncoding(qt);
3686          getObjCEncodingForTypeImpl(qt, S, false, true,
3687                                     FD);
3688        }
3689      }
3690    }
3691    S += RDecl->isUnion() ? ')' : '}';
3692    return;
3693  }
3694
3695  if (T->isEnumeralType()) {
3696    if (FD && FD->isBitField())
3697      EncodeBitField(this, S, T, FD);
3698    else
3699      S += 'i';
3700    return;
3701  }
3702
3703  if (T->isBlockPointerType()) {
3704    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3705    return;
3706  }
3707
3708  // Ignore protocol qualifiers when mangling at this level.
3709  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
3710    T = OT->getBaseType();
3711
3712  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3713    // @encode(class_name)
3714    ObjCInterfaceDecl *OI = OIT->getDecl();
3715    S += '{';
3716    const IdentifierInfo *II = OI->getIdentifier();
3717    S += II->getName();
3718    S += '=';
3719    llvm::SmallVector<FieldDecl*, 32> RecFields;
3720    CollectObjCIvars(OI, RecFields);
3721    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3722      if (RecFields[i]->isBitField())
3723        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3724                                   RecFields[i]);
3725      else
3726        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3727                                   FD);
3728    }
3729    S += '}';
3730    return;
3731  }
3732
3733  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3734    if (OPT->isObjCIdType()) {
3735      S += '@';
3736      return;
3737    }
3738
3739    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3740      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3741      // Since this is a binary compatibility issue, need to consult with runtime
3742      // folks. Fortunately, this is a *very* obsure construct.
3743      S += '#';
3744      return;
3745    }
3746
3747    if (OPT->isObjCQualifiedIdType()) {
3748      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3749                                 ExpandPointedToStructures,
3750                                 ExpandStructures, FD);
3751      if (FD || EncodingProperty) {
3752        // Note that we do extended encoding of protocol qualifer list
3753        // Only when doing ivar or property encoding.
3754        S += '"';
3755        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3756             E = OPT->qual_end(); I != E; ++I) {
3757          S += '<';
3758          S += (*I)->getNameAsString();
3759          S += '>';
3760        }
3761        S += '"';
3762      }
3763      return;
3764    }
3765
3766    QualType PointeeTy = OPT->getPointeeType();
3767    if (!EncodingProperty &&
3768        isa<TypedefType>(PointeeTy.getTypePtr())) {
3769      // Another historical/compatibility reason.
3770      // We encode the underlying type which comes out as
3771      // {...};
3772      S += '^';
3773      getObjCEncodingForTypeImpl(PointeeTy, S,
3774                                 false, ExpandPointedToStructures,
3775                                 NULL);
3776      return;
3777    }
3778
3779    S += '@';
3780    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3781      S += '"';
3782      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3783      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3784           E = OPT->qual_end(); I != E; ++I) {
3785        S += '<';
3786        S += (*I)->getNameAsString();
3787        S += '>';
3788      }
3789      S += '"';
3790    }
3791    return;
3792  }
3793
3794  // gcc just blithely ignores member pointers.
3795  // TODO: maybe there should be a mangling for these
3796  if (T->getAs<MemberPointerType>())
3797    return;
3798
3799  assert(0 && "@encode for type not implemented!");
3800}
3801
3802void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3803                                                 std::string& S) const {
3804  if (QT & Decl::OBJC_TQ_In)
3805    S += 'n';
3806  if (QT & Decl::OBJC_TQ_Inout)
3807    S += 'N';
3808  if (QT & Decl::OBJC_TQ_Out)
3809    S += 'o';
3810  if (QT & Decl::OBJC_TQ_Bycopy)
3811    S += 'O';
3812  if (QT & Decl::OBJC_TQ_Byref)
3813    S += 'R';
3814  if (QT & Decl::OBJC_TQ_Oneway)
3815    S += 'V';
3816}
3817
3818void ASTContext::setBuiltinVaListType(QualType T) {
3819  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3820
3821  BuiltinVaListType = T;
3822}
3823
3824void ASTContext::setObjCIdType(QualType T) {
3825  ObjCIdTypedefType = T;
3826}
3827
3828void ASTContext::setObjCSelType(QualType T) {
3829  ObjCSelTypedefType = T;
3830}
3831
3832void ASTContext::setObjCProtoType(QualType QT) {
3833  ObjCProtoType = QT;
3834}
3835
3836void ASTContext::setObjCClassType(QualType T) {
3837  ObjCClassTypedefType = T;
3838}
3839
3840void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3841  assert(ObjCConstantStringType.isNull() &&
3842         "'NSConstantString' type already set!");
3843
3844  ObjCConstantStringType = getObjCInterfaceType(Decl);
3845}
3846
3847/// \brief Retrieve the template name that corresponds to a non-empty
3848/// lookup.
3849TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3850                                                   UnresolvedSetIterator End) {
3851  unsigned size = End - Begin;
3852  assert(size > 1 && "set is not overloaded!");
3853
3854  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3855                          size * sizeof(FunctionTemplateDecl*));
3856  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3857
3858  NamedDecl **Storage = OT->getStorage();
3859  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3860    NamedDecl *D = *I;
3861    assert(isa<FunctionTemplateDecl>(D) ||
3862           (isa<UsingShadowDecl>(D) &&
3863            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3864    *Storage++ = D;
3865  }
3866
3867  return TemplateName(OT);
3868}
3869
3870/// \brief Retrieve the template name that represents a qualified
3871/// template name such as \c std::vector.
3872TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3873                                                  bool TemplateKeyword,
3874                                                  TemplateDecl *Template) {
3875  // FIXME: Canonicalization?
3876  llvm::FoldingSetNodeID ID;
3877  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3878
3879  void *InsertPos = 0;
3880  QualifiedTemplateName *QTN =
3881    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3882  if (!QTN) {
3883    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3884    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3885  }
3886
3887  return TemplateName(QTN);
3888}
3889
3890/// \brief Retrieve the template name that represents a dependent
3891/// template name such as \c MetaFun::template apply.
3892TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3893                                                  const IdentifierInfo *Name) {
3894  assert((!NNS || NNS->isDependent()) &&
3895         "Nested name specifier must be dependent");
3896
3897  llvm::FoldingSetNodeID ID;
3898  DependentTemplateName::Profile(ID, NNS, Name);
3899
3900  void *InsertPos = 0;
3901  DependentTemplateName *QTN =
3902    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3903
3904  if (QTN)
3905    return TemplateName(QTN);
3906
3907  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3908  if (CanonNNS == NNS) {
3909    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3910  } else {
3911    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3912    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3913    DependentTemplateName *CheckQTN =
3914      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3915    assert(!CheckQTN && "Dependent type name canonicalization broken");
3916    (void)CheckQTN;
3917  }
3918
3919  DependentTemplateNames.InsertNode(QTN, InsertPos);
3920  return TemplateName(QTN);
3921}
3922
3923/// \brief Retrieve the template name that represents a dependent
3924/// template name such as \c MetaFun::template operator+.
3925TemplateName
3926ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3927                                     OverloadedOperatorKind Operator) {
3928  assert((!NNS || NNS->isDependent()) &&
3929         "Nested name specifier must be dependent");
3930
3931  llvm::FoldingSetNodeID ID;
3932  DependentTemplateName::Profile(ID, NNS, Operator);
3933
3934  void *InsertPos = 0;
3935  DependentTemplateName *QTN
3936    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3937
3938  if (QTN)
3939    return TemplateName(QTN);
3940
3941  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3942  if (CanonNNS == NNS) {
3943    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3944  } else {
3945    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3946    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3947
3948    DependentTemplateName *CheckQTN
3949      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3950    assert(!CheckQTN && "Dependent template name canonicalization broken");
3951    (void)CheckQTN;
3952  }
3953
3954  DependentTemplateNames.InsertNode(QTN, InsertPos);
3955  return TemplateName(QTN);
3956}
3957
3958/// getFromTargetType - Given one of the integer types provided by
3959/// TargetInfo, produce the corresponding type. The unsigned @p Type
3960/// is actually a value of type @c TargetInfo::IntType.
3961CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3962  switch (Type) {
3963  case TargetInfo::NoInt: return CanQualType();
3964  case TargetInfo::SignedShort: return ShortTy;
3965  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3966  case TargetInfo::SignedInt: return IntTy;
3967  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3968  case TargetInfo::SignedLong: return LongTy;
3969  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3970  case TargetInfo::SignedLongLong: return LongLongTy;
3971  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3972  }
3973
3974  assert(false && "Unhandled TargetInfo::IntType value");
3975  return CanQualType();
3976}
3977
3978//===----------------------------------------------------------------------===//
3979//                        Type Predicates.
3980//===----------------------------------------------------------------------===//
3981
3982/// isObjCNSObjectType - Return true if this is an NSObject object using
3983/// NSObject attribute on a c-style pointer type.
3984/// FIXME - Make it work directly on types.
3985/// FIXME: Move to Type.
3986///
3987bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3988  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3989    if (TypedefDecl *TD = TDT->getDecl())
3990      if (TD->getAttr<ObjCNSObjectAttr>())
3991        return true;
3992  }
3993  return false;
3994}
3995
3996/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3997/// garbage collection attribute.
3998///
3999Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
4000  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
4001  if (getLangOptions().ObjC1 &&
4002      getLangOptions().getGCMode() != LangOptions::NonGC) {
4003    GCAttrs = Ty.getObjCGCAttr();
4004    // Default behavious under objective-c's gc is for objective-c pointers
4005    // (or pointers to them) be treated as though they were declared
4006    // as __strong.
4007    if (GCAttrs == Qualifiers::GCNone) {
4008      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4009        GCAttrs = Qualifiers::Strong;
4010      else if (Ty->isPointerType())
4011        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4012    }
4013    // Non-pointers have none gc'able attribute regardless of the attribute
4014    // set on them.
4015    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
4016      return Qualifiers::GCNone;
4017  }
4018  return GCAttrs;
4019}
4020
4021//===----------------------------------------------------------------------===//
4022//                        Type Compatibility Testing
4023//===----------------------------------------------------------------------===//
4024
4025/// areCompatVectorTypes - Return true if the two specified vector types are
4026/// compatible.
4027static bool areCompatVectorTypes(const VectorType *LHS,
4028                                 const VectorType *RHS) {
4029  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4030  return LHS->getElementType() == RHS->getElementType() &&
4031         LHS->getNumElements() == RHS->getNumElements();
4032}
4033
4034//===----------------------------------------------------------------------===//
4035// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4036//===----------------------------------------------------------------------===//
4037
4038/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4039/// inheritance hierarchy of 'rProto'.
4040bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4041                                                ObjCProtocolDecl *rProto) {
4042  if (lProto == rProto)
4043    return true;
4044  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4045       E = rProto->protocol_end(); PI != E; ++PI)
4046    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4047      return true;
4048  return false;
4049}
4050
4051/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4052/// return true if lhs's protocols conform to rhs's protocol; false
4053/// otherwise.
4054bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4055  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4056    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4057  return false;
4058}
4059
4060/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4061/// ObjCQualifiedIDType.
4062bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4063                                                   bool compare) {
4064  // Allow id<P..> and an 'id' or void* type in all cases.
4065  if (lhs->isVoidPointerType() ||
4066      lhs->isObjCIdType() || lhs->isObjCClassType())
4067    return true;
4068  else if (rhs->isVoidPointerType() ||
4069           rhs->isObjCIdType() || rhs->isObjCClassType())
4070    return true;
4071
4072  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4073    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4074
4075    if (!rhsOPT) return false;
4076
4077    if (rhsOPT->qual_empty()) {
4078      // If the RHS is a unqualified interface pointer "NSString*",
4079      // make sure we check the class hierarchy.
4080      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4081        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4082             E = lhsQID->qual_end(); I != E; ++I) {
4083          // when comparing an id<P> on lhs with a static type on rhs,
4084          // see if static class implements all of id's protocols, directly or
4085          // through its super class and categories.
4086          if (!rhsID->ClassImplementsProtocol(*I, true))
4087            return false;
4088        }
4089      }
4090      // If there are no qualifiers and no interface, we have an 'id'.
4091      return true;
4092    }
4093    // Both the right and left sides have qualifiers.
4094    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4095         E = lhsQID->qual_end(); I != E; ++I) {
4096      ObjCProtocolDecl *lhsProto = *I;
4097      bool match = false;
4098
4099      // when comparing an id<P> on lhs with a static type on rhs,
4100      // see if static class implements all of id's protocols, directly or
4101      // through its super class and categories.
4102      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4103           E = rhsOPT->qual_end(); J != E; ++J) {
4104        ObjCProtocolDecl *rhsProto = *J;
4105        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4106            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4107          match = true;
4108          break;
4109        }
4110      }
4111      // If the RHS is a qualified interface pointer "NSString<P>*",
4112      // make sure we check the class hierarchy.
4113      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4114        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4115             E = lhsQID->qual_end(); I != E; ++I) {
4116          // when comparing an id<P> on lhs with a static type on rhs,
4117          // see if static class implements all of id's protocols, directly or
4118          // through its super class and categories.
4119          if (rhsID->ClassImplementsProtocol(*I, true)) {
4120            match = true;
4121            break;
4122          }
4123        }
4124      }
4125      if (!match)
4126        return false;
4127    }
4128
4129    return true;
4130  }
4131
4132  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4133  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4134
4135  if (const ObjCObjectPointerType *lhsOPT =
4136        lhs->getAsObjCInterfacePointerType()) {
4137    if (lhsOPT->qual_empty()) {
4138      bool match = false;
4139      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4140        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4141             E = rhsQID->qual_end(); I != E; ++I) {
4142          // when comparing an id<P> on lhs with a static type on rhs,
4143          // see if static class implements all of id's protocols, directly or
4144          // through its super class and categories.
4145          if (lhsID->ClassImplementsProtocol(*I, true)) {
4146            match = true;
4147            break;
4148          }
4149        }
4150        if (!match)
4151          return false;
4152      }
4153      return true;
4154    }
4155    // Both the right and left sides have qualifiers.
4156    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4157         E = lhsOPT->qual_end(); I != E; ++I) {
4158      ObjCProtocolDecl *lhsProto = *I;
4159      bool match = false;
4160
4161      // when comparing an id<P> on lhs with a static type on rhs,
4162      // see if static class implements all of id's protocols, directly or
4163      // through its super class and categories.
4164      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4165           E = rhsQID->qual_end(); J != E; ++J) {
4166        ObjCProtocolDecl *rhsProto = *J;
4167        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4168            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4169          match = true;
4170          break;
4171        }
4172      }
4173      if (!match)
4174        return false;
4175    }
4176    return true;
4177  }
4178  return false;
4179}
4180
4181/// canAssignObjCInterfaces - Return true if the two interface types are
4182/// compatible for assignment from RHS to LHS.  This handles validation of any
4183/// protocol qualifiers on the LHS or RHS.
4184///
4185bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4186                                         const ObjCObjectPointerType *RHSOPT) {
4187  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4188  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4189
4190  // If either type represents the built-in 'id' or 'Class' types, return true.
4191  if (LHS->isObjCUnqualifiedIdOrClass() ||
4192      RHS->isObjCUnqualifiedIdOrClass())
4193    return true;
4194
4195  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4196    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4197                                             QualType(RHSOPT,0),
4198                                             false);
4199
4200  // If we have 2 user-defined types, fall into that path.
4201  if (LHS->getInterface() && RHS->getInterface())
4202    return canAssignObjCInterfaces(LHS, RHS);
4203
4204  return false;
4205}
4206
4207/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4208/// for providing type-safty for objective-c pointers used to pass/return
4209/// arguments in block literals. When passed as arguments, passing 'A*' where
4210/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4211/// not OK. For the return type, the opposite is not OK.
4212bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4213                                         const ObjCObjectPointerType *LHSOPT,
4214                                         const ObjCObjectPointerType *RHSOPT) {
4215  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4216    return true;
4217
4218  if (LHSOPT->isObjCBuiltinType()) {
4219    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4220  }
4221
4222  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4223    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4224                                             QualType(RHSOPT,0),
4225                                             false);
4226
4227  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4228  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4229  if (LHS && RHS)  { // We have 2 user-defined types.
4230    if (LHS != RHS) {
4231      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4232        return false;
4233      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4234        return true;
4235    }
4236    else
4237      return true;
4238  }
4239  return false;
4240}
4241
4242/// getIntersectionOfProtocols - This routine finds the intersection of set
4243/// of protocols inherited from two distinct objective-c pointer objects.
4244/// It is used to build composite qualifier list of the composite type of
4245/// the conditional expression involving two objective-c pointer objects.
4246static
4247void getIntersectionOfProtocols(ASTContext &Context,
4248                                const ObjCObjectPointerType *LHSOPT,
4249                                const ObjCObjectPointerType *RHSOPT,
4250      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4251
4252  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4253  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4254  assert(LHS->getInterface() && "LHS must have an interface base");
4255  assert(RHS->getInterface() && "RHS must have an interface base");
4256
4257  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4258  unsigned LHSNumProtocols = LHS->getNumProtocols();
4259  if (LHSNumProtocols > 0)
4260    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4261  else {
4262    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4263    Context.CollectInheritedProtocols(LHS->getInterface(),
4264                                      LHSInheritedProtocols);
4265    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4266                                LHSInheritedProtocols.end());
4267  }
4268
4269  unsigned RHSNumProtocols = RHS->getNumProtocols();
4270  if (RHSNumProtocols > 0) {
4271    ObjCProtocolDecl **RHSProtocols =
4272      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4273    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4274      if (InheritedProtocolSet.count(RHSProtocols[i]))
4275        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4276  }
4277  else {
4278    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4279    Context.CollectInheritedProtocols(RHS->getInterface(),
4280                                      RHSInheritedProtocols);
4281    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4282         RHSInheritedProtocols.begin(),
4283         E = RHSInheritedProtocols.end(); I != E; ++I)
4284      if (InheritedProtocolSet.count((*I)))
4285        IntersectionOfProtocols.push_back((*I));
4286  }
4287}
4288
4289/// areCommonBaseCompatible - Returns common base class of the two classes if
4290/// one found. Note that this is O'2 algorithm. But it will be called as the
4291/// last type comparison in a ?-exp of ObjC pointer types before a
4292/// warning is issued. So, its invokation is extremely rare.
4293QualType ASTContext::areCommonBaseCompatible(
4294                                          const ObjCObjectPointerType *Lptr,
4295                                          const ObjCObjectPointerType *Rptr) {
4296  const ObjCObjectType *LHS = Lptr->getObjectType();
4297  const ObjCObjectType *RHS = Rptr->getObjectType();
4298  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4299  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4300  if (!LDecl || !RDecl)
4301    return QualType();
4302
4303  while ((LDecl = LDecl->getSuperClass())) {
4304    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4305    if (canAssignObjCInterfaces(LHS, RHS)) {
4306      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4307      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4308
4309      QualType Result = QualType(LHS, 0);
4310      if (!Protocols.empty())
4311        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4312      Result = getObjCObjectPointerType(Result);
4313      return Result;
4314    }
4315  }
4316
4317  return QualType();
4318}
4319
4320bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4321                                         const ObjCObjectType *RHS) {
4322  assert(LHS->getInterface() && "LHS is not an interface type");
4323  assert(RHS->getInterface() && "RHS is not an interface type");
4324
4325  // Verify that the base decls are compatible: the RHS must be a subclass of
4326  // the LHS.
4327  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4328    return false;
4329
4330  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4331  // protocol qualified at all, then we are good.
4332  if (LHS->getNumProtocols() == 0)
4333    return true;
4334
4335  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4336  // isn't a superset.
4337  if (RHS->getNumProtocols() == 0)
4338    return true;  // FIXME: should return false!
4339
4340  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4341                                     LHSPE = LHS->qual_end();
4342       LHSPI != LHSPE; LHSPI++) {
4343    bool RHSImplementsProtocol = false;
4344
4345    // If the RHS doesn't implement the protocol on the left, the types
4346    // are incompatible.
4347    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4348                                       RHSPE = RHS->qual_end();
4349         RHSPI != RHSPE; RHSPI++) {
4350      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4351        RHSImplementsProtocol = true;
4352        break;
4353      }
4354    }
4355    // FIXME: For better diagnostics, consider passing back the protocol name.
4356    if (!RHSImplementsProtocol)
4357      return false;
4358  }
4359  // The RHS implements all protocols listed on the LHS.
4360  return true;
4361}
4362
4363bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4364  // get the "pointed to" types
4365  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4366  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4367
4368  if (!LHSOPT || !RHSOPT)
4369    return false;
4370
4371  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4372         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4373}
4374
4375/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4376/// both shall have the identically qualified version of a compatible type.
4377/// C99 6.2.7p1: Two types have compatible types if their types are the
4378/// same. See 6.7.[2,3,5] for additional rules.
4379bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4380  if (getLangOptions().CPlusPlus)
4381    return hasSameType(LHS, RHS);
4382
4383  return !mergeTypes(LHS, RHS).isNull();
4384}
4385
4386bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4387  return !mergeTypes(LHS, RHS, true).isNull();
4388}
4389
4390QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4391                                        bool OfBlockPointer) {
4392  const FunctionType *lbase = lhs->getAs<FunctionType>();
4393  const FunctionType *rbase = rhs->getAs<FunctionType>();
4394  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4395  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4396  bool allLTypes = true;
4397  bool allRTypes = true;
4398
4399  // Check return type
4400  QualType retType;
4401  if (OfBlockPointer)
4402    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true);
4403  else
4404   retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4405  if (retType.isNull()) return QualType();
4406  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4407    allLTypes = false;
4408  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4409    allRTypes = false;
4410  // FIXME: double check this
4411  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4412  //                           rbase->getRegParmAttr() != 0 &&
4413  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4414  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4415  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4416  unsigned RegParm = lbaseInfo.getRegParm() == 0 ? rbaseInfo.getRegParm() :
4417      lbaseInfo.getRegParm();
4418  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4419  if (NoReturn != lbaseInfo.getNoReturn() ||
4420      RegParm != lbaseInfo.getRegParm())
4421    allLTypes = false;
4422  if (NoReturn != rbaseInfo.getNoReturn() ||
4423      RegParm != rbaseInfo.getRegParm())
4424    allRTypes = false;
4425  CallingConv lcc = lbaseInfo.getCC();
4426  CallingConv rcc = rbaseInfo.getCC();
4427  // Compatible functions must have compatible calling conventions
4428  if (!isSameCallConv(lcc, rcc))
4429    return QualType();
4430
4431  if (lproto && rproto) { // two C99 style function prototypes
4432    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4433           "C++ shouldn't be here");
4434    unsigned lproto_nargs = lproto->getNumArgs();
4435    unsigned rproto_nargs = rproto->getNumArgs();
4436
4437    // Compatible functions must have the same number of arguments
4438    if (lproto_nargs != rproto_nargs)
4439      return QualType();
4440
4441    // Variadic and non-variadic functions aren't compatible
4442    if (lproto->isVariadic() != rproto->isVariadic())
4443      return QualType();
4444
4445    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4446      return QualType();
4447
4448    // Check argument compatibility
4449    llvm::SmallVector<QualType, 10> types;
4450    for (unsigned i = 0; i < lproto_nargs; i++) {
4451      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4452      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4453      QualType argtype = mergeTypes(largtype, rargtype, OfBlockPointer);
4454      if (argtype.isNull()) return QualType();
4455      types.push_back(argtype);
4456      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4457        allLTypes = false;
4458      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4459        allRTypes = false;
4460    }
4461    if (allLTypes) return lhs;
4462    if (allRTypes) return rhs;
4463    return getFunctionType(retType, types.begin(), types.size(),
4464                           lproto->isVariadic(), lproto->getTypeQuals(),
4465                           false, false, 0, 0,
4466                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4467  }
4468
4469  if (lproto) allRTypes = false;
4470  if (rproto) allLTypes = false;
4471
4472  const FunctionProtoType *proto = lproto ? lproto : rproto;
4473  if (proto) {
4474    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4475    if (proto->isVariadic()) return QualType();
4476    // Check that the types are compatible with the types that
4477    // would result from default argument promotions (C99 6.7.5.3p15).
4478    // The only types actually affected are promotable integer
4479    // types and floats, which would be passed as a different
4480    // type depending on whether the prototype is visible.
4481    unsigned proto_nargs = proto->getNumArgs();
4482    for (unsigned i = 0; i < proto_nargs; ++i) {
4483      QualType argTy = proto->getArgType(i);
4484
4485      // Look at the promotion type of enum types, since that is the type used
4486      // to pass enum values.
4487      if (const EnumType *Enum = argTy->getAs<EnumType>())
4488        argTy = Enum->getDecl()->getPromotionType();
4489
4490      if (argTy->isPromotableIntegerType() ||
4491          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4492        return QualType();
4493    }
4494
4495    if (allLTypes) return lhs;
4496    if (allRTypes) return rhs;
4497    return getFunctionType(retType, proto->arg_type_begin(),
4498                           proto->getNumArgs(), proto->isVariadic(),
4499                           proto->getTypeQuals(),
4500                           false, false, 0, 0,
4501                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4502  }
4503
4504  if (allLTypes) return lhs;
4505  if (allRTypes) return rhs;
4506  FunctionType::ExtInfo Info(NoReturn, RegParm, lcc);
4507  return getFunctionNoProtoType(retType, Info);
4508}
4509
4510QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
4511                                bool OfBlockPointer) {
4512  // C++ [expr]: If an expression initially has the type "reference to T", the
4513  // type is adjusted to "T" prior to any further analysis, the expression
4514  // designates the object or function denoted by the reference, and the
4515  // expression is an lvalue unless the reference is an rvalue reference and
4516  // the expression is a function call (possibly inside parentheses).
4517  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4518  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4519
4520  QualType LHSCan = getCanonicalType(LHS),
4521           RHSCan = getCanonicalType(RHS);
4522
4523  // If two types are identical, they are compatible.
4524  if (LHSCan == RHSCan)
4525    return LHS;
4526
4527  // If the qualifiers are different, the types aren't compatible... mostly.
4528  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4529  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4530  if (LQuals != RQuals) {
4531    // If any of these qualifiers are different, we have a type
4532    // mismatch.
4533    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4534        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4535      return QualType();
4536
4537    // Exactly one GC qualifier difference is allowed: __strong is
4538    // okay if the other type has no GC qualifier but is an Objective
4539    // C object pointer (i.e. implicitly strong by default).  We fix
4540    // this by pretending that the unqualified type was actually
4541    // qualified __strong.
4542    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4543    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4544    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4545
4546    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4547      return QualType();
4548
4549    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4550      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4551    }
4552    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4553      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4554    }
4555    return QualType();
4556  }
4557
4558  // Okay, qualifiers are equal.
4559
4560  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4561  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4562
4563  // We want to consider the two function types to be the same for these
4564  // comparisons, just force one to the other.
4565  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4566  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4567
4568  // Same as above for arrays
4569  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4570    LHSClass = Type::ConstantArray;
4571  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4572    RHSClass = Type::ConstantArray;
4573
4574  // ObjCInterfaces are just specialized ObjCObjects.
4575  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
4576  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
4577
4578  // Canonicalize ExtVector -> Vector.
4579  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4580  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4581
4582  // If the canonical type classes don't match.
4583  if (LHSClass != RHSClass) {
4584    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4585    // a signed integer type, or an unsigned integer type.
4586    // Compatibility is based on the underlying type, not the promotion
4587    // type.
4588    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4589      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4590        return RHS;
4591    }
4592    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4593      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4594        return LHS;
4595    }
4596
4597    return QualType();
4598  }
4599
4600  // The canonical type classes match.
4601  switch (LHSClass) {
4602#define TYPE(Class, Base)
4603#define ABSTRACT_TYPE(Class, Base)
4604#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
4605#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4606#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4607#include "clang/AST/TypeNodes.def"
4608    assert(false && "Non-canonical and dependent types shouldn't get here");
4609    return QualType();
4610
4611  case Type::LValueReference:
4612  case Type::RValueReference:
4613  case Type::MemberPointer:
4614    assert(false && "C++ should never be in mergeTypes");
4615    return QualType();
4616
4617  case Type::ObjCInterface:
4618  case Type::IncompleteArray:
4619  case Type::VariableArray:
4620  case Type::FunctionProto:
4621  case Type::ExtVector:
4622    assert(false && "Types are eliminated above");
4623    return QualType();
4624
4625  case Type::Pointer:
4626  {
4627    // Merge two pointer types, while trying to preserve typedef info
4628    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4629    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4630    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4631    if (ResultType.isNull()) return QualType();
4632    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4633      return LHS;
4634    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4635      return RHS;
4636    return getPointerType(ResultType);
4637  }
4638  case Type::BlockPointer:
4639  {
4640    // Merge two block pointer types, while trying to preserve typedef info
4641    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4642    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4643    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer);
4644    if (ResultType.isNull()) return QualType();
4645    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4646      return LHS;
4647    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4648      return RHS;
4649    return getBlockPointerType(ResultType);
4650  }
4651  case Type::ConstantArray:
4652  {
4653    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4654    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4655    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4656      return QualType();
4657
4658    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4659    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4660    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4661    if (ResultType.isNull()) return QualType();
4662    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4663      return LHS;
4664    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4665      return RHS;
4666    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4667                                          ArrayType::ArraySizeModifier(), 0);
4668    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4669                                          ArrayType::ArraySizeModifier(), 0);
4670    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4671    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4672    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4673      return LHS;
4674    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4675      return RHS;
4676    if (LVAT) {
4677      // FIXME: This isn't correct! But tricky to implement because
4678      // the array's size has to be the size of LHS, but the type
4679      // has to be different.
4680      return LHS;
4681    }
4682    if (RVAT) {
4683      // FIXME: This isn't correct! But tricky to implement because
4684      // the array's size has to be the size of RHS, but the type
4685      // has to be different.
4686      return RHS;
4687    }
4688    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4689    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4690    return getIncompleteArrayType(ResultType,
4691                                  ArrayType::ArraySizeModifier(), 0);
4692  }
4693  case Type::FunctionNoProto:
4694    return mergeFunctionTypes(LHS, RHS, OfBlockPointer);
4695  case Type::Record:
4696  case Type::Enum:
4697    return QualType();
4698  case Type::Builtin:
4699    // Only exactly equal builtin types are compatible, which is tested above.
4700    return QualType();
4701  case Type::Complex:
4702    // Distinct complex types are incompatible.
4703    return QualType();
4704  case Type::Vector:
4705    // FIXME: The merged type should be an ExtVector!
4706    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
4707                             RHSCan->getAs<VectorType>()))
4708      return LHS;
4709    return QualType();
4710  case Type::ObjCObject: {
4711    // Check if the types are assignment compatible.
4712    // FIXME: This should be type compatibility, e.g. whether
4713    // "LHS x; RHS x;" at global scope is legal.
4714    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
4715    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
4716    if (canAssignObjCInterfaces(LHSIface, RHSIface))
4717      return LHS;
4718
4719    return QualType();
4720  }
4721  case Type::ObjCObjectPointer: {
4722    if (OfBlockPointer) {
4723      if (canAssignObjCInterfacesInBlockPointer(
4724                                          LHS->getAs<ObjCObjectPointerType>(),
4725                                          RHS->getAs<ObjCObjectPointerType>()))
4726      return LHS;
4727      return QualType();
4728    }
4729    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4730                                RHS->getAs<ObjCObjectPointerType>()))
4731      return LHS;
4732
4733    return QualType();
4734    }
4735  }
4736
4737  return QualType();
4738}
4739
4740/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
4741/// 'RHS' attributes and returns the merged version; including for function
4742/// return types.
4743QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
4744  QualType LHSCan = getCanonicalType(LHS),
4745  RHSCan = getCanonicalType(RHS);
4746  // If two types are identical, they are compatible.
4747  if (LHSCan == RHSCan)
4748    return LHS;
4749  if (RHSCan->isFunctionType()) {
4750    if (!LHSCan->isFunctionType())
4751      return QualType();
4752    QualType OldReturnType =
4753      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
4754    QualType NewReturnType =
4755      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
4756    QualType ResReturnType =
4757      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
4758    if (ResReturnType.isNull())
4759      return QualType();
4760    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
4761      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
4762      // In either case, use OldReturnType to build the new function type.
4763      const FunctionType *F = LHS->getAs<FunctionType>();
4764      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
4765        FunctionType::ExtInfo Info = getFunctionExtInfo(LHS);
4766        QualType ResultType
4767          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
4768                                  FPT->getNumArgs(), FPT->isVariadic(),
4769                                  FPT->getTypeQuals(),
4770                                  FPT->hasExceptionSpec(),
4771                                  FPT->hasAnyExceptionSpec(),
4772                                  FPT->getNumExceptions(),
4773                                  FPT->exception_begin(),
4774                                  Info);
4775        return ResultType;
4776      }
4777    }
4778    return QualType();
4779  }
4780
4781  // If the qualifiers are different, the types can still be merged.
4782  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4783  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4784  if (LQuals != RQuals) {
4785    // If any of these qualifiers are different, we have a type mismatch.
4786    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4787        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4788      return QualType();
4789
4790    // Exactly one GC qualifier difference is allowed: __strong is
4791    // okay if the other type has no GC qualifier but is an Objective
4792    // C object pointer (i.e. implicitly strong by default).  We fix
4793    // this by pretending that the unqualified type was actually
4794    // qualified __strong.
4795    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4796    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4797    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4798
4799    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4800      return QualType();
4801
4802    if (GC_L == Qualifiers::Strong)
4803      return LHS;
4804    if (GC_R == Qualifiers::Strong)
4805      return RHS;
4806    return QualType();
4807  }
4808
4809  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
4810    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
4811    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
4812    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
4813    if (ResQT == LHSBaseQT)
4814      return LHS;
4815    if (ResQT == RHSBaseQT)
4816      return RHS;
4817  }
4818  return QualType();
4819}
4820
4821//===----------------------------------------------------------------------===//
4822//                         Integer Predicates
4823//===----------------------------------------------------------------------===//
4824
4825unsigned ASTContext::getIntWidth(QualType T) {
4826  if (T->isBooleanType())
4827    return 1;
4828  if (EnumType *ET = dyn_cast<EnumType>(T))
4829    T = ET->getDecl()->getIntegerType();
4830  // For builtin types, just use the standard type sizing method
4831  return (unsigned)getTypeSize(T);
4832}
4833
4834QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4835  assert(T->isSignedIntegerType() && "Unexpected type");
4836
4837  // Turn <4 x signed int> -> <4 x unsigned int>
4838  if (const VectorType *VTy = T->getAs<VectorType>())
4839    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4840             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4841
4842  // For enums, we return the unsigned version of the base type.
4843  if (const EnumType *ETy = T->getAs<EnumType>())
4844    T = ETy->getDecl()->getIntegerType();
4845
4846  const BuiltinType *BTy = T->getAs<BuiltinType>();
4847  assert(BTy && "Unexpected signed integer type");
4848  switch (BTy->getKind()) {
4849  case BuiltinType::Char_S:
4850  case BuiltinType::SChar:
4851    return UnsignedCharTy;
4852  case BuiltinType::Short:
4853    return UnsignedShortTy;
4854  case BuiltinType::Int:
4855    return UnsignedIntTy;
4856  case BuiltinType::Long:
4857    return UnsignedLongTy;
4858  case BuiltinType::LongLong:
4859    return UnsignedLongLongTy;
4860  case BuiltinType::Int128:
4861    return UnsignedInt128Ty;
4862  default:
4863    assert(0 && "Unexpected signed integer type");
4864    return QualType();
4865  }
4866}
4867
4868ExternalASTSource::~ExternalASTSource() { }
4869
4870void ExternalASTSource::PrintStats() { }
4871
4872
4873//===----------------------------------------------------------------------===//
4874//                          Builtin Type Computation
4875//===----------------------------------------------------------------------===//
4876
4877/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4878/// pointer over the consumed characters.  This returns the resultant type.
4879static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4880                                  ASTContext::GetBuiltinTypeError &Error,
4881                                  bool AllowTypeModifiers = true) {
4882  // Modifiers.
4883  int HowLong = 0;
4884  bool Signed = false, Unsigned = false;
4885
4886  // Read the modifiers first.
4887  bool Done = false;
4888  while (!Done) {
4889    switch (*Str++) {
4890    default: Done = true; --Str; break;
4891    case 'S':
4892      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4893      assert(!Signed && "Can't use 'S' modifier multiple times!");
4894      Signed = true;
4895      break;
4896    case 'U':
4897      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4898      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4899      Unsigned = true;
4900      break;
4901    case 'L':
4902      assert(HowLong <= 2 && "Can't have LLLL modifier");
4903      ++HowLong;
4904      break;
4905    }
4906  }
4907
4908  QualType Type;
4909
4910  // Read the base type.
4911  switch (*Str++) {
4912  default: assert(0 && "Unknown builtin type letter!");
4913  case 'v':
4914    assert(HowLong == 0 && !Signed && !Unsigned &&
4915           "Bad modifiers used with 'v'!");
4916    Type = Context.VoidTy;
4917    break;
4918  case 'f':
4919    assert(HowLong == 0 && !Signed && !Unsigned &&
4920           "Bad modifiers used with 'f'!");
4921    Type = Context.FloatTy;
4922    break;
4923  case 'd':
4924    assert(HowLong < 2 && !Signed && !Unsigned &&
4925           "Bad modifiers used with 'd'!");
4926    if (HowLong)
4927      Type = Context.LongDoubleTy;
4928    else
4929      Type = Context.DoubleTy;
4930    break;
4931  case 's':
4932    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4933    if (Unsigned)
4934      Type = Context.UnsignedShortTy;
4935    else
4936      Type = Context.ShortTy;
4937    break;
4938  case 'i':
4939    if (HowLong == 3)
4940      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4941    else if (HowLong == 2)
4942      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4943    else if (HowLong == 1)
4944      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4945    else
4946      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4947    break;
4948  case 'c':
4949    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4950    if (Signed)
4951      Type = Context.SignedCharTy;
4952    else if (Unsigned)
4953      Type = Context.UnsignedCharTy;
4954    else
4955      Type = Context.CharTy;
4956    break;
4957  case 'b': // boolean
4958    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4959    Type = Context.BoolTy;
4960    break;
4961  case 'z':  // size_t.
4962    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4963    Type = Context.getSizeType();
4964    break;
4965  case 'F':
4966    Type = Context.getCFConstantStringType();
4967    break;
4968  case 'a':
4969    Type = Context.getBuiltinVaListType();
4970    assert(!Type.isNull() && "builtin va list type not initialized!");
4971    break;
4972  case 'A':
4973    // This is a "reference" to a va_list; however, what exactly
4974    // this means depends on how va_list is defined. There are two
4975    // different kinds of va_list: ones passed by value, and ones
4976    // passed by reference.  An example of a by-value va_list is
4977    // x86, where va_list is a char*. An example of by-ref va_list
4978    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4979    // we want this argument to be a char*&; for x86-64, we want
4980    // it to be a __va_list_tag*.
4981    Type = Context.getBuiltinVaListType();
4982    assert(!Type.isNull() && "builtin va list type not initialized!");
4983    if (Type->isArrayType()) {
4984      Type = Context.getArrayDecayedType(Type);
4985    } else {
4986      Type = Context.getLValueReferenceType(Type);
4987    }
4988    break;
4989  case 'V': {
4990    char *End;
4991    unsigned NumElements = strtoul(Str, &End, 10);
4992    assert(End != Str && "Missing vector size");
4993
4994    Str = End;
4995
4996    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4997    // FIXME: Don't know what to do about AltiVec.
4998    Type = Context.getVectorType(ElementType, NumElements, false, false);
4999    break;
5000  }
5001  case 'X': {
5002    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
5003    Type = Context.getComplexType(ElementType);
5004    break;
5005  }
5006  case 'P':
5007    Type = Context.getFILEType();
5008    if (Type.isNull()) {
5009      Error = ASTContext::GE_Missing_stdio;
5010      return QualType();
5011    }
5012    break;
5013  case 'J':
5014    if (Signed)
5015      Type = Context.getsigjmp_bufType();
5016    else
5017      Type = Context.getjmp_bufType();
5018
5019    if (Type.isNull()) {
5020      Error = ASTContext::GE_Missing_setjmp;
5021      return QualType();
5022    }
5023    break;
5024  }
5025
5026  if (!AllowTypeModifiers)
5027    return Type;
5028
5029  Done = false;
5030  while (!Done) {
5031    switch (char c = *Str++) {
5032      default: Done = true; --Str; break;
5033      case '*':
5034      case '&':
5035        {
5036          // Both pointers and references can have their pointee types
5037          // qualified with an address space.
5038          char *End;
5039          unsigned AddrSpace = strtoul(Str, &End, 10);
5040          if (End != Str && AddrSpace != 0) {
5041            Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5042            Str = End;
5043          }
5044        }
5045        if (c == '*')
5046          Type = Context.getPointerType(Type);
5047        else
5048          Type = Context.getLValueReferenceType(Type);
5049        break;
5050      // FIXME: There's no way to have a built-in with an rvalue ref arg.
5051      case 'C':
5052        Type = Type.withConst();
5053        break;
5054      case 'D':
5055        Type = Context.getVolatileType(Type);
5056        break;
5057    }
5058  }
5059
5060  return Type;
5061}
5062
5063/// GetBuiltinType - Return the type for the specified builtin.
5064QualType ASTContext::GetBuiltinType(unsigned id,
5065                                    GetBuiltinTypeError &Error) {
5066  const char *TypeStr = BuiltinInfo.GetTypeString(id);
5067
5068  llvm::SmallVector<QualType, 8> ArgTypes;
5069
5070  Error = GE_None;
5071  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
5072  if (Error != GE_None)
5073    return QualType();
5074  while (TypeStr[0] && TypeStr[0] != '.') {
5075    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
5076    if (Error != GE_None)
5077      return QualType();
5078
5079    // Do array -> pointer decay.  The builtin should use the decayed type.
5080    if (Ty->isArrayType())
5081      Ty = getArrayDecayedType(Ty);
5082
5083    ArgTypes.push_back(Ty);
5084  }
5085
5086  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5087         "'.' should only occur at end of builtin type list!");
5088
5089  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
5090  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
5091    return getFunctionNoProtoType(ResType);
5092
5093  // FIXME: Should we create noreturn types?
5094  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
5095                         TypeStr[0] == '.', 0, false, false, 0, 0,
5096                         FunctionType::ExtInfo());
5097}
5098
5099QualType
5100ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
5101  // Perform the usual unary conversions. We do this early so that
5102  // integral promotions to "int" can allow us to exit early, in the
5103  // lhs == rhs check. Also, for conversion purposes, we ignore any
5104  // qualifiers.  For example, "const float" and "float" are
5105  // equivalent.
5106  if (lhs->isPromotableIntegerType())
5107    lhs = getPromotedIntegerType(lhs);
5108  else
5109    lhs = lhs.getUnqualifiedType();
5110  if (rhs->isPromotableIntegerType())
5111    rhs = getPromotedIntegerType(rhs);
5112  else
5113    rhs = rhs.getUnqualifiedType();
5114
5115  // If both types are identical, no conversion is needed.
5116  if (lhs == rhs)
5117    return lhs;
5118
5119  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
5120  // The caller can deal with this (e.g. pointer + int).
5121  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
5122    return lhs;
5123
5124  // At this point, we have two different arithmetic types.
5125
5126  // Handle complex types first (C99 6.3.1.8p1).
5127  if (lhs->isComplexType() || rhs->isComplexType()) {
5128    // if we have an integer operand, the result is the complex type.
5129    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
5130      // convert the rhs to the lhs complex type.
5131      return lhs;
5132    }
5133    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
5134      // convert the lhs to the rhs complex type.
5135      return rhs;
5136    }
5137    // This handles complex/complex, complex/float, or float/complex.
5138    // When both operands are complex, the shorter operand is converted to the
5139    // type of the longer, and that is the type of the result. This corresponds
5140    // to what is done when combining two real floating-point operands.
5141    // The fun begins when size promotion occur across type domains.
5142    // From H&S 6.3.4: When one operand is complex and the other is a real
5143    // floating-point type, the less precise type is converted, within it's
5144    // real or complex domain, to the precision of the other type. For example,
5145    // when combining a "long double" with a "double _Complex", the
5146    // "double _Complex" is promoted to "long double _Complex".
5147    int result = getFloatingTypeOrder(lhs, rhs);
5148
5149    if (result > 0) { // The left side is bigger, convert rhs.
5150      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
5151    } else if (result < 0) { // The right side is bigger, convert lhs.
5152      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
5153    }
5154    // At this point, lhs and rhs have the same rank/size. Now, make sure the
5155    // domains match. This is a requirement for our implementation, C99
5156    // does not require this promotion.
5157    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
5158      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
5159        return rhs;
5160      } else { // handle "_Complex double, double".
5161        return lhs;
5162      }
5163    }
5164    return lhs; // The domain/size match exactly.
5165  }
5166  // Now handle "real" floating types (i.e. float, double, long double).
5167  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
5168    // if we have an integer operand, the result is the real floating type.
5169    if (rhs->isIntegerType()) {
5170      // convert rhs to the lhs floating point type.
5171      return lhs;
5172    }
5173    if (rhs->isComplexIntegerType()) {
5174      // convert rhs to the complex floating point type.
5175      return getComplexType(lhs);
5176    }
5177    if (lhs->isIntegerType()) {
5178      // convert lhs to the rhs floating point type.
5179      return rhs;
5180    }
5181    if (lhs->isComplexIntegerType()) {
5182      // convert lhs to the complex floating point type.
5183      return getComplexType(rhs);
5184    }
5185    // We have two real floating types, float/complex combos were handled above.
5186    // Convert the smaller operand to the bigger result.
5187    int result = getFloatingTypeOrder(lhs, rhs);
5188    if (result > 0) // convert the rhs
5189      return lhs;
5190    assert(result < 0 && "illegal float comparison");
5191    return rhs;   // convert the lhs
5192  }
5193  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5194    // Handle GCC complex int extension.
5195    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5196    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5197
5198    if (lhsComplexInt && rhsComplexInt) {
5199      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5200                              rhsComplexInt->getElementType()) >= 0)
5201        return lhs; // convert the rhs
5202      return rhs;
5203    } else if (lhsComplexInt && rhs->isIntegerType()) {
5204      // convert the rhs to the lhs complex type.
5205      return lhs;
5206    } else if (rhsComplexInt && lhs->isIntegerType()) {
5207      // convert the lhs to the rhs complex type.
5208      return rhs;
5209    }
5210  }
5211  // Finally, we have two differing integer types.
5212  // The rules for this case are in C99 6.3.1.8
5213  int compare = getIntegerTypeOrder(lhs, rhs);
5214  bool lhsSigned = lhs->isSignedIntegerType(),
5215       rhsSigned = rhs->isSignedIntegerType();
5216  QualType destType;
5217  if (lhsSigned == rhsSigned) {
5218    // Same signedness; use the higher-ranked type
5219    destType = compare >= 0 ? lhs : rhs;
5220  } else if (compare != (lhsSigned ? 1 : -1)) {
5221    // The unsigned type has greater than or equal rank to the
5222    // signed type, so use the unsigned type
5223    destType = lhsSigned ? rhs : lhs;
5224  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5225    // The two types are different widths; if we are here, that
5226    // means the signed type is larger than the unsigned type, so
5227    // use the signed type.
5228    destType = lhsSigned ? lhs : rhs;
5229  } else {
5230    // The signed type is higher-ranked than the unsigned type,
5231    // but isn't actually any bigger (like unsigned int and long
5232    // on most 32-bit systems).  Use the unsigned type corresponding
5233    // to the signed type.
5234    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5235  }
5236  return destType;
5237}
5238