ASTContext.cpp revision 80ad16f4b2b350ddbaae21a52975e63df5aafc2c
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include "RecordLayoutBuilder.h"
30
31using namespace clang;
32
33enum FloatingRank {
34  FloatRank, DoubleRank, LongDoubleRank
35};
36
37ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
38                       const TargetInfo &t,
39                       IdentifierTable &idents, SelectorTable &sels,
40                       Builtin::Context &builtins,
41                       bool FreeMem, unsigned size_reserve) :
42  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
43  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
44  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
45  SourceMgr(SM), LangOpts(LOpts),
46  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
47  Idents(idents), Selectors(sels),
48  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
49  ObjCIdRedefinitionType = QualType();
50  ObjCClassRedefinitionType = QualType();
51  ObjCSELRedefinitionType = QualType();
52  if (size_reserve > 0) Types.reserve(size_reserve);
53  TUDecl = TranslationUnitDecl::Create(*this);
54  InitBuiltinTypes();
55}
56
57ASTContext::~ASTContext() {
58  // Deallocate all the types.
59  while (!Types.empty()) {
60    Types.back()->Destroy(*this);
61    Types.pop_back();
62  }
63
64  {
65    llvm::FoldingSet<ExtQuals>::iterator
66      I = ExtQualNodes.begin(), E = ExtQualNodes.end();
67    while (I != E)
68      Deallocate(&*I++);
69  }
70
71  {
72    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
73      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
74    while (I != E) {
75      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
76      delete R;
77    }
78  }
79
80  {
81    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
82      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
83    while (I != E) {
84      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
85      delete R;
86    }
87  }
88
89  // Destroy nested-name-specifiers.
90  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
91         NNS = NestedNameSpecifiers.begin(),
92         NNSEnd = NestedNameSpecifiers.end();
93       NNS != NNSEnd;
94       /* Increment in loop */)
95    (*NNS++).Destroy(*this);
96
97  if (GlobalNestedNameSpecifier)
98    GlobalNestedNameSpecifier->Destroy(*this);
99
100  TUDecl->Destroy(*this);
101}
102
103void
104ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
105  ExternalSource.reset(Source.take());
106}
107
108void ASTContext::PrintStats() const {
109  fprintf(stderr, "*** AST Context Stats:\n");
110  fprintf(stderr, "  %d types total.\n", (int)Types.size());
111
112  unsigned counts[] = {
113#define TYPE(Name, Parent) 0,
114#define ABSTRACT_TYPE(Name, Parent)
115#include "clang/AST/TypeNodes.def"
116    0 // Extra
117  };
118
119  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
120    Type *T = Types[i];
121    counts[(unsigned)T->getTypeClass()]++;
122  }
123
124  unsigned Idx = 0;
125  unsigned TotalBytes = 0;
126#define TYPE(Name, Parent)                                              \
127  if (counts[Idx])                                                      \
128    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
129  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
130  ++Idx;
131#define ABSTRACT_TYPE(Name, Parent)
132#include "clang/AST/TypeNodes.def"
133
134  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
135
136  if (ExternalSource.get()) {
137    fprintf(stderr, "\n");
138    ExternalSource->PrintStats();
139  }
140}
141
142
143void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
144  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
145  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
146  Types.push_back(Ty);
147}
148
149void ASTContext::InitBuiltinTypes() {
150  assert(VoidTy.isNull() && "Context reinitialized?");
151
152  // C99 6.2.5p19.
153  InitBuiltinType(VoidTy,              BuiltinType::Void);
154
155  // C99 6.2.5p2.
156  InitBuiltinType(BoolTy,              BuiltinType::Bool);
157  // C99 6.2.5p3.
158  if (LangOpts.CharIsSigned)
159    InitBuiltinType(CharTy,            BuiltinType::Char_S);
160  else
161    InitBuiltinType(CharTy,            BuiltinType::Char_U);
162  // C99 6.2.5p4.
163  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
164  InitBuiltinType(ShortTy,             BuiltinType::Short);
165  InitBuiltinType(IntTy,               BuiltinType::Int);
166  InitBuiltinType(LongTy,              BuiltinType::Long);
167  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
168
169  // C99 6.2.5p6.
170  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
171  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
172  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
173  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
174  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
175
176  // C99 6.2.5p10.
177  InitBuiltinType(FloatTy,             BuiltinType::Float);
178  InitBuiltinType(DoubleTy,            BuiltinType::Double);
179  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
180
181  // GNU extension, 128-bit integers.
182  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
183  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
184
185  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
186    InitBuiltinType(WCharTy,           BuiltinType::WChar);
187  else // C99
188    WCharTy = getFromTargetType(Target.getWCharType());
189
190  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
191    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
192  else // C99
193    Char16Ty = getFromTargetType(Target.getChar16Type());
194
195  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
196    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
197  else // C99
198    Char32Ty = getFromTargetType(Target.getChar32Type());
199
200  // Placeholder type for functions.
201  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
202
203  // Placeholder type for type-dependent expressions whose type is
204  // completely unknown. No code should ever check a type against
205  // DependentTy and users should never see it; however, it is here to
206  // help diagnose failures to properly check for type-dependent
207  // expressions.
208  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
209
210  // Placeholder type for C++0x auto declarations whose real type has
211  // not yet been deduced.
212  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
213
214  // C99 6.2.5p11.
215  FloatComplexTy      = getComplexType(FloatTy);
216  DoubleComplexTy     = getComplexType(DoubleTy);
217  LongDoubleComplexTy = getComplexType(LongDoubleTy);
218
219  BuiltinVaListType = QualType();
220
221  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
222  ObjCIdTypedefType = QualType();
223  ObjCClassTypedefType = QualType();
224  ObjCSelTypedefType = QualType();
225
226  // Builtin types for 'id', 'Class', and 'SEL'.
227  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
228  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
229  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
230
231  ObjCConstantStringType = QualType();
232
233  // void * type
234  VoidPtrTy = getPointerType(VoidTy);
235
236  // nullptr type (C++0x 2.14.7)
237  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
238}
239
240MemberSpecializationInfo *
241ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
242  assert(Var->isStaticDataMember() && "Not a static data member");
243  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
244    = InstantiatedFromStaticDataMember.find(Var);
245  if (Pos == InstantiatedFromStaticDataMember.end())
246    return 0;
247
248  return Pos->second;
249}
250
251void
252ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
253                                                TemplateSpecializationKind TSK) {
254  assert(Inst->isStaticDataMember() && "Not a static data member");
255  assert(Tmpl->isStaticDataMember() && "Not a static data member");
256  assert(!InstantiatedFromStaticDataMember[Inst] &&
257         "Already noted what static data member was instantiated from");
258  InstantiatedFromStaticDataMember[Inst]
259    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
260}
261
262NamedDecl *
263ASTContext::getInstantiatedFromUnresolvedUsingDecl(UsingDecl *UUD) {
264  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
265    = InstantiatedFromUnresolvedUsingDecl.find(UUD);
266  if (Pos == InstantiatedFromUnresolvedUsingDecl.end())
267    return 0;
268
269  return Pos->second;
270}
271
272void
273ASTContext::setInstantiatedFromUnresolvedUsingDecl(UsingDecl *UD,
274                                                   NamedDecl *UUD) {
275  assert((isa<UnresolvedUsingValueDecl>(UUD) ||
276          isa<UnresolvedUsingTypenameDecl>(UUD)) &&
277         "original declaration is not an unresolved using decl");
278  assert(!InstantiatedFromUnresolvedUsingDecl[UD] &&
279         "Already noted what using decl what instantiated from");
280  InstantiatedFromUnresolvedUsingDecl[UD] = UUD;
281}
282
283FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
284  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
285    = InstantiatedFromUnnamedFieldDecl.find(Field);
286  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
287    return 0;
288
289  return Pos->second;
290}
291
292void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
293                                                     FieldDecl *Tmpl) {
294  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
295  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
296  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
297         "Already noted what unnamed field was instantiated from");
298
299  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
300}
301
302namespace {
303  class BeforeInTranslationUnit
304    : std::binary_function<SourceRange, SourceRange, bool> {
305    SourceManager *SourceMgr;
306
307  public:
308    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
309
310    bool operator()(SourceRange X, SourceRange Y) {
311      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
312    }
313  };
314}
315
316/// \brief Determine whether the given comment is a Doxygen-style comment.
317///
318/// \param Start the start of the comment text.
319///
320/// \param End the end of the comment text.
321///
322/// \param Member whether we want to check whether this is a member comment
323/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
324/// we only return true when we find a non-member comment.
325static bool
326isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
327                 bool Member = false) {
328  const char *BufferStart
329    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
330  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
331  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
332
333  if (End - Start < 4)
334    return false;
335
336  assert(Start[0] == '/' && "Not a comment?");
337  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
338    return false;
339  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
340    return false;
341
342  return (Start[3] == '<') == Member;
343}
344
345/// \brief Retrieve the comment associated with the given declaration, if
346/// it has one.
347const char *ASTContext::getCommentForDecl(const Decl *D) {
348  if (!D)
349    return 0;
350
351  // Check whether we have cached a comment string for this declaration
352  // already.
353  llvm::DenseMap<const Decl *, std::string>::iterator Pos
354    = DeclComments.find(D);
355  if (Pos != DeclComments.end())
356    return Pos->second.c_str();
357
358  // If we have an external AST source and have not yet loaded comments from
359  // that source, do so now.
360  if (ExternalSource && !LoadedExternalComments) {
361    std::vector<SourceRange> LoadedComments;
362    ExternalSource->ReadComments(LoadedComments);
363
364    if (!LoadedComments.empty())
365      Comments.insert(Comments.begin(), LoadedComments.begin(),
366                      LoadedComments.end());
367
368    LoadedExternalComments = true;
369  }
370
371  // If there are no comments anywhere, we won't find anything.
372  if (Comments.empty())
373    return 0;
374
375  // If the declaration doesn't map directly to a location in a file, we
376  // can't find the comment.
377  SourceLocation DeclStartLoc = D->getLocStart();
378  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
379    return 0;
380
381  // Find the comment that occurs just before this declaration.
382  std::vector<SourceRange>::iterator LastComment
383    = std::lower_bound(Comments.begin(), Comments.end(),
384                       SourceRange(DeclStartLoc),
385                       BeforeInTranslationUnit(&SourceMgr));
386
387  // Decompose the location for the start of the declaration and find the
388  // beginning of the file buffer.
389  std::pair<FileID, unsigned> DeclStartDecomp
390    = SourceMgr.getDecomposedLoc(DeclStartLoc);
391  const char *FileBufferStart
392    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
393
394  // First check whether we have a comment for a member.
395  if (LastComment != Comments.end() &&
396      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
397      isDoxygenComment(SourceMgr, *LastComment, true)) {
398    std::pair<FileID, unsigned> LastCommentEndDecomp
399      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
400    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
401        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
402          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
403                                     LastCommentEndDecomp.second)) {
404      // The Doxygen member comment comes after the declaration starts and
405      // is on the same line and in the same file as the declaration. This
406      // is the comment we want.
407      std::string &Result = DeclComments[D];
408      Result.append(FileBufferStart +
409                      SourceMgr.getFileOffset(LastComment->getBegin()),
410                    FileBufferStart + LastCommentEndDecomp.second + 1);
411      return Result.c_str();
412    }
413  }
414
415  if (LastComment == Comments.begin())
416    return 0;
417  --LastComment;
418
419  // Decompose the end of the comment.
420  std::pair<FileID, unsigned> LastCommentEndDecomp
421    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
422
423  // If the comment and the declaration aren't in the same file, then they
424  // aren't related.
425  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
426    return 0;
427
428  // Check that we actually have a Doxygen comment.
429  if (!isDoxygenComment(SourceMgr, *LastComment))
430    return 0;
431
432  // Compute the starting line for the declaration and for the end of the
433  // comment (this is expensive).
434  unsigned DeclStartLine
435    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
436  unsigned CommentEndLine
437    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
438                              LastCommentEndDecomp.second);
439
440  // If the comment does not end on the line prior to the declaration, then
441  // the comment is not associated with the declaration at all.
442  if (CommentEndLine + 1 != DeclStartLine)
443    return 0;
444
445  // We have a comment, but there may be more comments on the previous lines.
446  // Keep looking so long as the comments are still Doxygen comments and are
447  // still adjacent.
448  unsigned ExpectedLine
449    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
450  std::vector<SourceRange>::iterator FirstComment = LastComment;
451  while (FirstComment != Comments.begin()) {
452    // Look at the previous comment
453    --FirstComment;
454    std::pair<FileID, unsigned> Decomp
455      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
456
457    // If this previous comment is in a different file, we're done.
458    if (Decomp.first != DeclStartDecomp.first) {
459      ++FirstComment;
460      break;
461    }
462
463    // If this comment is not a Doxygen comment, we're done.
464    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
465      ++FirstComment;
466      break;
467    }
468
469    // If the line number is not what we expected, we're done.
470    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
471    if (Line != ExpectedLine) {
472      ++FirstComment;
473      break;
474    }
475
476    // Set the next expected line number.
477    ExpectedLine
478      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
479  }
480
481  // The iterator range [FirstComment, LastComment] contains all of the
482  // BCPL comments that, together, are associated with this declaration.
483  // Form a single comment block string for this declaration that concatenates
484  // all of these comments.
485  std::string &Result = DeclComments[D];
486  while (FirstComment != LastComment) {
487    std::pair<FileID, unsigned> DecompStart
488      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
489    std::pair<FileID, unsigned> DecompEnd
490      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
491    Result.append(FileBufferStart + DecompStart.second,
492                  FileBufferStart + DecompEnd.second + 1);
493    ++FirstComment;
494  }
495
496  // Append the last comment line.
497  Result.append(FileBufferStart +
498                  SourceMgr.getFileOffset(LastComment->getBegin()),
499                FileBufferStart + LastCommentEndDecomp.second + 1);
500  return Result.c_str();
501}
502
503//===----------------------------------------------------------------------===//
504//                         Type Sizing and Analysis
505//===----------------------------------------------------------------------===//
506
507/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
508/// scalar floating point type.
509const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
510  const BuiltinType *BT = T->getAs<BuiltinType>();
511  assert(BT && "Not a floating point type!");
512  switch (BT->getKind()) {
513  default: assert(0 && "Not a floating point type!");
514  case BuiltinType::Float:      return Target.getFloatFormat();
515  case BuiltinType::Double:     return Target.getDoubleFormat();
516  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
517  }
518}
519
520/// getDeclAlignInBytes - Return a conservative estimate of the alignment of the
521/// specified decl.  Note that bitfields do not have a valid alignment, so
522/// this method will assert on them.
523/// If @p RefAsPointee, references are treated like their underlying type
524/// (for alignof), else they're treated like pointers (for CodeGen).
525unsigned ASTContext::getDeclAlignInBytes(const Decl *D, bool RefAsPointee) {
526  unsigned Align = Target.getCharWidth();
527
528  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
529    Align = std::max(Align, AA->getMaxAlignment());
530
531  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
532    QualType T = VD->getType();
533    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
534      if (RefAsPointee)
535        T = RT->getPointeeType();
536      else
537        T = getPointerType(RT->getPointeeType());
538    }
539    if (!T->isIncompleteType() && !T->isFunctionType()) {
540      // Incomplete or function types default to 1.
541      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
542        T = cast<ArrayType>(T)->getElementType();
543
544      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
545    }
546  }
547
548  return Align / Target.getCharWidth();
549}
550
551/// getTypeSize - Return the size of the specified type, in bits.  This method
552/// does not work on incomplete types.
553///
554/// FIXME: Pointers into different addr spaces could have different sizes and
555/// alignment requirements: getPointerInfo should take an AddrSpace, this
556/// should take a QualType, &c.
557std::pair<uint64_t, unsigned>
558ASTContext::getTypeInfo(const Type *T) {
559  uint64_t Width=0;
560  unsigned Align=8;
561  switch (T->getTypeClass()) {
562#define TYPE(Class, Base)
563#define ABSTRACT_TYPE(Class, Base)
564#define NON_CANONICAL_TYPE(Class, Base)
565#define DEPENDENT_TYPE(Class, Base) case Type::Class:
566#include "clang/AST/TypeNodes.def"
567    assert(false && "Should not see dependent types");
568    break;
569
570  case Type::FunctionNoProto:
571  case Type::FunctionProto:
572    // GCC extension: alignof(function) = 32 bits
573    Width = 0;
574    Align = 32;
575    break;
576
577  case Type::IncompleteArray:
578  case Type::VariableArray:
579    Width = 0;
580    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
581    break;
582
583  case Type::ConstantArray: {
584    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
585
586    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
587    Width = EltInfo.first*CAT->getSize().getZExtValue();
588    Align = EltInfo.second;
589    break;
590  }
591  case Type::ExtVector:
592  case Type::Vector: {
593    const VectorType *VT = cast<VectorType>(T);
594    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
595    Width = EltInfo.first*VT->getNumElements();
596    Align = Width;
597    // If the alignment is not a power of 2, round up to the next power of 2.
598    // This happens for non-power-of-2 length vectors.
599    if (VT->getNumElements() & (VT->getNumElements()-1)) {
600      Align = llvm::NextPowerOf2(Align);
601      Width = llvm::RoundUpToAlignment(Width, Align);
602    }
603    break;
604  }
605
606  case Type::Builtin:
607    switch (cast<BuiltinType>(T)->getKind()) {
608    default: assert(0 && "Unknown builtin type!");
609    case BuiltinType::Void:
610      // GCC extension: alignof(void) = 8 bits.
611      Width = 0;
612      Align = 8;
613      break;
614
615    case BuiltinType::Bool:
616      Width = Target.getBoolWidth();
617      Align = Target.getBoolAlign();
618      break;
619    case BuiltinType::Char_S:
620    case BuiltinType::Char_U:
621    case BuiltinType::UChar:
622    case BuiltinType::SChar:
623      Width = Target.getCharWidth();
624      Align = Target.getCharAlign();
625      break;
626    case BuiltinType::WChar:
627      Width = Target.getWCharWidth();
628      Align = Target.getWCharAlign();
629      break;
630    case BuiltinType::Char16:
631      Width = Target.getChar16Width();
632      Align = Target.getChar16Align();
633      break;
634    case BuiltinType::Char32:
635      Width = Target.getChar32Width();
636      Align = Target.getChar32Align();
637      break;
638    case BuiltinType::UShort:
639    case BuiltinType::Short:
640      Width = Target.getShortWidth();
641      Align = Target.getShortAlign();
642      break;
643    case BuiltinType::UInt:
644    case BuiltinType::Int:
645      Width = Target.getIntWidth();
646      Align = Target.getIntAlign();
647      break;
648    case BuiltinType::ULong:
649    case BuiltinType::Long:
650      Width = Target.getLongWidth();
651      Align = Target.getLongAlign();
652      break;
653    case BuiltinType::ULongLong:
654    case BuiltinType::LongLong:
655      Width = Target.getLongLongWidth();
656      Align = Target.getLongLongAlign();
657      break;
658    case BuiltinType::Int128:
659    case BuiltinType::UInt128:
660      Width = 128;
661      Align = 128; // int128_t is 128-bit aligned on all targets.
662      break;
663    case BuiltinType::Float:
664      Width = Target.getFloatWidth();
665      Align = Target.getFloatAlign();
666      break;
667    case BuiltinType::Double:
668      Width = Target.getDoubleWidth();
669      Align = Target.getDoubleAlign();
670      break;
671    case BuiltinType::LongDouble:
672      Width = Target.getLongDoubleWidth();
673      Align = Target.getLongDoubleAlign();
674      break;
675    case BuiltinType::NullPtr:
676      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
677      Align = Target.getPointerAlign(0); //   == sizeof(void*)
678      break;
679    }
680    break;
681  case Type::FixedWidthInt:
682    // FIXME: This isn't precisely correct; the width/alignment should depend
683    // on the available types for the target
684    Width = cast<FixedWidthIntType>(T)->getWidth();
685    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
686    Align = Width;
687    break;
688  case Type::ObjCObjectPointer:
689    Width = Target.getPointerWidth(0);
690    Align = Target.getPointerAlign(0);
691    break;
692  case Type::BlockPointer: {
693    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
694    Width = Target.getPointerWidth(AS);
695    Align = Target.getPointerAlign(AS);
696    break;
697  }
698  case Type::LValueReference:
699  case Type::RValueReference: {
700    // alignof and sizeof should never enter this code path here, so we go
701    // the pointer route.
702    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
703    Width = Target.getPointerWidth(AS);
704    Align = Target.getPointerAlign(AS);
705    break;
706  }
707  case Type::Pointer: {
708    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
709    Width = Target.getPointerWidth(AS);
710    Align = Target.getPointerAlign(AS);
711    break;
712  }
713  case Type::MemberPointer: {
714    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
715    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
716    // If we ever want to support other ABIs this needs to be abstracted.
717
718    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
719    std::pair<uint64_t, unsigned> PtrDiffInfo =
720      getTypeInfo(getPointerDiffType());
721    Width = PtrDiffInfo.first;
722    if (Pointee->isFunctionType())
723      Width *= 2;
724    Align = PtrDiffInfo.second;
725    break;
726  }
727  case Type::Complex: {
728    // Complex types have the same alignment as their elements, but twice the
729    // size.
730    std::pair<uint64_t, unsigned> EltInfo =
731      getTypeInfo(cast<ComplexType>(T)->getElementType());
732    Width = EltInfo.first*2;
733    Align = EltInfo.second;
734    break;
735  }
736  case Type::ObjCInterface: {
737    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
738    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
739    Width = Layout.getSize();
740    Align = Layout.getAlignment();
741    break;
742  }
743  case Type::Record:
744  case Type::Enum: {
745    const TagType *TT = cast<TagType>(T);
746
747    if (TT->getDecl()->isInvalidDecl()) {
748      Width = 1;
749      Align = 1;
750      break;
751    }
752
753    if (const EnumType *ET = dyn_cast<EnumType>(TT))
754      return getTypeInfo(ET->getDecl()->getIntegerType());
755
756    const RecordType *RT = cast<RecordType>(TT);
757    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
758    Width = Layout.getSize();
759    Align = Layout.getAlignment();
760    break;
761  }
762
763  case Type::SubstTemplateTypeParm:
764    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
765                       getReplacementType().getTypePtr());
766
767  case Type::Elaborated:
768    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
769                         .getTypePtr());
770
771  case Type::Typedef: {
772    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
773    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
774      Align = std::max(Aligned->getMaxAlignment(),
775                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
776      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
777    } else
778      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
779    break;
780  }
781
782  case Type::TypeOfExpr:
783    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
784                         .getTypePtr());
785
786  case Type::TypeOf:
787    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
788
789  case Type::Decltype:
790    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
791                        .getTypePtr());
792
793  case Type::QualifiedName:
794    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
795
796  case Type::TemplateSpecialization:
797    assert(getCanonicalType(T) != T &&
798           "Cannot request the size of a dependent type");
799    // FIXME: this is likely to be wrong once we support template
800    // aliases, since a template alias could refer to a typedef that
801    // has an __aligned__ attribute on it.
802    return getTypeInfo(getCanonicalType(T));
803  }
804
805  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
806  return std::make_pair(Width, Align);
807}
808
809/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
810/// type for the current target in bits.  This can be different than the ABI
811/// alignment in cases where it is beneficial for performance to overalign
812/// a data type.
813unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
814  unsigned ABIAlign = getTypeAlign(T);
815
816  // Double and long long should be naturally aligned if possible.
817  if (const ComplexType* CT = T->getAs<ComplexType>())
818    T = CT->getElementType().getTypePtr();
819  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
820      T->isSpecificBuiltinType(BuiltinType::LongLong))
821    return std::max(ABIAlign, (unsigned)getTypeSize(T));
822
823  return ABIAlign;
824}
825
826static void CollectLocalObjCIvars(ASTContext *Ctx,
827                                  const ObjCInterfaceDecl *OI,
828                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
829  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
830       E = OI->ivar_end(); I != E; ++I) {
831    ObjCIvarDecl *IVDecl = *I;
832    if (!IVDecl->isInvalidDecl())
833      Fields.push_back(cast<FieldDecl>(IVDecl));
834  }
835}
836
837void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
838                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
839  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
840    CollectObjCIvars(SuperClass, Fields);
841  CollectLocalObjCIvars(this, OI, Fields);
842}
843
844/// ShallowCollectObjCIvars -
845/// Collect all ivars, including those synthesized, in the current class.
846///
847void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
848                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
849                                 bool CollectSynthesized) {
850  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
851         E = OI->ivar_end(); I != E; ++I) {
852     Ivars.push_back(*I);
853  }
854  if (CollectSynthesized)
855    CollectSynthesizedIvars(OI, Ivars);
856}
857
858void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
859                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
860  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
861       E = PD->prop_end(); I != E; ++I)
862    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
863      Ivars.push_back(Ivar);
864
865  // Also look into nested protocols.
866  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
867       E = PD->protocol_end(); P != E; ++P)
868    CollectProtocolSynthesizedIvars(*P, Ivars);
869}
870
871/// CollectSynthesizedIvars -
872/// This routine collect synthesized ivars for the designated class.
873///
874void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
875                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
876  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
877       E = OI->prop_end(); I != E; ++I) {
878    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
879      Ivars.push_back(Ivar);
880  }
881  // Also look into interface's protocol list for properties declared
882  // in the protocol and whose ivars are synthesized.
883  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
884       PE = OI->protocol_end(); P != PE; ++P) {
885    ObjCProtocolDecl *PD = (*P);
886    CollectProtocolSynthesizedIvars(PD, Ivars);
887  }
888}
889
890/// CollectInheritedProtocols - Collect all protocols in current class and
891/// those inherited by it.
892void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
893                          llvm::SmallVectorImpl<ObjCProtocolDecl*> &Protocols) {
894  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
895    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
896         PE = OI->protocol_end(); P != PE; ++P) {
897      ObjCProtocolDecl *Proto = (*P);
898      Protocols.push_back(Proto);
899      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
900           PE = Proto->protocol_end(); P != PE; ++P)
901        CollectInheritedProtocols(*P, Protocols);
902      }
903
904    // Categories of this Interface.
905    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
906         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
907      CollectInheritedProtocols(CDeclChain, Protocols);
908    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
909      while (SD) {
910        CollectInheritedProtocols(SD, Protocols);
911        SD = SD->getSuperClass();
912      }
913    return;
914  }
915  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
916    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
917         PE = OC->protocol_end(); P != PE; ++P) {
918      ObjCProtocolDecl *Proto = (*P);
919      Protocols.push_back(Proto);
920      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
921           PE = Proto->protocol_end(); P != PE; ++P)
922        CollectInheritedProtocols(*P, Protocols);
923    }
924    return;
925  }
926  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
927    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
928         PE = OP->protocol_end(); P != PE; ++P) {
929      ObjCProtocolDecl *Proto = (*P);
930      Protocols.push_back(Proto);
931      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
932           PE = Proto->protocol_end(); P != PE; ++P)
933        CollectInheritedProtocols(*P, Protocols);
934    }
935    return;
936  }
937}
938
939unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
940  unsigned count = 0;
941  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
942       E = PD->prop_end(); I != E; ++I)
943    if ((*I)->getPropertyIvarDecl())
944      ++count;
945
946  // Also look into nested protocols.
947  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
948       E = PD->protocol_end(); P != E; ++P)
949    count += CountProtocolSynthesizedIvars(*P);
950  return count;
951}
952
953unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
954  unsigned count = 0;
955  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
956       E = OI->prop_end(); I != E; ++I) {
957    if ((*I)->getPropertyIvarDecl())
958      ++count;
959  }
960  // Also look into interface's protocol list for properties declared
961  // in the protocol and whose ivars are synthesized.
962  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
963       PE = OI->protocol_end(); P != PE; ++P) {
964    ObjCProtocolDecl *PD = (*P);
965    count += CountProtocolSynthesizedIvars(PD);
966  }
967  return count;
968}
969
970/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
971ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
972  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
973    I = ObjCImpls.find(D);
974  if (I != ObjCImpls.end())
975    return cast<ObjCImplementationDecl>(I->second);
976  return 0;
977}
978/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
979ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
980  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
981    I = ObjCImpls.find(D);
982  if (I != ObjCImpls.end())
983    return cast<ObjCCategoryImplDecl>(I->second);
984  return 0;
985}
986
987/// \brief Set the implementation of ObjCInterfaceDecl.
988void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
989                           ObjCImplementationDecl *ImplD) {
990  assert(IFaceD && ImplD && "Passed null params");
991  ObjCImpls[IFaceD] = ImplD;
992}
993/// \brief Set the implementation of ObjCCategoryDecl.
994void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
995                           ObjCCategoryImplDecl *ImplD) {
996  assert(CatD && ImplD && "Passed null params");
997  ObjCImpls[CatD] = ImplD;
998}
999
1000/// \brief Allocate an uninitialized DeclaratorInfo.
1001///
1002/// The caller should initialize the memory held by DeclaratorInfo using
1003/// the TypeLoc wrappers.
1004///
1005/// \param T the type that will be the basis for type source info. This type
1006/// should refer to how the declarator was written in source code, not to
1007/// what type semantic analysis resolved the declarator to.
1008DeclaratorInfo *ASTContext::CreateDeclaratorInfo(QualType T,
1009                                                 unsigned DataSize) {
1010  if (!DataSize)
1011    DataSize = TypeLoc::getFullDataSizeForType(T);
1012  else
1013    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1014           "incorrect data size provided to CreateDeclaratorInfo!");
1015
1016  DeclaratorInfo *DInfo =
1017    (DeclaratorInfo*)BumpAlloc.Allocate(sizeof(DeclaratorInfo) + DataSize, 8);
1018  new (DInfo) DeclaratorInfo(T);
1019  return DInfo;
1020}
1021
1022DeclaratorInfo *ASTContext::getTrivialDeclaratorInfo(QualType T,
1023                                                     SourceLocation L) {
1024  DeclaratorInfo *DI = CreateDeclaratorInfo(T);
1025  DI->getTypeLoc().initialize(L);
1026  return DI;
1027}
1028
1029/// getInterfaceLayoutImpl - Get or compute information about the
1030/// layout of the given interface.
1031///
1032/// \param Impl - If given, also include the layout of the interface's
1033/// implementation. This may differ by including synthesized ivars.
1034const ASTRecordLayout &
1035ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1036                          const ObjCImplementationDecl *Impl) {
1037  assert(!D->isForwardDecl() && "Invalid interface decl!");
1038
1039  // Look up this layout, if already laid out, return what we have.
1040  ObjCContainerDecl *Key =
1041    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1042  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1043    return *Entry;
1044
1045  // Add in synthesized ivar count if laying out an implementation.
1046  if (Impl) {
1047    unsigned FieldCount = D->ivar_size();
1048    unsigned SynthCount = CountSynthesizedIvars(D);
1049    FieldCount += SynthCount;
1050    // If there aren't any sythesized ivars then reuse the interface
1051    // entry. Note we can't cache this because we simply free all
1052    // entries later; however we shouldn't look up implementations
1053    // frequently.
1054    if (SynthCount == 0)
1055      return getObjCLayout(D, 0);
1056  }
1057
1058  const ASTRecordLayout *NewEntry =
1059    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1060  ObjCLayouts[Key] = NewEntry;
1061
1062  return *NewEntry;
1063}
1064
1065const ASTRecordLayout &
1066ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1067  return getObjCLayout(D, 0);
1068}
1069
1070const ASTRecordLayout &
1071ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1072  return getObjCLayout(D->getClassInterface(), D);
1073}
1074
1075/// getASTRecordLayout - Get or compute information about the layout of the
1076/// specified record (struct/union/class), which indicates its size and field
1077/// position information.
1078const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1079  D = D->getDefinition(*this);
1080  assert(D && "Cannot get layout of forward declarations!");
1081
1082  // Look up this layout, if already laid out, return what we have.
1083  // Note that we can't save a reference to the entry because this function
1084  // is recursive.
1085  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1086  if (Entry) return *Entry;
1087
1088  const ASTRecordLayout *NewEntry =
1089    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1090  ASTRecordLayouts[D] = NewEntry;
1091
1092  return *NewEntry;
1093}
1094
1095//===----------------------------------------------------------------------===//
1096//                   Type creation/memoization methods
1097//===----------------------------------------------------------------------===//
1098
1099QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1100  unsigned Fast = Quals.getFastQualifiers();
1101  Quals.removeFastQualifiers();
1102
1103  // Check if we've already instantiated this type.
1104  llvm::FoldingSetNodeID ID;
1105  ExtQuals::Profile(ID, TypeNode, Quals);
1106  void *InsertPos = 0;
1107  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1108    assert(EQ->getQualifiers() == Quals);
1109    QualType T = QualType(EQ, Fast);
1110    return T;
1111  }
1112
1113  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1114  ExtQualNodes.InsertNode(New, InsertPos);
1115  QualType T = QualType(New, Fast);
1116  return T;
1117}
1118
1119QualType ASTContext::getVolatileType(QualType T) {
1120  QualType CanT = getCanonicalType(T);
1121  if (CanT.isVolatileQualified()) return T;
1122
1123  QualifierCollector Quals;
1124  const Type *TypeNode = Quals.strip(T);
1125  Quals.addVolatile();
1126
1127  return getExtQualType(TypeNode, Quals);
1128}
1129
1130QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1131  QualType CanT = getCanonicalType(T);
1132  if (CanT.getAddressSpace() == AddressSpace)
1133    return T;
1134
1135  // If we are composing extended qualifiers together, merge together
1136  // into one ExtQuals node.
1137  QualifierCollector Quals;
1138  const Type *TypeNode = Quals.strip(T);
1139
1140  // If this type already has an address space specified, it cannot get
1141  // another one.
1142  assert(!Quals.hasAddressSpace() &&
1143         "Type cannot be in multiple addr spaces!");
1144  Quals.addAddressSpace(AddressSpace);
1145
1146  return getExtQualType(TypeNode, Quals);
1147}
1148
1149QualType ASTContext::getObjCGCQualType(QualType T,
1150                                       Qualifiers::GC GCAttr) {
1151  QualType CanT = getCanonicalType(T);
1152  if (CanT.getObjCGCAttr() == GCAttr)
1153    return T;
1154
1155  if (T->isPointerType()) {
1156    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1157    if (Pointee->isAnyPointerType()) {
1158      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1159      return getPointerType(ResultType);
1160    }
1161  }
1162
1163  // If we are composing extended qualifiers together, merge together
1164  // into one ExtQuals node.
1165  QualifierCollector Quals;
1166  const Type *TypeNode = Quals.strip(T);
1167
1168  // If this type already has an ObjCGC specified, it cannot get
1169  // another one.
1170  assert(!Quals.hasObjCGCAttr() &&
1171         "Type cannot have multiple ObjCGCs!");
1172  Quals.addObjCGCAttr(GCAttr);
1173
1174  return getExtQualType(TypeNode, Quals);
1175}
1176
1177QualType ASTContext::getNoReturnType(QualType T) {
1178  QualType ResultType;
1179  if (T->isPointerType()) {
1180    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1181    ResultType = getNoReturnType(Pointee);
1182    ResultType = getPointerType(ResultType);
1183  } else if (T->isBlockPointerType()) {
1184    QualType Pointee = T->getAs<BlockPointerType>()->getPointeeType();
1185    ResultType = getNoReturnType(Pointee);
1186    ResultType = getBlockPointerType(ResultType);
1187  } else {
1188    assert (T->isFunctionType()
1189            && "can't noreturn qualify non-pointer to function or block type");
1190
1191    if (const FunctionNoProtoType *FNPT = T->getAs<FunctionNoProtoType>()) {
1192      ResultType = getFunctionNoProtoType(FNPT->getResultType(), true);
1193    } else {
1194      const FunctionProtoType *F = T->getAs<FunctionProtoType>();
1195      ResultType
1196        = getFunctionType(F->getResultType(), F->arg_type_begin(),
1197                          F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1198                          F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1199                          F->getNumExceptions(), F->exception_begin(), true);
1200    }
1201  }
1202
1203  return getQualifiedType(ResultType, T.getLocalQualifiers());
1204}
1205
1206/// getComplexType - Return the uniqued reference to the type for a complex
1207/// number with the specified element type.
1208QualType ASTContext::getComplexType(QualType T) {
1209  // Unique pointers, to guarantee there is only one pointer of a particular
1210  // structure.
1211  llvm::FoldingSetNodeID ID;
1212  ComplexType::Profile(ID, T);
1213
1214  void *InsertPos = 0;
1215  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1216    return QualType(CT, 0);
1217
1218  // If the pointee type isn't canonical, this won't be a canonical type either,
1219  // so fill in the canonical type field.
1220  QualType Canonical;
1221  if (!T.isCanonical()) {
1222    Canonical = getComplexType(getCanonicalType(T));
1223
1224    // Get the new insert position for the node we care about.
1225    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1226    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1227  }
1228  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1229  Types.push_back(New);
1230  ComplexTypes.InsertNode(New, InsertPos);
1231  return QualType(New, 0);
1232}
1233
1234QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1235  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1236     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1237  FixedWidthIntType *&Entry = Map[Width];
1238  if (!Entry)
1239    Entry = new FixedWidthIntType(Width, Signed);
1240  return QualType(Entry, 0);
1241}
1242
1243/// getPointerType - Return the uniqued reference to the type for a pointer to
1244/// the specified type.
1245QualType ASTContext::getPointerType(QualType T) {
1246  // Unique pointers, to guarantee there is only one pointer of a particular
1247  // structure.
1248  llvm::FoldingSetNodeID ID;
1249  PointerType::Profile(ID, T);
1250
1251  void *InsertPos = 0;
1252  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1253    return QualType(PT, 0);
1254
1255  // If the pointee type isn't canonical, this won't be a canonical type either,
1256  // so fill in the canonical type field.
1257  QualType Canonical;
1258  if (!T.isCanonical()) {
1259    Canonical = getPointerType(getCanonicalType(T));
1260
1261    // Get the new insert position for the node we care about.
1262    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1263    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1264  }
1265  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1266  Types.push_back(New);
1267  PointerTypes.InsertNode(New, InsertPos);
1268  return QualType(New, 0);
1269}
1270
1271/// getBlockPointerType - Return the uniqued reference to the type for
1272/// a pointer to the specified block.
1273QualType ASTContext::getBlockPointerType(QualType T) {
1274  assert(T->isFunctionType() && "block of function types only");
1275  // Unique pointers, to guarantee there is only one block of a particular
1276  // structure.
1277  llvm::FoldingSetNodeID ID;
1278  BlockPointerType::Profile(ID, T);
1279
1280  void *InsertPos = 0;
1281  if (BlockPointerType *PT =
1282        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1283    return QualType(PT, 0);
1284
1285  // If the block pointee type isn't canonical, this won't be a canonical
1286  // type either so fill in the canonical type field.
1287  QualType Canonical;
1288  if (!T.isCanonical()) {
1289    Canonical = getBlockPointerType(getCanonicalType(T));
1290
1291    // Get the new insert position for the node we care about.
1292    BlockPointerType *NewIP =
1293      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1294    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1295  }
1296  BlockPointerType *New
1297    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1298  Types.push_back(New);
1299  BlockPointerTypes.InsertNode(New, InsertPos);
1300  return QualType(New, 0);
1301}
1302
1303/// getLValueReferenceType - Return the uniqued reference to the type for an
1304/// lvalue reference to the specified type.
1305QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1306  // Unique pointers, to guarantee there is only one pointer of a particular
1307  // structure.
1308  llvm::FoldingSetNodeID ID;
1309  ReferenceType::Profile(ID, T, SpelledAsLValue);
1310
1311  void *InsertPos = 0;
1312  if (LValueReferenceType *RT =
1313        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1314    return QualType(RT, 0);
1315
1316  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1317
1318  // If the referencee type isn't canonical, this won't be a canonical type
1319  // either, so fill in the canonical type field.
1320  QualType Canonical;
1321  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1322    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1323    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1324
1325    // Get the new insert position for the node we care about.
1326    LValueReferenceType *NewIP =
1327      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1328    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1329  }
1330
1331  LValueReferenceType *New
1332    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1333                                                     SpelledAsLValue);
1334  Types.push_back(New);
1335  LValueReferenceTypes.InsertNode(New, InsertPos);
1336
1337  return QualType(New, 0);
1338}
1339
1340/// getRValueReferenceType - Return the uniqued reference to the type for an
1341/// rvalue reference to the specified type.
1342QualType ASTContext::getRValueReferenceType(QualType T) {
1343  // Unique pointers, to guarantee there is only one pointer of a particular
1344  // structure.
1345  llvm::FoldingSetNodeID ID;
1346  ReferenceType::Profile(ID, T, false);
1347
1348  void *InsertPos = 0;
1349  if (RValueReferenceType *RT =
1350        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1351    return QualType(RT, 0);
1352
1353  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1354
1355  // If the referencee type isn't canonical, this won't be a canonical type
1356  // either, so fill in the canonical type field.
1357  QualType Canonical;
1358  if (InnerRef || !T.isCanonical()) {
1359    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1360    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1361
1362    // Get the new insert position for the node we care about.
1363    RValueReferenceType *NewIP =
1364      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1365    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1366  }
1367
1368  RValueReferenceType *New
1369    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1370  Types.push_back(New);
1371  RValueReferenceTypes.InsertNode(New, InsertPos);
1372  return QualType(New, 0);
1373}
1374
1375/// getMemberPointerType - Return the uniqued reference to the type for a
1376/// member pointer to the specified type, in the specified class.
1377QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1378  // Unique pointers, to guarantee there is only one pointer of a particular
1379  // structure.
1380  llvm::FoldingSetNodeID ID;
1381  MemberPointerType::Profile(ID, T, Cls);
1382
1383  void *InsertPos = 0;
1384  if (MemberPointerType *PT =
1385      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1386    return QualType(PT, 0);
1387
1388  // If the pointee or class type isn't canonical, this won't be a canonical
1389  // type either, so fill in the canonical type field.
1390  QualType Canonical;
1391  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1392    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1393
1394    // Get the new insert position for the node we care about.
1395    MemberPointerType *NewIP =
1396      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1397    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1398  }
1399  MemberPointerType *New
1400    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1401  Types.push_back(New);
1402  MemberPointerTypes.InsertNode(New, InsertPos);
1403  return QualType(New, 0);
1404}
1405
1406/// getConstantArrayType - Return the unique reference to the type for an
1407/// array of the specified element type.
1408QualType ASTContext::getConstantArrayType(QualType EltTy,
1409                                          const llvm::APInt &ArySizeIn,
1410                                          ArrayType::ArraySizeModifier ASM,
1411                                          unsigned EltTypeQuals) {
1412  assert((EltTy->isDependentType() ||
1413          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1414         "Constant array of VLAs is illegal!");
1415
1416  // Convert the array size into a canonical width matching the pointer size for
1417  // the target.
1418  llvm::APInt ArySize(ArySizeIn);
1419  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1420
1421  llvm::FoldingSetNodeID ID;
1422  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1423
1424  void *InsertPos = 0;
1425  if (ConstantArrayType *ATP =
1426      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1427    return QualType(ATP, 0);
1428
1429  // If the element type isn't canonical, this won't be a canonical type either,
1430  // so fill in the canonical type field.
1431  QualType Canonical;
1432  if (!EltTy.isCanonical()) {
1433    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1434                                     ASM, EltTypeQuals);
1435    // Get the new insert position for the node we care about.
1436    ConstantArrayType *NewIP =
1437      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1438    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1439  }
1440
1441  ConstantArrayType *New = new(*this,TypeAlignment)
1442    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1443  ConstantArrayTypes.InsertNode(New, InsertPos);
1444  Types.push_back(New);
1445  return QualType(New, 0);
1446}
1447
1448/// getVariableArrayType - Returns a non-unique reference to the type for a
1449/// variable array of the specified element type.
1450QualType ASTContext::getVariableArrayType(QualType EltTy,
1451                                          Expr *NumElts,
1452                                          ArrayType::ArraySizeModifier ASM,
1453                                          unsigned EltTypeQuals,
1454                                          SourceRange Brackets) {
1455  // Since we don't unique expressions, it isn't possible to unique VLA's
1456  // that have an expression provided for their size.
1457
1458  VariableArrayType *New = new(*this, TypeAlignment)
1459    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1460
1461  VariableArrayTypes.push_back(New);
1462  Types.push_back(New);
1463  return QualType(New, 0);
1464}
1465
1466/// getDependentSizedArrayType - Returns a non-unique reference to
1467/// the type for a dependently-sized array of the specified element
1468/// type.
1469QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1470                                                Expr *NumElts,
1471                                                ArrayType::ArraySizeModifier ASM,
1472                                                unsigned EltTypeQuals,
1473                                                SourceRange Brackets) {
1474  assert((!NumElts || NumElts->isTypeDependent() ||
1475          NumElts->isValueDependent()) &&
1476         "Size must be type- or value-dependent!");
1477
1478  void *InsertPos = 0;
1479  DependentSizedArrayType *Canon = 0;
1480
1481  if (NumElts) {
1482    // Dependently-sized array types that do not have a specified
1483    // number of elements will have their sizes deduced from an
1484    // initializer.
1485    llvm::FoldingSetNodeID ID;
1486    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1487                                     EltTypeQuals, NumElts);
1488
1489    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1490  }
1491
1492  DependentSizedArrayType *New;
1493  if (Canon) {
1494    // We already have a canonical version of this array type; use it as
1495    // the canonical type for a newly-built type.
1496    New = new (*this, TypeAlignment)
1497      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1498                              NumElts, ASM, EltTypeQuals, Brackets);
1499  } else {
1500    QualType CanonEltTy = getCanonicalType(EltTy);
1501    if (CanonEltTy == EltTy) {
1502      New = new (*this, TypeAlignment)
1503        DependentSizedArrayType(*this, EltTy, QualType(),
1504                                NumElts, ASM, EltTypeQuals, Brackets);
1505
1506      if (NumElts)
1507        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1508    } else {
1509      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1510                                                  ASM, EltTypeQuals,
1511                                                  SourceRange());
1512      New = new (*this, TypeAlignment)
1513        DependentSizedArrayType(*this, EltTy, Canon,
1514                                NumElts, ASM, EltTypeQuals, Brackets);
1515    }
1516  }
1517
1518  Types.push_back(New);
1519  return QualType(New, 0);
1520}
1521
1522QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1523                                            ArrayType::ArraySizeModifier ASM,
1524                                            unsigned EltTypeQuals) {
1525  llvm::FoldingSetNodeID ID;
1526  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1527
1528  void *InsertPos = 0;
1529  if (IncompleteArrayType *ATP =
1530       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1531    return QualType(ATP, 0);
1532
1533  // If the element type isn't canonical, this won't be a canonical type
1534  // either, so fill in the canonical type field.
1535  QualType Canonical;
1536
1537  if (!EltTy.isCanonical()) {
1538    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1539                                       ASM, EltTypeQuals);
1540
1541    // Get the new insert position for the node we care about.
1542    IncompleteArrayType *NewIP =
1543      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1544    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1545  }
1546
1547  IncompleteArrayType *New = new (*this, TypeAlignment)
1548    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1549
1550  IncompleteArrayTypes.InsertNode(New, InsertPos);
1551  Types.push_back(New);
1552  return QualType(New, 0);
1553}
1554
1555/// getVectorType - Return the unique reference to a vector type of
1556/// the specified element type and size. VectorType must be a built-in type.
1557QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1558  BuiltinType *baseType;
1559
1560  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1561  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1562
1563  // Check if we've already instantiated a vector of this type.
1564  llvm::FoldingSetNodeID ID;
1565  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1566  void *InsertPos = 0;
1567  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1568    return QualType(VTP, 0);
1569
1570  // If the element type isn't canonical, this won't be a canonical type either,
1571  // so fill in the canonical type field.
1572  QualType Canonical;
1573  if (!vecType.isCanonical()) {
1574    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1575
1576    // Get the new insert position for the node we care about.
1577    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1578    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1579  }
1580  VectorType *New = new (*this, TypeAlignment)
1581    VectorType(vecType, NumElts, Canonical);
1582  VectorTypes.InsertNode(New, InsertPos);
1583  Types.push_back(New);
1584  return QualType(New, 0);
1585}
1586
1587/// getExtVectorType - Return the unique reference to an extended vector type of
1588/// the specified element type and size. VectorType must be a built-in type.
1589QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1590  BuiltinType *baseType;
1591
1592  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1593  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1594
1595  // Check if we've already instantiated a vector of this type.
1596  llvm::FoldingSetNodeID ID;
1597  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1598  void *InsertPos = 0;
1599  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1600    return QualType(VTP, 0);
1601
1602  // If the element type isn't canonical, this won't be a canonical type either,
1603  // so fill in the canonical type field.
1604  QualType Canonical;
1605  if (!vecType.isCanonical()) {
1606    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1607
1608    // Get the new insert position for the node we care about.
1609    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1610    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1611  }
1612  ExtVectorType *New = new (*this, TypeAlignment)
1613    ExtVectorType(vecType, NumElts, Canonical);
1614  VectorTypes.InsertNode(New, InsertPos);
1615  Types.push_back(New);
1616  return QualType(New, 0);
1617}
1618
1619QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1620                                                    Expr *SizeExpr,
1621                                                    SourceLocation AttrLoc) {
1622  llvm::FoldingSetNodeID ID;
1623  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1624                                       SizeExpr);
1625
1626  void *InsertPos = 0;
1627  DependentSizedExtVectorType *Canon
1628    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1629  DependentSizedExtVectorType *New;
1630  if (Canon) {
1631    // We already have a canonical version of this array type; use it as
1632    // the canonical type for a newly-built type.
1633    New = new (*this, TypeAlignment)
1634      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1635                                  SizeExpr, AttrLoc);
1636  } else {
1637    QualType CanonVecTy = getCanonicalType(vecType);
1638    if (CanonVecTy == vecType) {
1639      New = new (*this, TypeAlignment)
1640        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1641                                    AttrLoc);
1642      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1643    } else {
1644      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1645                                                      SourceLocation());
1646      New = new (*this, TypeAlignment)
1647        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1648    }
1649  }
1650
1651  Types.push_back(New);
1652  return QualType(New, 0);
1653}
1654
1655/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1656///
1657QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1658  // Unique functions, to guarantee there is only one function of a particular
1659  // structure.
1660  llvm::FoldingSetNodeID ID;
1661  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1662
1663  void *InsertPos = 0;
1664  if (FunctionNoProtoType *FT =
1665        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1666    return QualType(FT, 0);
1667
1668  QualType Canonical;
1669  if (!ResultTy.isCanonical()) {
1670    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1671
1672    // Get the new insert position for the node we care about.
1673    FunctionNoProtoType *NewIP =
1674      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1675    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1676  }
1677
1678  FunctionNoProtoType *New = new (*this, TypeAlignment)
1679    FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1680  Types.push_back(New);
1681  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1682  return QualType(New, 0);
1683}
1684
1685/// getFunctionType - Return a normal function type with a typed argument
1686/// list.  isVariadic indicates whether the argument list includes '...'.
1687QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1688                                     unsigned NumArgs, bool isVariadic,
1689                                     unsigned TypeQuals, bool hasExceptionSpec,
1690                                     bool hasAnyExceptionSpec, unsigned NumExs,
1691                                     const QualType *ExArray, bool NoReturn) {
1692  // Unique functions, to guarantee there is only one function of a particular
1693  // structure.
1694  llvm::FoldingSetNodeID ID;
1695  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1696                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1697                             NumExs, ExArray, NoReturn);
1698
1699  void *InsertPos = 0;
1700  if (FunctionProtoType *FTP =
1701        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1702    return QualType(FTP, 0);
1703
1704  // Determine whether the type being created is already canonical or not.
1705  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1706  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1707    if (!ArgArray[i].isCanonicalAsParam())
1708      isCanonical = false;
1709
1710  // If this type isn't canonical, get the canonical version of it.
1711  // The exception spec is not part of the canonical type.
1712  QualType Canonical;
1713  if (!isCanonical) {
1714    llvm::SmallVector<QualType, 16> CanonicalArgs;
1715    CanonicalArgs.reserve(NumArgs);
1716    for (unsigned i = 0; i != NumArgs; ++i)
1717      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1718
1719    Canonical = getFunctionType(getCanonicalType(ResultTy),
1720                                CanonicalArgs.data(), NumArgs,
1721                                isVariadic, TypeQuals, false,
1722                                false, 0, 0, NoReturn);
1723
1724    // Get the new insert position for the node we care about.
1725    FunctionProtoType *NewIP =
1726      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1727    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1728  }
1729
1730  // FunctionProtoType objects are allocated with extra bytes after them
1731  // for two variable size arrays (for parameter and exception types) at the
1732  // end of them.
1733  FunctionProtoType *FTP =
1734    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1735                                 NumArgs*sizeof(QualType) +
1736                                 NumExs*sizeof(QualType), TypeAlignment);
1737  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1738                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1739                              ExArray, NumExs, Canonical, NoReturn);
1740  Types.push_back(FTP);
1741  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1742  return QualType(FTP, 0);
1743}
1744
1745/// getTypeDeclType - Return the unique reference to the type for the
1746/// specified type declaration.
1747QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1748  assert(Decl && "Passed null for Decl param");
1749  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1750
1751  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1752    return getTypedefType(Typedef);
1753  else if (isa<TemplateTypeParmDecl>(Decl)) {
1754    assert(false && "Template type parameter types are always available.");
1755  } else if (ObjCInterfaceDecl *ObjCInterface
1756               = dyn_cast<ObjCInterfaceDecl>(Decl))
1757    return getObjCInterfaceType(ObjCInterface);
1758
1759  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1760    if (PrevDecl)
1761      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1762    else
1763      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1764  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1765    if (PrevDecl)
1766      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1767    else
1768      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1769  } else
1770    assert(false && "TypeDecl without a type?");
1771
1772  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1773  return QualType(Decl->TypeForDecl, 0);
1774}
1775
1776/// getTypedefType - Return the unique reference to the type for the
1777/// specified typename decl.
1778QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1779  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1780
1781  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1782  Decl->TypeForDecl = new(*this, TypeAlignment)
1783    TypedefType(Type::Typedef, Decl, Canonical);
1784  Types.push_back(Decl->TypeForDecl);
1785  return QualType(Decl->TypeForDecl, 0);
1786}
1787
1788/// \brief Retrieve a substitution-result type.
1789QualType
1790ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1791                                         QualType Replacement) {
1792  assert(Replacement.isCanonical()
1793         && "replacement types must always be canonical");
1794
1795  llvm::FoldingSetNodeID ID;
1796  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1797  void *InsertPos = 0;
1798  SubstTemplateTypeParmType *SubstParm
1799    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1800
1801  if (!SubstParm) {
1802    SubstParm = new (*this, TypeAlignment)
1803      SubstTemplateTypeParmType(Parm, Replacement);
1804    Types.push_back(SubstParm);
1805    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1806  }
1807
1808  return QualType(SubstParm, 0);
1809}
1810
1811/// \brief Retrieve the template type parameter type for a template
1812/// parameter or parameter pack with the given depth, index, and (optionally)
1813/// name.
1814QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1815                                             bool ParameterPack,
1816                                             IdentifierInfo *Name) {
1817  llvm::FoldingSetNodeID ID;
1818  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1819  void *InsertPos = 0;
1820  TemplateTypeParmType *TypeParm
1821    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1822
1823  if (TypeParm)
1824    return QualType(TypeParm, 0);
1825
1826  if (Name) {
1827    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1828    TypeParm = new (*this, TypeAlignment)
1829      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1830  } else
1831    TypeParm = new (*this, TypeAlignment)
1832      TemplateTypeParmType(Depth, Index, ParameterPack);
1833
1834  Types.push_back(TypeParm);
1835  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1836
1837  return QualType(TypeParm, 0);
1838}
1839
1840QualType
1841ASTContext::getTemplateSpecializationType(TemplateName Template,
1842                                          const TemplateArgumentListInfo &Args,
1843                                          QualType Canon) {
1844  unsigned NumArgs = Args.size();
1845
1846  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1847  ArgVec.reserve(NumArgs);
1848  for (unsigned i = 0; i != NumArgs; ++i)
1849    ArgVec.push_back(Args[i].getArgument());
1850
1851  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1852}
1853
1854QualType
1855ASTContext::getTemplateSpecializationType(TemplateName Template,
1856                                          const TemplateArgument *Args,
1857                                          unsigned NumArgs,
1858                                          QualType Canon) {
1859  if (!Canon.isNull())
1860    Canon = getCanonicalType(Canon);
1861  else {
1862    // Build the canonical template specialization type.
1863    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1864    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1865    CanonArgs.reserve(NumArgs);
1866    for (unsigned I = 0; I != NumArgs; ++I)
1867      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1868
1869    // Determine whether this canonical template specialization type already
1870    // exists.
1871    llvm::FoldingSetNodeID ID;
1872    TemplateSpecializationType::Profile(ID, CanonTemplate,
1873                                        CanonArgs.data(), NumArgs, *this);
1874
1875    void *InsertPos = 0;
1876    TemplateSpecializationType *Spec
1877      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1878
1879    if (!Spec) {
1880      // Allocate a new canonical template specialization type.
1881      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1882                            sizeof(TemplateArgument) * NumArgs),
1883                           TypeAlignment);
1884      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1885                                                  CanonArgs.data(), NumArgs,
1886                                                  Canon);
1887      Types.push_back(Spec);
1888      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1889    }
1890
1891    if (Canon.isNull())
1892      Canon = QualType(Spec, 0);
1893    assert(Canon->isDependentType() &&
1894           "Non-dependent template-id type must have a canonical type");
1895  }
1896
1897  // Allocate the (non-canonical) template specialization type, but don't
1898  // try to unique it: these types typically have location information that
1899  // we don't unique and don't want to lose.
1900  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1901                        sizeof(TemplateArgument) * NumArgs),
1902                       TypeAlignment);
1903  TemplateSpecializationType *Spec
1904    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1905                                           Canon);
1906
1907  Types.push_back(Spec);
1908  return QualType(Spec, 0);
1909}
1910
1911QualType
1912ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1913                                 QualType NamedType) {
1914  llvm::FoldingSetNodeID ID;
1915  QualifiedNameType::Profile(ID, NNS, NamedType);
1916
1917  void *InsertPos = 0;
1918  QualifiedNameType *T
1919    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1920  if (T)
1921    return QualType(T, 0);
1922
1923  T = new (*this) QualifiedNameType(NNS, NamedType,
1924                                    getCanonicalType(NamedType));
1925  Types.push_back(T);
1926  QualifiedNameTypes.InsertNode(T, InsertPos);
1927  return QualType(T, 0);
1928}
1929
1930QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1931                                     const IdentifierInfo *Name,
1932                                     QualType Canon) {
1933  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1934
1935  if (Canon.isNull()) {
1936    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1937    if (CanonNNS != NNS)
1938      Canon = getTypenameType(CanonNNS, Name);
1939  }
1940
1941  llvm::FoldingSetNodeID ID;
1942  TypenameType::Profile(ID, NNS, Name);
1943
1944  void *InsertPos = 0;
1945  TypenameType *T
1946    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1947  if (T)
1948    return QualType(T, 0);
1949
1950  T = new (*this) TypenameType(NNS, Name, Canon);
1951  Types.push_back(T);
1952  TypenameTypes.InsertNode(T, InsertPos);
1953  return QualType(T, 0);
1954}
1955
1956QualType
1957ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1958                            const TemplateSpecializationType *TemplateId,
1959                            QualType Canon) {
1960  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1961
1962  if (Canon.isNull()) {
1963    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1964    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1965    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1966      const TemplateSpecializationType *CanonTemplateId
1967        = CanonType->getAs<TemplateSpecializationType>();
1968      assert(CanonTemplateId &&
1969             "Canonical type must also be a template specialization type");
1970      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1971    }
1972  }
1973
1974  llvm::FoldingSetNodeID ID;
1975  TypenameType::Profile(ID, NNS, TemplateId);
1976
1977  void *InsertPos = 0;
1978  TypenameType *T
1979    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1980  if (T)
1981    return QualType(T, 0);
1982
1983  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1984  Types.push_back(T);
1985  TypenameTypes.InsertNode(T, InsertPos);
1986  return QualType(T, 0);
1987}
1988
1989QualType
1990ASTContext::getElaboratedType(QualType UnderlyingType,
1991                              ElaboratedType::TagKind Tag) {
1992  llvm::FoldingSetNodeID ID;
1993  ElaboratedType::Profile(ID, UnderlyingType, Tag);
1994
1995  void *InsertPos = 0;
1996  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1997  if (T)
1998    return QualType(T, 0);
1999
2000  QualType Canon = getCanonicalType(UnderlyingType);
2001
2002  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
2003  Types.push_back(T);
2004  ElaboratedTypes.InsertNode(T, InsertPos);
2005  return QualType(T, 0);
2006}
2007
2008/// CmpProtocolNames - Comparison predicate for sorting protocols
2009/// alphabetically.
2010static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2011                            const ObjCProtocolDecl *RHS) {
2012  return LHS->getDeclName() < RHS->getDeclName();
2013}
2014
2015static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
2016                                unsigned NumProtocols) {
2017  if (NumProtocols == 0) return true;
2018
2019  for (unsigned i = 1; i != NumProtocols; ++i)
2020    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2021      return false;
2022  return true;
2023}
2024
2025static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2026                                   unsigned &NumProtocols) {
2027  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2028
2029  // Sort protocols, keyed by name.
2030  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2031
2032  // Remove duplicates.
2033  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2034  NumProtocols = ProtocolsEnd-Protocols;
2035}
2036
2037/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2038/// the given interface decl and the conforming protocol list.
2039QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2040                                              ObjCProtocolDecl **Protocols,
2041                                              unsigned NumProtocols) {
2042  llvm::FoldingSetNodeID ID;
2043  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2044
2045  void *InsertPos = 0;
2046  if (ObjCObjectPointerType *QT =
2047              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2048    return QualType(QT, 0);
2049
2050  // Sort the protocol list alphabetically to canonicalize it.
2051  QualType Canonical;
2052  if (!InterfaceT.isCanonical() ||
2053      !areSortedAndUniqued(Protocols, NumProtocols)) {
2054    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2055      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2056      unsigned UniqueCount = NumProtocols;
2057
2058      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2059      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2060
2061      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2062                                           &Sorted[0], UniqueCount);
2063    } else {
2064      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2065                                           Protocols, NumProtocols);
2066    }
2067
2068    // Regenerate InsertPos.
2069    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2070  }
2071
2072  // No Match;
2073  ObjCObjectPointerType *QType = new (*this, TypeAlignment)
2074    ObjCObjectPointerType(Canonical, InterfaceT, Protocols, NumProtocols);
2075
2076  Types.push_back(QType);
2077  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2078  return QualType(QType, 0);
2079}
2080
2081/// getObjCInterfaceType - Return the unique reference to the type for the
2082/// specified ObjC interface decl. The list of protocols is optional.
2083QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2084                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2085  llvm::FoldingSetNodeID ID;
2086  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2087
2088  void *InsertPos = 0;
2089  if (ObjCInterfaceType *QT =
2090      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2091    return QualType(QT, 0);
2092
2093  // Sort the protocol list alphabetically to canonicalize it.
2094  QualType Canonical;
2095  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2096    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2097    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2098
2099    unsigned UniqueCount = NumProtocols;
2100    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2101
2102    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2103
2104    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2105  }
2106
2107  ObjCInterfaceType *QType = new (*this, TypeAlignment)
2108    ObjCInterfaceType(Canonical, const_cast<ObjCInterfaceDecl*>(Decl),
2109                      Protocols, NumProtocols);
2110
2111  Types.push_back(QType);
2112  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2113  return QualType(QType, 0);
2114}
2115
2116/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2117/// TypeOfExprType AST's (since expression's are never shared). For example,
2118/// multiple declarations that refer to "typeof(x)" all contain different
2119/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2120/// on canonical type's (which are always unique).
2121QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2122  TypeOfExprType *toe;
2123  if (tofExpr->isTypeDependent()) {
2124    llvm::FoldingSetNodeID ID;
2125    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2126
2127    void *InsertPos = 0;
2128    DependentTypeOfExprType *Canon
2129      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2130    if (Canon) {
2131      // We already have a "canonical" version of an identical, dependent
2132      // typeof(expr) type. Use that as our canonical type.
2133      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2134                                          QualType((TypeOfExprType*)Canon, 0));
2135    }
2136    else {
2137      // Build a new, canonical typeof(expr) type.
2138      Canon
2139        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2140      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2141      toe = Canon;
2142    }
2143  } else {
2144    QualType Canonical = getCanonicalType(tofExpr->getType());
2145    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2146  }
2147  Types.push_back(toe);
2148  return QualType(toe, 0);
2149}
2150
2151/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2152/// TypeOfType AST's. The only motivation to unique these nodes would be
2153/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2154/// an issue. This doesn't effect the type checker, since it operates
2155/// on canonical type's (which are always unique).
2156QualType ASTContext::getTypeOfType(QualType tofType) {
2157  QualType Canonical = getCanonicalType(tofType);
2158  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2159  Types.push_back(tot);
2160  return QualType(tot, 0);
2161}
2162
2163/// getDecltypeForExpr - Given an expr, will return the decltype for that
2164/// expression, according to the rules in C++0x [dcl.type.simple]p4
2165static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2166  if (e->isTypeDependent())
2167    return Context.DependentTy;
2168
2169  // If e is an id expression or a class member access, decltype(e) is defined
2170  // as the type of the entity named by e.
2171  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2172    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2173      return VD->getType();
2174  }
2175  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2176    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2177      return FD->getType();
2178  }
2179  // If e is a function call or an invocation of an overloaded operator,
2180  // (parentheses around e are ignored), decltype(e) is defined as the
2181  // return type of that function.
2182  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2183    return CE->getCallReturnType();
2184
2185  QualType T = e->getType();
2186
2187  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2188  // defined as T&, otherwise decltype(e) is defined as T.
2189  if (e->isLvalue(Context) == Expr::LV_Valid)
2190    T = Context.getLValueReferenceType(T);
2191
2192  return T;
2193}
2194
2195/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2196/// DecltypeType AST's. The only motivation to unique these nodes would be
2197/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2198/// an issue. This doesn't effect the type checker, since it operates
2199/// on canonical type's (which are always unique).
2200QualType ASTContext::getDecltypeType(Expr *e) {
2201  DecltypeType *dt;
2202  if (e->isTypeDependent()) {
2203    llvm::FoldingSetNodeID ID;
2204    DependentDecltypeType::Profile(ID, *this, e);
2205
2206    void *InsertPos = 0;
2207    DependentDecltypeType *Canon
2208      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2209    if (Canon) {
2210      // We already have a "canonical" version of an equivalent, dependent
2211      // decltype type. Use that as our canonical type.
2212      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2213                                       QualType((DecltypeType*)Canon, 0));
2214    }
2215    else {
2216      // Build a new, canonical typeof(expr) type.
2217      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2218      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2219      dt = Canon;
2220    }
2221  } else {
2222    QualType T = getDecltypeForExpr(e, *this);
2223    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2224  }
2225  Types.push_back(dt);
2226  return QualType(dt, 0);
2227}
2228
2229/// getTagDeclType - Return the unique reference to the type for the
2230/// specified TagDecl (struct/union/class/enum) decl.
2231QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2232  assert (Decl);
2233  // FIXME: What is the design on getTagDeclType when it requires casting
2234  // away const?  mutable?
2235  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2236}
2237
2238/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2239/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2240/// needs to agree with the definition in <stddef.h>.
2241QualType ASTContext::getSizeType() const {
2242  return getFromTargetType(Target.getSizeType());
2243}
2244
2245/// getSignedWCharType - Return the type of "signed wchar_t".
2246/// Used when in C++, as a GCC extension.
2247QualType ASTContext::getSignedWCharType() const {
2248  // FIXME: derive from "Target" ?
2249  return WCharTy;
2250}
2251
2252/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2253/// Used when in C++, as a GCC extension.
2254QualType ASTContext::getUnsignedWCharType() const {
2255  // FIXME: derive from "Target" ?
2256  return UnsignedIntTy;
2257}
2258
2259/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2260/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2261QualType ASTContext::getPointerDiffType() const {
2262  return getFromTargetType(Target.getPtrDiffType(0));
2263}
2264
2265//===----------------------------------------------------------------------===//
2266//                              Type Operators
2267//===----------------------------------------------------------------------===//
2268
2269CanQualType ASTContext::getCanonicalParamType(QualType T) {
2270  // Push qualifiers into arrays, and then discard any remaining
2271  // qualifiers.
2272  T = getCanonicalType(T);
2273  const Type *Ty = T.getTypePtr();
2274
2275  QualType Result;
2276  if (isa<ArrayType>(Ty)) {
2277    Result = getArrayDecayedType(QualType(Ty,0));
2278  } else if (isa<FunctionType>(Ty)) {
2279    Result = getPointerType(QualType(Ty, 0));
2280  } else {
2281    Result = QualType(Ty, 0);
2282  }
2283
2284  return CanQualType::CreateUnsafe(Result);
2285}
2286
2287/// getCanonicalType - Return the canonical (structural) type corresponding to
2288/// the specified potentially non-canonical type.  The non-canonical version
2289/// of a type may have many "decorated" versions of types.  Decorators can
2290/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2291/// to be free of any of these, allowing two canonical types to be compared
2292/// for exact equality with a simple pointer comparison.
2293CanQualType ASTContext::getCanonicalType(QualType T) {
2294  QualifierCollector Quals;
2295  const Type *Ptr = Quals.strip(T);
2296  QualType CanType = Ptr->getCanonicalTypeInternal();
2297
2298  // The canonical internal type will be the canonical type *except*
2299  // that we push type qualifiers down through array types.
2300
2301  // If there are no new qualifiers to push down, stop here.
2302  if (!Quals.hasQualifiers())
2303    return CanQualType::CreateUnsafe(CanType);
2304
2305  // If the type qualifiers are on an array type, get the canonical
2306  // type of the array with the qualifiers applied to the element
2307  // type.
2308  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2309  if (!AT)
2310    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2311
2312  // Get the canonical version of the element with the extra qualifiers on it.
2313  // This can recursively sink qualifiers through multiple levels of arrays.
2314  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2315  NewEltTy = getCanonicalType(NewEltTy);
2316
2317  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2318    return CanQualType::CreateUnsafe(
2319             getConstantArrayType(NewEltTy, CAT->getSize(),
2320                                  CAT->getSizeModifier(),
2321                                  CAT->getIndexTypeCVRQualifiers()));
2322  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2323    return CanQualType::CreateUnsafe(
2324             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2325                                    IAT->getIndexTypeCVRQualifiers()));
2326
2327  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2328    return CanQualType::CreateUnsafe(
2329             getDependentSizedArrayType(NewEltTy,
2330                                        DSAT->getSizeExpr() ?
2331                                          DSAT->getSizeExpr()->Retain() : 0,
2332                                        DSAT->getSizeModifier(),
2333                                        DSAT->getIndexTypeCVRQualifiers(),
2334                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2335
2336  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2337  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2338                                                        VAT->getSizeExpr() ?
2339                                              VAT->getSizeExpr()->Retain() : 0,
2340                                                        VAT->getSizeModifier(),
2341                                              VAT->getIndexTypeCVRQualifiers(),
2342                                                     VAT->getBracketsRange()));
2343}
2344
2345DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2346  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2347    return TD->getDeclName();
2348
2349  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2350    if (DTN->isIdentifier()) {
2351      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2352    } else {
2353      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2354    }
2355  }
2356
2357  assert(Name.getAsOverloadedFunctionDecl());
2358  return Name.getAsOverloadedFunctionDecl()->getDeclName();
2359}
2360
2361TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2362  // If this template name refers to a template, the canonical
2363  // template name merely stores the template itself.
2364  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2365    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2366
2367  // If this template name refers to a set of overloaded function templates,
2368  /// the canonical template name merely stores the set of function templates.
2369  if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl()) {
2370    OverloadedFunctionDecl *CanonOvl = 0;
2371    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2372                                                FEnd = Ovl->function_end();
2373         F != FEnd; ++F) {
2374      Decl *Canon = F->get()->getCanonicalDecl();
2375      if (CanonOvl || Canon != F->get()) {
2376        if (!CanonOvl)
2377          CanonOvl = OverloadedFunctionDecl::Create(*this,
2378                                                    Ovl->getDeclContext(),
2379                                                    Ovl->getDeclName());
2380
2381        CanonOvl->addOverload(
2382                    AnyFunctionDecl::getFromNamedDecl(cast<NamedDecl>(Canon)));
2383      }
2384    }
2385
2386    return TemplateName(CanonOvl? CanonOvl : Ovl);
2387  }
2388
2389  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2390  assert(DTN && "Non-dependent template names must refer to template decls.");
2391  return DTN->CanonicalTemplateName;
2392}
2393
2394bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2395  X = getCanonicalTemplateName(X);
2396  Y = getCanonicalTemplateName(Y);
2397  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2398}
2399
2400TemplateArgument
2401ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2402  switch (Arg.getKind()) {
2403    case TemplateArgument::Null:
2404      return Arg;
2405
2406    case TemplateArgument::Expression:
2407      return Arg;
2408
2409    case TemplateArgument::Declaration:
2410      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2411
2412    case TemplateArgument::Template:
2413      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2414
2415    case TemplateArgument::Integral:
2416      return TemplateArgument(*Arg.getAsIntegral(),
2417                              getCanonicalType(Arg.getIntegralType()));
2418
2419    case TemplateArgument::Type:
2420      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2421
2422    case TemplateArgument::Pack: {
2423      // FIXME: Allocate in ASTContext
2424      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2425      unsigned Idx = 0;
2426      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2427                                        AEnd = Arg.pack_end();
2428           A != AEnd; (void)++A, ++Idx)
2429        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2430
2431      TemplateArgument Result;
2432      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2433      return Result;
2434    }
2435  }
2436
2437  // Silence GCC warning
2438  assert(false && "Unhandled template argument kind");
2439  return TemplateArgument();
2440}
2441
2442NestedNameSpecifier *
2443ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2444  if (!NNS)
2445    return 0;
2446
2447  switch (NNS->getKind()) {
2448  case NestedNameSpecifier::Identifier:
2449    // Canonicalize the prefix but keep the identifier the same.
2450    return NestedNameSpecifier::Create(*this,
2451                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2452                                       NNS->getAsIdentifier());
2453
2454  case NestedNameSpecifier::Namespace:
2455    // A namespace is canonical; build a nested-name-specifier with
2456    // this namespace and no prefix.
2457    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2458
2459  case NestedNameSpecifier::TypeSpec:
2460  case NestedNameSpecifier::TypeSpecWithTemplate: {
2461    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2462    return NestedNameSpecifier::Create(*this, 0,
2463                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2464                                       T.getTypePtr());
2465  }
2466
2467  case NestedNameSpecifier::Global:
2468    // The global specifier is canonical and unique.
2469    return NNS;
2470  }
2471
2472  // Required to silence a GCC warning
2473  return 0;
2474}
2475
2476
2477const ArrayType *ASTContext::getAsArrayType(QualType T) {
2478  // Handle the non-qualified case efficiently.
2479  if (!T.hasLocalQualifiers()) {
2480    // Handle the common positive case fast.
2481    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2482      return AT;
2483  }
2484
2485  // Handle the common negative case fast.
2486  QualType CType = T->getCanonicalTypeInternal();
2487  if (!isa<ArrayType>(CType))
2488    return 0;
2489
2490  // Apply any qualifiers from the array type to the element type.  This
2491  // implements C99 6.7.3p8: "If the specification of an array type includes
2492  // any type qualifiers, the element type is so qualified, not the array type."
2493
2494  // If we get here, we either have type qualifiers on the type, or we have
2495  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2496  // we must propagate them down into the element type.
2497
2498  QualifierCollector Qs;
2499  const Type *Ty = Qs.strip(T.getDesugaredType());
2500
2501  // If we have a simple case, just return now.
2502  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2503  if (ATy == 0 || Qs.empty())
2504    return ATy;
2505
2506  // Otherwise, we have an array and we have qualifiers on it.  Push the
2507  // qualifiers into the array element type and return a new array type.
2508  // Get the canonical version of the element with the extra qualifiers on it.
2509  // This can recursively sink qualifiers through multiple levels of arrays.
2510  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2511
2512  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2513    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2514                                                CAT->getSizeModifier(),
2515                                           CAT->getIndexTypeCVRQualifiers()));
2516  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2517    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2518                                                  IAT->getSizeModifier(),
2519                                           IAT->getIndexTypeCVRQualifiers()));
2520
2521  if (const DependentSizedArrayType *DSAT
2522        = dyn_cast<DependentSizedArrayType>(ATy))
2523    return cast<ArrayType>(
2524                     getDependentSizedArrayType(NewEltTy,
2525                                                DSAT->getSizeExpr() ?
2526                                              DSAT->getSizeExpr()->Retain() : 0,
2527                                                DSAT->getSizeModifier(),
2528                                              DSAT->getIndexTypeCVRQualifiers(),
2529                                                DSAT->getBracketsRange()));
2530
2531  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2532  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2533                                              VAT->getSizeExpr() ?
2534                                              VAT->getSizeExpr()->Retain() : 0,
2535                                              VAT->getSizeModifier(),
2536                                              VAT->getIndexTypeCVRQualifiers(),
2537                                              VAT->getBracketsRange()));
2538}
2539
2540
2541/// getArrayDecayedType - Return the properly qualified result of decaying the
2542/// specified array type to a pointer.  This operation is non-trivial when
2543/// handling typedefs etc.  The canonical type of "T" must be an array type,
2544/// this returns a pointer to a properly qualified element of the array.
2545///
2546/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2547QualType ASTContext::getArrayDecayedType(QualType Ty) {
2548  // Get the element type with 'getAsArrayType' so that we don't lose any
2549  // typedefs in the element type of the array.  This also handles propagation
2550  // of type qualifiers from the array type into the element type if present
2551  // (C99 6.7.3p8).
2552  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2553  assert(PrettyArrayType && "Not an array type!");
2554
2555  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2556
2557  // int x[restrict 4] ->  int *restrict
2558  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2559}
2560
2561QualType ASTContext::getBaseElementType(QualType QT) {
2562  QualifierCollector Qs;
2563  while (true) {
2564    const Type *UT = Qs.strip(QT);
2565    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2566      QT = AT->getElementType();
2567    } else {
2568      return Qs.apply(QT);
2569    }
2570  }
2571}
2572
2573QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2574  QualType ElemTy = AT->getElementType();
2575
2576  if (const ArrayType *AT = getAsArrayType(ElemTy))
2577    return getBaseElementType(AT);
2578
2579  return ElemTy;
2580}
2581
2582/// getConstantArrayElementCount - Returns number of constant array elements.
2583uint64_t
2584ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2585  uint64_t ElementCount = 1;
2586  do {
2587    ElementCount *= CA->getSize().getZExtValue();
2588    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2589  } while (CA);
2590  return ElementCount;
2591}
2592
2593/// getFloatingRank - Return a relative rank for floating point types.
2594/// This routine will assert if passed a built-in type that isn't a float.
2595static FloatingRank getFloatingRank(QualType T) {
2596  if (const ComplexType *CT = T->getAs<ComplexType>())
2597    return getFloatingRank(CT->getElementType());
2598
2599  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2600  switch (T->getAs<BuiltinType>()->getKind()) {
2601  default: assert(0 && "getFloatingRank(): not a floating type");
2602  case BuiltinType::Float:      return FloatRank;
2603  case BuiltinType::Double:     return DoubleRank;
2604  case BuiltinType::LongDouble: return LongDoubleRank;
2605  }
2606}
2607
2608/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2609/// point or a complex type (based on typeDomain/typeSize).
2610/// 'typeDomain' is a real floating point or complex type.
2611/// 'typeSize' is a real floating point or complex type.
2612QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2613                                                       QualType Domain) const {
2614  FloatingRank EltRank = getFloatingRank(Size);
2615  if (Domain->isComplexType()) {
2616    switch (EltRank) {
2617    default: assert(0 && "getFloatingRank(): illegal value for rank");
2618    case FloatRank:      return FloatComplexTy;
2619    case DoubleRank:     return DoubleComplexTy;
2620    case LongDoubleRank: return LongDoubleComplexTy;
2621    }
2622  }
2623
2624  assert(Domain->isRealFloatingType() && "Unknown domain!");
2625  switch (EltRank) {
2626  default: assert(0 && "getFloatingRank(): illegal value for rank");
2627  case FloatRank:      return FloatTy;
2628  case DoubleRank:     return DoubleTy;
2629  case LongDoubleRank: return LongDoubleTy;
2630  }
2631}
2632
2633/// getFloatingTypeOrder - Compare the rank of the two specified floating
2634/// point types, ignoring the domain of the type (i.e. 'double' ==
2635/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2636/// LHS < RHS, return -1.
2637int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2638  FloatingRank LHSR = getFloatingRank(LHS);
2639  FloatingRank RHSR = getFloatingRank(RHS);
2640
2641  if (LHSR == RHSR)
2642    return 0;
2643  if (LHSR > RHSR)
2644    return 1;
2645  return -1;
2646}
2647
2648/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2649/// routine will assert if passed a built-in type that isn't an integer or enum,
2650/// or if it is not canonicalized.
2651unsigned ASTContext::getIntegerRank(Type *T) {
2652  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2653  if (EnumType* ET = dyn_cast<EnumType>(T))
2654    T = ET->getDecl()->getIntegerType().getTypePtr();
2655
2656  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2657    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2658
2659  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2660    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2661
2662  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2663    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2664
2665  // There are two things which impact the integer rank: the width, and
2666  // the ordering of builtins.  The builtin ordering is encoded in the
2667  // bottom three bits; the width is encoded in the bits above that.
2668  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2669    return FWIT->getWidth() << 3;
2670
2671  switch (cast<BuiltinType>(T)->getKind()) {
2672  default: assert(0 && "getIntegerRank(): not a built-in integer");
2673  case BuiltinType::Bool:
2674    return 1 + (getIntWidth(BoolTy) << 3);
2675  case BuiltinType::Char_S:
2676  case BuiltinType::Char_U:
2677  case BuiltinType::SChar:
2678  case BuiltinType::UChar:
2679    return 2 + (getIntWidth(CharTy) << 3);
2680  case BuiltinType::Short:
2681  case BuiltinType::UShort:
2682    return 3 + (getIntWidth(ShortTy) << 3);
2683  case BuiltinType::Int:
2684  case BuiltinType::UInt:
2685    return 4 + (getIntWidth(IntTy) << 3);
2686  case BuiltinType::Long:
2687  case BuiltinType::ULong:
2688    return 5 + (getIntWidth(LongTy) << 3);
2689  case BuiltinType::LongLong:
2690  case BuiltinType::ULongLong:
2691    return 6 + (getIntWidth(LongLongTy) << 3);
2692  case BuiltinType::Int128:
2693  case BuiltinType::UInt128:
2694    return 7 + (getIntWidth(Int128Ty) << 3);
2695  }
2696}
2697
2698/// \brief Whether this is a promotable bitfield reference according
2699/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2700///
2701/// \returns the type this bit-field will promote to, or NULL if no
2702/// promotion occurs.
2703QualType ASTContext::isPromotableBitField(Expr *E) {
2704  FieldDecl *Field = E->getBitField();
2705  if (!Field)
2706    return QualType();
2707
2708  QualType FT = Field->getType();
2709
2710  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2711  uint64_t BitWidth = BitWidthAP.getZExtValue();
2712  uint64_t IntSize = getTypeSize(IntTy);
2713  // GCC extension compatibility: if the bit-field size is less than or equal
2714  // to the size of int, it gets promoted no matter what its type is.
2715  // For instance, unsigned long bf : 4 gets promoted to signed int.
2716  if (BitWidth < IntSize)
2717    return IntTy;
2718
2719  if (BitWidth == IntSize)
2720    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2721
2722  // Types bigger than int are not subject to promotions, and therefore act
2723  // like the base type.
2724  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2725  // is ridiculous.
2726  return QualType();
2727}
2728
2729/// getPromotedIntegerType - Returns the type that Promotable will
2730/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2731/// integer type.
2732QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2733  assert(!Promotable.isNull());
2734  assert(Promotable->isPromotableIntegerType());
2735  if (Promotable->isSignedIntegerType())
2736    return IntTy;
2737  uint64_t PromotableSize = getTypeSize(Promotable);
2738  uint64_t IntSize = getTypeSize(IntTy);
2739  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2740  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2741}
2742
2743/// getIntegerTypeOrder - Returns the highest ranked integer type:
2744/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2745/// LHS < RHS, return -1.
2746int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2747  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2748  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2749  if (LHSC == RHSC) return 0;
2750
2751  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2752  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2753
2754  unsigned LHSRank = getIntegerRank(LHSC);
2755  unsigned RHSRank = getIntegerRank(RHSC);
2756
2757  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2758    if (LHSRank == RHSRank) return 0;
2759    return LHSRank > RHSRank ? 1 : -1;
2760  }
2761
2762  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2763  if (LHSUnsigned) {
2764    // If the unsigned [LHS] type is larger, return it.
2765    if (LHSRank >= RHSRank)
2766      return 1;
2767
2768    // If the signed type can represent all values of the unsigned type, it
2769    // wins.  Because we are dealing with 2's complement and types that are
2770    // powers of two larger than each other, this is always safe.
2771    return -1;
2772  }
2773
2774  // If the unsigned [RHS] type is larger, return it.
2775  if (RHSRank >= LHSRank)
2776    return -1;
2777
2778  // If the signed type can represent all values of the unsigned type, it
2779  // wins.  Because we are dealing with 2's complement and types that are
2780  // powers of two larger than each other, this is always safe.
2781  return 1;
2782}
2783
2784static RecordDecl *
2785CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2786                 SourceLocation L, IdentifierInfo *Id) {
2787  if (Ctx.getLangOptions().CPlusPlus)
2788    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2789  else
2790    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2791}
2792
2793// getCFConstantStringType - Return the type used for constant CFStrings.
2794QualType ASTContext::getCFConstantStringType() {
2795  if (!CFConstantStringTypeDecl) {
2796    CFConstantStringTypeDecl =
2797      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2798                       &Idents.get("NSConstantString"));
2799
2800    QualType FieldTypes[4];
2801
2802    // const int *isa;
2803    FieldTypes[0] = getPointerType(IntTy.withConst());
2804    // int flags;
2805    FieldTypes[1] = IntTy;
2806    // const char *str;
2807    FieldTypes[2] = getPointerType(CharTy.withConst());
2808    // long length;
2809    FieldTypes[3] = LongTy;
2810
2811    // Create fields
2812    for (unsigned i = 0; i < 4; ++i) {
2813      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2814                                           SourceLocation(), 0,
2815                                           FieldTypes[i], /*DInfo=*/0,
2816                                           /*BitWidth=*/0,
2817                                           /*Mutable=*/false);
2818      CFConstantStringTypeDecl->addDecl(Field);
2819    }
2820
2821    CFConstantStringTypeDecl->completeDefinition(*this);
2822  }
2823
2824  return getTagDeclType(CFConstantStringTypeDecl);
2825}
2826
2827void ASTContext::setCFConstantStringType(QualType T) {
2828  const RecordType *Rec = T->getAs<RecordType>();
2829  assert(Rec && "Invalid CFConstantStringType");
2830  CFConstantStringTypeDecl = Rec->getDecl();
2831}
2832
2833QualType ASTContext::getObjCFastEnumerationStateType() {
2834  if (!ObjCFastEnumerationStateTypeDecl) {
2835    ObjCFastEnumerationStateTypeDecl =
2836      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2837                       &Idents.get("__objcFastEnumerationState"));
2838
2839    QualType FieldTypes[] = {
2840      UnsignedLongTy,
2841      getPointerType(ObjCIdTypedefType),
2842      getPointerType(UnsignedLongTy),
2843      getConstantArrayType(UnsignedLongTy,
2844                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2845    };
2846
2847    for (size_t i = 0; i < 4; ++i) {
2848      FieldDecl *Field = FieldDecl::Create(*this,
2849                                           ObjCFastEnumerationStateTypeDecl,
2850                                           SourceLocation(), 0,
2851                                           FieldTypes[i], /*DInfo=*/0,
2852                                           /*BitWidth=*/0,
2853                                           /*Mutable=*/false);
2854      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2855    }
2856
2857    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2858  }
2859
2860  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2861}
2862
2863QualType ASTContext::getBlockDescriptorType() {
2864  if (BlockDescriptorType)
2865    return getTagDeclType(BlockDescriptorType);
2866
2867  RecordDecl *T;
2868  // FIXME: Needs the FlagAppleBlock bit.
2869  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2870                       &Idents.get("__block_descriptor"));
2871
2872  QualType FieldTypes[] = {
2873    UnsignedLongTy,
2874    UnsignedLongTy,
2875  };
2876
2877  const char *FieldNames[] = {
2878    "reserved",
2879    "Size"
2880  };
2881
2882  for (size_t i = 0; i < 2; ++i) {
2883    FieldDecl *Field = FieldDecl::Create(*this,
2884                                         T,
2885                                         SourceLocation(),
2886                                         &Idents.get(FieldNames[i]),
2887                                         FieldTypes[i], /*DInfo=*/0,
2888                                         /*BitWidth=*/0,
2889                                         /*Mutable=*/false);
2890    T->addDecl(Field);
2891  }
2892
2893  T->completeDefinition(*this);
2894
2895  BlockDescriptorType = T;
2896
2897  return getTagDeclType(BlockDescriptorType);
2898}
2899
2900void ASTContext::setBlockDescriptorType(QualType T) {
2901  const RecordType *Rec = T->getAs<RecordType>();
2902  assert(Rec && "Invalid BlockDescriptorType");
2903  BlockDescriptorType = Rec->getDecl();
2904}
2905
2906QualType ASTContext::getBlockDescriptorExtendedType() {
2907  if (BlockDescriptorExtendedType)
2908    return getTagDeclType(BlockDescriptorExtendedType);
2909
2910  RecordDecl *T;
2911  // FIXME: Needs the FlagAppleBlock bit.
2912  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2913                       &Idents.get("__block_descriptor_withcopydispose"));
2914
2915  QualType FieldTypes[] = {
2916    UnsignedLongTy,
2917    UnsignedLongTy,
2918    getPointerType(VoidPtrTy),
2919    getPointerType(VoidPtrTy)
2920  };
2921
2922  const char *FieldNames[] = {
2923    "reserved",
2924    "Size",
2925    "CopyFuncPtr",
2926    "DestroyFuncPtr"
2927  };
2928
2929  for (size_t i = 0; i < 4; ++i) {
2930    FieldDecl *Field = FieldDecl::Create(*this,
2931                                         T,
2932                                         SourceLocation(),
2933                                         &Idents.get(FieldNames[i]),
2934                                         FieldTypes[i], /*DInfo=*/0,
2935                                         /*BitWidth=*/0,
2936                                         /*Mutable=*/false);
2937    T->addDecl(Field);
2938  }
2939
2940  T->completeDefinition(*this);
2941
2942  BlockDescriptorExtendedType = T;
2943
2944  return getTagDeclType(BlockDescriptorExtendedType);
2945}
2946
2947void ASTContext::setBlockDescriptorExtendedType(QualType T) {
2948  const RecordType *Rec = T->getAs<RecordType>();
2949  assert(Rec && "Invalid BlockDescriptorType");
2950  BlockDescriptorExtendedType = Rec->getDecl();
2951}
2952
2953bool ASTContext::BlockRequiresCopying(QualType Ty) {
2954  if (Ty->isBlockPointerType())
2955    return true;
2956  if (isObjCNSObjectType(Ty))
2957    return true;
2958  if (Ty->isObjCObjectPointerType())
2959    return true;
2960  return false;
2961}
2962
2963QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
2964  //  type = struct __Block_byref_1_X {
2965  //    void *__isa;
2966  //    struct __Block_byref_1_X *__forwarding;
2967  //    unsigned int __flags;
2968  //    unsigned int __size;
2969  //    void *__copy_helper;		// as needed
2970  //    void *__destroy_help		// as needed
2971  //    int X;
2972  //  } *
2973
2974  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
2975
2976  // FIXME: Move up
2977  static unsigned int UniqueBlockByRefTypeID = 0;
2978  llvm::SmallString<36> Name;
2979  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
2980                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
2981  RecordDecl *T;
2982  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2983                       &Idents.get(Name.str()));
2984  T->startDefinition();
2985  QualType Int32Ty = IntTy;
2986  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
2987  QualType FieldTypes[] = {
2988    getPointerType(VoidPtrTy),
2989    getPointerType(getTagDeclType(T)),
2990    Int32Ty,
2991    Int32Ty,
2992    getPointerType(VoidPtrTy),
2993    getPointerType(VoidPtrTy),
2994    Ty
2995  };
2996
2997  const char *FieldNames[] = {
2998    "__isa",
2999    "__forwarding",
3000    "__flags",
3001    "__size",
3002    "__copy_helper",
3003    "__destroy_helper",
3004    DeclName,
3005  };
3006
3007  for (size_t i = 0; i < 7; ++i) {
3008    if (!HasCopyAndDispose && i >=4 && i <= 5)
3009      continue;
3010    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3011                                         &Idents.get(FieldNames[i]),
3012                                         FieldTypes[i], /*DInfo=*/0,
3013                                         /*BitWidth=*/0, /*Mutable=*/false);
3014    T->addDecl(Field);
3015  }
3016
3017  T->completeDefinition(*this);
3018
3019  return getPointerType(getTagDeclType(T));
3020}
3021
3022
3023QualType ASTContext::getBlockParmType(
3024  bool BlockHasCopyDispose,
3025  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3026  // FIXME: Move up
3027  static unsigned int UniqueBlockParmTypeID = 0;
3028  llvm::SmallString<36> Name;
3029  llvm::raw_svector_ostream(Name) << "__block_literal_"
3030                                  << ++UniqueBlockParmTypeID;
3031  RecordDecl *T;
3032  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3033                       &Idents.get(Name.str()));
3034  QualType FieldTypes[] = {
3035    getPointerType(VoidPtrTy),
3036    IntTy,
3037    IntTy,
3038    getPointerType(VoidPtrTy),
3039    (BlockHasCopyDispose ?
3040     getPointerType(getBlockDescriptorExtendedType()) :
3041     getPointerType(getBlockDescriptorType()))
3042  };
3043
3044  const char *FieldNames[] = {
3045    "__isa",
3046    "__flags",
3047    "__reserved",
3048    "__FuncPtr",
3049    "__descriptor"
3050  };
3051
3052  for (size_t i = 0; i < 5; ++i) {
3053    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3054                                         &Idents.get(FieldNames[i]),
3055                                         FieldTypes[i], /*DInfo=*/0,
3056                                         /*BitWidth=*/0, /*Mutable=*/false);
3057    T->addDecl(Field);
3058  }
3059
3060  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3061    const Expr *E = BlockDeclRefDecls[i];
3062    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3063    clang::IdentifierInfo *Name = 0;
3064    if (BDRE) {
3065      const ValueDecl *D = BDRE->getDecl();
3066      Name = &Idents.get(D->getName());
3067    }
3068    QualType FieldType = E->getType();
3069
3070    if (BDRE && BDRE->isByRef())
3071      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3072                                 FieldType);
3073
3074    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3075                                         Name, FieldType, /*DInfo=*/0,
3076                                         /*BitWidth=*/0, /*Mutable=*/false);
3077    T->addDecl(Field);
3078  }
3079
3080  T->completeDefinition(*this);
3081
3082  return getPointerType(getTagDeclType(T));
3083}
3084
3085void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3086  const RecordType *Rec = T->getAs<RecordType>();
3087  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3088  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3089}
3090
3091// This returns true if a type has been typedefed to BOOL:
3092// typedef <type> BOOL;
3093static bool isTypeTypedefedAsBOOL(QualType T) {
3094  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3095    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3096      return II->isStr("BOOL");
3097
3098  return false;
3099}
3100
3101/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3102/// purpose.
3103int ASTContext::getObjCEncodingTypeSize(QualType type) {
3104  uint64_t sz = getTypeSize(type);
3105
3106  // Make all integer and enum types at least as large as an int
3107  if (sz > 0 && type->isIntegralType())
3108    sz = std::max(sz, getTypeSize(IntTy));
3109  // Treat arrays as pointers, since that's how they're passed in.
3110  else if (type->isArrayType())
3111    sz = getTypeSize(VoidPtrTy);
3112  return sz / getTypeSize(CharTy);
3113}
3114
3115/// getObjCEncodingForBlockDecl - Return the encoded type for this method
3116/// declaration.
3117void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3118                                             std::string& S) {
3119  const BlockDecl *Decl = Expr->getBlockDecl();
3120  QualType BlockTy =
3121      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3122  // Encode result type.
3123  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3124  // Compute size of all parameters.
3125  // Start with computing size of a pointer in number of bytes.
3126  // FIXME: There might(should) be a better way of doing this computation!
3127  SourceLocation Loc;
3128  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
3129  int ParmOffset = PtrSize;
3130  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3131       E = Decl->param_end(); PI != E; ++PI) {
3132    QualType PType = (*PI)->getType();
3133    int sz = getObjCEncodingTypeSize(PType);
3134    assert (sz > 0 && "BlockExpr - Incomplete param type");
3135    ParmOffset += sz;
3136  }
3137  // Size of the argument frame
3138  S += llvm::utostr(ParmOffset);
3139  // Block pointer and offset.
3140  S += "@?0";
3141  ParmOffset = PtrSize;
3142
3143  // Argument types.
3144  ParmOffset = PtrSize;
3145  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3146       Decl->param_end(); PI != E; ++PI) {
3147    ParmVarDecl *PVDecl = *PI;
3148    QualType PType = PVDecl->getOriginalType();
3149    if (const ArrayType *AT =
3150          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3151      // Use array's original type only if it has known number of
3152      // elements.
3153      if (!isa<ConstantArrayType>(AT))
3154        PType = PVDecl->getType();
3155    } else if (PType->isFunctionType())
3156      PType = PVDecl->getType();
3157    getObjCEncodingForType(PType, S);
3158    S += llvm::utostr(ParmOffset);
3159    ParmOffset += getObjCEncodingTypeSize(PType);
3160  }
3161}
3162
3163/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3164/// declaration.
3165void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3166                                              std::string& S) {
3167  // FIXME: This is not very efficient.
3168  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3169  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3170  // Encode result type.
3171  getObjCEncodingForType(Decl->getResultType(), S);
3172  // Compute size of all parameters.
3173  // Start with computing size of a pointer in number of bytes.
3174  // FIXME: There might(should) be a better way of doing this computation!
3175  SourceLocation Loc;
3176  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
3177  // The first two arguments (self and _cmd) are pointers; account for
3178  // their size.
3179  int ParmOffset = 2 * PtrSize;
3180  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3181       E = Decl->param_end(); PI != E; ++PI) {
3182    QualType PType = (*PI)->getType();
3183    int sz = getObjCEncodingTypeSize(PType);
3184    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
3185    ParmOffset += sz;
3186  }
3187  S += llvm::utostr(ParmOffset);
3188  S += "@0:";
3189  S += llvm::utostr(PtrSize);
3190
3191  // Argument types.
3192  ParmOffset = 2 * PtrSize;
3193  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3194       E = Decl->param_end(); PI != E; ++PI) {
3195    ParmVarDecl *PVDecl = *PI;
3196    QualType PType = PVDecl->getOriginalType();
3197    if (const ArrayType *AT =
3198          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3199      // Use array's original type only if it has known number of
3200      // elements.
3201      if (!isa<ConstantArrayType>(AT))
3202        PType = PVDecl->getType();
3203    } else if (PType->isFunctionType())
3204      PType = PVDecl->getType();
3205    // Process argument qualifiers for user supplied arguments; such as,
3206    // 'in', 'inout', etc.
3207    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3208    getObjCEncodingForType(PType, S);
3209    S += llvm::utostr(ParmOffset);
3210    ParmOffset += getObjCEncodingTypeSize(PType);
3211  }
3212}
3213
3214/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3215/// property declaration. If non-NULL, Container must be either an
3216/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3217/// NULL when getting encodings for protocol properties.
3218/// Property attributes are stored as a comma-delimited C string. The simple
3219/// attributes readonly and bycopy are encoded as single characters. The
3220/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3221/// encoded as single characters, followed by an identifier. Property types
3222/// are also encoded as a parametrized attribute. The characters used to encode
3223/// these attributes are defined by the following enumeration:
3224/// @code
3225/// enum PropertyAttributes {
3226/// kPropertyReadOnly = 'R',   // property is read-only.
3227/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3228/// kPropertyByref = '&',  // property is a reference to the value last assigned
3229/// kPropertyDynamic = 'D',    // property is dynamic
3230/// kPropertyGetter = 'G',     // followed by getter selector name
3231/// kPropertySetter = 'S',     // followed by setter selector name
3232/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3233/// kPropertyType = 't'              // followed by old-style type encoding.
3234/// kPropertyWeak = 'W'              // 'weak' property
3235/// kPropertyStrong = 'P'            // property GC'able
3236/// kPropertyNonAtomic = 'N'         // property non-atomic
3237/// };
3238/// @endcode
3239void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3240                                                const Decl *Container,
3241                                                std::string& S) {
3242  // Collect information from the property implementation decl(s).
3243  bool Dynamic = false;
3244  ObjCPropertyImplDecl *SynthesizePID = 0;
3245
3246  // FIXME: Duplicated code due to poor abstraction.
3247  if (Container) {
3248    if (const ObjCCategoryImplDecl *CID =
3249        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3250      for (ObjCCategoryImplDecl::propimpl_iterator
3251             i = CID->propimpl_begin(), e = CID->propimpl_end();
3252           i != e; ++i) {
3253        ObjCPropertyImplDecl *PID = *i;
3254        if (PID->getPropertyDecl() == PD) {
3255          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3256            Dynamic = true;
3257          } else {
3258            SynthesizePID = PID;
3259          }
3260        }
3261      }
3262    } else {
3263      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3264      for (ObjCCategoryImplDecl::propimpl_iterator
3265             i = OID->propimpl_begin(), e = OID->propimpl_end();
3266           i != e; ++i) {
3267        ObjCPropertyImplDecl *PID = *i;
3268        if (PID->getPropertyDecl() == PD) {
3269          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3270            Dynamic = true;
3271          } else {
3272            SynthesizePID = PID;
3273          }
3274        }
3275      }
3276    }
3277  }
3278
3279  // FIXME: This is not very efficient.
3280  S = "T";
3281
3282  // Encode result type.
3283  // GCC has some special rules regarding encoding of properties which
3284  // closely resembles encoding of ivars.
3285  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3286                             true /* outermost type */,
3287                             true /* encoding for property */);
3288
3289  if (PD->isReadOnly()) {
3290    S += ",R";
3291  } else {
3292    switch (PD->getSetterKind()) {
3293    case ObjCPropertyDecl::Assign: break;
3294    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3295    case ObjCPropertyDecl::Retain: S += ",&"; break;
3296    }
3297  }
3298
3299  // It really isn't clear at all what this means, since properties
3300  // are "dynamic by default".
3301  if (Dynamic)
3302    S += ",D";
3303
3304  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3305    S += ",N";
3306
3307  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3308    S += ",G";
3309    S += PD->getGetterName().getAsString();
3310  }
3311
3312  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3313    S += ",S";
3314    S += PD->getSetterName().getAsString();
3315  }
3316
3317  if (SynthesizePID) {
3318    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3319    S += ",V";
3320    S += OID->getNameAsString();
3321  }
3322
3323  // FIXME: OBJCGC: weak & strong
3324}
3325
3326/// getLegacyIntegralTypeEncoding -
3327/// Another legacy compatibility encoding: 32-bit longs are encoded as
3328/// 'l' or 'L' , but not always.  For typedefs, we need to use
3329/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3330///
3331void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3332  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3333    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3334      if (BT->getKind() == BuiltinType::ULong &&
3335          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3336        PointeeTy = UnsignedIntTy;
3337      else
3338        if (BT->getKind() == BuiltinType::Long &&
3339            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3340          PointeeTy = IntTy;
3341    }
3342  }
3343}
3344
3345void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3346                                        const FieldDecl *Field) {
3347  // We follow the behavior of gcc, expanding structures which are
3348  // directly pointed to, and expanding embedded structures. Note that
3349  // these rules are sufficient to prevent recursive encoding of the
3350  // same type.
3351  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3352                             true /* outermost type */);
3353}
3354
3355static void EncodeBitField(const ASTContext *Context, std::string& S,
3356                           const FieldDecl *FD) {
3357  const Expr *E = FD->getBitWidth();
3358  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3359  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3360  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3361  S += 'b';
3362  S += llvm::utostr(N);
3363}
3364
3365// FIXME: Use SmallString for accumulating string.
3366void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3367                                            bool ExpandPointedToStructures,
3368                                            bool ExpandStructures,
3369                                            const FieldDecl *FD,
3370                                            bool OutermostType,
3371                                            bool EncodingProperty) {
3372  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3373    if (FD && FD->isBitField())
3374      return EncodeBitField(this, S, FD);
3375    char encoding;
3376    switch (BT->getKind()) {
3377    default: assert(0 && "Unhandled builtin type kind");
3378    case BuiltinType::Void:       encoding = 'v'; break;
3379    case BuiltinType::Bool:       encoding = 'B'; break;
3380    case BuiltinType::Char_U:
3381    case BuiltinType::UChar:      encoding = 'C'; break;
3382    case BuiltinType::UShort:     encoding = 'S'; break;
3383    case BuiltinType::UInt:       encoding = 'I'; break;
3384    case BuiltinType::ULong:
3385        encoding =
3386          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3387        break;
3388    case BuiltinType::UInt128:    encoding = 'T'; break;
3389    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3390    case BuiltinType::Char_S:
3391    case BuiltinType::SChar:      encoding = 'c'; break;
3392    case BuiltinType::Short:      encoding = 's'; break;
3393    case BuiltinType::Int:        encoding = 'i'; break;
3394    case BuiltinType::Long:
3395      encoding =
3396        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3397      break;
3398    case BuiltinType::LongLong:   encoding = 'q'; break;
3399    case BuiltinType::Int128:     encoding = 't'; break;
3400    case BuiltinType::Float:      encoding = 'f'; break;
3401    case BuiltinType::Double:     encoding = 'd'; break;
3402    case BuiltinType::LongDouble: encoding = 'd'; break;
3403    }
3404
3405    S += encoding;
3406    return;
3407  }
3408
3409  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3410    S += 'j';
3411    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3412                               false);
3413    return;
3414  }
3415
3416  if (isObjCSelType(T)) {
3417    S += ':';
3418    return;
3419  }
3420
3421  if (const PointerType *PT = T->getAs<PointerType>()) {
3422    QualType PointeeTy = PT->getPointeeType();
3423    bool isReadOnly = false;
3424    // For historical/compatibility reasons, the read-only qualifier of the
3425    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3426    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3427    // Also, do not emit the 'r' for anything but the outermost type!
3428    if (isa<TypedefType>(T.getTypePtr())) {
3429      if (OutermostType && T.isConstQualified()) {
3430        isReadOnly = true;
3431        S += 'r';
3432      }
3433    } else if (OutermostType) {
3434      QualType P = PointeeTy;
3435      while (P->getAs<PointerType>())
3436        P = P->getAs<PointerType>()->getPointeeType();
3437      if (P.isConstQualified()) {
3438        isReadOnly = true;
3439        S += 'r';
3440      }
3441    }
3442    if (isReadOnly) {
3443      // Another legacy compatibility encoding. Some ObjC qualifier and type
3444      // combinations need to be rearranged.
3445      // Rewrite "in const" from "nr" to "rn"
3446      const char * s = S.c_str();
3447      int len = S.length();
3448      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3449        std::string replace = "rn";
3450        S.replace(S.end()-2, S.end(), replace);
3451      }
3452    }
3453
3454    if (PointeeTy->isCharType()) {
3455      // char pointer types should be encoded as '*' unless it is a
3456      // type that has been typedef'd to 'BOOL'.
3457      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3458        S += '*';
3459        return;
3460      }
3461    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3462      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3463      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3464        S += '#';
3465        return;
3466      }
3467      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3468      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3469        S += '@';
3470        return;
3471      }
3472      // fall through...
3473    }
3474    S += '^';
3475    getLegacyIntegralTypeEncoding(PointeeTy);
3476
3477    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3478                               NULL);
3479    return;
3480  }
3481
3482  if (const ArrayType *AT =
3483      // Ignore type qualifiers etc.
3484        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3485    if (isa<IncompleteArrayType>(AT)) {
3486      // Incomplete arrays are encoded as a pointer to the array element.
3487      S += '^';
3488
3489      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3490                                 false, ExpandStructures, FD);
3491    } else {
3492      S += '[';
3493
3494      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3495        S += llvm::utostr(CAT->getSize().getZExtValue());
3496      else {
3497        //Variable length arrays are encoded as a regular array with 0 elements.
3498        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3499        S += '0';
3500      }
3501
3502      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3503                                 false, ExpandStructures, FD);
3504      S += ']';
3505    }
3506    return;
3507  }
3508
3509  if (T->getAs<FunctionType>()) {
3510    S += '?';
3511    return;
3512  }
3513
3514  if (const RecordType *RTy = T->getAs<RecordType>()) {
3515    RecordDecl *RDecl = RTy->getDecl();
3516    S += RDecl->isUnion() ? '(' : '{';
3517    // Anonymous structures print as '?'
3518    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3519      S += II->getName();
3520    } else {
3521      S += '?';
3522    }
3523    if (ExpandStructures) {
3524      S += '=';
3525      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3526                                   FieldEnd = RDecl->field_end();
3527           Field != FieldEnd; ++Field) {
3528        if (FD) {
3529          S += '"';
3530          S += Field->getNameAsString();
3531          S += '"';
3532        }
3533
3534        // Special case bit-fields.
3535        if (Field->isBitField()) {
3536          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3537                                     (*Field));
3538        } else {
3539          QualType qt = Field->getType();
3540          getLegacyIntegralTypeEncoding(qt);
3541          getObjCEncodingForTypeImpl(qt, S, false, true,
3542                                     FD);
3543        }
3544      }
3545    }
3546    S += RDecl->isUnion() ? ')' : '}';
3547    return;
3548  }
3549
3550  if (T->isEnumeralType()) {
3551    if (FD && FD->isBitField())
3552      EncodeBitField(this, S, FD);
3553    else
3554      S += 'i';
3555    return;
3556  }
3557
3558  if (T->isBlockPointerType()) {
3559    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3560    return;
3561  }
3562
3563  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3564    // @encode(class_name)
3565    ObjCInterfaceDecl *OI = OIT->getDecl();
3566    S += '{';
3567    const IdentifierInfo *II = OI->getIdentifier();
3568    S += II->getName();
3569    S += '=';
3570    llvm::SmallVector<FieldDecl*, 32> RecFields;
3571    CollectObjCIvars(OI, RecFields);
3572    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3573      if (RecFields[i]->isBitField())
3574        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3575                                   RecFields[i]);
3576      else
3577        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3578                                   FD);
3579    }
3580    S += '}';
3581    return;
3582  }
3583
3584  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3585    if (OPT->isObjCIdType()) {
3586      S += '@';
3587      return;
3588    }
3589
3590    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3591      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3592      // Since this is a binary compatibility issue, need to consult with runtime
3593      // folks. Fortunately, this is a *very* obsure construct.
3594      S += '#';
3595      return;
3596    }
3597
3598    if (OPT->isObjCQualifiedIdType()) {
3599      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3600                                 ExpandPointedToStructures,
3601                                 ExpandStructures, FD);
3602      if (FD || EncodingProperty) {
3603        // Note that we do extended encoding of protocol qualifer list
3604        // Only when doing ivar or property encoding.
3605        S += '"';
3606        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3607             E = OPT->qual_end(); I != E; ++I) {
3608          S += '<';
3609          S += (*I)->getNameAsString();
3610          S += '>';
3611        }
3612        S += '"';
3613      }
3614      return;
3615    }
3616
3617    QualType PointeeTy = OPT->getPointeeType();
3618    if (!EncodingProperty &&
3619        isa<TypedefType>(PointeeTy.getTypePtr())) {
3620      // Another historical/compatibility reason.
3621      // We encode the underlying type which comes out as
3622      // {...};
3623      S += '^';
3624      getObjCEncodingForTypeImpl(PointeeTy, S,
3625                                 false, ExpandPointedToStructures,
3626                                 NULL);
3627      return;
3628    }
3629
3630    S += '@';
3631    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3632      S += '"';
3633      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3634      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3635           E = OPT->qual_end(); I != E; ++I) {
3636        S += '<';
3637        S += (*I)->getNameAsString();
3638        S += '>';
3639      }
3640      S += '"';
3641    }
3642    return;
3643  }
3644
3645  assert(0 && "@encode for type not implemented!");
3646}
3647
3648void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3649                                                 std::string& S) const {
3650  if (QT & Decl::OBJC_TQ_In)
3651    S += 'n';
3652  if (QT & Decl::OBJC_TQ_Inout)
3653    S += 'N';
3654  if (QT & Decl::OBJC_TQ_Out)
3655    S += 'o';
3656  if (QT & Decl::OBJC_TQ_Bycopy)
3657    S += 'O';
3658  if (QT & Decl::OBJC_TQ_Byref)
3659    S += 'R';
3660  if (QT & Decl::OBJC_TQ_Oneway)
3661    S += 'V';
3662}
3663
3664void ASTContext::setBuiltinVaListType(QualType T) {
3665  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3666
3667  BuiltinVaListType = T;
3668}
3669
3670void ASTContext::setObjCIdType(QualType T) {
3671  ObjCIdTypedefType = T;
3672}
3673
3674void ASTContext::setObjCSelType(QualType T) {
3675  ObjCSelTypedefType = T;
3676}
3677
3678void ASTContext::setObjCProtoType(QualType QT) {
3679  ObjCProtoType = QT;
3680}
3681
3682void ASTContext::setObjCClassType(QualType T) {
3683  ObjCClassTypedefType = T;
3684}
3685
3686void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3687  assert(ObjCConstantStringType.isNull() &&
3688         "'NSConstantString' type already set!");
3689
3690  ObjCConstantStringType = getObjCInterfaceType(Decl);
3691}
3692
3693/// \brief Retrieve the template name that represents a qualified
3694/// template name such as \c std::vector.
3695TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3696                                                  bool TemplateKeyword,
3697                                                  TemplateDecl *Template) {
3698  llvm::FoldingSetNodeID ID;
3699  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3700
3701  void *InsertPos = 0;
3702  QualifiedTemplateName *QTN =
3703    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3704  if (!QTN) {
3705    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3706    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3707  }
3708
3709  return TemplateName(QTN);
3710}
3711
3712/// \brief Retrieve the template name that represents a qualified
3713/// template name such as \c std::vector.
3714TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3715                                                  bool TemplateKeyword,
3716                                            OverloadedFunctionDecl *Template) {
3717  llvm::FoldingSetNodeID ID;
3718  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3719
3720  void *InsertPos = 0;
3721  QualifiedTemplateName *QTN =
3722  QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3723  if (!QTN) {
3724    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3725    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3726  }
3727
3728  return TemplateName(QTN);
3729}
3730
3731/// \brief Retrieve the template name that represents a dependent
3732/// template name such as \c MetaFun::template apply.
3733TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3734                                                  const IdentifierInfo *Name) {
3735  assert((!NNS || NNS->isDependent()) &&
3736         "Nested name specifier must be dependent");
3737
3738  llvm::FoldingSetNodeID ID;
3739  DependentTemplateName::Profile(ID, NNS, Name);
3740
3741  void *InsertPos = 0;
3742  DependentTemplateName *QTN =
3743    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3744
3745  if (QTN)
3746    return TemplateName(QTN);
3747
3748  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3749  if (CanonNNS == NNS) {
3750    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3751  } else {
3752    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3753    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3754  }
3755
3756  DependentTemplateNames.InsertNode(QTN, InsertPos);
3757  return TemplateName(QTN);
3758}
3759
3760/// \brief Retrieve the template name that represents a dependent
3761/// template name such as \c MetaFun::template operator+.
3762TemplateName
3763ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3764                                     OverloadedOperatorKind Operator) {
3765  assert((!NNS || NNS->isDependent()) &&
3766         "Nested name specifier must be dependent");
3767
3768  llvm::FoldingSetNodeID ID;
3769  DependentTemplateName::Profile(ID, NNS, Operator);
3770
3771  void *InsertPos = 0;
3772  DependentTemplateName *QTN =
3773  DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3774
3775  if (QTN)
3776    return TemplateName(QTN);
3777
3778  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3779  if (CanonNNS == NNS) {
3780    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3781  } else {
3782    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3783    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3784  }
3785
3786  DependentTemplateNames.InsertNode(QTN, InsertPos);
3787  return TemplateName(QTN);
3788}
3789
3790/// getFromTargetType - Given one of the integer types provided by
3791/// TargetInfo, produce the corresponding type. The unsigned @p Type
3792/// is actually a value of type @c TargetInfo::IntType.
3793CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3794  switch (Type) {
3795  case TargetInfo::NoInt: return CanQualType();
3796  case TargetInfo::SignedShort: return ShortTy;
3797  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3798  case TargetInfo::SignedInt: return IntTy;
3799  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3800  case TargetInfo::SignedLong: return LongTy;
3801  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3802  case TargetInfo::SignedLongLong: return LongLongTy;
3803  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3804  }
3805
3806  assert(false && "Unhandled TargetInfo::IntType value");
3807  return CanQualType();
3808}
3809
3810//===----------------------------------------------------------------------===//
3811//                        Type Predicates.
3812//===----------------------------------------------------------------------===//
3813
3814/// isObjCNSObjectType - Return true if this is an NSObject object using
3815/// NSObject attribute on a c-style pointer type.
3816/// FIXME - Make it work directly on types.
3817/// FIXME: Move to Type.
3818///
3819bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3820  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3821    if (TypedefDecl *TD = TDT->getDecl())
3822      if (TD->getAttr<ObjCNSObjectAttr>())
3823        return true;
3824  }
3825  return false;
3826}
3827
3828/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3829/// garbage collection attribute.
3830///
3831Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3832  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3833  if (getLangOptions().ObjC1 &&
3834      getLangOptions().getGCMode() != LangOptions::NonGC) {
3835    GCAttrs = Ty.getObjCGCAttr();
3836    // Default behavious under objective-c's gc is for objective-c pointers
3837    // (or pointers to them) be treated as though they were declared
3838    // as __strong.
3839    if (GCAttrs == Qualifiers::GCNone) {
3840      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3841        GCAttrs = Qualifiers::Strong;
3842      else if (Ty->isPointerType())
3843        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3844    }
3845    // Non-pointers have none gc'able attribute regardless of the attribute
3846    // set on them.
3847    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3848      return Qualifiers::GCNone;
3849  }
3850  return GCAttrs;
3851}
3852
3853//===----------------------------------------------------------------------===//
3854//                        Type Compatibility Testing
3855//===----------------------------------------------------------------------===//
3856
3857/// areCompatVectorTypes - Return true if the two specified vector types are
3858/// compatible.
3859static bool areCompatVectorTypes(const VectorType *LHS,
3860                                 const VectorType *RHS) {
3861  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3862  return LHS->getElementType() == RHS->getElementType() &&
3863         LHS->getNumElements() == RHS->getNumElements();
3864}
3865
3866//===----------------------------------------------------------------------===//
3867// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3868//===----------------------------------------------------------------------===//
3869
3870/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3871/// inheritance hierarchy of 'rProto'.
3872bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3873                                                ObjCProtocolDecl *rProto) {
3874  if (lProto == rProto)
3875    return true;
3876  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3877       E = rProto->protocol_end(); PI != E; ++PI)
3878    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3879      return true;
3880  return false;
3881}
3882
3883/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3884/// return true if lhs's protocols conform to rhs's protocol; false
3885/// otherwise.
3886bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3887  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3888    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3889  return false;
3890}
3891
3892/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3893/// ObjCQualifiedIDType.
3894bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3895                                                   bool compare) {
3896  // Allow id<P..> and an 'id' or void* type in all cases.
3897  if (lhs->isVoidPointerType() ||
3898      lhs->isObjCIdType() || lhs->isObjCClassType())
3899    return true;
3900  else if (rhs->isVoidPointerType() ||
3901           rhs->isObjCIdType() || rhs->isObjCClassType())
3902    return true;
3903
3904  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3905    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
3906
3907    if (!rhsOPT) return false;
3908
3909    if (rhsOPT->qual_empty()) {
3910      // If the RHS is a unqualified interface pointer "NSString*",
3911      // make sure we check the class hierarchy.
3912      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3913        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3914             E = lhsQID->qual_end(); I != E; ++I) {
3915          // when comparing an id<P> on lhs with a static type on rhs,
3916          // see if static class implements all of id's protocols, directly or
3917          // through its super class and categories.
3918          if (!rhsID->ClassImplementsProtocol(*I, true))
3919            return false;
3920        }
3921      }
3922      // If there are no qualifiers and no interface, we have an 'id'.
3923      return true;
3924    }
3925    // Both the right and left sides have qualifiers.
3926    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3927         E = lhsQID->qual_end(); I != E; ++I) {
3928      ObjCProtocolDecl *lhsProto = *I;
3929      bool match = false;
3930
3931      // when comparing an id<P> on lhs with a static type on rhs,
3932      // see if static class implements all of id's protocols, directly or
3933      // through its super class and categories.
3934      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3935           E = rhsOPT->qual_end(); J != E; ++J) {
3936        ObjCProtocolDecl *rhsProto = *J;
3937        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3938            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3939          match = true;
3940          break;
3941        }
3942      }
3943      // If the RHS is a qualified interface pointer "NSString<P>*",
3944      // make sure we check the class hierarchy.
3945      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3946        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3947             E = lhsQID->qual_end(); I != E; ++I) {
3948          // when comparing an id<P> on lhs with a static type on rhs,
3949          // see if static class implements all of id's protocols, directly or
3950          // through its super class and categories.
3951          if (rhsID->ClassImplementsProtocol(*I, true)) {
3952            match = true;
3953            break;
3954          }
3955        }
3956      }
3957      if (!match)
3958        return false;
3959    }
3960
3961    return true;
3962  }
3963
3964  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3965  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3966
3967  if (const ObjCObjectPointerType *lhsOPT =
3968        lhs->getAsObjCInterfacePointerType()) {
3969    if (lhsOPT->qual_empty()) {
3970      bool match = false;
3971      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3972        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3973             E = rhsQID->qual_end(); I != E; ++I) {
3974          // when comparing an id<P> on lhs with a static type on rhs,
3975          // see if static class implements all of id's protocols, directly or
3976          // through its super class and categories.
3977          if (lhsID->ClassImplementsProtocol(*I, true)) {
3978            match = true;
3979            break;
3980          }
3981        }
3982        if (!match)
3983          return false;
3984      }
3985      return true;
3986    }
3987    // Both the right and left sides have qualifiers.
3988    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3989         E = lhsOPT->qual_end(); I != E; ++I) {
3990      ObjCProtocolDecl *lhsProto = *I;
3991      bool match = false;
3992
3993      // when comparing an id<P> on lhs with a static type on rhs,
3994      // see if static class implements all of id's protocols, directly or
3995      // through its super class and categories.
3996      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3997           E = rhsQID->qual_end(); J != E; ++J) {
3998        ObjCProtocolDecl *rhsProto = *J;
3999        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4000            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4001          match = true;
4002          break;
4003        }
4004      }
4005      if (!match)
4006        return false;
4007    }
4008    return true;
4009  }
4010  return false;
4011}
4012
4013/// canAssignObjCInterfaces - Return true if the two interface types are
4014/// compatible for assignment from RHS to LHS.  This handles validation of any
4015/// protocol qualifiers on the LHS or RHS.
4016///
4017bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4018                                         const ObjCObjectPointerType *RHSOPT) {
4019  // If either type represents the built-in 'id' or 'Class' types, return true.
4020  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
4021    return true;
4022
4023  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4024    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4025                                             QualType(RHSOPT,0),
4026                                             false);
4027
4028  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4029  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4030  if (LHS && RHS) // We have 2 user-defined types.
4031    return canAssignObjCInterfaces(LHS, RHS);
4032
4033  return false;
4034}
4035
4036/// getIntersectionOfProtocols - This routine finds the intersection of set
4037/// of protocols inherited from two distinct objective-c pointer objects.
4038/// It is used to build composite qualifier list of the composite type of
4039/// the conditional expression involving two objective-c pointer objects.
4040static
4041void getIntersectionOfProtocols(ASTContext &Context,
4042                                const ObjCObjectPointerType *LHSOPT,
4043                                const ObjCObjectPointerType *RHSOPT,
4044      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4045
4046  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4047  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4048
4049  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4050  unsigned LHSNumProtocols = LHS->getNumProtocols();
4051  if (LHSNumProtocols > 0)
4052    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4053  else {
4054    llvm::SmallVector<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4055     Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4056    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4057                                LHSInheritedProtocols.end());
4058  }
4059
4060  unsigned RHSNumProtocols = RHS->getNumProtocols();
4061  if (RHSNumProtocols > 0) {
4062    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
4063    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4064      if (InheritedProtocolSet.count(RHSProtocols[i]))
4065        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4066  }
4067  else {
4068    llvm::SmallVector<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4069    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4070    // FIXME. This may cause duplication of protocols in the list, but should
4071    // be harmless.
4072    for (unsigned i = 0, len = RHSInheritedProtocols.size(); i < len; ++i)
4073      if (InheritedProtocolSet.count(RHSInheritedProtocols[i]))
4074        IntersectionOfProtocols.push_back(RHSInheritedProtocols[i]);
4075  }
4076}
4077
4078/// areCommonBaseCompatible - Returns common base class of the two classes if
4079/// one found. Note that this is O'2 algorithm. But it will be called as the
4080/// last type comparison in a ?-exp of ObjC pointer types before a
4081/// warning is issued. So, its invokation is extremely rare.
4082QualType ASTContext::areCommonBaseCompatible(
4083                                          const ObjCObjectPointerType *LHSOPT,
4084                                          const ObjCObjectPointerType *RHSOPT) {
4085  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4086  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4087  if (!LHS || !RHS)
4088    return QualType();
4089
4090  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4091    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4092    LHS = LHSTy->getAs<ObjCInterfaceType>();
4093    if (canAssignObjCInterfaces(LHS, RHS)) {
4094      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4095      getIntersectionOfProtocols(*this,
4096                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4097      if (IntersectionOfProtocols.empty())
4098        LHSTy = getObjCObjectPointerType(LHSTy);
4099      else
4100        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4101                                                IntersectionOfProtocols.size());
4102      return LHSTy;
4103    }
4104  }
4105
4106  return QualType();
4107}
4108
4109bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4110                                         const ObjCInterfaceType *RHS) {
4111  // Verify that the base decls are compatible: the RHS must be a subclass of
4112  // the LHS.
4113  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4114    return false;
4115
4116  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4117  // protocol qualified at all, then we are good.
4118  if (LHS->getNumProtocols() == 0)
4119    return true;
4120
4121  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4122  // isn't a superset.
4123  if (RHS->getNumProtocols() == 0)
4124    return true;  // FIXME: should return false!
4125
4126  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4127                                        LHSPE = LHS->qual_end();
4128       LHSPI != LHSPE; LHSPI++) {
4129    bool RHSImplementsProtocol = false;
4130
4131    // If the RHS doesn't implement the protocol on the left, the types
4132    // are incompatible.
4133    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4134                                          RHSPE = RHS->qual_end();
4135         RHSPI != RHSPE; RHSPI++) {
4136      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4137        RHSImplementsProtocol = true;
4138        break;
4139      }
4140    }
4141    // FIXME: For better diagnostics, consider passing back the protocol name.
4142    if (!RHSImplementsProtocol)
4143      return false;
4144  }
4145  // The RHS implements all protocols listed on the LHS.
4146  return true;
4147}
4148
4149bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4150  // get the "pointed to" types
4151  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4152  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4153
4154  if (!LHSOPT || !RHSOPT)
4155    return false;
4156
4157  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4158         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4159}
4160
4161/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4162/// both shall have the identically qualified version of a compatible type.
4163/// C99 6.2.7p1: Two types have compatible types if their types are the
4164/// same. See 6.7.[2,3,5] for additional rules.
4165bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4166  return !mergeTypes(LHS, RHS).isNull();
4167}
4168
4169QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4170  const FunctionType *lbase = lhs->getAs<FunctionType>();
4171  const FunctionType *rbase = rhs->getAs<FunctionType>();
4172  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4173  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4174  bool allLTypes = true;
4175  bool allRTypes = true;
4176
4177  // Check return type
4178  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4179  if (retType.isNull()) return QualType();
4180  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4181    allLTypes = false;
4182  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4183    allRTypes = false;
4184  // FIXME: double check this
4185  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4186  if (NoReturn != lbase->getNoReturnAttr())
4187    allLTypes = false;
4188  if (NoReturn != rbase->getNoReturnAttr())
4189    allRTypes = false;
4190
4191  if (lproto && rproto) { // two C99 style function prototypes
4192    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4193           "C++ shouldn't be here");
4194    unsigned lproto_nargs = lproto->getNumArgs();
4195    unsigned rproto_nargs = rproto->getNumArgs();
4196
4197    // Compatible functions must have the same number of arguments
4198    if (lproto_nargs != rproto_nargs)
4199      return QualType();
4200
4201    // Variadic and non-variadic functions aren't compatible
4202    if (lproto->isVariadic() != rproto->isVariadic())
4203      return QualType();
4204
4205    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4206      return QualType();
4207
4208    // Check argument compatibility
4209    llvm::SmallVector<QualType, 10> types;
4210    for (unsigned i = 0; i < lproto_nargs; i++) {
4211      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4212      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4213      QualType argtype = mergeTypes(largtype, rargtype);
4214      if (argtype.isNull()) return QualType();
4215      types.push_back(argtype);
4216      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4217        allLTypes = false;
4218      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4219        allRTypes = false;
4220    }
4221    if (allLTypes) return lhs;
4222    if (allRTypes) return rhs;
4223    return getFunctionType(retType, types.begin(), types.size(),
4224                           lproto->isVariadic(), lproto->getTypeQuals(),
4225                           NoReturn);
4226  }
4227
4228  if (lproto) allRTypes = false;
4229  if (rproto) allLTypes = false;
4230
4231  const FunctionProtoType *proto = lproto ? lproto : rproto;
4232  if (proto) {
4233    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4234    if (proto->isVariadic()) return QualType();
4235    // Check that the types are compatible with the types that
4236    // would result from default argument promotions (C99 6.7.5.3p15).
4237    // The only types actually affected are promotable integer
4238    // types and floats, which would be passed as a different
4239    // type depending on whether the prototype is visible.
4240    unsigned proto_nargs = proto->getNumArgs();
4241    for (unsigned i = 0; i < proto_nargs; ++i) {
4242      QualType argTy = proto->getArgType(i);
4243      if (argTy->isPromotableIntegerType() ||
4244          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4245        return QualType();
4246    }
4247
4248    if (allLTypes) return lhs;
4249    if (allRTypes) return rhs;
4250    return getFunctionType(retType, proto->arg_type_begin(),
4251                           proto->getNumArgs(), proto->isVariadic(),
4252                           proto->getTypeQuals(), NoReturn);
4253  }
4254
4255  if (allLTypes) return lhs;
4256  if (allRTypes) return rhs;
4257  return getFunctionNoProtoType(retType, NoReturn);
4258}
4259
4260QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4261  // C++ [expr]: If an expression initially has the type "reference to T", the
4262  // type is adjusted to "T" prior to any further analysis, the expression
4263  // designates the object or function denoted by the reference, and the
4264  // expression is an lvalue unless the reference is an rvalue reference and
4265  // the expression is a function call (possibly inside parentheses).
4266  // FIXME: C++ shouldn't be going through here!  The rules are different
4267  // enough that they should be handled separately.
4268  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
4269  // shouldn't be going through here!
4270  if (const ReferenceType *RT = LHS->getAs<ReferenceType>())
4271    LHS = RT->getPointeeType();
4272  if (const ReferenceType *RT = RHS->getAs<ReferenceType>())
4273    RHS = RT->getPointeeType();
4274
4275  QualType LHSCan = getCanonicalType(LHS),
4276           RHSCan = getCanonicalType(RHS);
4277
4278  // If two types are identical, they are compatible.
4279  if (LHSCan == RHSCan)
4280    return LHS;
4281
4282  // If the qualifiers are different, the types aren't compatible... mostly.
4283  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4284  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4285  if (LQuals != RQuals) {
4286    // If any of these qualifiers are different, we have a type
4287    // mismatch.
4288    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4289        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4290      return QualType();
4291
4292    // Exactly one GC qualifier difference is allowed: __strong is
4293    // okay if the other type has no GC qualifier but is an Objective
4294    // C object pointer (i.e. implicitly strong by default).  We fix
4295    // this by pretending that the unqualified type was actually
4296    // qualified __strong.
4297    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4298    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4299    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4300
4301    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4302      return QualType();
4303
4304    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4305      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4306    }
4307    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4308      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4309    }
4310    return QualType();
4311  }
4312
4313  // Okay, qualifiers are equal.
4314
4315  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4316  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4317
4318  // We want to consider the two function types to be the same for these
4319  // comparisons, just force one to the other.
4320  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4321  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4322
4323  // Same as above for arrays
4324  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4325    LHSClass = Type::ConstantArray;
4326  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4327    RHSClass = Type::ConstantArray;
4328
4329  // Canonicalize ExtVector -> Vector.
4330  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4331  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4332
4333  // If the canonical type classes don't match.
4334  if (LHSClass != RHSClass) {
4335    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4336    // a signed integer type, or an unsigned integer type.
4337    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4338      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4339        return RHS;
4340    }
4341    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4342      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4343        return LHS;
4344    }
4345
4346    return QualType();
4347  }
4348
4349  // The canonical type classes match.
4350  switch (LHSClass) {
4351#define TYPE(Class, Base)
4352#define ABSTRACT_TYPE(Class, Base)
4353#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4354#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4355#include "clang/AST/TypeNodes.def"
4356    assert(false && "Non-canonical and dependent types shouldn't get here");
4357    return QualType();
4358
4359  case Type::LValueReference:
4360  case Type::RValueReference:
4361  case Type::MemberPointer:
4362    assert(false && "C++ should never be in mergeTypes");
4363    return QualType();
4364
4365  case Type::IncompleteArray:
4366  case Type::VariableArray:
4367  case Type::FunctionProto:
4368  case Type::ExtVector:
4369    assert(false && "Types are eliminated above");
4370    return QualType();
4371
4372  case Type::Pointer:
4373  {
4374    // Merge two pointer types, while trying to preserve typedef info
4375    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4376    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4377    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4378    if (ResultType.isNull()) return QualType();
4379    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4380      return LHS;
4381    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4382      return RHS;
4383    return getPointerType(ResultType);
4384  }
4385  case Type::BlockPointer:
4386  {
4387    // Merge two block pointer types, while trying to preserve typedef info
4388    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4389    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4390    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4391    if (ResultType.isNull()) return QualType();
4392    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4393      return LHS;
4394    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4395      return RHS;
4396    return getBlockPointerType(ResultType);
4397  }
4398  case Type::ConstantArray:
4399  {
4400    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4401    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4402    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4403      return QualType();
4404
4405    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4406    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4407    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4408    if (ResultType.isNull()) return QualType();
4409    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4410      return LHS;
4411    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4412      return RHS;
4413    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4414                                          ArrayType::ArraySizeModifier(), 0);
4415    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4416                                          ArrayType::ArraySizeModifier(), 0);
4417    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4418    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4419    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4420      return LHS;
4421    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4422      return RHS;
4423    if (LVAT) {
4424      // FIXME: This isn't correct! But tricky to implement because
4425      // the array's size has to be the size of LHS, but the type
4426      // has to be different.
4427      return LHS;
4428    }
4429    if (RVAT) {
4430      // FIXME: This isn't correct! But tricky to implement because
4431      // the array's size has to be the size of RHS, but the type
4432      // has to be different.
4433      return RHS;
4434    }
4435    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4436    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4437    return getIncompleteArrayType(ResultType,
4438                                  ArrayType::ArraySizeModifier(), 0);
4439  }
4440  case Type::FunctionNoProto:
4441    return mergeFunctionTypes(LHS, RHS);
4442  case Type::Record:
4443  case Type::Enum:
4444    return QualType();
4445  case Type::Builtin:
4446    // Only exactly equal builtin types are compatible, which is tested above.
4447    return QualType();
4448  case Type::Complex:
4449    // Distinct complex types are incompatible.
4450    return QualType();
4451  case Type::Vector:
4452    // FIXME: The merged type should be an ExtVector!
4453    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4454      return LHS;
4455    return QualType();
4456  case Type::ObjCInterface: {
4457    // Check if the interfaces are assignment compatible.
4458    // FIXME: This should be type compatibility, e.g. whether
4459    // "LHS x; RHS x;" at global scope is legal.
4460    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4461    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4462    if (LHSIface && RHSIface &&
4463        canAssignObjCInterfaces(LHSIface, RHSIface))
4464      return LHS;
4465
4466    return QualType();
4467  }
4468  case Type::ObjCObjectPointer: {
4469    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4470                                RHS->getAs<ObjCObjectPointerType>()))
4471      return LHS;
4472
4473    return QualType();
4474  }
4475  case Type::FixedWidthInt:
4476    // Distinct fixed-width integers are not compatible.
4477    return QualType();
4478  case Type::TemplateSpecialization:
4479    assert(false && "Dependent types have no size");
4480    break;
4481  }
4482
4483  return QualType();
4484}
4485
4486//===----------------------------------------------------------------------===//
4487//                         Integer Predicates
4488//===----------------------------------------------------------------------===//
4489
4490unsigned ASTContext::getIntWidth(QualType T) {
4491  if (T->isBooleanType())
4492    return 1;
4493  if (FixedWidthIntType *FWIT = dyn_cast<FixedWidthIntType>(T)) {
4494    return FWIT->getWidth();
4495  }
4496  // For builtin types, just use the standard type sizing method
4497  return (unsigned)getTypeSize(T);
4498}
4499
4500QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4501  assert(T->isSignedIntegerType() && "Unexpected type");
4502
4503  // Turn <4 x signed int> -> <4 x unsigned int>
4504  if (const VectorType *VTy = T->getAs<VectorType>())
4505    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4506                         VTy->getNumElements());
4507
4508  // For enums, we return the unsigned version of the base type.
4509  if (const EnumType *ETy = T->getAs<EnumType>())
4510    T = ETy->getDecl()->getIntegerType();
4511
4512  const BuiltinType *BTy = T->getAs<BuiltinType>();
4513  assert(BTy && "Unexpected signed integer type");
4514  switch (BTy->getKind()) {
4515  case BuiltinType::Char_S:
4516  case BuiltinType::SChar:
4517    return UnsignedCharTy;
4518  case BuiltinType::Short:
4519    return UnsignedShortTy;
4520  case BuiltinType::Int:
4521    return UnsignedIntTy;
4522  case BuiltinType::Long:
4523    return UnsignedLongTy;
4524  case BuiltinType::LongLong:
4525    return UnsignedLongLongTy;
4526  case BuiltinType::Int128:
4527    return UnsignedInt128Ty;
4528  default:
4529    assert(0 && "Unexpected signed integer type");
4530    return QualType();
4531  }
4532}
4533
4534ExternalASTSource::~ExternalASTSource() { }
4535
4536void ExternalASTSource::PrintStats() { }
4537
4538
4539//===----------------------------------------------------------------------===//
4540//                          Builtin Type Computation
4541//===----------------------------------------------------------------------===//
4542
4543/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4544/// pointer over the consumed characters.  This returns the resultant type.
4545static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4546                                  ASTContext::GetBuiltinTypeError &Error,
4547                                  bool AllowTypeModifiers = true) {
4548  // Modifiers.
4549  int HowLong = 0;
4550  bool Signed = false, Unsigned = false;
4551
4552  // Read the modifiers first.
4553  bool Done = false;
4554  while (!Done) {
4555    switch (*Str++) {
4556    default: Done = true; --Str; break;
4557    case 'S':
4558      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4559      assert(!Signed && "Can't use 'S' modifier multiple times!");
4560      Signed = true;
4561      break;
4562    case 'U':
4563      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4564      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4565      Unsigned = true;
4566      break;
4567    case 'L':
4568      assert(HowLong <= 2 && "Can't have LLLL modifier");
4569      ++HowLong;
4570      break;
4571    }
4572  }
4573
4574  QualType Type;
4575
4576  // Read the base type.
4577  switch (*Str++) {
4578  default: assert(0 && "Unknown builtin type letter!");
4579  case 'v':
4580    assert(HowLong == 0 && !Signed && !Unsigned &&
4581           "Bad modifiers used with 'v'!");
4582    Type = Context.VoidTy;
4583    break;
4584  case 'f':
4585    assert(HowLong == 0 && !Signed && !Unsigned &&
4586           "Bad modifiers used with 'f'!");
4587    Type = Context.FloatTy;
4588    break;
4589  case 'd':
4590    assert(HowLong < 2 && !Signed && !Unsigned &&
4591           "Bad modifiers used with 'd'!");
4592    if (HowLong)
4593      Type = Context.LongDoubleTy;
4594    else
4595      Type = Context.DoubleTy;
4596    break;
4597  case 's':
4598    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4599    if (Unsigned)
4600      Type = Context.UnsignedShortTy;
4601    else
4602      Type = Context.ShortTy;
4603    break;
4604  case 'i':
4605    if (HowLong == 3)
4606      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4607    else if (HowLong == 2)
4608      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4609    else if (HowLong == 1)
4610      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4611    else
4612      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4613    break;
4614  case 'c':
4615    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4616    if (Signed)
4617      Type = Context.SignedCharTy;
4618    else if (Unsigned)
4619      Type = Context.UnsignedCharTy;
4620    else
4621      Type = Context.CharTy;
4622    break;
4623  case 'b': // boolean
4624    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4625    Type = Context.BoolTy;
4626    break;
4627  case 'z':  // size_t.
4628    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4629    Type = Context.getSizeType();
4630    break;
4631  case 'F':
4632    Type = Context.getCFConstantStringType();
4633    break;
4634  case 'a':
4635    Type = Context.getBuiltinVaListType();
4636    assert(!Type.isNull() && "builtin va list type not initialized!");
4637    break;
4638  case 'A':
4639    // This is a "reference" to a va_list; however, what exactly
4640    // this means depends on how va_list is defined. There are two
4641    // different kinds of va_list: ones passed by value, and ones
4642    // passed by reference.  An example of a by-value va_list is
4643    // x86, where va_list is a char*. An example of by-ref va_list
4644    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4645    // we want this argument to be a char*&; for x86-64, we want
4646    // it to be a __va_list_tag*.
4647    Type = Context.getBuiltinVaListType();
4648    assert(!Type.isNull() && "builtin va list type not initialized!");
4649    if (Type->isArrayType()) {
4650      Type = Context.getArrayDecayedType(Type);
4651    } else {
4652      Type = Context.getLValueReferenceType(Type);
4653    }
4654    break;
4655  case 'V': {
4656    char *End;
4657    unsigned NumElements = strtoul(Str, &End, 10);
4658    assert(End != Str && "Missing vector size");
4659
4660    Str = End;
4661
4662    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4663    Type = Context.getVectorType(ElementType, NumElements);
4664    break;
4665  }
4666  case 'X': {
4667    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4668    Type = Context.getComplexType(ElementType);
4669    break;
4670  }
4671  case 'P':
4672    Type = Context.getFILEType();
4673    if (Type.isNull()) {
4674      Error = ASTContext::GE_Missing_stdio;
4675      return QualType();
4676    }
4677    break;
4678  case 'J':
4679    if (Signed)
4680      Type = Context.getsigjmp_bufType();
4681    else
4682      Type = Context.getjmp_bufType();
4683
4684    if (Type.isNull()) {
4685      Error = ASTContext::GE_Missing_setjmp;
4686      return QualType();
4687    }
4688    break;
4689  }
4690
4691  if (!AllowTypeModifiers)
4692    return Type;
4693
4694  Done = false;
4695  while (!Done) {
4696    switch (*Str++) {
4697      default: Done = true; --Str; break;
4698      case '*':
4699        Type = Context.getPointerType(Type);
4700        break;
4701      case '&':
4702        Type = Context.getLValueReferenceType(Type);
4703        break;
4704      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4705      case 'C':
4706        Type = Type.withConst();
4707        break;
4708    }
4709  }
4710
4711  return Type;
4712}
4713
4714/// GetBuiltinType - Return the type for the specified builtin.
4715QualType ASTContext::GetBuiltinType(unsigned id,
4716                                    GetBuiltinTypeError &Error) {
4717  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4718
4719  llvm::SmallVector<QualType, 8> ArgTypes;
4720
4721  Error = GE_None;
4722  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4723  if (Error != GE_None)
4724    return QualType();
4725  while (TypeStr[0] && TypeStr[0] != '.') {
4726    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4727    if (Error != GE_None)
4728      return QualType();
4729
4730    // Do array -> pointer decay.  The builtin should use the decayed type.
4731    if (Ty->isArrayType())
4732      Ty = getArrayDecayedType(Ty);
4733
4734    ArgTypes.push_back(Ty);
4735  }
4736
4737  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4738         "'.' should only occur at end of builtin type list!");
4739
4740  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4741  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4742    return getFunctionNoProtoType(ResType);
4743  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4744                         TypeStr[0] == '.', 0);
4745}
4746
4747QualType
4748ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4749  // Perform the usual unary conversions. We do this early so that
4750  // integral promotions to "int" can allow us to exit early, in the
4751  // lhs == rhs check. Also, for conversion purposes, we ignore any
4752  // qualifiers.  For example, "const float" and "float" are
4753  // equivalent.
4754  if (lhs->isPromotableIntegerType())
4755    lhs = getPromotedIntegerType(lhs);
4756  else
4757    lhs = lhs.getUnqualifiedType();
4758  if (rhs->isPromotableIntegerType())
4759    rhs = getPromotedIntegerType(rhs);
4760  else
4761    rhs = rhs.getUnqualifiedType();
4762
4763  // If both types are identical, no conversion is needed.
4764  if (lhs == rhs)
4765    return lhs;
4766
4767  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4768  // The caller can deal with this (e.g. pointer + int).
4769  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4770    return lhs;
4771
4772  // At this point, we have two different arithmetic types.
4773
4774  // Handle complex types first (C99 6.3.1.8p1).
4775  if (lhs->isComplexType() || rhs->isComplexType()) {
4776    // if we have an integer operand, the result is the complex type.
4777    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4778      // convert the rhs to the lhs complex type.
4779      return lhs;
4780    }
4781    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4782      // convert the lhs to the rhs complex type.
4783      return rhs;
4784    }
4785    // This handles complex/complex, complex/float, or float/complex.
4786    // When both operands are complex, the shorter operand is converted to the
4787    // type of the longer, and that is the type of the result. This corresponds
4788    // to what is done when combining two real floating-point operands.
4789    // The fun begins when size promotion occur across type domains.
4790    // From H&S 6.3.4: When one operand is complex and the other is a real
4791    // floating-point type, the less precise type is converted, within it's
4792    // real or complex domain, to the precision of the other type. For example,
4793    // when combining a "long double" with a "double _Complex", the
4794    // "double _Complex" is promoted to "long double _Complex".
4795    int result = getFloatingTypeOrder(lhs, rhs);
4796
4797    if (result > 0) { // The left side is bigger, convert rhs.
4798      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4799    } else if (result < 0) { // The right side is bigger, convert lhs.
4800      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4801    }
4802    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4803    // domains match. This is a requirement for our implementation, C99
4804    // does not require this promotion.
4805    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4806      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4807        return rhs;
4808      } else { // handle "_Complex double, double".
4809        return lhs;
4810      }
4811    }
4812    return lhs; // The domain/size match exactly.
4813  }
4814  // Now handle "real" floating types (i.e. float, double, long double).
4815  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4816    // if we have an integer operand, the result is the real floating type.
4817    if (rhs->isIntegerType()) {
4818      // convert rhs to the lhs floating point type.
4819      return lhs;
4820    }
4821    if (rhs->isComplexIntegerType()) {
4822      // convert rhs to the complex floating point type.
4823      return getComplexType(lhs);
4824    }
4825    if (lhs->isIntegerType()) {
4826      // convert lhs to the rhs floating point type.
4827      return rhs;
4828    }
4829    if (lhs->isComplexIntegerType()) {
4830      // convert lhs to the complex floating point type.
4831      return getComplexType(rhs);
4832    }
4833    // We have two real floating types, float/complex combos were handled above.
4834    // Convert the smaller operand to the bigger result.
4835    int result = getFloatingTypeOrder(lhs, rhs);
4836    if (result > 0) // convert the rhs
4837      return lhs;
4838    assert(result < 0 && "illegal float comparison");
4839    return rhs;   // convert the lhs
4840  }
4841  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4842    // Handle GCC complex int extension.
4843    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4844    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4845
4846    if (lhsComplexInt && rhsComplexInt) {
4847      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4848                              rhsComplexInt->getElementType()) >= 0)
4849        return lhs; // convert the rhs
4850      return rhs;
4851    } else if (lhsComplexInt && rhs->isIntegerType()) {
4852      // convert the rhs to the lhs complex type.
4853      return lhs;
4854    } else if (rhsComplexInt && lhs->isIntegerType()) {
4855      // convert the lhs to the rhs complex type.
4856      return rhs;
4857    }
4858  }
4859  // Finally, we have two differing integer types.
4860  // The rules for this case are in C99 6.3.1.8
4861  int compare = getIntegerTypeOrder(lhs, rhs);
4862  bool lhsSigned = lhs->isSignedIntegerType(),
4863       rhsSigned = rhs->isSignedIntegerType();
4864  QualType destType;
4865  if (lhsSigned == rhsSigned) {
4866    // Same signedness; use the higher-ranked type
4867    destType = compare >= 0 ? lhs : rhs;
4868  } else if (compare != (lhsSigned ? 1 : -1)) {
4869    // The unsigned type has greater than or equal rank to the
4870    // signed type, so use the unsigned type
4871    destType = lhsSigned ? rhs : lhs;
4872  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
4873    // The two types are different widths; if we are here, that
4874    // means the signed type is larger than the unsigned type, so
4875    // use the signed type.
4876    destType = lhsSigned ? lhs : rhs;
4877  } else {
4878    // The signed type is higher-ranked than the unsigned type,
4879    // but isn't actually any bigger (like unsigned int and long
4880    // on most 32-bit systems).  Use the unsigned type corresponding
4881    // to the signed type.
4882    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
4883  }
4884  return destType;
4885}
4886