ASTContext.cpp revision 7e0786f08e5e14776c8a46a0534c254b3fdc14fe
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const ClassTemplateSpecializationDecl *CTSD =
89          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
90    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
91    if (TSK == TSK_ImplicitInstantiation ||
92        TSK == TSK_Undeclared)
93      return NULL;
94  }
95
96  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
97    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
98      return NULL;
99  }
100
101  // TODO: handle comments for function parameters properly.
102  if (isa<ParmVarDecl>(D))
103    return NULL;
104
105  // TODO: we could look up template parameter documentation in the template
106  // documentation.
107  if (isa<TemplateTypeParmDecl>(D) ||
108      isa<NonTypeTemplateParmDecl>(D) ||
109      isa<TemplateTemplateParmDecl>(D))
110    return NULL;
111
112  ArrayRef<RawComment *> RawComments = Comments.getComments();
113
114  // If there are no comments anywhere, we won't find anything.
115  if (RawComments.empty())
116    return NULL;
117
118  // Find declaration location.
119  // For Objective-C declarations we generally don't expect to have multiple
120  // declarators, thus use declaration starting location as the "declaration
121  // location".
122  // For all other declarations multiple declarators are used quite frequently,
123  // so we use the location of the identifier as the "declaration location".
124  SourceLocation DeclLoc;
125  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
126      isa<ObjCPropertyDecl>(D) ||
127      isa<RedeclarableTemplateDecl>(D) ||
128      isa<ClassTemplateSpecializationDecl>(D))
129    DeclLoc = D->getLocStart();
130  else
131    DeclLoc = D->getLocation();
132
133  // If the declaration doesn't map directly to a location in a file, we
134  // can't find the comment.
135  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
136    return NULL;
137
138  // Find the comment that occurs just after this declaration.
139  ArrayRef<RawComment *>::iterator Comment;
140  {
141    // When searching for comments during parsing, the comment we are looking
142    // for is usually among the last two comments we parsed -- check them
143    // first.
144    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
145    BeforeThanCompare<RawComment> Compare(SourceMgr);
146    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
147    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
148    if (!Found && RawComments.size() >= 2) {
149      MaybeBeforeDecl--;
150      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
151    }
152
153    if (Found) {
154      Comment = MaybeBeforeDecl + 1;
155      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
156                                         &CommentAtDeclLoc, Compare));
157    } else {
158      // Slow path.
159      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
160                                 &CommentAtDeclLoc, Compare);
161    }
162  }
163
164  // Decompose the location for the declaration and find the beginning of the
165  // file buffer.
166  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
167
168  // First check whether we have a trailing comment.
169  if (Comment != RawComments.end() &&
170      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
171      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
172    std::pair<FileID, unsigned> CommentBeginDecomp
173      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
174    // Check that Doxygen trailing comment comes after the declaration, starts
175    // on the same line and in the same file as the declaration.
176    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
177        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
178          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
179                                     CommentBeginDecomp.second)) {
180      return *Comment;
181    }
182  }
183
184  // The comment just after the declaration was not a trailing comment.
185  // Let's look at the previous comment.
186  if (Comment == RawComments.begin())
187    return NULL;
188  --Comment;
189
190  // Check that we actually have a non-member Doxygen comment.
191  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
192    return NULL;
193
194  // Decompose the end of the comment.
195  std::pair<FileID, unsigned> CommentEndDecomp
196    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
197
198  // If the comment and the declaration aren't in the same file, then they
199  // aren't related.
200  if (DeclLocDecomp.first != CommentEndDecomp.first)
201    return NULL;
202
203  // Get the corresponding buffer.
204  bool Invalid = false;
205  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
206                                               &Invalid).data();
207  if (Invalid)
208    return NULL;
209
210  // Extract text between the comment and declaration.
211  StringRef Text(Buffer + CommentEndDecomp.second,
212                 DeclLocDecomp.second - CommentEndDecomp.second);
213
214  // There should be no other declarations or preprocessor directives between
215  // comment and declaration.
216  if (Text.find_first_of(",;{}#@") != StringRef::npos)
217    return NULL;
218
219  return *Comment;
220}
221
222namespace {
223/// If we have a 'templated' declaration for a template, adjust 'D' to
224/// refer to the actual template.
225/// If we have an implicit instantiation, adjust 'D' to refer to template.
226const Decl *adjustDeclToTemplate(const Decl *D) {
227  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
228    // Is this function declaration part of a function template?
229    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
230      return FTD;
231
232    // Nothing to do if function is not an implicit instantiation.
233    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
234      return D;
235
236    // Function is an implicit instantiation of a function template?
237    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
238      return FTD;
239
240    // Function is instantiated from a member definition of a class template?
241    if (const FunctionDecl *MemberDecl =
242            FD->getInstantiatedFromMemberFunction())
243      return MemberDecl;
244
245    return D;
246  }
247  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
248    // Static data member is instantiated from a member definition of a class
249    // template?
250    if (VD->isStaticDataMember())
251      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
252        return MemberDecl;
253
254    return D;
255  }
256  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
257    // Is this class declaration part of a class template?
258    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
259      return CTD;
260
261    // Class is an implicit instantiation of a class template or partial
262    // specialization?
263    if (const ClassTemplateSpecializationDecl *CTSD =
264            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
265      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
266        return D;
267      llvm::PointerUnion<ClassTemplateDecl *,
268                         ClassTemplatePartialSpecializationDecl *>
269          PU = CTSD->getSpecializedTemplateOrPartial();
270      return PU.is<ClassTemplateDecl*>() ?
271          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
272          static_cast<const Decl*>(
273              PU.get<ClassTemplatePartialSpecializationDecl *>());
274    }
275
276    // Class is instantiated from a member definition of a class template?
277    if (const MemberSpecializationInfo *Info =
278                   CRD->getMemberSpecializationInfo())
279      return Info->getInstantiatedFrom();
280
281    return D;
282  }
283  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
284    // Enum is instantiated from a member definition of a class template?
285    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
286      return MemberDecl;
287
288    return D;
289  }
290  // FIXME: Adjust alias templates?
291  return D;
292}
293} // unnamed namespace
294
295const RawComment *ASTContext::getRawCommentForAnyRedecl(
296                                                const Decl *D,
297                                                const Decl **OriginalDecl) const {
298  D = adjustDeclToTemplate(D);
299
300  // Check whether we have cached a comment for this declaration already.
301  {
302    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
303        RedeclComments.find(D);
304    if (Pos != RedeclComments.end()) {
305      const RawCommentAndCacheFlags &Raw = Pos->second;
306      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
307        if (OriginalDecl)
308          *OriginalDecl = Raw.getOriginalDecl();
309        return Raw.getRaw();
310      }
311    }
312  }
313
314  // Search for comments attached to declarations in the redeclaration chain.
315  const RawComment *RC = NULL;
316  const Decl *OriginalDeclForRC = NULL;
317  for (Decl::redecl_iterator I = D->redecls_begin(),
318                             E = D->redecls_end();
319       I != E; ++I) {
320    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
321        RedeclComments.find(*I);
322    if (Pos != RedeclComments.end()) {
323      const RawCommentAndCacheFlags &Raw = Pos->second;
324      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
325        RC = Raw.getRaw();
326        OriginalDeclForRC = Raw.getOriginalDecl();
327        break;
328      }
329    } else {
330      RC = getRawCommentForDeclNoCache(*I);
331      OriginalDeclForRC = *I;
332      RawCommentAndCacheFlags Raw;
333      if (RC) {
334        Raw.setRaw(RC);
335        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
336      } else
337        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
338      Raw.setOriginalDecl(*I);
339      RedeclComments[*I] = Raw;
340      if (RC)
341        break;
342    }
343  }
344
345  // If we found a comment, it should be a documentation comment.
346  assert(!RC || RC->isDocumentation());
347
348  if (OriginalDecl)
349    *OriginalDecl = OriginalDeclForRC;
350
351  // Update cache for every declaration in the redeclaration chain.
352  RawCommentAndCacheFlags Raw;
353  Raw.setRaw(RC);
354  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
355  Raw.setOriginalDecl(OriginalDeclForRC);
356
357  for (Decl::redecl_iterator I = D->redecls_begin(),
358                             E = D->redecls_end();
359       I != E; ++I) {
360    RawCommentAndCacheFlags &R = RedeclComments[*I];
361    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
362      R = Raw;
363  }
364
365  return RC;
366}
367
368static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
369                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
370  const DeclContext *DC = ObjCMethod->getDeclContext();
371  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
372    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
373    if (!ID)
374      return;
375    // Add redeclared method here.
376    for (ObjCInterfaceDecl::known_extensions_iterator
377           Ext = ID->known_extensions_begin(),
378           ExtEnd = ID->known_extensions_end();
379         Ext != ExtEnd; ++Ext) {
380      if (ObjCMethodDecl *RedeclaredMethod =
381            Ext->getMethod(ObjCMethod->getSelector(),
382                                  ObjCMethod->isInstanceMethod()))
383        Redeclared.push_back(RedeclaredMethod);
384    }
385  }
386}
387
388comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
389                                                    const Decl *D) const {
390  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
391  ThisDeclInfo->CommentDecl = D;
392  ThisDeclInfo->IsFilled = false;
393  ThisDeclInfo->fill();
394  ThisDeclInfo->CommentDecl = FC->getDecl();
395  comments::FullComment *CFC =
396    new (*this) comments::FullComment(FC->getBlocks(),
397                                      ThisDeclInfo);
398  return CFC;
399
400}
401
402comments::FullComment *ASTContext::getCommentForDecl(
403                                              const Decl *D,
404                                              const Preprocessor *PP) const {
405  D = adjustDeclToTemplate(D);
406
407  const Decl *Canonical = D->getCanonicalDecl();
408  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
409      ParsedComments.find(Canonical);
410
411  if (Pos != ParsedComments.end()) {
412    if (Canonical != D) {
413      comments::FullComment *FC = Pos->second;
414      comments::FullComment *CFC = cloneFullComment(FC, D);
415      return CFC;
416    }
417    return Pos->second;
418  }
419
420  const Decl *OriginalDecl;
421
422  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
423  if (!RC) {
424    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
425      SmallVector<const NamedDecl*, 8> Overridden;
426      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
427      if (OMD && OMD->isPropertyAccessor())
428        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
429          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
430            return cloneFullComment(FC, D);
431      if (OMD)
432        addRedeclaredMethods(OMD, Overridden);
433      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
434      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
435        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
436          return cloneFullComment(FC, D);
437    }
438    else if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
439      // Attach any tag type's documentation to its typedef if latter
440      // does not have one of its own.
441      QualType QT = TD->getUnderlyingType();
442      if (const TagType *TT = QT->getAs<TagType>())
443        if (const Decl *TD = TT->getDecl())
444          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
445            return cloneFullComment(FC, D);
446    }
447    return NULL;
448  }
449
450  // If the RawComment was attached to other redeclaration of this Decl, we
451  // should parse the comment in context of that other Decl.  This is important
452  // because comments can contain references to parameter names which can be
453  // different across redeclarations.
454  if (D != OriginalDecl)
455    return getCommentForDecl(OriginalDecl, PP);
456
457  comments::FullComment *FC = RC->parse(*this, PP, D);
458  ParsedComments[Canonical] = FC;
459  return FC;
460}
461
462void
463ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
464                                               TemplateTemplateParmDecl *Parm) {
465  ID.AddInteger(Parm->getDepth());
466  ID.AddInteger(Parm->getPosition());
467  ID.AddBoolean(Parm->isParameterPack());
468
469  TemplateParameterList *Params = Parm->getTemplateParameters();
470  ID.AddInteger(Params->size());
471  for (TemplateParameterList::const_iterator P = Params->begin(),
472                                          PEnd = Params->end();
473       P != PEnd; ++P) {
474    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
475      ID.AddInteger(0);
476      ID.AddBoolean(TTP->isParameterPack());
477      continue;
478    }
479
480    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
481      ID.AddInteger(1);
482      ID.AddBoolean(NTTP->isParameterPack());
483      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
484      if (NTTP->isExpandedParameterPack()) {
485        ID.AddBoolean(true);
486        ID.AddInteger(NTTP->getNumExpansionTypes());
487        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
488          QualType T = NTTP->getExpansionType(I);
489          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
490        }
491      } else
492        ID.AddBoolean(false);
493      continue;
494    }
495
496    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
497    ID.AddInteger(2);
498    Profile(ID, TTP);
499  }
500}
501
502TemplateTemplateParmDecl *
503ASTContext::getCanonicalTemplateTemplateParmDecl(
504                                          TemplateTemplateParmDecl *TTP) const {
505  // Check if we already have a canonical template template parameter.
506  llvm::FoldingSetNodeID ID;
507  CanonicalTemplateTemplateParm::Profile(ID, TTP);
508  void *InsertPos = 0;
509  CanonicalTemplateTemplateParm *Canonical
510    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
511  if (Canonical)
512    return Canonical->getParam();
513
514  // Build a canonical template parameter list.
515  TemplateParameterList *Params = TTP->getTemplateParameters();
516  SmallVector<NamedDecl *, 4> CanonParams;
517  CanonParams.reserve(Params->size());
518  for (TemplateParameterList::const_iterator P = Params->begin(),
519                                          PEnd = Params->end();
520       P != PEnd; ++P) {
521    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
522      CanonParams.push_back(
523                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
524                                               SourceLocation(),
525                                               SourceLocation(),
526                                               TTP->getDepth(),
527                                               TTP->getIndex(), 0, false,
528                                               TTP->isParameterPack()));
529    else if (NonTypeTemplateParmDecl *NTTP
530             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
531      QualType T = getCanonicalType(NTTP->getType());
532      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
533      NonTypeTemplateParmDecl *Param;
534      if (NTTP->isExpandedParameterPack()) {
535        SmallVector<QualType, 2> ExpandedTypes;
536        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
537        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
538          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
539          ExpandedTInfos.push_back(
540                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
541        }
542
543        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
544                                                SourceLocation(),
545                                                SourceLocation(),
546                                                NTTP->getDepth(),
547                                                NTTP->getPosition(), 0,
548                                                T,
549                                                TInfo,
550                                                ExpandedTypes.data(),
551                                                ExpandedTypes.size(),
552                                                ExpandedTInfos.data());
553      } else {
554        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
555                                                SourceLocation(),
556                                                SourceLocation(),
557                                                NTTP->getDepth(),
558                                                NTTP->getPosition(), 0,
559                                                T,
560                                                NTTP->isParameterPack(),
561                                                TInfo);
562      }
563      CanonParams.push_back(Param);
564
565    } else
566      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
567                                           cast<TemplateTemplateParmDecl>(*P)));
568  }
569
570  TemplateTemplateParmDecl *CanonTTP
571    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
572                                       SourceLocation(), TTP->getDepth(),
573                                       TTP->getPosition(),
574                                       TTP->isParameterPack(),
575                                       0,
576                         TemplateParameterList::Create(*this, SourceLocation(),
577                                                       SourceLocation(),
578                                                       CanonParams.data(),
579                                                       CanonParams.size(),
580                                                       SourceLocation()));
581
582  // Get the new insert position for the node we care about.
583  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
584  assert(Canonical == 0 && "Shouldn't be in the map!");
585  (void)Canonical;
586
587  // Create the canonical template template parameter entry.
588  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
589  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
590  return CanonTTP;
591}
592
593CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
594  if (!LangOpts.CPlusPlus) return 0;
595
596  switch (T.getCXXABI().getKind()) {
597  case TargetCXXABI::GenericARM:
598  case TargetCXXABI::iOS:
599    return CreateARMCXXABI(*this);
600  case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
601  case TargetCXXABI::GenericItanium:
602    return CreateItaniumCXXABI(*this);
603  case TargetCXXABI::Microsoft:
604    return CreateMicrosoftCXXABI(*this);
605  }
606  llvm_unreachable("Invalid CXXABI type!");
607}
608
609static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
610                                             const LangOptions &LOpts) {
611  if (LOpts.FakeAddressSpaceMap) {
612    // The fake address space map must have a distinct entry for each
613    // language-specific address space.
614    static const unsigned FakeAddrSpaceMap[] = {
615      1, // opencl_global
616      2, // opencl_local
617      3, // opencl_constant
618      4, // cuda_device
619      5, // cuda_constant
620      6  // cuda_shared
621    };
622    return &FakeAddrSpaceMap;
623  } else {
624    return &T.getAddressSpaceMap();
625  }
626}
627
628ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
629                       const TargetInfo *t,
630                       IdentifierTable &idents, SelectorTable &sels,
631                       Builtin::Context &builtins,
632                       unsigned size_reserve,
633                       bool DelayInitialization)
634  : FunctionProtoTypes(this_()),
635    TemplateSpecializationTypes(this_()),
636    DependentTemplateSpecializationTypes(this_()),
637    SubstTemplateTemplateParmPacks(this_()),
638    GlobalNestedNameSpecifier(0),
639    Int128Decl(0), UInt128Decl(0),
640    BuiltinVaListDecl(0),
641    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
642    BOOLDecl(0),
643    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
644    FILEDecl(0),
645    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
646    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
647    cudaConfigureCallDecl(0),
648    NullTypeSourceInfo(QualType()),
649    FirstLocalImport(), LastLocalImport(),
650    SourceMgr(SM), LangOpts(LOpts),
651    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
652    Idents(idents), Selectors(sels),
653    BuiltinInfo(builtins),
654    DeclarationNames(*this),
655    ExternalSource(0), Listener(0),
656    Comments(SM), CommentsLoaded(false),
657    CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
658    LastSDM(0, 0),
659    UniqueBlockByRefTypeID(0)
660{
661  if (size_reserve > 0) Types.reserve(size_reserve);
662  TUDecl = TranslationUnitDecl::Create(*this);
663
664  if (!DelayInitialization) {
665    assert(t && "No target supplied for ASTContext initialization");
666    InitBuiltinTypes(*t);
667  }
668}
669
670ASTContext::~ASTContext() {
671  // Release the DenseMaps associated with DeclContext objects.
672  // FIXME: Is this the ideal solution?
673  ReleaseDeclContextMaps();
674
675  // Call all of the deallocation functions.
676  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
677    Deallocations[I].first(Deallocations[I].second);
678
679  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
680  // because they can contain DenseMaps.
681  for (llvm::DenseMap<const ObjCContainerDecl*,
682       const ASTRecordLayout*>::iterator
683       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
684    // Increment in loop to prevent using deallocated memory.
685    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
686      R->Destroy(*this);
687
688  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
689       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
690    // Increment in loop to prevent using deallocated memory.
691    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
692      R->Destroy(*this);
693  }
694
695  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
696                                                    AEnd = DeclAttrs.end();
697       A != AEnd; ++A)
698    A->second->~AttrVec();
699}
700
701void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
702  Deallocations.push_back(std::make_pair(Callback, Data));
703}
704
705void
706ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
707  ExternalSource.reset(Source.take());
708}
709
710void ASTContext::PrintStats() const {
711  llvm::errs() << "\n*** AST Context Stats:\n";
712  llvm::errs() << "  " << Types.size() << " types total.\n";
713
714  unsigned counts[] = {
715#define TYPE(Name, Parent) 0,
716#define ABSTRACT_TYPE(Name, Parent)
717#include "clang/AST/TypeNodes.def"
718    0 // Extra
719  };
720
721  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
722    Type *T = Types[i];
723    counts[(unsigned)T->getTypeClass()]++;
724  }
725
726  unsigned Idx = 0;
727  unsigned TotalBytes = 0;
728#define TYPE(Name, Parent)                                              \
729  if (counts[Idx])                                                      \
730    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
731                 << " types\n";                                         \
732  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
733  ++Idx;
734#define ABSTRACT_TYPE(Name, Parent)
735#include "clang/AST/TypeNodes.def"
736
737  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
738
739  // Implicit special member functions.
740  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
741               << NumImplicitDefaultConstructors
742               << " implicit default constructors created\n";
743  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
744               << NumImplicitCopyConstructors
745               << " implicit copy constructors created\n";
746  if (getLangOpts().CPlusPlus)
747    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
748                 << NumImplicitMoveConstructors
749                 << " implicit move constructors created\n";
750  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
751               << NumImplicitCopyAssignmentOperators
752               << " implicit copy assignment operators created\n";
753  if (getLangOpts().CPlusPlus)
754    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
755                 << NumImplicitMoveAssignmentOperators
756                 << " implicit move assignment operators created\n";
757  llvm::errs() << NumImplicitDestructorsDeclared << "/"
758               << NumImplicitDestructors
759               << " implicit destructors created\n";
760
761  if (ExternalSource.get()) {
762    llvm::errs() << "\n";
763    ExternalSource->PrintStats();
764  }
765
766  BumpAlloc.PrintStats();
767}
768
769TypedefDecl *ASTContext::getInt128Decl() const {
770  if (!Int128Decl) {
771    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
772    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
773                                     getTranslationUnitDecl(),
774                                     SourceLocation(),
775                                     SourceLocation(),
776                                     &Idents.get("__int128_t"),
777                                     TInfo);
778  }
779
780  return Int128Decl;
781}
782
783TypedefDecl *ASTContext::getUInt128Decl() const {
784  if (!UInt128Decl) {
785    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
786    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
787                                     getTranslationUnitDecl(),
788                                     SourceLocation(),
789                                     SourceLocation(),
790                                     &Idents.get("__uint128_t"),
791                                     TInfo);
792  }
793
794  return UInt128Decl;
795}
796
797void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
798  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
799  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
800  Types.push_back(Ty);
801}
802
803void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
804  assert((!this->Target || this->Target == &Target) &&
805         "Incorrect target reinitialization");
806  assert(VoidTy.isNull() && "Context reinitialized?");
807
808  this->Target = &Target;
809
810  ABI.reset(createCXXABI(Target));
811  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
812
813  // C99 6.2.5p19.
814  InitBuiltinType(VoidTy,              BuiltinType::Void);
815
816  // C99 6.2.5p2.
817  InitBuiltinType(BoolTy,              BuiltinType::Bool);
818  // C99 6.2.5p3.
819  if (LangOpts.CharIsSigned)
820    InitBuiltinType(CharTy,            BuiltinType::Char_S);
821  else
822    InitBuiltinType(CharTy,            BuiltinType::Char_U);
823  // C99 6.2.5p4.
824  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
825  InitBuiltinType(ShortTy,             BuiltinType::Short);
826  InitBuiltinType(IntTy,               BuiltinType::Int);
827  InitBuiltinType(LongTy,              BuiltinType::Long);
828  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
829
830  // C99 6.2.5p6.
831  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
832  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
833  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
834  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
835  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
836
837  // C99 6.2.5p10.
838  InitBuiltinType(FloatTy,             BuiltinType::Float);
839  InitBuiltinType(DoubleTy,            BuiltinType::Double);
840  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
841
842  // GNU extension, 128-bit integers.
843  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
844  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
845
846  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
847    if (TargetInfo::isTypeSigned(Target.getWCharType()))
848      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
849    else  // -fshort-wchar makes wchar_t be unsigned.
850      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
851  } else // C99 (or C++ using -fno-wchar)
852    WCharTy = getFromTargetType(Target.getWCharType());
853
854  WIntTy = getFromTargetType(Target.getWIntType());
855
856  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
857    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
858  else // C99
859    Char16Ty = getFromTargetType(Target.getChar16Type());
860
861  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
862    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
863  else // C99
864    Char32Ty = getFromTargetType(Target.getChar32Type());
865
866  // Placeholder type for type-dependent expressions whose type is
867  // completely unknown. No code should ever check a type against
868  // DependentTy and users should never see it; however, it is here to
869  // help diagnose failures to properly check for type-dependent
870  // expressions.
871  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
872
873  // Placeholder type for functions.
874  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
875
876  // Placeholder type for bound members.
877  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
878
879  // Placeholder type for pseudo-objects.
880  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
881
882  // "any" type; useful for debugger-like clients.
883  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
884
885  // Placeholder type for unbridged ARC casts.
886  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
887
888  // Placeholder type for builtin functions.
889  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
890
891  // C99 6.2.5p11.
892  FloatComplexTy      = getComplexType(FloatTy);
893  DoubleComplexTy     = getComplexType(DoubleTy);
894  LongDoubleComplexTy = getComplexType(LongDoubleTy);
895
896  // Builtin types for 'id', 'Class', and 'SEL'.
897  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
898  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
899  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
900
901  if (LangOpts.OpenCL) {
902    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
903    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
904    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
905    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
906    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
907    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
908
909    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
910    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
911  }
912
913  // Builtin type for __objc_yes and __objc_no
914  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
915                       SignedCharTy : BoolTy);
916
917  ObjCConstantStringType = QualType();
918
919  ObjCSuperType = QualType();
920
921  // void * type
922  VoidPtrTy = getPointerType(VoidTy);
923
924  // nullptr type (C++0x 2.14.7)
925  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
926
927  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
928  InitBuiltinType(HalfTy, BuiltinType::Half);
929
930  // Builtin type used to help define __builtin_va_list.
931  VaListTagTy = QualType();
932}
933
934DiagnosticsEngine &ASTContext::getDiagnostics() const {
935  return SourceMgr.getDiagnostics();
936}
937
938AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
939  AttrVec *&Result = DeclAttrs[D];
940  if (!Result) {
941    void *Mem = Allocate(sizeof(AttrVec));
942    Result = new (Mem) AttrVec;
943  }
944
945  return *Result;
946}
947
948/// \brief Erase the attributes corresponding to the given declaration.
949void ASTContext::eraseDeclAttrs(const Decl *D) {
950  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
951  if (Pos != DeclAttrs.end()) {
952    Pos->second->~AttrVec();
953    DeclAttrs.erase(Pos);
954  }
955}
956
957MemberSpecializationInfo *
958ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
959  assert(Var->isStaticDataMember() && "Not a static data member");
960  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
961    = InstantiatedFromStaticDataMember.find(Var);
962  if (Pos == InstantiatedFromStaticDataMember.end())
963    return 0;
964
965  return Pos->second;
966}
967
968void
969ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
970                                                TemplateSpecializationKind TSK,
971                                          SourceLocation PointOfInstantiation) {
972  assert(Inst->isStaticDataMember() && "Not a static data member");
973  assert(Tmpl->isStaticDataMember() && "Not a static data member");
974  assert(!InstantiatedFromStaticDataMember[Inst] &&
975         "Already noted what static data member was instantiated from");
976  InstantiatedFromStaticDataMember[Inst]
977    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
978}
979
980FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
981                                                     const FunctionDecl *FD){
982  assert(FD && "Specialization is 0");
983  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
984    = ClassScopeSpecializationPattern.find(FD);
985  if (Pos == ClassScopeSpecializationPattern.end())
986    return 0;
987
988  return Pos->second;
989}
990
991void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
992                                        FunctionDecl *Pattern) {
993  assert(FD && "Specialization is 0");
994  assert(Pattern && "Class scope specialization pattern is 0");
995  ClassScopeSpecializationPattern[FD] = Pattern;
996}
997
998NamedDecl *
999ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1000  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1001    = InstantiatedFromUsingDecl.find(UUD);
1002  if (Pos == InstantiatedFromUsingDecl.end())
1003    return 0;
1004
1005  return Pos->second;
1006}
1007
1008void
1009ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1010  assert((isa<UsingDecl>(Pattern) ||
1011          isa<UnresolvedUsingValueDecl>(Pattern) ||
1012          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1013         "pattern decl is not a using decl");
1014  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1015  InstantiatedFromUsingDecl[Inst] = Pattern;
1016}
1017
1018UsingShadowDecl *
1019ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1020  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1021    = InstantiatedFromUsingShadowDecl.find(Inst);
1022  if (Pos == InstantiatedFromUsingShadowDecl.end())
1023    return 0;
1024
1025  return Pos->second;
1026}
1027
1028void
1029ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1030                                               UsingShadowDecl *Pattern) {
1031  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1032  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1033}
1034
1035FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1036  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1037    = InstantiatedFromUnnamedFieldDecl.find(Field);
1038  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1039    return 0;
1040
1041  return Pos->second;
1042}
1043
1044void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1045                                                     FieldDecl *Tmpl) {
1046  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1047  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1048  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1049         "Already noted what unnamed field was instantiated from");
1050
1051  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1052}
1053
1054bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1055                                    const FieldDecl *LastFD) const {
1056  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1057          FD->getBitWidthValue(*this) == 0);
1058}
1059
1060bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1061                                             const FieldDecl *LastFD) const {
1062  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1063          FD->getBitWidthValue(*this) == 0 &&
1064          LastFD->getBitWidthValue(*this) != 0);
1065}
1066
1067bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1068                                         const FieldDecl *LastFD) const {
1069  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1070          FD->getBitWidthValue(*this) &&
1071          LastFD->getBitWidthValue(*this));
1072}
1073
1074bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1075                                         const FieldDecl *LastFD) const {
1076  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1077          LastFD->getBitWidthValue(*this));
1078}
1079
1080bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1081                                             const FieldDecl *LastFD) const {
1082  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1083          FD->getBitWidthValue(*this));
1084}
1085
1086ASTContext::overridden_cxx_method_iterator
1087ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1088  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1089    = OverriddenMethods.find(Method->getCanonicalDecl());
1090  if (Pos == OverriddenMethods.end())
1091    return 0;
1092
1093  return Pos->second.begin();
1094}
1095
1096ASTContext::overridden_cxx_method_iterator
1097ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1098  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1099    = OverriddenMethods.find(Method->getCanonicalDecl());
1100  if (Pos == OverriddenMethods.end())
1101    return 0;
1102
1103  return Pos->second.end();
1104}
1105
1106unsigned
1107ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1108  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1109    = OverriddenMethods.find(Method->getCanonicalDecl());
1110  if (Pos == OverriddenMethods.end())
1111    return 0;
1112
1113  return Pos->second.size();
1114}
1115
1116void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1117                                     const CXXMethodDecl *Overridden) {
1118  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1119  OverriddenMethods[Method].push_back(Overridden);
1120}
1121
1122void ASTContext::getOverriddenMethods(
1123                      const NamedDecl *D,
1124                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1125  assert(D);
1126
1127  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1128    Overridden.append(CXXMethod->begin_overridden_methods(),
1129                      CXXMethod->end_overridden_methods());
1130    return;
1131  }
1132
1133  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1134  if (!Method)
1135    return;
1136
1137  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1138  Method->getOverriddenMethods(OverDecls);
1139  Overridden.append(OverDecls.begin(), OverDecls.end());
1140}
1141
1142void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1143  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1144  assert(!Import->isFromASTFile() && "Non-local import declaration");
1145  if (!FirstLocalImport) {
1146    FirstLocalImport = Import;
1147    LastLocalImport = Import;
1148    return;
1149  }
1150
1151  LastLocalImport->NextLocalImport = Import;
1152  LastLocalImport = Import;
1153}
1154
1155//===----------------------------------------------------------------------===//
1156//                         Type Sizing and Analysis
1157//===----------------------------------------------------------------------===//
1158
1159/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1160/// scalar floating point type.
1161const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1162  const BuiltinType *BT = T->getAs<BuiltinType>();
1163  assert(BT && "Not a floating point type!");
1164  switch (BT->getKind()) {
1165  default: llvm_unreachable("Not a floating point type!");
1166  case BuiltinType::Half:       return Target->getHalfFormat();
1167  case BuiltinType::Float:      return Target->getFloatFormat();
1168  case BuiltinType::Double:     return Target->getDoubleFormat();
1169  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1170  }
1171}
1172
1173/// getDeclAlign - Return a conservative estimate of the alignment of the
1174/// specified decl.  Note that bitfields do not have a valid alignment, so
1175/// this method will assert on them.
1176/// If @p RefAsPointee, references are treated like their underlying type
1177/// (for alignof), else they're treated like pointers (for CodeGen).
1178CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1179  unsigned Align = Target->getCharWidth();
1180
1181  bool UseAlignAttrOnly = false;
1182  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1183    Align = AlignFromAttr;
1184
1185    // __attribute__((aligned)) can increase or decrease alignment
1186    // *except* on a struct or struct member, where it only increases
1187    // alignment unless 'packed' is also specified.
1188    //
1189    // It is an error for alignas to decrease alignment, so we can
1190    // ignore that possibility;  Sema should diagnose it.
1191    if (isa<FieldDecl>(D)) {
1192      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1193        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1194    } else {
1195      UseAlignAttrOnly = true;
1196    }
1197  }
1198  else if (isa<FieldDecl>(D))
1199      UseAlignAttrOnly =
1200        D->hasAttr<PackedAttr>() ||
1201        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1202
1203  // If we're using the align attribute only, just ignore everything
1204  // else about the declaration and its type.
1205  if (UseAlignAttrOnly) {
1206    // do nothing
1207
1208  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1209    QualType T = VD->getType();
1210    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1211      if (RefAsPointee)
1212        T = RT->getPointeeType();
1213      else
1214        T = getPointerType(RT->getPointeeType());
1215    }
1216    if (!T->isIncompleteType() && !T->isFunctionType()) {
1217      // Adjust alignments of declarations with array type by the
1218      // large-array alignment on the target.
1219      unsigned MinWidth = Target->getLargeArrayMinWidth();
1220      const ArrayType *arrayType;
1221      if (MinWidth && (arrayType = getAsArrayType(T))) {
1222        if (isa<VariableArrayType>(arrayType))
1223          Align = std::max(Align, Target->getLargeArrayAlign());
1224        else if (isa<ConstantArrayType>(arrayType) &&
1225                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1226          Align = std::max(Align, Target->getLargeArrayAlign());
1227
1228        // Walk through any array types while we're at it.
1229        T = getBaseElementType(arrayType);
1230      }
1231      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1232    }
1233
1234    // Fields can be subject to extra alignment constraints, like if
1235    // the field is packed, the struct is packed, or the struct has a
1236    // a max-field-alignment constraint (#pragma pack).  So calculate
1237    // the actual alignment of the field within the struct, and then
1238    // (as we're expected to) constrain that by the alignment of the type.
1239    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1240      // So calculate the alignment of the field.
1241      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1242
1243      // Start with the record's overall alignment.
1244      unsigned fieldAlign = toBits(layout.getAlignment());
1245
1246      // Use the GCD of that and the offset within the record.
1247      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1248      if (offset > 0) {
1249        // Alignment is always a power of 2, so the GCD will be a power of 2,
1250        // which means we get to do this crazy thing instead of Euclid's.
1251        uint64_t lowBitOfOffset = offset & (~offset + 1);
1252        if (lowBitOfOffset < fieldAlign)
1253          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1254      }
1255
1256      Align = std::min(Align, fieldAlign);
1257    }
1258  }
1259
1260  return toCharUnitsFromBits(Align);
1261}
1262
1263// getTypeInfoDataSizeInChars - Return the size of a type, in
1264// chars. If the type is a record, its data size is returned.  This is
1265// the size of the memcpy that's performed when assigning this type
1266// using a trivial copy/move assignment operator.
1267std::pair<CharUnits, CharUnits>
1268ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1269  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1270
1271  // In C++, objects can sometimes be allocated into the tail padding
1272  // of a base-class subobject.  We decide whether that's possible
1273  // during class layout, so here we can just trust the layout results.
1274  if (getLangOpts().CPlusPlus) {
1275    if (const RecordType *RT = T->getAs<RecordType>()) {
1276      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1277      sizeAndAlign.first = layout.getDataSize();
1278    }
1279  }
1280
1281  return sizeAndAlign;
1282}
1283
1284std::pair<CharUnits, CharUnits>
1285ASTContext::getTypeInfoInChars(const Type *T) const {
1286  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1287  return std::make_pair(toCharUnitsFromBits(Info.first),
1288                        toCharUnitsFromBits(Info.second));
1289}
1290
1291std::pair<CharUnits, CharUnits>
1292ASTContext::getTypeInfoInChars(QualType T) const {
1293  return getTypeInfoInChars(T.getTypePtr());
1294}
1295
1296std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1297  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1298  if (it != MemoizedTypeInfo.end())
1299    return it->second;
1300
1301  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1302  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1303  return Info;
1304}
1305
1306/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1307/// method does not work on incomplete types.
1308///
1309/// FIXME: Pointers into different addr spaces could have different sizes and
1310/// alignment requirements: getPointerInfo should take an AddrSpace, this
1311/// should take a QualType, &c.
1312std::pair<uint64_t, unsigned>
1313ASTContext::getTypeInfoImpl(const Type *T) const {
1314  uint64_t Width=0;
1315  unsigned Align=8;
1316  switch (T->getTypeClass()) {
1317#define TYPE(Class, Base)
1318#define ABSTRACT_TYPE(Class, Base)
1319#define NON_CANONICAL_TYPE(Class, Base)
1320#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1321#include "clang/AST/TypeNodes.def"
1322    llvm_unreachable("Should not see dependent types");
1323
1324  case Type::FunctionNoProto:
1325  case Type::FunctionProto:
1326    // GCC extension: alignof(function) = 32 bits
1327    Width = 0;
1328    Align = 32;
1329    break;
1330
1331  case Type::IncompleteArray:
1332  case Type::VariableArray:
1333    Width = 0;
1334    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1335    break;
1336
1337  case Type::ConstantArray: {
1338    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1339
1340    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1341    uint64_t Size = CAT->getSize().getZExtValue();
1342    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1343           "Overflow in array type bit size evaluation");
1344    Width = EltInfo.first*Size;
1345    Align = EltInfo.second;
1346    Width = llvm::RoundUpToAlignment(Width, Align);
1347    break;
1348  }
1349  case Type::ExtVector:
1350  case Type::Vector: {
1351    const VectorType *VT = cast<VectorType>(T);
1352    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1353    Width = EltInfo.first*VT->getNumElements();
1354    Align = Width;
1355    // If the alignment is not a power of 2, round up to the next power of 2.
1356    // This happens for non-power-of-2 length vectors.
1357    if (Align & (Align-1)) {
1358      Align = llvm::NextPowerOf2(Align);
1359      Width = llvm::RoundUpToAlignment(Width, Align);
1360    }
1361    // Adjust the alignment based on the target max.
1362    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1363    if (TargetVectorAlign && TargetVectorAlign < Align)
1364      Align = TargetVectorAlign;
1365    break;
1366  }
1367
1368  case Type::Builtin:
1369    switch (cast<BuiltinType>(T)->getKind()) {
1370    default: llvm_unreachable("Unknown builtin type!");
1371    case BuiltinType::Void:
1372      // GCC extension: alignof(void) = 8 bits.
1373      Width = 0;
1374      Align = 8;
1375      break;
1376
1377    case BuiltinType::Bool:
1378      Width = Target->getBoolWidth();
1379      Align = Target->getBoolAlign();
1380      break;
1381    case BuiltinType::Char_S:
1382    case BuiltinType::Char_U:
1383    case BuiltinType::UChar:
1384    case BuiltinType::SChar:
1385      Width = Target->getCharWidth();
1386      Align = Target->getCharAlign();
1387      break;
1388    case BuiltinType::WChar_S:
1389    case BuiltinType::WChar_U:
1390      Width = Target->getWCharWidth();
1391      Align = Target->getWCharAlign();
1392      break;
1393    case BuiltinType::Char16:
1394      Width = Target->getChar16Width();
1395      Align = Target->getChar16Align();
1396      break;
1397    case BuiltinType::Char32:
1398      Width = Target->getChar32Width();
1399      Align = Target->getChar32Align();
1400      break;
1401    case BuiltinType::UShort:
1402    case BuiltinType::Short:
1403      Width = Target->getShortWidth();
1404      Align = Target->getShortAlign();
1405      break;
1406    case BuiltinType::UInt:
1407    case BuiltinType::Int:
1408      Width = Target->getIntWidth();
1409      Align = Target->getIntAlign();
1410      break;
1411    case BuiltinType::ULong:
1412    case BuiltinType::Long:
1413      Width = Target->getLongWidth();
1414      Align = Target->getLongAlign();
1415      break;
1416    case BuiltinType::ULongLong:
1417    case BuiltinType::LongLong:
1418      Width = Target->getLongLongWidth();
1419      Align = Target->getLongLongAlign();
1420      break;
1421    case BuiltinType::Int128:
1422    case BuiltinType::UInt128:
1423      Width = 128;
1424      Align = 128; // int128_t is 128-bit aligned on all targets.
1425      break;
1426    case BuiltinType::Half:
1427      Width = Target->getHalfWidth();
1428      Align = Target->getHalfAlign();
1429      break;
1430    case BuiltinType::Float:
1431      Width = Target->getFloatWidth();
1432      Align = Target->getFloatAlign();
1433      break;
1434    case BuiltinType::Double:
1435      Width = Target->getDoubleWidth();
1436      Align = Target->getDoubleAlign();
1437      break;
1438    case BuiltinType::LongDouble:
1439      Width = Target->getLongDoubleWidth();
1440      Align = Target->getLongDoubleAlign();
1441      break;
1442    case BuiltinType::NullPtr:
1443      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1444      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1445      break;
1446    case BuiltinType::ObjCId:
1447    case BuiltinType::ObjCClass:
1448    case BuiltinType::ObjCSel:
1449      Width = Target->getPointerWidth(0);
1450      Align = Target->getPointerAlign(0);
1451      break;
1452    case BuiltinType::OCLSampler:
1453      // Samplers are modeled as integers.
1454      Width = Target->getIntWidth();
1455      Align = Target->getIntAlign();
1456      break;
1457    case BuiltinType::OCLEvent:
1458    case BuiltinType::OCLImage1d:
1459    case BuiltinType::OCLImage1dArray:
1460    case BuiltinType::OCLImage1dBuffer:
1461    case BuiltinType::OCLImage2d:
1462    case BuiltinType::OCLImage2dArray:
1463    case BuiltinType::OCLImage3d:
1464      // Currently these types are pointers to opaque types.
1465      Width = Target->getPointerWidth(0);
1466      Align = Target->getPointerAlign(0);
1467      break;
1468    }
1469    break;
1470  case Type::ObjCObjectPointer:
1471    Width = Target->getPointerWidth(0);
1472    Align = Target->getPointerAlign(0);
1473    break;
1474  case Type::BlockPointer: {
1475    unsigned AS = getTargetAddressSpace(
1476        cast<BlockPointerType>(T)->getPointeeType());
1477    Width = Target->getPointerWidth(AS);
1478    Align = Target->getPointerAlign(AS);
1479    break;
1480  }
1481  case Type::LValueReference:
1482  case Type::RValueReference: {
1483    // alignof and sizeof should never enter this code path here, so we go
1484    // the pointer route.
1485    unsigned AS = getTargetAddressSpace(
1486        cast<ReferenceType>(T)->getPointeeType());
1487    Width = Target->getPointerWidth(AS);
1488    Align = Target->getPointerAlign(AS);
1489    break;
1490  }
1491  case Type::Pointer: {
1492    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1493    Width = Target->getPointerWidth(AS);
1494    Align = Target->getPointerAlign(AS);
1495    break;
1496  }
1497  case Type::MemberPointer: {
1498    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1499    std::pair<uint64_t, unsigned> PtrDiffInfo =
1500      getTypeInfo(getPointerDiffType());
1501    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1502    Align = PtrDiffInfo.second;
1503    break;
1504  }
1505  case Type::Complex: {
1506    // Complex types have the same alignment as their elements, but twice the
1507    // size.
1508    std::pair<uint64_t, unsigned> EltInfo =
1509      getTypeInfo(cast<ComplexType>(T)->getElementType());
1510    Width = EltInfo.first*2;
1511    Align = EltInfo.second;
1512    break;
1513  }
1514  case Type::ObjCObject:
1515    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1516  case Type::ObjCInterface: {
1517    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1518    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1519    Width = toBits(Layout.getSize());
1520    Align = toBits(Layout.getAlignment());
1521    break;
1522  }
1523  case Type::Record:
1524  case Type::Enum: {
1525    const TagType *TT = cast<TagType>(T);
1526
1527    if (TT->getDecl()->isInvalidDecl()) {
1528      Width = 8;
1529      Align = 8;
1530      break;
1531    }
1532
1533    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1534      return getTypeInfo(ET->getDecl()->getIntegerType());
1535
1536    const RecordType *RT = cast<RecordType>(TT);
1537    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1538    Width = toBits(Layout.getSize());
1539    Align = toBits(Layout.getAlignment());
1540    break;
1541  }
1542
1543  case Type::SubstTemplateTypeParm:
1544    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1545                       getReplacementType().getTypePtr());
1546
1547  case Type::Auto: {
1548    const AutoType *A = cast<AutoType>(T);
1549    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1550    return getTypeInfo(A->getDeducedType().getTypePtr());
1551  }
1552
1553  case Type::Paren:
1554    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1555
1556  case Type::Typedef: {
1557    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1558    std::pair<uint64_t, unsigned> Info
1559      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1560    // If the typedef has an aligned attribute on it, it overrides any computed
1561    // alignment we have.  This violates the GCC documentation (which says that
1562    // attribute(aligned) can only round up) but matches its implementation.
1563    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1564      Align = AttrAlign;
1565    else
1566      Align = Info.second;
1567    Width = Info.first;
1568    break;
1569  }
1570
1571  case Type::TypeOfExpr:
1572    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1573                         .getTypePtr());
1574
1575  case Type::TypeOf:
1576    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1577
1578  case Type::Decltype:
1579    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1580                        .getTypePtr());
1581
1582  case Type::UnaryTransform:
1583    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1584
1585  case Type::Elaborated:
1586    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1587
1588  case Type::Attributed:
1589    return getTypeInfo(
1590                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1591
1592  case Type::TemplateSpecialization: {
1593    assert(getCanonicalType(T) != T &&
1594           "Cannot request the size of a dependent type");
1595    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1596    // A type alias template specialization may refer to a typedef with the
1597    // aligned attribute on it.
1598    if (TST->isTypeAlias())
1599      return getTypeInfo(TST->getAliasedType().getTypePtr());
1600    else
1601      return getTypeInfo(getCanonicalType(T));
1602  }
1603
1604  case Type::Atomic: {
1605    // Start with the base type information.
1606    std::pair<uint64_t, unsigned> Info
1607      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1608    Width = Info.first;
1609    Align = Info.second;
1610
1611    // If the size of the type doesn't exceed the platform's max
1612    // atomic promotion width, make the size and alignment more
1613    // favorable to atomic operations:
1614    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1615      // Round the size up to a power of 2.
1616      if (!llvm::isPowerOf2_64(Width))
1617        Width = llvm::NextPowerOf2(Width);
1618
1619      // Set the alignment equal to the size.
1620      Align = static_cast<unsigned>(Width);
1621    }
1622  }
1623
1624  }
1625
1626  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1627  return std::make_pair(Width, Align);
1628}
1629
1630/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1631CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1632  return CharUnits::fromQuantity(BitSize / getCharWidth());
1633}
1634
1635/// toBits - Convert a size in characters to a size in characters.
1636int64_t ASTContext::toBits(CharUnits CharSize) const {
1637  return CharSize.getQuantity() * getCharWidth();
1638}
1639
1640/// getTypeSizeInChars - Return the size of the specified type, in characters.
1641/// This method does not work on incomplete types.
1642CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1643  return toCharUnitsFromBits(getTypeSize(T));
1644}
1645CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1646  return toCharUnitsFromBits(getTypeSize(T));
1647}
1648
1649/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1650/// characters. This method does not work on incomplete types.
1651CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1652  return toCharUnitsFromBits(getTypeAlign(T));
1653}
1654CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1655  return toCharUnitsFromBits(getTypeAlign(T));
1656}
1657
1658/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1659/// type for the current target in bits.  This can be different than the ABI
1660/// alignment in cases where it is beneficial for performance to overalign
1661/// a data type.
1662unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1663  unsigned ABIAlign = getTypeAlign(T);
1664
1665  // Double and long long should be naturally aligned if possible.
1666  if (const ComplexType* CT = T->getAs<ComplexType>())
1667    T = CT->getElementType().getTypePtr();
1668  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1669      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1670      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1671    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1672
1673  return ABIAlign;
1674}
1675
1676/// DeepCollectObjCIvars -
1677/// This routine first collects all declared, but not synthesized, ivars in
1678/// super class and then collects all ivars, including those synthesized for
1679/// current class. This routine is used for implementation of current class
1680/// when all ivars, declared and synthesized are known.
1681///
1682void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1683                                      bool leafClass,
1684                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1685  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1686    DeepCollectObjCIvars(SuperClass, false, Ivars);
1687  if (!leafClass) {
1688    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1689         E = OI->ivar_end(); I != E; ++I)
1690      Ivars.push_back(*I);
1691  } else {
1692    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1693    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1694         Iv= Iv->getNextIvar())
1695      Ivars.push_back(Iv);
1696  }
1697}
1698
1699/// CollectInheritedProtocols - Collect all protocols in current class and
1700/// those inherited by it.
1701void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1702                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1703  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1704    // We can use protocol_iterator here instead of
1705    // all_referenced_protocol_iterator since we are walking all categories.
1706    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1707         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1708      ObjCProtocolDecl *Proto = (*P);
1709      Protocols.insert(Proto->getCanonicalDecl());
1710      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1711           PE = Proto->protocol_end(); P != PE; ++P) {
1712        Protocols.insert((*P)->getCanonicalDecl());
1713        CollectInheritedProtocols(*P, Protocols);
1714      }
1715    }
1716
1717    // Categories of this Interface.
1718    for (ObjCInterfaceDecl::visible_categories_iterator
1719           Cat = OI->visible_categories_begin(),
1720           CatEnd = OI->visible_categories_end();
1721         Cat != CatEnd; ++Cat) {
1722      CollectInheritedProtocols(*Cat, Protocols);
1723    }
1724
1725    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1726      while (SD) {
1727        CollectInheritedProtocols(SD, Protocols);
1728        SD = SD->getSuperClass();
1729      }
1730  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1731    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1732         PE = OC->protocol_end(); P != PE; ++P) {
1733      ObjCProtocolDecl *Proto = (*P);
1734      Protocols.insert(Proto->getCanonicalDecl());
1735      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1736           PE = Proto->protocol_end(); P != PE; ++P)
1737        CollectInheritedProtocols(*P, Protocols);
1738    }
1739  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1740    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1741         PE = OP->protocol_end(); P != PE; ++P) {
1742      ObjCProtocolDecl *Proto = (*P);
1743      Protocols.insert(Proto->getCanonicalDecl());
1744      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1745           PE = Proto->protocol_end(); P != PE; ++P)
1746        CollectInheritedProtocols(*P, Protocols);
1747    }
1748  }
1749}
1750
1751unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1752  unsigned count = 0;
1753  // Count ivars declared in class extension.
1754  for (ObjCInterfaceDecl::known_extensions_iterator
1755         Ext = OI->known_extensions_begin(),
1756         ExtEnd = OI->known_extensions_end();
1757       Ext != ExtEnd; ++Ext) {
1758    count += Ext->ivar_size();
1759  }
1760
1761  // Count ivar defined in this class's implementation.  This
1762  // includes synthesized ivars.
1763  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1764    count += ImplDecl->ivar_size();
1765
1766  return count;
1767}
1768
1769bool ASTContext::isSentinelNullExpr(const Expr *E) {
1770  if (!E)
1771    return false;
1772
1773  // nullptr_t is always treated as null.
1774  if (E->getType()->isNullPtrType()) return true;
1775
1776  if (E->getType()->isAnyPointerType() &&
1777      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1778                                                Expr::NPC_ValueDependentIsNull))
1779    return true;
1780
1781  // Unfortunately, __null has type 'int'.
1782  if (isa<GNUNullExpr>(E)) return true;
1783
1784  return false;
1785}
1786
1787/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1788ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1789  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1790    I = ObjCImpls.find(D);
1791  if (I != ObjCImpls.end())
1792    return cast<ObjCImplementationDecl>(I->second);
1793  return 0;
1794}
1795/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1796ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1797  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1798    I = ObjCImpls.find(D);
1799  if (I != ObjCImpls.end())
1800    return cast<ObjCCategoryImplDecl>(I->second);
1801  return 0;
1802}
1803
1804/// \brief Set the implementation of ObjCInterfaceDecl.
1805void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1806                           ObjCImplementationDecl *ImplD) {
1807  assert(IFaceD && ImplD && "Passed null params");
1808  ObjCImpls[IFaceD] = ImplD;
1809}
1810/// \brief Set the implementation of ObjCCategoryDecl.
1811void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1812                           ObjCCategoryImplDecl *ImplD) {
1813  assert(CatD && ImplD && "Passed null params");
1814  ObjCImpls[CatD] = ImplD;
1815}
1816
1817const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1818                                              const NamedDecl *ND) const {
1819  if (const ObjCInterfaceDecl *ID =
1820          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1821    return ID;
1822  if (const ObjCCategoryDecl *CD =
1823          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1824    return CD->getClassInterface();
1825  if (const ObjCImplDecl *IMD =
1826          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1827    return IMD->getClassInterface();
1828
1829  return 0;
1830}
1831
1832/// \brief Get the copy initialization expression of VarDecl,or NULL if
1833/// none exists.
1834Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1835  assert(VD && "Passed null params");
1836  assert(VD->hasAttr<BlocksAttr>() &&
1837         "getBlockVarCopyInits - not __block var");
1838  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1839    I = BlockVarCopyInits.find(VD);
1840  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1841}
1842
1843/// \brief Set the copy inialization expression of a block var decl.
1844void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1845  assert(VD && Init && "Passed null params");
1846  assert(VD->hasAttr<BlocksAttr>() &&
1847         "setBlockVarCopyInits - not __block var");
1848  BlockVarCopyInits[VD] = Init;
1849}
1850
1851TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1852                                                 unsigned DataSize) const {
1853  if (!DataSize)
1854    DataSize = TypeLoc::getFullDataSizeForType(T);
1855  else
1856    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1857           "incorrect data size provided to CreateTypeSourceInfo!");
1858
1859  TypeSourceInfo *TInfo =
1860    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1861  new (TInfo) TypeSourceInfo(T);
1862  return TInfo;
1863}
1864
1865TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1866                                                     SourceLocation L) const {
1867  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1868  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1869  return DI;
1870}
1871
1872const ASTRecordLayout &
1873ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1874  return getObjCLayout(D, 0);
1875}
1876
1877const ASTRecordLayout &
1878ASTContext::getASTObjCImplementationLayout(
1879                                        const ObjCImplementationDecl *D) const {
1880  return getObjCLayout(D->getClassInterface(), D);
1881}
1882
1883//===----------------------------------------------------------------------===//
1884//                   Type creation/memoization methods
1885//===----------------------------------------------------------------------===//
1886
1887QualType
1888ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1889  unsigned fastQuals = quals.getFastQualifiers();
1890  quals.removeFastQualifiers();
1891
1892  // Check if we've already instantiated this type.
1893  llvm::FoldingSetNodeID ID;
1894  ExtQuals::Profile(ID, baseType, quals);
1895  void *insertPos = 0;
1896  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1897    assert(eq->getQualifiers() == quals);
1898    return QualType(eq, fastQuals);
1899  }
1900
1901  // If the base type is not canonical, make the appropriate canonical type.
1902  QualType canon;
1903  if (!baseType->isCanonicalUnqualified()) {
1904    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1905    canonSplit.Quals.addConsistentQualifiers(quals);
1906    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1907
1908    // Re-find the insert position.
1909    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1910  }
1911
1912  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1913  ExtQualNodes.InsertNode(eq, insertPos);
1914  return QualType(eq, fastQuals);
1915}
1916
1917QualType
1918ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1919  QualType CanT = getCanonicalType(T);
1920  if (CanT.getAddressSpace() == AddressSpace)
1921    return T;
1922
1923  // If we are composing extended qualifiers together, merge together
1924  // into one ExtQuals node.
1925  QualifierCollector Quals;
1926  const Type *TypeNode = Quals.strip(T);
1927
1928  // If this type already has an address space specified, it cannot get
1929  // another one.
1930  assert(!Quals.hasAddressSpace() &&
1931         "Type cannot be in multiple addr spaces!");
1932  Quals.addAddressSpace(AddressSpace);
1933
1934  return getExtQualType(TypeNode, Quals);
1935}
1936
1937QualType ASTContext::getObjCGCQualType(QualType T,
1938                                       Qualifiers::GC GCAttr) const {
1939  QualType CanT = getCanonicalType(T);
1940  if (CanT.getObjCGCAttr() == GCAttr)
1941    return T;
1942
1943  if (const PointerType *ptr = T->getAs<PointerType>()) {
1944    QualType Pointee = ptr->getPointeeType();
1945    if (Pointee->isAnyPointerType()) {
1946      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1947      return getPointerType(ResultType);
1948    }
1949  }
1950
1951  // If we are composing extended qualifiers together, merge together
1952  // into one ExtQuals node.
1953  QualifierCollector Quals;
1954  const Type *TypeNode = Quals.strip(T);
1955
1956  // If this type already has an ObjCGC specified, it cannot get
1957  // another one.
1958  assert(!Quals.hasObjCGCAttr() &&
1959         "Type cannot have multiple ObjCGCs!");
1960  Quals.addObjCGCAttr(GCAttr);
1961
1962  return getExtQualType(TypeNode, Quals);
1963}
1964
1965const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1966                                                   FunctionType::ExtInfo Info) {
1967  if (T->getExtInfo() == Info)
1968    return T;
1969
1970  QualType Result;
1971  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1972    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1973  } else {
1974    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1975    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1976    EPI.ExtInfo = Info;
1977    Result = getFunctionType(FPT->getResultType(),
1978                             ArrayRef<QualType>(FPT->arg_type_begin(),
1979                                                FPT->getNumArgs()),
1980                             EPI);
1981  }
1982
1983  return cast<FunctionType>(Result.getTypePtr());
1984}
1985
1986/// getComplexType - Return the uniqued reference to the type for a complex
1987/// number with the specified element type.
1988QualType ASTContext::getComplexType(QualType T) const {
1989  // Unique pointers, to guarantee there is only one pointer of a particular
1990  // structure.
1991  llvm::FoldingSetNodeID ID;
1992  ComplexType::Profile(ID, T);
1993
1994  void *InsertPos = 0;
1995  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1996    return QualType(CT, 0);
1997
1998  // If the pointee type isn't canonical, this won't be a canonical type either,
1999  // so fill in the canonical type field.
2000  QualType Canonical;
2001  if (!T.isCanonical()) {
2002    Canonical = getComplexType(getCanonicalType(T));
2003
2004    // Get the new insert position for the node we care about.
2005    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2006    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2007  }
2008  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2009  Types.push_back(New);
2010  ComplexTypes.InsertNode(New, InsertPos);
2011  return QualType(New, 0);
2012}
2013
2014/// getPointerType - Return the uniqued reference to the type for a pointer to
2015/// the specified type.
2016QualType ASTContext::getPointerType(QualType T) const {
2017  // Unique pointers, to guarantee there is only one pointer of a particular
2018  // structure.
2019  llvm::FoldingSetNodeID ID;
2020  PointerType::Profile(ID, T);
2021
2022  void *InsertPos = 0;
2023  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2024    return QualType(PT, 0);
2025
2026  // If the pointee type isn't canonical, this won't be a canonical type either,
2027  // so fill in the canonical type field.
2028  QualType Canonical;
2029  if (!T.isCanonical())
2030    Canonical = getPointerType(getCanonicalType(T));
2031
2032  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2033  Types.push_back(New);
2034  PointerTypes.InsertNode(New, InsertPos);
2035  return QualType(New, 0);
2036}
2037
2038/// getBlockPointerType - Return the uniqued reference to the type for
2039/// a pointer to the specified block.
2040QualType ASTContext::getBlockPointerType(QualType T) const {
2041  assert(T->isFunctionType() && "block of function types only");
2042  // Unique pointers, to guarantee there is only one block of a particular
2043  // structure.
2044  llvm::FoldingSetNodeID ID;
2045  BlockPointerType::Profile(ID, T);
2046
2047  void *InsertPos = 0;
2048  if (BlockPointerType *PT =
2049        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2050    return QualType(PT, 0);
2051
2052  // If the block pointee type isn't canonical, this won't be a canonical
2053  // type either so fill in the canonical type field.
2054  QualType Canonical;
2055  if (!T.isCanonical()) {
2056    Canonical = getBlockPointerType(getCanonicalType(T));
2057
2058    // Get the new insert position for the node we care about.
2059    BlockPointerType *NewIP =
2060      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2061    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2062  }
2063  BlockPointerType *New
2064    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2065  Types.push_back(New);
2066  BlockPointerTypes.InsertNode(New, InsertPos);
2067  return QualType(New, 0);
2068}
2069
2070/// getLValueReferenceType - Return the uniqued reference to the type for an
2071/// lvalue reference to the specified type.
2072QualType
2073ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2074  assert(getCanonicalType(T) != OverloadTy &&
2075         "Unresolved overloaded function type");
2076
2077  // Unique pointers, to guarantee there is only one pointer of a particular
2078  // structure.
2079  llvm::FoldingSetNodeID ID;
2080  ReferenceType::Profile(ID, T, SpelledAsLValue);
2081
2082  void *InsertPos = 0;
2083  if (LValueReferenceType *RT =
2084        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2085    return QualType(RT, 0);
2086
2087  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2088
2089  // If the referencee type isn't canonical, this won't be a canonical type
2090  // either, so fill in the canonical type field.
2091  QualType Canonical;
2092  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2093    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2094    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2095
2096    // Get the new insert position for the node we care about.
2097    LValueReferenceType *NewIP =
2098      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2099    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2100  }
2101
2102  LValueReferenceType *New
2103    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2104                                                     SpelledAsLValue);
2105  Types.push_back(New);
2106  LValueReferenceTypes.InsertNode(New, InsertPos);
2107
2108  return QualType(New, 0);
2109}
2110
2111/// getRValueReferenceType - Return the uniqued reference to the type for an
2112/// rvalue reference to the specified type.
2113QualType ASTContext::getRValueReferenceType(QualType T) const {
2114  // Unique pointers, to guarantee there is only one pointer of a particular
2115  // structure.
2116  llvm::FoldingSetNodeID ID;
2117  ReferenceType::Profile(ID, T, false);
2118
2119  void *InsertPos = 0;
2120  if (RValueReferenceType *RT =
2121        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2122    return QualType(RT, 0);
2123
2124  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2125
2126  // If the referencee type isn't canonical, this won't be a canonical type
2127  // either, so fill in the canonical type field.
2128  QualType Canonical;
2129  if (InnerRef || !T.isCanonical()) {
2130    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2131    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2132
2133    // Get the new insert position for the node we care about.
2134    RValueReferenceType *NewIP =
2135      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2136    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2137  }
2138
2139  RValueReferenceType *New
2140    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2141  Types.push_back(New);
2142  RValueReferenceTypes.InsertNode(New, InsertPos);
2143  return QualType(New, 0);
2144}
2145
2146/// getMemberPointerType - Return the uniqued reference to the type for a
2147/// member pointer to the specified type, in the specified class.
2148QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2149  // Unique pointers, to guarantee there is only one pointer of a particular
2150  // structure.
2151  llvm::FoldingSetNodeID ID;
2152  MemberPointerType::Profile(ID, T, Cls);
2153
2154  void *InsertPos = 0;
2155  if (MemberPointerType *PT =
2156      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2157    return QualType(PT, 0);
2158
2159  // If the pointee or class type isn't canonical, this won't be a canonical
2160  // type either, so fill in the canonical type field.
2161  QualType Canonical;
2162  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2163    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2164
2165    // Get the new insert position for the node we care about.
2166    MemberPointerType *NewIP =
2167      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2168    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2169  }
2170  MemberPointerType *New
2171    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2172  Types.push_back(New);
2173  MemberPointerTypes.InsertNode(New, InsertPos);
2174  return QualType(New, 0);
2175}
2176
2177/// getConstantArrayType - Return the unique reference to the type for an
2178/// array of the specified element type.
2179QualType ASTContext::getConstantArrayType(QualType EltTy,
2180                                          const llvm::APInt &ArySizeIn,
2181                                          ArrayType::ArraySizeModifier ASM,
2182                                          unsigned IndexTypeQuals) const {
2183  assert((EltTy->isDependentType() ||
2184          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2185         "Constant array of VLAs is illegal!");
2186
2187  // Convert the array size into a canonical width matching the pointer size for
2188  // the target.
2189  llvm::APInt ArySize(ArySizeIn);
2190  ArySize =
2191    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2192
2193  llvm::FoldingSetNodeID ID;
2194  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2195
2196  void *InsertPos = 0;
2197  if (ConstantArrayType *ATP =
2198      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2199    return QualType(ATP, 0);
2200
2201  // If the element type isn't canonical or has qualifiers, this won't
2202  // be a canonical type either, so fill in the canonical type field.
2203  QualType Canon;
2204  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2205    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2206    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2207                                 ASM, IndexTypeQuals);
2208    Canon = getQualifiedType(Canon, canonSplit.Quals);
2209
2210    // Get the new insert position for the node we care about.
2211    ConstantArrayType *NewIP =
2212      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2213    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2214  }
2215
2216  ConstantArrayType *New = new(*this,TypeAlignment)
2217    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2218  ConstantArrayTypes.InsertNode(New, InsertPos);
2219  Types.push_back(New);
2220  return QualType(New, 0);
2221}
2222
2223/// getVariableArrayDecayedType - Turns the given type, which may be
2224/// variably-modified, into the corresponding type with all the known
2225/// sizes replaced with [*].
2226QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2227  // Vastly most common case.
2228  if (!type->isVariablyModifiedType()) return type;
2229
2230  QualType result;
2231
2232  SplitQualType split = type.getSplitDesugaredType();
2233  const Type *ty = split.Ty;
2234  switch (ty->getTypeClass()) {
2235#define TYPE(Class, Base)
2236#define ABSTRACT_TYPE(Class, Base)
2237#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2238#include "clang/AST/TypeNodes.def"
2239    llvm_unreachable("didn't desugar past all non-canonical types?");
2240
2241  // These types should never be variably-modified.
2242  case Type::Builtin:
2243  case Type::Complex:
2244  case Type::Vector:
2245  case Type::ExtVector:
2246  case Type::DependentSizedExtVector:
2247  case Type::ObjCObject:
2248  case Type::ObjCInterface:
2249  case Type::ObjCObjectPointer:
2250  case Type::Record:
2251  case Type::Enum:
2252  case Type::UnresolvedUsing:
2253  case Type::TypeOfExpr:
2254  case Type::TypeOf:
2255  case Type::Decltype:
2256  case Type::UnaryTransform:
2257  case Type::DependentName:
2258  case Type::InjectedClassName:
2259  case Type::TemplateSpecialization:
2260  case Type::DependentTemplateSpecialization:
2261  case Type::TemplateTypeParm:
2262  case Type::SubstTemplateTypeParmPack:
2263  case Type::Auto:
2264  case Type::PackExpansion:
2265    llvm_unreachable("type should never be variably-modified");
2266
2267  // These types can be variably-modified but should never need to
2268  // further decay.
2269  case Type::FunctionNoProto:
2270  case Type::FunctionProto:
2271  case Type::BlockPointer:
2272  case Type::MemberPointer:
2273    return type;
2274
2275  // These types can be variably-modified.  All these modifications
2276  // preserve structure except as noted by comments.
2277  // TODO: if we ever care about optimizing VLAs, there are no-op
2278  // optimizations available here.
2279  case Type::Pointer:
2280    result = getPointerType(getVariableArrayDecayedType(
2281                              cast<PointerType>(ty)->getPointeeType()));
2282    break;
2283
2284  case Type::LValueReference: {
2285    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2286    result = getLValueReferenceType(
2287                 getVariableArrayDecayedType(lv->getPointeeType()),
2288                                    lv->isSpelledAsLValue());
2289    break;
2290  }
2291
2292  case Type::RValueReference: {
2293    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2294    result = getRValueReferenceType(
2295                 getVariableArrayDecayedType(lv->getPointeeType()));
2296    break;
2297  }
2298
2299  case Type::Atomic: {
2300    const AtomicType *at = cast<AtomicType>(ty);
2301    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2302    break;
2303  }
2304
2305  case Type::ConstantArray: {
2306    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2307    result = getConstantArrayType(
2308                 getVariableArrayDecayedType(cat->getElementType()),
2309                                  cat->getSize(),
2310                                  cat->getSizeModifier(),
2311                                  cat->getIndexTypeCVRQualifiers());
2312    break;
2313  }
2314
2315  case Type::DependentSizedArray: {
2316    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2317    result = getDependentSizedArrayType(
2318                 getVariableArrayDecayedType(dat->getElementType()),
2319                                        dat->getSizeExpr(),
2320                                        dat->getSizeModifier(),
2321                                        dat->getIndexTypeCVRQualifiers(),
2322                                        dat->getBracketsRange());
2323    break;
2324  }
2325
2326  // Turn incomplete types into [*] types.
2327  case Type::IncompleteArray: {
2328    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2329    result = getVariableArrayType(
2330                 getVariableArrayDecayedType(iat->getElementType()),
2331                                  /*size*/ 0,
2332                                  ArrayType::Normal,
2333                                  iat->getIndexTypeCVRQualifiers(),
2334                                  SourceRange());
2335    break;
2336  }
2337
2338  // Turn VLA types into [*] types.
2339  case Type::VariableArray: {
2340    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2341    result = getVariableArrayType(
2342                 getVariableArrayDecayedType(vat->getElementType()),
2343                                  /*size*/ 0,
2344                                  ArrayType::Star,
2345                                  vat->getIndexTypeCVRQualifiers(),
2346                                  vat->getBracketsRange());
2347    break;
2348  }
2349  }
2350
2351  // Apply the top-level qualifiers from the original.
2352  return getQualifiedType(result, split.Quals);
2353}
2354
2355/// getVariableArrayType - Returns a non-unique reference to the type for a
2356/// variable array of the specified element type.
2357QualType ASTContext::getVariableArrayType(QualType EltTy,
2358                                          Expr *NumElts,
2359                                          ArrayType::ArraySizeModifier ASM,
2360                                          unsigned IndexTypeQuals,
2361                                          SourceRange Brackets) const {
2362  // Since we don't unique expressions, it isn't possible to unique VLA's
2363  // that have an expression provided for their size.
2364  QualType Canon;
2365
2366  // Be sure to pull qualifiers off the element type.
2367  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2368    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2369    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2370                                 IndexTypeQuals, Brackets);
2371    Canon = getQualifiedType(Canon, canonSplit.Quals);
2372  }
2373
2374  VariableArrayType *New = new(*this, TypeAlignment)
2375    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2376
2377  VariableArrayTypes.push_back(New);
2378  Types.push_back(New);
2379  return QualType(New, 0);
2380}
2381
2382/// getDependentSizedArrayType - Returns a non-unique reference to
2383/// the type for a dependently-sized array of the specified element
2384/// type.
2385QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2386                                                Expr *numElements,
2387                                                ArrayType::ArraySizeModifier ASM,
2388                                                unsigned elementTypeQuals,
2389                                                SourceRange brackets) const {
2390  assert((!numElements || numElements->isTypeDependent() ||
2391          numElements->isValueDependent()) &&
2392         "Size must be type- or value-dependent!");
2393
2394  // Dependently-sized array types that do not have a specified number
2395  // of elements will have their sizes deduced from a dependent
2396  // initializer.  We do no canonicalization here at all, which is okay
2397  // because they can't be used in most locations.
2398  if (!numElements) {
2399    DependentSizedArrayType *newType
2400      = new (*this, TypeAlignment)
2401          DependentSizedArrayType(*this, elementType, QualType(),
2402                                  numElements, ASM, elementTypeQuals,
2403                                  brackets);
2404    Types.push_back(newType);
2405    return QualType(newType, 0);
2406  }
2407
2408  // Otherwise, we actually build a new type every time, but we
2409  // also build a canonical type.
2410
2411  SplitQualType canonElementType = getCanonicalType(elementType).split();
2412
2413  void *insertPos = 0;
2414  llvm::FoldingSetNodeID ID;
2415  DependentSizedArrayType::Profile(ID, *this,
2416                                   QualType(canonElementType.Ty, 0),
2417                                   ASM, elementTypeQuals, numElements);
2418
2419  // Look for an existing type with these properties.
2420  DependentSizedArrayType *canonTy =
2421    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2422
2423  // If we don't have one, build one.
2424  if (!canonTy) {
2425    canonTy = new (*this, TypeAlignment)
2426      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2427                              QualType(), numElements, ASM, elementTypeQuals,
2428                              brackets);
2429    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2430    Types.push_back(canonTy);
2431  }
2432
2433  // Apply qualifiers from the element type to the array.
2434  QualType canon = getQualifiedType(QualType(canonTy,0),
2435                                    canonElementType.Quals);
2436
2437  // If we didn't need extra canonicalization for the element type,
2438  // then just use that as our result.
2439  if (QualType(canonElementType.Ty, 0) == elementType)
2440    return canon;
2441
2442  // Otherwise, we need to build a type which follows the spelling
2443  // of the element type.
2444  DependentSizedArrayType *sugaredType
2445    = new (*this, TypeAlignment)
2446        DependentSizedArrayType(*this, elementType, canon, numElements,
2447                                ASM, elementTypeQuals, brackets);
2448  Types.push_back(sugaredType);
2449  return QualType(sugaredType, 0);
2450}
2451
2452QualType ASTContext::getIncompleteArrayType(QualType elementType,
2453                                            ArrayType::ArraySizeModifier ASM,
2454                                            unsigned elementTypeQuals) const {
2455  llvm::FoldingSetNodeID ID;
2456  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2457
2458  void *insertPos = 0;
2459  if (IncompleteArrayType *iat =
2460       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2461    return QualType(iat, 0);
2462
2463  // If the element type isn't canonical, this won't be a canonical type
2464  // either, so fill in the canonical type field.  We also have to pull
2465  // qualifiers off the element type.
2466  QualType canon;
2467
2468  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2469    SplitQualType canonSplit = getCanonicalType(elementType).split();
2470    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2471                                   ASM, elementTypeQuals);
2472    canon = getQualifiedType(canon, canonSplit.Quals);
2473
2474    // Get the new insert position for the node we care about.
2475    IncompleteArrayType *existing =
2476      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2477    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2478  }
2479
2480  IncompleteArrayType *newType = new (*this, TypeAlignment)
2481    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2482
2483  IncompleteArrayTypes.InsertNode(newType, insertPos);
2484  Types.push_back(newType);
2485  return QualType(newType, 0);
2486}
2487
2488/// getVectorType - Return the unique reference to a vector type of
2489/// the specified element type and size. VectorType must be a built-in type.
2490QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2491                                   VectorType::VectorKind VecKind) const {
2492  assert(vecType->isBuiltinType());
2493
2494  // Check if we've already instantiated a vector of this type.
2495  llvm::FoldingSetNodeID ID;
2496  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2497
2498  void *InsertPos = 0;
2499  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2500    return QualType(VTP, 0);
2501
2502  // If the element type isn't canonical, this won't be a canonical type either,
2503  // so fill in the canonical type field.
2504  QualType Canonical;
2505  if (!vecType.isCanonical()) {
2506    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2507
2508    // Get the new insert position for the node we care about.
2509    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2510    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2511  }
2512  VectorType *New = new (*this, TypeAlignment)
2513    VectorType(vecType, NumElts, Canonical, VecKind);
2514  VectorTypes.InsertNode(New, InsertPos);
2515  Types.push_back(New);
2516  return QualType(New, 0);
2517}
2518
2519/// getExtVectorType - Return the unique reference to an extended vector type of
2520/// the specified element type and size. VectorType must be a built-in type.
2521QualType
2522ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2523  assert(vecType->isBuiltinType() || vecType->isDependentType());
2524
2525  // Check if we've already instantiated a vector of this type.
2526  llvm::FoldingSetNodeID ID;
2527  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2528                      VectorType::GenericVector);
2529  void *InsertPos = 0;
2530  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2531    return QualType(VTP, 0);
2532
2533  // If the element type isn't canonical, this won't be a canonical type either,
2534  // so fill in the canonical type field.
2535  QualType Canonical;
2536  if (!vecType.isCanonical()) {
2537    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2538
2539    // Get the new insert position for the node we care about.
2540    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2541    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2542  }
2543  ExtVectorType *New = new (*this, TypeAlignment)
2544    ExtVectorType(vecType, NumElts, Canonical);
2545  VectorTypes.InsertNode(New, InsertPos);
2546  Types.push_back(New);
2547  return QualType(New, 0);
2548}
2549
2550QualType
2551ASTContext::getDependentSizedExtVectorType(QualType vecType,
2552                                           Expr *SizeExpr,
2553                                           SourceLocation AttrLoc) const {
2554  llvm::FoldingSetNodeID ID;
2555  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2556                                       SizeExpr);
2557
2558  void *InsertPos = 0;
2559  DependentSizedExtVectorType *Canon
2560    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2561  DependentSizedExtVectorType *New;
2562  if (Canon) {
2563    // We already have a canonical version of this array type; use it as
2564    // the canonical type for a newly-built type.
2565    New = new (*this, TypeAlignment)
2566      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2567                                  SizeExpr, AttrLoc);
2568  } else {
2569    QualType CanonVecTy = getCanonicalType(vecType);
2570    if (CanonVecTy == vecType) {
2571      New = new (*this, TypeAlignment)
2572        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2573                                    AttrLoc);
2574
2575      DependentSizedExtVectorType *CanonCheck
2576        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2577      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2578      (void)CanonCheck;
2579      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2580    } else {
2581      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2582                                                      SourceLocation());
2583      New = new (*this, TypeAlignment)
2584        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2585    }
2586  }
2587
2588  Types.push_back(New);
2589  return QualType(New, 0);
2590}
2591
2592/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2593///
2594QualType
2595ASTContext::getFunctionNoProtoType(QualType ResultTy,
2596                                   const FunctionType::ExtInfo &Info) const {
2597  const CallingConv DefaultCC = Info.getCC();
2598  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2599                               CC_X86StdCall : DefaultCC;
2600  // Unique functions, to guarantee there is only one function of a particular
2601  // structure.
2602  llvm::FoldingSetNodeID ID;
2603  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2604
2605  void *InsertPos = 0;
2606  if (FunctionNoProtoType *FT =
2607        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2608    return QualType(FT, 0);
2609
2610  QualType Canonical;
2611  if (!ResultTy.isCanonical() ||
2612      getCanonicalCallConv(CallConv) != CallConv) {
2613    Canonical =
2614      getFunctionNoProtoType(getCanonicalType(ResultTy),
2615                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2616
2617    // Get the new insert position for the node we care about.
2618    FunctionNoProtoType *NewIP =
2619      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2620    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2621  }
2622
2623  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2624  FunctionNoProtoType *New = new (*this, TypeAlignment)
2625    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2626  Types.push_back(New);
2627  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2628  return QualType(New, 0);
2629}
2630
2631/// \brief Determine whether \p T is canonical as the result type of a function.
2632static bool isCanonicalResultType(QualType T) {
2633  return T.isCanonical() &&
2634         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2635          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2636}
2637
2638/// getFunctionType - Return a normal function type with a typed argument
2639/// list.  isVariadic indicates whether the argument list includes '...'.
2640QualType
2641ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2642                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2643  size_t NumArgs = ArgArray.size();
2644
2645  // Unique functions, to guarantee there is only one function of a particular
2646  // structure.
2647  llvm::FoldingSetNodeID ID;
2648  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2649                             *this);
2650
2651  void *InsertPos = 0;
2652  if (FunctionProtoType *FTP =
2653        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2654    return QualType(FTP, 0);
2655
2656  // Determine whether the type being created is already canonical or not.
2657  bool isCanonical =
2658    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2659    !EPI.HasTrailingReturn;
2660  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2661    if (!ArgArray[i].isCanonicalAsParam())
2662      isCanonical = false;
2663
2664  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2665  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2666                               CC_X86StdCall : DefaultCC;
2667
2668  // If this type isn't canonical, get the canonical version of it.
2669  // The exception spec is not part of the canonical type.
2670  QualType Canonical;
2671  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2672    SmallVector<QualType, 16> CanonicalArgs;
2673    CanonicalArgs.reserve(NumArgs);
2674    for (unsigned i = 0; i != NumArgs; ++i)
2675      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2676
2677    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2678    CanonicalEPI.HasTrailingReturn = false;
2679    CanonicalEPI.ExceptionSpecType = EST_None;
2680    CanonicalEPI.NumExceptions = 0;
2681    CanonicalEPI.ExtInfo
2682      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2683
2684    // Result types do not have ARC lifetime qualifiers.
2685    QualType CanResultTy = getCanonicalType(ResultTy);
2686    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2687      Qualifiers Qs = CanResultTy.getQualifiers();
2688      Qs.removeObjCLifetime();
2689      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2690    }
2691
2692    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2693
2694    // Get the new insert position for the node we care about.
2695    FunctionProtoType *NewIP =
2696      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2697    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2698  }
2699
2700  // FunctionProtoType objects are allocated with extra bytes after
2701  // them for three variable size arrays at the end:
2702  //  - parameter types
2703  //  - exception types
2704  //  - consumed-arguments flags
2705  // Instead of the exception types, there could be a noexcept
2706  // expression, or information used to resolve the exception
2707  // specification.
2708  size_t Size = sizeof(FunctionProtoType) +
2709                NumArgs * sizeof(QualType);
2710  if (EPI.ExceptionSpecType == EST_Dynamic) {
2711    Size += EPI.NumExceptions * sizeof(QualType);
2712  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2713    Size += sizeof(Expr*);
2714  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2715    Size += 2 * sizeof(FunctionDecl*);
2716  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2717    Size += sizeof(FunctionDecl*);
2718  }
2719  if (EPI.ConsumedArguments)
2720    Size += NumArgs * sizeof(bool);
2721
2722  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2723  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2724  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2725  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2726  Types.push_back(FTP);
2727  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2728  return QualType(FTP, 0);
2729}
2730
2731#ifndef NDEBUG
2732static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2733  if (!isa<CXXRecordDecl>(D)) return false;
2734  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2735  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2736    return true;
2737  if (RD->getDescribedClassTemplate() &&
2738      !isa<ClassTemplateSpecializationDecl>(RD))
2739    return true;
2740  return false;
2741}
2742#endif
2743
2744/// getInjectedClassNameType - Return the unique reference to the
2745/// injected class name type for the specified templated declaration.
2746QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2747                                              QualType TST) const {
2748  assert(NeedsInjectedClassNameType(Decl));
2749  if (Decl->TypeForDecl) {
2750    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2751  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2752    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2753    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2754    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2755  } else {
2756    Type *newType =
2757      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2758    Decl->TypeForDecl = newType;
2759    Types.push_back(newType);
2760  }
2761  return QualType(Decl->TypeForDecl, 0);
2762}
2763
2764/// getTypeDeclType - Return the unique reference to the type for the
2765/// specified type declaration.
2766QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2767  assert(Decl && "Passed null for Decl param");
2768  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2769
2770  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2771    return getTypedefType(Typedef);
2772
2773  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2774         "Template type parameter types are always available.");
2775
2776  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2777    assert(!Record->getPreviousDecl() &&
2778           "struct/union has previous declaration");
2779    assert(!NeedsInjectedClassNameType(Record));
2780    return getRecordType(Record);
2781  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2782    assert(!Enum->getPreviousDecl() &&
2783           "enum has previous declaration");
2784    return getEnumType(Enum);
2785  } else if (const UnresolvedUsingTypenameDecl *Using =
2786               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2787    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2788    Decl->TypeForDecl = newType;
2789    Types.push_back(newType);
2790  } else
2791    llvm_unreachable("TypeDecl without a type?");
2792
2793  return QualType(Decl->TypeForDecl, 0);
2794}
2795
2796/// getTypedefType - Return the unique reference to the type for the
2797/// specified typedef name decl.
2798QualType
2799ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2800                           QualType Canonical) const {
2801  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2802
2803  if (Canonical.isNull())
2804    Canonical = getCanonicalType(Decl->getUnderlyingType());
2805  TypedefType *newType = new(*this, TypeAlignment)
2806    TypedefType(Type::Typedef, Decl, Canonical);
2807  Decl->TypeForDecl = newType;
2808  Types.push_back(newType);
2809  return QualType(newType, 0);
2810}
2811
2812QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2813  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2814
2815  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2816    if (PrevDecl->TypeForDecl)
2817      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2818
2819  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2820  Decl->TypeForDecl = newType;
2821  Types.push_back(newType);
2822  return QualType(newType, 0);
2823}
2824
2825QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2826  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2827
2828  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2829    if (PrevDecl->TypeForDecl)
2830      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2831
2832  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2833  Decl->TypeForDecl = newType;
2834  Types.push_back(newType);
2835  return QualType(newType, 0);
2836}
2837
2838QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2839                                       QualType modifiedType,
2840                                       QualType equivalentType) {
2841  llvm::FoldingSetNodeID id;
2842  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2843
2844  void *insertPos = 0;
2845  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2846  if (type) return QualType(type, 0);
2847
2848  QualType canon = getCanonicalType(equivalentType);
2849  type = new (*this, TypeAlignment)
2850           AttributedType(canon, attrKind, modifiedType, equivalentType);
2851
2852  Types.push_back(type);
2853  AttributedTypes.InsertNode(type, insertPos);
2854
2855  return QualType(type, 0);
2856}
2857
2858
2859/// \brief Retrieve a substitution-result type.
2860QualType
2861ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2862                                         QualType Replacement) const {
2863  assert(Replacement.isCanonical()
2864         && "replacement types must always be canonical");
2865
2866  llvm::FoldingSetNodeID ID;
2867  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2868  void *InsertPos = 0;
2869  SubstTemplateTypeParmType *SubstParm
2870    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2871
2872  if (!SubstParm) {
2873    SubstParm = new (*this, TypeAlignment)
2874      SubstTemplateTypeParmType(Parm, Replacement);
2875    Types.push_back(SubstParm);
2876    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2877  }
2878
2879  return QualType(SubstParm, 0);
2880}
2881
2882/// \brief Retrieve a
2883QualType ASTContext::getSubstTemplateTypeParmPackType(
2884                                          const TemplateTypeParmType *Parm,
2885                                              const TemplateArgument &ArgPack) {
2886#ifndef NDEBUG
2887  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2888                                    PEnd = ArgPack.pack_end();
2889       P != PEnd; ++P) {
2890    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2891    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2892  }
2893#endif
2894
2895  llvm::FoldingSetNodeID ID;
2896  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2897  void *InsertPos = 0;
2898  if (SubstTemplateTypeParmPackType *SubstParm
2899        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2900    return QualType(SubstParm, 0);
2901
2902  QualType Canon;
2903  if (!Parm->isCanonicalUnqualified()) {
2904    Canon = getCanonicalType(QualType(Parm, 0));
2905    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2906                                             ArgPack);
2907    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2908  }
2909
2910  SubstTemplateTypeParmPackType *SubstParm
2911    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2912                                                               ArgPack);
2913  Types.push_back(SubstParm);
2914  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2915  return QualType(SubstParm, 0);
2916}
2917
2918/// \brief Retrieve the template type parameter type for a template
2919/// parameter or parameter pack with the given depth, index, and (optionally)
2920/// name.
2921QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2922                                             bool ParameterPack,
2923                                             TemplateTypeParmDecl *TTPDecl) const {
2924  llvm::FoldingSetNodeID ID;
2925  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2926  void *InsertPos = 0;
2927  TemplateTypeParmType *TypeParm
2928    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2929
2930  if (TypeParm)
2931    return QualType(TypeParm, 0);
2932
2933  if (TTPDecl) {
2934    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2935    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2936
2937    TemplateTypeParmType *TypeCheck
2938      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2939    assert(!TypeCheck && "Template type parameter canonical type broken");
2940    (void)TypeCheck;
2941  } else
2942    TypeParm = new (*this, TypeAlignment)
2943      TemplateTypeParmType(Depth, Index, ParameterPack);
2944
2945  Types.push_back(TypeParm);
2946  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2947
2948  return QualType(TypeParm, 0);
2949}
2950
2951TypeSourceInfo *
2952ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2953                                              SourceLocation NameLoc,
2954                                        const TemplateArgumentListInfo &Args,
2955                                              QualType Underlying) const {
2956  assert(!Name.getAsDependentTemplateName() &&
2957         "No dependent template names here!");
2958  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2959
2960  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2961  TemplateSpecializationTypeLoc TL =
2962      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
2963  TL.setTemplateKeywordLoc(SourceLocation());
2964  TL.setTemplateNameLoc(NameLoc);
2965  TL.setLAngleLoc(Args.getLAngleLoc());
2966  TL.setRAngleLoc(Args.getRAngleLoc());
2967  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2968    TL.setArgLocInfo(i, Args[i].getLocInfo());
2969  return DI;
2970}
2971
2972QualType
2973ASTContext::getTemplateSpecializationType(TemplateName Template,
2974                                          const TemplateArgumentListInfo &Args,
2975                                          QualType Underlying) const {
2976  assert(!Template.getAsDependentTemplateName() &&
2977         "No dependent template names here!");
2978
2979  unsigned NumArgs = Args.size();
2980
2981  SmallVector<TemplateArgument, 4> ArgVec;
2982  ArgVec.reserve(NumArgs);
2983  for (unsigned i = 0; i != NumArgs; ++i)
2984    ArgVec.push_back(Args[i].getArgument());
2985
2986  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2987                                       Underlying);
2988}
2989
2990#ifndef NDEBUG
2991static bool hasAnyPackExpansions(const TemplateArgument *Args,
2992                                 unsigned NumArgs) {
2993  for (unsigned I = 0; I != NumArgs; ++I)
2994    if (Args[I].isPackExpansion())
2995      return true;
2996
2997  return true;
2998}
2999#endif
3000
3001QualType
3002ASTContext::getTemplateSpecializationType(TemplateName Template,
3003                                          const TemplateArgument *Args,
3004                                          unsigned NumArgs,
3005                                          QualType Underlying) const {
3006  assert(!Template.getAsDependentTemplateName() &&
3007         "No dependent template names here!");
3008  // Look through qualified template names.
3009  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3010    Template = TemplateName(QTN->getTemplateDecl());
3011
3012  bool IsTypeAlias =
3013    Template.getAsTemplateDecl() &&
3014    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3015  QualType CanonType;
3016  if (!Underlying.isNull())
3017    CanonType = getCanonicalType(Underlying);
3018  else {
3019    // We can get here with an alias template when the specialization contains
3020    // a pack expansion that does not match up with a parameter pack.
3021    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3022           "Caller must compute aliased type");
3023    IsTypeAlias = false;
3024    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3025                                                       NumArgs);
3026  }
3027
3028  // Allocate the (non-canonical) template specialization type, but don't
3029  // try to unique it: these types typically have location information that
3030  // we don't unique and don't want to lose.
3031  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3032                       sizeof(TemplateArgument) * NumArgs +
3033                       (IsTypeAlias? sizeof(QualType) : 0),
3034                       TypeAlignment);
3035  TemplateSpecializationType *Spec
3036    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3037                                         IsTypeAlias ? Underlying : QualType());
3038
3039  Types.push_back(Spec);
3040  return QualType(Spec, 0);
3041}
3042
3043QualType
3044ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3045                                                   const TemplateArgument *Args,
3046                                                   unsigned NumArgs) const {
3047  assert(!Template.getAsDependentTemplateName() &&
3048         "No dependent template names here!");
3049
3050  // Look through qualified template names.
3051  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3052    Template = TemplateName(QTN->getTemplateDecl());
3053
3054  // Build the canonical template specialization type.
3055  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3056  SmallVector<TemplateArgument, 4> CanonArgs;
3057  CanonArgs.reserve(NumArgs);
3058  for (unsigned I = 0; I != NumArgs; ++I)
3059    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3060
3061  // Determine whether this canonical template specialization type already
3062  // exists.
3063  llvm::FoldingSetNodeID ID;
3064  TemplateSpecializationType::Profile(ID, CanonTemplate,
3065                                      CanonArgs.data(), NumArgs, *this);
3066
3067  void *InsertPos = 0;
3068  TemplateSpecializationType *Spec
3069    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3070
3071  if (!Spec) {
3072    // Allocate a new canonical template specialization type.
3073    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3074                          sizeof(TemplateArgument) * NumArgs),
3075                         TypeAlignment);
3076    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3077                                                CanonArgs.data(), NumArgs,
3078                                                QualType(), QualType());
3079    Types.push_back(Spec);
3080    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3081  }
3082
3083  assert(Spec->isDependentType() &&
3084         "Non-dependent template-id type must have a canonical type");
3085  return QualType(Spec, 0);
3086}
3087
3088QualType
3089ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3090                              NestedNameSpecifier *NNS,
3091                              QualType NamedType) const {
3092  llvm::FoldingSetNodeID ID;
3093  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3094
3095  void *InsertPos = 0;
3096  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3097  if (T)
3098    return QualType(T, 0);
3099
3100  QualType Canon = NamedType;
3101  if (!Canon.isCanonical()) {
3102    Canon = getCanonicalType(NamedType);
3103    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3104    assert(!CheckT && "Elaborated canonical type broken");
3105    (void)CheckT;
3106  }
3107
3108  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3109  Types.push_back(T);
3110  ElaboratedTypes.InsertNode(T, InsertPos);
3111  return QualType(T, 0);
3112}
3113
3114QualType
3115ASTContext::getParenType(QualType InnerType) const {
3116  llvm::FoldingSetNodeID ID;
3117  ParenType::Profile(ID, InnerType);
3118
3119  void *InsertPos = 0;
3120  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3121  if (T)
3122    return QualType(T, 0);
3123
3124  QualType Canon = InnerType;
3125  if (!Canon.isCanonical()) {
3126    Canon = getCanonicalType(InnerType);
3127    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3128    assert(!CheckT && "Paren canonical type broken");
3129    (void)CheckT;
3130  }
3131
3132  T = new (*this) ParenType(InnerType, Canon);
3133  Types.push_back(T);
3134  ParenTypes.InsertNode(T, InsertPos);
3135  return QualType(T, 0);
3136}
3137
3138QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3139                                          NestedNameSpecifier *NNS,
3140                                          const IdentifierInfo *Name,
3141                                          QualType Canon) const {
3142  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3143
3144  if (Canon.isNull()) {
3145    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3146    ElaboratedTypeKeyword CanonKeyword = Keyword;
3147    if (Keyword == ETK_None)
3148      CanonKeyword = ETK_Typename;
3149
3150    if (CanonNNS != NNS || CanonKeyword != Keyword)
3151      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3152  }
3153
3154  llvm::FoldingSetNodeID ID;
3155  DependentNameType::Profile(ID, Keyword, NNS, Name);
3156
3157  void *InsertPos = 0;
3158  DependentNameType *T
3159    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3160  if (T)
3161    return QualType(T, 0);
3162
3163  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3164  Types.push_back(T);
3165  DependentNameTypes.InsertNode(T, InsertPos);
3166  return QualType(T, 0);
3167}
3168
3169QualType
3170ASTContext::getDependentTemplateSpecializationType(
3171                                 ElaboratedTypeKeyword Keyword,
3172                                 NestedNameSpecifier *NNS,
3173                                 const IdentifierInfo *Name,
3174                                 const TemplateArgumentListInfo &Args) const {
3175  // TODO: avoid this copy
3176  SmallVector<TemplateArgument, 16> ArgCopy;
3177  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3178    ArgCopy.push_back(Args[I].getArgument());
3179  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3180                                                ArgCopy.size(),
3181                                                ArgCopy.data());
3182}
3183
3184QualType
3185ASTContext::getDependentTemplateSpecializationType(
3186                                 ElaboratedTypeKeyword Keyword,
3187                                 NestedNameSpecifier *NNS,
3188                                 const IdentifierInfo *Name,
3189                                 unsigned NumArgs,
3190                                 const TemplateArgument *Args) const {
3191  assert((!NNS || NNS->isDependent()) &&
3192         "nested-name-specifier must be dependent");
3193
3194  llvm::FoldingSetNodeID ID;
3195  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3196                                               Name, NumArgs, Args);
3197
3198  void *InsertPos = 0;
3199  DependentTemplateSpecializationType *T
3200    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3201  if (T)
3202    return QualType(T, 0);
3203
3204  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3205
3206  ElaboratedTypeKeyword CanonKeyword = Keyword;
3207  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3208
3209  bool AnyNonCanonArgs = false;
3210  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3211  for (unsigned I = 0; I != NumArgs; ++I) {
3212    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3213    if (!CanonArgs[I].structurallyEquals(Args[I]))
3214      AnyNonCanonArgs = true;
3215  }
3216
3217  QualType Canon;
3218  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3219    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3220                                                   Name, NumArgs,
3221                                                   CanonArgs.data());
3222
3223    // Find the insert position again.
3224    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3225  }
3226
3227  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3228                        sizeof(TemplateArgument) * NumArgs),
3229                       TypeAlignment);
3230  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3231                                                    Name, NumArgs, Args, Canon);
3232  Types.push_back(T);
3233  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3234  return QualType(T, 0);
3235}
3236
3237QualType ASTContext::getPackExpansionType(QualType Pattern,
3238                                          Optional<unsigned> NumExpansions) {
3239  llvm::FoldingSetNodeID ID;
3240  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3241
3242  assert(Pattern->containsUnexpandedParameterPack() &&
3243         "Pack expansions must expand one or more parameter packs");
3244  void *InsertPos = 0;
3245  PackExpansionType *T
3246    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3247  if (T)
3248    return QualType(T, 0);
3249
3250  QualType Canon;
3251  if (!Pattern.isCanonical()) {
3252    Canon = getCanonicalType(Pattern);
3253    // The canonical type might not contain an unexpanded parameter pack, if it
3254    // contains an alias template specialization which ignores one of its
3255    // parameters.
3256    if (Canon->containsUnexpandedParameterPack()) {
3257      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3258
3259      // Find the insert position again, in case we inserted an element into
3260      // PackExpansionTypes and invalidated our insert position.
3261      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3262    }
3263  }
3264
3265  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3266  Types.push_back(T);
3267  PackExpansionTypes.InsertNode(T, InsertPos);
3268  return QualType(T, 0);
3269}
3270
3271/// CmpProtocolNames - Comparison predicate for sorting protocols
3272/// alphabetically.
3273static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3274                            const ObjCProtocolDecl *RHS) {
3275  return LHS->getDeclName() < RHS->getDeclName();
3276}
3277
3278static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3279                                unsigned NumProtocols) {
3280  if (NumProtocols == 0) return true;
3281
3282  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3283    return false;
3284
3285  for (unsigned i = 1; i != NumProtocols; ++i)
3286    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3287        Protocols[i]->getCanonicalDecl() != Protocols[i])
3288      return false;
3289  return true;
3290}
3291
3292static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3293                                   unsigned &NumProtocols) {
3294  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3295
3296  // Sort protocols, keyed by name.
3297  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3298
3299  // Canonicalize.
3300  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3301    Protocols[I] = Protocols[I]->getCanonicalDecl();
3302
3303  // Remove duplicates.
3304  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3305  NumProtocols = ProtocolsEnd-Protocols;
3306}
3307
3308QualType ASTContext::getObjCObjectType(QualType BaseType,
3309                                       ObjCProtocolDecl * const *Protocols,
3310                                       unsigned NumProtocols) const {
3311  // If the base type is an interface and there aren't any protocols
3312  // to add, then the interface type will do just fine.
3313  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3314    return BaseType;
3315
3316  // Look in the folding set for an existing type.
3317  llvm::FoldingSetNodeID ID;
3318  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3319  void *InsertPos = 0;
3320  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3321    return QualType(QT, 0);
3322
3323  // Build the canonical type, which has the canonical base type and
3324  // a sorted-and-uniqued list of protocols.
3325  QualType Canonical;
3326  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3327  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3328    if (!ProtocolsSorted) {
3329      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3330                                                     Protocols + NumProtocols);
3331      unsigned UniqueCount = NumProtocols;
3332
3333      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3334      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3335                                    &Sorted[0], UniqueCount);
3336    } else {
3337      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3338                                    Protocols, NumProtocols);
3339    }
3340
3341    // Regenerate InsertPos.
3342    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3343  }
3344
3345  unsigned Size = sizeof(ObjCObjectTypeImpl);
3346  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3347  void *Mem = Allocate(Size, TypeAlignment);
3348  ObjCObjectTypeImpl *T =
3349    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3350
3351  Types.push_back(T);
3352  ObjCObjectTypes.InsertNode(T, InsertPos);
3353  return QualType(T, 0);
3354}
3355
3356/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3357/// the given object type.
3358QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3359  llvm::FoldingSetNodeID ID;
3360  ObjCObjectPointerType::Profile(ID, ObjectT);
3361
3362  void *InsertPos = 0;
3363  if (ObjCObjectPointerType *QT =
3364              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3365    return QualType(QT, 0);
3366
3367  // Find the canonical object type.
3368  QualType Canonical;
3369  if (!ObjectT.isCanonical()) {
3370    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3371
3372    // Regenerate InsertPos.
3373    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3374  }
3375
3376  // No match.
3377  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3378  ObjCObjectPointerType *QType =
3379    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3380
3381  Types.push_back(QType);
3382  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3383  return QualType(QType, 0);
3384}
3385
3386/// getObjCInterfaceType - Return the unique reference to the type for the
3387/// specified ObjC interface decl. The list of protocols is optional.
3388QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3389                                          ObjCInterfaceDecl *PrevDecl) const {
3390  if (Decl->TypeForDecl)
3391    return QualType(Decl->TypeForDecl, 0);
3392
3393  if (PrevDecl) {
3394    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3395    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3396    return QualType(PrevDecl->TypeForDecl, 0);
3397  }
3398
3399  // Prefer the definition, if there is one.
3400  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3401    Decl = Def;
3402
3403  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3404  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3405  Decl->TypeForDecl = T;
3406  Types.push_back(T);
3407  return QualType(T, 0);
3408}
3409
3410/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3411/// TypeOfExprType AST's (since expression's are never shared). For example,
3412/// multiple declarations that refer to "typeof(x)" all contain different
3413/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3414/// on canonical type's (which are always unique).
3415QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3416  TypeOfExprType *toe;
3417  if (tofExpr->isTypeDependent()) {
3418    llvm::FoldingSetNodeID ID;
3419    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3420
3421    void *InsertPos = 0;
3422    DependentTypeOfExprType *Canon
3423      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3424    if (Canon) {
3425      // We already have a "canonical" version of an identical, dependent
3426      // typeof(expr) type. Use that as our canonical type.
3427      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3428                                          QualType((TypeOfExprType*)Canon, 0));
3429    } else {
3430      // Build a new, canonical typeof(expr) type.
3431      Canon
3432        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3433      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3434      toe = Canon;
3435    }
3436  } else {
3437    QualType Canonical = getCanonicalType(tofExpr->getType());
3438    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3439  }
3440  Types.push_back(toe);
3441  return QualType(toe, 0);
3442}
3443
3444/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3445/// TypeOfType AST's. The only motivation to unique these nodes would be
3446/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3447/// an issue. This doesn't effect the type checker, since it operates
3448/// on canonical type's (which are always unique).
3449QualType ASTContext::getTypeOfType(QualType tofType) const {
3450  QualType Canonical = getCanonicalType(tofType);
3451  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3452  Types.push_back(tot);
3453  return QualType(tot, 0);
3454}
3455
3456
3457/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3458/// DecltypeType AST's. The only motivation to unique these nodes would be
3459/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3460/// an issue. This doesn't effect the type checker, since it operates
3461/// on canonical types (which are always unique).
3462QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3463  DecltypeType *dt;
3464
3465  // C++0x [temp.type]p2:
3466  //   If an expression e involves a template parameter, decltype(e) denotes a
3467  //   unique dependent type. Two such decltype-specifiers refer to the same
3468  //   type only if their expressions are equivalent (14.5.6.1).
3469  if (e->isInstantiationDependent()) {
3470    llvm::FoldingSetNodeID ID;
3471    DependentDecltypeType::Profile(ID, *this, e);
3472
3473    void *InsertPos = 0;
3474    DependentDecltypeType *Canon
3475      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3476    if (Canon) {
3477      // We already have a "canonical" version of an equivalent, dependent
3478      // decltype type. Use that as our canonical type.
3479      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3480                                       QualType((DecltypeType*)Canon, 0));
3481    } else {
3482      // Build a new, canonical typeof(expr) type.
3483      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3484      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3485      dt = Canon;
3486    }
3487  } else {
3488    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3489                                      getCanonicalType(UnderlyingType));
3490  }
3491  Types.push_back(dt);
3492  return QualType(dt, 0);
3493}
3494
3495/// getUnaryTransformationType - We don't unique these, since the memory
3496/// savings are minimal and these are rare.
3497QualType ASTContext::getUnaryTransformType(QualType BaseType,
3498                                           QualType UnderlyingType,
3499                                           UnaryTransformType::UTTKind Kind)
3500    const {
3501  UnaryTransformType *Ty =
3502    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3503                                                   Kind,
3504                                 UnderlyingType->isDependentType() ?
3505                                 QualType() : getCanonicalType(UnderlyingType));
3506  Types.push_back(Ty);
3507  return QualType(Ty, 0);
3508}
3509
3510/// getAutoType - We only unique auto types after they've been deduced.
3511QualType ASTContext::getAutoType(QualType DeducedType) const {
3512  void *InsertPos = 0;
3513  if (!DeducedType.isNull()) {
3514    // Look in the folding set for an existing type.
3515    llvm::FoldingSetNodeID ID;
3516    AutoType::Profile(ID, DeducedType);
3517    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3518      return QualType(AT, 0);
3519  }
3520
3521  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3522  Types.push_back(AT);
3523  if (InsertPos)
3524    AutoTypes.InsertNode(AT, InsertPos);
3525  return QualType(AT, 0);
3526}
3527
3528/// getAtomicType - Return the uniqued reference to the atomic type for
3529/// the given value type.
3530QualType ASTContext::getAtomicType(QualType T) const {
3531  // Unique pointers, to guarantee there is only one pointer of a particular
3532  // structure.
3533  llvm::FoldingSetNodeID ID;
3534  AtomicType::Profile(ID, T);
3535
3536  void *InsertPos = 0;
3537  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3538    return QualType(AT, 0);
3539
3540  // If the atomic value type isn't canonical, this won't be a canonical type
3541  // either, so fill in the canonical type field.
3542  QualType Canonical;
3543  if (!T.isCanonical()) {
3544    Canonical = getAtomicType(getCanonicalType(T));
3545
3546    // Get the new insert position for the node we care about.
3547    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3548    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3549  }
3550  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3551  Types.push_back(New);
3552  AtomicTypes.InsertNode(New, InsertPos);
3553  return QualType(New, 0);
3554}
3555
3556/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3557QualType ASTContext::getAutoDeductType() const {
3558  if (AutoDeductTy.isNull())
3559    AutoDeductTy = getAutoType(QualType());
3560  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3561  return AutoDeductTy;
3562}
3563
3564/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3565QualType ASTContext::getAutoRRefDeductType() const {
3566  if (AutoRRefDeductTy.isNull())
3567    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3568  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3569  return AutoRRefDeductTy;
3570}
3571
3572/// getTagDeclType - Return the unique reference to the type for the
3573/// specified TagDecl (struct/union/class/enum) decl.
3574QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3575  assert (Decl);
3576  // FIXME: What is the design on getTagDeclType when it requires casting
3577  // away const?  mutable?
3578  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3579}
3580
3581/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3582/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3583/// needs to agree with the definition in <stddef.h>.
3584CanQualType ASTContext::getSizeType() const {
3585  return getFromTargetType(Target->getSizeType());
3586}
3587
3588/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3589CanQualType ASTContext::getIntMaxType() const {
3590  return getFromTargetType(Target->getIntMaxType());
3591}
3592
3593/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3594CanQualType ASTContext::getUIntMaxType() const {
3595  return getFromTargetType(Target->getUIntMaxType());
3596}
3597
3598/// getSignedWCharType - Return the type of "signed wchar_t".
3599/// Used when in C++, as a GCC extension.
3600QualType ASTContext::getSignedWCharType() const {
3601  // FIXME: derive from "Target" ?
3602  return WCharTy;
3603}
3604
3605/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3606/// Used when in C++, as a GCC extension.
3607QualType ASTContext::getUnsignedWCharType() const {
3608  // FIXME: derive from "Target" ?
3609  return UnsignedIntTy;
3610}
3611
3612QualType ASTContext::getIntPtrType() const {
3613  return getFromTargetType(Target->getIntPtrType());
3614}
3615
3616QualType ASTContext::getUIntPtrType() const {
3617  return getCorrespondingUnsignedType(getIntPtrType());
3618}
3619
3620/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3621/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3622QualType ASTContext::getPointerDiffType() const {
3623  return getFromTargetType(Target->getPtrDiffType(0));
3624}
3625
3626/// \brief Return the unique type for "pid_t" defined in
3627/// <sys/types.h>. We need this to compute the correct type for vfork().
3628QualType ASTContext::getProcessIDType() const {
3629  return getFromTargetType(Target->getProcessIDType());
3630}
3631
3632//===----------------------------------------------------------------------===//
3633//                              Type Operators
3634//===----------------------------------------------------------------------===//
3635
3636CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3637  // Push qualifiers into arrays, and then discard any remaining
3638  // qualifiers.
3639  T = getCanonicalType(T);
3640  T = getVariableArrayDecayedType(T);
3641  const Type *Ty = T.getTypePtr();
3642  QualType Result;
3643  if (isa<ArrayType>(Ty)) {
3644    Result = getArrayDecayedType(QualType(Ty,0));
3645  } else if (isa<FunctionType>(Ty)) {
3646    Result = getPointerType(QualType(Ty, 0));
3647  } else {
3648    Result = QualType(Ty, 0);
3649  }
3650
3651  return CanQualType::CreateUnsafe(Result);
3652}
3653
3654QualType ASTContext::getUnqualifiedArrayType(QualType type,
3655                                             Qualifiers &quals) {
3656  SplitQualType splitType = type.getSplitUnqualifiedType();
3657
3658  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3659  // the unqualified desugared type and then drops it on the floor.
3660  // We then have to strip that sugar back off with
3661  // getUnqualifiedDesugaredType(), which is silly.
3662  const ArrayType *AT =
3663    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3664
3665  // If we don't have an array, just use the results in splitType.
3666  if (!AT) {
3667    quals = splitType.Quals;
3668    return QualType(splitType.Ty, 0);
3669  }
3670
3671  // Otherwise, recurse on the array's element type.
3672  QualType elementType = AT->getElementType();
3673  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3674
3675  // If that didn't change the element type, AT has no qualifiers, so we
3676  // can just use the results in splitType.
3677  if (elementType == unqualElementType) {
3678    assert(quals.empty()); // from the recursive call
3679    quals = splitType.Quals;
3680    return QualType(splitType.Ty, 0);
3681  }
3682
3683  // Otherwise, add in the qualifiers from the outermost type, then
3684  // build the type back up.
3685  quals.addConsistentQualifiers(splitType.Quals);
3686
3687  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3688    return getConstantArrayType(unqualElementType, CAT->getSize(),
3689                                CAT->getSizeModifier(), 0);
3690  }
3691
3692  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3693    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3694  }
3695
3696  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3697    return getVariableArrayType(unqualElementType,
3698                                VAT->getSizeExpr(),
3699                                VAT->getSizeModifier(),
3700                                VAT->getIndexTypeCVRQualifiers(),
3701                                VAT->getBracketsRange());
3702  }
3703
3704  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3705  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3706                                    DSAT->getSizeModifier(), 0,
3707                                    SourceRange());
3708}
3709
3710/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3711/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3712/// they point to and return true. If T1 and T2 aren't pointer types
3713/// or pointer-to-member types, or if they are not similar at this
3714/// level, returns false and leaves T1 and T2 unchanged. Top-level
3715/// qualifiers on T1 and T2 are ignored. This function will typically
3716/// be called in a loop that successively "unwraps" pointer and
3717/// pointer-to-member types to compare them at each level.
3718bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3719  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3720                    *T2PtrType = T2->getAs<PointerType>();
3721  if (T1PtrType && T2PtrType) {
3722    T1 = T1PtrType->getPointeeType();
3723    T2 = T2PtrType->getPointeeType();
3724    return true;
3725  }
3726
3727  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3728                          *T2MPType = T2->getAs<MemberPointerType>();
3729  if (T1MPType && T2MPType &&
3730      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3731                             QualType(T2MPType->getClass(), 0))) {
3732    T1 = T1MPType->getPointeeType();
3733    T2 = T2MPType->getPointeeType();
3734    return true;
3735  }
3736
3737  if (getLangOpts().ObjC1) {
3738    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3739                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3740    if (T1OPType && T2OPType) {
3741      T1 = T1OPType->getPointeeType();
3742      T2 = T2OPType->getPointeeType();
3743      return true;
3744    }
3745  }
3746
3747  // FIXME: Block pointers, too?
3748
3749  return false;
3750}
3751
3752DeclarationNameInfo
3753ASTContext::getNameForTemplate(TemplateName Name,
3754                               SourceLocation NameLoc) const {
3755  switch (Name.getKind()) {
3756  case TemplateName::QualifiedTemplate:
3757  case TemplateName::Template:
3758    // DNInfo work in progress: CHECKME: what about DNLoc?
3759    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3760                               NameLoc);
3761
3762  case TemplateName::OverloadedTemplate: {
3763    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3764    // DNInfo work in progress: CHECKME: what about DNLoc?
3765    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3766  }
3767
3768  case TemplateName::DependentTemplate: {
3769    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3770    DeclarationName DName;
3771    if (DTN->isIdentifier()) {
3772      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3773      return DeclarationNameInfo(DName, NameLoc);
3774    } else {
3775      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3776      // DNInfo work in progress: FIXME: source locations?
3777      DeclarationNameLoc DNLoc;
3778      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3779      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3780      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3781    }
3782  }
3783
3784  case TemplateName::SubstTemplateTemplateParm: {
3785    SubstTemplateTemplateParmStorage *subst
3786      = Name.getAsSubstTemplateTemplateParm();
3787    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3788                               NameLoc);
3789  }
3790
3791  case TemplateName::SubstTemplateTemplateParmPack: {
3792    SubstTemplateTemplateParmPackStorage *subst
3793      = Name.getAsSubstTemplateTemplateParmPack();
3794    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3795                               NameLoc);
3796  }
3797  }
3798
3799  llvm_unreachable("bad template name kind!");
3800}
3801
3802TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3803  switch (Name.getKind()) {
3804  case TemplateName::QualifiedTemplate:
3805  case TemplateName::Template: {
3806    TemplateDecl *Template = Name.getAsTemplateDecl();
3807    if (TemplateTemplateParmDecl *TTP
3808          = dyn_cast<TemplateTemplateParmDecl>(Template))
3809      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3810
3811    // The canonical template name is the canonical template declaration.
3812    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3813  }
3814
3815  case TemplateName::OverloadedTemplate:
3816    llvm_unreachable("cannot canonicalize overloaded template");
3817
3818  case TemplateName::DependentTemplate: {
3819    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3820    assert(DTN && "Non-dependent template names must refer to template decls.");
3821    return DTN->CanonicalTemplateName;
3822  }
3823
3824  case TemplateName::SubstTemplateTemplateParm: {
3825    SubstTemplateTemplateParmStorage *subst
3826      = Name.getAsSubstTemplateTemplateParm();
3827    return getCanonicalTemplateName(subst->getReplacement());
3828  }
3829
3830  case TemplateName::SubstTemplateTemplateParmPack: {
3831    SubstTemplateTemplateParmPackStorage *subst
3832                                  = Name.getAsSubstTemplateTemplateParmPack();
3833    TemplateTemplateParmDecl *canonParameter
3834      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3835    TemplateArgument canonArgPack
3836      = getCanonicalTemplateArgument(subst->getArgumentPack());
3837    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3838  }
3839  }
3840
3841  llvm_unreachable("bad template name!");
3842}
3843
3844bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3845  X = getCanonicalTemplateName(X);
3846  Y = getCanonicalTemplateName(Y);
3847  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3848}
3849
3850TemplateArgument
3851ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3852  switch (Arg.getKind()) {
3853    case TemplateArgument::Null:
3854      return Arg;
3855
3856    case TemplateArgument::Expression:
3857      return Arg;
3858
3859    case TemplateArgument::Declaration: {
3860      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3861      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3862    }
3863
3864    case TemplateArgument::NullPtr:
3865      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3866                              /*isNullPtr*/true);
3867
3868    case TemplateArgument::Template:
3869      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3870
3871    case TemplateArgument::TemplateExpansion:
3872      return TemplateArgument(getCanonicalTemplateName(
3873                                         Arg.getAsTemplateOrTemplatePattern()),
3874                              Arg.getNumTemplateExpansions());
3875
3876    case TemplateArgument::Integral:
3877      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3878
3879    case TemplateArgument::Type:
3880      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3881
3882    case TemplateArgument::Pack: {
3883      if (Arg.pack_size() == 0)
3884        return Arg;
3885
3886      TemplateArgument *CanonArgs
3887        = new (*this) TemplateArgument[Arg.pack_size()];
3888      unsigned Idx = 0;
3889      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3890                                        AEnd = Arg.pack_end();
3891           A != AEnd; (void)++A, ++Idx)
3892        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3893
3894      return TemplateArgument(CanonArgs, Arg.pack_size());
3895    }
3896  }
3897
3898  // Silence GCC warning
3899  llvm_unreachable("Unhandled template argument kind");
3900}
3901
3902NestedNameSpecifier *
3903ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3904  if (!NNS)
3905    return 0;
3906
3907  switch (NNS->getKind()) {
3908  case NestedNameSpecifier::Identifier:
3909    // Canonicalize the prefix but keep the identifier the same.
3910    return NestedNameSpecifier::Create(*this,
3911                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3912                                       NNS->getAsIdentifier());
3913
3914  case NestedNameSpecifier::Namespace:
3915    // A namespace is canonical; build a nested-name-specifier with
3916    // this namespace and no prefix.
3917    return NestedNameSpecifier::Create(*this, 0,
3918                                 NNS->getAsNamespace()->getOriginalNamespace());
3919
3920  case NestedNameSpecifier::NamespaceAlias:
3921    // A namespace is canonical; build a nested-name-specifier with
3922    // this namespace and no prefix.
3923    return NestedNameSpecifier::Create(*this, 0,
3924                                    NNS->getAsNamespaceAlias()->getNamespace()
3925                                                      ->getOriginalNamespace());
3926
3927  case NestedNameSpecifier::TypeSpec:
3928  case NestedNameSpecifier::TypeSpecWithTemplate: {
3929    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3930
3931    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3932    // break it apart into its prefix and identifier, then reconsititute those
3933    // as the canonical nested-name-specifier. This is required to canonicalize
3934    // a dependent nested-name-specifier involving typedefs of dependent-name
3935    // types, e.g.,
3936    //   typedef typename T::type T1;
3937    //   typedef typename T1::type T2;
3938    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3939      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3940                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3941
3942    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3943    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3944    // first place?
3945    return NestedNameSpecifier::Create(*this, 0, false,
3946                                       const_cast<Type*>(T.getTypePtr()));
3947  }
3948
3949  case NestedNameSpecifier::Global:
3950    // The global specifier is canonical and unique.
3951    return NNS;
3952  }
3953
3954  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3955}
3956
3957
3958const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3959  // Handle the non-qualified case efficiently.
3960  if (!T.hasLocalQualifiers()) {
3961    // Handle the common positive case fast.
3962    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3963      return AT;
3964  }
3965
3966  // Handle the common negative case fast.
3967  if (!isa<ArrayType>(T.getCanonicalType()))
3968    return 0;
3969
3970  // Apply any qualifiers from the array type to the element type.  This
3971  // implements C99 6.7.3p8: "If the specification of an array type includes
3972  // any type qualifiers, the element type is so qualified, not the array type."
3973
3974  // If we get here, we either have type qualifiers on the type, or we have
3975  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3976  // we must propagate them down into the element type.
3977
3978  SplitQualType split = T.getSplitDesugaredType();
3979  Qualifiers qs = split.Quals;
3980
3981  // If we have a simple case, just return now.
3982  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3983  if (ATy == 0 || qs.empty())
3984    return ATy;
3985
3986  // Otherwise, we have an array and we have qualifiers on it.  Push the
3987  // qualifiers into the array element type and return a new array type.
3988  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3989
3990  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3991    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3992                                                CAT->getSizeModifier(),
3993                                           CAT->getIndexTypeCVRQualifiers()));
3994  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3995    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3996                                                  IAT->getSizeModifier(),
3997                                           IAT->getIndexTypeCVRQualifiers()));
3998
3999  if (const DependentSizedArrayType *DSAT
4000        = dyn_cast<DependentSizedArrayType>(ATy))
4001    return cast<ArrayType>(
4002                     getDependentSizedArrayType(NewEltTy,
4003                                                DSAT->getSizeExpr(),
4004                                                DSAT->getSizeModifier(),
4005                                              DSAT->getIndexTypeCVRQualifiers(),
4006                                                DSAT->getBracketsRange()));
4007
4008  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4009  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4010                                              VAT->getSizeExpr(),
4011                                              VAT->getSizeModifier(),
4012                                              VAT->getIndexTypeCVRQualifiers(),
4013                                              VAT->getBracketsRange()));
4014}
4015
4016QualType ASTContext::getAdjustedParameterType(QualType T) const {
4017  // C99 6.7.5.3p7:
4018  //   A declaration of a parameter as "array of type" shall be
4019  //   adjusted to "qualified pointer to type", where the type
4020  //   qualifiers (if any) are those specified within the [ and ] of
4021  //   the array type derivation.
4022  if (T->isArrayType())
4023    return getArrayDecayedType(T);
4024
4025  // C99 6.7.5.3p8:
4026  //   A declaration of a parameter as "function returning type"
4027  //   shall be adjusted to "pointer to function returning type", as
4028  //   in 6.3.2.1.
4029  if (T->isFunctionType())
4030    return getPointerType(T);
4031
4032  return T;
4033}
4034
4035QualType ASTContext::getSignatureParameterType(QualType T) const {
4036  T = getVariableArrayDecayedType(T);
4037  T = getAdjustedParameterType(T);
4038  return T.getUnqualifiedType();
4039}
4040
4041/// getArrayDecayedType - Return the properly qualified result of decaying the
4042/// specified array type to a pointer.  This operation is non-trivial when
4043/// handling typedefs etc.  The canonical type of "T" must be an array type,
4044/// this returns a pointer to a properly qualified element of the array.
4045///
4046/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4047QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4048  // Get the element type with 'getAsArrayType' so that we don't lose any
4049  // typedefs in the element type of the array.  This also handles propagation
4050  // of type qualifiers from the array type into the element type if present
4051  // (C99 6.7.3p8).
4052  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4053  assert(PrettyArrayType && "Not an array type!");
4054
4055  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4056
4057  // int x[restrict 4] ->  int *restrict
4058  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4059}
4060
4061QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4062  return getBaseElementType(array->getElementType());
4063}
4064
4065QualType ASTContext::getBaseElementType(QualType type) const {
4066  Qualifiers qs;
4067  while (true) {
4068    SplitQualType split = type.getSplitDesugaredType();
4069    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4070    if (!array) break;
4071
4072    type = array->getElementType();
4073    qs.addConsistentQualifiers(split.Quals);
4074  }
4075
4076  return getQualifiedType(type, qs);
4077}
4078
4079/// getConstantArrayElementCount - Returns number of constant array elements.
4080uint64_t
4081ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4082  uint64_t ElementCount = 1;
4083  do {
4084    ElementCount *= CA->getSize().getZExtValue();
4085    CA = dyn_cast_or_null<ConstantArrayType>(
4086      CA->getElementType()->getAsArrayTypeUnsafe());
4087  } while (CA);
4088  return ElementCount;
4089}
4090
4091/// getFloatingRank - Return a relative rank for floating point types.
4092/// This routine will assert if passed a built-in type that isn't a float.
4093static FloatingRank getFloatingRank(QualType T) {
4094  if (const ComplexType *CT = T->getAs<ComplexType>())
4095    return getFloatingRank(CT->getElementType());
4096
4097  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4098  switch (T->getAs<BuiltinType>()->getKind()) {
4099  default: llvm_unreachable("getFloatingRank(): not a floating type");
4100  case BuiltinType::Half:       return HalfRank;
4101  case BuiltinType::Float:      return FloatRank;
4102  case BuiltinType::Double:     return DoubleRank;
4103  case BuiltinType::LongDouble: return LongDoubleRank;
4104  }
4105}
4106
4107/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4108/// point or a complex type (based on typeDomain/typeSize).
4109/// 'typeDomain' is a real floating point or complex type.
4110/// 'typeSize' is a real floating point or complex type.
4111QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4112                                                       QualType Domain) const {
4113  FloatingRank EltRank = getFloatingRank(Size);
4114  if (Domain->isComplexType()) {
4115    switch (EltRank) {
4116    case HalfRank: llvm_unreachable("Complex half is not supported");
4117    case FloatRank:      return FloatComplexTy;
4118    case DoubleRank:     return DoubleComplexTy;
4119    case LongDoubleRank: return LongDoubleComplexTy;
4120    }
4121  }
4122
4123  assert(Domain->isRealFloatingType() && "Unknown domain!");
4124  switch (EltRank) {
4125  case HalfRank:       return HalfTy;
4126  case FloatRank:      return FloatTy;
4127  case DoubleRank:     return DoubleTy;
4128  case LongDoubleRank: return LongDoubleTy;
4129  }
4130  llvm_unreachable("getFloatingRank(): illegal value for rank");
4131}
4132
4133/// getFloatingTypeOrder - Compare the rank of the two specified floating
4134/// point types, ignoring the domain of the type (i.e. 'double' ==
4135/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4136/// LHS < RHS, return -1.
4137int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4138  FloatingRank LHSR = getFloatingRank(LHS);
4139  FloatingRank RHSR = getFloatingRank(RHS);
4140
4141  if (LHSR == RHSR)
4142    return 0;
4143  if (LHSR > RHSR)
4144    return 1;
4145  return -1;
4146}
4147
4148/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4149/// routine will assert if passed a built-in type that isn't an integer or enum,
4150/// or if it is not canonicalized.
4151unsigned ASTContext::getIntegerRank(const Type *T) const {
4152  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4153
4154  switch (cast<BuiltinType>(T)->getKind()) {
4155  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4156  case BuiltinType::Bool:
4157    return 1 + (getIntWidth(BoolTy) << 3);
4158  case BuiltinType::Char_S:
4159  case BuiltinType::Char_U:
4160  case BuiltinType::SChar:
4161  case BuiltinType::UChar:
4162    return 2 + (getIntWidth(CharTy) << 3);
4163  case BuiltinType::Short:
4164  case BuiltinType::UShort:
4165    return 3 + (getIntWidth(ShortTy) << 3);
4166  case BuiltinType::Int:
4167  case BuiltinType::UInt:
4168    return 4 + (getIntWidth(IntTy) << 3);
4169  case BuiltinType::Long:
4170  case BuiltinType::ULong:
4171    return 5 + (getIntWidth(LongTy) << 3);
4172  case BuiltinType::LongLong:
4173  case BuiltinType::ULongLong:
4174    return 6 + (getIntWidth(LongLongTy) << 3);
4175  case BuiltinType::Int128:
4176  case BuiltinType::UInt128:
4177    return 7 + (getIntWidth(Int128Ty) << 3);
4178  }
4179}
4180
4181/// \brief Whether this is a promotable bitfield reference according
4182/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4183///
4184/// \returns the type this bit-field will promote to, or NULL if no
4185/// promotion occurs.
4186QualType ASTContext::isPromotableBitField(Expr *E) const {
4187  if (E->isTypeDependent() || E->isValueDependent())
4188    return QualType();
4189
4190  FieldDecl *Field = E->getBitField();
4191  if (!Field)
4192    return QualType();
4193
4194  QualType FT = Field->getType();
4195
4196  uint64_t BitWidth = Field->getBitWidthValue(*this);
4197  uint64_t IntSize = getTypeSize(IntTy);
4198  // GCC extension compatibility: if the bit-field size is less than or equal
4199  // to the size of int, it gets promoted no matter what its type is.
4200  // For instance, unsigned long bf : 4 gets promoted to signed int.
4201  if (BitWidth < IntSize)
4202    return IntTy;
4203
4204  if (BitWidth == IntSize)
4205    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4206
4207  // Types bigger than int are not subject to promotions, and therefore act
4208  // like the base type.
4209  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4210  // is ridiculous.
4211  return QualType();
4212}
4213
4214/// getPromotedIntegerType - Returns the type that Promotable will
4215/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4216/// integer type.
4217QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4218  assert(!Promotable.isNull());
4219  assert(Promotable->isPromotableIntegerType());
4220  if (const EnumType *ET = Promotable->getAs<EnumType>())
4221    return ET->getDecl()->getPromotionType();
4222
4223  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4224    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4225    // (3.9.1) can be converted to a prvalue of the first of the following
4226    // types that can represent all the values of its underlying type:
4227    // int, unsigned int, long int, unsigned long int, long long int, or
4228    // unsigned long long int [...]
4229    // FIXME: Is there some better way to compute this?
4230    if (BT->getKind() == BuiltinType::WChar_S ||
4231        BT->getKind() == BuiltinType::WChar_U ||
4232        BT->getKind() == BuiltinType::Char16 ||
4233        BT->getKind() == BuiltinType::Char32) {
4234      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4235      uint64_t FromSize = getTypeSize(BT);
4236      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4237                                  LongLongTy, UnsignedLongLongTy };
4238      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4239        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4240        if (FromSize < ToSize ||
4241            (FromSize == ToSize &&
4242             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4243          return PromoteTypes[Idx];
4244      }
4245      llvm_unreachable("char type should fit into long long");
4246    }
4247  }
4248
4249  // At this point, we should have a signed or unsigned integer type.
4250  if (Promotable->isSignedIntegerType())
4251    return IntTy;
4252  uint64_t PromotableSize = getIntWidth(Promotable);
4253  uint64_t IntSize = getIntWidth(IntTy);
4254  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4255  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4256}
4257
4258/// \brief Recurses in pointer/array types until it finds an objc retainable
4259/// type and returns its ownership.
4260Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4261  while (!T.isNull()) {
4262    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4263      return T.getObjCLifetime();
4264    if (T->isArrayType())
4265      T = getBaseElementType(T);
4266    else if (const PointerType *PT = T->getAs<PointerType>())
4267      T = PT->getPointeeType();
4268    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4269      T = RT->getPointeeType();
4270    else
4271      break;
4272  }
4273
4274  return Qualifiers::OCL_None;
4275}
4276
4277/// getIntegerTypeOrder - Returns the highest ranked integer type:
4278/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4279/// LHS < RHS, return -1.
4280int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4281  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4282  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4283  if (LHSC == RHSC) return 0;
4284
4285  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4286  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4287
4288  unsigned LHSRank = getIntegerRank(LHSC);
4289  unsigned RHSRank = getIntegerRank(RHSC);
4290
4291  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4292    if (LHSRank == RHSRank) return 0;
4293    return LHSRank > RHSRank ? 1 : -1;
4294  }
4295
4296  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4297  if (LHSUnsigned) {
4298    // If the unsigned [LHS] type is larger, return it.
4299    if (LHSRank >= RHSRank)
4300      return 1;
4301
4302    // If the signed type can represent all values of the unsigned type, it
4303    // wins.  Because we are dealing with 2's complement and types that are
4304    // powers of two larger than each other, this is always safe.
4305    return -1;
4306  }
4307
4308  // If the unsigned [RHS] type is larger, return it.
4309  if (RHSRank >= LHSRank)
4310    return -1;
4311
4312  // If the signed type can represent all values of the unsigned type, it
4313  // wins.  Because we are dealing with 2's complement and types that are
4314  // powers of two larger than each other, this is always safe.
4315  return 1;
4316}
4317
4318static RecordDecl *
4319CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4320                 DeclContext *DC, IdentifierInfo *Id) {
4321  SourceLocation Loc;
4322  if (Ctx.getLangOpts().CPlusPlus)
4323    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4324  else
4325    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4326}
4327
4328// getCFConstantStringType - Return the type used for constant CFStrings.
4329QualType ASTContext::getCFConstantStringType() const {
4330  if (!CFConstantStringTypeDecl) {
4331    CFConstantStringTypeDecl =
4332      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4333                       &Idents.get("NSConstantString"));
4334    CFConstantStringTypeDecl->startDefinition();
4335
4336    QualType FieldTypes[4];
4337
4338    // const int *isa;
4339    FieldTypes[0] = getPointerType(IntTy.withConst());
4340    // int flags;
4341    FieldTypes[1] = IntTy;
4342    // const char *str;
4343    FieldTypes[2] = getPointerType(CharTy.withConst());
4344    // long length;
4345    FieldTypes[3] = LongTy;
4346
4347    // Create fields
4348    for (unsigned i = 0; i < 4; ++i) {
4349      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4350                                           SourceLocation(),
4351                                           SourceLocation(), 0,
4352                                           FieldTypes[i], /*TInfo=*/0,
4353                                           /*BitWidth=*/0,
4354                                           /*Mutable=*/false,
4355                                           ICIS_NoInit);
4356      Field->setAccess(AS_public);
4357      CFConstantStringTypeDecl->addDecl(Field);
4358    }
4359
4360    CFConstantStringTypeDecl->completeDefinition();
4361  }
4362
4363  return getTagDeclType(CFConstantStringTypeDecl);
4364}
4365
4366QualType ASTContext::getObjCSuperType() const {
4367  if (ObjCSuperType.isNull()) {
4368    RecordDecl *ObjCSuperTypeDecl  =
4369      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4370    TUDecl->addDecl(ObjCSuperTypeDecl);
4371    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4372  }
4373  return ObjCSuperType;
4374}
4375
4376void ASTContext::setCFConstantStringType(QualType T) {
4377  const RecordType *Rec = T->getAs<RecordType>();
4378  assert(Rec && "Invalid CFConstantStringType");
4379  CFConstantStringTypeDecl = Rec->getDecl();
4380}
4381
4382QualType ASTContext::getBlockDescriptorType() const {
4383  if (BlockDescriptorType)
4384    return getTagDeclType(BlockDescriptorType);
4385
4386  RecordDecl *T;
4387  // FIXME: Needs the FlagAppleBlock bit.
4388  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4389                       &Idents.get("__block_descriptor"));
4390  T->startDefinition();
4391
4392  QualType FieldTypes[] = {
4393    UnsignedLongTy,
4394    UnsignedLongTy,
4395  };
4396
4397  const char *FieldNames[] = {
4398    "reserved",
4399    "Size"
4400  };
4401
4402  for (size_t i = 0; i < 2; ++i) {
4403    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4404                                         SourceLocation(),
4405                                         &Idents.get(FieldNames[i]),
4406                                         FieldTypes[i], /*TInfo=*/0,
4407                                         /*BitWidth=*/0,
4408                                         /*Mutable=*/false,
4409                                         ICIS_NoInit);
4410    Field->setAccess(AS_public);
4411    T->addDecl(Field);
4412  }
4413
4414  T->completeDefinition();
4415
4416  BlockDescriptorType = T;
4417
4418  return getTagDeclType(BlockDescriptorType);
4419}
4420
4421QualType ASTContext::getBlockDescriptorExtendedType() const {
4422  if (BlockDescriptorExtendedType)
4423    return getTagDeclType(BlockDescriptorExtendedType);
4424
4425  RecordDecl *T;
4426  // FIXME: Needs the FlagAppleBlock bit.
4427  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4428                       &Idents.get("__block_descriptor_withcopydispose"));
4429  T->startDefinition();
4430
4431  QualType FieldTypes[] = {
4432    UnsignedLongTy,
4433    UnsignedLongTy,
4434    getPointerType(VoidPtrTy),
4435    getPointerType(VoidPtrTy)
4436  };
4437
4438  const char *FieldNames[] = {
4439    "reserved",
4440    "Size",
4441    "CopyFuncPtr",
4442    "DestroyFuncPtr"
4443  };
4444
4445  for (size_t i = 0; i < 4; ++i) {
4446    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4447                                         SourceLocation(),
4448                                         &Idents.get(FieldNames[i]),
4449                                         FieldTypes[i], /*TInfo=*/0,
4450                                         /*BitWidth=*/0,
4451                                         /*Mutable=*/false,
4452                                         ICIS_NoInit);
4453    Field->setAccess(AS_public);
4454    T->addDecl(Field);
4455  }
4456
4457  T->completeDefinition();
4458
4459  BlockDescriptorExtendedType = T;
4460
4461  return getTagDeclType(BlockDescriptorExtendedType);
4462}
4463
4464/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4465/// requires copy/dispose. Note that this must match the logic
4466/// in buildByrefHelpers.
4467bool ASTContext::BlockRequiresCopying(QualType Ty,
4468                                      const VarDecl *D) {
4469  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4470    const Expr *copyExpr = getBlockVarCopyInits(D);
4471    if (!copyExpr && record->hasTrivialDestructor()) return false;
4472
4473    return true;
4474  }
4475
4476  if (!Ty->isObjCRetainableType()) return false;
4477
4478  Qualifiers qs = Ty.getQualifiers();
4479
4480  // If we have lifetime, that dominates.
4481  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4482    assert(getLangOpts().ObjCAutoRefCount);
4483
4484    switch (lifetime) {
4485      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4486
4487      // These are just bits as far as the runtime is concerned.
4488      case Qualifiers::OCL_ExplicitNone:
4489      case Qualifiers::OCL_Autoreleasing:
4490        return false;
4491
4492      // Tell the runtime that this is ARC __weak, called by the
4493      // byref routines.
4494      case Qualifiers::OCL_Weak:
4495      // ARC __strong __block variables need to be retained.
4496      case Qualifiers::OCL_Strong:
4497        return true;
4498    }
4499    llvm_unreachable("fell out of lifetime switch!");
4500  }
4501  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4502          Ty->isObjCObjectPointerType());
4503}
4504
4505bool ASTContext::getByrefLifetime(QualType Ty,
4506                              Qualifiers::ObjCLifetime &LifeTime,
4507                              bool &HasByrefExtendedLayout) const {
4508
4509  if (!getLangOpts().ObjC1 ||
4510      getLangOpts().getGC() != LangOptions::NonGC)
4511    return false;
4512
4513  HasByrefExtendedLayout = false;
4514  if (Ty->isRecordType()) {
4515    HasByrefExtendedLayout = true;
4516    LifeTime = Qualifiers::OCL_None;
4517  }
4518  else if (getLangOpts().ObjCAutoRefCount)
4519    LifeTime = Ty.getObjCLifetime();
4520  // MRR.
4521  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4522    LifeTime = Qualifiers::OCL_ExplicitNone;
4523  else
4524    LifeTime = Qualifiers::OCL_None;
4525  return true;
4526}
4527
4528TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4529  if (!ObjCInstanceTypeDecl)
4530    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4531                                               getTranslationUnitDecl(),
4532                                               SourceLocation(),
4533                                               SourceLocation(),
4534                                               &Idents.get("instancetype"),
4535                                     getTrivialTypeSourceInfo(getObjCIdType()));
4536  return ObjCInstanceTypeDecl;
4537}
4538
4539// This returns true if a type has been typedefed to BOOL:
4540// typedef <type> BOOL;
4541static bool isTypeTypedefedAsBOOL(QualType T) {
4542  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4543    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4544      return II->isStr("BOOL");
4545
4546  return false;
4547}
4548
4549/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4550/// purpose.
4551CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4552  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4553    return CharUnits::Zero();
4554
4555  CharUnits sz = getTypeSizeInChars(type);
4556
4557  // Make all integer and enum types at least as large as an int
4558  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4559    sz = std::max(sz, getTypeSizeInChars(IntTy));
4560  // Treat arrays as pointers, since that's how they're passed in.
4561  else if (type->isArrayType())
4562    sz = getTypeSizeInChars(VoidPtrTy);
4563  return sz;
4564}
4565
4566static inline
4567std::string charUnitsToString(const CharUnits &CU) {
4568  return llvm::itostr(CU.getQuantity());
4569}
4570
4571/// getObjCEncodingForBlock - Return the encoded type for this block
4572/// declaration.
4573std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4574  std::string S;
4575
4576  const BlockDecl *Decl = Expr->getBlockDecl();
4577  QualType BlockTy =
4578      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4579  // Encode result type.
4580  if (getLangOpts().EncodeExtendedBlockSig)
4581    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4582                            BlockTy->getAs<FunctionType>()->getResultType(),
4583                            S, true /*Extended*/);
4584  else
4585    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4586                           S);
4587  // Compute size of all parameters.
4588  // Start with computing size of a pointer in number of bytes.
4589  // FIXME: There might(should) be a better way of doing this computation!
4590  SourceLocation Loc;
4591  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4592  CharUnits ParmOffset = PtrSize;
4593  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4594       E = Decl->param_end(); PI != E; ++PI) {
4595    QualType PType = (*PI)->getType();
4596    CharUnits sz = getObjCEncodingTypeSize(PType);
4597    if (sz.isZero())
4598      continue;
4599    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4600    ParmOffset += sz;
4601  }
4602  // Size of the argument frame
4603  S += charUnitsToString(ParmOffset);
4604  // Block pointer and offset.
4605  S += "@?0";
4606
4607  // Argument types.
4608  ParmOffset = PtrSize;
4609  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4610       Decl->param_end(); PI != E; ++PI) {
4611    ParmVarDecl *PVDecl = *PI;
4612    QualType PType = PVDecl->getOriginalType();
4613    if (const ArrayType *AT =
4614          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4615      // Use array's original type only if it has known number of
4616      // elements.
4617      if (!isa<ConstantArrayType>(AT))
4618        PType = PVDecl->getType();
4619    } else if (PType->isFunctionType())
4620      PType = PVDecl->getType();
4621    if (getLangOpts().EncodeExtendedBlockSig)
4622      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4623                                      S, true /*Extended*/);
4624    else
4625      getObjCEncodingForType(PType, S);
4626    S += charUnitsToString(ParmOffset);
4627    ParmOffset += getObjCEncodingTypeSize(PType);
4628  }
4629
4630  return S;
4631}
4632
4633bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4634                                                std::string& S) {
4635  // Encode result type.
4636  getObjCEncodingForType(Decl->getResultType(), S);
4637  CharUnits ParmOffset;
4638  // Compute size of all parameters.
4639  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4640       E = Decl->param_end(); PI != E; ++PI) {
4641    QualType PType = (*PI)->getType();
4642    CharUnits sz = getObjCEncodingTypeSize(PType);
4643    if (sz.isZero())
4644      continue;
4645
4646    assert (sz.isPositive() &&
4647        "getObjCEncodingForFunctionDecl - Incomplete param type");
4648    ParmOffset += sz;
4649  }
4650  S += charUnitsToString(ParmOffset);
4651  ParmOffset = CharUnits::Zero();
4652
4653  // Argument types.
4654  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4655       E = Decl->param_end(); PI != E; ++PI) {
4656    ParmVarDecl *PVDecl = *PI;
4657    QualType PType = PVDecl->getOriginalType();
4658    if (const ArrayType *AT =
4659          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4660      // Use array's original type only if it has known number of
4661      // elements.
4662      if (!isa<ConstantArrayType>(AT))
4663        PType = PVDecl->getType();
4664    } else if (PType->isFunctionType())
4665      PType = PVDecl->getType();
4666    getObjCEncodingForType(PType, S);
4667    S += charUnitsToString(ParmOffset);
4668    ParmOffset += getObjCEncodingTypeSize(PType);
4669  }
4670
4671  return false;
4672}
4673
4674/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4675/// method parameter or return type. If Extended, include class names and
4676/// block object types.
4677void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4678                                                   QualType T, std::string& S,
4679                                                   bool Extended) const {
4680  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4681  getObjCEncodingForTypeQualifier(QT, S);
4682  // Encode parameter type.
4683  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4684                             true     /*OutermostType*/,
4685                             false    /*EncodingProperty*/,
4686                             false    /*StructField*/,
4687                             Extended /*EncodeBlockParameters*/,
4688                             Extended /*EncodeClassNames*/);
4689}
4690
4691/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4692/// declaration.
4693bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4694                                              std::string& S,
4695                                              bool Extended) const {
4696  // FIXME: This is not very efficient.
4697  // Encode return type.
4698  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4699                                    Decl->getResultType(), S, Extended);
4700  // Compute size of all parameters.
4701  // Start with computing size of a pointer in number of bytes.
4702  // FIXME: There might(should) be a better way of doing this computation!
4703  SourceLocation Loc;
4704  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4705  // The first two arguments (self and _cmd) are pointers; account for
4706  // their size.
4707  CharUnits ParmOffset = 2 * PtrSize;
4708  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4709       E = Decl->sel_param_end(); PI != E; ++PI) {
4710    QualType PType = (*PI)->getType();
4711    CharUnits sz = getObjCEncodingTypeSize(PType);
4712    if (sz.isZero())
4713      continue;
4714
4715    assert (sz.isPositive() &&
4716        "getObjCEncodingForMethodDecl - Incomplete param type");
4717    ParmOffset += sz;
4718  }
4719  S += charUnitsToString(ParmOffset);
4720  S += "@0:";
4721  S += charUnitsToString(PtrSize);
4722
4723  // Argument types.
4724  ParmOffset = 2 * PtrSize;
4725  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4726       E = Decl->sel_param_end(); PI != E; ++PI) {
4727    const ParmVarDecl *PVDecl = *PI;
4728    QualType PType = PVDecl->getOriginalType();
4729    if (const ArrayType *AT =
4730          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4731      // Use array's original type only if it has known number of
4732      // elements.
4733      if (!isa<ConstantArrayType>(AT))
4734        PType = PVDecl->getType();
4735    } else if (PType->isFunctionType())
4736      PType = PVDecl->getType();
4737    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4738                                      PType, S, Extended);
4739    S += charUnitsToString(ParmOffset);
4740    ParmOffset += getObjCEncodingTypeSize(PType);
4741  }
4742
4743  return false;
4744}
4745
4746/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4747/// property declaration. If non-NULL, Container must be either an
4748/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4749/// NULL when getting encodings for protocol properties.
4750/// Property attributes are stored as a comma-delimited C string. The simple
4751/// attributes readonly and bycopy are encoded as single characters. The
4752/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4753/// encoded as single characters, followed by an identifier. Property types
4754/// are also encoded as a parametrized attribute. The characters used to encode
4755/// these attributes are defined by the following enumeration:
4756/// @code
4757/// enum PropertyAttributes {
4758/// kPropertyReadOnly = 'R',   // property is read-only.
4759/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4760/// kPropertyByref = '&',  // property is a reference to the value last assigned
4761/// kPropertyDynamic = 'D',    // property is dynamic
4762/// kPropertyGetter = 'G',     // followed by getter selector name
4763/// kPropertySetter = 'S',     // followed by setter selector name
4764/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4765/// kPropertyType = 'T'              // followed by old-style type encoding.
4766/// kPropertyWeak = 'W'              // 'weak' property
4767/// kPropertyStrong = 'P'            // property GC'able
4768/// kPropertyNonAtomic = 'N'         // property non-atomic
4769/// };
4770/// @endcode
4771void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4772                                                const Decl *Container,
4773                                                std::string& S) const {
4774  // Collect information from the property implementation decl(s).
4775  bool Dynamic = false;
4776  ObjCPropertyImplDecl *SynthesizePID = 0;
4777
4778  // FIXME: Duplicated code due to poor abstraction.
4779  if (Container) {
4780    if (const ObjCCategoryImplDecl *CID =
4781        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4782      for (ObjCCategoryImplDecl::propimpl_iterator
4783             i = CID->propimpl_begin(), e = CID->propimpl_end();
4784           i != e; ++i) {
4785        ObjCPropertyImplDecl *PID = *i;
4786        if (PID->getPropertyDecl() == PD) {
4787          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4788            Dynamic = true;
4789          } else {
4790            SynthesizePID = PID;
4791          }
4792        }
4793      }
4794    } else {
4795      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4796      for (ObjCCategoryImplDecl::propimpl_iterator
4797             i = OID->propimpl_begin(), e = OID->propimpl_end();
4798           i != e; ++i) {
4799        ObjCPropertyImplDecl *PID = *i;
4800        if (PID->getPropertyDecl() == PD) {
4801          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4802            Dynamic = true;
4803          } else {
4804            SynthesizePID = PID;
4805          }
4806        }
4807      }
4808    }
4809  }
4810
4811  // FIXME: This is not very efficient.
4812  S = "T";
4813
4814  // Encode result type.
4815  // GCC has some special rules regarding encoding of properties which
4816  // closely resembles encoding of ivars.
4817  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4818                             true /* outermost type */,
4819                             true /* encoding for property */);
4820
4821  if (PD->isReadOnly()) {
4822    S += ",R";
4823  } else {
4824    switch (PD->getSetterKind()) {
4825    case ObjCPropertyDecl::Assign: break;
4826    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4827    case ObjCPropertyDecl::Retain: S += ",&"; break;
4828    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4829    }
4830  }
4831
4832  // It really isn't clear at all what this means, since properties
4833  // are "dynamic by default".
4834  if (Dynamic)
4835    S += ",D";
4836
4837  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4838    S += ",N";
4839
4840  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4841    S += ",G";
4842    S += PD->getGetterName().getAsString();
4843  }
4844
4845  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4846    S += ",S";
4847    S += PD->getSetterName().getAsString();
4848  }
4849
4850  if (SynthesizePID) {
4851    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4852    S += ",V";
4853    S += OID->getNameAsString();
4854  }
4855
4856  // FIXME: OBJCGC: weak & strong
4857}
4858
4859/// getLegacyIntegralTypeEncoding -
4860/// Another legacy compatibility encoding: 32-bit longs are encoded as
4861/// 'l' or 'L' , but not always.  For typedefs, we need to use
4862/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4863///
4864void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4865  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4866    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4867      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4868        PointeeTy = UnsignedIntTy;
4869      else
4870        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4871          PointeeTy = IntTy;
4872    }
4873  }
4874}
4875
4876void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4877                                        const FieldDecl *Field) const {
4878  // We follow the behavior of gcc, expanding structures which are
4879  // directly pointed to, and expanding embedded structures. Note that
4880  // these rules are sufficient to prevent recursive encoding of the
4881  // same type.
4882  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4883                             true /* outermost type */);
4884}
4885
4886static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
4887                                            BuiltinType::Kind kind) {
4888    switch (kind) {
4889    case BuiltinType::Void:       return 'v';
4890    case BuiltinType::Bool:       return 'B';
4891    case BuiltinType::Char_U:
4892    case BuiltinType::UChar:      return 'C';
4893    case BuiltinType::Char16:
4894    case BuiltinType::UShort:     return 'S';
4895    case BuiltinType::Char32:
4896    case BuiltinType::UInt:       return 'I';
4897    case BuiltinType::ULong:
4898        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
4899    case BuiltinType::UInt128:    return 'T';
4900    case BuiltinType::ULongLong:  return 'Q';
4901    case BuiltinType::Char_S:
4902    case BuiltinType::SChar:      return 'c';
4903    case BuiltinType::Short:      return 's';
4904    case BuiltinType::WChar_S:
4905    case BuiltinType::WChar_U:
4906    case BuiltinType::Int:        return 'i';
4907    case BuiltinType::Long:
4908      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
4909    case BuiltinType::LongLong:   return 'q';
4910    case BuiltinType::Int128:     return 't';
4911    case BuiltinType::Float:      return 'f';
4912    case BuiltinType::Double:     return 'd';
4913    case BuiltinType::LongDouble: return 'D';
4914    case BuiltinType::NullPtr:    return '*'; // like char*
4915
4916    case BuiltinType::Half:
4917      // FIXME: potentially need @encodes for these!
4918      return ' ';
4919
4920    case BuiltinType::ObjCId:
4921    case BuiltinType::ObjCClass:
4922    case BuiltinType::ObjCSel:
4923      llvm_unreachable("@encoding ObjC primitive type");
4924
4925    // OpenCL and placeholder types don't need @encodings.
4926    case BuiltinType::OCLImage1d:
4927    case BuiltinType::OCLImage1dArray:
4928    case BuiltinType::OCLImage1dBuffer:
4929    case BuiltinType::OCLImage2d:
4930    case BuiltinType::OCLImage2dArray:
4931    case BuiltinType::OCLImage3d:
4932    case BuiltinType::OCLEvent:
4933    case BuiltinType::OCLSampler:
4934    case BuiltinType::Dependent:
4935#define BUILTIN_TYPE(KIND, ID)
4936#define PLACEHOLDER_TYPE(KIND, ID) \
4937    case BuiltinType::KIND:
4938#include "clang/AST/BuiltinTypes.def"
4939      llvm_unreachable("invalid builtin type for @encode");
4940    }
4941    llvm_unreachable("invalid BuiltinType::Kind value");
4942}
4943
4944static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4945  EnumDecl *Enum = ET->getDecl();
4946
4947  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4948  if (!Enum->isFixed())
4949    return 'i';
4950
4951  // The encoding of a fixed enum type matches its fixed underlying type.
4952  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
4953  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
4954}
4955
4956static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4957                           QualType T, const FieldDecl *FD) {
4958  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4959  S += 'b';
4960  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4961  // The GNU runtime requires more information; bitfields are encoded as b,
4962  // then the offset (in bits) of the first element, then the type of the
4963  // bitfield, then the size in bits.  For example, in this structure:
4964  //
4965  // struct
4966  // {
4967  //    int integer;
4968  //    int flags:2;
4969  // };
4970  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4971  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4972  // information is not especially sensible, but we're stuck with it for
4973  // compatibility with GCC, although providing it breaks anything that
4974  // actually uses runtime introspection and wants to work on both runtimes...
4975  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4976    const RecordDecl *RD = FD->getParent();
4977    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4978    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4979    if (const EnumType *ET = T->getAs<EnumType>())
4980      S += ObjCEncodingForEnumType(Ctx, ET);
4981    else {
4982      const BuiltinType *BT = T->castAs<BuiltinType>();
4983      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
4984    }
4985  }
4986  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4987}
4988
4989// FIXME: Use SmallString for accumulating string.
4990void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4991                                            bool ExpandPointedToStructures,
4992                                            bool ExpandStructures,
4993                                            const FieldDecl *FD,
4994                                            bool OutermostType,
4995                                            bool EncodingProperty,
4996                                            bool StructField,
4997                                            bool EncodeBlockParameters,
4998                                            bool EncodeClassNames,
4999                                            bool EncodePointerToObjCTypedef) const {
5000  CanQualType CT = getCanonicalType(T);
5001  switch (CT->getTypeClass()) {
5002  case Type::Builtin:
5003  case Type::Enum:
5004    if (FD && FD->isBitField())
5005      return EncodeBitField(this, S, T, FD);
5006    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5007      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5008    else
5009      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5010    return;
5011
5012  case Type::Complex: {
5013    const ComplexType *CT = T->castAs<ComplexType>();
5014    S += 'j';
5015    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5016                               false);
5017    return;
5018  }
5019
5020  case Type::Atomic: {
5021    const AtomicType *AT = T->castAs<AtomicType>();
5022    S += 'A';
5023    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5024                               false, false);
5025    return;
5026  }
5027
5028  // encoding for pointer or reference types.
5029  case Type::Pointer:
5030  case Type::LValueReference:
5031  case Type::RValueReference: {
5032    QualType PointeeTy;
5033    if (isa<PointerType>(CT)) {
5034      const PointerType *PT = T->castAs<PointerType>();
5035      if (PT->isObjCSelType()) {
5036        S += ':';
5037        return;
5038      }
5039      PointeeTy = PT->getPointeeType();
5040    } else {
5041      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5042    }
5043
5044    bool isReadOnly = false;
5045    // For historical/compatibility reasons, the read-only qualifier of the
5046    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5047    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5048    // Also, do not emit the 'r' for anything but the outermost type!
5049    if (isa<TypedefType>(T.getTypePtr())) {
5050      if (OutermostType && T.isConstQualified()) {
5051        isReadOnly = true;
5052        S += 'r';
5053      }
5054    } else if (OutermostType) {
5055      QualType P = PointeeTy;
5056      while (P->getAs<PointerType>())
5057        P = P->getAs<PointerType>()->getPointeeType();
5058      if (P.isConstQualified()) {
5059        isReadOnly = true;
5060        S += 'r';
5061      }
5062    }
5063    if (isReadOnly) {
5064      // Another legacy compatibility encoding. Some ObjC qualifier and type
5065      // combinations need to be rearranged.
5066      // Rewrite "in const" from "nr" to "rn"
5067      if (StringRef(S).endswith("nr"))
5068        S.replace(S.end()-2, S.end(), "rn");
5069    }
5070
5071    if (PointeeTy->isCharType()) {
5072      // char pointer types should be encoded as '*' unless it is a
5073      // type that has been typedef'd to 'BOOL'.
5074      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5075        S += '*';
5076        return;
5077      }
5078    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5079      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5080      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5081        S += '#';
5082        return;
5083      }
5084      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5085      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5086        S += '@';
5087        return;
5088      }
5089      // fall through...
5090    }
5091    S += '^';
5092    getLegacyIntegralTypeEncoding(PointeeTy);
5093
5094    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5095                               NULL);
5096    return;
5097  }
5098
5099  case Type::ConstantArray:
5100  case Type::IncompleteArray:
5101  case Type::VariableArray: {
5102    const ArrayType *AT = cast<ArrayType>(CT);
5103
5104    if (isa<IncompleteArrayType>(AT) && !StructField) {
5105      // Incomplete arrays are encoded as a pointer to the array element.
5106      S += '^';
5107
5108      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5109                                 false, ExpandStructures, FD);
5110    } else {
5111      S += '[';
5112
5113      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5114        if (getTypeSize(CAT->getElementType()) == 0)
5115          S += '0';
5116        else
5117          S += llvm::utostr(CAT->getSize().getZExtValue());
5118      } else {
5119        //Variable length arrays are encoded as a regular array with 0 elements.
5120        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5121               "Unknown array type!");
5122        S += '0';
5123      }
5124
5125      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5126                                 false, ExpandStructures, FD);
5127      S += ']';
5128    }
5129    return;
5130  }
5131
5132  case Type::FunctionNoProto:
5133  case Type::FunctionProto:
5134    S += '?';
5135    return;
5136
5137  case Type::Record: {
5138    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5139    S += RDecl->isUnion() ? '(' : '{';
5140    // Anonymous structures print as '?'
5141    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5142      S += II->getName();
5143      if (ClassTemplateSpecializationDecl *Spec
5144          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5145        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5146        llvm::raw_string_ostream OS(S);
5147        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5148                                            TemplateArgs.data(),
5149                                            TemplateArgs.size(),
5150                                            (*this).getPrintingPolicy());
5151      }
5152    } else {
5153      S += '?';
5154    }
5155    if (ExpandStructures) {
5156      S += '=';
5157      if (!RDecl->isUnion()) {
5158        getObjCEncodingForStructureImpl(RDecl, S, FD);
5159      } else {
5160        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5161                                     FieldEnd = RDecl->field_end();
5162             Field != FieldEnd; ++Field) {
5163          if (FD) {
5164            S += '"';
5165            S += Field->getNameAsString();
5166            S += '"';
5167          }
5168
5169          // Special case bit-fields.
5170          if (Field->isBitField()) {
5171            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5172                                       *Field);
5173          } else {
5174            QualType qt = Field->getType();
5175            getLegacyIntegralTypeEncoding(qt);
5176            getObjCEncodingForTypeImpl(qt, S, false, true,
5177                                       FD, /*OutermostType*/false,
5178                                       /*EncodingProperty*/false,
5179                                       /*StructField*/true);
5180          }
5181        }
5182      }
5183    }
5184    S += RDecl->isUnion() ? ')' : '}';
5185    return;
5186  }
5187
5188  case Type::BlockPointer: {
5189    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5190    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5191    if (EncodeBlockParameters) {
5192      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5193
5194      S += '<';
5195      // Block return type
5196      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5197                                 ExpandPointedToStructures, ExpandStructures,
5198                                 FD,
5199                                 false /* OutermostType */,
5200                                 EncodingProperty,
5201                                 false /* StructField */,
5202                                 EncodeBlockParameters,
5203                                 EncodeClassNames);
5204      // Block self
5205      S += "@?";
5206      // Block parameters
5207      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5208        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5209               E = FPT->arg_type_end(); I && (I != E); ++I) {
5210          getObjCEncodingForTypeImpl(*I, S,
5211                                     ExpandPointedToStructures,
5212                                     ExpandStructures,
5213                                     FD,
5214                                     false /* OutermostType */,
5215                                     EncodingProperty,
5216                                     false /* StructField */,
5217                                     EncodeBlockParameters,
5218                                     EncodeClassNames);
5219        }
5220      }
5221      S += '>';
5222    }
5223    return;
5224  }
5225
5226  case Type::ObjCObject:
5227  case Type::ObjCInterface: {
5228    // Ignore protocol qualifiers when mangling at this level.
5229    T = T->castAs<ObjCObjectType>()->getBaseType();
5230
5231    // The assumption seems to be that this assert will succeed
5232    // because nested levels will have filtered out 'id' and 'Class'.
5233    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5234    // @encode(class_name)
5235    ObjCInterfaceDecl *OI = OIT->getDecl();
5236    S += '{';
5237    const IdentifierInfo *II = OI->getIdentifier();
5238    S += II->getName();
5239    S += '=';
5240    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5241    DeepCollectObjCIvars(OI, true, Ivars);
5242    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5243      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5244      if (Field->isBitField())
5245        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5246      else
5247        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5248                                   false, false, false, false, false,
5249                                   EncodePointerToObjCTypedef);
5250    }
5251    S += '}';
5252    return;
5253  }
5254
5255  case Type::ObjCObjectPointer: {
5256    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5257    if (OPT->isObjCIdType()) {
5258      S += '@';
5259      return;
5260    }
5261
5262    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5263      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5264      // Since this is a binary compatibility issue, need to consult with runtime
5265      // folks. Fortunately, this is a *very* obsure construct.
5266      S += '#';
5267      return;
5268    }
5269
5270    if (OPT->isObjCQualifiedIdType()) {
5271      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5272                                 ExpandPointedToStructures,
5273                                 ExpandStructures, FD);
5274      if (FD || EncodingProperty || EncodeClassNames) {
5275        // Note that we do extended encoding of protocol qualifer list
5276        // Only when doing ivar or property encoding.
5277        S += '"';
5278        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5279             E = OPT->qual_end(); I != E; ++I) {
5280          S += '<';
5281          S += (*I)->getNameAsString();
5282          S += '>';
5283        }
5284        S += '"';
5285      }
5286      return;
5287    }
5288
5289    QualType PointeeTy = OPT->getPointeeType();
5290    if (!EncodingProperty &&
5291        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5292        !EncodePointerToObjCTypedef) {
5293      // Another historical/compatibility reason.
5294      // We encode the underlying type which comes out as
5295      // {...};
5296      S += '^';
5297      getObjCEncodingForTypeImpl(PointeeTy, S,
5298                                 false, ExpandPointedToStructures,
5299                                 NULL,
5300                                 false, false, false, false, false,
5301                                 /*EncodePointerToObjCTypedef*/true);
5302      return;
5303    }
5304
5305    S += '@';
5306    if (OPT->getInterfaceDecl() &&
5307        (FD || EncodingProperty || EncodeClassNames)) {
5308      S += '"';
5309      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5310      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5311           E = OPT->qual_end(); I != E; ++I) {
5312        S += '<';
5313        S += (*I)->getNameAsString();
5314        S += '>';
5315      }
5316      S += '"';
5317    }
5318    return;
5319  }
5320
5321  // gcc just blithely ignores member pointers.
5322  // FIXME: we shoul do better than that.  'M' is available.
5323  case Type::MemberPointer:
5324    return;
5325
5326  case Type::Vector:
5327  case Type::ExtVector:
5328    // This matches gcc's encoding, even though technically it is
5329    // insufficient.
5330    // FIXME. We should do a better job than gcc.
5331    return;
5332
5333#define ABSTRACT_TYPE(KIND, BASE)
5334#define TYPE(KIND, BASE)
5335#define DEPENDENT_TYPE(KIND, BASE) \
5336  case Type::KIND:
5337#define NON_CANONICAL_TYPE(KIND, BASE) \
5338  case Type::KIND:
5339#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5340  case Type::KIND:
5341#include "clang/AST/TypeNodes.def"
5342    llvm_unreachable("@encode for dependent type!");
5343  }
5344  llvm_unreachable("bad type kind!");
5345}
5346
5347void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5348                                                 std::string &S,
5349                                                 const FieldDecl *FD,
5350                                                 bool includeVBases) const {
5351  assert(RDecl && "Expected non-null RecordDecl");
5352  assert(!RDecl->isUnion() && "Should not be called for unions");
5353  if (!RDecl->getDefinition())
5354    return;
5355
5356  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5357  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5358  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5359
5360  if (CXXRec) {
5361    for (CXXRecordDecl::base_class_iterator
5362           BI = CXXRec->bases_begin(),
5363           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5364      if (!BI->isVirtual()) {
5365        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5366        if (base->isEmpty())
5367          continue;
5368        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5369        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5370                                  std::make_pair(offs, base));
5371      }
5372    }
5373  }
5374
5375  unsigned i = 0;
5376  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5377                               FieldEnd = RDecl->field_end();
5378       Field != FieldEnd; ++Field, ++i) {
5379    uint64_t offs = layout.getFieldOffset(i);
5380    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5381                              std::make_pair(offs, *Field));
5382  }
5383
5384  if (CXXRec && includeVBases) {
5385    for (CXXRecordDecl::base_class_iterator
5386           BI = CXXRec->vbases_begin(),
5387           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5388      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5389      if (base->isEmpty())
5390        continue;
5391      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5392      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5393        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5394                                  std::make_pair(offs, base));
5395    }
5396  }
5397
5398  CharUnits size;
5399  if (CXXRec) {
5400    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5401  } else {
5402    size = layout.getSize();
5403  }
5404
5405  uint64_t CurOffs = 0;
5406  std::multimap<uint64_t, NamedDecl *>::iterator
5407    CurLayObj = FieldOrBaseOffsets.begin();
5408
5409  if (CXXRec && CXXRec->isDynamicClass() &&
5410      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5411    if (FD) {
5412      S += "\"_vptr$";
5413      std::string recname = CXXRec->getNameAsString();
5414      if (recname.empty()) recname = "?";
5415      S += recname;
5416      S += '"';
5417    }
5418    S += "^^?";
5419    CurOffs += getTypeSize(VoidPtrTy);
5420  }
5421
5422  if (!RDecl->hasFlexibleArrayMember()) {
5423    // Mark the end of the structure.
5424    uint64_t offs = toBits(size);
5425    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5426                              std::make_pair(offs, (NamedDecl*)0));
5427  }
5428
5429  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5430    assert(CurOffs <= CurLayObj->first);
5431
5432    if (CurOffs < CurLayObj->first) {
5433      uint64_t padding = CurLayObj->first - CurOffs;
5434      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5435      // packing/alignment of members is different that normal, in which case
5436      // the encoding will be out-of-sync with the real layout.
5437      // If the runtime switches to just consider the size of types without
5438      // taking into account alignment, we could make padding explicit in the
5439      // encoding (e.g. using arrays of chars). The encoding strings would be
5440      // longer then though.
5441      CurOffs += padding;
5442    }
5443
5444    NamedDecl *dcl = CurLayObj->second;
5445    if (dcl == 0)
5446      break; // reached end of structure.
5447
5448    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5449      // We expand the bases without their virtual bases since those are going
5450      // in the initial structure. Note that this differs from gcc which
5451      // expands virtual bases each time one is encountered in the hierarchy,
5452      // making the encoding type bigger than it really is.
5453      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5454      assert(!base->isEmpty());
5455      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5456    } else {
5457      FieldDecl *field = cast<FieldDecl>(dcl);
5458      if (FD) {
5459        S += '"';
5460        S += field->getNameAsString();
5461        S += '"';
5462      }
5463
5464      if (field->isBitField()) {
5465        EncodeBitField(this, S, field->getType(), field);
5466        CurOffs += field->getBitWidthValue(*this);
5467      } else {
5468        QualType qt = field->getType();
5469        getLegacyIntegralTypeEncoding(qt);
5470        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5471                                   /*OutermostType*/false,
5472                                   /*EncodingProperty*/false,
5473                                   /*StructField*/true);
5474        CurOffs += getTypeSize(field->getType());
5475      }
5476    }
5477  }
5478}
5479
5480void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5481                                                 std::string& S) const {
5482  if (QT & Decl::OBJC_TQ_In)
5483    S += 'n';
5484  if (QT & Decl::OBJC_TQ_Inout)
5485    S += 'N';
5486  if (QT & Decl::OBJC_TQ_Out)
5487    S += 'o';
5488  if (QT & Decl::OBJC_TQ_Bycopy)
5489    S += 'O';
5490  if (QT & Decl::OBJC_TQ_Byref)
5491    S += 'R';
5492  if (QT & Decl::OBJC_TQ_Oneway)
5493    S += 'V';
5494}
5495
5496TypedefDecl *ASTContext::getObjCIdDecl() const {
5497  if (!ObjCIdDecl) {
5498    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5499    T = getObjCObjectPointerType(T);
5500    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5501    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5502                                     getTranslationUnitDecl(),
5503                                     SourceLocation(), SourceLocation(),
5504                                     &Idents.get("id"), IdInfo);
5505  }
5506
5507  return ObjCIdDecl;
5508}
5509
5510TypedefDecl *ASTContext::getObjCSelDecl() const {
5511  if (!ObjCSelDecl) {
5512    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5513    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5514    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5515                                      getTranslationUnitDecl(),
5516                                      SourceLocation(), SourceLocation(),
5517                                      &Idents.get("SEL"), SelInfo);
5518  }
5519  return ObjCSelDecl;
5520}
5521
5522TypedefDecl *ASTContext::getObjCClassDecl() const {
5523  if (!ObjCClassDecl) {
5524    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5525    T = getObjCObjectPointerType(T);
5526    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5527    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5528                                        getTranslationUnitDecl(),
5529                                        SourceLocation(), SourceLocation(),
5530                                        &Idents.get("Class"), ClassInfo);
5531  }
5532
5533  return ObjCClassDecl;
5534}
5535
5536ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5537  if (!ObjCProtocolClassDecl) {
5538    ObjCProtocolClassDecl
5539      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5540                                  SourceLocation(),
5541                                  &Idents.get("Protocol"),
5542                                  /*PrevDecl=*/0,
5543                                  SourceLocation(), true);
5544  }
5545
5546  return ObjCProtocolClassDecl;
5547}
5548
5549//===----------------------------------------------------------------------===//
5550// __builtin_va_list Construction Functions
5551//===----------------------------------------------------------------------===//
5552
5553static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5554  // typedef char* __builtin_va_list;
5555  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5556  TypeSourceInfo *TInfo
5557    = Context->getTrivialTypeSourceInfo(CharPtrType);
5558
5559  TypedefDecl *VaListTypeDecl
5560    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5561                          Context->getTranslationUnitDecl(),
5562                          SourceLocation(), SourceLocation(),
5563                          &Context->Idents.get("__builtin_va_list"),
5564                          TInfo);
5565  return VaListTypeDecl;
5566}
5567
5568static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5569  // typedef void* __builtin_va_list;
5570  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5571  TypeSourceInfo *TInfo
5572    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5573
5574  TypedefDecl *VaListTypeDecl
5575    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5576                          Context->getTranslationUnitDecl(),
5577                          SourceLocation(), SourceLocation(),
5578                          &Context->Idents.get("__builtin_va_list"),
5579                          TInfo);
5580  return VaListTypeDecl;
5581}
5582
5583static TypedefDecl *
5584CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5585  RecordDecl *VaListTagDecl;
5586  if (Context->getLangOpts().CPlusPlus) {
5587    // namespace std { struct __va_list {
5588    NamespaceDecl *NS;
5589    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5590                               Context->getTranslationUnitDecl(),
5591                               /*Inline*/false, SourceLocation(),
5592                               SourceLocation(), &Context->Idents.get("std"),
5593                               /*PrevDecl*/0);
5594
5595    VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5596                                          Context->getTranslationUnitDecl(),
5597                                          SourceLocation(), SourceLocation(),
5598                                          &Context->Idents.get("__va_list"));
5599    VaListTagDecl->setDeclContext(NS);
5600  } else {
5601    // struct __va_list
5602    VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5603                                   Context->getTranslationUnitDecl(),
5604                                   &Context->Idents.get("__va_list"));
5605  }
5606
5607  VaListTagDecl->startDefinition();
5608
5609  const size_t NumFields = 5;
5610  QualType FieldTypes[NumFields];
5611  const char *FieldNames[NumFields];
5612
5613  // void *__stack;
5614  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5615  FieldNames[0] = "__stack";
5616
5617  // void *__gr_top;
5618  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5619  FieldNames[1] = "__gr_top";
5620
5621  // void *__vr_top;
5622  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5623  FieldNames[2] = "__vr_top";
5624
5625  // int __gr_offs;
5626  FieldTypes[3] = Context->IntTy;
5627  FieldNames[3] = "__gr_offs";
5628
5629  // int __vr_offs;
5630  FieldTypes[4] = Context->IntTy;
5631  FieldNames[4] = "__vr_offs";
5632
5633  // Create fields
5634  for (unsigned i = 0; i < NumFields; ++i) {
5635    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5636                                         VaListTagDecl,
5637                                         SourceLocation(),
5638                                         SourceLocation(),
5639                                         &Context->Idents.get(FieldNames[i]),
5640                                         FieldTypes[i], /*TInfo=*/0,
5641                                         /*BitWidth=*/0,
5642                                         /*Mutable=*/false,
5643                                         ICIS_NoInit);
5644    Field->setAccess(AS_public);
5645    VaListTagDecl->addDecl(Field);
5646  }
5647  VaListTagDecl->completeDefinition();
5648  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5649  Context->VaListTagTy = VaListTagType;
5650
5651  // } __builtin_va_list;
5652  TypedefDecl *VaListTypedefDecl
5653    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5654                          Context->getTranslationUnitDecl(),
5655                          SourceLocation(), SourceLocation(),
5656                          &Context->Idents.get("__builtin_va_list"),
5657                          Context->getTrivialTypeSourceInfo(VaListTagType));
5658
5659  return VaListTypedefDecl;
5660}
5661
5662static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5663  // typedef struct __va_list_tag {
5664  RecordDecl *VaListTagDecl;
5665
5666  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5667                                   Context->getTranslationUnitDecl(),
5668                                   &Context->Idents.get("__va_list_tag"));
5669  VaListTagDecl->startDefinition();
5670
5671  const size_t NumFields = 5;
5672  QualType FieldTypes[NumFields];
5673  const char *FieldNames[NumFields];
5674
5675  //   unsigned char gpr;
5676  FieldTypes[0] = Context->UnsignedCharTy;
5677  FieldNames[0] = "gpr";
5678
5679  //   unsigned char fpr;
5680  FieldTypes[1] = Context->UnsignedCharTy;
5681  FieldNames[1] = "fpr";
5682
5683  //   unsigned short reserved;
5684  FieldTypes[2] = Context->UnsignedShortTy;
5685  FieldNames[2] = "reserved";
5686
5687  //   void* overflow_arg_area;
5688  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5689  FieldNames[3] = "overflow_arg_area";
5690
5691  //   void* reg_save_area;
5692  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5693  FieldNames[4] = "reg_save_area";
5694
5695  // Create fields
5696  for (unsigned i = 0; i < NumFields; ++i) {
5697    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5698                                         SourceLocation(),
5699                                         SourceLocation(),
5700                                         &Context->Idents.get(FieldNames[i]),
5701                                         FieldTypes[i], /*TInfo=*/0,
5702                                         /*BitWidth=*/0,
5703                                         /*Mutable=*/false,
5704                                         ICIS_NoInit);
5705    Field->setAccess(AS_public);
5706    VaListTagDecl->addDecl(Field);
5707  }
5708  VaListTagDecl->completeDefinition();
5709  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5710  Context->VaListTagTy = VaListTagType;
5711
5712  // } __va_list_tag;
5713  TypedefDecl *VaListTagTypedefDecl
5714    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5715                          Context->getTranslationUnitDecl(),
5716                          SourceLocation(), SourceLocation(),
5717                          &Context->Idents.get("__va_list_tag"),
5718                          Context->getTrivialTypeSourceInfo(VaListTagType));
5719  QualType VaListTagTypedefType =
5720    Context->getTypedefType(VaListTagTypedefDecl);
5721
5722  // typedef __va_list_tag __builtin_va_list[1];
5723  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5724  QualType VaListTagArrayType
5725    = Context->getConstantArrayType(VaListTagTypedefType,
5726                                    Size, ArrayType::Normal, 0);
5727  TypeSourceInfo *TInfo
5728    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5729  TypedefDecl *VaListTypedefDecl
5730    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5731                          Context->getTranslationUnitDecl(),
5732                          SourceLocation(), SourceLocation(),
5733                          &Context->Idents.get("__builtin_va_list"),
5734                          TInfo);
5735
5736  return VaListTypedefDecl;
5737}
5738
5739static TypedefDecl *
5740CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5741  // typedef struct __va_list_tag {
5742  RecordDecl *VaListTagDecl;
5743  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5744                                   Context->getTranslationUnitDecl(),
5745                                   &Context->Idents.get("__va_list_tag"));
5746  VaListTagDecl->startDefinition();
5747
5748  const size_t NumFields = 4;
5749  QualType FieldTypes[NumFields];
5750  const char *FieldNames[NumFields];
5751
5752  //   unsigned gp_offset;
5753  FieldTypes[0] = Context->UnsignedIntTy;
5754  FieldNames[0] = "gp_offset";
5755
5756  //   unsigned fp_offset;
5757  FieldTypes[1] = Context->UnsignedIntTy;
5758  FieldNames[1] = "fp_offset";
5759
5760  //   void* overflow_arg_area;
5761  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5762  FieldNames[2] = "overflow_arg_area";
5763
5764  //   void* reg_save_area;
5765  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5766  FieldNames[3] = "reg_save_area";
5767
5768  // Create fields
5769  for (unsigned i = 0; i < NumFields; ++i) {
5770    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5771                                         VaListTagDecl,
5772                                         SourceLocation(),
5773                                         SourceLocation(),
5774                                         &Context->Idents.get(FieldNames[i]),
5775                                         FieldTypes[i], /*TInfo=*/0,
5776                                         /*BitWidth=*/0,
5777                                         /*Mutable=*/false,
5778                                         ICIS_NoInit);
5779    Field->setAccess(AS_public);
5780    VaListTagDecl->addDecl(Field);
5781  }
5782  VaListTagDecl->completeDefinition();
5783  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5784  Context->VaListTagTy = VaListTagType;
5785
5786  // } __va_list_tag;
5787  TypedefDecl *VaListTagTypedefDecl
5788    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5789                          Context->getTranslationUnitDecl(),
5790                          SourceLocation(), SourceLocation(),
5791                          &Context->Idents.get("__va_list_tag"),
5792                          Context->getTrivialTypeSourceInfo(VaListTagType));
5793  QualType VaListTagTypedefType =
5794    Context->getTypedefType(VaListTagTypedefDecl);
5795
5796  // typedef __va_list_tag __builtin_va_list[1];
5797  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5798  QualType VaListTagArrayType
5799    = Context->getConstantArrayType(VaListTagTypedefType,
5800                                      Size, ArrayType::Normal,0);
5801  TypeSourceInfo *TInfo
5802    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5803  TypedefDecl *VaListTypedefDecl
5804    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5805                          Context->getTranslationUnitDecl(),
5806                          SourceLocation(), SourceLocation(),
5807                          &Context->Idents.get("__builtin_va_list"),
5808                          TInfo);
5809
5810  return VaListTypedefDecl;
5811}
5812
5813static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5814  // typedef int __builtin_va_list[4];
5815  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5816  QualType IntArrayType
5817    = Context->getConstantArrayType(Context->IntTy,
5818				    Size, ArrayType::Normal, 0);
5819  TypedefDecl *VaListTypedefDecl
5820    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5821                          Context->getTranslationUnitDecl(),
5822                          SourceLocation(), SourceLocation(),
5823                          &Context->Idents.get("__builtin_va_list"),
5824                          Context->getTrivialTypeSourceInfo(IntArrayType));
5825
5826  return VaListTypedefDecl;
5827}
5828
5829static TypedefDecl *
5830CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5831  RecordDecl *VaListDecl;
5832  if (Context->getLangOpts().CPlusPlus) {
5833    // namespace std { struct __va_list {
5834    NamespaceDecl *NS;
5835    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5836                               Context->getTranslationUnitDecl(),
5837                               /*Inline*/false, SourceLocation(),
5838                               SourceLocation(), &Context->Idents.get("std"),
5839                               /*PrevDecl*/0);
5840
5841    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5842                                       Context->getTranslationUnitDecl(),
5843                                       SourceLocation(), SourceLocation(),
5844                                       &Context->Idents.get("__va_list"));
5845
5846    VaListDecl->setDeclContext(NS);
5847
5848  } else {
5849    // struct __va_list {
5850    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5851                                  Context->getTranslationUnitDecl(),
5852                                  &Context->Idents.get("__va_list"));
5853  }
5854
5855  VaListDecl->startDefinition();
5856
5857  // void * __ap;
5858  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5859                                       VaListDecl,
5860                                       SourceLocation(),
5861                                       SourceLocation(),
5862                                       &Context->Idents.get("__ap"),
5863                                       Context->getPointerType(Context->VoidTy),
5864                                       /*TInfo=*/0,
5865                                       /*BitWidth=*/0,
5866                                       /*Mutable=*/false,
5867                                       ICIS_NoInit);
5868  Field->setAccess(AS_public);
5869  VaListDecl->addDecl(Field);
5870
5871  // };
5872  VaListDecl->completeDefinition();
5873
5874  // typedef struct __va_list __builtin_va_list;
5875  TypeSourceInfo *TInfo
5876    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5877
5878  TypedefDecl *VaListTypeDecl
5879    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5880                          Context->getTranslationUnitDecl(),
5881                          SourceLocation(), SourceLocation(),
5882                          &Context->Idents.get("__builtin_va_list"),
5883                          TInfo);
5884
5885  return VaListTypeDecl;
5886}
5887
5888static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5889                                     TargetInfo::BuiltinVaListKind Kind) {
5890  switch (Kind) {
5891  case TargetInfo::CharPtrBuiltinVaList:
5892    return CreateCharPtrBuiltinVaListDecl(Context);
5893  case TargetInfo::VoidPtrBuiltinVaList:
5894    return CreateVoidPtrBuiltinVaListDecl(Context);
5895  case TargetInfo::AArch64ABIBuiltinVaList:
5896    return CreateAArch64ABIBuiltinVaListDecl(Context);
5897  case TargetInfo::PowerABIBuiltinVaList:
5898    return CreatePowerABIBuiltinVaListDecl(Context);
5899  case TargetInfo::X86_64ABIBuiltinVaList:
5900    return CreateX86_64ABIBuiltinVaListDecl(Context);
5901  case TargetInfo::PNaClABIBuiltinVaList:
5902    return CreatePNaClABIBuiltinVaListDecl(Context);
5903  case TargetInfo::AAPCSABIBuiltinVaList:
5904    return CreateAAPCSABIBuiltinVaListDecl(Context);
5905  }
5906
5907  llvm_unreachable("Unhandled __builtin_va_list type kind");
5908}
5909
5910TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5911  if (!BuiltinVaListDecl)
5912    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5913
5914  return BuiltinVaListDecl;
5915}
5916
5917QualType ASTContext::getVaListTagType() const {
5918  // Force the creation of VaListTagTy by building the __builtin_va_list
5919  // declaration.
5920  if (VaListTagTy.isNull())
5921    (void) getBuiltinVaListDecl();
5922
5923  return VaListTagTy;
5924}
5925
5926void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5927  assert(ObjCConstantStringType.isNull() &&
5928         "'NSConstantString' type already set!");
5929
5930  ObjCConstantStringType = getObjCInterfaceType(Decl);
5931}
5932
5933/// \brief Retrieve the template name that corresponds to a non-empty
5934/// lookup.
5935TemplateName
5936ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5937                                      UnresolvedSetIterator End) const {
5938  unsigned size = End - Begin;
5939  assert(size > 1 && "set is not overloaded!");
5940
5941  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5942                          size * sizeof(FunctionTemplateDecl*));
5943  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5944
5945  NamedDecl **Storage = OT->getStorage();
5946  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5947    NamedDecl *D = *I;
5948    assert(isa<FunctionTemplateDecl>(D) ||
5949           (isa<UsingShadowDecl>(D) &&
5950            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5951    *Storage++ = D;
5952  }
5953
5954  return TemplateName(OT);
5955}
5956
5957/// \brief Retrieve the template name that represents a qualified
5958/// template name such as \c std::vector.
5959TemplateName
5960ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5961                                     bool TemplateKeyword,
5962                                     TemplateDecl *Template) const {
5963  assert(NNS && "Missing nested-name-specifier in qualified template name");
5964
5965  // FIXME: Canonicalization?
5966  llvm::FoldingSetNodeID ID;
5967  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5968
5969  void *InsertPos = 0;
5970  QualifiedTemplateName *QTN =
5971    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5972  if (!QTN) {
5973    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5974        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5975    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5976  }
5977
5978  return TemplateName(QTN);
5979}
5980
5981/// \brief Retrieve the template name that represents a dependent
5982/// template name such as \c MetaFun::template apply.
5983TemplateName
5984ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5985                                     const IdentifierInfo *Name) const {
5986  assert((!NNS || NNS->isDependent()) &&
5987         "Nested name specifier must be dependent");
5988
5989  llvm::FoldingSetNodeID ID;
5990  DependentTemplateName::Profile(ID, NNS, Name);
5991
5992  void *InsertPos = 0;
5993  DependentTemplateName *QTN =
5994    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5995
5996  if (QTN)
5997    return TemplateName(QTN);
5998
5999  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6000  if (CanonNNS == NNS) {
6001    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6002        DependentTemplateName(NNS, Name);
6003  } else {
6004    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6005    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6006        DependentTemplateName(NNS, Name, Canon);
6007    DependentTemplateName *CheckQTN =
6008      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6009    assert(!CheckQTN && "Dependent type name canonicalization broken");
6010    (void)CheckQTN;
6011  }
6012
6013  DependentTemplateNames.InsertNode(QTN, InsertPos);
6014  return TemplateName(QTN);
6015}
6016
6017/// \brief Retrieve the template name that represents a dependent
6018/// template name such as \c MetaFun::template operator+.
6019TemplateName
6020ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6021                                     OverloadedOperatorKind Operator) const {
6022  assert((!NNS || NNS->isDependent()) &&
6023         "Nested name specifier must be dependent");
6024
6025  llvm::FoldingSetNodeID ID;
6026  DependentTemplateName::Profile(ID, NNS, Operator);
6027
6028  void *InsertPos = 0;
6029  DependentTemplateName *QTN
6030    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6031
6032  if (QTN)
6033    return TemplateName(QTN);
6034
6035  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6036  if (CanonNNS == NNS) {
6037    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6038        DependentTemplateName(NNS, Operator);
6039  } else {
6040    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6041    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6042        DependentTemplateName(NNS, Operator, Canon);
6043
6044    DependentTemplateName *CheckQTN
6045      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6046    assert(!CheckQTN && "Dependent template name canonicalization broken");
6047    (void)CheckQTN;
6048  }
6049
6050  DependentTemplateNames.InsertNode(QTN, InsertPos);
6051  return TemplateName(QTN);
6052}
6053
6054TemplateName
6055ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6056                                         TemplateName replacement) const {
6057  llvm::FoldingSetNodeID ID;
6058  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6059
6060  void *insertPos = 0;
6061  SubstTemplateTemplateParmStorage *subst
6062    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6063
6064  if (!subst) {
6065    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6066    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6067  }
6068
6069  return TemplateName(subst);
6070}
6071
6072TemplateName
6073ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6074                                       const TemplateArgument &ArgPack) const {
6075  ASTContext &Self = const_cast<ASTContext &>(*this);
6076  llvm::FoldingSetNodeID ID;
6077  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6078
6079  void *InsertPos = 0;
6080  SubstTemplateTemplateParmPackStorage *Subst
6081    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6082
6083  if (!Subst) {
6084    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6085                                                           ArgPack.pack_size(),
6086                                                         ArgPack.pack_begin());
6087    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6088  }
6089
6090  return TemplateName(Subst);
6091}
6092
6093/// getFromTargetType - Given one of the integer types provided by
6094/// TargetInfo, produce the corresponding type. The unsigned @p Type
6095/// is actually a value of type @c TargetInfo::IntType.
6096CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6097  switch (Type) {
6098  case TargetInfo::NoInt: return CanQualType();
6099  case TargetInfo::SignedShort: return ShortTy;
6100  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6101  case TargetInfo::SignedInt: return IntTy;
6102  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6103  case TargetInfo::SignedLong: return LongTy;
6104  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6105  case TargetInfo::SignedLongLong: return LongLongTy;
6106  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6107  }
6108
6109  llvm_unreachable("Unhandled TargetInfo::IntType value");
6110}
6111
6112//===----------------------------------------------------------------------===//
6113//                        Type Predicates.
6114//===----------------------------------------------------------------------===//
6115
6116/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6117/// garbage collection attribute.
6118///
6119Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6120  if (getLangOpts().getGC() == LangOptions::NonGC)
6121    return Qualifiers::GCNone;
6122
6123  assert(getLangOpts().ObjC1);
6124  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6125
6126  // Default behaviour under objective-C's gc is for ObjC pointers
6127  // (or pointers to them) be treated as though they were declared
6128  // as __strong.
6129  if (GCAttrs == Qualifiers::GCNone) {
6130    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6131      return Qualifiers::Strong;
6132    else if (Ty->isPointerType())
6133      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6134  } else {
6135    // It's not valid to set GC attributes on anything that isn't a
6136    // pointer.
6137#ifndef NDEBUG
6138    QualType CT = Ty->getCanonicalTypeInternal();
6139    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6140      CT = AT->getElementType();
6141    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6142#endif
6143  }
6144  return GCAttrs;
6145}
6146
6147//===----------------------------------------------------------------------===//
6148//                        Type Compatibility Testing
6149//===----------------------------------------------------------------------===//
6150
6151/// areCompatVectorTypes - Return true if the two specified vector types are
6152/// compatible.
6153static bool areCompatVectorTypes(const VectorType *LHS,
6154                                 const VectorType *RHS) {
6155  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6156  return LHS->getElementType() == RHS->getElementType() &&
6157         LHS->getNumElements() == RHS->getNumElements();
6158}
6159
6160bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6161                                          QualType SecondVec) {
6162  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6163  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6164
6165  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6166    return true;
6167
6168  // Treat Neon vector types and most AltiVec vector types as if they are the
6169  // equivalent GCC vector types.
6170  const VectorType *First = FirstVec->getAs<VectorType>();
6171  const VectorType *Second = SecondVec->getAs<VectorType>();
6172  if (First->getNumElements() == Second->getNumElements() &&
6173      hasSameType(First->getElementType(), Second->getElementType()) &&
6174      First->getVectorKind() != VectorType::AltiVecPixel &&
6175      First->getVectorKind() != VectorType::AltiVecBool &&
6176      Second->getVectorKind() != VectorType::AltiVecPixel &&
6177      Second->getVectorKind() != VectorType::AltiVecBool)
6178    return true;
6179
6180  return false;
6181}
6182
6183//===----------------------------------------------------------------------===//
6184// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6185//===----------------------------------------------------------------------===//
6186
6187/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6188/// inheritance hierarchy of 'rProto'.
6189bool
6190ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6191                                           ObjCProtocolDecl *rProto) const {
6192  if (declaresSameEntity(lProto, rProto))
6193    return true;
6194  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6195       E = rProto->protocol_end(); PI != E; ++PI)
6196    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6197      return true;
6198  return false;
6199}
6200
6201/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6202/// return true if lhs's protocols conform to rhs's protocol; false
6203/// otherwise.
6204bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6205  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6206    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6207  return false;
6208}
6209
6210/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6211/// Class<pr1, ...>.
6212bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6213                                                      QualType rhs) {
6214  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6215  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6216  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6217
6218  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6219       E = lhsQID->qual_end(); I != E; ++I) {
6220    bool match = false;
6221    ObjCProtocolDecl *lhsProto = *I;
6222    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6223         E = rhsOPT->qual_end(); J != E; ++J) {
6224      ObjCProtocolDecl *rhsProto = *J;
6225      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6226        match = true;
6227        break;
6228      }
6229    }
6230    if (!match)
6231      return false;
6232  }
6233  return true;
6234}
6235
6236/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6237/// ObjCQualifiedIDType.
6238bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6239                                                   bool compare) {
6240  // Allow id<P..> and an 'id' or void* type in all cases.
6241  if (lhs->isVoidPointerType() ||
6242      lhs->isObjCIdType() || lhs->isObjCClassType())
6243    return true;
6244  else if (rhs->isVoidPointerType() ||
6245           rhs->isObjCIdType() || rhs->isObjCClassType())
6246    return true;
6247
6248  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6249    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6250
6251    if (!rhsOPT) return false;
6252
6253    if (rhsOPT->qual_empty()) {
6254      // If the RHS is a unqualified interface pointer "NSString*",
6255      // make sure we check the class hierarchy.
6256      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6257        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6258             E = lhsQID->qual_end(); I != E; ++I) {
6259          // when comparing an id<P> on lhs with a static type on rhs,
6260          // see if static class implements all of id's protocols, directly or
6261          // through its super class and categories.
6262          if (!rhsID->ClassImplementsProtocol(*I, true))
6263            return false;
6264        }
6265      }
6266      // If there are no qualifiers and no interface, we have an 'id'.
6267      return true;
6268    }
6269    // Both the right and left sides have qualifiers.
6270    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6271         E = lhsQID->qual_end(); I != E; ++I) {
6272      ObjCProtocolDecl *lhsProto = *I;
6273      bool match = false;
6274
6275      // when comparing an id<P> on lhs with a static type on rhs,
6276      // see if static class implements all of id's protocols, directly or
6277      // through its super class and categories.
6278      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6279           E = rhsOPT->qual_end(); J != E; ++J) {
6280        ObjCProtocolDecl *rhsProto = *J;
6281        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6282            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6283          match = true;
6284          break;
6285        }
6286      }
6287      // If the RHS is a qualified interface pointer "NSString<P>*",
6288      // make sure we check the class hierarchy.
6289      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6290        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6291             E = lhsQID->qual_end(); I != E; ++I) {
6292          // when comparing an id<P> on lhs with a static type on rhs,
6293          // see if static class implements all of id's protocols, directly or
6294          // through its super class and categories.
6295          if (rhsID->ClassImplementsProtocol(*I, true)) {
6296            match = true;
6297            break;
6298          }
6299        }
6300      }
6301      if (!match)
6302        return false;
6303    }
6304
6305    return true;
6306  }
6307
6308  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6309  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6310
6311  if (const ObjCObjectPointerType *lhsOPT =
6312        lhs->getAsObjCInterfacePointerType()) {
6313    // If both the right and left sides have qualifiers.
6314    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6315         E = lhsOPT->qual_end(); I != E; ++I) {
6316      ObjCProtocolDecl *lhsProto = *I;
6317      bool match = false;
6318
6319      // when comparing an id<P> on rhs with a static type on lhs,
6320      // see if static class implements all of id's protocols, directly or
6321      // through its super class and categories.
6322      // First, lhs protocols in the qualifier list must be found, direct
6323      // or indirect in rhs's qualifier list or it is a mismatch.
6324      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6325           E = rhsQID->qual_end(); J != E; ++J) {
6326        ObjCProtocolDecl *rhsProto = *J;
6327        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6328            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6329          match = true;
6330          break;
6331        }
6332      }
6333      if (!match)
6334        return false;
6335    }
6336
6337    // Static class's protocols, or its super class or category protocols
6338    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6339    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6340      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6341      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6342      // This is rather dubious but matches gcc's behavior. If lhs has
6343      // no type qualifier and its class has no static protocol(s)
6344      // assume that it is mismatch.
6345      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6346        return false;
6347      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6348           LHSInheritedProtocols.begin(),
6349           E = LHSInheritedProtocols.end(); I != E; ++I) {
6350        bool match = false;
6351        ObjCProtocolDecl *lhsProto = (*I);
6352        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6353             E = rhsQID->qual_end(); J != E; ++J) {
6354          ObjCProtocolDecl *rhsProto = *J;
6355          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6356              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6357            match = true;
6358            break;
6359          }
6360        }
6361        if (!match)
6362          return false;
6363      }
6364    }
6365    return true;
6366  }
6367  return false;
6368}
6369
6370/// canAssignObjCInterfaces - Return true if the two interface types are
6371/// compatible for assignment from RHS to LHS.  This handles validation of any
6372/// protocol qualifiers on the LHS or RHS.
6373///
6374bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6375                                         const ObjCObjectPointerType *RHSOPT) {
6376  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6377  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6378
6379  // If either type represents the built-in 'id' or 'Class' types, return true.
6380  if (LHS->isObjCUnqualifiedIdOrClass() ||
6381      RHS->isObjCUnqualifiedIdOrClass())
6382    return true;
6383
6384  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6385    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6386                                             QualType(RHSOPT,0),
6387                                             false);
6388
6389  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6390    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6391                                                QualType(RHSOPT,0));
6392
6393  // If we have 2 user-defined types, fall into that path.
6394  if (LHS->getInterface() && RHS->getInterface())
6395    return canAssignObjCInterfaces(LHS, RHS);
6396
6397  return false;
6398}
6399
6400/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6401/// for providing type-safety for objective-c pointers used to pass/return
6402/// arguments in block literals. When passed as arguments, passing 'A*' where
6403/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6404/// not OK. For the return type, the opposite is not OK.
6405bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6406                                         const ObjCObjectPointerType *LHSOPT,
6407                                         const ObjCObjectPointerType *RHSOPT,
6408                                         bool BlockReturnType) {
6409  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6410    return true;
6411
6412  if (LHSOPT->isObjCBuiltinType()) {
6413    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6414  }
6415
6416  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6417    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6418                                             QualType(RHSOPT,0),
6419                                             false);
6420
6421  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6422  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6423  if (LHS && RHS)  { // We have 2 user-defined types.
6424    if (LHS != RHS) {
6425      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6426        return BlockReturnType;
6427      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6428        return !BlockReturnType;
6429    }
6430    else
6431      return true;
6432  }
6433  return false;
6434}
6435
6436/// getIntersectionOfProtocols - This routine finds the intersection of set
6437/// of protocols inherited from two distinct objective-c pointer objects.
6438/// It is used to build composite qualifier list of the composite type of
6439/// the conditional expression involving two objective-c pointer objects.
6440static
6441void getIntersectionOfProtocols(ASTContext &Context,
6442                                const ObjCObjectPointerType *LHSOPT,
6443                                const ObjCObjectPointerType *RHSOPT,
6444      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6445
6446  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6447  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6448  assert(LHS->getInterface() && "LHS must have an interface base");
6449  assert(RHS->getInterface() && "RHS must have an interface base");
6450
6451  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6452  unsigned LHSNumProtocols = LHS->getNumProtocols();
6453  if (LHSNumProtocols > 0)
6454    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6455  else {
6456    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6457    Context.CollectInheritedProtocols(LHS->getInterface(),
6458                                      LHSInheritedProtocols);
6459    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6460                                LHSInheritedProtocols.end());
6461  }
6462
6463  unsigned RHSNumProtocols = RHS->getNumProtocols();
6464  if (RHSNumProtocols > 0) {
6465    ObjCProtocolDecl **RHSProtocols =
6466      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6467    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6468      if (InheritedProtocolSet.count(RHSProtocols[i]))
6469        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6470  } else {
6471    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6472    Context.CollectInheritedProtocols(RHS->getInterface(),
6473                                      RHSInheritedProtocols);
6474    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6475         RHSInheritedProtocols.begin(),
6476         E = RHSInheritedProtocols.end(); I != E; ++I)
6477      if (InheritedProtocolSet.count((*I)))
6478        IntersectionOfProtocols.push_back((*I));
6479  }
6480}
6481
6482/// areCommonBaseCompatible - Returns common base class of the two classes if
6483/// one found. Note that this is O'2 algorithm. But it will be called as the
6484/// last type comparison in a ?-exp of ObjC pointer types before a
6485/// warning is issued. So, its invokation is extremely rare.
6486QualType ASTContext::areCommonBaseCompatible(
6487                                          const ObjCObjectPointerType *Lptr,
6488                                          const ObjCObjectPointerType *Rptr) {
6489  const ObjCObjectType *LHS = Lptr->getObjectType();
6490  const ObjCObjectType *RHS = Rptr->getObjectType();
6491  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6492  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6493  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6494    return QualType();
6495
6496  do {
6497    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6498    if (canAssignObjCInterfaces(LHS, RHS)) {
6499      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6500      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6501
6502      QualType Result = QualType(LHS, 0);
6503      if (!Protocols.empty())
6504        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6505      Result = getObjCObjectPointerType(Result);
6506      return Result;
6507    }
6508  } while ((LDecl = LDecl->getSuperClass()));
6509
6510  return QualType();
6511}
6512
6513bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6514                                         const ObjCObjectType *RHS) {
6515  assert(LHS->getInterface() && "LHS is not an interface type");
6516  assert(RHS->getInterface() && "RHS is not an interface type");
6517
6518  // Verify that the base decls are compatible: the RHS must be a subclass of
6519  // the LHS.
6520  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6521    return false;
6522
6523  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6524  // protocol qualified at all, then we are good.
6525  if (LHS->getNumProtocols() == 0)
6526    return true;
6527
6528  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6529  // more detailed analysis is required.
6530  if (RHS->getNumProtocols() == 0) {
6531    // OK, if LHS is a superclass of RHS *and*
6532    // this superclass is assignment compatible with LHS.
6533    // false otherwise.
6534    bool IsSuperClass =
6535      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6536    if (IsSuperClass) {
6537      // OK if conversion of LHS to SuperClass results in narrowing of types
6538      // ; i.e., SuperClass may implement at least one of the protocols
6539      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6540      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6541      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6542      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6543      // If super class has no protocols, it is not a match.
6544      if (SuperClassInheritedProtocols.empty())
6545        return false;
6546
6547      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6548           LHSPE = LHS->qual_end();
6549           LHSPI != LHSPE; LHSPI++) {
6550        bool SuperImplementsProtocol = false;
6551        ObjCProtocolDecl *LHSProto = (*LHSPI);
6552
6553        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6554             SuperClassInheritedProtocols.begin(),
6555             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6556          ObjCProtocolDecl *SuperClassProto = (*I);
6557          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6558            SuperImplementsProtocol = true;
6559            break;
6560          }
6561        }
6562        if (!SuperImplementsProtocol)
6563          return false;
6564      }
6565      return true;
6566    }
6567    return false;
6568  }
6569
6570  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6571                                     LHSPE = LHS->qual_end();
6572       LHSPI != LHSPE; LHSPI++) {
6573    bool RHSImplementsProtocol = false;
6574
6575    // If the RHS doesn't implement the protocol on the left, the types
6576    // are incompatible.
6577    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6578                                       RHSPE = RHS->qual_end();
6579         RHSPI != RHSPE; RHSPI++) {
6580      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6581        RHSImplementsProtocol = true;
6582        break;
6583      }
6584    }
6585    // FIXME: For better diagnostics, consider passing back the protocol name.
6586    if (!RHSImplementsProtocol)
6587      return false;
6588  }
6589  // The RHS implements all protocols listed on the LHS.
6590  return true;
6591}
6592
6593bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6594  // get the "pointed to" types
6595  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6596  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6597
6598  if (!LHSOPT || !RHSOPT)
6599    return false;
6600
6601  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6602         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6603}
6604
6605bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6606  return canAssignObjCInterfaces(
6607                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6608                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6609}
6610
6611/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6612/// both shall have the identically qualified version of a compatible type.
6613/// C99 6.2.7p1: Two types have compatible types if their types are the
6614/// same. See 6.7.[2,3,5] for additional rules.
6615bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6616                                    bool CompareUnqualified) {
6617  if (getLangOpts().CPlusPlus)
6618    return hasSameType(LHS, RHS);
6619
6620  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6621}
6622
6623bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6624  return typesAreCompatible(LHS, RHS);
6625}
6626
6627bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6628  return !mergeTypes(LHS, RHS, true).isNull();
6629}
6630
6631/// mergeTransparentUnionType - if T is a transparent union type and a member
6632/// of T is compatible with SubType, return the merged type, else return
6633/// QualType()
6634QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6635                                               bool OfBlockPointer,
6636                                               bool Unqualified) {
6637  if (const RecordType *UT = T->getAsUnionType()) {
6638    RecordDecl *UD = UT->getDecl();
6639    if (UD->hasAttr<TransparentUnionAttr>()) {
6640      for (RecordDecl::field_iterator it = UD->field_begin(),
6641           itend = UD->field_end(); it != itend; ++it) {
6642        QualType ET = it->getType().getUnqualifiedType();
6643        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6644        if (!MT.isNull())
6645          return MT;
6646      }
6647    }
6648  }
6649
6650  return QualType();
6651}
6652
6653/// mergeFunctionArgumentTypes - merge two types which appear as function
6654/// argument types
6655QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6656                                                bool OfBlockPointer,
6657                                                bool Unqualified) {
6658  // GNU extension: two types are compatible if they appear as a function
6659  // argument, one of the types is a transparent union type and the other
6660  // type is compatible with a union member
6661  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6662                                              Unqualified);
6663  if (!lmerge.isNull())
6664    return lmerge;
6665
6666  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6667                                              Unqualified);
6668  if (!rmerge.isNull())
6669    return rmerge;
6670
6671  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6672}
6673
6674QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6675                                        bool OfBlockPointer,
6676                                        bool Unqualified) {
6677  const FunctionType *lbase = lhs->getAs<FunctionType>();
6678  const FunctionType *rbase = rhs->getAs<FunctionType>();
6679  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6680  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6681  bool allLTypes = true;
6682  bool allRTypes = true;
6683
6684  // Check return type
6685  QualType retType;
6686  if (OfBlockPointer) {
6687    QualType RHS = rbase->getResultType();
6688    QualType LHS = lbase->getResultType();
6689    bool UnqualifiedResult = Unqualified;
6690    if (!UnqualifiedResult)
6691      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6692    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6693  }
6694  else
6695    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6696                         Unqualified);
6697  if (retType.isNull()) return QualType();
6698
6699  if (Unqualified)
6700    retType = retType.getUnqualifiedType();
6701
6702  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6703  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6704  if (Unqualified) {
6705    LRetType = LRetType.getUnqualifiedType();
6706    RRetType = RRetType.getUnqualifiedType();
6707  }
6708
6709  if (getCanonicalType(retType) != LRetType)
6710    allLTypes = false;
6711  if (getCanonicalType(retType) != RRetType)
6712    allRTypes = false;
6713
6714  // FIXME: double check this
6715  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6716  //                           rbase->getRegParmAttr() != 0 &&
6717  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6718  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6719  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6720
6721  // Compatible functions must have compatible calling conventions
6722  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6723    return QualType();
6724
6725  // Regparm is part of the calling convention.
6726  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6727    return QualType();
6728  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6729    return QualType();
6730
6731  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6732    return QualType();
6733
6734  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6735  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6736
6737  if (lbaseInfo.getNoReturn() != NoReturn)
6738    allLTypes = false;
6739  if (rbaseInfo.getNoReturn() != NoReturn)
6740    allRTypes = false;
6741
6742  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6743
6744  if (lproto && rproto) { // two C99 style function prototypes
6745    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6746           "C++ shouldn't be here");
6747    unsigned lproto_nargs = lproto->getNumArgs();
6748    unsigned rproto_nargs = rproto->getNumArgs();
6749
6750    // Compatible functions must have the same number of arguments
6751    if (lproto_nargs != rproto_nargs)
6752      return QualType();
6753
6754    // Variadic and non-variadic functions aren't compatible
6755    if (lproto->isVariadic() != rproto->isVariadic())
6756      return QualType();
6757
6758    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6759      return QualType();
6760
6761    if (LangOpts.ObjCAutoRefCount &&
6762        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6763      return QualType();
6764
6765    // Check argument compatibility
6766    SmallVector<QualType, 10> types;
6767    for (unsigned i = 0; i < lproto_nargs; i++) {
6768      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6769      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6770      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6771                                                    OfBlockPointer,
6772                                                    Unqualified);
6773      if (argtype.isNull()) return QualType();
6774
6775      if (Unqualified)
6776        argtype = argtype.getUnqualifiedType();
6777
6778      types.push_back(argtype);
6779      if (Unqualified) {
6780        largtype = largtype.getUnqualifiedType();
6781        rargtype = rargtype.getUnqualifiedType();
6782      }
6783
6784      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6785        allLTypes = false;
6786      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6787        allRTypes = false;
6788    }
6789
6790    if (allLTypes) return lhs;
6791    if (allRTypes) return rhs;
6792
6793    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6794    EPI.ExtInfo = einfo;
6795    return getFunctionType(retType, types, EPI);
6796  }
6797
6798  if (lproto) allRTypes = false;
6799  if (rproto) allLTypes = false;
6800
6801  const FunctionProtoType *proto = lproto ? lproto : rproto;
6802  if (proto) {
6803    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6804    if (proto->isVariadic()) return QualType();
6805    // Check that the types are compatible with the types that
6806    // would result from default argument promotions (C99 6.7.5.3p15).
6807    // The only types actually affected are promotable integer
6808    // types and floats, which would be passed as a different
6809    // type depending on whether the prototype is visible.
6810    unsigned proto_nargs = proto->getNumArgs();
6811    for (unsigned i = 0; i < proto_nargs; ++i) {
6812      QualType argTy = proto->getArgType(i);
6813
6814      // Look at the converted type of enum types, since that is the type used
6815      // to pass enum values.
6816      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6817        argTy = Enum->getDecl()->getIntegerType();
6818        if (argTy.isNull())
6819          return QualType();
6820      }
6821
6822      if (argTy->isPromotableIntegerType() ||
6823          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6824        return QualType();
6825    }
6826
6827    if (allLTypes) return lhs;
6828    if (allRTypes) return rhs;
6829
6830    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6831    EPI.ExtInfo = einfo;
6832    return getFunctionType(retType,
6833                           ArrayRef<QualType>(proto->arg_type_begin(),
6834                                              proto->getNumArgs()),
6835                           EPI);
6836  }
6837
6838  if (allLTypes) return lhs;
6839  if (allRTypes) return rhs;
6840  return getFunctionNoProtoType(retType, einfo);
6841}
6842
6843QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6844                                bool OfBlockPointer,
6845                                bool Unqualified, bool BlockReturnType) {
6846  // C++ [expr]: If an expression initially has the type "reference to T", the
6847  // type is adjusted to "T" prior to any further analysis, the expression
6848  // designates the object or function denoted by the reference, and the
6849  // expression is an lvalue unless the reference is an rvalue reference and
6850  // the expression is a function call (possibly inside parentheses).
6851  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6852  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6853
6854  if (Unqualified) {
6855    LHS = LHS.getUnqualifiedType();
6856    RHS = RHS.getUnqualifiedType();
6857  }
6858
6859  QualType LHSCan = getCanonicalType(LHS),
6860           RHSCan = getCanonicalType(RHS);
6861
6862  // If two types are identical, they are compatible.
6863  if (LHSCan == RHSCan)
6864    return LHS;
6865
6866  // If the qualifiers are different, the types aren't compatible... mostly.
6867  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6868  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6869  if (LQuals != RQuals) {
6870    // If any of these qualifiers are different, we have a type
6871    // mismatch.
6872    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6873        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6874        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6875      return QualType();
6876
6877    // Exactly one GC qualifier difference is allowed: __strong is
6878    // okay if the other type has no GC qualifier but is an Objective
6879    // C object pointer (i.e. implicitly strong by default).  We fix
6880    // this by pretending that the unqualified type was actually
6881    // qualified __strong.
6882    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6883    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6884    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6885
6886    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6887      return QualType();
6888
6889    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6890      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6891    }
6892    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6893      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6894    }
6895    return QualType();
6896  }
6897
6898  // Okay, qualifiers are equal.
6899
6900  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6901  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6902
6903  // We want to consider the two function types to be the same for these
6904  // comparisons, just force one to the other.
6905  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6906  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6907
6908  // Same as above for arrays
6909  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6910    LHSClass = Type::ConstantArray;
6911  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6912    RHSClass = Type::ConstantArray;
6913
6914  // ObjCInterfaces are just specialized ObjCObjects.
6915  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6916  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6917
6918  // Canonicalize ExtVector -> Vector.
6919  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6920  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6921
6922  // If the canonical type classes don't match.
6923  if (LHSClass != RHSClass) {
6924    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6925    // a signed integer type, or an unsigned integer type.
6926    // Compatibility is based on the underlying type, not the promotion
6927    // type.
6928    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6929      QualType TINT = ETy->getDecl()->getIntegerType();
6930      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6931        return RHS;
6932    }
6933    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6934      QualType TINT = ETy->getDecl()->getIntegerType();
6935      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6936        return LHS;
6937    }
6938    // allow block pointer type to match an 'id' type.
6939    if (OfBlockPointer && !BlockReturnType) {
6940       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6941         return LHS;
6942      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6943        return RHS;
6944    }
6945
6946    return QualType();
6947  }
6948
6949  // The canonical type classes match.
6950  switch (LHSClass) {
6951#define TYPE(Class, Base)
6952#define ABSTRACT_TYPE(Class, Base)
6953#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6954#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6955#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6956#include "clang/AST/TypeNodes.def"
6957    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6958
6959  case Type::LValueReference:
6960  case Type::RValueReference:
6961  case Type::MemberPointer:
6962    llvm_unreachable("C++ should never be in mergeTypes");
6963
6964  case Type::ObjCInterface:
6965  case Type::IncompleteArray:
6966  case Type::VariableArray:
6967  case Type::FunctionProto:
6968  case Type::ExtVector:
6969    llvm_unreachable("Types are eliminated above");
6970
6971  case Type::Pointer:
6972  {
6973    // Merge two pointer types, while trying to preserve typedef info
6974    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6975    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6976    if (Unqualified) {
6977      LHSPointee = LHSPointee.getUnqualifiedType();
6978      RHSPointee = RHSPointee.getUnqualifiedType();
6979    }
6980    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6981                                     Unqualified);
6982    if (ResultType.isNull()) return QualType();
6983    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6984      return LHS;
6985    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6986      return RHS;
6987    return getPointerType(ResultType);
6988  }
6989  case Type::BlockPointer:
6990  {
6991    // Merge two block pointer types, while trying to preserve typedef info
6992    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6993    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6994    if (Unqualified) {
6995      LHSPointee = LHSPointee.getUnqualifiedType();
6996      RHSPointee = RHSPointee.getUnqualifiedType();
6997    }
6998    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6999                                     Unqualified);
7000    if (ResultType.isNull()) return QualType();
7001    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7002      return LHS;
7003    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7004      return RHS;
7005    return getBlockPointerType(ResultType);
7006  }
7007  case Type::Atomic:
7008  {
7009    // Merge two pointer types, while trying to preserve typedef info
7010    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7011    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7012    if (Unqualified) {
7013      LHSValue = LHSValue.getUnqualifiedType();
7014      RHSValue = RHSValue.getUnqualifiedType();
7015    }
7016    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7017                                     Unqualified);
7018    if (ResultType.isNull()) return QualType();
7019    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7020      return LHS;
7021    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7022      return RHS;
7023    return getAtomicType(ResultType);
7024  }
7025  case Type::ConstantArray:
7026  {
7027    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7028    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7029    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7030      return QualType();
7031
7032    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7033    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7034    if (Unqualified) {
7035      LHSElem = LHSElem.getUnqualifiedType();
7036      RHSElem = RHSElem.getUnqualifiedType();
7037    }
7038
7039    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7040    if (ResultType.isNull()) return QualType();
7041    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7042      return LHS;
7043    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7044      return RHS;
7045    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7046                                          ArrayType::ArraySizeModifier(), 0);
7047    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7048                                          ArrayType::ArraySizeModifier(), 0);
7049    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7050    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7051    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7052      return LHS;
7053    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7054      return RHS;
7055    if (LVAT) {
7056      // FIXME: This isn't correct! But tricky to implement because
7057      // the array's size has to be the size of LHS, but the type
7058      // has to be different.
7059      return LHS;
7060    }
7061    if (RVAT) {
7062      // FIXME: This isn't correct! But tricky to implement because
7063      // the array's size has to be the size of RHS, but the type
7064      // has to be different.
7065      return RHS;
7066    }
7067    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7068    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7069    return getIncompleteArrayType(ResultType,
7070                                  ArrayType::ArraySizeModifier(), 0);
7071  }
7072  case Type::FunctionNoProto:
7073    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7074  case Type::Record:
7075  case Type::Enum:
7076    return QualType();
7077  case Type::Builtin:
7078    // Only exactly equal builtin types are compatible, which is tested above.
7079    return QualType();
7080  case Type::Complex:
7081    // Distinct complex types are incompatible.
7082    return QualType();
7083  case Type::Vector:
7084    // FIXME: The merged type should be an ExtVector!
7085    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7086                             RHSCan->getAs<VectorType>()))
7087      return LHS;
7088    return QualType();
7089  case Type::ObjCObject: {
7090    // Check if the types are assignment compatible.
7091    // FIXME: This should be type compatibility, e.g. whether
7092    // "LHS x; RHS x;" at global scope is legal.
7093    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7094    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7095    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7096      return LHS;
7097
7098    return QualType();
7099  }
7100  case Type::ObjCObjectPointer: {
7101    if (OfBlockPointer) {
7102      if (canAssignObjCInterfacesInBlockPointer(
7103                                          LHS->getAs<ObjCObjectPointerType>(),
7104                                          RHS->getAs<ObjCObjectPointerType>(),
7105                                          BlockReturnType))
7106        return LHS;
7107      return QualType();
7108    }
7109    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7110                                RHS->getAs<ObjCObjectPointerType>()))
7111      return LHS;
7112
7113    return QualType();
7114  }
7115  }
7116
7117  llvm_unreachable("Invalid Type::Class!");
7118}
7119
7120bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7121                   const FunctionProtoType *FromFunctionType,
7122                   const FunctionProtoType *ToFunctionType) {
7123  if (FromFunctionType->hasAnyConsumedArgs() !=
7124      ToFunctionType->hasAnyConsumedArgs())
7125    return false;
7126  FunctionProtoType::ExtProtoInfo FromEPI =
7127    FromFunctionType->getExtProtoInfo();
7128  FunctionProtoType::ExtProtoInfo ToEPI =
7129    ToFunctionType->getExtProtoInfo();
7130  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7131    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7132         ArgIdx != NumArgs; ++ArgIdx)  {
7133      if (FromEPI.ConsumedArguments[ArgIdx] !=
7134          ToEPI.ConsumedArguments[ArgIdx])
7135        return false;
7136    }
7137  return true;
7138}
7139
7140/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7141/// 'RHS' attributes and returns the merged version; including for function
7142/// return types.
7143QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7144  QualType LHSCan = getCanonicalType(LHS),
7145  RHSCan = getCanonicalType(RHS);
7146  // If two types are identical, they are compatible.
7147  if (LHSCan == RHSCan)
7148    return LHS;
7149  if (RHSCan->isFunctionType()) {
7150    if (!LHSCan->isFunctionType())
7151      return QualType();
7152    QualType OldReturnType =
7153      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7154    QualType NewReturnType =
7155      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7156    QualType ResReturnType =
7157      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7158    if (ResReturnType.isNull())
7159      return QualType();
7160    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7161      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7162      // In either case, use OldReturnType to build the new function type.
7163      const FunctionType *F = LHS->getAs<FunctionType>();
7164      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7165        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7166        EPI.ExtInfo = getFunctionExtInfo(LHS);
7167        QualType ResultType
7168          = getFunctionType(OldReturnType,
7169                            ArrayRef<QualType>(FPT->arg_type_begin(),
7170                                               FPT->getNumArgs()),
7171                            EPI);
7172        return ResultType;
7173      }
7174    }
7175    return QualType();
7176  }
7177
7178  // If the qualifiers are different, the types can still be merged.
7179  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7180  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7181  if (LQuals != RQuals) {
7182    // If any of these qualifiers are different, we have a type mismatch.
7183    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7184        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7185      return QualType();
7186
7187    // Exactly one GC qualifier difference is allowed: __strong is
7188    // okay if the other type has no GC qualifier but is an Objective
7189    // C object pointer (i.e. implicitly strong by default).  We fix
7190    // this by pretending that the unqualified type was actually
7191    // qualified __strong.
7192    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7193    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7194    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7195
7196    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7197      return QualType();
7198
7199    if (GC_L == Qualifiers::Strong)
7200      return LHS;
7201    if (GC_R == Qualifiers::Strong)
7202      return RHS;
7203    return QualType();
7204  }
7205
7206  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7207    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7208    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7209    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7210    if (ResQT == LHSBaseQT)
7211      return LHS;
7212    if (ResQT == RHSBaseQT)
7213      return RHS;
7214  }
7215  return QualType();
7216}
7217
7218//===----------------------------------------------------------------------===//
7219//                         Integer Predicates
7220//===----------------------------------------------------------------------===//
7221
7222unsigned ASTContext::getIntWidth(QualType T) const {
7223  if (const EnumType *ET = dyn_cast<EnumType>(T))
7224    T = ET->getDecl()->getIntegerType();
7225  if (T->isBooleanType())
7226    return 1;
7227  // For builtin types, just use the standard type sizing method
7228  return (unsigned)getTypeSize(T);
7229}
7230
7231QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7232  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7233
7234  // Turn <4 x signed int> -> <4 x unsigned int>
7235  if (const VectorType *VTy = T->getAs<VectorType>())
7236    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7237                         VTy->getNumElements(), VTy->getVectorKind());
7238
7239  // For enums, we return the unsigned version of the base type.
7240  if (const EnumType *ETy = T->getAs<EnumType>())
7241    T = ETy->getDecl()->getIntegerType();
7242
7243  const BuiltinType *BTy = T->getAs<BuiltinType>();
7244  assert(BTy && "Unexpected signed integer type");
7245  switch (BTy->getKind()) {
7246  case BuiltinType::Char_S:
7247  case BuiltinType::SChar:
7248    return UnsignedCharTy;
7249  case BuiltinType::Short:
7250    return UnsignedShortTy;
7251  case BuiltinType::Int:
7252    return UnsignedIntTy;
7253  case BuiltinType::Long:
7254    return UnsignedLongTy;
7255  case BuiltinType::LongLong:
7256    return UnsignedLongLongTy;
7257  case BuiltinType::Int128:
7258    return UnsignedInt128Ty;
7259  default:
7260    llvm_unreachable("Unexpected signed integer type");
7261  }
7262}
7263
7264ASTMutationListener::~ASTMutationListener() { }
7265
7266
7267//===----------------------------------------------------------------------===//
7268//                          Builtin Type Computation
7269//===----------------------------------------------------------------------===//
7270
7271/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7272/// pointer over the consumed characters.  This returns the resultant type.  If
7273/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7274/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7275/// a vector of "i*".
7276///
7277/// RequiresICE is filled in on return to indicate whether the value is required
7278/// to be an Integer Constant Expression.
7279static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7280                                  ASTContext::GetBuiltinTypeError &Error,
7281                                  bool &RequiresICE,
7282                                  bool AllowTypeModifiers) {
7283  // Modifiers.
7284  int HowLong = 0;
7285  bool Signed = false, Unsigned = false;
7286  RequiresICE = false;
7287
7288  // Read the prefixed modifiers first.
7289  bool Done = false;
7290  while (!Done) {
7291    switch (*Str++) {
7292    default: Done = true; --Str; break;
7293    case 'I':
7294      RequiresICE = true;
7295      break;
7296    case 'S':
7297      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7298      assert(!Signed && "Can't use 'S' modifier multiple times!");
7299      Signed = true;
7300      break;
7301    case 'U':
7302      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7303      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7304      Unsigned = true;
7305      break;
7306    case 'L':
7307      assert(HowLong <= 2 && "Can't have LLLL modifier");
7308      ++HowLong;
7309      break;
7310    }
7311  }
7312
7313  QualType Type;
7314
7315  // Read the base type.
7316  switch (*Str++) {
7317  default: llvm_unreachable("Unknown builtin type letter!");
7318  case 'v':
7319    assert(HowLong == 0 && !Signed && !Unsigned &&
7320           "Bad modifiers used with 'v'!");
7321    Type = Context.VoidTy;
7322    break;
7323  case 'f':
7324    assert(HowLong == 0 && !Signed && !Unsigned &&
7325           "Bad modifiers used with 'f'!");
7326    Type = Context.FloatTy;
7327    break;
7328  case 'd':
7329    assert(HowLong < 2 && !Signed && !Unsigned &&
7330           "Bad modifiers used with 'd'!");
7331    if (HowLong)
7332      Type = Context.LongDoubleTy;
7333    else
7334      Type = Context.DoubleTy;
7335    break;
7336  case 's':
7337    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7338    if (Unsigned)
7339      Type = Context.UnsignedShortTy;
7340    else
7341      Type = Context.ShortTy;
7342    break;
7343  case 'i':
7344    if (HowLong == 3)
7345      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7346    else if (HowLong == 2)
7347      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7348    else if (HowLong == 1)
7349      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7350    else
7351      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7352    break;
7353  case 'c':
7354    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7355    if (Signed)
7356      Type = Context.SignedCharTy;
7357    else if (Unsigned)
7358      Type = Context.UnsignedCharTy;
7359    else
7360      Type = Context.CharTy;
7361    break;
7362  case 'b': // boolean
7363    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7364    Type = Context.BoolTy;
7365    break;
7366  case 'z':  // size_t.
7367    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7368    Type = Context.getSizeType();
7369    break;
7370  case 'F':
7371    Type = Context.getCFConstantStringType();
7372    break;
7373  case 'G':
7374    Type = Context.getObjCIdType();
7375    break;
7376  case 'H':
7377    Type = Context.getObjCSelType();
7378    break;
7379  case 'M':
7380    Type = Context.getObjCSuperType();
7381    break;
7382  case 'a':
7383    Type = Context.getBuiltinVaListType();
7384    assert(!Type.isNull() && "builtin va list type not initialized!");
7385    break;
7386  case 'A':
7387    // This is a "reference" to a va_list; however, what exactly
7388    // this means depends on how va_list is defined. There are two
7389    // different kinds of va_list: ones passed by value, and ones
7390    // passed by reference.  An example of a by-value va_list is
7391    // x86, where va_list is a char*. An example of by-ref va_list
7392    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7393    // we want this argument to be a char*&; for x86-64, we want
7394    // it to be a __va_list_tag*.
7395    Type = Context.getBuiltinVaListType();
7396    assert(!Type.isNull() && "builtin va list type not initialized!");
7397    if (Type->isArrayType())
7398      Type = Context.getArrayDecayedType(Type);
7399    else
7400      Type = Context.getLValueReferenceType(Type);
7401    break;
7402  case 'V': {
7403    char *End;
7404    unsigned NumElements = strtoul(Str, &End, 10);
7405    assert(End != Str && "Missing vector size");
7406    Str = End;
7407
7408    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7409                                             RequiresICE, false);
7410    assert(!RequiresICE && "Can't require vector ICE");
7411
7412    // TODO: No way to make AltiVec vectors in builtins yet.
7413    Type = Context.getVectorType(ElementType, NumElements,
7414                                 VectorType::GenericVector);
7415    break;
7416  }
7417  case 'E': {
7418    char *End;
7419
7420    unsigned NumElements = strtoul(Str, &End, 10);
7421    assert(End != Str && "Missing vector size");
7422
7423    Str = End;
7424
7425    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7426                                             false);
7427    Type = Context.getExtVectorType(ElementType, NumElements);
7428    break;
7429  }
7430  case 'X': {
7431    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7432                                             false);
7433    assert(!RequiresICE && "Can't require complex ICE");
7434    Type = Context.getComplexType(ElementType);
7435    break;
7436  }
7437  case 'Y' : {
7438    Type = Context.getPointerDiffType();
7439    break;
7440  }
7441  case 'P':
7442    Type = Context.getFILEType();
7443    if (Type.isNull()) {
7444      Error = ASTContext::GE_Missing_stdio;
7445      return QualType();
7446    }
7447    break;
7448  case 'J':
7449    if (Signed)
7450      Type = Context.getsigjmp_bufType();
7451    else
7452      Type = Context.getjmp_bufType();
7453
7454    if (Type.isNull()) {
7455      Error = ASTContext::GE_Missing_setjmp;
7456      return QualType();
7457    }
7458    break;
7459  case 'K':
7460    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7461    Type = Context.getucontext_tType();
7462
7463    if (Type.isNull()) {
7464      Error = ASTContext::GE_Missing_ucontext;
7465      return QualType();
7466    }
7467    break;
7468  case 'p':
7469    Type = Context.getProcessIDType();
7470    break;
7471  }
7472
7473  // If there are modifiers and if we're allowed to parse them, go for it.
7474  Done = !AllowTypeModifiers;
7475  while (!Done) {
7476    switch (char c = *Str++) {
7477    default: Done = true; --Str; break;
7478    case '*':
7479    case '&': {
7480      // Both pointers and references can have their pointee types
7481      // qualified with an address space.
7482      char *End;
7483      unsigned AddrSpace = strtoul(Str, &End, 10);
7484      if (End != Str && AddrSpace != 0) {
7485        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7486        Str = End;
7487      }
7488      if (c == '*')
7489        Type = Context.getPointerType(Type);
7490      else
7491        Type = Context.getLValueReferenceType(Type);
7492      break;
7493    }
7494    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7495    case 'C':
7496      Type = Type.withConst();
7497      break;
7498    case 'D':
7499      Type = Context.getVolatileType(Type);
7500      break;
7501    case 'R':
7502      Type = Type.withRestrict();
7503      break;
7504    }
7505  }
7506
7507  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7508         "Integer constant 'I' type must be an integer");
7509
7510  return Type;
7511}
7512
7513/// GetBuiltinType - Return the type for the specified builtin.
7514QualType ASTContext::GetBuiltinType(unsigned Id,
7515                                    GetBuiltinTypeError &Error,
7516                                    unsigned *IntegerConstantArgs) const {
7517  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7518
7519  SmallVector<QualType, 8> ArgTypes;
7520
7521  bool RequiresICE = false;
7522  Error = GE_None;
7523  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7524                                       RequiresICE, true);
7525  if (Error != GE_None)
7526    return QualType();
7527
7528  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7529
7530  while (TypeStr[0] && TypeStr[0] != '.') {
7531    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7532    if (Error != GE_None)
7533      return QualType();
7534
7535    // If this argument is required to be an IntegerConstantExpression and the
7536    // caller cares, fill in the bitmask we return.
7537    if (RequiresICE && IntegerConstantArgs)
7538      *IntegerConstantArgs |= 1 << ArgTypes.size();
7539
7540    // Do array -> pointer decay.  The builtin should use the decayed type.
7541    if (Ty->isArrayType())
7542      Ty = getArrayDecayedType(Ty);
7543
7544    ArgTypes.push_back(Ty);
7545  }
7546
7547  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7548         "'.' should only occur at end of builtin type list!");
7549
7550  FunctionType::ExtInfo EI;
7551  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7552
7553  bool Variadic = (TypeStr[0] == '.');
7554
7555  // We really shouldn't be making a no-proto type here, especially in C++.
7556  if (ArgTypes.empty() && Variadic)
7557    return getFunctionNoProtoType(ResType, EI);
7558
7559  FunctionProtoType::ExtProtoInfo EPI;
7560  EPI.ExtInfo = EI;
7561  EPI.Variadic = Variadic;
7562
7563  return getFunctionType(ResType, ArgTypes, EPI);
7564}
7565
7566GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7567  GVALinkage External = GVA_StrongExternal;
7568
7569  Linkage L = FD->getLinkage();
7570  switch (L) {
7571  case NoLinkage:
7572  case InternalLinkage:
7573  case UniqueExternalLinkage:
7574    return GVA_Internal;
7575
7576  case ExternalLinkage:
7577    switch (FD->getTemplateSpecializationKind()) {
7578    case TSK_Undeclared:
7579    case TSK_ExplicitSpecialization:
7580      External = GVA_StrongExternal;
7581      break;
7582
7583    case TSK_ExplicitInstantiationDefinition:
7584      return GVA_ExplicitTemplateInstantiation;
7585
7586    case TSK_ExplicitInstantiationDeclaration:
7587    case TSK_ImplicitInstantiation:
7588      External = GVA_TemplateInstantiation;
7589      break;
7590    }
7591  }
7592
7593  if (!FD->isInlined())
7594    return External;
7595
7596  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7597    // GNU or C99 inline semantics. Determine whether this symbol should be
7598    // externally visible.
7599    if (FD->isInlineDefinitionExternallyVisible())
7600      return External;
7601
7602    // C99 inline semantics, where the symbol is not externally visible.
7603    return GVA_C99Inline;
7604  }
7605
7606  // C++0x [temp.explicit]p9:
7607  //   [ Note: The intent is that an inline function that is the subject of
7608  //   an explicit instantiation declaration will still be implicitly
7609  //   instantiated when used so that the body can be considered for
7610  //   inlining, but that no out-of-line copy of the inline function would be
7611  //   generated in the translation unit. -- end note ]
7612  if (FD->getTemplateSpecializationKind()
7613                                       == TSK_ExplicitInstantiationDeclaration)
7614    return GVA_C99Inline;
7615
7616  return GVA_CXXInline;
7617}
7618
7619GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7620  // If this is a static data member, compute the kind of template
7621  // specialization. Otherwise, this variable is not part of a
7622  // template.
7623  TemplateSpecializationKind TSK = TSK_Undeclared;
7624  if (VD->isStaticDataMember())
7625    TSK = VD->getTemplateSpecializationKind();
7626
7627  Linkage L = VD->getLinkage();
7628
7629  switch (L) {
7630  case NoLinkage:
7631  case InternalLinkage:
7632  case UniqueExternalLinkage:
7633    return GVA_Internal;
7634
7635  case ExternalLinkage:
7636    switch (TSK) {
7637    case TSK_Undeclared:
7638    case TSK_ExplicitSpecialization:
7639      return GVA_StrongExternal;
7640
7641    case TSK_ExplicitInstantiationDeclaration:
7642      llvm_unreachable("Variable should not be instantiated");
7643      // Fall through to treat this like any other instantiation.
7644
7645    case TSK_ExplicitInstantiationDefinition:
7646      return GVA_ExplicitTemplateInstantiation;
7647
7648    case TSK_ImplicitInstantiation:
7649      return GVA_TemplateInstantiation;
7650    }
7651  }
7652
7653  llvm_unreachable("Invalid Linkage!");
7654}
7655
7656bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7657  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7658    if (!VD->isFileVarDecl())
7659      return false;
7660  } else if (!isa<FunctionDecl>(D))
7661    return false;
7662
7663  // Weak references don't produce any output by themselves.
7664  if (D->hasAttr<WeakRefAttr>())
7665    return false;
7666
7667  // Aliases and used decls are required.
7668  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7669    return true;
7670
7671  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7672    // Forward declarations aren't required.
7673    if (!FD->doesThisDeclarationHaveABody())
7674      return FD->doesDeclarationForceExternallyVisibleDefinition();
7675
7676    // Constructors and destructors are required.
7677    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7678      return true;
7679
7680    // The key function for a class is required.  This rule only comes
7681    // into play when inline functions can be key functions, though.
7682    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7683      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7684        const CXXRecordDecl *RD = MD->getParent();
7685        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7686          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7687          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7688            return true;
7689        }
7690      }
7691    }
7692
7693    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7694
7695    // static, static inline, always_inline, and extern inline functions can
7696    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7697    // Implicit template instantiations can also be deferred in C++.
7698    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7699        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7700      return false;
7701    return true;
7702  }
7703
7704  const VarDecl *VD = cast<VarDecl>(D);
7705  assert(VD->isFileVarDecl() && "Expected file scoped var");
7706
7707  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7708    return false;
7709
7710  // Variables that can be needed in other TUs are required.
7711  GVALinkage L = GetGVALinkageForVariable(VD);
7712  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7713    return true;
7714
7715  // Variables that have destruction with side-effects are required.
7716  if (VD->getType().isDestructedType())
7717    return true;
7718
7719  // Variables that have initialization with side-effects are required.
7720  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7721    return true;
7722
7723  return false;
7724}
7725
7726CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7727  // Pass through to the C++ ABI object
7728  return ABI->getDefaultMethodCallConv(isVariadic);
7729}
7730
7731CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7732  if (CC == CC_C && !LangOpts.MRTD &&
7733      getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7734    return CC_Default;
7735  return CC;
7736}
7737
7738bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7739  // Pass through to the C++ ABI object
7740  return ABI->isNearlyEmpty(RD);
7741}
7742
7743MangleContext *ASTContext::createMangleContext() {
7744  switch (Target->getCXXABI().getKind()) {
7745  case TargetCXXABI::GenericAArch64:
7746  case TargetCXXABI::GenericItanium:
7747  case TargetCXXABI::GenericARM:
7748  case TargetCXXABI::iOS:
7749    return createItaniumMangleContext(*this, getDiagnostics());
7750  case TargetCXXABI::Microsoft:
7751    return createMicrosoftMangleContext(*this, getDiagnostics());
7752  }
7753  llvm_unreachable("Unsupported ABI");
7754}
7755
7756CXXABI::~CXXABI() {}
7757
7758size_t ASTContext::getSideTableAllocatedMemory() const {
7759  return ASTRecordLayouts.getMemorySize()
7760    + llvm::capacity_in_bytes(ObjCLayouts)
7761    + llvm::capacity_in_bytes(KeyFunctions)
7762    + llvm::capacity_in_bytes(ObjCImpls)
7763    + llvm::capacity_in_bytes(BlockVarCopyInits)
7764    + llvm::capacity_in_bytes(DeclAttrs)
7765    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7766    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7767    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7768    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7769    + llvm::capacity_in_bytes(OverriddenMethods)
7770    + llvm::capacity_in_bytes(Types)
7771    + llvm::capacity_in_bytes(VariableArrayTypes)
7772    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7773}
7774
7775void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7776  // FIXME: This mangling should be applied to function local classes too
7777  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7778      !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
7779    return;
7780
7781  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7782    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7783  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7784}
7785
7786int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7787  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7788    UnnamedMangleNumbers.find(Tag);
7789  return I != UnnamedMangleNumbers.end() ? I->second : -1;
7790}
7791
7792unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7793  CXXRecordDecl *Lambda = CallOperator->getParent();
7794  return LambdaMangleContexts[Lambda->getDeclContext()]
7795           .getManglingNumber(CallOperator);
7796}
7797
7798
7799void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7800  ParamIndices[D] = index;
7801}
7802
7803unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7804  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7805  assert(I != ParamIndices.end() &&
7806         "ParmIndices lacks entry set by ParmVarDecl");
7807  return I->second;
7808}
7809