ASTContext.cpp revision 6deecb0d46bcfd048e651d2db7c4fb0d6407da96
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44  NSConstantStringTypeDecl(0),
45  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
46  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
47  SourceMgr(SM), LangOpts(LOpts), FreeMemory(FreeMem), Target(t),
48  Idents(idents), Selectors(sels),
49  BuiltinInfo(builtins),
50  DeclarationNames(*this),
51  ExternalSource(0), PrintingPolicy(LOpts),
52  LastSDM(0, 0) {
53  ObjCIdRedefinitionType = QualType();
54  ObjCClassRedefinitionType = QualType();
55  ObjCSelRedefinitionType = QualType();
56  if (size_reserve > 0) Types.reserve(size_reserve);
57  TUDecl = TranslationUnitDecl::Create(*this);
58  InitBuiltinTypes();
59}
60
61ASTContext::~ASTContext() {
62  // Release the DenseMaps associated with DeclContext objects.
63  // FIXME: Is this the ideal solution?
64  ReleaseDeclContextMaps();
65
66  if (!FreeMemory) {
67    // Call all of the deallocation functions.
68    for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
69      Deallocations[I].first(Deallocations[I].second);
70  }
71
72  // Release all of the memory associated with overridden C++ methods.
73  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
74         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
75       OM != OMEnd; ++OM)
76    OM->second.Destroy();
77
78  if (FreeMemory) {
79    // Deallocate all the types.
80    while (!Types.empty()) {
81      Types.back()->Destroy(*this);
82      Types.pop_back();
83    }
84
85    for (llvm::FoldingSet<ExtQuals>::iterator
86         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
87      // Increment in loop to prevent using deallocated memory.
88      Deallocate(&*I++);
89    }
90
91    for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
92         I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
93      // Increment in loop to prevent using deallocated memory.
94      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
95        R->Destroy(*this);
96    }
97
98    for (llvm::DenseMap<const ObjCContainerDecl*,
99         const ASTRecordLayout*>::iterator
100         I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
101      // Increment in loop to prevent using deallocated memory.
102      if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
103        R->Destroy(*this);
104    }
105  }
106
107  // Destroy nested-name-specifiers.
108  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
109         NNS = NestedNameSpecifiers.begin(),
110         NNSEnd = NestedNameSpecifiers.end();
111       NNS != NNSEnd; ) {
112    // Increment in loop to prevent using deallocated memory.
113    (*NNS++).Destroy(*this);
114  }
115
116  if (GlobalNestedNameSpecifier)
117    GlobalNestedNameSpecifier->Destroy(*this);
118
119  TUDecl->Destroy(*this);
120}
121
122void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
123  Deallocations.push_back(std::make_pair(Callback, Data));
124}
125
126void
127ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
128  ExternalSource.reset(Source.take());
129}
130
131void ASTContext::PrintStats() const {
132  fprintf(stderr, "*** AST Context Stats:\n");
133  fprintf(stderr, "  %d types total.\n", (int)Types.size());
134
135  unsigned counts[] = {
136#define TYPE(Name, Parent) 0,
137#define ABSTRACT_TYPE(Name, Parent)
138#include "clang/AST/TypeNodes.def"
139    0 // Extra
140  };
141
142  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
143    Type *T = Types[i];
144    counts[(unsigned)T->getTypeClass()]++;
145  }
146
147  unsigned Idx = 0;
148  unsigned TotalBytes = 0;
149#define TYPE(Name, Parent)                                              \
150  if (counts[Idx])                                                      \
151    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
152  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
153  ++Idx;
154#define ABSTRACT_TYPE(Name, Parent)
155#include "clang/AST/TypeNodes.def"
156
157  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
158
159  if (ExternalSource.get()) {
160    fprintf(stderr, "\n");
161    ExternalSource->PrintStats();
162  }
163}
164
165
166void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
167  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
168  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
169  Types.push_back(Ty);
170}
171
172void ASTContext::InitBuiltinTypes() {
173  assert(VoidTy.isNull() && "Context reinitialized?");
174
175  // C99 6.2.5p19.
176  InitBuiltinType(VoidTy,              BuiltinType::Void);
177
178  // C99 6.2.5p2.
179  InitBuiltinType(BoolTy,              BuiltinType::Bool);
180  // C99 6.2.5p3.
181  if (LangOpts.CharIsSigned)
182    InitBuiltinType(CharTy,            BuiltinType::Char_S);
183  else
184    InitBuiltinType(CharTy,            BuiltinType::Char_U);
185  // C99 6.2.5p4.
186  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
187  InitBuiltinType(ShortTy,             BuiltinType::Short);
188  InitBuiltinType(IntTy,               BuiltinType::Int);
189  InitBuiltinType(LongTy,              BuiltinType::Long);
190  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
191
192  // C99 6.2.5p6.
193  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
194  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
195  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
196  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
197  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
198
199  // C99 6.2.5p10.
200  InitBuiltinType(FloatTy,             BuiltinType::Float);
201  InitBuiltinType(DoubleTy,            BuiltinType::Double);
202  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
203
204  // GNU extension, 128-bit integers.
205  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
206  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
207
208  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
209    InitBuiltinType(WCharTy,           BuiltinType::WChar);
210  else // C99
211    WCharTy = getFromTargetType(Target.getWCharType());
212
213  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
214    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
215  else // C99
216    Char16Ty = getFromTargetType(Target.getChar16Type());
217
218  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
219    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
220  else // C99
221    Char32Ty = getFromTargetType(Target.getChar32Type());
222
223  // Placeholder type for functions.
224  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
225
226  // Placeholder type for type-dependent expressions whose type is
227  // completely unknown. No code should ever check a type against
228  // DependentTy and users should never see it; however, it is here to
229  // help diagnose failures to properly check for type-dependent
230  // expressions.
231  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
232
233  // Placeholder type for C++0x auto declarations whose real type has
234  // not yet been deduced.
235  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
236
237  // C99 6.2.5p11.
238  FloatComplexTy      = getComplexType(FloatTy);
239  DoubleComplexTy     = getComplexType(DoubleTy);
240  LongDoubleComplexTy = getComplexType(LongDoubleTy);
241
242  BuiltinVaListType = QualType();
243
244  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
245  ObjCIdTypedefType = QualType();
246  ObjCClassTypedefType = QualType();
247  ObjCSelTypedefType = QualType();
248
249  // Builtin types for 'id', 'Class', and 'SEL'.
250  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
251  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
252  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
253
254  ObjCConstantStringType = QualType();
255
256  // void * type
257  VoidPtrTy = getPointerType(VoidTy);
258
259  // nullptr type (C++0x 2.14.7)
260  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
261}
262
263MemberSpecializationInfo *
264ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
265  assert(Var->isStaticDataMember() && "Not a static data member");
266  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
267    = InstantiatedFromStaticDataMember.find(Var);
268  if (Pos == InstantiatedFromStaticDataMember.end())
269    return 0;
270
271  return Pos->second;
272}
273
274void
275ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
276                                                TemplateSpecializationKind TSK) {
277  assert(Inst->isStaticDataMember() && "Not a static data member");
278  assert(Tmpl->isStaticDataMember() && "Not a static data member");
279  assert(!InstantiatedFromStaticDataMember[Inst] &&
280         "Already noted what static data member was instantiated from");
281  InstantiatedFromStaticDataMember[Inst]
282    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
283}
284
285NamedDecl *
286ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
287  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
288    = InstantiatedFromUsingDecl.find(UUD);
289  if (Pos == InstantiatedFromUsingDecl.end())
290    return 0;
291
292  return Pos->second;
293}
294
295void
296ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
297  assert((isa<UsingDecl>(Pattern) ||
298          isa<UnresolvedUsingValueDecl>(Pattern) ||
299          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
300         "pattern decl is not a using decl");
301  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
302  InstantiatedFromUsingDecl[Inst] = Pattern;
303}
304
305UsingShadowDecl *
306ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
307  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
308    = InstantiatedFromUsingShadowDecl.find(Inst);
309  if (Pos == InstantiatedFromUsingShadowDecl.end())
310    return 0;
311
312  return Pos->second;
313}
314
315void
316ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
317                                               UsingShadowDecl *Pattern) {
318  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
319  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
320}
321
322FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
323  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
324    = InstantiatedFromUnnamedFieldDecl.find(Field);
325  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
326    return 0;
327
328  return Pos->second;
329}
330
331void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
332                                                     FieldDecl *Tmpl) {
333  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
334  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
335  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
336         "Already noted what unnamed field was instantiated from");
337
338  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
339}
340
341ASTContext::overridden_cxx_method_iterator
342ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
343  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
344    = OverriddenMethods.find(Method);
345  if (Pos == OverriddenMethods.end())
346    return 0;
347
348  return Pos->second.begin();
349}
350
351ASTContext::overridden_cxx_method_iterator
352ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
353  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
354    = OverriddenMethods.find(Method);
355  if (Pos == OverriddenMethods.end())
356    return 0;
357
358  return Pos->second.end();
359}
360
361void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
362                                     const CXXMethodDecl *Overridden) {
363  OverriddenMethods[Method].push_back(Overridden);
364}
365
366namespace {
367  class BeforeInTranslationUnit
368    : std::binary_function<SourceRange, SourceRange, bool> {
369    SourceManager *SourceMgr;
370
371  public:
372    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
373
374    bool operator()(SourceRange X, SourceRange Y) {
375      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
376    }
377  };
378}
379
380//===----------------------------------------------------------------------===//
381//                         Type Sizing and Analysis
382//===----------------------------------------------------------------------===//
383
384/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
385/// scalar floating point type.
386const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
387  const BuiltinType *BT = T->getAs<BuiltinType>();
388  assert(BT && "Not a floating point type!");
389  switch (BT->getKind()) {
390  default: assert(0 && "Not a floating point type!");
391  case BuiltinType::Float:      return Target.getFloatFormat();
392  case BuiltinType::Double:     return Target.getDoubleFormat();
393  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
394  }
395}
396
397/// getDeclAlign - Return a conservative estimate of the alignment of the
398/// specified decl.  Note that bitfields do not have a valid alignment, so
399/// this method will assert on them.
400/// If @p RefAsPointee, references are treated like their underlying type
401/// (for alignof), else they're treated like pointers (for CodeGen).
402CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
403  unsigned Align = Target.getCharWidth();
404
405  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
406    Align = std::max(Align, AA->getMaxAlignment());
407
408  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
409    QualType T = VD->getType();
410    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
411      if (RefAsPointee)
412        T = RT->getPointeeType();
413      else
414        T = getPointerType(RT->getPointeeType());
415    }
416    if (!T->isIncompleteType() && !T->isFunctionType()) {
417      unsigned MinWidth = Target.getLargeArrayMinWidth();
418      unsigned ArrayAlign = Target.getLargeArrayAlign();
419      if (isa<VariableArrayType>(T) && MinWidth != 0)
420        Align = std::max(Align, ArrayAlign);
421      if (ConstantArrayType *CT = dyn_cast<ConstantArrayType>(T)) {
422        unsigned Size = getTypeSize(CT);
423        if (MinWidth != 0 && MinWidth <= Size)
424          Align = std::max(Align, ArrayAlign);
425      }
426      // Incomplete or function types default to 1.
427      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
428        T = cast<ArrayType>(T)->getElementType();
429
430      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
431    }
432    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
433      // In the case of a field in a packed struct, we want the minimum
434      // of the alignment of the field and the alignment of the struct.
435      Align = std::min(Align,
436        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
437    }
438  }
439
440  return CharUnits::fromQuantity(Align / Target.getCharWidth());
441}
442
443std::pair<CharUnits, CharUnits>
444ASTContext::getTypeInfoInChars(const Type *T) {
445  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
446  return std::make_pair(CharUnits::fromQuantity(Info.first / getCharWidth()),
447                        CharUnits::fromQuantity(Info.second / getCharWidth()));
448}
449
450std::pair<CharUnits, CharUnits>
451ASTContext::getTypeInfoInChars(QualType T) {
452  return getTypeInfoInChars(T.getTypePtr());
453}
454
455/// getTypeSize - Return the size of the specified type, in bits.  This method
456/// does not work on incomplete types.
457///
458/// FIXME: Pointers into different addr spaces could have different sizes and
459/// alignment requirements: getPointerInfo should take an AddrSpace, this
460/// should take a QualType, &c.
461std::pair<uint64_t, unsigned>
462ASTContext::getTypeInfo(const Type *T) {
463  uint64_t Width=0;
464  unsigned Align=8;
465  switch (T->getTypeClass()) {
466#define TYPE(Class, Base)
467#define ABSTRACT_TYPE(Class, Base)
468#define NON_CANONICAL_TYPE(Class, Base)
469#define DEPENDENT_TYPE(Class, Base) case Type::Class:
470#include "clang/AST/TypeNodes.def"
471    assert(false && "Should not see dependent types");
472    break;
473
474  case Type::FunctionNoProto:
475  case Type::FunctionProto:
476    // GCC extension: alignof(function) = 32 bits
477    Width = 0;
478    Align = 32;
479    break;
480
481  case Type::IncompleteArray:
482  case Type::VariableArray:
483    Width = 0;
484    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
485    break;
486
487  case Type::ConstantArray: {
488    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
489
490    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
491    Width = EltInfo.first*CAT->getSize().getZExtValue();
492    Align = EltInfo.second;
493    break;
494  }
495  case Type::ExtVector:
496  case Type::Vector: {
497    const VectorType *VT = cast<VectorType>(T);
498    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
499    Width = EltInfo.first*VT->getNumElements();
500    Align = Width;
501    // If the alignment is not a power of 2, round up to the next power of 2.
502    // This happens for non-power-of-2 length vectors.
503    if (Align & (Align-1)) {
504      Align = llvm::NextPowerOf2(Align);
505      Width = llvm::RoundUpToAlignment(Width, Align);
506    }
507    break;
508  }
509
510  case Type::Builtin:
511    switch (cast<BuiltinType>(T)->getKind()) {
512    default: assert(0 && "Unknown builtin type!");
513    case BuiltinType::Void:
514      // GCC extension: alignof(void) = 8 bits.
515      Width = 0;
516      Align = 8;
517      break;
518
519    case BuiltinType::Bool:
520      Width = Target.getBoolWidth();
521      Align = Target.getBoolAlign();
522      break;
523    case BuiltinType::Char_S:
524    case BuiltinType::Char_U:
525    case BuiltinType::UChar:
526    case BuiltinType::SChar:
527      Width = Target.getCharWidth();
528      Align = Target.getCharAlign();
529      break;
530    case BuiltinType::WChar:
531      Width = Target.getWCharWidth();
532      Align = Target.getWCharAlign();
533      break;
534    case BuiltinType::Char16:
535      Width = Target.getChar16Width();
536      Align = Target.getChar16Align();
537      break;
538    case BuiltinType::Char32:
539      Width = Target.getChar32Width();
540      Align = Target.getChar32Align();
541      break;
542    case BuiltinType::UShort:
543    case BuiltinType::Short:
544      Width = Target.getShortWidth();
545      Align = Target.getShortAlign();
546      break;
547    case BuiltinType::UInt:
548    case BuiltinType::Int:
549      Width = Target.getIntWidth();
550      Align = Target.getIntAlign();
551      break;
552    case BuiltinType::ULong:
553    case BuiltinType::Long:
554      Width = Target.getLongWidth();
555      Align = Target.getLongAlign();
556      break;
557    case BuiltinType::ULongLong:
558    case BuiltinType::LongLong:
559      Width = Target.getLongLongWidth();
560      Align = Target.getLongLongAlign();
561      break;
562    case BuiltinType::Int128:
563    case BuiltinType::UInt128:
564      Width = 128;
565      Align = 128; // int128_t is 128-bit aligned on all targets.
566      break;
567    case BuiltinType::Float:
568      Width = Target.getFloatWidth();
569      Align = Target.getFloatAlign();
570      break;
571    case BuiltinType::Double:
572      Width = Target.getDoubleWidth();
573      Align = Target.getDoubleAlign();
574      break;
575    case BuiltinType::LongDouble:
576      Width = Target.getLongDoubleWidth();
577      Align = Target.getLongDoubleAlign();
578      break;
579    case BuiltinType::NullPtr:
580      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
581      Align = Target.getPointerAlign(0); //   == sizeof(void*)
582      break;
583    }
584    break;
585  case Type::ObjCObjectPointer:
586    Width = Target.getPointerWidth(0);
587    Align = Target.getPointerAlign(0);
588    break;
589  case Type::BlockPointer: {
590    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
591    Width = Target.getPointerWidth(AS);
592    Align = Target.getPointerAlign(AS);
593    break;
594  }
595  case Type::LValueReference:
596  case Type::RValueReference: {
597    // alignof and sizeof should never enter this code path here, so we go
598    // the pointer route.
599    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
600    Width = Target.getPointerWidth(AS);
601    Align = Target.getPointerAlign(AS);
602    break;
603  }
604  case Type::Pointer: {
605    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
606    Width = Target.getPointerWidth(AS);
607    Align = Target.getPointerAlign(AS);
608    break;
609  }
610  case Type::MemberPointer: {
611    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
612    std::pair<uint64_t, unsigned> PtrDiffInfo =
613      getTypeInfo(getPointerDiffType());
614    Width = PtrDiffInfo.first;
615    if (Pointee->isFunctionType())
616      Width *= 2;
617    Align = PtrDiffInfo.second;
618    break;
619  }
620  case Type::Complex: {
621    // Complex types have the same alignment as their elements, but twice the
622    // size.
623    std::pair<uint64_t, unsigned> EltInfo =
624      getTypeInfo(cast<ComplexType>(T)->getElementType());
625    Width = EltInfo.first*2;
626    Align = EltInfo.second;
627    break;
628  }
629  case Type::ObjCObject:
630    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
631  case Type::ObjCInterface: {
632    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
633    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
634    Width = Layout.getSize();
635    Align = Layout.getAlignment();
636    break;
637  }
638  case Type::Record:
639  case Type::Enum: {
640    const TagType *TT = cast<TagType>(T);
641
642    if (TT->getDecl()->isInvalidDecl()) {
643      Width = 1;
644      Align = 1;
645      break;
646    }
647
648    if (const EnumType *ET = dyn_cast<EnumType>(TT))
649      return getTypeInfo(ET->getDecl()->getIntegerType());
650
651    const RecordType *RT = cast<RecordType>(TT);
652    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
653    Width = Layout.getSize();
654    Align = Layout.getAlignment();
655    break;
656  }
657
658  case Type::SubstTemplateTypeParm:
659    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
660                       getReplacementType().getTypePtr());
661
662  case Type::Typedef: {
663    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
664    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
665      Align = std::max(Aligned->getMaxAlignment(),
666                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
667      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
668    } else
669      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
670    break;
671  }
672
673  case Type::TypeOfExpr:
674    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
675                         .getTypePtr());
676
677  case Type::TypeOf:
678    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
679
680  case Type::Decltype:
681    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
682                        .getTypePtr());
683
684  case Type::Elaborated:
685    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
686
687  case Type::TemplateSpecialization:
688    assert(getCanonicalType(T) != T &&
689           "Cannot request the size of a dependent type");
690    // FIXME: this is likely to be wrong once we support template
691    // aliases, since a template alias could refer to a typedef that
692    // has an __aligned__ attribute on it.
693    return getTypeInfo(getCanonicalType(T));
694  }
695
696  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
697  return std::make_pair(Width, Align);
698}
699
700/// getTypeSizeInChars - Return the size of the specified type, in characters.
701/// This method does not work on incomplete types.
702CharUnits ASTContext::getTypeSizeInChars(QualType T) {
703  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
704}
705CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
706  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
707}
708
709/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
710/// characters. This method does not work on incomplete types.
711CharUnits ASTContext::getTypeAlignInChars(QualType T) {
712  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
713}
714CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
715  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
716}
717
718/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
719/// type for the current target in bits.  This can be different than the ABI
720/// alignment in cases where it is beneficial for performance to overalign
721/// a data type.
722unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
723  unsigned ABIAlign = getTypeAlign(T);
724
725  // Double and long long should be naturally aligned if possible.
726  if (const ComplexType* CT = T->getAs<ComplexType>())
727    T = CT->getElementType().getTypePtr();
728  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
729      T->isSpecificBuiltinType(BuiltinType::LongLong))
730    return std::max(ABIAlign, (unsigned)getTypeSize(T));
731
732  return ABIAlign;
733}
734
735static void CollectLocalObjCIvars(ASTContext *Ctx,
736                                  const ObjCInterfaceDecl *OI,
737                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
738  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
739       E = OI->ivar_end(); I != E; ++I) {
740    ObjCIvarDecl *IVDecl = *I;
741    if (!IVDecl->isInvalidDecl())
742      Fields.push_back(cast<FieldDecl>(IVDecl));
743  }
744}
745
746void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
747                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
748  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
749    CollectObjCIvars(SuperClass, Fields);
750  CollectLocalObjCIvars(this, OI, Fields);
751}
752
753/// ShallowCollectObjCIvars -
754/// Collect all ivars, including those synthesized, in the current class.
755///
756void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
757                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
758  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
759         E = OI->ivar_end(); I != E; ++I) {
760     Ivars.push_back(*I);
761  }
762
763  CollectNonClassIvars(OI, Ivars);
764}
765
766/// CollectNonClassIvars -
767/// This routine collects all other ivars which are not declared in the class.
768/// This includes synthesized ivars (via @synthesize) and those in
769//  class's @implementation.
770///
771void ASTContext::CollectNonClassIvars(const ObjCInterfaceDecl *OI,
772                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
773  // Find ivars declared in class extension.
774  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension()) {
775    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
776         E = CDecl->ivar_end(); I != E; ++I) {
777      Ivars.push_back(*I);
778    }
779  }
780
781  // Also add any ivar defined in this class's implementation.  This
782  // includes synthesized ivars.
783  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
784    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
785         E = ImplDecl->ivar_end(); I != E; ++I)
786      Ivars.push_back(*I);
787  }
788}
789
790/// CollectInheritedProtocols - Collect all protocols in current class and
791/// those inherited by it.
792void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
793                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
794  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
795    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
796         PE = OI->protocol_end(); P != PE; ++P) {
797      ObjCProtocolDecl *Proto = (*P);
798      Protocols.insert(Proto);
799      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
800           PE = Proto->protocol_end(); P != PE; ++P) {
801        Protocols.insert(*P);
802        CollectInheritedProtocols(*P, Protocols);
803      }
804    }
805
806    // Categories of this Interface.
807    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
808         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
809      CollectInheritedProtocols(CDeclChain, Protocols);
810    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
811      while (SD) {
812        CollectInheritedProtocols(SD, Protocols);
813        SD = SD->getSuperClass();
814      }
815  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
816    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
817         PE = OC->protocol_end(); P != PE; ++P) {
818      ObjCProtocolDecl *Proto = (*P);
819      Protocols.insert(Proto);
820      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
821           PE = Proto->protocol_end(); P != PE; ++P)
822        CollectInheritedProtocols(*P, Protocols);
823    }
824  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
825    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
826         PE = OP->protocol_end(); P != PE; ++P) {
827      ObjCProtocolDecl *Proto = (*P);
828      Protocols.insert(Proto);
829      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
830           PE = Proto->protocol_end(); P != PE; ++P)
831        CollectInheritedProtocols(*P, Protocols);
832    }
833  }
834}
835
836unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
837  unsigned count = 0;
838  // Count ivars declared in class extension.
839  if (const ObjCCategoryDecl *CDecl = OI->getClassExtension())
840    count += CDecl->ivar_size();
841
842  // Count ivar defined in this class's implementation.  This
843  // includes synthesized ivars.
844  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
845    count += ImplDecl->ivar_size();
846
847  return count;
848}
849
850/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
851ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
852  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
853    I = ObjCImpls.find(D);
854  if (I != ObjCImpls.end())
855    return cast<ObjCImplementationDecl>(I->second);
856  return 0;
857}
858/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
859ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
860  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
861    I = ObjCImpls.find(D);
862  if (I != ObjCImpls.end())
863    return cast<ObjCCategoryImplDecl>(I->second);
864  return 0;
865}
866
867/// \brief Set the implementation of ObjCInterfaceDecl.
868void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
869                           ObjCImplementationDecl *ImplD) {
870  assert(IFaceD && ImplD && "Passed null params");
871  ObjCImpls[IFaceD] = ImplD;
872}
873/// \brief Set the implementation of ObjCCategoryDecl.
874void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
875                           ObjCCategoryImplDecl *ImplD) {
876  assert(CatD && ImplD && "Passed null params");
877  ObjCImpls[CatD] = ImplD;
878}
879
880/// \brief Allocate an uninitialized TypeSourceInfo.
881///
882/// The caller should initialize the memory held by TypeSourceInfo using
883/// the TypeLoc wrappers.
884///
885/// \param T the type that will be the basis for type source info. This type
886/// should refer to how the declarator was written in source code, not to
887/// what type semantic analysis resolved the declarator to.
888TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
889                                                 unsigned DataSize) {
890  if (!DataSize)
891    DataSize = TypeLoc::getFullDataSizeForType(T);
892  else
893    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
894           "incorrect data size provided to CreateTypeSourceInfo!");
895
896  TypeSourceInfo *TInfo =
897    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
898  new (TInfo) TypeSourceInfo(T);
899  return TInfo;
900}
901
902TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
903                                                     SourceLocation L) {
904  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
905  DI->getTypeLoc().initialize(L);
906  return DI;
907}
908
909const ASTRecordLayout &
910ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
911  return getObjCLayout(D, 0);
912}
913
914const ASTRecordLayout &
915ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
916  return getObjCLayout(D->getClassInterface(), D);
917}
918
919//===----------------------------------------------------------------------===//
920//                   Type creation/memoization methods
921//===----------------------------------------------------------------------===//
922
923QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
924  unsigned Fast = Quals.getFastQualifiers();
925  Quals.removeFastQualifiers();
926
927  // Check if we've already instantiated this type.
928  llvm::FoldingSetNodeID ID;
929  ExtQuals::Profile(ID, TypeNode, Quals);
930  void *InsertPos = 0;
931  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
932    assert(EQ->getQualifiers() == Quals);
933    QualType T = QualType(EQ, Fast);
934    return T;
935  }
936
937  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
938  ExtQualNodes.InsertNode(New, InsertPos);
939  QualType T = QualType(New, Fast);
940  return T;
941}
942
943QualType ASTContext::getVolatileType(QualType T) {
944  QualType CanT = getCanonicalType(T);
945  if (CanT.isVolatileQualified()) return T;
946
947  QualifierCollector Quals;
948  const Type *TypeNode = Quals.strip(T);
949  Quals.addVolatile();
950
951  return getExtQualType(TypeNode, Quals);
952}
953
954QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
955  QualType CanT = getCanonicalType(T);
956  if (CanT.getAddressSpace() == AddressSpace)
957    return T;
958
959  // If we are composing extended qualifiers together, merge together
960  // into one ExtQuals node.
961  QualifierCollector Quals;
962  const Type *TypeNode = Quals.strip(T);
963
964  // If this type already has an address space specified, it cannot get
965  // another one.
966  assert(!Quals.hasAddressSpace() &&
967         "Type cannot be in multiple addr spaces!");
968  Quals.addAddressSpace(AddressSpace);
969
970  return getExtQualType(TypeNode, Quals);
971}
972
973QualType ASTContext::getObjCGCQualType(QualType T,
974                                       Qualifiers::GC GCAttr) {
975  QualType CanT = getCanonicalType(T);
976  if (CanT.getObjCGCAttr() == GCAttr)
977    return T;
978
979  if (T->isPointerType()) {
980    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
981    if (Pointee->isAnyPointerType()) {
982      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
983      return getPointerType(ResultType);
984    }
985  }
986
987  // If we are composing extended qualifiers together, merge together
988  // into one ExtQuals node.
989  QualifierCollector Quals;
990  const Type *TypeNode = Quals.strip(T);
991
992  // If this type already has an ObjCGC specified, it cannot get
993  // another one.
994  assert(!Quals.hasObjCGCAttr() &&
995         "Type cannot have multiple ObjCGCs!");
996  Quals.addObjCGCAttr(GCAttr);
997
998  return getExtQualType(TypeNode, Quals);
999}
1000
1001static QualType getExtFunctionType(ASTContext& Context, QualType T,
1002                                        const FunctionType::ExtInfo &Info) {
1003  QualType ResultType;
1004  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1005    QualType Pointee = Pointer->getPointeeType();
1006    ResultType = getExtFunctionType(Context, Pointee, Info);
1007    if (ResultType == Pointee)
1008      return T;
1009
1010    ResultType = Context.getPointerType(ResultType);
1011  } else if (const BlockPointerType *BlockPointer
1012                                              = T->getAs<BlockPointerType>()) {
1013    QualType Pointee = BlockPointer->getPointeeType();
1014    ResultType = getExtFunctionType(Context, Pointee, Info);
1015    if (ResultType == Pointee)
1016      return T;
1017
1018    ResultType = Context.getBlockPointerType(ResultType);
1019   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1020    if (F->getExtInfo() == Info)
1021      return T;
1022
1023    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1024      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1025                                                  Info);
1026    } else {
1027      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1028      ResultType
1029        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1030                                  FPT->getNumArgs(), FPT->isVariadic(),
1031                                  FPT->getTypeQuals(),
1032                                  FPT->hasExceptionSpec(),
1033                                  FPT->hasAnyExceptionSpec(),
1034                                  FPT->getNumExceptions(),
1035                                  FPT->exception_begin(),
1036                                  Info);
1037    }
1038  } else
1039    return T;
1040
1041  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1042}
1043
1044QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1045  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1046  return getExtFunctionType(*this, T,
1047                                 Info.withNoReturn(AddNoReturn));
1048}
1049
1050QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1051  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1052  return getExtFunctionType(*this, T,
1053                            Info.withCallingConv(CallConv));
1054}
1055
1056QualType ASTContext::getRegParmType(QualType T, unsigned RegParm) {
1057  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1058  return getExtFunctionType(*this, T,
1059                                 Info.withRegParm(RegParm));
1060}
1061
1062/// getComplexType - Return the uniqued reference to the type for a complex
1063/// number with the specified element type.
1064QualType ASTContext::getComplexType(QualType T) {
1065  // Unique pointers, to guarantee there is only one pointer of a particular
1066  // structure.
1067  llvm::FoldingSetNodeID ID;
1068  ComplexType::Profile(ID, T);
1069
1070  void *InsertPos = 0;
1071  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1072    return QualType(CT, 0);
1073
1074  // If the pointee type isn't canonical, this won't be a canonical type either,
1075  // so fill in the canonical type field.
1076  QualType Canonical;
1077  if (!T.isCanonical()) {
1078    Canonical = getComplexType(getCanonicalType(T));
1079
1080    // Get the new insert position for the node we care about.
1081    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1082    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1083  }
1084  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1085  Types.push_back(New);
1086  ComplexTypes.InsertNode(New, InsertPos);
1087  return QualType(New, 0);
1088}
1089
1090/// getPointerType - Return the uniqued reference to the type for a pointer to
1091/// the specified type.
1092QualType ASTContext::getPointerType(QualType T) {
1093  // Unique pointers, to guarantee there is only one pointer of a particular
1094  // structure.
1095  llvm::FoldingSetNodeID ID;
1096  PointerType::Profile(ID, T);
1097
1098  void *InsertPos = 0;
1099  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1100    return QualType(PT, 0);
1101
1102  // If the pointee type isn't canonical, this won't be a canonical type either,
1103  // so fill in the canonical type field.
1104  QualType Canonical;
1105  if (!T.isCanonical()) {
1106    Canonical = getPointerType(getCanonicalType(T));
1107
1108    // Get the new insert position for the node we care about.
1109    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1110    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1111  }
1112  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1113  Types.push_back(New);
1114  PointerTypes.InsertNode(New, InsertPos);
1115  return QualType(New, 0);
1116}
1117
1118/// getBlockPointerType - Return the uniqued reference to the type for
1119/// a pointer to the specified block.
1120QualType ASTContext::getBlockPointerType(QualType T) {
1121  assert(T->isFunctionType() && "block of function types only");
1122  // Unique pointers, to guarantee there is only one block of a particular
1123  // structure.
1124  llvm::FoldingSetNodeID ID;
1125  BlockPointerType::Profile(ID, T);
1126
1127  void *InsertPos = 0;
1128  if (BlockPointerType *PT =
1129        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1130    return QualType(PT, 0);
1131
1132  // If the block pointee type isn't canonical, this won't be a canonical
1133  // type either so fill in the canonical type field.
1134  QualType Canonical;
1135  if (!T.isCanonical()) {
1136    Canonical = getBlockPointerType(getCanonicalType(T));
1137
1138    // Get the new insert position for the node we care about.
1139    BlockPointerType *NewIP =
1140      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1141    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1142  }
1143  BlockPointerType *New
1144    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1145  Types.push_back(New);
1146  BlockPointerTypes.InsertNode(New, InsertPos);
1147  return QualType(New, 0);
1148}
1149
1150/// getLValueReferenceType - Return the uniqued reference to the type for an
1151/// lvalue reference to the specified type.
1152QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1153  // Unique pointers, to guarantee there is only one pointer of a particular
1154  // structure.
1155  llvm::FoldingSetNodeID ID;
1156  ReferenceType::Profile(ID, T, SpelledAsLValue);
1157
1158  void *InsertPos = 0;
1159  if (LValueReferenceType *RT =
1160        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1161    return QualType(RT, 0);
1162
1163  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1164
1165  // If the referencee type isn't canonical, this won't be a canonical type
1166  // either, so fill in the canonical type field.
1167  QualType Canonical;
1168  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1169    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1170    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1171
1172    // Get the new insert position for the node we care about.
1173    LValueReferenceType *NewIP =
1174      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1175    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1176  }
1177
1178  LValueReferenceType *New
1179    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1180                                                     SpelledAsLValue);
1181  Types.push_back(New);
1182  LValueReferenceTypes.InsertNode(New, InsertPos);
1183
1184  return QualType(New, 0);
1185}
1186
1187/// getRValueReferenceType - Return the uniqued reference to the type for an
1188/// rvalue reference to the specified type.
1189QualType ASTContext::getRValueReferenceType(QualType T) {
1190  // Unique pointers, to guarantee there is only one pointer of a particular
1191  // structure.
1192  llvm::FoldingSetNodeID ID;
1193  ReferenceType::Profile(ID, T, false);
1194
1195  void *InsertPos = 0;
1196  if (RValueReferenceType *RT =
1197        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1198    return QualType(RT, 0);
1199
1200  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1201
1202  // If the referencee type isn't canonical, this won't be a canonical type
1203  // either, so fill in the canonical type field.
1204  QualType Canonical;
1205  if (InnerRef || !T.isCanonical()) {
1206    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1207    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1208
1209    // Get the new insert position for the node we care about.
1210    RValueReferenceType *NewIP =
1211      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1212    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1213  }
1214
1215  RValueReferenceType *New
1216    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1217  Types.push_back(New);
1218  RValueReferenceTypes.InsertNode(New, InsertPos);
1219  return QualType(New, 0);
1220}
1221
1222/// getMemberPointerType - Return the uniqued reference to the type for a
1223/// member pointer to the specified type, in the specified class.
1224QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1225  // Unique pointers, to guarantee there is only one pointer of a particular
1226  // structure.
1227  llvm::FoldingSetNodeID ID;
1228  MemberPointerType::Profile(ID, T, Cls);
1229
1230  void *InsertPos = 0;
1231  if (MemberPointerType *PT =
1232      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1233    return QualType(PT, 0);
1234
1235  // If the pointee or class type isn't canonical, this won't be a canonical
1236  // type either, so fill in the canonical type field.
1237  QualType Canonical;
1238  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1239    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1240
1241    // Get the new insert position for the node we care about.
1242    MemberPointerType *NewIP =
1243      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1244    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1245  }
1246  MemberPointerType *New
1247    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1248  Types.push_back(New);
1249  MemberPointerTypes.InsertNode(New, InsertPos);
1250  return QualType(New, 0);
1251}
1252
1253/// getConstantArrayType - Return the unique reference to the type for an
1254/// array of the specified element type.
1255QualType ASTContext::getConstantArrayType(QualType EltTy,
1256                                          const llvm::APInt &ArySizeIn,
1257                                          ArrayType::ArraySizeModifier ASM,
1258                                          unsigned EltTypeQuals) {
1259  assert((EltTy->isDependentType() ||
1260          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1261         "Constant array of VLAs is illegal!");
1262
1263  // Convert the array size into a canonical width matching the pointer size for
1264  // the target.
1265  llvm::APInt ArySize(ArySizeIn);
1266  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1267
1268  llvm::FoldingSetNodeID ID;
1269  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1270
1271  void *InsertPos = 0;
1272  if (ConstantArrayType *ATP =
1273      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1274    return QualType(ATP, 0);
1275
1276  // If the element type isn't canonical, this won't be a canonical type either,
1277  // so fill in the canonical type field.
1278  QualType Canonical;
1279  if (!EltTy.isCanonical()) {
1280    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1281                                     ASM, EltTypeQuals);
1282    // Get the new insert position for the node we care about.
1283    ConstantArrayType *NewIP =
1284      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1285    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1286  }
1287
1288  ConstantArrayType *New = new(*this,TypeAlignment)
1289    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1290  ConstantArrayTypes.InsertNode(New, InsertPos);
1291  Types.push_back(New);
1292  return QualType(New, 0);
1293}
1294
1295/// getVariableArrayType - Returns a non-unique reference to the type for a
1296/// variable array of the specified element type.
1297QualType ASTContext::getVariableArrayType(QualType EltTy,
1298                                          Expr *NumElts,
1299                                          ArrayType::ArraySizeModifier ASM,
1300                                          unsigned EltTypeQuals,
1301                                          SourceRange Brackets) {
1302  // Since we don't unique expressions, it isn't possible to unique VLA's
1303  // that have an expression provided for their size.
1304  QualType CanonType;
1305
1306  if (!EltTy.isCanonical()) {
1307    if (NumElts)
1308      NumElts->Retain();
1309    CanonType = getVariableArrayType(getCanonicalType(EltTy), NumElts, ASM,
1310                                     EltTypeQuals, Brackets);
1311  }
1312
1313  VariableArrayType *New = new(*this, TypeAlignment)
1314    VariableArrayType(EltTy, CanonType, NumElts, ASM, EltTypeQuals, Brackets);
1315
1316  VariableArrayTypes.push_back(New);
1317  Types.push_back(New);
1318  return QualType(New, 0);
1319}
1320
1321/// getDependentSizedArrayType - Returns a non-unique reference to
1322/// the type for a dependently-sized array of the specified element
1323/// type.
1324QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1325                                                Expr *NumElts,
1326                                                ArrayType::ArraySizeModifier ASM,
1327                                                unsigned EltTypeQuals,
1328                                                SourceRange Brackets) {
1329  assert((!NumElts || NumElts->isTypeDependent() ||
1330          NumElts->isValueDependent()) &&
1331         "Size must be type- or value-dependent!");
1332
1333  void *InsertPos = 0;
1334  DependentSizedArrayType *Canon = 0;
1335  llvm::FoldingSetNodeID ID;
1336
1337  if (NumElts) {
1338    // Dependently-sized array types that do not have a specified
1339    // number of elements will have their sizes deduced from an
1340    // initializer.
1341    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1342                                     EltTypeQuals, NumElts);
1343
1344    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1345  }
1346
1347  DependentSizedArrayType *New;
1348  if (Canon) {
1349    // We already have a canonical version of this array type; use it as
1350    // the canonical type for a newly-built type.
1351    New = new (*this, TypeAlignment)
1352      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1353                              NumElts, ASM, EltTypeQuals, Brackets);
1354  } else {
1355    QualType CanonEltTy = getCanonicalType(EltTy);
1356    if (CanonEltTy == EltTy) {
1357      New = new (*this, TypeAlignment)
1358        DependentSizedArrayType(*this, EltTy, QualType(),
1359                                NumElts, ASM, EltTypeQuals, Brackets);
1360
1361      if (NumElts) {
1362        DependentSizedArrayType *CanonCheck
1363          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1364        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1365        (void)CanonCheck;
1366        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1367      }
1368    } else {
1369      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1370                                                  ASM, EltTypeQuals,
1371                                                  SourceRange());
1372      New = new (*this, TypeAlignment)
1373        DependentSizedArrayType(*this, EltTy, Canon,
1374                                NumElts, ASM, EltTypeQuals, Brackets);
1375    }
1376  }
1377
1378  Types.push_back(New);
1379  return QualType(New, 0);
1380}
1381
1382QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1383                                            ArrayType::ArraySizeModifier ASM,
1384                                            unsigned EltTypeQuals) {
1385  llvm::FoldingSetNodeID ID;
1386  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1387
1388  void *InsertPos = 0;
1389  if (IncompleteArrayType *ATP =
1390       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1391    return QualType(ATP, 0);
1392
1393  // If the element type isn't canonical, this won't be a canonical type
1394  // either, so fill in the canonical type field.
1395  QualType Canonical;
1396
1397  if (!EltTy.isCanonical()) {
1398    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1399                                       ASM, EltTypeQuals);
1400
1401    // Get the new insert position for the node we care about.
1402    IncompleteArrayType *NewIP =
1403      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1404    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1405  }
1406
1407  IncompleteArrayType *New = new (*this, TypeAlignment)
1408    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1409
1410  IncompleteArrayTypes.InsertNode(New, InsertPos);
1411  Types.push_back(New);
1412  return QualType(New, 0);
1413}
1414
1415/// getVectorType - Return the unique reference to a vector type of
1416/// the specified element type and size. VectorType must be a built-in type.
1417QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1418                                   bool IsAltiVec, bool IsPixel) {
1419  BuiltinType *baseType;
1420
1421  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1422  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1423
1424  // Check if we've already instantiated a vector of this type.
1425  llvm::FoldingSetNodeID ID;
1426  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1427    IsAltiVec, IsPixel);
1428  void *InsertPos = 0;
1429  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1430    return QualType(VTP, 0);
1431
1432  // If the element type isn't canonical, this won't be a canonical type either,
1433  // so fill in the canonical type field.
1434  QualType Canonical;
1435  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1436    Canonical = getVectorType(getCanonicalType(vecType),
1437      NumElts, false, false);
1438
1439    // Get the new insert position for the node we care about.
1440    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1441    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1442  }
1443  VectorType *New = new (*this, TypeAlignment)
1444    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1445  VectorTypes.InsertNode(New, InsertPos);
1446  Types.push_back(New);
1447  return QualType(New, 0);
1448}
1449
1450/// getExtVectorType - Return the unique reference to an extended vector type of
1451/// the specified element type and size. VectorType must be a built-in type.
1452QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1453  BuiltinType *baseType;
1454
1455  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1456  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1457
1458  // Check if we've already instantiated a vector of this type.
1459  llvm::FoldingSetNodeID ID;
1460  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1461  void *InsertPos = 0;
1462  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1463    return QualType(VTP, 0);
1464
1465  // If the element type isn't canonical, this won't be a canonical type either,
1466  // so fill in the canonical type field.
1467  QualType Canonical;
1468  if (!vecType.isCanonical()) {
1469    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1470
1471    // Get the new insert position for the node we care about.
1472    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1473    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1474  }
1475  ExtVectorType *New = new (*this, TypeAlignment)
1476    ExtVectorType(vecType, NumElts, Canonical);
1477  VectorTypes.InsertNode(New, InsertPos);
1478  Types.push_back(New);
1479  return QualType(New, 0);
1480}
1481
1482QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1483                                                    Expr *SizeExpr,
1484                                                    SourceLocation AttrLoc) {
1485  llvm::FoldingSetNodeID ID;
1486  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1487                                       SizeExpr);
1488
1489  void *InsertPos = 0;
1490  DependentSizedExtVectorType *Canon
1491    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1492  DependentSizedExtVectorType *New;
1493  if (Canon) {
1494    // We already have a canonical version of this array type; use it as
1495    // the canonical type for a newly-built type.
1496    New = new (*this, TypeAlignment)
1497      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1498                                  SizeExpr, AttrLoc);
1499  } else {
1500    QualType CanonVecTy = getCanonicalType(vecType);
1501    if (CanonVecTy == vecType) {
1502      New = new (*this, TypeAlignment)
1503        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1504                                    AttrLoc);
1505
1506      DependentSizedExtVectorType *CanonCheck
1507        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1508      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1509      (void)CanonCheck;
1510      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1511    } else {
1512      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1513                                                      SourceLocation());
1514      New = new (*this, TypeAlignment)
1515        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1516    }
1517  }
1518
1519  Types.push_back(New);
1520  return QualType(New, 0);
1521}
1522
1523/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1524///
1525QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
1526                                            const FunctionType::ExtInfo &Info) {
1527  const CallingConv CallConv = Info.getCC();
1528  // Unique functions, to guarantee there is only one function of a particular
1529  // structure.
1530  llvm::FoldingSetNodeID ID;
1531  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1532
1533  void *InsertPos = 0;
1534  if (FunctionNoProtoType *FT =
1535        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1536    return QualType(FT, 0);
1537
1538  QualType Canonical;
1539  if (!ResultTy.isCanonical() ||
1540      getCanonicalCallConv(CallConv) != CallConv) {
1541    Canonical =
1542      getFunctionNoProtoType(getCanonicalType(ResultTy),
1543                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1544
1545    // Get the new insert position for the node we care about.
1546    FunctionNoProtoType *NewIP =
1547      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1548    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1549  }
1550
1551  FunctionNoProtoType *New = new (*this, TypeAlignment)
1552    FunctionNoProtoType(ResultTy, Canonical, Info);
1553  Types.push_back(New);
1554  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1555  return QualType(New, 0);
1556}
1557
1558/// getFunctionType - Return a normal function type with a typed argument
1559/// list.  isVariadic indicates whether the argument list includes '...'.
1560QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1561                                     unsigned NumArgs, bool isVariadic,
1562                                     unsigned TypeQuals, bool hasExceptionSpec,
1563                                     bool hasAnyExceptionSpec, unsigned NumExs,
1564                                     const QualType *ExArray,
1565                                     const FunctionType::ExtInfo &Info) {
1566  const CallingConv CallConv= Info.getCC();
1567  // Unique functions, to guarantee there is only one function of a particular
1568  // structure.
1569  llvm::FoldingSetNodeID ID;
1570  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1571                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1572                             NumExs, ExArray, Info);
1573
1574  void *InsertPos = 0;
1575  if (FunctionProtoType *FTP =
1576        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1577    return QualType(FTP, 0);
1578
1579  // Determine whether the type being created is already canonical or not.
1580  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1581  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1582    if (!ArgArray[i].isCanonicalAsParam())
1583      isCanonical = false;
1584
1585  // If this type isn't canonical, get the canonical version of it.
1586  // The exception spec is not part of the canonical type.
1587  QualType Canonical;
1588  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1589    llvm::SmallVector<QualType, 16> CanonicalArgs;
1590    CanonicalArgs.reserve(NumArgs);
1591    for (unsigned i = 0; i != NumArgs; ++i)
1592      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1593
1594    Canonical = getFunctionType(getCanonicalType(ResultTy),
1595                                CanonicalArgs.data(), NumArgs,
1596                                isVariadic, TypeQuals, false,
1597                                false, 0, 0,
1598                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1599
1600    // Get the new insert position for the node we care about.
1601    FunctionProtoType *NewIP =
1602      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1603    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1604  }
1605
1606  // FunctionProtoType objects are allocated with extra bytes after them
1607  // for two variable size arrays (for parameter and exception types) at the
1608  // end of them.
1609  FunctionProtoType *FTP =
1610    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1611                                 NumArgs*sizeof(QualType) +
1612                                 NumExs*sizeof(QualType), TypeAlignment);
1613  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1614                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1615                              ExArray, NumExs, Canonical, Info);
1616  Types.push_back(FTP);
1617  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1618  return QualType(FTP, 0);
1619}
1620
1621#ifndef NDEBUG
1622static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1623  if (!isa<CXXRecordDecl>(D)) return false;
1624  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1625  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1626    return true;
1627  if (RD->getDescribedClassTemplate() &&
1628      !isa<ClassTemplateSpecializationDecl>(RD))
1629    return true;
1630  return false;
1631}
1632#endif
1633
1634/// getInjectedClassNameType - Return the unique reference to the
1635/// injected class name type for the specified templated declaration.
1636QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1637                                              QualType TST) {
1638  assert(NeedsInjectedClassNameType(Decl));
1639  if (Decl->TypeForDecl) {
1640    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1641  } else if (CXXRecordDecl *PrevDecl
1642               = cast_or_null<CXXRecordDecl>(Decl->getPreviousDeclaration())) {
1643    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1644    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1645    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1646  } else {
1647    Decl->TypeForDecl =
1648      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1649    Types.push_back(Decl->TypeForDecl);
1650  }
1651  return QualType(Decl->TypeForDecl, 0);
1652}
1653
1654/// getTypeDeclType - Return the unique reference to the type for the
1655/// specified type declaration.
1656QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1657  assert(Decl && "Passed null for Decl param");
1658  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1659
1660  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1661    return getTypedefType(Typedef);
1662
1663  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1664         "Template type parameter types are always available.");
1665
1666  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1667    assert(!Record->getPreviousDeclaration() &&
1668           "struct/union has previous declaration");
1669    assert(!NeedsInjectedClassNameType(Record));
1670    Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1671  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1672    assert(!Enum->getPreviousDeclaration() &&
1673           "enum has previous declaration");
1674    Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1675  } else if (const UnresolvedUsingTypenameDecl *Using =
1676               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1677    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1678  } else
1679    llvm_unreachable("TypeDecl without a type?");
1680
1681  Types.push_back(Decl->TypeForDecl);
1682  return QualType(Decl->TypeForDecl, 0);
1683}
1684
1685/// getTypedefType - Return the unique reference to the type for the
1686/// specified typename decl.
1687QualType ASTContext::getTypedefType(const TypedefDecl *Decl) {
1688  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1689
1690  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1691  Decl->TypeForDecl = new(*this, TypeAlignment)
1692    TypedefType(Type::Typedef, Decl, Canonical);
1693  Types.push_back(Decl->TypeForDecl);
1694  return QualType(Decl->TypeForDecl, 0);
1695}
1696
1697/// \brief Retrieve a substitution-result type.
1698QualType
1699ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1700                                         QualType Replacement) {
1701  assert(Replacement.isCanonical()
1702         && "replacement types must always be canonical");
1703
1704  llvm::FoldingSetNodeID ID;
1705  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1706  void *InsertPos = 0;
1707  SubstTemplateTypeParmType *SubstParm
1708    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1709
1710  if (!SubstParm) {
1711    SubstParm = new (*this, TypeAlignment)
1712      SubstTemplateTypeParmType(Parm, Replacement);
1713    Types.push_back(SubstParm);
1714    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1715  }
1716
1717  return QualType(SubstParm, 0);
1718}
1719
1720/// \brief Retrieve the template type parameter type for a template
1721/// parameter or parameter pack with the given depth, index, and (optionally)
1722/// name.
1723QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1724                                             bool ParameterPack,
1725                                             IdentifierInfo *Name) {
1726  llvm::FoldingSetNodeID ID;
1727  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1728  void *InsertPos = 0;
1729  TemplateTypeParmType *TypeParm
1730    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1731
1732  if (TypeParm)
1733    return QualType(TypeParm, 0);
1734
1735  if (Name) {
1736    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1737    TypeParm = new (*this, TypeAlignment)
1738      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1739
1740    TemplateTypeParmType *TypeCheck
1741      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1742    assert(!TypeCheck && "Template type parameter canonical type broken");
1743    (void)TypeCheck;
1744  } else
1745    TypeParm = new (*this, TypeAlignment)
1746      TemplateTypeParmType(Depth, Index, ParameterPack);
1747
1748  Types.push_back(TypeParm);
1749  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1750
1751  return QualType(TypeParm, 0);
1752}
1753
1754TypeSourceInfo *
1755ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
1756                                              SourceLocation NameLoc,
1757                                        const TemplateArgumentListInfo &Args,
1758                                              QualType CanonType) {
1759  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
1760
1761  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
1762  TemplateSpecializationTypeLoc TL
1763    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1764  TL.setTemplateNameLoc(NameLoc);
1765  TL.setLAngleLoc(Args.getLAngleLoc());
1766  TL.setRAngleLoc(Args.getRAngleLoc());
1767  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1768    TL.setArgLocInfo(i, Args[i].getLocInfo());
1769  return DI;
1770}
1771
1772QualType
1773ASTContext::getTemplateSpecializationType(TemplateName Template,
1774                                          const TemplateArgumentListInfo &Args,
1775                                          QualType Canon,
1776                                          bool IsCurrentInstantiation) {
1777  unsigned NumArgs = Args.size();
1778
1779  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1780  ArgVec.reserve(NumArgs);
1781  for (unsigned i = 0; i != NumArgs; ++i)
1782    ArgVec.push_back(Args[i].getArgument());
1783
1784  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
1785                                       Canon, IsCurrentInstantiation);
1786}
1787
1788QualType
1789ASTContext::getTemplateSpecializationType(TemplateName Template,
1790                                          const TemplateArgument *Args,
1791                                          unsigned NumArgs,
1792                                          QualType Canon,
1793                                          bool IsCurrentInstantiation) {
1794  if (!Canon.isNull())
1795    Canon = getCanonicalType(Canon);
1796  else {
1797    assert(!IsCurrentInstantiation &&
1798           "current-instantiation specializations should always "
1799           "have a canonical type");
1800
1801    // Build the canonical template specialization type.
1802    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1803    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1804    CanonArgs.reserve(NumArgs);
1805    for (unsigned I = 0; I != NumArgs; ++I)
1806      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1807
1808    // Determine whether this canonical template specialization type already
1809    // exists.
1810    llvm::FoldingSetNodeID ID;
1811    TemplateSpecializationType::Profile(ID, CanonTemplate, false,
1812                                        CanonArgs.data(), NumArgs, *this);
1813
1814    void *InsertPos = 0;
1815    TemplateSpecializationType *Spec
1816      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1817
1818    if (!Spec) {
1819      // Allocate a new canonical template specialization type.
1820      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1821                            sizeof(TemplateArgument) * NumArgs),
1822                           TypeAlignment);
1823      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate, false,
1824                                                  CanonArgs.data(), NumArgs,
1825                                                  Canon);
1826      Types.push_back(Spec);
1827      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1828    }
1829
1830    if (Canon.isNull())
1831      Canon = QualType(Spec, 0);
1832    assert(Canon->isDependentType() &&
1833           "Non-dependent template-id type must have a canonical type");
1834  }
1835
1836  // Allocate the (non-canonical) template specialization type, but don't
1837  // try to unique it: these types typically have location information that
1838  // we don't unique and don't want to lose.
1839  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1840                        sizeof(TemplateArgument) * NumArgs),
1841                       TypeAlignment);
1842  TemplateSpecializationType *Spec
1843    = new (Mem) TemplateSpecializationType(*this, Template,
1844                                           IsCurrentInstantiation,
1845                                           Args, NumArgs,
1846                                           Canon);
1847
1848  Types.push_back(Spec);
1849  return QualType(Spec, 0);
1850}
1851
1852QualType
1853ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
1854                              NestedNameSpecifier *NNS,
1855                              QualType NamedType) {
1856  llvm::FoldingSetNodeID ID;
1857  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
1858
1859  void *InsertPos = 0;
1860  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1861  if (T)
1862    return QualType(T, 0);
1863
1864  QualType Canon = NamedType;
1865  if (!Canon.isCanonical()) {
1866    Canon = getCanonicalType(NamedType);
1867    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1868    assert(!CheckT && "Elaborated canonical type broken");
1869    (void)CheckT;
1870  }
1871
1872  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
1873  Types.push_back(T);
1874  ElaboratedTypes.InsertNode(T, InsertPos);
1875  return QualType(T, 0);
1876}
1877
1878QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
1879                                          NestedNameSpecifier *NNS,
1880                                          const IdentifierInfo *Name,
1881                                          QualType Canon) {
1882  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1883
1884  if (Canon.isNull()) {
1885    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1886    ElaboratedTypeKeyword CanonKeyword = Keyword;
1887    if (Keyword == ETK_None)
1888      CanonKeyword = ETK_Typename;
1889
1890    if (CanonNNS != NNS || CanonKeyword != Keyword)
1891      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
1892  }
1893
1894  llvm::FoldingSetNodeID ID;
1895  DependentNameType::Profile(ID, Keyword, NNS, Name);
1896
1897  void *InsertPos = 0;
1898  DependentNameType *T
1899    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1900  if (T)
1901    return QualType(T, 0);
1902
1903  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
1904  Types.push_back(T);
1905  DependentNameTypes.InsertNode(T, InsertPos);
1906  return QualType(T, 0);
1907}
1908
1909QualType
1910ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
1911                                 NestedNameSpecifier *NNS,
1912                                 const TemplateSpecializationType *TemplateId,
1913                                 QualType Canon) {
1914  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1915
1916  llvm::FoldingSetNodeID ID;
1917  DependentNameType::Profile(ID, Keyword, NNS, TemplateId);
1918
1919  void *InsertPos = 0;
1920  DependentNameType *T
1921    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1922  if (T)
1923    return QualType(T, 0);
1924
1925  if (Canon.isNull()) {
1926    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1927    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1928    ElaboratedTypeKeyword CanonKeyword = Keyword;
1929    if (Keyword == ETK_None)
1930      CanonKeyword = ETK_Typename;
1931    if (CanonNNS != NNS || CanonKeyword != Keyword ||
1932        CanonType != QualType(TemplateId, 0)) {
1933      const TemplateSpecializationType *CanonTemplateId
1934        = CanonType->getAs<TemplateSpecializationType>();
1935      assert(CanonTemplateId &&
1936             "Canonical type must also be a template specialization type");
1937      Canon = getDependentNameType(CanonKeyword, CanonNNS, CanonTemplateId);
1938    }
1939
1940    DependentNameType *CheckT
1941      = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1942    assert(!CheckT && "Typename canonical type is broken"); (void)CheckT;
1943  }
1944
1945  T = new (*this) DependentNameType(Keyword, NNS, TemplateId, Canon);
1946  Types.push_back(T);
1947  DependentNameTypes.InsertNode(T, InsertPos);
1948  return QualType(T, 0);
1949}
1950
1951/// CmpProtocolNames - Comparison predicate for sorting protocols
1952/// alphabetically.
1953static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1954                            const ObjCProtocolDecl *RHS) {
1955  return LHS->getDeclName() < RHS->getDeclName();
1956}
1957
1958static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
1959                                unsigned NumProtocols) {
1960  if (NumProtocols == 0) return true;
1961
1962  for (unsigned i = 1; i != NumProtocols; ++i)
1963    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
1964      return false;
1965  return true;
1966}
1967
1968static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
1969                                   unsigned &NumProtocols) {
1970  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1971
1972  // Sort protocols, keyed by name.
1973  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1974
1975  // Remove duplicates.
1976  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1977  NumProtocols = ProtocolsEnd-Protocols;
1978}
1979
1980QualType ASTContext::getObjCObjectType(QualType BaseType,
1981                                       ObjCProtocolDecl * const *Protocols,
1982                                       unsigned NumProtocols) {
1983  // If the base type is an interface and there aren't any protocols
1984  // to add, then the interface type will do just fine.
1985  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
1986    return BaseType;
1987
1988  // Look in the folding set for an existing type.
1989  llvm::FoldingSetNodeID ID;
1990  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
1991  void *InsertPos = 0;
1992  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
1993    return QualType(QT, 0);
1994
1995  // Build the canonical type, which has the canonical base type and
1996  // a sorted-and-uniqued list of protocols.
1997  QualType Canonical;
1998  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
1999  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2000    if (!ProtocolsSorted) {
2001      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2002                                                     Protocols + NumProtocols);
2003      unsigned UniqueCount = NumProtocols;
2004
2005      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2006      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2007                                    &Sorted[0], UniqueCount);
2008    } else {
2009      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2010                                    Protocols, NumProtocols);
2011    }
2012
2013    // Regenerate InsertPos.
2014    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2015  }
2016
2017  unsigned Size = sizeof(ObjCObjectTypeImpl);
2018  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2019  void *Mem = Allocate(Size, TypeAlignment);
2020  ObjCObjectTypeImpl *T =
2021    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2022
2023  Types.push_back(T);
2024  ObjCObjectTypes.InsertNode(T, InsertPos);
2025  return QualType(T, 0);
2026}
2027
2028/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2029/// the given object type.
2030QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) {
2031  llvm::FoldingSetNodeID ID;
2032  ObjCObjectPointerType::Profile(ID, ObjectT);
2033
2034  void *InsertPos = 0;
2035  if (ObjCObjectPointerType *QT =
2036              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2037    return QualType(QT, 0);
2038
2039  // Find the canonical object type.
2040  QualType Canonical;
2041  if (!ObjectT.isCanonical()) {
2042    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2043
2044    // Regenerate InsertPos.
2045    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2046  }
2047
2048  // No match.
2049  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2050  ObjCObjectPointerType *QType =
2051    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2052
2053  Types.push_back(QType);
2054  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2055  return QualType(QType, 0);
2056}
2057
2058/// getObjCInterfaceType - Return the unique reference to the type for the
2059/// specified ObjC interface decl. The list of protocols is optional.
2060QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
2061  if (Decl->TypeForDecl)
2062    return QualType(Decl->TypeForDecl, 0);
2063
2064  // FIXME: redeclarations?
2065  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2066  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2067  Decl->TypeForDecl = T;
2068  Types.push_back(T);
2069  return QualType(T, 0);
2070}
2071
2072/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2073/// TypeOfExprType AST's (since expression's are never shared). For example,
2074/// multiple declarations that refer to "typeof(x)" all contain different
2075/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2076/// on canonical type's (which are always unique).
2077QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2078  TypeOfExprType *toe;
2079  if (tofExpr->isTypeDependent()) {
2080    llvm::FoldingSetNodeID ID;
2081    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2082
2083    void *InsertPos = 0;
2084    DependentTypeOfExprType *Canon
2085      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2086    if (Canon) {
2087      // We already have a "canonical" version of an identical, dependent
2088      // typeof(expr) type. Use that as our canonical type.
2089      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2090                                          QualType((TypeOfExprType*)Canon, 0));
2091    }
2092    else {
2093      // Build a new, canonical typeof(expr) type.
2094      Canon
2095        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2096      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2097      toe = Canon;
2098    }
2099  } else {
2100    QualType Canonical = getCanonicalType(tofExpr->getType());
2101    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2102  }
2103  Types.push_back(toe);
2104  return QualType(toe, 0);
2105}
2106
2107/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2108/// TypeOfType AST's. The only motivation to unique these nodes would be
2109/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2110/// an issue. This doesn't effect the type checker, since it operates
2111/// on canonical type's (which are always unique).
2112QualType ASTContext::getTypeOfType(QualType tofType) {
2113  QualType Canonical = getCanonicalType(tofType);
2114  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2115  Types.push_back(tot);
2116  return QualType(tot, 0);
2117}
2118
2119/// getDecltypeForExpr - Given an expr, will return the decltype for that
2120/// expression, according to the rules in C++0x [dcl.type.simple]p4
2121static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2122  if (e->isTypeDependent())
2123    return Context.DependentTy;
2124
2125  // If e is an id expression or a class member access, decltype(e) is defined
2126  // as the type of the entity named by e.
2127  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2128    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2129      return VD->getType();
2130  }
2131  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2132    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2133      return FD->getType();
2134  }
2135  // If e is a function call or an invocation of an overloaded operator,
2136  // (parentheses around e are ignored), decltype(e) is defined as the
2137  // return type of that function.
2138  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2139    return CE->getCallReturnType();
2140
2141  QualType T = e->getType();
2142
2143  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2144  // defined as T&, otherwise decltype(e) is defined as T.
2145  if (e->isLvalue(Context) == Expr::LV_Valid)
2146    T = Context.getLValueReferenceType(T);
2147
2148  return T;
2149}
2150
2151/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2152/// DecltypeType AST's. The only motivation to unique these nodes would be
2153/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2154/// an issue. This doesn't effect the type checker, since it operates
2155/// on canonical type's (which are always unique).
2156QualType ASTContext::getDecltypeType(Expr *e) {
2157  DecltypeType *dt;
2158  if (e->isTypeDependent()) {
2159    llvm::FoldingSetNodeID ID;
2160    DependentDecltypeType::Profile(ID, *this, e);
2161
2162    void *InsertPos = 0;
2163    DependentDecltypeType *Canon
2164      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2165    if (Canon) {
2166      // We already have a "canonical" version of an equivalent, dependent
2167      // decltype type. Use that as our canonical type.
2168      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2169                                       QualType((DecltypeType*)Canon, 0));
2170    }
2171    else {
2172      // Build a new, canonical typeof(expr) type.
2173      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2174      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2175      dt = Canon;
2176    }
2177  } else {
2178    QualType T = getDecltypeForExpr(e, *this);
2179    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2180  }
2181  Types.push_back(dt);
2182  return QualType(dt, 0);
2183}
2184
2185/// getTagDeclType - Return the unique reference to the type for the
2186/// specified TagDecl (struct/union/class/enum) decl.
2187QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2188  assert (Decl);
2189  // FIXME: What is the design on getTagDeclType when it requires casting
2190  // away const?  mutable?
2191  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2192}
2193
2194/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2195/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2196/// needs to agree with the definition in <stddef.h>.
2197CanQualType ASTContext::getSizeType() const {
2198  return getFromTargetType(Target.getSizeType());
2199}
2200
2201/// getSignedWCharType - Return the type of "signed wchar_t".
2202/// Used when in C++, as a GCC extension.
2203QualType ASTContext::getSignedWCharType() const {
2204  // FIXME: derive from "Target" ?
2205  return WCharTy;
2206}
2207
2208/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2209/// Used when in C++, as a GCC extension.
2210QualType ASTContext::getUnsignedWCharType() const {
2211  // FIXME: derive from "Target" ?
2212  return UnsignedIntTy;
2213}
2214
2215/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2216/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2217QualType ASTContext::getPointerDiffType() const {
2218  return getFromTargetType(Target.getPtrDiffType(0));
2219}
2220
2221//===----------------------------------------------------------------------===//
2222//                              Type Operators
2223//===----------------------------------------------------------------------===//
2224
2225CanQualType ASTContext::getCanonicalParamType(QualType T) {
2226  // Push qualifiers into arrays, and then discard any remaining
2227  // qualifiers.
2228  T = getCanonicalType(T);
2229  const Type *Ty = T.getTypePtr();
2230
2231  QualType Result;
2232  if (isa<ArrayType>(Ty)) {
2233    Result = getArrayDecayedType(QualType(Ty,0));
2234  } else if (isa<FunctionType>(Ty)) {
2235    Result = getPointerType(QualType(Ty, 0));
2236  } else {
2237    Result = QualType(Ty, 0);
2238  }
2239
2240  return CanQualType::CreateUnsafe(Result);
2241}
2242
2243/// getCanonicalType - Return the canonical (structural) type corresponding to
2244/// the specified potentially non-canonical type.  The non-canonical version
2245/// of a type may have many "decorated" versions of types.  Decorators can
2246/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2247/// to be free of any of these, allowing two canonical types to be compared
2248/// for exact equality with a simple pointer comparison.
2249CanQualType ASTContext::getCanonicalType(QualType T) {
2250  QualifierCollector Quals;
2251  const Type *Ptr = Quals.strip(T);
2252  QualType CanType = Ptr->getCanonicalTypeInternal();
2253
2254  // The canonical internal type will be the canonical type *except*
2255  // that we push type qualifiers down through array types.
2256
2257  // If there are no new qualifiers to push down, stop here.
2258  if (!Quals.hasQualifiers())
2259    return CanQualType::CreateUnsafe(CanType);
2260
2261  // If the type qualifiers are on an array type, get the canonical
2262  // type of the array with the qualifiers applied to the element
2263  // type.
2264  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2265  if (!AT)
2266    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2267
2268  // Get the canonical version of the element with the extra qualifiers on it.
2269  // This can recursively sink qualifiers through multiple levels of arrays.
2270  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2271  NewEltTy = getCanonicalType(NewEltTy);
2272
2273  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2274    return CanQualType::CreateUnsafe(
2275             getConstantArrayType(NewEltTy, CAT->getSize(),
2276                                  CAT->getSizeModifier(),
2277                                  CAT->getIndexTypeCVRQualifiers()));
2278  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2279    return CanQualType::CreateUnsafe(
2280             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2281                                    IAT->getIndexTypeCVRQualifiers()));
2282
2283  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2284    return CanQualType::CreateUnsafe(
2285             getDependentSizedArrayType(NewEltTy,
2286                                        DSAT->getSizeExpr() ?
2287                                          DSAT->getSizeExpr()->Retain() : 0,
2288                                        DSAT->getSizeModifier(),
2289                                        DSAT->getIndexTypeCVRQualifiers(),
2290                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2291
2292  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2293  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2294                                                        VAT->getSizeExpr() ?
2295                                              VAT->getSizeExpr()->Retain() : 0,
2296                                                        VAT->getSizeModifier(),
2297                                              VAT->getIndexTypeCVRQualifiers(),
2298                                                     VAT->getBracketsRange()));
2299}
2300
2301QualType ASTContext::getUnqualifiedArrayType(QualType T,
2302                                             Qualifiers &Quals) {
2303  Quals = T.getQualifiers();
2304  const ArrayType *AT = getAsArrayType(T);
2305  if (!AT) {
2306    return T.getUnqualifiedType();
2307  }
2308
2309  QualType Elt = AT->getElementType();
2310  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2311  if (Elt == UnqualElt)
2312    return T;
2313
2314  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2315    return getConstantArrayType(UnqualElt, CAT->getSize(),
2316                                CAT->getSizeModifier(), 0);
2317  }
2318
2319  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2320    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2321  }
2322
2323  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2324    return getVariableArrayType(UnqualElt,
2325                                VAT->getSizeExpr() ?
2326                                VAT->getSizeExpr()->Retain() : 0,
2327                                VAT->getSizeModifier(),
2328                                VAT->getIndexTypeCVRQualifiers(),
2329                                VAT->getBracketsRange());
2330  }
2331
2332  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2333  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2334                                    DSAT->getSizeModifier(), 0,
2335                                    SourceRange());
2336}
2337
2338DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2339  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2340    return TD->getDeclName();
2341
2342  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2343    if (DTN->isIdentifier()) {
2344      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2345    } else {
2346      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2347    }
2348  }
2349
2350  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2351  assert(Storage);
2352  return (*Storage->begin())->getDeclName();
2353}
2354
2355TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2356  // If this template name refers to a template, the canonical
2357  // template name merely stores the template itself.
2358  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2359    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2360
2361  assert(!Name.getAsOverloadedTemplate());
2362
2363  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2364  assert(DTN && "Non-dependent template names must refer to template decls.");
2365  return DTN->CanonicalTemplateName;
2366}
2367
2368bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2369  X = getCanonicalTemplateName(X);
2370  Y = getCanonicalTemplateName(Y);
2371  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2372}
2373
2374TemplateArgument
2375ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2376  switch (Arg.getKind()) {
2377    case TemplateArgument::Null:
2378      return Arg;
2379
2380    case TemplateArgument::Expression:
2381      return Arg;
2382
2383    case TemplateArgument::Declaration:
2384      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2385
2386    case TemplateArgument::Template:
2387      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2388
2389    case TemplateArgument::Integral:
2390      return TemplateArgument(*Arg.getAsIntegral(),
2391                              getCanonicalType(Arg.getIntegralType()));
2392
2393    case TemplateArgument::Type:
2394      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2395
2396    case TemplateArgument::Pack: {
2397      // FIXME: Allocate in ASTContext
2398      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2399      unsigned Idx = 0;
2400      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2401                                        AEnd = Arg.pack_end();
2402           A != AEnd; (void)++A, ++Idx)
2403        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2404
2405      TemplateArgument Result;
2406      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2407      return Result;
2408    }
2409  }
2410
2411  // Silence GCC warning
2412  assert(false && "Unhandled template argument kind");
2413  return TemplateArgument();
2414}
2415
2416NestedNameSpecifier *
2417ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2418  if (!NNS)
2419    return 0;
2420
2421  switch (NNS->getKind()) {
2422  case NestedNameSpecifier::Identifier:
2423    // Canonicalize the prefix but keep the identifier the same.
2424    return NestedNameSpecifier::Create(*this,
2425                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2426                                       NNS->getAsIdentifier());
2427
2428  case NestedNameSpecifier::Namespace:
2429    // A namespace is canonical; build a nested-name-specifier with
2430    // this namespace and no prefix.
2431    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2432
2433  case NestedNameSpecifier::TypeSpec:
2434  case NestedNameSpecifier::TypeSpecWithTemplate: {
2435    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2436    return NestedNameSpecifier::Create(*this, 0,
2437                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2438                                       T.getTypePtr());
2439  }
2440
2441  case NestedNameSpecifier::Global:
2442    // The global specifier is canonical and unique.
2443    return NNS;
2444  }
2445
2446  // Required to silence a GCC warning
2447  return 0;
2448}
2449
2450
2451const ArrayType *ASTContext::getAsArrayType(QualType T) {
2452  // Handle the non-qualified case efficiently.
2453  if (!T.hasLocalQualifiers()) {
2454    // Handle the common positive case fast.
2455    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2456      return AT;
2457  }
2458
2459  // Handle the common negative case fast.
2460  QualType CType = T->getCanonicalTypeInternal();
2461  if (!isa<ArrayType>(CType))
2462    return 0;
2463
2464  // Apply any qualifiers from the array type to the element type.  This
2465  // implements C99 6.7.3p8: "If the specification of an array type includes
2466  // any type qualifiers, the element type is so qualified, not the array type."
2467
2468  // If we get here, we either have type qualifiers on the type, or we have
2469  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2470  // we must propagate them down into the element type.
2471
2472  QualifierCollector Qs;
2473  const Type *Ty = Qs.strip(T.getDesugaredType());
2474
2475  // If we have a simple case, just return now.
2476  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2477  if (ATy == 0 || Qs.empty())
2478    return ATy;
2479
2480  // Otherwise, we have an array and we have qualifiers on it.  Push the
2481  // qualifiers into the array element type and return a new array type.
2482  // Get the canonical version of the element with the extra qualifiers on it.
2483  // This can recursively sink qualifiers through multiple levels of arrays.
2484  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2485
2486  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2487    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2488                                                CAT->getSizeModifier(),
2489                                           CAT->getIndexTypeCVRQualifiers()));
2490  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2491    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2492                                                  IAT->getSizeModifier(),
2493                                           IAT->getIndexTypeCVRQualifiers()));
2494
2495  if (const DependentSizedArrayType *DSAT
2496        = dyn_cast<DependentSizedArrayType>(ATy))
2497    return cast<ArrayType>(
2498                     getDependentSizedArrayType(NewEltTy,
2499                                                DSAT->getSizeExpr() ?
2500                                              DSAT->getSizeExpr()->Retain() : 0,
2501                                                DSAT->getSizeModifier(),
2502                                              DSAT->getIndexTypeCVRQualifiers(),
2503                                                DSAT->getBracketsRange()));
2504
2505  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2506  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2507                                              VAT->getSizeExpr() ?
2508                                              VAT->getSizeExpr()->Retain() : 0,
2509                                              VAT->getSizeModifier(),
2510                                              VAT->getIndexTypeCVRQualifiers(),
2511                                              VAT->getBracketsRange()));
2512}
2513
2514
2515/// getArrayDecayedType - Return the properly qualified result of decaying the
2516/// specified array type to a pointer.  This operation is non-trivial when
2517/// handling typedefs etc.  The canonical type of "T" must be an array type,
2518/// this returns a pointer to a properly qualified element of the array.
2519///
2520/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2521QualType ASTContext::getArrayDecayedType(QualType Ty) {
2522  // Get the element type with 'getAsArrayType' so that we don't lose any
2523  // typedefs in the element type of the array.  This also handles propagation
2524  // of type qualifiers from the array type into the element type if present
2525  // (C99 6.7.3p8).
2526  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2527  assert(PrettyArrayType && "Not an array type!");
2528
2529  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2530
2531  // int x[restrict 4] ->  int *restrict
2532  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2533}
2534
2535QualType ASTContext::getBaseElementType(QualType QT) {
2536  QualifierCollector Qs;
2537  while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
2538    QT = AT->getElementType();
2539  return Qs.apply(QT);
2540}
2541
2542QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2543  QualType ElemTy = AT->getElementType();
2544
2545  if (const ArrayType *AT = getAsArrayType(ElemTy))
2546    return getBaseElementType(AT);
2547
2548  return ElemTy;
2549}
2550
2551/// getConstantArrayElementCount - Returns number of constant array elements.
2552uint64_t
2553ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2554  uint64_t ElementCount = 1;
2555  do {
2556    ElementCount *= CA->getSize().getZExtValue();
2557    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2558  } while (CA);
2559  return ElementCount;
2560}
2561
2562/// getFloatingRank - Return a relative rank for floating point types.
2563/// This routine will assert if passed a built-in type that isn't a float.
2564static FloatingRank getFloatingRank(QualType T) {
2565  if (const ComplexType *CT = T->getAs<ComplexType>())
2566    return getFloatingRank(CT->getElementType());
2567
2568  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2569  switch (T->getAs<BuiltinType>()->getKind()) {
2570  default: assert(0 && "getFloatingRank(): not a floating type");
2571  case BuiltinType::Float:      return FloatRank;
2572  case BuiltinType::Double:     return DoubleRank;
2573  case BuiltinType::LongDouble: return LongDoubleRank;
2574  }
2575}
2576
2577/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2578/// point or a complex type (based on typeDomain/typeSize).
2579/// 'typeDomain' is a real floating point or complex type.
2580/// 'typeSize' is a real floating point or complex type.
2581QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2582                                                       QualType Domain) const {
2583  FloatingRank EltRank = getFloatingRank(Size);
2584  if (Domain->isComplexType()) {
2585    switch (EltRank) {
2586    default: assert(0 && "getFloatingRank(): illegal value for rank");
2587    case FloatRank:      return FloatComplexTy;
2588    case DoubleRank:     return DoubleComplexTy;
2589    case LongDoubleRank: return LongDoubleComplexTy;
2590    }
2591  }
2592
2593  assert(Domain->isRealFloatingType() && "Unknown domain!");
2594  switch (EltRank) {
2595  default: assert(0 && "getFloatingRank(): illegal value for rank");
2596  case FloatRank:      return FloatTy;
2597  case DoubleRank:     return DoubleTy;
2598  case LongDoubleRank: return LongDoubleTy;
2599  }
2600}
2601
2602/// getFloatingTypeOrder - Compare the rank of the two specified floating
2603/// point types, ignoring the domain of the type (i.e. 'double' ==
2604/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2605/// LHS < RHS, return -1.
2606int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2607  FloatingRank LHSR = getFloatingRank(LHS);
2608  FloatingRank RHSR = getFloatingRank(RHS);
2609
2610  if (LHSR == RHSR)
2611    return 0;
2612  if (LHSR > RHSR)
2613    return 1;
2614  return -1;
2615}
2616
2617/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2618/// routine will assert if passed a built-in type that isn't an integer or enum,
2619/// or if it is not canonicalized.
2620unsigned ASTContext::getIntegerRank(Type *T) {
2621  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2622  if (EnumType* ET = dyn_cast<EnumType>(T))
2623    T = ET->getDecl()->getPromotionType().getTypePtr();
2624
2625  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2626    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2627
2628  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2629    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2630
2631  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2632    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2633
2634  switch (cast<BuiltinType>(T)->getKind()) {
2635  default: assert(0 && "getIntegerRank(): not a built-in integer");
2636  case BuiltinType::Bool:
2637    return 1 + (getIntWidth(BoolTy) << 3);
2638  case BuiltinType::Char_S:
2639  case BuiltinType::Char_U:
2640  case BuiltinType::SChar:
2641  case BuiltinType::UChar:
2642    return 2 + (getIntWidth(CharTy) << 3);
2643  case BuiltinType::Short:
2644  case BuiltinType::UShort:
2645    return 3 + (getIntWidth(ShortTy) << 3);
2646  case BuiltinType::Int:
2647  case BuiltinType::UInt:
2648    return 4 + (getIntWidth(IntTy) << 3);
2649  case BuiltinType::Long:
2650  case BuiltinType::ULong:
2651    return 5 + (getIntWidth(LongTy) << 3);
2652  case BuiltinType::LongLong:
2653  case BuiltinType::ULongLong:
2654    return 6 + (getIntWidth(LongLongTy) << 3);
2655  case BuiltinType::Int128:
2656  case BuiltinType::UInt128:
2657    return 7 + (getIntWidth(Int128Ty) << 3);
2658  }
2659}
2660
2661/// \brief Whether this is a promotable bitfield reference according
2662/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2663///
2664/// \returns the type this bit-field will promote to, or NULL if no
2665/// promotion occurs.
2666QualType ASTContext::isPromotableBitField(Expr *E) {
2667  if (E->isTypeDependent() || E->isValueDependent())
2668    return QualType();
2669
2670  FieldDecl *Field = E->getBitField();
2671  if (!Field)
2672    return QualType();
2673
2674  QualType FT = Field->getType();
2675
2676  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2677  uint64_t BitWidth = BitWidthAP.getZExtValue();
2678  uint64_t IntSize = getTypeSize(IntTy);
2679  // GCC extension compatibility: if the bit-field size is less than or equal
2680  // to the size of int, it gets promoted no matter what its type is.
2681  // For instance, unsigned long bf : 4 gets promoted to signed int.
2682  if (BitWidth < IntSize)
2683    return IntTy;
2684
2685  if (BitWidth == IntSize)
2686    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2687
2688  // Types bigger than int are not subject to promotions, and therefore act
2689  // like the base type.
2690  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2691  // is ridiculous.
2692  return QualType();
2693}
2694
2695/// getPromotedIntegerType - Returns the type that Promotable will
2696/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2697/// integer type.
2698QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2699  assert(!Promotable.isNull());
2700  assert(Promotable->isPromotableIntegerType());
2701  if (const EnumType *ET = Promotable->getAs<EnumType>())
2702    return ET->getDecl()->getPromotionType();
2703  if (Promotable->isSignedIntegerType())
2704    return IntTy;
2705  uint64_t PromotableSize = getTypeSize(Promotable);
2706  uint64_t IntSize = getTypeSize(IntTy);
2707  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2708  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2709}
2710
2711/// getIntegerTypeOrder - Returns the highest ranked integer type:
2712/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2713/// LHS < RHS, return -1.
2714int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2715  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2716  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2717  if (LHSC == RHSC) return 0;
2718
2719  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2720  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2721
2722  unsigned LHSRank = getIntegerRank(LHSC);
2723  unsigned RHSRank = getIntegerRank(RHSC);
2724
2725  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2726    if (LHSRank == RHSRank) return 0;
2727    return LHSRank > RHSRank ? 1 : -1;
2728  }
2729
2730  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2731  if (LHSUnsigned) {
2732    // If the unsigned [LHS] type is larger, return it.
2733    if (LHSRank >= RHSRank)
2734      return 1;
2735
2736    // If the signed type can represent all values of the unsigned type, it
2737    // wins.  Because we are dealing with 2's complement and types that are
2738    // powers of two larger than each other, this is always safe.
2739    return -1;
2740  }
2741
2742  // If the unsigned [RHS] type is larger, return it.
2743  if (RHSRank >= LHSRank)
2744    return -1;
2745
2746  // If the signed type can represent all values of the unsigned type, it
2747  // wins.  Because we are dealing with 2's complement and types that are
2748  // powers of two larger than each other, this is always safe.
2749  return 1;
2750}
2751
2752static RecordDecl *
2753CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2754                 SourceLocation L, IdentifierInfo *Id) {
2755  if (Ctx.getLangOptions().CPlusPlus)
2756    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2757  else
2758    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2759}
2760
2761// getCFConstantStringType - Return the type used for constant CFStrings.
2762QualType ASTContext::getCFConstantStringType() {
2763  if (!CFConstantStringTypeDecl) {
2764    CFConstantStringTypeDecl =
2765      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2766                       &Idents.get("NSConstantString"));
2767    CFConstantStringTypeDecl->startDefinition();
2768
2769    QualType FieldTypes[4];
2770
2771    // const int *isa;
2772    FieldTypes[0] = getPointerType(IntTy.withConst());
2773    // int flags;
2774    FieldTypes[1] = IntTy;
2775    // const char *str;
2776    FieldTypes[2] = getPointerType(CharTy.withConst());
2777    // long length;
2778    FieldTypes[3] = LongTy;
2779
2780    // Create fields
2781    for (unsigned i = 0; i < 4; ++i) {
2782      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2783                                           SourceLocation(), 0,
2784                                           FieldTypes[i], /*TInfo=*/0,
2785                                           /*BitWidth=*/0,
2786                                           /*Mutable=*/false);
2787      Field->setAccess(AS_public);
2788      CFConstantStringTypeDecl->addDecl(Field);
2789    }
2790
2791    CFConstantStringTypeDecl->completeDefinition();
2792  }
2793
2794  return getTagDeclType(CFConstantStringTypeDecl);
2795}
2796
2797void ASTContext::setCFConstantStringType(QualType T) {
2798  const RecordType *Rec = T->getAs<RecordType>();
2799  assert(Rec && "Invalid CFConstantStringType");
2800  CFConstantStringTypeDecl = Rec->getDecl();
2801}
2802
2803// getNSConstantStringType - Return the type used for constant NSStrings.
2804QualType ASTContext::getNSConstantStringType() {
2805  if (!NSConstantStringTypeDecl) {
2806    NSConstantStringTypeDecl =
2807    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2808                     &Idents.get("__builtin_NSString"));
2809    NSConstantStringTypeDecl->startDefinition();
2810
2811    QualType FieldTypes[3];
2812
2813    // const int *isa;
2814    FieldTypes[0] = getPointerType(IntTy.withConst());
2815    // const char *str;
2816    FieldTypes[1] = getPointerType(CharTy.withConst());
2817    // unsigned int length;
2818    FieldTypes[2] = UnsignedIntTy;
2819
2820    // Create fields
2821    for (unsigned i = 0; i < 3; ++i) {
2822      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
2823                                           SourceLocation(), 0,
2824                                           FieldTypes[i], /*TInfo=*/0,
2825                                           /*BitWidth=*/0,
2826                                           /*Mutable=*/false);
2827      Field->setAccess(AS_public);
2828      NSConstantStringTypeDecl->addDecl(Field);
2829    }
2830
2831    NSConstantStringTypeDecl->completeDefinition();
2832  }
2833
2834  return getTagDeclType(NSConstantStringTypeDecl);
2835}
2836
2837void ASTContext::setNSConstantStringType(QualType T) {
2838  const RecordType *Rec = T->getAs<RecordType>();
2839  assert(Rec && "Invalid NSConstantStringType");
2840  NSConstantStringTypeDecl = Rec->getDecl();
2841}
2842
2843QualType ASTContext::getObjCFastEnumerationStateType() {
2844  if (!ObjCFastEnumerationStateTypeDecl) {
2845    ObjCFastEnumerationStateTypeDecl =
2846      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2847                       &Idents.get("__objcFastEnumerationState"));
2848    ObjCFastEnumerationStateTypeDecl->startDefinition();
2849
2850    QualType FieldTypes[] = {
2851      UnsignedLongTy,
2852      getPointerType(ObjCIdTypedefType),
2853      getPointerType(UnsignedLongTy),
2854      getConstantArrayType(UnsignedLongTy,
2855                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2856    };
2857
2858    for (size_t i = 0; i < 4; ++i) {
2859      FieldDecl *Field = FieldDecl::Create(*this,
2860                                           ObjCFastEnumerationStateTypeDecl,
2861                                           SourceLocation(), 0,
2862                                           FieldTypes[i], /*TInfo=*/0,
2863                                           /*BitWidth=*/0,
2864                                           /*Mutable=*/false);
2865      Field->setAccess(AS_public);
2866      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2867    }
2868    if (getLangOptions().CPlusPlus)
2869      if (CXXRecordDecl *CXXRD =
2870            dyn_cast<CXXRecordDecl>(ObjCFastEnumerationStateTypeDecl))
2871        CXXRD->setEmpty(false);
2872
2873    ObjCFastEnumerationStateTypeDecl->completeDefinition();
2874  }
2875
2876  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2877}
2878
2879QualType ASTContext::getBlockDescriptorType() {
2880  if (BlockDescriptorType)
2881    return getTagDeclType(BlockDescriptorType);
2882
2883  RecordDecl *T;
2884  // FIXME: Needs the FlagAppleBlock bit.
2885  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2886                       &Idents.get("__block_descriptor"));
2887  T->startDefinition();
2888
2889  QualType FieldTypes[] = {
2890    UnsignedLongTy,
2891    UnsignedLongTy,
2892  };
2893
2894  const char *FieldNames[] = {
2895    "reserved",
2896    "Size"
2897  };
2898
2899  for (size_t i = 0; i < 2; ++i) {
2900    FieldDecl *Field = FieldDecl::Create(*this,
2901                                         T,
2902                                         SourceLocation(),
2903                                         &Idents.get(FieldNames[i]),
2904                                         FieldTypes[i], /*TInfo=*/0,
2905                                         /*BitWidth=*/0,
2906                                         /*Mutable=*/false);
2907    Field->setAccess(AS_public);
2908    T->addDecl(Field);
2909  }
2910
2911  T->completeDefinition();
2912
2913  BlockDescriptorType = T;
2914
2915  return getTagDeclType(BlockDescriptorType);
2916}
2917
2918void ASTContext::setBlockDescriptorType(QualType T) {
2919  const RecordType *Rec = T->getAs<RecordType>();
2920  assert(Rec && "Invalid BlockDescriptorType");
2921  BlockDescriptorType = Rec->getDecl();
2922}
2923
2924QualType ASTContext::getBlockDescriptorExtendedType() {
2925  if (BlockDescriptorExtendedType)
2926    return getTagDeclType(BlockDescriptorExtendedType);
2927
2928  RecordDecl *T;
2929  // FIXME: Needs the FlagAppleBlock bit.
2930  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2931                       &Idents.get("__block_descriptor_withcopydispose"));
2932  T->startDefinition();
2933
2934  QualType FieldTypes[] = {
2935    UnsignedLongTy,
2936    UnsignedLongTy,
2937    getPointerType(VoidPtrTy),
2938    getPointerType(VoidPtrTy)
2939  };
2940
2941  const char *FieldNames[] = {
2942    "reserved",
2943    "Size",
2944    "CopyFuncPtr",
2945    "DestroyFuncPtr"
2946  };
2947
2948  for (size_t i = 0; i < 4; ++i) {
2949    FieldDecl *Field = FieldDecl::Create(*this,
2950                                         T,
2951                                         SourceLocation(),
2952                                         &Idents.get(FieldNames[i]),
2953                                         FieldTypes[i], /*TInfo=*/0,
2954                                         /*BitWidth=*/0,
2955                                         /*Mutable=*/false);
2956    Field->setAccess(AS_public);
2957    T->addDecl(Field);
2958  }
2959
2960  T->completeDefinition();
2961
2962  BlockDescriptorExtendedType = T;
2963
2964  return getTagDeclType(BlockDescriptorExtendedType);
2965}
2966
2967void ASTContext::setBlockDescriptorExtendedType(QualType T) {
2968  const RecordType *Rec = T->getAs<RecordType>();
2969  assert(Rec && "Invalid BlockDescriptorType");
2970  BlockDescriptorExtendedType = Rec->getDecl();
2971}
2972
2973bool ASTContext::BlockRequiresCopying(QualType Ty) {
2974  if (Ty->isBlockPointerType())
2975    return true;
2976  if (isObjCNSObjectType(Ty))
2977    return true;
2978  if (Ty->isObjCObjectPointerType())
2979    return true;
2980  return false;
2981}
2982
2983QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
2984  //  type = struct __Block_byref_1_X {
2985  //    void *__isa;
2986  //    struct __Block_byref_1_X *__forwarding;
2987  //    unsigned int __flags;
2988  //    unsigned int __size;
2989  //    void *__copy_helper;		// as needed
2990  //    void *__destroy_help		// as needed
2991  //    int X;
2992  //  } *
2993
2994  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
2995
2996  // FIXME: Move up
2997  static unsigned int UniqueBlockByRefTypeID = 0;
2998  llvm::SmallString<36> Name;
2999  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3000                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3001  RecordDecl *T;
3002  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3003                       &Idents.get(Name.str()));
3004  T->startDefinition();
3005  QualType Int32Ty = IntTy;
3006  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3007  QualType FieldTypes[] = {
3008    getPointerType(VoidPtrTy),
3009    getPointerType(getTagDeclType(T)),
3010    Int32Ty,
3011    Int32Ty,
3012    getPointerType(VoidPtrTy),
3013    getPointerType(VoidPtrTy),
3014    Ty
3015  };
3016
3017  const char *FieldNames[] = {
3018    "__isa",
3019    "__forwarding",
3020    "__flags",
3021    "__size",
3022    "__copy_helper",
3023    "__destroy_helper",
3024    DeclName,
3025  };
3026
3027  for (size_t i = 0; i < 7; ++i) {
3028    if (!HasCopyAndDispose && i >=4 && i <= 5)
3029      continue;
3030    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3031                                         &Idents.get(FieldNames[i]),
3032                                         FieldTypes[i], /*TInfo=*/0,
3033                                         /*BitWidth=*/0, /*Mutable=*/false);
3034    Field->setAccess(AS_public);
3035    T->addDecl(Field);
3036  }
3037
3038  T->completeDefinition();
3039
3040  return getPointerType(getTagDeclType(T));
3041}
3042
3043
3044QualType ASTContext::getBlockParmType(
3045  bool BlockHasCopyDispose,
3046  llvm::SmallVectorImpl<const Expr *> &Layout) {
3047
3048  // FIXME: Move up
3049  static unsigned int UniqueBlockParmTypeID = 0;
3050  llvm::SmallString<36> Name;
3051  llvm::raw_svector_ostream(Name) << "__block_literal_"
3052                                  << ++UniqueBlockParmTypeID;
3053  RecordDecl *T;
3054  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3055                       &Idents.get(Name.str()));
3056  T->startDefinition();
3057  QualType FieldTypes[] = {
3058    getPointerType(VoidPtrTy),
3059    IntTy,
3060    IntTy,
3061    getPointerType(VoidPtrTy),
3062    (BlockHasCopyDispose ?
3063     getPointerType(getBlockDescriptorExtendedType()) :
3064     getPointerType(getBlockDescriptorType()))
3065  };
3066
3067  const char *FieldNames[] = {
3068    "__isa",
3069    "__flags",
3070    "__reserved",
3071    "__FuncPtr",
3072    "__descriptor"
3073  };
3074
3075  for (size_t i = 0; i < 5; ++i) {
3076    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3077                                         &Idents.get(FieldNames[i]),
3078                                         FieldTypes[i], /*TInfo=*/0,
3079                                         /*BitWidth=*/0, /*Mutable=*/false);
3080    Field->setAccess(AS_public);
3081    T->addDecl(Field);
3082  }
3083
3084  for (unsigned i = 0; i < Layout.size(); ++i) {
3085    const Expr *E = Layout[i];
3086
3087    QualType FieldType = E->getType();
3088    IdentifierInfo *FieldName = 0;
3089    if (isa<CXXThisExpr>(E)) {
3090      FieldName = &Idents.get("this");
3091    } else if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) {
3092      const ValueDecl *D = BDRE->getDecl();
3093      FieldName = D->getIdentifier();
3094      if (BDRE->isByRef())
3095        FieldType = BuildByRefType(D->getNameAsCString(), FieldType);
3096    } else {
3097      // Padding.
3098      assert(isa<ConstantArrayType>(FieldType) &&
3099             isa<DeclRefExpr>(E) &&
3100             !cast<DeclRefExpr>(E)->getDecl()->getDeclName() &&
3101             "doesn't match characteristics of padding decl");
3102    }
3103
3104    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3105                                         FieldName, FieldType, /*TInfo=*/0,
3106                                         /*BitWidth=*/0, /*Mutable=*/false);
3107    Field->setAccess(AS_public);
3108    T->addDecl(Field);
3109  }
3110
3111  T->completeDefinition();
3112
3113  return getPointerType(getTagDeclType(T));
3114}
3115
3116void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3117  const RecordType *Rec = T->getAs<RecordType>();
3118  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3119  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3120}
3121
3122// This returns true if a type has been typedefed to BOOL:
3123// typedef <type> BOOL;
3124static bool isTypeTypedefedAsBOOL(QualType T) {
3125  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3126    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3127      return II->isStr("BOOL");
3128
3129  return false;
3130}
3131
3132/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3133/// purpose.
3134CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3135  CharUnits sz = getTypeSizeInChars(type);
3136
3137  // Make all integer and enum types at least as large as an int
3138  if (sz.isPositive() && type->isIntegralType())
3139    sz = std::max(sz, getTypeSizeInChars(IntTy));
3140  // Treat arrays as pointers, since that's how they're passed in.
3141  else if (type->isArrayType())
3142    sz = getTypeSizeInChars(VoidPtrTy);
3143  return sz;
3144}
3145
3146static inline
3147std::string charUnitsToString(const CharUnits &CU) {
3148  return llvm::itostr(CU.getQuantity());
3149}
3150
3151/// getObjCEncodingForBlockDecl - Return the encoded type for this block
3152/// declaration.
3153void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3154                                             std::string& S) {
3155  const BlockDecl *Decl = Expr->getBlockDecl();
3156  QualType BlockTy =
3157      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3158  // Encode result type.
3159  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3160  // Compute size of all parameters.
3161  // Start with computing size of a pointer in number of bytes.
3162  // FIXME: There might(should) be a better way of doing this computation!
3163  SourceLocation Loc;
3164  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3165  CharUnits ParmOffset = PtrSize;
3166  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3167       E = Decl->param_end(); PI != E; ++PI) {
3168    QualType PType = (*PI)->getType();
3169    CharUnits sz = getObjCEncodingTypeSize(PType);
3170    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3171    ParmOffset += sz;
3172  }
3173  // Size of the argument frame
3174  S += charUnitsToString(ParmOffset);
3175  // Block pointer and offset.
3176  S += "@?0";
3177  ParmOffset = PtrSize;
3178
3179  // Argument types.
3180  ParmOffset = PtrSize;
3181  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3182       Decl->param_end(); PI != E; ++PI) {
3183    ParmVarDecl *PVDecl = *PI;
3184    QualType PType = PVDecl->getOriginalType();
3185    if (const ArrayType *AT =
3186          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3187      // Use array's original type only if it has known number of
3188      // elements.
3189      if (!isa<ConstantArrayType>(AT))
3190        PType = PVDecl->getType();
3191    } else if (PType->isFunctionType())
3192      PType = PVDecl->getType();
3193    getObjCEncodingForType(PType, S);
3194    S += charUnitsToString(ParmOffset);
3195    ParmOffset += getObjCEncodingTypeSize(PType);
3196  }
3197}
3198
3199/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3200/// declaration.
3201void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3202                                              std::string& S) {
3203  // FIXME: This is not very efficient.
3204  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3205  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3206  // Encode result type.
3207  getObjCEncodingForType(Decl->getResultType(), S);
3208  // Compute size of all parameters.
3209  // Start with computing size of a pointer in number of bytes.
3210  // FIXME: There might(should) be a better way of doing this computation!
3211  SourceLocation Loc;
3212  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3213  // The first two arguments (self and _cmd) are pointers; account for
3214  // their size.
3215  CharUnits ParmOffset = 2 * PtrSize;
3216  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3217       E = Decl->sel_param_end(); PI != E; ++PI) {
3218    QualType PType = (*PI)->getType();
3219    CharUnits sz = getObjCEncodingTypeSize(PType);
3220    assert (sz.isPositive() &&
3221        "getObjCEncodingForMethodDecl - Incomplete param type");
3222    ParmOffset += sz;
3223  }
3224  S += charUnitsToString(ParmOffset);
3225  S += "@0:";
3226  S += charUnitsToString(PtrSize);
3227
3228  // Argument types.
3229  ParmOffset = 2 * PtrSize;
3230  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3231       E = Decl->sel_param_end(); PI != E; ++PI) {
3232    ParmVarDecl *PVDecl = *PI;
3233    QualType PType = PVDecl->getOriginalType();
3234    if (const ArrayType *AT =
3235          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3236      // Use array's original type only if it has known number of
3237      // elements.
3238      if (!isa<ConstantArrayType>(AT))
3239        PType = PVDecl->getType();
3240    } else if (PType->isFunctionType())
3241      PType = PVDecl->getType();
3242    // Process argument qualifiers for user supplied arguments; such as,
3243    // 'in', 'inout', etc.
3244    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3245    getObjCEncodingForType(PType, S);
3246    S += charUnitsToString(ParmOffset);
3247    ParmOffset += getObjCEncodingTypeSize(PType);
3248  }
3249}
3250
3251/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3252/// property declaration. If non-NULL, Container must be either an
3253/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3254/// NULL when getting encodings for protocol properties.
3255/// Property attributes are stored as a comma-delimited C string. The simple
3256/// attributes readonly and bycopy are encoded as single characters. The
3257/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3258/// encoded as single characters, followed by an identifier. Property types
3259/// are also encoded as a parametrized attribute. The characters used to encode
3260/// these attributes are defined by the following enumeration:
3261/// @code
3262/// enum PropertyAttributes {
3263/// kPropertyReadOnly = 'R',   // property is read-only.
3264/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3265/// kPropertyByref = '&',  // property is a reference to the value last assigned
3266/// kPropertyDynamic = 'D',    // property is dynamic
3267/// kPropertyGetter = 'G',     // followed by getter selector name
3268/// kPropertySetter = 'S',     // followed by setter selector name
3269/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3270/// kPropertyType = 't'              // followed by old-style type encoding.
3271/// kPropertyWeak = 'W'              // 'weak' property
3272/// kPropertyStrong = 'P'            // property GC'able
3273/// kPropertyNonAtomic = 'N'         // property non-atomic
3274/// };
3275/// @endcode
3276void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3277                                                const Decl *Container,
3278                                                std::string& S) {
3279  // Collect information from the property implementation decl(s).
3280  bool Dynamic = false;
3281  ObjCPropertyImplDecl *SynthesizePID = 0;
3282
3283  // FIXME: Duplicated code due to poor abstraction.
3284  if (Container) {
3285    if (const ObjCCategoryImplDecl *CID =
3286        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3287      for (ObjCCategoryImplDecl::propimpl_iterator
3288             i = CID->propimpl_begin(), e = CID->propimpl_end();
3289           i != e; ++i) {
3290        ObjCPropertyImplDecl *PID = *i;
3291        if (PID->getPropertyDecl() == PD) {
3292          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3293            Dynamic = true;
3294          } else {
3295            SynthesizePID = PID;
3296          }
3297        }
3298      }
3299    } else {
3300      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3301      for (ObjCCategoryImplDecl::propimpl_iterator
3302             i = OID->propimpl_begin(), e = OID->propimpl_end();
3303           i != e; ++i) {
3304        ObjCPropertyImplDecl *PID = *i;
3305        if (PID->getPropertyDecl() == PD) {
3306          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3307            Dynamic = true;
3308          } else {
3309            SynthesizePID = PID;
3310          }
3311        }
3312      }
3313    }
3314  }
3315
3316  // FIXME: This is not very efficient.
3317  S = "T";
3318
3319  // Encode result type.
3320  // GCC has some special rules regarding encoding of properties which
3321  // closely resembles encoding of ivars.
3322  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3323                             true /* outermost type */,
3324                             true /* encoding for property */);
3325
3326  if (PD->isReadOnly()) {
3327    S += ",R";
3328  } else {
3329    switch (PD->getSetterKind()) {
3330    case ObjCPropertyDecl::Assign: break;
3331    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3332    case ObjCPropertyDecl::Retain: S += ",&"; break;
3333    }
3334  }
3335
3336  // It really isn't clear at all what this means, since properties
3337  // are "dynamic by default".
3338  if (Dynamic)
3339    S += ",D";
3340
3341  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3342    S += ",N";
3343
3344  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3345    S += ",G";
3346    S += PD->getGetterName().getAsString();
3347  }
3348
3349  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3350    S += ",S";
3351    S += PD->getSetterName().getAsString();
3352  }
3353
3354  if (SynthesizePID) {
3355    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3356    S += ",V";
3357    S += OID->getNameAsString();
3358  }
3359
3360  // FIXME: OBJCGC: weak & strong
3361}
3362
3363/// getLegacyIntegralTypeEncoding -
3364/// Another legacy compatibility encoding: 32-bit longs are encoded as
3365/// 'l' or 'L' , but not always.  For typedefs, we need to use
3366/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3367///
3368void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3369  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3370    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3371      if (BT->getKind() == BuiltinType::ULong &&
3372          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3373        PointeeTy = UnsignedIntTy;
3374      else
3375        if (BT->getKind() == BuiltinType::Long &&
3376            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3377          PointeeTy = IntTy;
3378    }
3379  }
3380}
3381
3382void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3383                                        const FieldDecl *Field) {
3384  // We follow the behavior of gcc, expanding structures which are
3385  // directly pointed to, and expanding embedded structures. Note that
3386  // these rules are sufficient to prevent recursive encoding of the
3387  // same type.
3388  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3389                             true /* outermost type */);
3390}
3391
3392static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3393    switch (T->getAs<BuiltinType>()->getKind()) {
3394    default: assert(0 && "Unhandled builtin type kind");
3395    case BuiltinType::Void:       return 'v';
3396    case BuiltinType::Bool:       return 'B';
3397    case BuiltinType::Char_U:
3398    case BuiltinType::UChar:      return 'C';
3399    case BuiltinType::UShort:     return 'S';
3400    case BuiltinType::UInt:       return 'I';
3401    case BuiltinType::ULong:
3402        return
3403          (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'L' : 'Q';
3404    case BuiltinType::UInt128:    return 'T';
3405    case BuiltinType::ULongLong:  return 'Q';
3406    case BuiltinType::Char_S:
3407    case BuiltinType::SChar:      return 'c';
3408    case BuiltinType::Short:      return 's';
3409    case BuiltinType::Int:        return 'i';
3410    case BuiltinType::Long:
3411      return
3412        (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'l' : 'q';
3413    case BuiltinType::LongLong:   return 'q';
3414    case BuiltinType::Int128:     return 't';
3415    case BuiltinType::Float:      return 'f';
3416    case BuiltinType::Double:     return 'd';
3417    case BuiltinType::LongDouble: return 'd';
3418    }
3419}
3420
3421static void EncodeBitField(const ASTContext *Context, std::string& S,
3422                           QualType T, const FieldDecl *FD) {
3423  const Expr *E = FD->getBitWidth();
3424  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3425  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3426  S += 'b';
3427  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3428  // The GNU runtime requires more information; bitfields are encoded as b,
3429  // then the offset (in bits) of the first element, then the type of the
3430  // bitfield, then the size in bits.  For example, in this structure:
3431  //
3432  // struct
3433  // {
3434  //    int integer;
3435  //    int flags:2;
3436  // };
3437  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
3438  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
3439  // information is not especially sensible, but we're stuck with it for
3440  // compatibility with GCC, although providing it breaks anything that
3441  // actually uses runtime introspection and wants to work on both runtimes...
3442  if (!Ctx->getLangOptions().NeXTRuntime) {
3443    const RecordDecl *RD = FD->getParent();
3444    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
3445    // FIXME: This same linear search is also used in ExprConstant - it might
3446    // be better if the FieldDecl stored its offset.  We'd be increasing the
3447    // size of the object slightly, but saving some time every time it is used.
3448    unsigned i = 0;
3449    for (RecordDecl::field_iterator Field = RD->field_begin(),
3450                                 FieldEnd = RD->field_end();
3451         Field != FieldEnd; (void)++Field, ++i) {
3452      if (*Field == FD)
3453        break;
3454    }
3455    S += llvm::utostr(RL.getFieldOffset(i));
3456    S += ObjCEncodingForPrimitiveKind(Context, T);
3457  }
3458  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3459  S += llvm::utostr(N);
3460}
3461
3462// FIXME: Use SmallString for accumulating string.
3463void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3464                                            bool ExpandPointedToStructures,
3465                                            bool ExpandStructures,
3466                                            const FieldDecl *FD,
3467                                            bool OutermostType,
3468                                            bool EncodingProperty) {
3469  if (T->getAs<BuiltinType>()) {
3470    if (FD && FD->isBitField())
3471      return EncodeBitField(this, S, T, FD);
3472    S += ObjCEncodingForPrimitiveKind(this, T);
3473    return;
3474  }
3475
3476  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3477    S += 'j';
3478    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3479                               false);
3480    return;
3481  }
3482
3483  // encoding for pointer or r3eference types.
3484  QualType PointeeTy;
3485  if (const PointerType *PT = T->getAs<PointerType>()) {
3486    if (PT->isObjCSelType()) {
3487      S += ':';
3488      return;
3489    }
3490    PointeeTy = PT->getPointeeType();
3491  }
3492  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3493    PointeeTy = RT->getPointeeType();
3494  if (!PointeeTy.isNull()) {
3495    bool isReadOnly = false;
3496    // For historical/compatibility reasons, the read-only qualifier of the
3497    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3498    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3499    // Also, do not emit the 'r' for anything but the outermost type!
3500    if (isa<TypedefType>(T.getTypePtr())) {
3501      if (OutermostType && T.isConstQualified()) {
3502        isReadOnly = true;
3503        S += 'r';
3504      }
3505    } else if (OutermostType) {
3506      QualType P = PointeeTy;
3507      while (P->getAs<PointerType>())
3508        P = P->getAs<PointerType>()->getPointeeType();
3509      if (P.isConstQualified()) {
3510        isReadOnly = true;
3511        S += 'r';
3512      }
3513    }
3514    if (isReadOnly) {
3515      // Another legacy compatibility encoding. Some ObjC qualifier and type
3516      // combinations need to be rearranged.
3517      // Rewrite "in const" from "nr" to "rn"
3518      if (llvm::StringRef(S).endswith("nr"))
3519        S.replace(S.end()-2, S.end(), "rn");
3520    }
3521
3522    if (PointeeTy->isCharType()) {
3523      // char pointer types should be encoded as '*' unless it is a
3524      // type that has been typedef'd to 'BOOL'.
3525      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3526        S += '*';
3527        return;
3528      }
3529    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3530      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3531      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3532        S += '#';
3533        return;
3534      }
3535      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3536      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3537        S += '@';
3538        return;
3539      }
3540      // fall through...
3541    }
3542    S += '^';
3543    getLegacyIntegralTypeEncoding(PointeeTy);
3544
3545    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3546                               NULL);
3547    return;
3548  }
3549
3550  if (const ArrayType *AT =
3551      // Ignore type qualifiers etc.
3552        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3553    if (isa<IncompleteArrayType>(AT)) {
3554      // Incomplete arrays are encoded as a pointer to the array element.
3555      S += '^';
3556
3557      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3558                                 false, ExpandStructures, FD);
3559    } else {
3560      S += '[';
3561
3562      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3563        S += llvm::utostr(CAT->getSize().getZExtValue());
3564      else {
3565        //Variable length arrays are encoded as a regular array with 0 elements.
3566        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3567        S += '0';
3568      }
3569
3570      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3571                                 false, ExpandStructures, FD);
3572      S += ']';
3573    }
3574    return;
3575  }
3576
3577  if (T->getAs<FunctionType>()) {
3578    S += '?';
3579    return;
3580  }
3581
3582  if (const RecordType *RTy = T->getAs<RecordType>()) {
3583    RecordDecl *RDecl = RTy->getDecl();
3584    S += RDecl->isUnion() ? '(' : '{';
3585    // Anonymous structures print as '?'
3586    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3587      S += II->getName();
3588      if (ClassTemplateSpecializationDecl *Spec
3589          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
3590        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3591        std::string TemplateArgsStr
3592          = TemplateSpecializationType::PrintTemplateArgumentList(
3593                                            TemplateArgs.getFlatArgumentList(),
3594                                            TemplateArgs.flat_size(),
3595                                            (*this).PrintingPolicy);
3596
3597        S += TemplateArgsStr;
3598      }
3599    } else {
3600      S += '?';
3601    }
3602    if (ExpandStructures) {
3603      S += '=';
3604      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3605                                   FieldEnd = RDecl->field_end();
3606           Field != FieldEnd; ++Field) {
3607        if (FD) {
3608          S += '"';
3609          S += Field->getNameAsString();
3610          S += '"';
3611        }
3612
3613        // Special case bit-fields.
3614        if (Field->isBitField()) {
3615          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3616                                     (*Field));
3617        } else {
3618          QualType qt = Field->getType();
3619          getLegacyIntegralTypeEncoding(qt);
3620          getObjCEncodingForTypeImpl(qt, S, false, true,
3621                                     FD);
3622        }
3623      }
3624    }
3625    S += RDecl->isUnion() ? ')' : '}';
3626    return;
3627  }
3628
3629  if (T->isEnumeralType()) {
3630    if (FD && FD->isBitField())
3631      EncodeBitField(this, S, T, FD);
3632    else
3633      S += 'i';
3634    return;
3635  }
3636
3637  if (T->isBlockPointerType()) {
3638    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3639    return;
3640  }
3641
3642  // Ignore protocol qualifiers when mangling at this level.
3643  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
3644    T = OT->getBaseType();
3645
3646  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3647    // @encode(class_name)
3648    ObjCInterfaceDecl *OI = OIT->getDecl();
3649    S += '{';
3650    const IdentifierInfo *II = OI->getIdentifier();
3651    S += II->getName();
3652    S += '=';
3653    llvm::SmallVector<FieldDecl*, 32> RecFields;
3654    CollectObjCIvars(OI, RecFields);
3655    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3656      if (RecFields[i]->isBitField())
3657        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3658                                   RecFields[i]);
3659      else
3660        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3661                                   FD);
3662    }
3663    S += '}';
3664    return;
3665  }
3666
3667  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3668    if (OPT->isObjCIdType()) {
3669      S += '@';
3670      return;
3671    }
3672
3673    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3674      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3675      // Since this is a binary compatibility issue, need to consult with runtime
3676      // folks. Fortunately, this is a *very* obsure construct.
3677      S += '#';
3678      return;
3679    }
3680
3681    if (OPT->isObjCQualifiedIdType()) {
3682      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3683                                 ExpandPointedToStructures,
3684                                 ExpandStructures, FD);
3685      if (FD || EncodingProperty) {
3686        // Note that we do extended encoding of protocol qualifer list
3687        // Only when doing ivar or property encoding.
3688        S += '"';
3689        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3690             E = OPT->qual_end(); I != E; ++I) {
3691          S += '<';
3692          S += (*I)->getNameAsString();
3693          S += '>';
3694        }
3695        S += '"';
3696      }
3697      return;
3698    }
3699
3700    QualType PointeeTy = OPT->getPointeeType();
3701    if (!EncodingProperty &&
3702        isa<TypedefType>(PointeeTy.getTypePtr())) {
3703      // Another historical/compatibility reason.
3704      // We encode the underlying type which comes out as
3705      // {...};
3706      S += '^';
3707      getObjCEncodingForTypeImpl(PointeeTy, S,
3708                                 false, ExpandPointedToStructures,
3709                                 NULL);
3710      return;
3711    }
3712
3713    S += '@';
3714    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3715      S += '"';
3716      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3717      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3718           E = OPT->qual_end(); I != E; ++I) {
3719        S += '<';
3720        S += (*I)->getNameAsString();
3721        S += '>';
3722      }
3723      S += '"';
3724    }
3725    return;
3726  }
3727
3728  // gcc just blithely ignores member pointers.
3729  // TODO: maybe there should be a mangling for these
3730  if (T->getAs<MemberPointerType>())
3731    return;
3732
3733  assert(0 && "@encode for type not implemented!");
3734}
3735
3736void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3737                                                 std::string& S) const {
3738  if (QT & Decl::OBJC_TQ_In)
3739    S += 'n';
3740  if (QT & Decl::OBJC_TQ_Inout)
3741    S += 'N';
3742  if (QT & Decl::OBJC_TQ_Out)
3743    S += 'o';
3744  if (QT & Decl::OBJC_TQ_Bycopy)
3745    S += 'O';
3746  if (QT & Decl::OBJC_TQ_Byref)
3747    S += 'R';
3748  if (QT & Decl::OBJC_TQ_Oneway)
3749    S += 'V';
3750}
3751
3752void ASTContext::setBuiltinVaListType(QualType T) {
3753  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3754
3755  BuiltinVaListType = T;
3756}
3757
3758void ASTContext::setObjCIdType(QualType T) {
3759  ObjCIdTypedefType = T;
3760}
3761
3762void ASTContext::setObjCSelType(QualType T) {
3763  ObjCSelTypedefType = T;
3764}
3765
3766void ASTContext::setObjCProtoType(QualType QT) {
3767  ObjCProtoType = QT;
3768}
3769
3770void ASTContext::setObjCClassType(QualType T) {
3771  ObjCClassTypedefType = T;
3772}
3773
3774void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3775  assert(ObjCConstantStringType.isNull() &&
3776         "'NSConstantString' type already set!");
3777
3778  ObjCConstantStringType = getObjCInterfaceType(Decl);
3779}
3780
3781/// \brief Retrieve the template name that corresponds to a non-empty
3782/// lookup.
3783TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3784                                                   UnresolvedSetIterator End) {
3785  unsigned size = End - Begin;
3786  assert(size > 1 && "set is not overloaded!");
3787
3788  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3789                          size * sizeof(FunctionTemplateDecl*));
3790  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3791
3792  NamedDecl **Storage = OT->getStorage();
3793  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3794    NamedDecl *D = *I;
3795    assert(isa<FunctionTemplateDecl>(D) ||
3796           (isa<UsingShadowDecl>(D) &&
3797            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3798    *Storage++ = D;
3799  }
3800
3801  return TemplateName(OT);
3802}
3803
3804/// \brief Retrieve the template name that represents a qualified
3805/// template name such as \c std::vector.
3806TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3807                                                  bool TemplateKeyword,
3808                                                  TemplateDecl *Template) {
3809  // FIXME: Canonicalization?
3810  llvm::FoldingSetNodeID ID;
3811  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3812
3813  void *InsertPos = 0;
3814  QualifiedTemplateName *QTN =
3815    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3816  if (!QTN) {
3817    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3818    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3819  }
3820
3821  return TemplateName(QTN);
3822}
3823
3824/// \brief Retrieve the template name that represents a dependent
3825/// template name such as \c MetaFun::template apply.
3826TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3827                                                  const IdentifierInfo *Name) {
3828  assert((!NNS || NNS->isDependent()) &&
3829         "Nested name specifier must be dependent");
3830
3831  llvm::FoldingSetNodeID ID;
3832  DependentTemplateName::Profile(ID, NNS, Name);
3833
3834  void *InsertPos = 0;
3835  DependentTemplateName *QTN =
3836    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3837
3838  if (QTN)
3839    return TemplateName(QTN);
3840
3841  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3842  if (CanonNNS == NNS) {
3843    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3844  } else {
3845    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3846    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3847    DependentTemplateName *CheckQTN =
3848      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3849    assert(!CheckQTN && "Dependent type name canonicalization broken");
3850    (void)CheckQTN;
3851  }
3852
3853  DependentTemplateNames.InsertNode(QTN, InsertPos);
3854  return TemplateName(QTN);
3855}
3856
3857/// \brief Retrieve the template name that represents a dependent
3858/// template name such as \c MetaFun::template operator+.
3859TemplateName
3860ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3861                                     OverloadedOperatorKind Operator) {
3862  assert((!NNS || NNS->isDependent()) &&
3863         "Nested name specifier must be dependent");
3864
3865  llvm::FoldingSetNodeID ID;
3866  DependentTemplateName::Profile(ID, NNS, Operator);
3867
3868  void *InsertPos = 0;
3869  DependentTemplateName *QTN
3870    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3871
3872  if (QTN)
3873    return TemplateName(QTN);
3874
3875  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3876  if (CanonNNS == NNS) {
3877    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3878  } else {
3879    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3880    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3881
3882    DependentTemplateName *CheckQTN
3883      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3884    assert(!CheckQTN && "Dependent template name canonicalization broken");
3885    (void)CheckQTN;
3886  }
3887
3888  DependentTemplateNames.InsertNode(QTN, InsertPos);
3889  return TemplateName(QTN);
3890}
3891
3892/// getFromTargetType - Given one of the integer types provided by
3893/// TargetInfo, produce the corresponding type. The unsigned @p Type
3894/// is actually a value of type @c TargetInfo::IntType.
3895CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3896  switch (Type) {
3897  case TargetInfo::NoInt: return CanQualType();
3898  case TargetInfo::SignedShort: return ShortTy;
3899  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3900  case TargetInfo::SignedInt: return IntTy;
3901  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3902  case TargetInfo::SignedLong: return LongTy;
3903  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3904  case TargetInfo::SignedLongLong: return LongLongTy;
3905  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3906  }
3907
3908  assert(false && "Unhandled TargetInfo::IntType value");
3909  return CanQualType();
3910}
3911
3912//===----------------------------------------------------------------------===//
3913//                        Type Predicates.
3914//===----------------------------------------------------------------------===//
3915
3916/// isObjCNSObjectType - Return true if this is an NSObject object using
3917/// NSObject attribute on a c-style pointer type.
3918/// FIXME - Make it work directly on types.
3919/// FIXME: Move to Type.
3920///
3921bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3922  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3923    if (TypedefDecl *TD = TDT->getDecl())
3924      if (TD->getAttr<ObjCNSObjectAttr>())
3925        return true;
3926  }
3927  return false;
3928}
3929
3930/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3931/// garbage collection attribute.
3932///
3933Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3934  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3935  if (getLangOptions().ObjC1 &&
3936      getLangOptions().getGCMode() != LangOptions::NonGC) {
3937    GCAttrs = Ty.getObjCGCAttr();
3938    // Default behavious under objective-c's gc is for objective-c pointers
3939    // (or pointers to them) be treated as though they were declared
3940    // as __strong.
3941    if (GCAttrs == Qualifiers::GCNone) {
3942      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3943        GCAttrs = Qualifiers::Strong;
3944      else if (Ty->isPointerType())
3945        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3946    }
3947    // Non-pointers have none gc'able attribute regardless of the attribute
3948    // set on them.
3949    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3950      return Qualifiers::GCNone;
3951  }
3952  return GCAttrs;
3953}
3954
3955//===----------------------------------------------------------------------===//
3956//                        Type Compatibility Testing
3957//===----------------------------------------------------------------------===//
3958
3959/// areCompatVectorTypes - Return true if the two specified vector types are
3960/// compatible.
3961static bool areCompatVectorTypes(const VectorType *LHS,
3962                                 const VectorType *RHS) {
3963  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3964  return LHS->getElementType() == RHS->getElementType() &&
3965         LHS->getNumElements() == RHS->getNumElements();
3966}
3967
3968//===----------------------------------------------------------------------===//
3969// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3970//===----------------------------------------------------------------------===//
3971
3972/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3973/// inheritance hierarchy of 'rProto'.
3974bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3975                                                ObjCProtocolDecl *rProto) {
3976  if (lProto == rProto)
3977    return true;
3978  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3979       E = rProto->protocol_end(); PI != E; ++PI)
3980    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3981      return true;
3982  return false;
3983}
3984
3985/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3986/// return true if lhs's protocols conform to rhs's protocol; false
3987/// otherwise.
3988bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3989  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3990    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3991  return false;
3992}
3993
3994/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3995/// ObjCQualifiedIDType.
3996bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3997                                                   bool compare) {
3998  // Allow id<P..> and an 'id' or void* type in all cases.
3999  if (lhs->isVoidPointerType() ||
4000      lhs->isObjCIdType() || lhs->isObjCClassType())
4001    return true;
4002  else if (rhs->isVoidPointerType() ||
4003           rhs->isObjCIdType() || rhs->isObjCClassType())
4004    return true;
4005
4006  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4007    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4008
4009    if (!rhsOPT) return false;
4010
4011    if (rhsOPT->qual_empty()) {
4012      // If the RHS is a unqualified interface pointer "NSString*",
4013      // make sure we check the class hierarchy.
4014      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4015        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4016             E = lhsQID->qual_end(); I != E; ++I) {
4017          // when comparing an id<P> on lhs with a static type on rhs,
4018          // see if static class implements all of id's protocols, directly or
4019          // through its super class and categories.
4020          if (!rhsID->ClassImplementsProtocol(*I, true))
4021            return false;
4022        }
4023      }
4024      // If there are no qualifiers and no interface, we have an 'id'.
4025      return true;
4026    }
4027    // Both the right and left sides have qualifiers.
4028    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4029         E = lhsQID->qual_end(); I != E; ++I) {
4030      ObjCProtocolDecl *lhsProto = *I;
4031      bool match = false;
4032
4033      // when comparing an id<P> on lhs with a static type on rhs,
4034      // see if static class implements all of id's protocols, directly or
4035      // through its super class and categories.
4036      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4037           E = rhsOPT->qual_end(); J != E; ++J) {
4038        ObjCProtocolDecl *rhsProto = *J;
4039        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4040            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4041          match = true;
4042          break;
4043        }
4044      }
4045      // If the RHS is a qualified interface pointer "NSString<P>*",
4046      // make sure we check the class hierarchy.
4047      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4048        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4049             E = lhsQID->qual_end(); I != E; ++I) {
4050          // when comparing an id<P> on lhs with a static type on rhs,
4051          // see if static class implements all of id's protocols, directly or
4052          // through its super class and categories.
4053          if (rhsID->ClassImplementsProtocol(*I, true)) {
4054            match = true;
4055            break;
4056          }
4057        }
4058      }
4059      if (!match)
4060        return false;
4061    }
4062
4063    return true;
4064  }
4065
4066  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4067  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4068
4069  if (const ObjCObjectPointerType *lhsOPT =
4070        lhs->getAsObjCInterfacePointerType()) {
4071    if (lhsOPT->qual_empty()) {
4072      bool match = false;
4073      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4074        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4075             E = rhsQID->qual_end(); I != E; ++I) {
4076          // when comparing an id<P> on lhs with a static type on rhs,
4077          // see if static class implements all of id's protocols, directly or
4078          // through its super class and categories.
4079          if (lhsID->ClassImplementsProtocol(*I, true)) {
4080            match = true;
4081            break;
4082          }
4083        }
4084        if (!match)
4085          return false;
4086      }
4087      return true;
4088    }
4089    // Both the right and left sides have qualifiers.
4090    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4091         E = lhsOPT->qual_end(); I != E; ++I) {
4092      ObjCProtocolDecl *lhsProto = *I;
4093      bool match = false;
4094
4095      // when comparing an id<P> on lhs with a static type on rhs,
4096      // see if static class implements all of id's protocols, directly or
4097      // through its super class and categories.
4098      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4099           E = rhsQID->qual_end(); J != E; ++J) {
4100        ObjCProtocolDecl *rhsProto = *J;
4101        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4102            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4103          match = true;
4104          break;
4105        }
4106      }
4107      if (!match)
4108        return false;
4109    }
4110    return true;
4111  }
4112  return false;
4113}
4114
4115/// canAssignObjCInterfaces - Return true if the two interface types are
4116/// compatible for assignment from RHS to LHS.  This handles validation of any
4117/// protocol qualifiers on the LHS or RHS.
4118///
4119bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4120                                         const ObjCObjectPointerType *RHSOPT) {
4121  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4122  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4123
4124  // If either type represents the built-in 'id' or 'Class' types, return true.
4125  if (LHS->isObjCUnqualifiedIdOrClass() ||
4126      RHS->isObjCUnqualifiedIdOrClass())
4127    return true;
4128
4129  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4130    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4131                                             QualType(RHSOPT,0),
4132                                             false);
4133
4134  // If we have 2 user-defined types, fall into that path.
4135  if (LHS->getInterface() && RHS->getInterface())
4136    return canAssignObjCInterfaces(LHS, RHS);
4137
4138  return false;
4139}
4140
4141/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4142/// for providing type-safty for objective-c pointers used to pass/return
4143/// arguments in block literals. When passed as arguments, passing 'A*' where
4144/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4145/// not OK. For the return type, the opposite is not OK.
4146bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4147                                         const ObjCObjectPointerType *LHSOPT,
4148                                         const ObjCObjectPointerType *RHSOPT) {
4149  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4150    return true;
4151
4152  if (LHSOPT->isObjCBuiltinType()) {
4153    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4154  }
4155
4156  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4157    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4158                                             QualType(RHSOPT,0),
4159                                             false);
4160
4161  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4162  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4163  if (LHS && RHS)  { // We have 2 user-defined types.
4164    if (LHS != RHS) {
4165      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4166        return false;
4167      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4168        return true;
4169    }
4170    else
4171      return true;
4172  }
4173  return false;
4174}
4175
4176/// getIntersectionOfProtocols - This routine finds the intersection of set
4177/// of protocols inherited from two distinct objective-c pointer objects.
4178/// It is used to build composite qualifier list of the composite type of
4179/// the conditional expression involving two objective-c pointer objects.
4180static
4181void getIntersectionOfProtocols(ASTContext &Context,
4182                                const ObjCObjectPointerType *LHSOPT,
4183                                const ObjCObjectPointerType *RHSOPT,
4184      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4185
4186  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4187  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4188  assert(LHS->getInterface() && "LHS must have an interface base");
4189  assert(RHS->getInterface() && "RHS must have an interface base");
4190
4191  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4192  unsigned LHSNumProtocols = LHS->getNumProtocols();
4193  if (LHSNumProtocols > 0)
4194    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4195  else {
4196    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4197    Context.CollectInheritedProtocols(LHS->getInterface(),
4198                                      LHSInheritedProtocols);
4199    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4200                                LHSInheritedProtocols.end());
4201  }
4202
4203  unsigned RHSNumProtocols = RHS->getNumProtocols();
4204  if (RHSNumProtocols > 0) {
4205    ObjCProtocolDecl **RHSProtocols =
4206      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4207    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4208      if (InheritedProtocolSet.count(RHSProtocols[i]))
4209        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4210  }
4211  else {
4212    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4213    Context.CollectInheritedProtocols(RHS->getInterface(),
4214                                      RHSInheritedProtocols);
4215    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4216         RHSInheritedProtocols.begin(),
4217         E = RHSInheritedProtocols.end(); I != E; ++I)
4218      if (InheritedProtocolSet.count((*I)))
4219        IntersectionOfProtocols.push_back((*I));
4220  }
4221}
4222
4223/// areCommonBaseCompatible - Returns common base class of the two classes if
4224/// one found. Note that this is O'2 algorithm. But it will be called as the
4225/// last type comparison in a ?-exp of ObjC pointer types before a
4226/// warning is issued. So, its invokation is extremely rare.
4227QualType ASTContext::areCommonBaseCompatible(
4228                                          const ObjCObjectPointerType *Lptr,
4229                                          const ObjCObjectPointerType *Rptr) {
4230  const ObjCObjectType *LHS = Lptr->getObjectType();
4231  const ObjCObjectType *RHS = Rptr->getObjectType();
4232  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4233  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4234  if (!LDecl || !RDecl)
4235    return QualType();
4236
4237  while ((LDecl = LDecl->getSuperClass())) {
4238    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4239    if (canAssignObjCInterfaces(LHS, RHS)) {
4240      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4241      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4242
4243      QualType Result = QualType(LHS, 0);
4244      if (!Protocols.empty())
4245        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4246      Result = getObjCObjectPointerType(Result);
4247      return Result;
4248    }
4249  }
4250
4251  return QualType();
4252}
4253
4254bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4255                                         const ObjCObjectType *RHS) {
4256  assert(LHS->getInterface() && "LHS is not an interface type");
4257  assert(RHS->getInterface() && "RHS is not an interface type");
4258
4259  // Verify that the base decls are compatible: the RHS must be a subclass of
4260  // the LHS.
4261  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4262    return false;
4263
4264  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4265  // protocol qualified at all, then we are good.
4266  if (LHS->getNumProtocols() == 0)
4267    return true;
4268
4269  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4270  // isn't a superset.
4271  if (RHS->getNumProtocols() == 0)
4272    return true;  // FIXME: should return false!
4273
4274  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4275                                     LHSPE = LHS->qual_end();
4276       LHSPI != LHSPE; LHSPI++) {
4277    bool RHSImplementsProtocol = false;
4278
4279    // If the RHS doesn't implement the protocol on the left, the types
4280    // are incompatible.
4281    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4282                                       RHSPE = RHS->qual_end();
4283         RHSPI != RHSPE; RHSPI++) {
4284      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4285        RHSImplementsProtocol = true;
4286        break;
4287      }
4288    }
4289    // FIXME: For better diagnostics, consider passing back the protocol name.
4290    if (!RHSImplementsProtocol)
4291      return false;
4292  }
4293  // The RHS implements all protocols listed on the LHS.
4294  return true;
4295}
4296
4297bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4298  // get the "pointed to" types
4299  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4300  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4301
4302  if (!LHSOPT || !RHSOPT)
4303    return false;
4304
4305  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4306         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4307}
4308
4309/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4310/// both shall have the identically qualified version of a compatible type.
4311/// C99 6.2.7p1: Two types have compatible types if their types are the
4312/// same. See 6.7.[2,3,5] for additional rules.
4313bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4314  if (getLangOptions().CPlusPlus)
4315    return hasSameType(LHS, RHS);
4316
4317  return !mergeTypes(LHS, RHS).isNull();
4318}
4319
4320bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4321  return !mergeTypes(LHS, RHS, true).isNull();
4322}
4323
4324QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4325                                        bool OfBlockPointer) {
4326  const FunctionType *lbase = lhs->getAs<FunctionType>();
4327  const FunctionType *rbase = rhs->getAs<FunctionType>();
4328  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4329  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4330  bool allLTypes = true;
4331  bool allRTypes = true;
4332
4333  // Check return type
4334  QualType retType;
4335  if (OfBlockPointer)
4336    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true);
4337  else
4338   retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4339  if (retType.isNull()) return QualType();
4340  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4341    allLTypes = false;
4342  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4343    allRTypes = false;
4344  // FIXME: double check this
4345  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4346  //                           rbase->getRegParmAttr() != 0 &&
4347  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4348  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4349  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4350  unsigned RegParm = lbaseInfo.getRegParm() == 0 ? rbaseInfo.getRegParm() :
4351      lbaseInfo.getRegParm();
4352  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4353  if (NoReturn != lbaseInfo.getNoReturn() ||
4354      RegParm != lbaseInfo.getRegParm())
4355    allLTypes = false;
4356  if (NoReturn != rbaseInfo.getNoReturn() ||
4357      RegParm != rbaseInfo.getRegParm())
4358    allRTypes = false;
4359  CallingConv lcc = lbaseInfo.getCC();
4360  CallingConv rcc = rbaseInfo.getCC();
4361  // Compatible functions must have compatible calling conventions
4362  if (!isSameCallConv(lcc, rcc))
4363    return QualType();
4364
4365  if (lproto && rproto) { // two C99 style function prototypes
4366    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4367           "C++ shouldn't be here");
4368    unsigned lproto_nargs = lproto->getNumArgs();
4369    unsigned rproto_nargs = rproto->getNumArgs();
4370
4371    // Compatible functions must have the same number of arguments
4372    if (lproto_nargs != rproto_nargs)
4373      return QualType();
4374
4375    // Variadic and non-variadic functions aren't compatible
4376    if (lproto->isVariadic() != rproto->isVariadic())
4377      return QualType();
4378
4379    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4380      return QualType();
4381
4382    // Check argument compatibility
4383    llvm::SmallVector<QualType, 10> types;
4384    for (unsigned i = 0; i < lproto_nargs; i++) {
4385      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4386      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4387      QualType argtype = mergeTypes(largtype, rargtype, OfBlockPointer);
4388      if (argtype.isNull()) return QualType();
4389      types.push_back(argtype);
4390      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4391        allLTypes = false;
4392      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4393        allRTypes = false;
4394    }
4395    if (allLTypes) return lhs;
4396    if (allRTypes) return rhs;
4397    return getFunctionType(retType, types.begin(), types.size(),
4398                           lproto->isVariadic(), lproto->getTypeQuals(),
4399                           false, false, 0, 0,
4400                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4401  }
4402
4403  if (lproto) allRTypes = false;
4404  if (rproto) allLTypes = false;
4405
4406  const FunctionProtoType *proto = lproto ? lproto : rproto;
4407  if (proto) {
4408    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4409    if (proto->isVariadic()) return QualType();
4410    // Check that the types are compatible with the types that
4411    // would result from default argument promotions (C99 6.7.5.3p15).
4412    // The only types actually affected are promotable integer
4413    // types and floats, which would be passed as a different
4414    // type depending on whether the prototype is visible.
4415    unsigned proto_nargs = proto->getNumArgs();
4416    for (unsigned i = 0; i < proto_nargs; ++i) {
4417      QualType argTy = proto->getArgType(i);
4418
4419      // Look at the promotion type of enum types, since that is the type used
4420      // to pass enum values.
4421      if (const EnumType *Enum = argTy->getAs<EnumType>())
4422        argTy = Enum->getDecl()->getPromotionType();
4423
4424      if (argTy->isPromotableIntegerType() ||
4425          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4426        return QualType();
4427    }
4428
4429    if (allLTypes) return lhs;
4430    if (allRTypes) return rhs;
4431    return getFunctionType(retType, proto->arg_type_begin(),
4432                           proto->getNumArgs(), proto->isVariadic(),
4433                           proto->getTypeQuals(),
4434                           false, false, 0, 0,
4435                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4436  }
4437
4438  if (allLTypes) return lhs;
4439  if (allRTypes) return rhs;
4440  FunctionType::ExtInfo Info(NoReturn, RegParm, lcc);
4441  return getFunctionNoProtoType(retType, Info);
4442}
4443
4444QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
4445                                bool OfBlockPointer) {
4446  // C++ [expr]: If an expression initially has the type "reference to T", the
4447  // type is adjusted to "T" prior to any further analysis, the expression
4448  // designates the object or function denoted by the reference, and the
4449  // expression is an lvalue unless the reference is an rvalue reference and
4450  // the expression is a function call (possibly inside parentheses).
4451  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4452  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4453
4454  QualType LHSCan = getCanonicalType(LHS),
4455           RHSCan = getCanonicalType(RHS);
4456
4457  // If two types are identical, they are compatible.
4458  if (LHSCan == RHSCan)
4459    return LHS;
4460
4461  // If the qualifiers are different, the types aren't compatible... mostly.
4462  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4463  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4464  if (LQuals != RQuals) {
4465    // If any of these qualifiers are different, we have a type
4466    // mismatch.
4467    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4468        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4469      return QualType();
4470
4471    // Exactly one GC qualifier difference is allowed: __strong is
4472    // okay if the other type has no GC qualifier but is an Objective
4473    // C object pointer (i.e. implicitly strong by default).  We fix
4474    // this by pretending that the unqualified type was actually
4475    // qualified __strong.
4476    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4477    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4478    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4479
4480    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4481      return QualType();
4482
4483    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4484      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4485    }
4486    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4487      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4488    }
4489    return QualType();
4490  }
4491
4492  // Okay, qualifiers are equal.
4493
4494  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4495  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4496
4497  // We want to consider the two function types to be the same for these
4498  // comparisons, just force one to the other.
4499  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4500  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4501
4502  // Same as above for arrays
4503  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4504    LHSClass = Type::ConstantArray;
4505  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4506    RHSClass = Type::ConstantArray;
4507
4508  // ObjCInterfaces are just specialized ObjCObjects.
4509  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
4510  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
4511
4512  // Canonicalize ExtVector -> Vector.
4513  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4514  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4515
4516  // If the canonical type classes don't match.
4517  if (LHSClass != RHSClass) {
4518    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4519    // a signed integer type, or an unsigned integer type.
4520    // Compatibility is based on the underlying type, not the promotion
4521    // type.
4522    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4523      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4524        return RHS;
4525    }
4526    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4527      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4528        return LHS;
4529    }
4530
4531    return QualType();
4532  }
4533
4534  // The canonical type classes match.
4535  switch (LHSClass) {
4536#define TYPE(Class, Base)
4537#define ABSTRACT_TYPE(Class, Base)
4538#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
4539#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4540#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4541#include "clang/AST/TypeNodes.def"
4542    assert(false && "Non-canonical and dependent types shouldn't get here");
4543    return QualType();
4544
4545  case Type::LValueReference:
4546  case Type::RValueReference:
4547  case Type::MemberPointer:
4548    assert(false && "C++ should never be in mergeTypes");
4549    return QualType();
4550
4551  case Type::ObjCInterface:
4552  case Type::IncompleteArray:
4553  case Type::VariableArray:
4554  case Type::FunctionProto:
4555  case Type::ExtVector:
4556    assert(false && "Types are eliminated above");
4557    return QualType();
4558
4559  case Type::Pointer:
4560  {
4561    // Merge two pointer types, while trying to preserve typedef info
4562    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4563    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4564    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4565    if (ResultType.isNull()) return QualType();
4566    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4567      return LHS;
4568    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4569      return RHS;
4570    return getPointerType(ResultType);
4571  }
4572  case Type::BlockPointer:
4573  {
4574    // Merge two block pointer types, while trying to preserve typedef info
4575    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4576    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4577    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer);
4578    if (ResultType.isNull()) return QualType();
4579    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4580      return LHS;
4581    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4582      return RHS;
4583    return getBlockPointerType(ResultType);
4584  }
4585  case Type::ConstantArray:
4586  {
4587    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4588    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4589    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4590      return QualType();
4591
4592    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4593    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4594    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4595    if (ResultType.isNull()) return QualType();
4596    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4597      return LHS;
4598    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4599      return RHS;
4600    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4601                                          ArrayType::ArraySizeModifier(), 0);
4602    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4603                                          ArrayType::ArraySizeModifier(), 0);
4604    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4605    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4606    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4607      return LHS;
4608    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4609      return RHS;
4610    if (LVAT) {
4611      // FIXME: This isn't correct! But tricky to implement because
4612      // the array's size has to be the size of LHS, but the type
4613      // has to be different.
4614      return LHS;
4615    }
4616    if (RVAT) {
4617      // FIXME: This isn't correct! But tricky to implement because
4618      // the array's size has to be the size of RHS, but the type
4619      // has to be different.
4620      return RHS;
4621    }
4622    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4623    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4624    return getIncompleteArrayType(ResultType,
4625                                  ArrayType::ArraySizeModifier(), 0);
4626  }
4627  case Type::FunctionNoProto:
4628    return mergeFunctionTypes(LHS, RHS, OfBlockPointer);
4629  case Type::Record:
4630  case Type::Enum:
4631    return QualType();
4632  case Type::Builtin:
4633    // Only exactly equal builtin types are compatible, which is tested above.
4634    return QualType();
4635  case Type::Complex:
4636    // Distinct complex types are incompatible.
4637    return QualType();
4638  case Type::Vector:
4639    // FIXME: The merged type should be an ExtVector!
4640    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
4641                             RHSCan->getAs<VectorType>()))
4642      return LHS;
4643    return QualType();
4644  case Type::ObjCObject: {
4645    // Check if the types are assignment compatible.
4646    // FIXME: This should be type compatibility, e.g. whether
4647    // "LHS x; RHS x;" at global scope is legal.
4648    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
4649    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
4650    if (canAssignObjCInterfaces(LHSIface, RHSIface))
4651      return LHS;
4652
4653    return QualType();
4654  }
4655  case Type::ObjCObjectPointer: {
4656    if (OfBlockPointer) {
4657      if (canAssignObjCInterfacesInBlockPointer(
4658                                          LHS->getAs<ObjCObjectPointerType>(),
4659                                          RHS->getAs<ObjCObjectPointerType>()))
4660      return LHS;
4661      return QualType();
4662    }
4663    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4664                                RHS->getAs<ObjCObjectPointerType>()))
4665      return LHS;
4666
4667    return QualType();
4668    }
4669  }
4670
4671  return QualType();
4672}
4673
4674/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
4675/// 'RHS' attributes and returns the merged version; including for function
4676/// return types.
4677QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
4678  QualType LHSCan = getCanonicalType(LHS),
4679  RHSCan = getCanonicalType(RHS);
4680  // If two types are identical, they are compatible.
4681  if (LHSCan == RHSCan)
4682    return LHS;
4683  if (RHSCan->isFunctionType()) {
4684    if (!LHSCan->isFunctionType())
4685      return QualType();
4686    QualType OldReturnType =
4687      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
4688    QualType NewReturnType =
4689      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
4690    QualType ResReturnType =
4691      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
4692    if (ResReturnType.isNull())
4693      return QualType();
4694    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
4695      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
4696      // In either case, use OldReturnType to build the new function type.
4697      const FunctionType *F = LHS->getAs<FunctionType>();
4698      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
4699        FunctionType::ExtInfo Info = getFunctionExtInfo(LHS);
4700        QualType ResultType
4701          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
4702                                  FPT->getNumArgs(), FPT->isVariadic(),
4703                                  FPT->getTypeQuals(),
4704                                  FPT->hasExceptionSpec(),
4705                                  FPT->hasAnyExceptionSpec(),
4706                                  FPT->getNumExceptions(),
4707                                  FPT->exception_begin(),
4708                                  Info);
4709        return ResultType;
4710      }
4711    }
4712    return QualType();
4713  }
4714
4715  // If the qualifiers are different, the types can still be merged.
4716  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4717  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4718  if (LQuals != RQuals) {
4719    // If any of these qualifiers are different, we have a type mismatch.
4720    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4721        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4722      return QualType();
4723
4724    // Exactly one GC qualifier difference is allowed: __strong is
4725    // okay if the other type has no GC qualifier but is an Objective
4726    // C object pointer (i.e. implicitly strong by default).  We fix
4727    // this by pretending that the unqualified type was actually
4728    // qualified __strong.
4729    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4730    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4731    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4732
4733    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4734      return QualType();
4735
4736    if (GC_L == Qualifiers::Strong)
4737      return LHS;
4738    if (GC_R == Qualifiers::Strong)
4739      return RHS;
4740    return QualType();
4741  }
4742
4743  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
4744    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
4745    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
4746    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
4747    if (ResQT == LHSBaseQT)
4748      return LHS;
4749    if (ResQT == RHSBaseQT)
4750      return RHS;
4751  }
4752  return QualType();
4753}
4754
4755//===----------------------------------------------------------------------===//
4756//                         Integer Predicates
4757//===----------------------------------------------------------------------===//
4758
4759unsigned ASTContext::getIntWidth(QualType T) {
4760  if (T->isBooleanType())
4761    return 1;
4762  if (EnumType *ET = dyn_cast<EnumType>(T))
4763    T = ET->getDecl()->getIntegerType();
4764  // For builtin types, just use the standard type sizing method
4765  return (unsigned)getTypeSize(T);
4766}
4767
4768QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4769  assert(T->isSignedIntegerType() && "Unexpected type");
4770
4771  // Turn <4 x signed int> -> <4 x unsigned int>
4772  if (const VectorType *VTy = T->getAs<VectorType>())
4773    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4774             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4775
4776  // For enums, we return the unsigned version of the base type.
4777  if (const EnumType *ETy = T->getAs<EnumType>())
4778    T = ETy->getDecl()->getIntegerType();
4779
4780  const BuiltinType *BTy = T->getAs<BuiltinType>();
4781  assert(BTy && "Unexpected signed integer type");
4782  switch (BTy->getKind()) {
4783  case BuiltinType::Char_S:
4784  case BuiltinType::SChar:
4785    return UnsignedCharTy;
4786  case BuiltinType::Short:
4787    return UnsignedShortTy;
4788  case BuiltinType::Int:
4789    return UnsignedIntTy;
4790  case BuiltinType::Long:
4791    return UnsignedLongTy;
4792  case BuiltinType::LongLong:
4793    return UnsignedLongLongTy;
4794  case BuiltinType::Int128:
4795    return UnsignedInt128Ty;
4796  default:
4797    assert(0 && "Unexpected signed integer type");
4798    return QualType();
4799  }
4800}
4801
4802ExternalASTSource::~ExternalASTSource() { }
4803
4804void ExternalASTSource::PrintStats() { }
4805
4806
4807//===----------------------------------------------------------------------===//
4808//                          Builtin Type Computation
4809//===----------------------------------------------------------------------===//
4810
4811/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4812/// pointer over the consumed characters.  This returns the resultant type.
4813static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4814                                  ASTContext::GetBuiltinTypeError &Error,
4815                                  bool AllowTypeModifiers = true) {
4816  // Modifiers.
4817  int HowLong = 0;
4818  bool Signed = false, Unsigned = false;
4819
4820  // Read the modifiers first.
4821  bool Done = false;
4822  while (!Done) {
4823    switch (*Str++) {
4824    default: Done = true; --Str; break;
4825    case 'S':
4826      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4827      assert(!Signed && "Can't use 'S' modifier multiple times!");
4828      Signed = true;
4829      break;
4830    case 'U':
4831      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4832      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4833      Unsigned = true;
4834      break;
4835    case 'L':
4836      assert(HowLong <= 2 && "Can't have LLLL modifier");
4837      ++HowLong;
4838      break;
4839    }
4840  }
4841
4842  QualType Type;
4843
4844  // Read the base type.
4845  switch (*Str++) {
4846  default: assert(0 && "Unknown builtin type letter!");
4847  case 'v':
4848    assert(HowLong == 0 && !Signed && !Unsigned &&
4849           "Bad modifiers used with 'v'!");
4850    Type = Context.VoidTy;
4851    break;
4852  case 'f':
4853    assert(HowLong == 0 && !Signed && !Unsigned &&
4854           "Bad modifiers used with 'f'!");
4855    Type = Context.FloatTy;
4856    break;
4857  case 'd':
4858    assert(HowLong < 2 && !Signed && !Unsigned &&
4859           "Bad modifiers used with 'd'!");
4860    if (HowLong)
4861      Type = Context.LongDoubleTy;
4862    else
4863      Type = Context.DoubleTy;
4864    break;
4865  case 's':
4866    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4867    if (Unsigned)
4868      Type = Context.UnsignedShortTy;
4869    else
4870      Type = Context.ShortTy;
4871    break;
4872  case 'i':
4873    if (HowLong == 3)
4874      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4875    else if (HowLong == 2)
4876      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4877    else if (HowLong == 1)
4878      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4879    else
4880      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4881    break;
4882  case 'c':
4883    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4884    if (Signed)
4885      Type = Context.SignedCharTy;
4886    else if (Unsigned)
4887      Type = Context.UnsignedCharTy;
4888    else
4889      Type = Context.CharTy;
4890    break;
4891  case 'b': // boolean
4892    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4893    Type = Context.BoolTy;
4894    break;
4895  case 'z':  // size_t.
4896    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4897    Type = Context.getSizeType();
4898    break;
4899  case 'F':
4900    Type = Context.getCFConstantStringType();
4901    break;
4902  case 'a':
4903    Type = Context.getBuiltinVaListType();
4904    assert(!Type.isNull() && "builtin va list type not initialized!");
4905    break;
4906  case 'A':
4907    // This is a "reference" to a va_list; however, what exactly
4908    // this means depends on how va_list is defined. There are two
4909    // different kinds of va_list: ones passed by value, and ones
4910    // passed by reference.  An example of a by-value va_list is
4911    // x86, where va_list is a char*. An example of by-ref va_list
4912    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4913    // we want this argument to be a char*&; for x86-64, we want
4914    // it to be a __va_list_tag*.
4915    Type = Context.getBuiltinVaListType();
4916    assert(!Type.isNull() && "builtin va list type not initialized!");
4917    if (Type->isArrayType()) {
4918      Type = Context.getArrayDecayedType(Type);
4919    } else {
4920      Type = Context.getLValueReferenceType(Type);
4921    }
4922    break;
4923  case 'V': {
4924    char *End;
4925    unsigned NumElements = strtoul(Str, &End, 10);
4926    assert(End != Str && "Missing vector size");
4927
4928    Str = End;
4929
4930    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4931    // FIXME: Don't know what to do about AltiVec.
4932    Type = Context.getVectorType(ElementType, NumElements, false, false);
4933    break;
4934  }
4935  case 'X': {
4936    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4937    Type = Context.getComplexType(ElementType);
4938    break;
4939  }
4940  case 'P':
4941    Type = Context.getFILEType();
4942    if (Type.isNull()) {
4943      Error = ASTContext::GE_Missing_stdio;
4944      return QualType();
4945    }
4946    break;
4947  case 'J':
4948    if (Signed)
4949      Type = Context.getsigjmp_bufType();
4950    else
4951      Type = Context.getjmp_bufType();
4952
4953    if (Type.isNull()) {
4954      Error = ASTContext::GE_Missing_setjmp;
4955      return QualType();
4956    }
4957    break;
4958  }
4959
4960  if (!AllowTypeModifiers)
4961    return Type;
4962
4963  Done = false;
4964  while (!Done) {
4965    switch (char c = *Str++) {
4966      default: Done = true; --Str; break;
4967      case '*':
4968      case '&':
4969        {
4970          // Both pointers and references can have their pointee types
4971          // qualified with an address space.
4972          char *End;
4973          unsigned AddrSpace = strtoul(Str, &End, 10);
4974          if (End != Str && AddrSpace != 0) {
4975            Type = Context.getAddrSpaceQualType(Type, AddrSpace);
4976            Str = End;
4977          }
4978        }
4979        if (c == '*')
4980          Type = Context.getPointerType(Type);
4981        else
4982          Type = Context.getLValueReferenceType(Type);
4983        break;
4984      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4985      case 'C':
4986        Type = Type.withConst();
4987        break;
4988      case 'D':
4989        Type = Context.getVolatileType(Type);
4990        break;
4991    }
4992  }
4993
4994  return Type;
4995}
4996
4997/// GetBuiltinType - Return the type for the specified builtin.
4998QualType ASTContext::GetBuiltinType(unsigned id,
4999                                    GetBuiltinTypeError &Error) {
5000  const char *TypeStr = BuiltinInfo.GetTypeString(id);
5001
5002  llvm::SmallVector<QualType, 8> ArgTypes;
5003
5004  Error = GE_None;
5005  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
5006  if (Error != GE_None)
5007    return QualType();
5008  while (TypeStr[0] && TypeStr[0] != '.') {
5009    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
5010    if (Error != GE_None)
5011      return QualType();
5012
5013    // Do array -> pointer decay.  The builtin should use the decayed type.
5014    if (Ty->isArrayType())
5015      Ty = getArrayDecayedType(Ty);
5016
5017    ArgTypes.push_back(Ty);
5018  }
5019
5020  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5021         "'.' should only occur at end of builtin type list!");
5022
5023  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
5024  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
5025    return getFunctionNoProtoType(ResType);
5026
5027  // FIXME: Should we create noreturn types?
5028  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
5029                         TypeStr[0] == '.', 0, false, false, 0, 0,
5030                         FunctionType::ExtInfo());
5031}
5032
5033QualType
5034ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
5035  // Perform the usual unary conversions. We do this early so that
5036  // integral promotions to "int" can allow us to exit early, in the
5037  // lhs == rhs check. Also, for conversion purposes, we ignore any
5038  // qualifiers.  For example, "const float" and "float" are
5039  // equivalent.
5040  if (lhs->isPromotableIntegerType())
5041    lhs = getPromotedIntegerType(lhs);
5042  else
5043    lhs = lhs.getUnqualifiedType();
5044  if (rhs->isPromotableIntegerType())
5045    rhs = getPromotedIntegerType(rhs);
5046  else
5047    rhs = rhs.getUnqualifiedType();
5048
5049  // If both types are identical, no conversion is needed.
5050  if (lhs == rhs)
5051    return lhs;
5052
5053  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
5054  // The caller can deal with this (e.g. pointer + int).
5055  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
5056    return lhs;
5057
5058  // At this point, we have two different arithmetic types.
5059
5060  // Handle complex types first (C99 6.3.1.8p1).
5061  if (lhs->isComplexType() || rhs->isComplexType()) {
5062    // if we have an integer operand, the result is the complex type.
5063    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
5064      // convert the rhs to the lhs complex type.
5065      return lhs;
5066    }
5067    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
5068      // convert the lhs to the rhs complex type.
5069      return rhs;
5070    }
5071    // This handles complex/complex, complex/float, or float/complex.
5072    // When both operands are complex, the shorter operand is converted to the
5073    // type of the longer, and that is the type of the result. This corresponds
5074    // to what is done when combining two real floating-point operands.
5075    // The fun begins when size promotion occur across type domains.
5076    // From H&S 6.3.4: When one operand is complex and the other is a real
5077    // floating-point type, the less precise type is converted, within it's
5078    // real or complex domain, to the precision of the other type. For example,
5079    // when combining a "long double" with a "double _Complex", the
5080    // "double _Complex" is promoted to "long double _Complex".
5081    int result = getFloatingTypeOrder(lhs, rhs);
5082
5083    if (result > 0) { // The left side is bigger, convert rhs.
5084      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
5085    } else if (result < 0) { // The right side is bigger, convert lhs.
5086      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
5087    }
5088    // At this point, lhs and rhs have the same rank/size. Now, make sure the
5089    // domains match. This is a requirement for our implementation, C99
5090    // does not require this promotion.
5091    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
5092      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
5093        return rhs;
5094      } else { // handle "_Complex double, double".
5095        return lhs;
5096      }
5097    }
5098    return lhs; // The domain/size match exactly.
5099  }
5100  // Now handle "real" floating types (i.e. float, double, long double).
5101  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
5102    // if we have an integer operand, the result is the real floating type.
5103    if (rhs->isIntegerType()) {
5104      // convert rhs to the lhs floating point type.
5105      return lhs;
5106    }
5107    if (rhs->isComplexIntegerType()) {
5108      // convert rhs to the complex floating point type.
5109      return getComplexType(lhs);
5110    }
5111    if (lhs->isIntegerType()) {
5112      // convert lhs to the rhs floating point type.
5113      return rhs;
5114    }
5115    if (lhs->isComplexIntegerType()) {
5116      // convert lhs to the complex floating point type.
5117      return getComplexType(rhs);
5118    }
5119    // We have two real floating types, float/complex combos were handled above.
5120    // Convert the smaller operand to the bigger result.
5121    int result = getFloatingTypeOrder(lhs, rhs);
5122    if (result > 0) // convert the rhs
5123      return lhs;
5124    assert(result < 0 && "illegal float comparison");
5125    return rhs;   // convert the lhs
5126  }
5127  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5128    // Handle GCC complex int extension.
5129    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5130    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5131
5132    if (lhsComplexInt && rhsComplexInt) {
5133      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5134                              rhsComplexInt->getElementType()) >= 0)
5135        return lhs; // convert the rhs
5136      return rhs;
5137    } else if (lhsComplexInt && rhs->isIntegerType()) {
5138      // convert the rhs to the lhs complex type.
5139      return lhs;
5140    } else if (rhsComplexInt && lhs->isIntegerType()) {
5141      // convert the lhs to the rhs complex type.
5142      return rhs;
5143    }
5144  }
5145  // Finally, we have two differing integer types.
5146  // The rules for this case are in C99 6.3.1.8
5147  int compare = getIntegerTypeOrder(lhs, rhs);
5148  bool lhsSigned = lhs->isSignedIntegerType(),
5149       rhsSigned = rhs->isSignedIntegerType();
5150  QualType destType;
5151  if (lhsSigned == rhsSigned) {
5152    // Same signedness; use the higher-ranked type
5153    destType = compare >= 0 ? lhs : rhs;
5154  } else if (compare != (lhsSigned ? 1 : -1)) {
5155    // The unsigned type has greater than or equal rank to the
5156    // signed type, so use the unsigned type
5157    destType = lhsSigned ? rhs : lhs;
5158  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5159    // The two types are different widths; if we are here, that
5160    // means the signed type is larger than the unsigned type, so
5161    // use the signed type.
5162    destType = lhsSigned ? lhs : rhs;
5163  } else {
5164    // The signed type is higher-ranked than the unsigned type,
5165    // but isn't actually any bigger (like unsigned int and long
5166    // on most 32-bit systems).  Use the unsigned type corresponding
5167    // to the signed type.
5168    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5169  }
5170  return destType;
5171}
5172