ASTContext.cpp revision 822f54a7ba3eca643104623e8048be20a3391b19
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "CXXABI.h"
34#include <map>
35
36using namespace clang;
37
38unsigned ASTContext::NumImplicitDefaultConstructors;
39unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
40unsigned ASTContext::NumImplicitCopyConstructors;
41unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
42unsigned ASTContext::NumImplicitMoveConstructors;
43unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyAssignmentOperators;
45unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
46unsigned ASTContext::NumImplicitMoveAssignmentOperators;
47unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
48unsigned ASTContext::NumImplicitDestructors;
49unsigned ASTContext::NumImplicitDestructorsDeclared;
50
51enum FloatingRank {
52  FloatRank, DoubleRank, LongDoubleRank
53};
54
55void
56ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
57                                               TemplateTemplateParmDecl *Parm) {
58  ID.AddInteger(Parm->getDepth());
59  ID.AddInteger(Parm->getPosition());
60  ID.AddBoolean(Parm->isParameterPack());
61
62  TemplateParameterList *Params = Parm->getTemplateParameters();
63  ID.AddInteger(Params->size());
64  for (TemplateParameterList::const_iterator P = Params->begin(),
65                                          PEnd = Params->end();
66       P != PEnd; ++P) {
67    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
68      ID.AddInteger(0);
69      ID.AddBoolean(TTP->isParameterPack());
70      continue;
71    }
72
73    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
74      ID.AddInteger(1);
75      ID.AddBoolean(NTTP->isParameterPack());
76      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
77      if (NTTP->isExpandedParameterPack()) {
78        ID.AddBoolean(true);
79        ID.AddInteger(NTTP->getNumExpansionTypes());
80        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
81          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
82      } else
83        ID.AddBoolean(false);
84      continue;
85    }
86
87    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
88    ID.AddInteger(2);
89    Profile(ID, TTP);
90  }
91}
92
93TemplateTemplateParmDecl *
94ASTContext::getCanonicalTemplateTemplateParmDecl(
95                                          TemplateTemplateParmDecl *TTP) const {
96  // Check if we already have a canonical template template parameter.
97  llvm::FoldingSetNodeID ID;
98  CanonicalTemplateTemplateParm::Profile(ID, TTP);
99  void *InsertPos = 0;
100  CanonicalTemplateTemplateParm *Canonical
101    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
102  if (Canonical)
103    return Canonical->getParam();
104
105  // Build a canonical template parameter list.
106  TemplateParameterList *Params = TTP->getTemplateParameters();
107  SmallVector<NamedDecl *, 4> CanonParams;
108  CanonParams.reserve(Params->size());
109  for (TemplateParameterList::const_iterator P = Params->begin(),
110                                          PEnd = Params->end();
111       P != PEnd; ++P) {
112    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
113      CanonParams.push_back(
114                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
115                                               SourceLocation(),
116                                               SourceLocation(),
117                                               TTP->getDepth(),
118                                               TTP->getIndex(), 0, false,
119                                               TTP->isParameterPack()));
120    else if (NonTypeTemplateParmDecl *NTTP
121             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
122      QualType T = getCanonicalType(NTTP->getType());
123      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
124      NonTypeTemplateParmDecl *Param;
125      if (NTTP->isExpandedParameterPack()) {
126        SmallVector<QualType, 2> ExpandedTypes;
127        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
128        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
129          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
130          ExpandedTInfos.push_back(
131                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
132        }
133
134        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
135                                                SourceLocation(),
136                                                SourceLocation(),
137                                                NTTP->getDepth(),
138                                                NTTP->getPosition(), 0,
139                                                T,
140                                                TInfo,
141                                                ExpandedTypes.data(),
142                                                ExpandedTypes.size(),
143                                                ExpandedTInfos.data());
144      } else {
145        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
146                                                SourceLocation(),
147                                                SourceLocation(),
148                                                NTTP->getDepth(),
149                                                NTTP->getPosition(), 0,
150                                                T,
151                                                NTTP->isParameterPack(),
152                                                TInfo);
153      }
154      CanonParams.push_back(Param);
155
156    } else
157      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
158                                           cast<TemplateTemplateParmDecl>(*P)));
159  }
160
161  TemplateTemplateParmDecl *CanonTTP
162    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
163                                       SourceLocation(), TTP->getDepth(),
164                                       TTP->getPosition(),
165                                       TTP->isParameterPack(),
166                                       0,
167                         TemplateParameterList::Create(*this, SourceLocation(),
168                                                       SourceLocation(),
169                                                       CanonParams.data(),
170                                                       CanonParams.size(),
171                                                       SourceLocation()));
172
173  // Get the new insert position for the node we care about.
174  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
175  assert(Canonical == 0 && "Shouldn't be in the map!");
176  (void)Canonical;
177
178  // Create the canonical template template parameter entry.
179  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
180  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
181  return CanonTTP;
182}
183
184CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
185  if (!LangOpts.CPlusPlus) return 0;
186
187  switch (T.getCXXABI()) {
188  case CXXABI_ARM:
189    return CreateARMCXXABI(*this);
190  case CXXABI_Itanium:
191    return CreateItaniumCXXABI(*this);
192  case CXXABI_Microsoft:
193    return CreateMicrosoftCXXABI(*this);
194  }
195  return 0;
196}
197
198static const LangAS::Map &getAddressSpaceMap(const TargetInfo &T,
199                                             const LangOptions &LOpts) {
200  if (LOpts.FakeAddressSpaceMap) {
201    // The fake address space map must have a distinct entry for each
202    // language-specific address space.
203    static const unsigned FakeAddrSpaceMap[] = {
204      1, // opencl_global
205      2, // opencl_local
206      3  // opencl_constant
207    };
208    return FakeAddrSpaceMap;
209  } else {
210    return T.getAddressSpaceMap();
211  }
212}
213
214ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
215                       const TargetInfo &t,
216                       IdentifierTable &idents, SelectorTable &sels,
217                       Builtin::Context &builtins,
218                       unsigned size_reserve) :
219  FunctionProtoTypes(this_()),
220  TemplateSpecializationTypes(this_()),
221  DependentTemplateSpecializationTypes(this_()),
222  SubstTemplateTemplateParmPacks(this_()),
223  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
224  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
225  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0),
226  jmp_bufDecl(0), sigjmp_bufDecl(0), BlockDescriptorType(0),
227  BlockDescriptorExtendedType(0), cudaConfigureCallDecl(0),
228  NullTypeSourceInfo(QualType()),
229  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)),
230  AddrSpaceMap(getAddressSpaceMap(t, LOpts)), Target(t),
231  Idents(idents), Selectors(sels),
232  BuiltinInfo(builtins),
233  DeclarationNames(*this),
234  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
235  LastSDM(0, 0),
236  UniqueBlockByRefTypeID(0) {
237  ObjCIdRedefinitionType = QualType();
238  ObjCClassRedefinitionType = QualType();
239  ObjCSelRedefinitionType = QualType();
240  if (size_reserve > 0) Types.reserve(size_reserve);
241  TUDecl = TranslationUnitDecl::Create(*this);
242  InitBuiltinTypes();
243}
244
245ASTContext::~ASTContext() {
246  // Release the DenseMaps associated with DeclContext objects.
247  // FIXME: Is this the ideal solution?
248  ReleaseDeclContextMaps();
249
250  // Call all of the deallocation functions.
251  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
252    Deallocations[I].first(Deallocations[I].second);
253
254  // Release all of the memory associated with overridden C++ methods.
255  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
256         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
257       OM != OMEnd; ++OM)
258    OM->second.Destroy();
259
260  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
261  // because they can contain DenseMaps.
262  for (llvm::DenseMap<const ObjCContainerDecl*,
263       const ASTRecordLayout*>::iterator
264       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
265    // Increment in loop to prevent using deallocated memory.
266    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
267      R->Destroy(*this);
268
269  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
270       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
271    // Increment in loop to prevent using deallocated memory.
272    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
273      R->Destroy(*this);
274  }
275
276  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
277                                                    AEnd = DeclAttrs.end();
278       A != AEnd; ++A)
279    A->second->~AttrVec();
280}
281
282void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
283  Deallocations.push_back(std::make_pair(Callback, Data));
284}
285
286void
287ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
288  ExternalSource.reset(Source.take());
289}
290
291void ASTContext::PrintStats() const {
292  llvm::errs() << "\n*** AST Context Stats:\n";
293  llvm::errs() << "  " << Types.size() << " types total.\n";
294
295  unsigned counts[] = {
296#define TYPE(Name, Parent) 0,
297#define ABSTRACT_TYPE(Name, Parent)
298#include "clang/AST/TypeNodes.def"
299    0 // Extra
300  };
301
302  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
303    Type *T = Types[i];
304    counts[(unsigned)T->getTypeClass()]++;
305  }
306
307  unsigned Idx = 0;
308  unsigned TotalBytes = 0;
309#define TYPE(Name, Parent)                                              \
310  if (counts[Idx])                                                      \
311    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
312                 << " types\n";                                         \
313  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
314  ++Idx;
315#define ABSTRACT_TYPE(Name, Parent)
316#include "clang/AST/TypeNodes.def"
317
318  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
319
320  // Implicit special member functions.
321  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
322               << NumImplicitDefaultConstructors
323               << " implicit default constructors created\n";
324  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
325               << NumImplicitCopyConstructors
326               << " implicit copy constructors created\n";
327  if (getLangOptions().CPlusPlus)
328    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
329                 << NumImplicitMoveConstructors
330                 << " implicit move constructors created\n";
331  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
332               << NumImplicitCopyAssignmentOperators
333               << " implicit copy assignment operators created\n";
334  if (getLangOptions().CPlusPlus)
335    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
336                 << NumImplicitMoveAssignmentOperators
337                 << " implicit move assignment operators created\n";
338  llvm::errs() << NumImplicitDestructorsDeclared << "/"
339               << NumImplicitDestructors
340               << " implicit destructors created\n";
341
342  if (ExternalSource.get()) {
343    llvm::errs() << "\n";
344    ExternalSource->PrintStats();
345  }
346
347  BumpAlloc.PrintStats();
348}
349
350
351void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
352  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
353  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
354  Types.push_back(Ty);
355}
356
357void ASTContext::InitBuiltinTypes() {
358  assert(VoidTy.isNull() && "Context reinitialized?");
359
360  // C99 6.2.5p19.
361  InitBuiltinType(VoidTy,              BuiltinType::Void);
362
363  // C99 6.2.5p2.
364  InitBuiltinType(BoolTy,              BuiltinType::Bool);
365  // C99 6.2.5p3.
366  if (LangOpts.CharIsSigned)
367    InitBuiltinType(CharTy,            BuiltinType::Char_S);
368  else
369    InitBuiltinType(CharTy,            BuiltinType::Char_U);
370  // C99 6.2.5p4.
371  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
372  InitBuiltinType(ShortTy,             BuiltinType::Short);
373  InitBuiltinType(IntTy,               BuiltinType::Int);
374  InitBuiltinType(LongTy,              BuiltinType::Long);
375  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
376
377  // C99 6.2.5p6.
378  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
379  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
380  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
381  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
382  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
383
384  // C99 6.2.5p10.
385  InitBuiltinType(FloatTy,             BuiltinType::Float);
386  InitBuiltinType(DoubleTy,            BuiltinType::Double);
387  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
388
389  // GNU extension, 128-bit integers.
390  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
391  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
392
393  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
394    if (TargetInfo::isTypeSigned(Target.getWCharType()))
395      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
396    else  // -fshort-wchar makes wchar_t be unsigned.
397      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
398  } else // C99
399    WCharTy = getFromTargetType(Target.getWCharType());
400
401  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
402    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
403  else // C99
404    Char16Ty = getFromTargetType(Target.getChar16Type());
405
406  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
407    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
408  else // C99
409    Char32Ty = getFromTargetType(Target.getChar32Type());
410
411  // Placeholder type for type-dependent expressions whose type is
412  // completely unknown. No code should ever check a type against
413  // DependentTy and users should never see it; however, it is here to
414  // help diagnose failures to properly check for type-dependent
415  // expressions.
416  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
417
418  // Placeholder type for functions.
419  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
420
421  // Placeholder type for bound members.
422  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
423
424  // "any" type; useful for debugger-like clients.
425  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
426
427  // C99 6.2.5p11.
428  FloatComplexTy      = getComplexType(FloatTy);
429  DoubleComplexTy     = getComplexType(DoubleTy);
430  LongDoubleComplexTy = getComplexType(LongDoubleTy);
431
432  BuiltinVaListType = QualType();
433
434  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
435  ObjCIdTypedefType = QualType();
436  ObjCClassTypedefType = QualType();
437  ObjCSelTypedefType = QualType();
438
439  // Builtin types for 'id', 'Class', and 'SEL'.
440  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
441  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
442  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
443
444  ObjCConstantStringType = QualType();
445
446  // void * type
447  VoidPtrTy = getPointerType(VoidTy);
448
449  // nullptr type (C++0x 2.14.7)
450  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
451}
452
453Diagnostic &ASTContext::getDiagnostics() const {
454  return SourceMgr.getDiagnostics();
455}
456
457AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
458  AttrVec *&Result = DeclAttrs[D];
459  if (!Result) {
460    void *Mem = Allocate(sizeof(AttrVec));
461    Result = new (Mem) AttrVec;
462  }
463
464  return *Result;
465}
466
467/// \brief Erase the attributes corresponding to the given declaration.
468void ASTContext::eraseDeclAttrs(const Decl *D) {
469  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
470  if (Pos != DeclAttrs.end()) {
471    Pos->second->~AttrVec();
472    DeclAttrs.erase(Pos);
473  }
474}
475
476MemberSpecializationInfo *
477ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
478  assert(Var->isStaticDataMember() && "Not a static data member");
479  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
480    = InstantiatedFromStaticDataMember.find(Var);
481  if (Pos == InstantiatedFromStaticDataMember.end())
482    return 0;
483
484  return Pos->second;
485}
486
487void
488ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
489                                                TemplateSpecializationKind TSK,
490                                          SourceLocation PointOfInstantiation) {
491  assert(Inst->isStaticDataMember() && "Not a static data member");
492  assert(Tmpl->isStaticDataMember() && "Not a static data member");
493  assert(!InstantiatedFromStaticDataMember[Inst] &&
494         "Already noted what static data member was instantiated from");
495  InstantiatedFromStaticDataMember[Inst]
496    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
497}
498
499NamedDecl *
500ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
501  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
502    = InstantiatedFromUsingDecl.find(UUD);
503  if (Pos == InstantiatedFromUsingDecl.end())
504    return 0;
505
506  return Pos->second;
507}
508
509void
510ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
511  assert((isa<UsingDecl>(Pattern) ||
512          isa<UnresolvedUsingValueDecl>(Pattern) ||
513          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
514         "pattern decl is not a using decl");
515  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
516  InstantiatedFromUsingDecl[Inst] = Pattern;
517}
518
519UsingShadowDecl *
520ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
521  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
522    = InstantiatedFromUsingShadowDecl.find(Inst);
523  if (Pos == InstantiatedFromUsingShadowDecl.end())
524    return 0;
525
526  return Pos->second;
527}
528
529void
530ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
531                                               UsingShadowDecl *Pattern) {
532  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
533  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
534}
535
536FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
537  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
538    = InstantiatedFromUnnamedFieldDecl.find(Field);
539  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
540    return 0;
541
542  return Pos->second;
543}
544
545void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
546                                                     FieldDecl *Tmpl) {
547  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
548  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
549  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
550         "Already noted what unnamed field was instantiated from");
551
552  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
553}
554
555bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
556                                    const FieldDecl *LastFD) const {
557  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
558          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0);
559
560}
561
562bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
563                                             const FieldDecl *LastFD) const {
564  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
565          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() == 0 &&
566          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() != 0);
567
568}
569
570bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
571                                         const FieldDecl *LastFD) const {
572  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
573          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue() &&
574          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
575}
576
577bool ASTContext::NoneBitfieldFollowsBitfield(const FieldDecl *FD,
578                                         const FieldDecl *LastFD) const {
579  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
580          LastFD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
581}
582
583bool ASTContext::BitfieldFollowsNoneBitfield(const FieldDecl *FD,
584                                             const FieldDecl *LastFD) const {
585  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
586          FD->getBitWidth()-> EvaluateAsInt(*this).getZExtValue());
587}
588
589ASTContext::overridden_cxx_method_iterator
590ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
591  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
592    = OverriddenMethods.find(Method);
593  if (Pos == OverriddenMethods.end())
594    return 0;
595
596  return Pos->second.begin();
597}
598
599ASTContext::overridden_cxx_method_iterator
600ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
601  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
602    = OverriddenMethods.find(Method);
603  if (Pos == OverriddenMethods.end())
604    return 0;
605
606  return Pos->second.end();
607}
608
609unsigned
610ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
611  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
612    = OverriddenMethods.find(Method);
613  if (Pos == OverriddenMethods.end())
614    return 0;
615
616  return Pos->second.size();
617}
618
619void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
620                                     const CXXMethodDecl *Overridden) {
621  OverriddenMethods[Method].push_back(Overridden);
622}
623
624//===----------------------------------------------------------------------===//
625//                         Type Sizing and Analysis
626//===----------------------------------------------------------------------===//
627
628/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
629/// scalar floating point type.
630const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
631  const BuiltinType *BT = T->getAs<BuiltinType>();
632  assert(BT && "Not a floating point type!");
633  switch (BT->getKind()) {
634  default: assert(0 && "Not a floating point type!");
635  case BuiltinType::Float:      return Target.getFloatFormat();
636  case BuiltinType::Double:     return Target.getDoubleFormat();
637  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
638  }
639}
640
641/// getDeclAlign - Return a conservative estimate of the alignment of the
642/// specified decl.  Note that bitfields do not have a valid alignment, so
643/// this method will assert on them.
644/// If @p RefAsPointee, references are treated like their underlying type
645/// (for alignof), else they're treated like pointers (for CodeGen).
646CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
647  unsigned Align = Target.getCharWidth();
648
649  bool UseAlignAttrOnly = false;
650  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
651    Align = AlignFromAttr;
652
653    // __attribute__((aligned)) can increase or decrease alignment
654    // *except* on a struct or struct member, where it only increases
655    // alignment unless 'packed' is also specified.
656    //
657    // It is an error for [[align]] to decrease alignment, so we can
658    // ignore that possibility;  Sema should diagnose it.
659    if (isa<FieldDecl>(D)) {
660      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
661        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
662    } else {
663      UseAlignAttrOnly = true;
664    }
665  }
666  else if (isa<FieldDecl>(D))
667      UseAlignAttrOnly =
668        D->hasAttr<PackedAttr>() ||
669        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
670
671  // If we're using the align attribute only, just ignore everything
672  // else about the declaration and its type.
673  if (UseAlignAttrOnly) {
674    // do nothing
675
676  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
677    QualType T = VD->getType();
678    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
679      if (RefAsPointee)
680        T = RT->getPointeeType();
681      else
682        T = getPointerType(RT->getPointeeType());
683    }
684    if (!T->isIncompleteType() && !T->isFunctionType()) {
685      // Adjust alignments of declarations with array type by the
686      // large-array alignment on the target.
687      unsigned MinWidth = Target.getLargeArrayMinWidth();
688      const ArrayType *arrayType;
689      if (MinWidth && (arrayType = getAsArrayType(T))) {
690        if (isa<VariableArrayType>(arrayType))
691          Align = std::max(Align, Target.getLargeArrayAlign());
692        else if (isa<ConstantArrayType>(arrayType) &&
693                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
694          Align = std::max(Align, Target.getLargeArrayAlign());
695
696        // Walk through any array types while we're at it.
697        T = getBaseElementType(arrayType);
698      }
699      if (Target.usePreferredTypeAlign())
700        Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
701      else
702        Align = std::max(Align, getTypeAlign(T.getTypePtr()));
703    }
704
705    // Fields can be subject to extra alignment constraints, like if
706    // the field is packed, the struct is packed, or the struct has a
707    // a max-field-alignment constraint (#pragma pack).  So calculate
708    // the actual alignment of the field within the struct, and then
709    // (as we're expected to) constrain that by the alignment of the type.
710    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
711      // So calculate the alignment of the field.
712      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
713
714      // Start with the record's overall alignment.
715      unsigned fieldAlign = toBits(layout.getAlignment());
716
717      // Use the GCD of that and the offset within the record.
718      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
719      if (offset > 0) {
720        // Alignment is always a power of 2, so the GCD will be a power of 2,
721        // which means we get to do this crazy thing instead of Euclid's.
722        uint64_t lowBitOfOffset = offset & (~offset + 1);
723        if (lowBitOfOffset < fieldAlign)
724          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
725      }
726
727      Align = std::min(Align, fieldAlign);
728    }
729  }
730
731  return toCharUnitsFromBits(Align);
732}
733
734std::pair<CharUnits, CharUnits>
735ASTContext::getTypeInfoInChars(const Type *T) const {
736  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
737  return std::make_pair(toCharUnitsFromBits(Info.first),
738                        toCharUnitsFromBits(Info.second));
739}
740
741std::pair<CharUnits, CharUnits>
742ASTContext::getTypeInfoInChars(QualType T) const {
743  return getTypeInfoInChars(T.getTypePtr());
744}
745
746/// getTypeSize - Return the size of the specified type, in bits.  This method
747/// does not work on incomplete types.
748///
749/// FIXME: Pointers into different addr spaces could have different sizes and
750/// alignment requirements: getPointerInfo should take an AddrSpace, this
751/// should take a QualType, &c.
752std::pair<uint64_t, unsigned>
753ASTContext::getTypeInfo(const Type *T) const {
754  uint64_t Width=0;
755  unsigned Align=8;
756  switch (T->getTypeClass()) {
757#define TYPE(Class, Base)
758#define ABSTRACT_TYPE(Class, Base)
759#define NON_CANONICAL_TYPE(Class, Base)
760#define DEPENDENT_TYPE(Class, Base) case Type::Class:
761#include "clang/AST/TypeNodes.def"
762    llvm_unreachable("Should not see dependent types");
763    break;
764
765  case Type::FunctionNoProto:
766  case Type::FunctionProto:
767    // GCC extension: alignof(function) = 32 bits
768    Width = 0;
769    Align = 32;
770    break;
771
772  case Type::IncompleteArray:
773  case Type::VariableArray:
774    Width = 0;
775    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
776    break;
777
778  case Type::ConstantArray: {
779    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
780
781    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
782    Width = EltInfo.first*CAT->getSize().getZExtValue();
783    Align = EltInfo.second;
784    Width = llvm::RoundUpToAlignment(Width, Align);
785    break;
786  }
787  case Type::ExtVector:
788  case Type::Vector: {
789    const VectorType *VT = cast<VectorType>(T);
790    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
791    Width = EltInfo.first*VT->getNumElements();
792    Align = Width;
793    // If the alignment is not a power of 2, round up to the next power of 2.
794    // This happens for non-power-of-2 length vectors.
795    if (Align & (Align-1)) {
796      Align = llvm::NextPowerOf2(Align);
797      Width = llvm::RoundUpToAlignment(Width, Align);
798    }
799    break;
800  }
801
802  case Type::Builtin:
803    switch (cast<BuiltinType>(T)->getKind()) {
804    default: assert(0 && "Unknown builtin type!");
805    case BuiltinType::Void:
806      // GCC extension: alignof(void) = 8 bits.
807      Width = 0;
808      Align = 8;
809      break;
810
811    case BuiltinType::Bool:
812      Width = Target.getBoolWidth();
813      Align = Target.getBoolAlign();
814      break;
815    case BuiltinType::Char_S:
816    case BuiltinType::Char_U:
817    case BuiltinType::UChar:
818    case BuiltinType::SChar:
819      Width = Target.getCharWidth();
820      Align = Target.getCharAlign();
821      break;
822    case BuiltinType::WChar_S:
823    case BuiltinType::WChar_U:
824      Width = Target.getWCharWidth();
825      Align = Target.getWCharAlign();
826      break;
827    case BuiltinType::Char16:
828      Width = Target.getChar16Width();
829      Align = Target.getChar16Align();
830      break;
831    case BuiltinType::Char32:
832      Width = Target.getChar32Width();
833      Align = Target.getChar32Align();
834      break;
835    case BuiltinType::UShort:
836    case BuiltinType::Short:
837      Width = Target.getShortWidth();
838      Align = Target.getShortAlign();
839      break;
840    case BuiltinType::UInt:
841    case BuiltinType::Int:
842      Width = Target.getIntWidth();
843      Align = Target.getIntAlign();
844      break;
845    case BuiltinType::ULong:
846    case BuiltinType::Long:
847      Width = Target.getLongWidth();
848      Align = Target.getLongAlign();
849      break;
850    case BuiltinType::ULongLong:
851    case BuiltinType::LongLong:
852      Width = Target.getLongLongWidth();
853      Align = Target.getLongLongAlign();
854      break;
855    case BuiltinType::Int128:
856    case BuiltinType::UInt128:
857      Width = 128;
858      Align = 128; // int128_t is 128-bit aligned on all targets.
859      break;
860    case BuiltinType::Float:
861      Width = Target.getFloatWidth();
862      Align = Target.getFloatAlign();
863      break;
864    case BuiltinType::Double:
865      Width = Target.getDoubleWidth();
866      Align = Target.getDoubleAlign();
867      break;
868    case BuiltinType::LongDouble:
869      Width = Target.getLongDoubleWidth();
870      Align = Target.getLongDoubleAlign();
871      break;
872    case BuiltinType::NullPtr:
873      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
874      Align = Target.getPointerAlign(0); //   == sizeof(void*)
875      break;
876    case BuiltinType::ObjCId:
877    case BuiltinType::ObjCClass:
878    case BuiltinType::ObjCSel:
879      Width = Target.getPointerWidth(0);
880      Align = Target.getPointerAlign(0);
881      break;
882    }
883    break;
884  case Type::ObjCObjectPointer:
885    Width = Target.getPointerWidth(0);
886    Align = Target.getPointerAlign(0);
887    break;
888  case Type::BlockPointer: {
889    unsigned AS = getTargetAddressSpace(
890        cast<BlockPointerType>(T)->getPointeeType());
891    Width = Target.getPointerWidth(AS);
892    Align = Target.getPointerAlign(AS);
893    break;
894  }
895  case Type::LValueReference:
896  case Type::RValueReference: {
897    // alignof and sizeof should never enter this code path here, so we go
898    // the pointer route.
899    unsigned AS = getTargetAddressSpace(
900        cast<ReferenceType>(T)->getPointeeType());
901    Width = Target.getPointerWidth(AS);
902    Align = Target.getPointerAlign(AS);
903    break;
904  }
905  case Type::Pointer: {
906    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
907    Width = Target.getPointerWidth(AS);
908    Align = Target.getPointerAlign(AS);
909    break;
910  }
911  case Type::MemberPointer: {
912    const MemberPointerType *MPT = cast<MemberPointerType>(T);
913    std::pair<uint64_t, unsigned> PtrDiffInfo =
914      getTypeInfo(getPointerDiffType());
915    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
916    Align = PtrDiffInfo.second;
917    break;
918  }
919  case Type::Complex: {
920    // Complex types have the same alignment as their elements, but twice the
921    // size.
922    std::pair<uint64_t, unsigned> EltInfo =
923      getTypeInfo(cast<ComplexType>(T)->getElementType());
924    Width = EltInfo.first*2;
925    Align = EltInfo.second;
926    break;
927  }
928  case Type::ObjCObject:
929    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
930  case Type::ObjCInterface: {
931    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
932    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
933    Width = toBits(Layout.getSize());
934    Align = toBits(Layout.getAlignment());
935    break;
936  }
937  case Type::Record:
938  case Type::Enum: {
939    const TagType *TT = cast<TagType>(T);
940
941    if (TT->getDecl()->isInvalidDecl()) {
942      Width = 8;
943      Align = 8;
944      break;
945    }
946
947    if (const EnumType *ET = dyn_cast<EnumType>(TT))
948      return getTypeInfo(ET->getDecl()->getIntegerType());
949
950    const RecordType *RT = cast<RecordType>(TT);
951    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
952    Width = toBits(Layout.getSize());
953    Align = toBits(Layout.getAlignment());
954    break;
955  }
956
957  case Type::SubstTemplateTypeParm:
958    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
959                       getReplacementType().getTypePtr());
960
961  case Type::Auto: {
962    const AutoType *A = cast<AutoType>(T);
963    assert(A->isDeduced() && "Cannot request the size of a dependent type");
964    return getTypeInfo(A->getDeducedType().getTypePtr());
965  }
966
967  case Type::Paren:
968    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
969
970  case Type::Typedef: {
971    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
972    std::pair<uint64_t, unsigned> Info
973      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
974    // If the typedef has an aligned attribute on it, it overrides any computed
975    // alignment we have.  This violates the GCC documentation (which says that
976    // attribute(aligned) can only round up) but matches its implementation.
977    if (unsigned AttrAlign = Typedef->getMaxAlignment())
978      Align = AttrAlign;
979    else
980      Align = Info.second;
981    Width = Info.first;
982    break;
983  }
984
985  case Type::TypeOfExpr:
986    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
987                         .getTypePtr());
988
989  case Type::TypeOf:
990    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
991
992  case Type::Decltype:
993    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
994                        .getTypePtr());
995
996  case Type::UnaryTransform:
997    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
998
999  case Type::Elaborated:
1000    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1001
1002  case Type::Attributed:
1003    return getTypeInfo(
1004                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1005
1006  case Type::TemplateSpecialization: {
1007    assert(getCanonicalType(T) != T &&
1008           "Cannot request the size of a dependent type");
1009    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1010    // A type alias template specialization may refer to a typedef with the
1011    // aligned attribute on it.
1012    if (TST->isTypeAlias())
1013      return getTypeInfo(TST->getAliasedType().getTypePtr());
1014    else
1015      return getTypeInfo(getCanonicalType(T));
1016  }
1017
1018  }
1019
1020  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
1021  return std::make_pair(Width, Align);
1022}
1023
1024/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1025CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1026  return CharUnits::fromQuantity(BitSize / getCharWidth());
1027}
1028
1029/// toBits - Convert a size in characters to a size in characters.
1030int64_t ASTContext::toBits(CharUnits CharSize) const {
1031  return CharSize.getQuantity() * getCharWidth();
1032}
1033
1034/// getTypeSizeInChars - Return the size of the specified type, in characters.
1035/// This method does not work on incomplete types.
1036CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1037  return toCharUnitsFromBits(getTypeSize(T));
1038}
1039CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1040  return toCharUnitsFromBits(getTypeSize(T));
1041}
1042
1043/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1044/// characters. This method does not work on incomplete types.
1045CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1046  return toCharUnitsFromBits(getTypeAlign(T));
1047}
1048CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1049  return toCharUnitsFromBits(getTypeAlign(T));
1050}
1051
1052/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1053/// type for the current target in bits.  This can be different than the ABI
1054/// alignment in cases where it is beneficial for performance to overalign
1055/// a data type.
1056unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1057  unsigned ABIAlign = getTypeAlign(T);
1058
1059  // Double and long long should be naturally aligned if possible.
1060  if (const ComplexType* CT = T->getAs<ComplexType>())
1061    T = CT->getElementType().getTypePtr();
1062  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1063      T->isSpecificBuiltinType(BuiltinType::LongLong))
1064    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1065
1066  return ABIAlign;
1067}
1068
1069/// DeepCollectObjCIvars -
1070/// This routine first collects all declared, but not synthesized, ivars in
1071/// super class and then collects all ivars, including those synthesized for
1072/// current class. This routine is used for implementation of current class
1073/// when all ivars, declared and synthesized are known.
1074///
1075void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1076                                      bool leafClass,
1077                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1078  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1079    DeepCollectObjCIvars(SuperClass, false, Ivars);
1080  if (!leafClass) {
1081    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1082         E = OI->ivar_end(); I != E; ++I)
1083      Ivars.push_back(*I);
1084  }
1085  else {
1086    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1087    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1088         Iv= Iv->getNextIvar())
1089      Ivars.push_back(Iv);
1090  }
1091}
1092
1093/// CollectInheritedProtocols - Collect all protocols in current class and
1094/// those inherited by it.
1095void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1096                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1097  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1098    // We can use protocol_iterator here instead of
1099    // all_referenced_protocol_iterator since we are walking all categories.
1100    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1101         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1102      ObjCProtocolDecl *Proto = (*P);
1103      Protocols.insert(Proto);
1104      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1105           PE = Proto->protocol_end(); P != PE; ++P) {
1106        Protocols.insert(*P);
1107        CollectInheritedProtocols(*P, Protocols);
1108      }
1109    }
1110
1111    // Categories of this Interface.
1112    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1113         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1114      CollectInheritedProtocols(CDeclChain, Protocols);
1115    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1116      while (SD) {
1117        CollectInheritedProtocols(SD, Protocols);
1118        SD = SD->getSuperClass();
1119      }
1120  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1121    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1122         PE = OC->protocol_end(); P != PE; ++P) {
1123      ObjCProtocolDecl *Proto = (*P);
1124      Protocols.insert(Proto);
1125      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1126           PE = Proto->protocol_end(); P != PE; ++P)
1127        CollectInheritedProtocols(*P, Protocols);
1128    }
1129  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1130    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1131         PE = OP->protocol_end(); P != PE; ++P) {
1132      ObjCProtocolDecl *Proto = (*P);
1133      Protocols.insert(Proto);
1134      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1135           PE = Proto->protocol_end(); P != PE; ++P)
1136        CollectInheritedProtocols(*P, Protocols);
1137    }
1138  }
1139}
1140
1141unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1142  unsigned count = 0;
1143  // Count ivars declared in class extension.
1144  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1145       CDecl = CDecl->getNextClassExtension())
1146    count += CDecl->ivar_size();
1147
1148  // Count ivar defined in this class's implementation.  This
1149  // includes synthesized ivars.
1150  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1151    count += ImplDecl->ivar_size();
1152
1153  return count;
1154}
1155
1156/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1157ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1158  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1159    I = ObjCImpls.find(D);
1160  if (I != ObjCImpls.end())
1161    return cast<ObjCImplementationDecl>(I->second);
1162  return 0;
1163}
1164/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1165ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1166  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1167    I = ObjCImpls.find(D);
1168  if (I != ObjCImpls.end())
1169    return cast<ObjCCategoryImplDecl>(I->second);
1170  return 0;
1171}
1172
1173/// \brief Set the implementation of ObjCInterfaceDecl.
1174void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1175                           ObjCImplementationDecl *ImplD) {
1176  assert(IFaceD && ImplD && "Passed null params");
1177  ObjCImpls[IFaceD] = ImplD;
1178}
1179/// \brief Set the implementation of ObjCCategoryDecl.
1180void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1181                           ObjCCategoryImplDecl *ImplD) {
1182  assert(CatD && ImplD && "Passed null params");
1183  ObjCImpls[CatD] = ImplD;
1184}
1185
1186/// \brief Get the copy initialization expression of VarDecl,or NULL if
1187/// none exists.
1188Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1189  assert(VD && "Passed null params");
1190  assert(VD->hasAttr<BlocksAttr>() &&
1191         "getBlockVarCopyInits - not __block var");
1192  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1193    I = BlockVarCopyInits.find(VD);
1194  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1195}
1196
1197/// \brief Set the copy inialization expression of a block var decl.
1198void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1199  assert(VD && Init && "Passed null params");
1200  assert(VD->hasAttr<BlocksAttr>() &&
1201         "setBlockVarCopyInits - not __block var");
1202  BlockVarCopyInits[VD] = Init;
1203}
1204
1205/// \brief Allocate an uninitialized TypeSourceInfo.
1206///
1207/// The caller should initialize the memory held by TypeSourceInfo using
1208/// the TypeLoc wrappers.
1209///
1210/// \param T the type that will be the basis for type source info. This type
1211/// should refer to how the declarator was written in source code, not to
1212/// what type semantic analysis resolved the declarator to.
1213TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1214                                                 unsigned DataSize) const {
1215  if (!DataSize)
1216    DataSize = TypeLoc::getFullDataSizeForType(T);
1217  else
1218    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1219           "incorrect data size provided to CreateTypeSourceInfo!");
1220
1221  TypeSourceInfo *TInfo =
1222    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1223  new (TInfo) TypeSourceInfo(T);
1224  return TInfo;
1225}
1226
1227TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1228                                                     SourceLocation L) const {
1229  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1230  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1231  return DI;
1232}
1233
1234const ASTRecordLayout &
1235ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1236  return getObjCLayout(D, 0);
1237}
1238
1239const ASTRecordLayout &
1240ASTContext::getASTObjCImplementationLayout(
1241                                        const ObjCImplementationDecl *D) const {
1242  return getObjCLayout(D->getClassInterface(), D);
1243}
1244
1245//===----------------------------------------------------------------------===//
1246//                   Type creation/memoization methods
1247//===----------------------------------------------------------------------===//
1248
1249QualType
1250ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1251  unsigned fastQuals = quals.getFastQualifiers();
1252  quals.removeFastQualifiers();
1253
1254  // Check if we've already instantiated this type.
1255  llvm::FoldingSetNodeID ID;
1256  ExtQuals::Profile(ID, baseType, quals);
1257  void *insertPos = 0;
1258  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1259    assert(eq->getQualifiers() == quals);
1260    return QualType(eq, fastQuals);
1261  }
1262
1263  // If the base type is not canonical, make the appropriate canonical type.
1264  QualType canon;
1265  if (!baseType->isCanonicalUnqualified()) {
1266    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1267    canonSplit.second.addConsistentQualifiers(quals);
1268    canon = getExtQualType(canonSplit.first, canonSplit.second);
1269
1270    // Re-find the insert position.
1271    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1272  }
1273
1274  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1275  ExtQualNodes.InsertNode(eq, insertPos);
1276  return QualType(eq, fastQuals);
1277}
1278
1279QualType
1280ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1281  QualType CanT = getCanonicalType(T);
1282  if (CanT.getAddressSpace() == AddressSpace)
1283    return T;
1284
1285  // If we are composing extended qualifiers together, merge together
1286  // into one ExtQuals node.
1287  QualifierCollector Quals;
1288  const Type *TypeNode = Quals.strip(T);
1289
1290  // If this type already has an address space specified, it cannot get
1291  // another one.
1292  assert(!Quals.hasAddressSpace() &&
1293         "Type cannot be in multiple addr spaces!");
1294  Quals.addAddressSpace(AddressSpace);
1295
1296  return getExtQualType(TypeNode, Quals);
1297}
1298
1299QualType ASTContext::getObjCGCQualType(QualType T,
1300                                       Qualifiers::GC GCAttr) const {
1301  QualType CanT = getCanonicalType(T);
1302  if (CanT.getObjCGCAttr() == GCAttr)
1303    return T;
1304
1305  if (const PointerType *ptr = T->getAs<PointerType>()) {
1306    QualType Pointee = ptr->getPointeeType();
1307    if (Pointee->isAnyPointerType()) {
1308      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1309      return getPointerType(ResultType);
1310    }
1311  }
1312
1313  // If we are composing extended qualifiers together, merge together
1314  // into one ExtQuals node.
1315  QualifierCollector Quals;
1316  const Type *TypeNode = Quals.strip(T);
1317
1318  // If this type already has an ObjCGC specified, it cannot get
1319  // another one.
1320  assert(!Quals.hasObjCGCAttr() &&
1321         "Type cannot have multiple ObjCGCs!");
1322  Quals.addObjCGCAttr(GCAttr);
1323
1324  return getExtQualType(TypeNode, Quals);
1325}
1326
1327const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1328                                                   FunctionType::ExtInfo Info) {
1329  if (T->getExtInfo() == Info)
1330    return T;
1331
1332  QualType Result;
1333  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1334    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1335  } else {
1336    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1337    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1338    EPI.ExtInfo = Info;
1339    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1340                             FPT->getNumArgs(), EPI);
1341  }
1342
1343  return cast<FunctionType>(Result.getTypePtr());
1344}
1345
1346/// getComplexType - Return the uniqued reference to the type for a complex
1347/// number with the specified element type.
1348QualType ASTContext::getComplexType(QualType T) const {
1349  // Unique pointers, to guarantee there is only one pointer of a particular
1350  // structure.
1351  llvm::FoldingSetNodeID ID;
1352  ComplexType::Profile(ID, T);
1353
1354  void *InsertPos = 0;
1355  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1356    return QualType(CT, 0);
1357
1358  // If the pointee type isn't canonical, this won't be a canonical type either,
1359  // so fill in the canonical type field.
1360  QualType Canonical;
1361  if (!T.isCanonical()) {
1362    Canonical = getComplexType(getCanonicalType(T));
1363
1364    // Get the new insert position for the node we care about.
1365    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1366    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1367  }
1368  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1369  Types.push_back(New);
1370  ComplexTypes.InsertNode(New, InsertPos);
1371  return QualType(New, 0);
1372}
1373
1374/// getPointerType - Return the uniqued reference to the type for a pointer to
1375/// the specified type.
1376QualType ASTContext::getPointerType(QualType T) const {
1377  // Unique pointers, to guarantee there is only one pointer of a particular
1378  // structure.
1379  llvm::FoldingSetNodeID ID;
1380  PointerType::Profile(ID, T);
1381
1382  void *InsertPos = 0;
1383  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1384    return QualType(PT, 0);
1385
1386  // If the pointee type isn't canonical, this won't be a canonical type either,
1387  // so fill in the canonical type field.
1388  QualType Canonical;
1389  if (!T.isCanonical()) {
1390    Canonical = getPointerType(getCanonicalType(T));
1391
1392    // Get the new insert position for the node we care about.
1393    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1394    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1395  }
1396  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1397  Types.push_back(New);
1398  PointerTypes.InsertNode(New, InsertPos);
1399  return QualType(New, 0);
1400}
1401
1402/// getBlockPointerType - Return the uniqued reference to the type for
1403/// a pointer to the specified block.
1404QualType ASTContext::getBlockPointerType(QualType T) const {
1405  assert(T->isFunctionType() && "block of function types only");
1406  // Unique pointers, to guarantee there is only one block of a particular
1407  // structure.
1408  llvm::FoldingSetNodeID ID;
1409  BlockPointerType::Profile(ID, T);
1410
1411  void *InsertPos = 0;
1412  if (BlockPointerType *PT =
1413        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1414    return QualType(PT, 0);
1415
1416  // If the block pointee type isn't canonical, this won't be a canonical
1417  // type either so fill in the canonical type field.
1418  QualType Canonical;
1419  if (!T.isCanonical()) {
1420    Canonical = getBlockPointerType(getCanonicalType(T));
1421
1422    // Get the new insert position for the node we care about.
1423    BlockPointerType *NewIP =
1424      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1425    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1426  }
1427  BlockPointerType *New
1428    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1429  Types.push_back(New);
1430  BlockPointerTypes.InsertNode(New, InsertPos);
1431  return QualType(New, 0);
1432}
1433
1434/// getLValueReferenceType - Return the uniqued reference to the type for an
1435/// lvalue reference to the specified type.
1436QualType
1437ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1438  assert(getCanonicalType(T) != OverloadTy &&
1439         "Unresolved overloaded function type");
1440
1441  // Unique pointers, to guarantee there is only one pointer of a particular
1442  // structure.
1443  llvm::FoldingSetNodeID ID;
1444  ReferenceType::Profile(ID, T, SpelledAsLValue);
1445
1446  void *InsertPos = 0;
1447  if (LValueReferenceType *RT =
1448        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1449    return QualType(RT, 0);
1450
1451  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1452
1453  // If the referencee type isn't canonical, this won't be a canonical type
1454  // either, so fill in the canonical type field.
1455  QualType Canonical;
1456  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1457    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1458    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1459
1460    // Get the new insert position for the node we care about.
1461    LValueReferenceType *NewIP =
1462      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1463    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1464  }
1465
1466  LValueReferenceType *New
1467    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1468                                                     SpelledAsLValue);
1469  Types.push_back(New);
1470  LValueReferenceTypes.InsertNode(New, InsertPos);
1471
1472  return QualType(New, 0);
1473}
1474
1475/// getRValueReferenceType - Return the uniqued reference to the type for an
1476/// rvalue reference to the specified type.
1477QualType ASTContext::getRValueReferenceType(QualType T) const {
1478  // Unique pointers, to guarantee there is only one pointer of a particular
1479  // structure.
1480  llvm::FoldingSetNodeID ID;
1481  ReferenceType::Profile(ID, T, false);
1482
1483  void *InsertPos = 0;
1484  if (RValueReferenceType *RT =
1485        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1486    return QualType(RT, 0);
1487
1488  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1489
1490  // If the referencee type isn't canonical, this won't be a canonical type
1491  // either, so fill in the canonical type field.
1492  QualType Canonical;
1493  if (InnerRef || !T.isCanonical()) {
1494    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1495    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1496
1497    // Get the new insert position for the node we care about.
1498    RValueReferenceType *NewIP =
1499      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1500    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1501  }
1502
1503  RValueReferenceType *New
1504    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1505  Types.push_back(New);
1506  RValueReferenceTypes.InsertNode(New, InsertPos);
1507  return QualType(New, 0);
1508}
1509
1510/// getMemberPointerType - Return the uniqued reference to the type for a
1511/// member pointer to the specified type, in the specified class.
1512QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1513  // Unique pointers, to guarantee there is only one pointer of a particular
1514  // structure.
1515  llvm::FoldingSetNodeID ID;
1516  MemberPointerType::Profile(ID, T, Cls);
1517
1518  void *InsertPos = 0;
1519  if (MemberPointerType *PT =
1520      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1521    return QualType(PT, 0);
1522
1523  // If the pointee or class type isn't canonical, this won't be a canonical
1524  // type either, so fill in the canonical type field.
1525  QualType Canonical;
1526  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1527    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1528
1529    // Get the new insert position for the node we care about.
1530    MemberPointerType *NewIP =
1531      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1532    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1533  }
1534  MemberPointerType *New
1535    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1536  Types.push_back(New);
1537  MemberPointerTypes.InsertNode(New, InsertPos);
1538  return QualType(New, 0);
1539}
1540
1541/// getConstantArrayType - Return the unique reference to the type for an
1542/// array of the specified element type.
1543QualType ASTContext::getConstantArrayType(QualType EltTy,
1544                                          const llvm::APInt &ArySizeIn,
1545                                          ArrayType::ArraySizeModifier ASM,
1546                                          unsigned IndexTypeQuals) const {
1547  assert((EltTy->isDependentType() ||
1548          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1549         "Constant array of VLAs is illegal!");
1550
1551  // Convert the array size into a canonical width matching the pointer size for
1552  // the target.
1553  llvm::APInt ArySize(ArySizeIn);
1554  ArySize =
1555    ArySize.zextOrTrunc(Target.getPointerWidth(getTargetAddressSpace(EltTy)));
1556
1557  llvm::FoldingSetNodeID ID;
1558  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1559
1560  void *InsertPos = 0;
1561  if (ConstantArrayType *ATP =
1562      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1563    return QualType(ATP, 0);
1564
1565  // If the element type isn't canonical or has qualifiers, this won't
1566  // be a canonical type either, so fill in the canonical type field.
1567  QualType Canon;
1568  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1569    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1570    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1571                                 ASM, IndexTypeQuals);
1572    Canon = getQualifiedType(Canon, canonSplit.second);
1573
1574    // Get the new insert position for the node we care about.
1575    ConstantArrayType *NewIP =
1576      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1577    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1578  }
1579
1580  ConstantArrayType *New = new(*this,TypeAlignment)
1581    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1582  ConstantArrayTypes.InsertNode(New, InsertPos);
1583  Types.push_back(New);
1584  return QualType(New, 0);
1585}
1586
1587/// getVariableArrayDecayedType - Turns the given type, which may be
1588/// variably-modified, into the corresponding type with all the known
1589/// sizes replaced with [*].
1590QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1591  // Vastly most common case.
1592  if (!type->isVariablyModifiedType()) return type;
1593
1594  QualType result;
1595
1596  SplitQualType split = type.getSplitDesugaredType();
1597  const Type *ty = split.first;
1598  switch (ty->getTypeClass()) {
1599#define TYPE(Class, Base)
1600#define ABSTRACT_TYPE(Class, Base)
1601#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1602#include "clang/AST/TypeNodes.def"
1603    llvm_unreachable("didn't desugar past all non-canonical types?");
1604
1605  // These types should never be variably-modified.
1606  case Type::Builtin:
1607  case Type::Complex:
1608  case Type::Vector:
1609  case Type::ExtVector:
1610  case Type::DependentSizedExtVector:
1611  case Type::ObjCObject:
1612  case Type::ObjCInterface:
1613  case Type::ObjCObjectPointer:
1614  case Type::Record:
1615  case Type::Enum:
1616  case Type::UnresolvedUsing:
1617  case Type::TypeOfExpr:
1618  case Type::TypeOf:
1619  case Type::Decltype:
1620  case Type::UnaryTransform:
1621  case Type::DependentName:
1622  case Type::InjectedClassName:
1623  case Type::TemplateSpecialization:
1624  case Type::DependentTemplateSpecialization:
1625  case Type::TemplateTypeParm:
1626  case Type::SubstTemplateTypeParmPack:
1627  case Type::Auto:
1628  case Type::PackExpansion:
1629    llvm_unreachable("type should never be variably-modified");
1630
1631  // These types can be variably-modified but should never need to
1632  // further decay.
1633  case Type::FunctionNoProto:
1634  case Type::FunctionProto:
1635  case Type::BlockPointer:
1636  case Type::MemberPointer:
1637    return type;
1638
1639  // These types can be variably-modified.  All these modifications
1640  // preserve structure except as noted by comments.
1641  // TODO: if we ever care about optimizing VLAs, there are no-op
1642  // optimizations available here.
1643  case Type::Pointer:
1644    result = getPointerType(getVariableArrayDecayedType(
1645                              cast<PointerType>(ty)->getPointeeType()));
1646    break;
1647
1648  case Type::LValueReference: {
1649    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1650    result = getLValueReferenceType(
1651                 getVariableArrayDecayedType(lv->getPointeeType()),
1652                                    lv->isSpelledAsLValue());
1653    break;
1654  }
1655
1656  case Type::RValueReference: {
1657    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1658    result = getRValueReferenceType(
1659                 getVariableArrayDecayedType(lv->getPointeeType()));
1660    break;
1661  }
1662
1663  case Type::ConstantArray: {
1664    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1665    result = getConstantArrayType(
1666                 getVariableArrayDecayedType(cat->getElementType()),
1667                                  cat->getSize(),
1668                                  cat->getSizeModifier(),
1669                                  cat->getIndexTypeCVRQualifiers());
1670    break;
1671  }
1672
1673  case Type::DependentSizedArray: {
1674    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1675    result = getDependentSizedArrayType(
1676                 getVariableArrayDecayedType(dat->getElementType()),
1677                                        dat->getSizeExpr(),
1678                                        dat->getSizeModifier(),
1679                                        dat->getIndexTypeCVRQualifiers(),
1680                                        dat->getBracketsRange());
1681    break;
1682  }
1683
1684  // Turn incomplete types into [*] types.
1685  case Type::IncompleteArray: {
1686    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1687    result = getVariableArrayType(
1688                 getVariableArrayDecayedType(iat->getElementType()),
1689                                  /*size*/ 0,
1690                                  ArrayType::Normal,
1691                                  iat->getIndexTypeCVRQualifiers(),
1692                                  SourceRange());
1693    break;
1694  }
1695
1696  // Turn VLA types into [*] types.
1697  case Type::VariableArray: {
1698    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1699    result = getVariableArrayType(
1700                 getVariableArrayDecayedType(vat->getElementType()),
1701                                  /*size*/ 0,
1702                                  ArrayType::Star,
1703                                  vat->getIndexTypeCVRQualifiers(),
1704                                  vat->getBracketsRange());
1705    break;
1706  }
1707  }
1708
1709  // Apply the top-level qualifiers from the original.
1710  return getQualifiedType(result, split.second);
1711}
1712
1713/// getVariableArrayType - Returns a non-unique reference to the type for a
1714/// variable array of the specified element type.
1715QualType ASTContext::getVariableArrayType(QualType EltTy,
1716                                          Expr *NumElts,
1717                                          ArrayType::ArraySizeModifier ASM,
1718                                          unsigned IndexTypeQuals,
1719                                          SourceRange Brackets) const {
1720  // Since we don't unique expressions, it isn't possible to unique VLA's
1721  // that have an expression provided for their size.
1722  QualType Canon;
1723
1724  // Be sure to pull qualifiers off the element type.
1725  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1726    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1727    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1728                                 IndexTypeQuals, Brackets);
1729    Canon = getQualifiedType(Canon, canonSplit.second);
1730  }
1731
1732  VariableArrayType *New = new(*this, TypeAlignment)
1733    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1734
1735  VariableArrayTypes.push_back(New);
1736  Types.push_back(New);
1737  return QualType(New, 0);
1738}
1739
1740/// getDependentSizedArrayType - Returns a non-unique reference to
1741/// the type for a dependently-sized array of the specified element
1742/// type.
1743QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1744                                                Expr *numElements,
1745                                                ArrayType::ArraySizeModifier ASM,
1746                                                unsigned elementTypeQuals,
1747                                                SourceRange brackets) const {
1748  assert((!numElements || numElements->isTypeDependent() ||
1749          numElements->isValueDependent()) &&
1750         "Size must be type- or value-dependent!");
1751
1752  // Dependently-sized array types that do not have a specified number
1753  // of elements will have their sizes deduced from a dependent
1754  // initializer.  We do no canonicalization here at all, which is okay
1755  // because they can't be used in most locations.
1756  if (!numElements) {
1757    DependentSizedArrayType *newType
1758      = new (*this, TypeAlignment)
1759          DependentSizedArrayType(*this, elementType, QualType(),
1760                                  numElements, ASM, elementTypeQuals,
1761                                  brackets);
1762    Types.push_back(newType);
1763    return QualType(newType, 0);
1764  }
1765
1766  // Otherwise, we actually build a new type every time, but we
1767  // also build a canonical type.
1768
1769  SplitQualType canonElementType = getCanonicalType(elementType).split();
1770
1771  void *insertPos = 0;
1772  llvm::FoldingSetNodeID ID;
1773  DependentSizedArrayType::Profile(ID, *this,
1774                                   QualType(canonElementType.first, 0),
1775                                   ASM, elementTypeQuals, numElements);
1776
1777  // Look for an existing type with these properties.
1778  DependentSizedArrayType *canonTy =
1779    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1780
1781  // If we don't have one, build one.
1782  if (!canonTy) {
1783    canonTy = new (*this, TypeAlignment)
1784      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1785                              QualType(), numElements, ASM, elementTypeQuals,
1786                              brackets);
1787    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1788    Types.push_back(canonTy);
1789  }
1790
1791  // Apply qualifiers from the element type to the array.
1792  QualType canon = getQualifiedType(QualType(canonTy,0),
1793                                    canonElementType.second);
1794
1795  // If we didn't need extra canonicalization for the element type,
1796  // then just use that as our result.
1797  if (QualType(canonElementType.first, 0) == elementType)
1798    return canon;
1799
1800  // Otherwise, we need to build a type which follows the spelling
1801  // of the element type.
1802  DependentSizedArrayType *sugaredType
1803    = new (*this, TypeAlignment)
1804        DependentSizedArrayType(*this, elementType, canon, numElements,
1805                                ASM, elementTypeQuals, brackets);
1806  Types.push_back(sugaredType);
1807  return QualType(sugaredType, 0);
1808}
1809
1810QualType ASTContext::getIncompleteArrayType(QualType elementType,
1811                                            ArrayType::ArraySizeModifier ASM,
1812                                            unsigned elementTypeQuals) const {
1813  llvm::FoldingSetNodeID ID;
1814  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1815
1816  void *insertPos = 0;
1817  if (IncompleteArrayType *iat =
1818       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1819    return QualType(iat, 0);
1820
1821  // If the element type isn't canonical, this won't be a canonical type
1822  // either, so fill in the canonical type field.  We also have to pull
1823  // qualifiers off the element type.
1824  QualType canon;
1825
1826  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1827    SplitQualType canonSplit = getCanonicalType(elementType).split();
1828    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1829                                   ASM, elementTypeQuals);
1830    canon = getQualifiedType(canon, canonSplit.second);
1831
1832    // Get the new insert position for the node we care about.
1833    IncompleteArrayType *existing =
1834      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1835    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1836  }
1837
1838  IncompleteArrayType *newType = new (*this, TypeAlignment)
1839    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1840
1841  IncompleteArrayTypes.InsertNode(newType, insertPos);
1842  Types.push_back(newType);
1843  return QualType(newType, 0);
1844}
1845
1846/// getVectorType - Return the unique reference to a vector type of
1847/// the specified element type and size. VectorType must be a built-in type.
1848QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1849                                   VectorType::VectorKind VecKind) const {
1850  assert(vecType->isBuiltinType());
1851
1852  // Check if we've already instantiated a vector of this type.
1853  llvm::FoldingSetNodeID ID;
1854  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1855
1856  void *InsertPos = 0;
1857  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1858    return QualType(VTP, 0);
1859
1860  // If the element type isn't canonical, this won't be a canonical type either,
1861  // so fill in the canonical type field.
1862  QualType Canonical;
1863  if (!vecType.isCanonical()) {
1864    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1865
1866    // Get the new insert position for the node we care about.
1867    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1868    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1869  }
1870  VectorType *New = new (*this, TypeAlignment)
1871    VectorType(vecType, NumElts, Canonical, VecKind);
1872  VectorTypes.InsertNode(New, InsertPos);
1873  Types.push_back(New);
1874  return QualType(New, 0);
1875}
1876
1877/// getExtVectorType - Return the unique reference to an extended vector type of
1878/// the specified element type and size. VectorType must be a built-in type.
1879QualType
1880ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1881  assert(vecType->isBuiltinType() || vecType->isDependentType());
1882
1883  // Check if we've already instantiated a vector of this type.
1884  llvm::FoldingSetNodeID ID;
1885  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1886                      VectorType::GenericVector);
1887  void *InsertPos = 0;
1888  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1889    return QualType(VTP, 0);
1890
1891  // If the element type isn't canonical, this won't be a canonical type either,
1892  // so fill in the canonical type field.
1893  QualType Canonical;
1894  if (!vecType.isCanonical()) {
1895    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1896
1897    // Get the new insert position for the node we care about.
1898    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1899    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1900  }
1901  ExtVectorType *New = new (*this, TypeAlignment)
1902    ExtVectorType(vecType, NumElts, Canonical);
1903  VectorTypes.InsertNode(New, InsertPos);
1904  Types.push_back(New);
1905  return QualType(New, 0);
1906}
1907
1908QualType
1909ASTContext::getDependentSizedExtVectorType(QualType vecType,
1910                                           Expr *SizeExpr,
1911                                           SourceLocation AttrLoc) const {
1912  llvm::FoldingSetNodeID ID;
1913  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1914                                       SizeExpr);
1915
1916  void *InsertPos = 0;
1917  DependentSizedExtVectorType *Canon
1918    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1919  DependentSizedExtVectorType *New;
1920  if (Canon) {
1921    // We already have a canonical version of this array type; use it as
1922    // the canonical type for a newly-built type.
1923    New = new (*this, TypeAlignment)
1924      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1925                                  SizeExpr, AttrLoc);
1926  } else {
1927    QualType CanonVecTy = getCanonicalType(vecType);
1928    if (CanonVecTy == vecType) {
1929      New = new (*this, TypeAlignment)
1930        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1931                                    AttrLoc);
1932
1933      DependentSizedExtVectorType *CanonCheck
1934        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1935      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1936      (void)CanonCheck;
1937      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1938    } else {
1939      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1940                                                      SourceLocation());
1941      New = new (*this, TypeAlignment)
1942        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1943    }
1944  }
1945
1946  Types.push_back(New);
1947  return QualType(New, 0);
1948}
1949
1950/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1951///
1952QualType
1953ASTContext::getFunctionNoProtoType(QualType ResultTy,
1954                                   const FunctionType::ExtInfo &Info) const {
1955  const CallingConv DefaultCC = Info.getCC();
1956  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1957                               CC_X86StdCall : DefaultCC;
1958  // Unique functions, to guarantee there is only one function of a particular
1959  // structure.
1960  llvm::FoldingSetNodeID ID;
1961  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1962
1963  void *InsertPos = 0;
1964  if (FunctionNoProtoType *FT =
1965        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1966    return QualType(FT, 0);
1967
1968  QualType Canonical;
1969  if (!ResultTy.isCanonical() ||
1970      getCanonicalCallConv(CallConv) != CallConv) {
1971    Canonical =
1972      getFunctionNoProtoType(getCanonicalType(ResultTy),
1973                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1974
1975    // Get the new insert position for the node we care about.
1976    FunctionNoProtoType *NewIP =
1977      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1978    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1979  }
1980
1981  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
1982  FunctionNoProtoType *New = new (*this, TypeAlignment)
1983    FunctionNoProtoType(ResultTy, Canonical, newInfo);
1984  Types.push_back(New);
1985  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1986  return QualType(New, 0);
1987}
1988
1989/// getFunctionType - Return a normal function type with a typed argument
1990/// list.  isVariadic indicates whether the argument list includes '...'.
1991QualType
1992ASTContext::getFunctionType(QualType ResultTy,
1993                            const QualType *ArgArray, unsigned NumArgs,
1994                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1995  // Unique functions, to guarantee there is only one function of a particular
1996  // structure.
1997  llvm::FoldingSetNodeID ID;
1998  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
1999
2000  void *InsertPos = 0;
2001  if (FunctionProtoType *FTP =
2002        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2003    return QualType(FTP, 0);
2004
2005  // Determine whether the type being created is already canonical or not.
2006  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
2007  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2008    if (!ArgArray[i].isCanonicalAsParam())
2009      isCanonical = false;
2010
2011  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2012  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2013                               CC_X86StdCall : DefaultCC;
2014
2015  // If this type isn't canonical, get the canonical version of it.
2016  // The exception spec is not part of the canonical type.
2017  QualType Canonical;
2018  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2019    SmallVector<QualType, 16> CanonicalArgs;
2020    CanonicalArgs.reserve(NumArgs);
2021    for (unsigned i = 0; i != NumArgs; ++i)
2022      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2023
2024    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2025    CanonicalEPI.ExceptionSpecType = EST_None;
2026    CanonicalEPI.NumExceptions = 0;
2027    CanonicalEPI.ExtInfo
2028      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2029
2030    Canonical = getFunctionType(getCanonicalType(ResultTy),
2031                                CanonicalArgs.data(), NumArgs,
2032                                CanonicalEPI);
2033
2034    // Get the new insert position for the node we care about.
2035    FunctionProtoType *NewIP =
2036      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2037    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2038  }
2039
2040  // FunctionProtoType objects are allocated with extra bytes after
2041  // them for three variable size arrays at the end:
2042  //  - parameter types
2043  //  - exception types
2044  //  - consumed-arguments flags
2045  // Instead of the exception types, there could be a noexcept
2046  // expression.
2047  size_t Size = sizeof(FunctionProtoType) +
2048                NumArgs * sizeof(QualType);
2049  if (EPI.ExceptionSpecType == EST_Dynamic)
2050    Size += EPI.NumExceptions * sizeof(QualType);
2051  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2052    Size += sizeof(Expr*);
2053  }
2054  if (EPI.ConsumedArguments)
2055    Size += NumArgs * sizeof(bool);
2056
2057  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2058  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2059  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2060  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2061  Types.push_back(FTP);
2062  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2063  return QualType(FTP, 0);
2064}
2065
2066#ifndef NDEBUG
2067static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2068  if (!isa<CXXRecordDecl>(D)) return false;
2069  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2070  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2071    return true;
2072  if (RD->getDescribedClassTemplate() &&
2073      !isa<ClassTemplateSpecializationDecl>(RD))
2074    return true;
2075  return false;
2076}
2077#endif
2078
2079/// getInjectedClassNameType - Return the unique reference to the
2080/// injected class name type for the specified templated declaration.
2081QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2082                                              QualType TST) const {
2083  assert(NeedsInjectedClassNameType(Decl));
2084  if (Decl->TypeForDecl) {
2085    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2086  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
2087    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2088    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2089    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2090  } else {
2091    Type *newType =
2092      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2093    Decl->TypeForDecl = newType;
2094    Types.push_back(newType);
2095  }
2096  return QualType(Decl->TypeForDecl, 0);
2097}
2098
2099/// getTypeDeclType - Return the unique reference to the type for the
2100/// specified type declaration.
2101QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2102  assert(Decl && "Passed null for Decl param");
2103  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2104
2105  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2106    return getTypedefType(Typedef);
2107
2108  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2109         "Template type parameter types are always available.");
2110
2111  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2112    assert(!Record->getPreviousDeclaration() &&
2113           "struct/union has previous declaration");
2114    assert(!NeedsInjectedClassNameType(Record));
2115    return getRecordType(Record);
2116  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2117    assert(!Enum->getPreviousDeclaration() &&
2118           "enum has previous declaration");
2119    return getEnumType(Enum);
2120  } else if (const UnresolvedUsingTypenameDecl *Using =
2121               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2122    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2123    Decl->TypeForDecl = newType;
2124    Types.push_back(newType);
2125  } else
2126    llvm_unreachable("TypeDecl without a type?");
2127
2128  return QualType(Decl->TypeForDecl, 0);
2129}
2130
2131/// getTypedefType - Return the unique reference to the type for the
2132/// specified typedef name decl.
2133QualType
2134ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2135                           QualType Canonical) const {
2136  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2137
2138  if (Canonical.isNull())
2139    Canonical = getCanonicalType(Decl->getUnderlyingType());
2140  TypedefType *newType = new(*this, TypeAlignment)
2141    TypedefType(Type::Typedef, Decl, Canonical);
2142  Decl->TypeForDecl = newType;
2143  Types.push_back(newType);
2144  return QualType(newType, 0);
2145}
2146
2147QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2148  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2149
2150  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2151    if (PrevDecl->TypeForDecl)
2152      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2153
2154  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2155  Decl->TypeForDecl = newType;
2156  Types.push_back(newType);
2157  return QualType(newType, 0);
2158}
2159
2160QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2161  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2162
2163  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2164    if (PrevDecl->TypeForDecl)
2165      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2166
2167  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2168  Decl->TypeForDecl = newType;
2169  Types.push_back(newType);
2170  return QualType(newType, 0);
2171}
2172
2173QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2174                                       QualType modifiedType,
2175                                       QualType equivalentType) {
2176  llvm::FoldingSetNodeID id;
2177  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2178
2179  void *insertPos = 0;
2180  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2181  if (type) return QualType(type, 0);
2182
2183  QualType canon = getCanonicalType(equivalentType);
2184  type = new (*this, TypeAlignment)
2185           AttributedType(canon, attrKind, modifiedType, equivalentType);
2186
2187  Types.push_back(type);
2188  AttributedTypes.InsertNode(type, insertPos);
2189
2190  return QualType(type, 0);
2191}
2192
2193
2194/// \brief Retrieve a substitution-result type.
2195QualType
2196ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2197                                         QualType Replacement) const {
2198  assert(Replacement.isCanonical()
2199         && "replacement types must always be canonical");
2200
2201  llvm::FoldingSetNodeID ID;
2202  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2203  void *InsertPos = 0;
2204  SubstTemplateTypeParmType *SubstParm
2205    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2206
2207  if (!SubstParm) {
2208    SubstParm = new (*this, TypeAlignment)
2209      SubstTemplateTypeParmType(Parm, Replacement);
2210    Types.push_back(SubstParm);
2211    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2212  }
2213
2214  return QualType(SubstParm, 0);
2215}
2216
2217/// \brief Retrieve a
2218QualType ASTContext::getSubstTemplateTypeParmPackType(
2219                                          const TemplateTypeParmType *Parm,
2220                                              const TemplateArgument &ArgPack) {
2221#ifndef NDEBUG
2222  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2223                                    PEnd = ArgPack.pack_end();
2224       P != PEnd; ++P) {
2225    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2226    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2227  }
2228#endif
2229
2230  llvm::FoldingSetNodeID ID;
2231  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2232  void *InsertPos = 0;
2233  if (SubstTemplateTypeParmPackType *SubstParm
2234        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2235    return QualType(SubstParm, 0);
2236
2237  QualType Canon;
2238  if (!Parm->isCanonicalUnqualified()) {
2239    Canon = getCanonicalType(QualType(Parm, 0));
2240    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2241                                             ArgPack);
2242    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2243  }
2244
2245  SubstTemplateTypeParmPackType *SubstParm
2246    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2247                                                               ArgPack);
2248  Types.push_back(SubstParm);
2249  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2250  return QualType(SubstParm, 0);
2251}
2252
2253/// \brief Retrieve the template type parameter type for a template
2254/// parameter or parameter pack with the given depth, index, and (optionally)
2255/// name.
2256QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2257                                             bool ParameterPack,
2258                                             TemplateTypeParmDecl *TTPDecl) const {
2259  llvm::FoldingSetNodeID ID;
2260  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2261  void *InsertPos = 0;
2262  TemplateTypeParmType *TypeParm
2263    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2264
2265  if (TypeParm)
2266    return QualType(TypeParm, 0);
2267
2268  if (TTPDecl) {
2269    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2270    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2271
2272    TemplateTypeParmType *TypeCheck
2273      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2274    assert(!TypeCheck && "Template type parameter canonical type broken");
2275    (void)TypeCheck;
2276  } else
2277    TypeParm = new (*this, TypeAlignment)
2278      TemplateTypeParmType(Depth, Index, ParameterPack);
2279
2280  Types.push_back(TypeParm);
2281  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2282
2283  return QualType(TypeParm, 0);
2284}
2285
2286TypeSourceInfo *
2287ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2288                                              SourceLocation NameLoc,
2289                                        const TemplateArgumentListInfo &Args,
2290                                              QualType Underlying) const {
2291  assert(!Name.getAsDependentTemplateName() &&
2292         "No dependent template names here!");
2293  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2294
2295  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2296  TemplateSpecializationTypeLoc TL
2297    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2298  TL.setTemplateNameLoc(NameLoc);
2299  TL.setLAngleLoc(Args.getLAngleLoc());
2300  TL.setRAngleLoc(Args.getRAngleLoc());
2301  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2302    TL.setArgLocInfo(i, Args[i].getLocInfo());
2303  return DI;
2304}
2305
2306QualType
2307ASTContext::getTemplateSpecializationType(TemplateName Template,
2308                                          const TemplateArgumentListInfo &Args,
2309                                          QualType Underlying) const {
2310  assert(!Template.getAsDependentTemplateName() &&
2311         "No dependent template names here!");
2312
2313  unsigned NumArgs = Args.size();
2314
2315  SmallVector<TemplateArgument, 4> ArgVec;
2316  ArgVec.reserve(NumArgs);
2317  for (unsigned i = 0; i != NumArgs; ++i)
2318    ArgVec.push_back(Args[i].getArgument());
2319
2320  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2321                                       Underlying);
2322}
2323
2324QualType
2325ASTContext::getTemplateSpecializationType(TemplateName Template,
2326                                          const TemplateArgument *Args,
2327                                          unsigned NumArgs,
2328                                          QualType Underlying) const {
2329  assert(!Template.getAsDependentTemplateName() &&
2330         "No dependent template names here!");
2331  // Look through qualified template names.
2332  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2333    Template = TemplateName(QTN->getTemplateDecl());
2334
2335  bool isTypeAlias =
2336    Template.getAsTemplateDecl() &&
2337    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2338
2339  QualType CanonType;
2340  if (!Underlying.isNull())
2341    CanonType = getCanonicalType(Underlying);
2342  else {
2343    assert(!isTypeAlias &&
2344           "Underlying type for template alias must be computed by caller");
2345    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2346                                                       NumArgs);
2347  }
2348
2349  // Allocate the (non-canonical) template specialization type, but don't
2350  // try to unique it: these types typically have location information that
2351  // we don't unique and don't want to lose.
2352  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2353                       sizeof(TemplateArgument) * NumArgs +
2354                       (isTypeAlias ? sizeof(QualType) : 0),
2355                       TypeAlignment);
2356  TemplateSpecializationType *Spec
2357    = new (Mem) TemplateSpecializationType(Template,
2358                                           Args, NumArgs,
2359                                           CanonType,
2360                                         isTypeAlias ? Underlying : QualType());
2361
2362  Types.push_back(Spec);
2363  return QualType(Spec, 0);
2364}
2365
2366QualType
2367ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2368                                                   const TemplateArgument *Args,
2369                                                   unsigned NumArgs) const {
2370  assert(!Template.getAsDependentTemplateName() &&
2371         "No dependent template names here!");
2372  assert((!Template.getAsTemplateDecl() ||
2373          !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2374         "Underlying type for template alias must be computed by caller");
2375
2376  // Look through qualified template names.
2377  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2378    Template = TemplateName(QTN->getTemplateDecl());
2379
2380  // Build the canonical template specialization type.
2381  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2382  SmallVector<TemplateArgument, 4> CanonArgs;
2383  CanonArgs.reserve(NumArgs);
2384  for (unsigned I = 0; I != NumArgs; ++I)
2385    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2386
2387  // Determine whether this canonical template specialization type already
2388  // exists.
2389  llvm::FoldingSetNodeID ID;
2390  TemplateSpecializationType::Profile(ID, CanonTemplate,
2391                                      CanonArgs.data(), NumArgs, *this);
2392
2393  void *InsertPos = 0;
2394  TemplateSpecializationType *Spec
2395    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2396
2397  if (!Spec) {
2398    // Allocate a new canonical template specialization type.
2399    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2400                          sizeof(TemplateArgument) * NumArgs),
2401                         TypeAlignment);
2402    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2403                                                CanonArgs.data(), NumArgs,
2404                                                QualType(), QualType());
2405    Types.push_back(Spec);
2406    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2407  }
2408
2409  assert(Spec->isDependentType() &&
2410         "Non-dependent template-id type must have a canonical type");
2411  return QualType(Spec, 0);
2412}
2413
2414QualType
2415ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2416                              NestedNameSpecifier *NNS,
2417                              QualType NamedType) const {
2418  llvm::FoldingSetNodeID ID;
2419  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2420
2421  void *InsertPos = 0;
2422  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2423  if (T)
2424    return QualType(T, 0);
2425
2426  QualType Canon = NamedType;
2427  if (!Canon.isCanonical()) {
2428    Canon = getCanonicalType(NamedType);
2429    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2430    assert(!CheckT && "Elaborated canonical type broken");
2431    (void)CheckT;
2432  }
2433
2434  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2435  Types.push_back(T);
2436  ElaboratedTypes.InsertNode(T, InsertPos);
2437  return QualType(T, 0);
2438}
2439
2440QualType
2441ASTContext::getParenType(QualType InnerType) const {
2442  llvm::FoldingSetNodeID ID;
2443  ParenType::Profile(ID, InnerType);
2444
2445  void *InsertPos = 0;
2446  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2447  if (T)
2448    return QualType(T, 0);
2449
2450  QualType Canon = InnerType;
2451  if (!Canon.isCanonical()) {
2452    Canon = getCanonicalType(InnerType);
2453    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2454    assert(!CheckT && "Paren canonical type broken");
2455    (void)CheckT;
2456  }
2457
2458  T = new (*this) ParenType(InnerType, Canon);
2459  Types.push_back(T);
2460  ParenTypes.InsertNode(T, InsertPos);
2461  return QualType(T, 0);
2462}
2463
2464QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2465                                          NestedNameSpecifier *NNS,
2466                                          const IdentifierInfo *Name,
2467                                          QualType Canon) const {
2468  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2469
2470  if (Canon.isNull()) {
2471    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2472    ElaboratedTypeKeyword CanonKeyword = Keyword;
2473    if (Keyword == ETK_None)
2474      CanonKeyword = ETK_Typename;
2475
2476    if (CanonNNS != NNS || CanonKeyword != Keyword)
2477      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2478  }
2479
2480  llvm::FoldingSetNodeID ID;
2481  DependentNameType::Profile(ID, Keyword, NNS, Name);
2482
2483  void *InsertPos = 0;
2484  DependentNameType *T
2485    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2486  if (T)
2487    return QualType(T, 0);
2488
2489  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2490  Types.push_back(T);
2491  DependentNameTypes.InsertNode(T, InsertPos);
2492  return QualType(T, 0);
2493}
2494
2495QualType
2496ASTContext::getDependentTemplateSpecializationType(
2497                                 ElaboratedTypeKeyword Keyword,
2498                                 NestedNameSpecifier *NNS,
2499                                 const IdentifierInfo *Name,
2500                                 const TemplateArgumentListInfo &Args) const {
2501  // TODO: avoid this copy
2502  SmallVector<TemplateArgument, 16> ArgCopy;
2503  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2504    ArgCopy.push_back(Args[I].getArgument());
2505  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2506                                                ArgCopy.size(),
2507                                                ArgCopy.data());
2508}
2509
2510QualType
2511ASTContext::getDependentTemplateSpecializationType(
2512                                 ElaboratedTypeKeyword Keyword,
2513                                 NestedNameSpecifier *NNS,
2514                                 const IdentifierInfo *Name,
2515                                 unsigned NumArgs,
2516                                 const TemplateArgument *Args) const {
2517  assert((!NNS || NNS->isDependent()) &&
2518         "nested-name-specifier must be dependent");
2519
2520  llvm::FoldingSetNodeID ID;
2521  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2522                                               Name, NumArgs, Args);
2523
2524  void *InsertPos = 0;
2525  DependentTemplateSpecializationType *T
2526    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2527  if (T)
2528    return QualType(T, 0);
2529
2530  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2531
2532  ElaboratedTypeKeyword CanonKeyword = Keyword;
2533  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2534
2535  bool AnyNonCanonArgs = false;
2536  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2537  for (unsigned I = 0; I != NumArgs; ++I) {
2538    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2539    if (!CanonArgs[I].structurallyEquals(Args[I]))
2540      AnyNonCanonArgs = true;
2541  }
2542
2543  QualType Canon;
2544  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2545    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2546                                                   Name, NumArgs,
2547                                                   CanonArgs.data());
2548
2549    // Find the insert position again.
2550    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2551  }
2552
2553  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2554                        sizeof(TemplateArgument) * NumArgs),
2555                       TypeAlignment);
2556  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2557                                                    Name, NumArgs, Args, Canon);
2558  Types.push_back(T);
2559  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2560  return QualType(T, 0);
2561}
2562
2563QualType ASTContext::getPackExpansionType(QualType Pattern,
2564                                      llvm::Optional<unsigned> NumExpansions) {
2565  llvm::FoldingSetNodeID ID;
2566  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2567
2568  assert(Pattern->containsUnexpandedParameterPack() &&
2569         "Pack expansions must expand one or more parameter packs");
2570  void *InsertPos = 0;
2571  PackExpansionType *T
2572    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2573  if (T)
2574    return QualType(T, 0);
2575
2576  QualType Canon;
2577  if (!Pattern.isCanonical()) {
2578    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2579
2580    // Find the insert position again.
2581    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2582  }
2583
2584  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2585  Types.push_back(T);
2586  PackExpansionTypes.InsertNode(T, InsertPos);
2587  return QualType(T, 0);
2588}
2589
2590/// CmpProtocolNames - Comparison predicate for sorting protocols
2591/// alphabetically.
2592static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2593                            const ObjCProtocolDecl *RHS) {
2594  return LHS->getDeclName() < RHS->getDeclName();
2595}
2596
2597static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2598                                unsigned NumProtocols) {
2599  if (NumProtocols == 0) return true;
2600
2601  for (unsigned i = 1; i != NumProtocols; ++i)
2602    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2603      return false;
2604  return true;
2605}
2606
2607static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2608                                   unsigned &NumProtocols) {
2609  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2610
2611  // Sort protocols, keyed by name.
2612  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2613
2614  // Remove duplicates.
2615  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2616  NumProtocols = ProtocolsEnd-Protocols;
2617}
2618
2619QualType ASTContext::getObjCObjectType(QualType BaseType,
2620                                       ObjCProtocolDecl * const *Protocols,
2621                                       unsigned NumProtocols) const {
2622  // If the base type is an interface and there aren't any protocols
2623  // to add, then the interface type will do just fine.
2624  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2625    return BaseType;
2626
2627  // Look in the folding set for an existing type.
2628  llvm::FoldingSetNodeID ID;
2629  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2630  void *InsertPos = 0;
2631  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2632    return QualType(QT, 0);
2633
2634  // Build the canonical type, which has the canonical base type and
2635  // a sorted-and-uniqued list of protocols.
2636  QualType Canonical;
2637  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2638  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2639    if (!ProtocolsSorted) {
2640      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2641                                                     Protocols + NumProtocols);
2642      unsigned UniqueCount = NumProtocols;
2643
2644      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2645      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2646                                    &Sorted[0], UniqueCount);
2647    } else {
2648      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2649                                    Protocols, NumProtocols);
2650    }
2651
2652    // Regenerate InsertPos.
2653    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2654  }
2655
2656  unsigned Size = sizeof(ObjCObjectTypeImpl);
2657  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2658  void *Mem = Allocate(Size, TypeAlignment);
2659  ObjCObjectTypeImpl *T =
2660    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2661
2662  Types.push_back(T);
2663  ObjCObjectTypes.InsertNode(T, InsertPos);
2664  return QualType(T, 0);
2665}
2666
2667/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2668/// the given object type.
2669QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2670  llvm::FoldingSetNodeID ID;
2671  ObjCObjectPointerType::Profile(ID, ObjectT);
2672
2673  void *InsertPos = 0;
2674  if (ObjCObjectPointerType *QT =
2675              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2676    return QualType(QT, 0);
2677
2678  // Find the canonical object type.
2679  QualType Canonical;
2680  if (!ObjectT.isCanonical()) {
2681    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2682
2683    // Regenerate InsertPos.
2684    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2685  }
2686
2687  // No match.
2688  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2689  ObjCObjectPointerType *QType =
2690    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2691
2692  Types.push_back(QType);
2693  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2694  return QualType(QType, 0);
2695}
2696
2697/// getObjCInterfaceType - Return the unique reference to the type for the
2698/// specified ObjC interface decl. The list of protocols is optional.
2699QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2700  if (Decl->TypeForDecl)
2701    return QualType(Decl->TypeForDecl, 0);
2702
2703  // FIXME: redeclarations?
2704  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2705  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2706  Decl->TypeForDecl = T;
2707  Types.push_back(T);
2708  return QualType(T, 0);
2709}
2710
2711/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2712/// TypeOfExprType AST's (since expression's are never shared). For example,
2713/// multiple declarations that refer to "typeof(x)" all contain different
2714/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2715/// on canonical type's (which are always unique).
2716QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2717  TypeOfExprType *toe;
2718  if (tofExpr->isTypeDependent()) {
2719    llvm::FoldingSetNodeID ID;
2720    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2721
2722    void *InsertPos = 0;
2723    DependentTypeOfExprType *Canon
2724      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2725    if (Canon) {
2726      // We already have a "canonical" version of an identical, dependent
2727      // typeof(expr) type. Use that as our canonical type.
2728      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2729                                          QualType((TypeOfExprType*)Canon, 0));
2730    }
2731    else {
2732      // Build a new, canonical typeof(expr) type.
2733      Canon
2734        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2735      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2736      toe = Canon;
2737    }
2738  } else {
2739    QualType Canonical = getCanonicalType(tofExpr->getType());
2740    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2741  }
2742  Types.push_back(toe);
2743  return QualType(toe, 0);
2744}
2745
2746/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2747/// TypeOfType AST's. The only motivation to unique these nodes would be
2748/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2749/// an issue. This doesn't effect the type checker, since it operates
2750/// on canonical type's (which are always unique).
2751QualType ASTContext::getTypeOfType(QualType tofType) const {
2752  QualType Canonical = getCanonicalType(tofType);
2753  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2754  Types.push_back(tot);
2755  return QualType(tot, 0);
2756}
2757
2758/// getDecltypeForExpr - Given an expr, will return the decltype for that
2759/// expression, according to the rules in C++0x [dcl.type.simple]p4
2760static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2761  if (e->isTypeDependent())
2762    return Context.DependentTy;
2763
2764  // If e is an id expression or a class member access, decltype(e) is defined
2765  // as the type of the entity named by e.
2766  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2767    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2768      return VD->getType();
2769  }
2770  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2771    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2772      return FD->getType();
2773  }
2774  // If e is a function call or an invocation of an overloaded operator,
2775  // (parentheses around e are ignored), decltype(e) is defined as the
2776  // return type of that function.
2777  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2778    return CE->getCallReturnType();
2779
2780  QualType T = e->getType();
2781
2782  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2783  // defined as T&, otherwise decltype(e) is defined as T.
2784  if (e->isLValue())
2785    T = Context.getLValueReferenceType(T);
2786
2787  return T;
2788}
2789
2790/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2791/// DecltypeType AST's. The only motivation to unique these nodes would be
2792/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2793/// an issue. This doesn't effect the type checker, since it operates
2794/// on canonical type's (which are always unique).
2795QualType ASTContext::getDecltypeType(Expr *e) const {
2796  DecltypeType *dt;
2797
2798  // C++0x [temp.type]p2:
2799  //   If an expression e involves a template parameter, decltype(e) denotes a
2800  //   unique dependent type. Two such decltype-specifiers refer to the same
2801  //   type only if their expressions are equivalent (14.5.6.1).
2802  if (e->isInstantiationDependent()) {
2803    llvm::FoldingSetNodeID ID;
2804    DependentDecltypeType::Profile(ID, *this, e);
2805
2806    void *InsertPos = 0;
2807    DependentDecltypeType *Canon
2808      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2809    if (Canon) {
2810      // We already have a "canonical" version of an equivalent, dependent
2811      // decltype type. Use that as our canonical type.
2812      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2813                                       QualType((DecltypeType*)Canon, 0));
2814    }
2815    else {
2816      // Build a new, canonical typeof(expr) type.
2817      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2818      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2819      dt = Canon;
2820    }
2821  } else {
2822    QualType T = getDecltypeForExpr(e, *this);
2823    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2824  }
2825  Types.push_back(dt);
2826  return QualType(dt, 0);
2827}
2828
2829/// getUnaryTransformationType - We don't unique these, since the memory
2830/// savings are minimal and these are rare.
2831QualType ASTContext::getUnaryTransformType(QualType BaseType,
2832                                           QualType UnderlyingType,
2833                                           UnaryTransformType::UTTKind Kind)
2834    const {
2835  UnaryTransformType *Ty =
2836    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2837                                                   Kind,
2838                                 UnderlyingType->isDependentType() ?
2839                                    QualType() : UnderlyingType);
2840  Types.push_back(Ty);
2841  return QualType(Ty, 0);
2842}
2843
2844/// getAutoType - We only unique auto types after they've been deduced.
2845QualType ASTContext::getAutoType(QualType DeducedType) const {
2846  void *InsertPos = 0;
2847  if (!DeducedType.isNull()) {
2848    // Look in the folding set for an existing type.
2849    llvm::FoldingSetNodeID ID;
2850    AutoType::Profile(ID, DeducedType);
2851    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2852      return QualType(AT, 0);
2853  }
2854
2855  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2856  Types.push_back(AT);
2857  if (InsertPos)
2858    AutoTypes.InsertNode(AT, InsertPos);
2859  return QualType(AT, 0);
2860}
2861
2862/// getAutoDeductType - Get type pattern for deducing against 'auto'.
2863QualType ASTContext::getAutoDeductType() const {
2864  if (AutoDeductTy.isNull())
2865    AutoDeductTy = getAutoType(QualType());
2866  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
2867  return AutoDeductTy;
2868}
2869
2870/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
2871QualType ASTContext::getAutoRRefDeductType() const {
2872  if (AutoRRefDeductTy.isNull())
2873    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
2874  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
2875  return AutoRRefDeductTy;
2876}
2877
2878/// getTagDeclType - Return the unique reference to the type for the
2879/// specified TagDecl (struct/union/class/enum) decl.
2880QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2881  assert (Decl);
2882  // FIXME: What is the design on getTagDeclType when it requires casting
2883  // away const?  mutable?
2884  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2885}
2886
2887/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2888/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2889/// needs to agree with the definition in <stddef.h>.
2890CanQualType ASTContext::getSizeType() const {
2891  return getFromTargetType(Target.getSizeType());
2892}
2893
2894/// getSignedWCharType - Return the type of "signed wchar_t".
2895/// Used when in C++, as a GCC extension.
2896QualType ASTContext::getSignedWCharType() const {
2897  // FIXME: derive from "Target" ?
2898  return WCharTy;
2899}
2900
2901/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2902/// Used when in C++, as a GCC extension.
2903QualType ASTContext::getUnsignedWCharType() const {
2904  // FIXME: derive from "Target" ?
2905  return UnsignedIntTy;
2906}
2907
2908/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2909/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2910QualType ASTContext::getPointerDiffType() const {
2911  return getFromTargetType(Target.getPtrDiffType(0));
2912}
2913
2914//===----------------------------------------------------------------------===//
2915//                              Type Operators
2916//===----------------------------------------------------------------------===//
2917
2918CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2919  // Push qualifiers into arrays, and then discard any remaining
2920  // qualifiers.
2921  T = getCanonicalType(T);
2922  T = getVariableArrayDecayedType(T);
2923  const Type *Ty = T.getTypePtr();
2924  QualType Result;
2925  if (isa<ArrayType>(Ty)) {
2926    Result = getArrayDecayedType(QualType(Ty,0));
2927  } else if (isa<FunctionType>(Ty)) {
2928    Result = getPointerType(QualType(Ty, 0));
2929  } else {
2930    Result = QualType(Ty, 0);
2931  }
2932
2933  return CanQualType::CreateUnsafe(Result);
2934}
2935
2936QualType ASTContext::getUnqualifiedArrayType(QualType type,
2937                                             Qualifiers &quals) {
2938  SplitQualType splitType = type.getSplitUnqualifiedType();
2939
2940  // FIXME: getSplitUnqualifiedType() actually walks all the way to
2941  // the unqualified desugared type and then drops it on the floor.
2942  // We then have to strip that sugar back off with
2943  // getUnqualifiedDesugaredType(), which is silly.
2944  const ArrayType *AT =
2945    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
2946
2947  // If we don't have an array, just use the results in splitType.
2948  if (!AT) {
2949    quals = splitType.second;
2950    return QualType(splitType.first, 0);
2951  }
2952
2953  // Otherwise, recurse on the array's element type.
2954  QualType elementType = AT->getElementType();
2955  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
2956
2957  // If that didn't change the element type, AT has no qualifiers, so we
2958  // can just use the results in splitType.
2959  if (elementType == unqualElementType) {
2960    assert(quals.empty()); // from the recursive call
2961    quals = splitType.second;
2962    return QualType(splitType.first, 0);
2963  }
2964
2965  // Otherwise, add in the qualifiers from the outermost type, then
2966  // build the type back up.
2967  quals.addConsistentQualifiers(splitType.second);
2968
2969  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2970    return getConstantArrayType(unqualElementType, CAT->getSize(),
2971                                CAT->getSizeModifier(), 0);
2972  }
2973
2974  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2975    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
2976  }
2977
2978  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2979    return getVariableArrayType(unqualElementType,
2980                                VAT->getSizeExpr(),
2981                                VAT->getSizeModifier(),
2982                                VAT->getIndexTypeCVRQualifiers(),
2983                                VAT->getBracketsRange());
2984  }
2985
2986  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2987  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
2988                                    DSAT->getSizeModifier(), 0,
2989                                    SourceRange());
2990}
2991
2992/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2993/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2994/// they point to and return true. If T1 and T2 aren't pointer types
2995/// or pointer-to-member types, or if they are not similar at this
2996/// level, returns false and leaves T1 and T2 unchanged. Top-level
2997/// qualifiers on T1 and T2 are ignored. This function will typically
2998/// be called in a loop that successively "unwraps" pointer and
2999/// pointer-to-member types to compare them at each level.
3000bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3001  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3002                    *T2PtrType = T2->getAs<PointerType>();
3003  if (T1PtrType && T2PtrType) {
3004    T1 = T1PtrType->getPointeeType();
3005    T2 = T2PtrType->getPointeeType();
3006    return true;
3007  }
3008
3009  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3010                          *T2MPType = T2->getAs<MemberPointerType>();
3011  if (T1MPType && T2MPType &&
3012      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3013                             QualType(T2MPType->getClass(), 0))) {
3014    T1 = T1MPType->getPointeeType();
3015    T2 = T2MPType->getPointeeType();
3016    return true;
3017  }
3018
3019  if (getLangOptions().ObjC1) {
3020    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3021                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3022    if (T1OPType && T2OPType) {
3023      T1 = T1OPType->getPointeeType();
3024      T2 = T2OPType->getPointeeType();
3025      return true;
3026    }
3027  }
3028
3029  // FIXME: Block pointers, too?
3030
3031  return false;
3032}
3033
3034DeclarationNameInfo
3035ASTContext::getNameForTemplate(TemplateName Name,
3036                               SourceLocation NameLoc) const {
3037  switch (Name.getKind()) {
3038  case TemplateName::QualifiedTemplate:
3039  case TemplateName::Template:
3040    // DNInfo work in progress: CHECKME: what about DNLoc?
3041    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3042                               NameLoc);
3043
3044  case TemplateName::OverloadedTemplate: {
3045    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3046    // DNInfo work in progress: CHECKME: what about DNLoc?
3047    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3048  }
3049
3050  case TemplateName::DependentTemplate: {
3051    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3052    DeclarationName DName;
3053    if (DTN->isIdentifier()) {
3054      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3055      return DeclarationNameInfo(DName, NameLoc);
3056    } else {
3057      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3058      // DNInfo work in progress: FIXME: source locations?
3059      DeclarationNameLoc DNLoc;
3060      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3061      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3062      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3063    }
3064  }
3065
3066  case TemplateName::SubstTemplateTemplateParm: {
3067    SubstTemplateTemplateParmStorage *subst
3068      = Name.getAsSubstTemplateTemplateParm();
3069    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3070                               NameLoc);
3071  }
3072
3073  case TemplateName::SubstTemplateTemplateParmPack: {
3074    SubstTemplateTemplateParmPackStorage *subst
3075      = Name.getAsSubstTemplateTemplateParmPack();
3076    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3077                               NameLoc);
3078  }
3079  }
3080
3081  llvm_unreachable("bad template name kind!");
3082}
3083
3084TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3085  switch (Name.getKind()) {
3086  case TemplateName::QualifiedTemplate:
3087  case TemplateName::Template: {
3088    TemplateDecl *Template = Name.getAsTemplateDecl();
3089    if (TemplateTemplateParmDecl *TTP
3090          = dyn_cast<TemplateTemplateParmDecl>(Template))
3091      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3092
3093    // The canonical template name is the canonical template declaration.
3094    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3095  }
3096
3097  case TemplateName::OverloadedTemplate:
3098    llvm_unreachable("cannot canonicalize overloaded template");
3099
3100  case TemplateName::DependentTemplate: {
3101    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3102    assert(DTN && "Non-dependent template names must refer to template decls.");
3103    return DTN->CanonicalTemplateName;
3104  }
3105
3106  case TemplateName::SubstTemplateTemplateParm: {
3107    SubstTemplateTemplateParmStorage *subst
3108      = Name.getAsSubstTemplateTemplateParm();
3109    return getCanonicalTemplateName(subst->getReplacement());
3110  }
3111
3112  case TemplateName::SubstTemplateTemplateParmPack: {
3113    SubstTemplateTemplateParmPackStorage *subst
3114                                  = Name.getAsSubstTemplateTemplateParmPack();
3115    TemplateTemplateParmDecl *canonParameter
3116      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3117    TemplateArgument canonArgPack
3118      = getCanonicalTemplateArgument(subst->getArgumentPack());
3119    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3120  }
3121  }
3122
3123  llvm_unreachable("bad template name!");
3124}
3125
3126bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3127  X = getCanonicalTemplateName(X);
3128  Y = getCanonicalTemplateName(Y);
3129  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3130}
3131
3132TemplateArgument
3133ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3134  switch (Arg.getKind()) {
3135    case TemplateArgument::Null:
3136      return Arg;
3137
3138    case TemplateArgument::Expression:
3139      return Arg;
3140
3141    case TemplateArgument::Declaration:
3142      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3143
3144    case TemplateArgument::Template:
3145      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3146
3147    case TemplateArgument::TemplateExpansion:
3148      return TemplateArgument(getCanonicalTemplateName(
3149                                         Arg.getAsTemplateOrTemplatePattern()),
3150                              Arg.getNumTemplateExpansions());
3151
3152    case TemplateArgument::Integral:
3153      return TemplateArgument(*Arg.getAsIntegral(),
3154                              getCanonicalType(Arg.getIntegralType()));
3155
3156    case TemplateArgument::Type:
3157      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3158
3159    case TemplateArgument::Pack: {
3160      if (Arg.pack_size() == 0)
3161        return Arg;
3162
3163      TemplateArgument *CanonArgs
3164        = new (*this) TemplateArgument[Arg.pack_size()];
3165      unsigned Idx = 0;
3166      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3167                                        AEnd = Arg.pack_end();
3168           A != AEnd; (void)++A, ++Idx)
3169        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3170
3171      return TemplateArgument(CanonArgs, Arg.pack_size());
3172    }
3173  }
3174
3175  // Silence GCC warning
3176  assert(false && "Unhandled template argument kind");
3177  return TemplateArgument();
3178}
3179
3180NestedNameSpecifier *
3181ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3182  if (!NNS)
3183    return 0;
3184
3185  switch (NNS->getKind()) {
3186  case NestedNameSpecifier::Identifier:
3187    // Canonicalize the prefix but keep the identifier the same.
3188    return NestedNameSpecifier::Create(*this,
3189                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3190                                       NNS->getAsIdentifier());
3191
3192  case NestedNameSpecifier::Namespace:
3193    // A namespace is canonical; build a nested-name-specifier with
3194    // this namespace and no prefix.
3195    return NestedNameSpecifier::Create(*this, 0,
3196                                 NNS->getAsNamespace()->getOriginalNamespace());
3197
3198  case NestedNameSpecifier::NamespaceAlias:
3199    // A namespace is canonical; build a nested-name-specifier with
3200    // this namespace and no prefix.
3201    return NestedNameSpecifier::Create(*this, 0,
3202                                    NNS->getAsNamespaceAlias()->getNamespace()
3203                                                      ->getOriginalNamespace());
3204
3205  case NestedNameSpecifier::TypeSpec:
3206  case NestedNameSpecifier::TypeSpecWithTemplate: {
3207    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3208
3209    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3210    // break it apart into its prefix and identifier, then reconsititute those
3211    // as the canonical nested-name-specifier. This is required to canonicalize
3212    // a dependent nested-name-specifier involving typedefs of dependent-name
3213    // types, e.g.,
3214    //   typedef typename T::type T1;
3215    //   typedef typename T1::type T2;
3216    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3217      NestedNameSpecifier *Prefix
3218        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3219      return NestedNameSpecifier::Create(*this, Prefix,
3220                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3221    }
3222
3223    // Do the same thing as above, but with dependent-named specializations.
3224    if (const DependentTemplateSpecializationType *DTST
3225          = T->getAs<DependentTemplateSpecializationType>()) {
3226      NestedNameSpecifier *Prefix
3227        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3228
3229      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3230                                                 Prefix, DTST->getIdentifier(),
3231                                                 DTST->getNumArgs(),
3232                                                 DTST->getArgs());
3233      T = getCanonicalType(T);
3234    }
3235
3236    return NestedNameSpecifier::Create(*this, 0, false,
3237                                       const_cast<Type*>(T.getTypePtr()));
3238  }
3239
3240  case NestedNameSpecifier::Global:
3241    // The global specifier is canonical and unique.
3242    return NNS;
3243  }
3244
3245  // Required to silence a GCC warning
3246  return 0;
3247}
3248
3249
3250const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3251  // Handle the non-qualified case efficiently.
3252  if (!T.hasLocalQualifiers()) {
3253    // Handle the common positive case fast.
3254    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3255      return AT;
3256  }
3257
3258  // Handle the common negative case fast.
3259  if (!isa<ArrayType>(T.getCanonicalType()))
3260    return 0;
3261
3262  // Apply any qualifiers from the array type to the element type.  This
3263  // implements C99 6.7.3p8: "If the specification of an array type includes
3264  // any type qualifiers, the element type is so qualified, not the array type."
3265
3266  // If we get here, we either have type qualifiers on the type, or we have
3267  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3268  // we must propagate them down into the element type.
3269
3270  SplitQualType split = T.getSplitDesugaredType();
3271  Qualifiers qs = split.second;
3272
3273  // If we have a simple case, just return now.
3274  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3275  if (ATy == 0 || qs.empty())
3276    return ATy;
3277
3278  // Otherwise, we have an array and we have qualifiers on it.  Push the
3279  // qualifiers into the array element type and return a new array type.
3280  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3281
3282  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3283    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3284                                                CAT->getSizeModifier(),
3285                                           CAT->getIndexTypeCVRQualifiers()));
3286  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3287    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3288                                                  IAT->getSizeModifier(),
3289                                           IAT->getIndexTypeCVRQualifiers()));
3290
3291  if (const DependentSizedArrayType *DSAT
3292        = dyn_cast<DependentSizedArrayType>(ATy))
3293    return cast<ArrayType>(
3294                     getDependentSizedArrayType(NewEltTy,
3295                                                DSAT->getSizeExpr(),
3296                                                DSAT->getSizeModifier(),
3297                                              DSAT->getIndexTypeCVRQualifiers(),
3298                                                DSAT->getBracketsRange()));
3299
3300  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3301  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3302                                              VAT->getSizeExpr(),
3303                                              VAT->getSizeModifier(),
3304                                              VAT->getIndexTypeCVRQualifiers(),
3305                                              VAT->getBracketsRange()));
3306}
3307
3308QualType ASTContext::getAdjustedParameterType(QualType T) {
3309  // C99 6.7.5.3p7:
3310  //   A declaration of a parameter as "array of type" shall be
3311  //   adjusted to "qualified pointer to type", where the type
3312  //   qualifiers (if any) are those specified within the [ and ] of
3313  //   the array type derivation.
3314  if (T->isArrayType())
3315    return getArrayDecayedType(T);
3316
3317  // C99 6.7.5.3p8:
3318  //   A declaration of a parameter as "function returning type"
3319  //   shall be adjusted to "pointer to function returning type", as
3320  //   in 6.3.2.1.
3321  if (T->isFunctionType())
3322    return getPointerType(T);
3323
3324  return T;
3325}
3326
3327QualType ASTContext::getSignatureParameterType(QualType T) {
3328  T = getVariableArrayDecayedType(T);
3329  T = getAdjustedParameterType(T);
3330  return T.getUnqualifiedType();
3331}
3332
3333/// getArrayDecayedType - Return the properly qualified result of decaying the
3334/// specified array type to a pointer.  This operation is non-trivial when
3335/// handling typedefs etc.  The canonical type of "T" must be an array type,
3336/// this returns a pointer to a properly qualified element of the array.
3337///
3338/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3339QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3340  // Get the element type with 'getAsArrayType' so that we don't lose any
3341  // typedefs in the element type of the array.  This also handles propagation
3342  // of type qualifiers from the array type into the element type if present
3343  // (C99 6.7.3p8).
3344  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3345  assert(PrettyArrayType && "Not an array type!");
3346
3347  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3348
3349  // int x[restrict 4] ->  int *restrict
3350  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3351}
3352
3353QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3354  return getBaseElementType(array->getElementType());
3355}
3356
3357QualType ASTContext::getBaseElementType(QualType type) const {
3358  Qualifiers qs;
3359  while (true) {
3360    SplitQualType split = type.getSplitDesugaredType();
3361    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3362    if (!array) break;
3363
3364    type = array->getElementType();
3365    qs.addConsistentQualifiers(split.second);
3366  }
3367
3368  return getQualifiedType(type, qs);
3369}
3370
3371/// getConstantArrayElementCount - Returns number of constant array elements.
3372uint64_t
3373ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3374  uint64_t ElementCount = 1;
3375  do {
3376    ElementCount *= CA->getSize().getZExtValue();
3377    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3378  } while (CA);
3379  return ElementCount;
3380}
3381
3382/// getFloatingRank - Return a relative rank for floating point types.
3383/// This routine will assert if passed a built-in type that isn't a float.
3384static FloatingRank getFloatingRank(QualType T) {
3385  if (const ComplexType *CT = T->getAs<ComplexType>())
3386    return getFloatingRank(CT->getElementType());
3387
3388  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3389  switch (T->getAs<BuiltinType>()->getKind()) {
3390  default: assert(0 && "getFloatingRank(): not a floating type");
3391  case BuiltinType::Float:      return FloatRank;
3392  case BuiltinType::Double:     return DoubleRank;
3393  case BuiltinType::LongDouble: return LongDoubleRank;
3394  }
3395}
3396
3397/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3398/// point or a complex type (based on typeDomain/typeSize).
3399/// 'typeDomain' is a real floating point or complex type.
3400/// 'typeSize' is a real floating point or complex type.
3401QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3402                                                       QualType Domain) const {
3403  FloatingRank EltRank = getFloatingRank(Size);
3404  if (Domain->isComplexType()) {
3405    switch (EltRank) {
3406    default: assert(0 && "getFloatingRank(): illegal value for rank");
3407    case FloatRank:      return FloatComplexTy;
3408    case DoubleRank:     return DoubleComplexTy;
3409    case LongDoubleRank: return LongDoubleComplexTy;
3410    }
3411  }
3412
3413  assert(Domain->isRealFloatingType() && "Unknown domain!");
3414  switch (EltRank) {
3415  default: assert(0 && "getFloatingRank(): illegal value for rank");
3416  case FloatRank:      return FloatTy;
3417  case DoubleRank:     return DoubleTy;
3418  case LongDoubleRank: return LongDoubleTy;
3419  }
3420}
3421
3422/// getFloatingTypeOrder - Compare the rank of the two specified floating
3423/// point types, ignoring the domain of the type (i.e. 'double' ==
3424/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3425/// LHS < RHS, return -1.
3426int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3427  FloatingRank LHSR = getFloatingRank(LHS);
3428  FloatingRank RHSR = getFloatingRank(RHS);
3429
3430  if (LHSR == RHSR)
3431    return 0;
3432  if (LHSR > RHSR)
3433    return 1;
3434  return -1;
3435}
3436
3437/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3438/// routine will assert if passed a built-in type that isn't an integer or enum,
3439/// or if it is not canonicalized.
3440unsigned ASTContext::getIntegerRank(const Type *T) const {
3441  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3442  if (const EnumType* ET = dyn_cast<EnumType>(T))
3443    T = ET->getDecl()->getPromotionType().getTypePtr();
3444
3445  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3446      T->isSpecificBuiltinType(BuiltinType::WChar_U))
3447    T = getFromTargetType(Target.getWCharType()).getTypePtr();
3448
3449  if (T->isSpecificBuiltinType(BuiltinType::Char16))
3450    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3451
3452  if (T->isSpecificBuiltinType(BuiltinType::Char32))
3453    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3454
3455  switch (cast<BuiltinType>(T)->getKind()) {
3456  default: assert(0 && "getIntegerRank(): not a built-in integer");
3457  case BuiltinType::Bool:
3458    return 1 + (getIntWidth(BoolTy) << 3);
3459  case BuiltinType::Char_S:
3460  case BuiltinType::Char_U:
3461  case BuiltinType::SChar:
3462  case BuiltinType::UChar:
3463    return 2 + (getIntWidth(CharTy) << 3);
3464  case BuiltinType::Short:
3465  case BuiltinType::UShort:
3466    return 3 + (getIntWidth(ShortTy) << 3);
3467  case BuiltinType::Int:
3468  case BuiltinType::UInt:
3469    return 4 + (getIntWidth(IntTy) << 3);
3470  case BuiltinType::Long:
3471  case BuiltinType::ULong:
3472    return 5 + (getIntWidth(LongTy) << 3);
3473  case BuiltinType::LongLong:
3474  case BuiltinType::ULongLong:
3475    return 6 + (getIntWidth(LongLongTy) << 3);
3476  case BuiltinType::Int128:
3477  case BuiltinType::UInt128:
3478    return 7 + (getIntWidth(Int128Ty) << 3);
3479  }
3480}
3481
3482/// \brief Whether this is a promotable bitfield reference according
3483/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3484///
3485/// \returns the type this bit-field will promote to, or NULL if no
3486/// promotion occurs.
3487QualType ASTContext::isPromotableBitField(Expr *E) const {
3488  if (E->isTypeDependent() || E->isValueDependent())
3489    return QualType();
3490
3491  FieldDecl *Field = E->getBitField();
3492  if (!Field)
3493    return QualType();
3494
3495  QualType FT = Field->getType();
3496
3497  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3498  uint64_t BitWidth = BitWidthAP.getZExtValue();
3499  uint64_t IntSize = getTypeSize(IntTy);
3500  // GCC extension compatibility: if the bit-field size is less than or equal
3501  // to the size of int, it gets promoted no matter what its type is.
3502  // For instance, unsigned long bf : 4 gets promoted to signed int.
3503  if (BitWidth < IntSize)
3504    return IntTy;
3505
3506  if (BitWidth == IntSize)
3507    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3508
3509  // Types bigger than int are not subject to promotions, and therefore act
3510  // like the base type.
3511  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3512  // is ridiculous.
3513  return QualType();
3514}
3515
3516/// getPromotedIntegerType - Returns the type that Promotable will
3517/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3518/// integer type.
3519QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3520  assert(!Promotable.isNull());
3521  assert(Promotable->isPromotableIntegerType());
3522  if (const EnumType *ET = Promotable->getAs<EnumType>())
3523    return ET->getDecl()->getPromotionType();
3524  if (Promotable->isSignedIntegerType())
3525    return IntTy;
3526  uint64_t PromotableSize = getTypeSize(Promotable);
3527  uint64_t IntSize = getTypeSize(IntTy);
3528  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3529  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3530}
3531
3532/// \brief Recurses in pointer/array types until it finds an objc retainable
3533/// type and returns its ownership.
3534Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3535  while (!T.isNull()) {
3536    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3537      return T.getObjCLifetime();
3538    if (T->isArrayType())
3539      T = getBaseElementType(T);
3540    else if (const PointerType *PT = T->getAs<PointerType>())
3541      T = PT->getPointeeType();
3542    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3543      T = RT->getPointeeType();
3544    else
3545      break;
3546  }
3547
3548  return Qualifiers::OCL_None;
3549}
3550
3551/// getIntegerTypeOrder - Returns the highest ranked integer type:
3552/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3553/// LHS < RHS, return -1.
3554int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3555  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3556  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3557  if (LHSC == RHSC) return 0;
3558
3559  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3560  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3561
3562  unsigned LHSRank = getIntegerRank(LHSC);
3563  unsigned RHSRank = getIntegerRank(RHSC);
3564
3565  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3566    if (LHSRank == RHSRank) return 0;
3567    return LHSRank > RHSRank ? 1 : -1;
3568  }
3569
3570  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3571  if (LHSUnsigned) {
3572    // If the unsigned [LHS] type is larger, return it.
3573    if (LHSRank >= RHSRank)
3574      return 1;
3575
3576    // If the signed type can represent all values of the unsigned type, it
3577    // wins.  Because we are dealing with 2's complement and types that are
3578    // powers of two larger than each other, this is always safe.
3579    return -1;
3580  }
3581
3582  // If the unsigned [RHS] type is larger, return it.
3583  if (RHSRank >= LHSRank)
3584    return -1;
3585
3586  // If the signed type can represent all values of the unsigned type, it
3587  // wins.  Because we are dealing with 2's complement and types that are
3588  // powers of two larger than each other, this is always safe.
3589  return 1;
3590}
3591
3592static RecordDecl *
3593CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3594                 DeclContext *DC, IdentifierInfo *Id) {
3595  SourceLocation Loc;
3596  if (Ctx.getLangOptions().CPlusPlus)
3597    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3598  else
3599    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3600}
3601
3602// getCFConstantStringType - Return the type used for constant CFStrings.
3603QualType ASTContext::getCFConstantStringType() const {
3604  if (!CFConstantStringTypeDecl) {
3605    CFConstantStringTypeDecl =
3606      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3607                       &Idents.get("NSConstantString"));
3608    CFConstantStringTypeDecl->startDefinition();
3609
3610    QualType FieldTypes[4];
3611
3612    // const int *isa;
3613    FieldTypes[0] = getPointerType(IntTy.withConst());
3614    // int flags;
3615    FieldTypes[1] = IntTy;
3616    // const char *str;
3617    FieldTypes[2] = getPointerType(CharTy.withConst());
3618    // long length;
3619    FieldTypes[3] = LongTy;
3620
3621    // Create fields
3622    for (unsigned i = 0; i < 4; ++i) {
3623      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3624                                           SourceLocation(),
3625                                           SourceLocation(), 0,
3626                                           FieldTypes[i], /*TInfo=*/0,
3627                                           /*BitWidth=*/0,
3628                                           /*Mutable=*/false,
3629                                           /*HasInit=*/false);
3630      Field->setAccess(AS_public);
3631      CFConstantStringTypeDecl->addDecl(Field);
3632    }
3633
3634    CFConstantStringTypeDecl->completeDefinition();
3635  }
3636
3637  return getTagDeclType(CFConstantStringTypeDecl);
3638}
3639
3640void ASTContext::setCFConstantStringType(QualType T) {
3641  const RecordType *Rec = T->getAs<RecordType>();
3642  assert(Rec && "Invalid CFConstantStringType");
3643  CFConstantStringTypeDecl = Rec->getDecl();
3644}
3645
3646// getNSConstantStringType - Return the type used for constant NSStrings.
3647QualType ASTContext::getNSConstantStringType() const {
3648  if (!NSConstantStringTypeDecl) {
3649    NSConstantStringTypeDecl =
3650    CreateRecordDecl(*this, TTK_Struct, TUDecl,
3651                     &Idents.get("__builtin_NSString"));
3652    NSConstantStringTypeDecl->startDefinition();
3653
3654    QualType FieldTypes[3];
3655
3656    // const int *isa;
3657    FieldTypes[0] = getPointerType(IntTy.withConst());
3658    // const char *str;
3659    FieldTypes[1] = getPointerType(CharTy.withConst());
3660    // unsigned int length;
3661    FieldTypes[2] = UnsignedIntTy;
3662
3663    // Create fields
3664    for (unsigned i = 0; i < 3; ++i) {
3665      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3666                                           SourceLocation(),
3667                                           SourceLocation(), 0,
3668                                           FieldTypes[i], /*TInfo=*/0,
3669                                           /*BitWidth=*/0,
3670                                           /*Mutable=*/false,
3671                                           /*HasInit=*/false);
3672      Field->setAccess(AS_public);
3673      NSConstantStringTypeDecl->addDecl(Field);
3674    }
3675
3676    NSConstantStringTypeDecl->completeDefinition();
3677  }
3678
3679  return getTagDeclType(NSConstantStringTypeDecl);
3680}
3681
3682void ASTContext::setNSConstantStringType(QualType T) {
3683  const RecordType *Rec = T->getAs<RecordType>();
3684  assert(Rec && "Invalid NSConstantStringType");
3685  NSConstantStringTypeDecl = Rec->getDecl();
3686}
3687
3688QualType ASTContext::getObjCFastEnumerationStateType() const {
3689  if (!ObjCFastEnumerationStateTypeDecl) {
3690    ObjCFastEnumerationStateTypeDecl =
3691      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3692                       &Idents.get("__objcFastEnumerationState"));
3693    ObjCFastEnumerationStateTypeDecl->startDefinition();
3694
3695    QualType FieldTypes[] = {
3696      UnsignedLongTy,
3697      getPointerType(ObjCIdTypedefType),
3698      getPointerType(UnsignedLongTy),
3699      getConstantArrayType(UnsignedLongTy,
3700                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3701    };
3702
3703    for (size_t i = 0; i < 4; ++i) {
3704      FieldDecl *Field = FieldDecl::Create(*this,
3705                                           ObjCFastEnumerationStateTypeDecl,
3706                                           SourceLocation(),
3707                                           SourceLocation(), 0,
3708                                           FieldTypes[i], /*TInfo=*/0,
3709                                           /*BitWidth=*/0,
3710                                           /*Mutable=*/false,
3711                                           /*HasInit=*/false);
3712      Field->setAccess(AS_public);
3713      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3714    }
3715
3716    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3717  }
3718
3719  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3720}
3721
3722QualType ASTContext::getBlockDescriptorType() const {
3723  if (BlockDescriptorType)
3724    return getTagDeclType(BlockDescriptorType);
3725
3726  RecordDecl *T;
3727  // FIXME: Needs the FlagAppleBlock bit.
3728  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3729                       &Idents.get("__block_descriptor"));
3730  T->startDefinition();
3731
3732  QualType FieldTypes[] = {
3733    UnsignedLongTy,
3734    UnsignedLongTy,
3735  };
3736
3737  const char *FieldNames[] = {
3738    "reserved",
3739    "Size"
3740  };
3741
3742  for (size_t i = 0; i < 2; ++i) {
3743    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3744                                         SourceLocation(),
3745                                         &Idents.get(FieldNames[i]),
3746                                         FieldTypes[i], /*TInfo=*/0,
3747                                         /*BitWidth=*/0,
3748                                         /*Mutable=*/false,
3749                                         /*HasInit=*/false);
3750    Field->setAccess(AS_public);
3751    T->addDecl(Field);
3752  }
3753
3754  T->completeDefinition();
3755
3756  BlockDescriptorType = T;
3757
3758  return getTagDeclType(BlockDescriptorType);
3759}
3760
3761void ASTContext::setBlockDescriptorType(QualType T) {
3762  const RecordType *Rec = T->getAs<RecordType>();
3763  assert(Rec && "Invalid BlockDescriptorType");
3764  BlockDescriptorType = Rec->getDecl();
3765}
3766
3767QualType ASTContext::getBlockDescriptorExtendedType() const {
3768  if (BlockDescriptorExtendedType)
3769    return getTagDeclType(BlockDescriptorExtendedType);
3770
3771  RecordDecl *T;
3772  // FIXME: Needs the FlagAppleBlock bit.
3773  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3774                       &Idents.get("__block_descriptor_withcopydispose"));
3775  T->startDefinition();
3776
3777  QualType FieldTypes[] = {
3778    UnsignedLongTy,
3779    UnsignedLongTy,
3780    getPointerType(VoidPtrTy),
3781    getPointerType(VoidPtrTy)
3782  };
3783
3784  const char *FieldNames[] = {
3785    "reserved",
3786    "Size",
3787    "CopyFuncPtr",
3788    "DestroyFuncPtr"
3789  };
3790
3791  for (size_t i = 0; i < 4; ++i) {
3792    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3793                                         SourceLocation(),
3794                                         &Idents.get(FieldNames[i]),
3795                                         FieldTypes[i], /*TInfo=*/0,
3796                                         /*BitWidth=*/0,
3797                                         /*Mutable=*/false,
3798                                         /*HasInit=*/false);
3799    Field->setAccess(AS_public);
3800    T->addDecl(Field);
3801  }
3802
3803  T->completeDefinition();
3804
3805  BlockDescriptorExtendedType = T;
3806
3807  return getTagDeclType(BlockDescriptorExtendedType);
3808}
3809
3810void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3811  const RecordType *Rec = T->getAs<RecordType>();
3812  assert(Rec && "Invalid BlockDescriptorType");
3813  BlockDescriptorExtendedType = Rec->getDecl();
3814}
3815
3816bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3817  if (Ty->isObjCRetainableType())
3818    return true;
3819  if (getLangOptions().CPlusPlus) {
3820    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3821      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3822      return RD->hasConstCopyConstructor();
3823
3824    }
3825  }
3826  return false;
3827}
3828
3829QualType
3830ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
3831  //  type = struct __Block_byref_1_X {
3832  //    void *__isa;
3833  //    struct __Block_byref_1_X *__forwarding;
3834  //    unsigned int __flags;
3835  //    unsigned int __size;
3836  //    void *__copy_helper;            // as needed
3837  //    void *__destroy_help            // as needed
3838  //    int X;
3839  //  } *
3840
3841  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3842
3843  // FIXME: Move up
3844  llvm::SmallString<36> Name;
3845  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3846                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3847  RecordDecl *T;
3848  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3849  T->startDefinition();
3850  QualType Int32Ty = IntTy;
3851  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3852  QualType FieldTypes[] = {
3853    getPointerType(VoidPtrTy),
3854    getPointerType(getTagDeclType(T)),
3855    Int32Ty,
3856    Int32Ty,
3857    getPointerType(VoidPtrTy),
3858    getPointerType(VoidPtrTy),
3859    Ty
3860  };
3861
3862  StringRef FieldNames[] = {
3863    "__isa",
3864    "__forwarding",
3865    "__flags",
3866    "__size",
3867    "__copy_helper",
3868    "__destroy_helper",
3869    DeclName,
3870  };
3871
3872  for (size_t i = 0; i < 7; ++i) {
3873    if (!HasCopyAndDispose && i >=4 && i <= 5)
3874      continue;
3875    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3876                                         SourceLocation(),
3877                                         &Idents.get(FieldNames[i]),
3878                                         FieldTypes[i], /*TInfo=*/0,
3879                                         /*BitWidth=*/0, /*Mutable=*/false,
3880                                         /*HasInit=*/false);
3881    Field->setAccess(AS_public);
3882    T->addDecl(Field);
3883  }
3884
3885  T->completeDefinition();
3886
3887  return getPointerType(getTagDeclType(T));
3888}
3889
3890void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3891  const RecordType *Rec = T->getAs<RecordType>();
3892  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3893  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3894}
3895
3896// This returns true if a type has been typedefed to BOOL:
3897// typedef <type> BOOL;
3898static bool isTypeTypedefedAsBOOL(QualType T) {
3899  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3900    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3901      return II->isStr("BOOL");
3902
3903  return false;
3904}
3905
3906/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3907/// purpose.
3908CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3909  if (!type->isIncompleteArrayType() && type->isIncompleteType())
3910    return CharUnits::Zero();
3911
3912  CharUnits sz = getTypeSizeInChars(type);
3913
3914  // Make all integer and enum types at least as large as an int
3915  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3916    sz = std::max(sz, getTypeSizeInChars(IntTy));
3917  // Treat arrays as pointers, since that's how they're passed in.
3918  else if (type->isArrayType())
3919    sz = getTypeSizeInChars(VoidPtrTy);
3920  return sz;
3921}
3922
3923static inline
3924std::string charUnitsToString(const CharUnits &CU) {
3925  return llvm::itostr(CU.getQuantity());
3926}
3927
3928/// getObjCEncodingForBlock - Return the encoded type for this block
3929/// declaration.
3930std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3931  std::string S;
3932
3933  const BlockDecl *Decl = Expr->getBlockDecl();
3934  QualType BlockTy =
3935      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3936  // Encode result type.
3937  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3938  // Compute size of all parameters.
3939  // Start with computing size of a pointer in number of bytes.
3940  // FIXME: There might(should) be a better way of doing this computation!
3941  SourceLocation Loc;
3942  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3943  CharUnits ParmOffset = PtrSize;
3944  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3945       E = Decl->param_end(); PI != E; ++PI) {
3946    QualType PType = (*PI)->getType();
3947    CharUnits sz = getObjCEncodingTypeSize(PType);
3948    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3949    ParmOffset += sz;
3950  }
3951  // Size of the argument frame
3952  S += charUnitsToString(ParmOffset);
3953  // Block pointer and offset.
3954  S += "@?0";
3955  ParmOffset = PtrSize;
3956
3957  // Argument types.
3958  ParmOffset = PtrSize;
3959  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3960       Decl->param_end(); PI != E; ++PI) {
3961    ParmVarDecl *PVDecl = *PI;
3962    QualType PType = PVDecl->getOriginalType();
3963    if (const ArrayType *AT =
3964          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3965      // Use array's original type only if it has known number of
3966      // elements.
3967      if (!isa<ConstantArrayType>(AT))
3968        PType = PVDecl->getType();
3969    } else if (PType->isFunctionType())
3970      PType = PVDecl->getType();
3971    getObjCEncodingForType(PType, S);
3972    S += charUnitsToString(ParmOffset);
3973    ParmOffset += getObjCEncodingTypeSize(PType);
3974  }
3975
3976  return S;
3977}
3978
3979bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3980                                                std::string& S) {
3981  // Encode result type.
3982  getObjCEncodingForType(Decl->getResultType(), S);
3983  CharUnits ParmOffset;
3984  // Compute size of all parameters.
3985  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3986       E = Decl->param_end(); PI != E; ++PI) {
3987    QualType PType = (*PI)->getType();
3988    CharUnits sz = getObjCEncodingTypeSize(PType);
3989    if (sz.isZero())
3990      return true;
3991
3992    assert (sz.isPositive() &&
3993        "getObjCEncodingForFunctionDecl - Incomplete param type");
3994    ParmOffset += sz;
3995  }
3996  S += charUnitsToString(ParmOffset);
3997  ParmOffset = CharUnits::Zero();
3998
3999  // Argument types.
4000  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4001       E = Decl->param_end(); PI != E; ++PI) {
4002    ParmVarDecl *PVDecl = *PI;
4003    QualType PType = PVDecl->getOriginalType();
4004    if (const ArrayType *AT =
4005          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4006      // Use array's original type only if it has known number of
4007      // elements.
4008      if (!isa<ConstantArrayType>(AT))
4009        PType = PVDecl->getType();
4010    } else if (PType->isFunctionType())
4011      PType = PVDecl->getType();
4012    getObjCEncodingForType(PType, S);
4013    S += charUnitsToString(ParmOffset);
4014    ParmOffset += getObjCEncodingTypeSize(PType);
4015  }
4016
4017  return false;
4018}
4019
4020/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4021/// declaration.
4022bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4023                                              std::string& S) const {
4024  // FIXME: This is not very efficient.
4025  // Encode type qualifer, 'in', 'inout', etc. for the return type.
4026  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
4027  // Encode result type.
4028  getObjCEncodingForType(Decl->getResultType(), S);
4029  // Compute size of all parameters.
4030  // Start with computing size of a pointer in number of bytes.
4031  // FIXME: There might(should) be a better way of doing this computation!
4032  SourceLocation Loc;
4033  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4034  // The first two arguments (self and _cmd) are pointers; account for
4035  // their size.
4036  CharUnits ParmOffset = 2 * PtrSize;
4037  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
4038       E = Decl->sel_param_end(); PI != E; ++PI) {
4039    QualType PType = (*PI)->getType();
4040    CharUnits sz = getObjCEncodingTypeSize(PType);
4041    if (sz.isZero())
4042      return true;
4043
4044    assert (sz.isPositive() &&
4045        "getObjCEncodingForMethodDecl - Incomplete param type");
4046    ParmOffset += sz;
4047  }
4048  S += charUnitsToString(ParmOffset);
4049  S += "@0:";
4050  S += charUnitsToString(PtrSize);
4051
4052  // Argument types.
4053  ParmOffset = 2 * PtrSize;
4054  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
4055       E = Decl->sel_param_end(); PI != E; ++PI) {
4056    ParmVarDecl *PVDecl = *PI;
4057    QualType PType = PVDecl->getOriginalType();
4058    if (const ArrayType *AT =
4059          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4060      // Use array's original type only if it has known number of
4061      // elements.
4062      if (!isa<ConstantArrayType>(AT))
4063        PType = PVDecl->getType();
4064    } else if (PType->isFunctionType())
4065      PType = PVDecl->getType();
4066    // Process argument qualifiers for user supplied arguments; such as,
4067    // 'in', 'inout', etc.
4068    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
4069    getObjCEncodingForType(PType, S);
4070    S += charUnitsToString(ParmOffset);
4071    ParmOffset += getObjCEncodingTypeSize(PType);
4072  }
4073
4074  return false;
4075}
4076
4077/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4078/// property declaration. If non-NULL, Container must be either an
4079/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4080/// NULL when getting encodings for protocol properties.
4081/// Property attributes are stored as a comma-delimited C string. The simple
4082/// attributes readonly and bycopy are encoded as single characters. The
4083/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4084/// encoded as single characters, followed by an identifier. Property types
4085/// are also encoded as a parametrized attribute. The characters used to encode
4086/// these attributes are defined by the following enumeration:
4087/// @code
4088/// enum PropertyAttributes {
4089/// kPropertyReadOnly = 'R',   // property is read-only.
4090/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4091/// kPropertyByref = '&',  // property is a reference to the value last assigned
4092/// kPropertyDynamic = 'D',    // property is dynamic
4093/// kPropertyGetter = 'G',     // followed by getter selector name
4094/// kPropertySetter = 'S',     // followed by setter selector name
4095/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4096/// kPropertyType = 't'              // followed by old-style type encoding.
4097/// kPropertyWeak = 'W'              // 'weak' property
4098/// kPropertyStrong = 'P'            // property GC'able
4099/// kPropertyNonAtomic = 'N'         // property non-atomic
4100/// };
4101/// @endcode
4102void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4103                                                const Decl *Container,
4104                                                std::string& S) const {
4105  // Collect information from the property implementation decl(s).
4106  bool Dynamic = false;
4107  ObjCPropertyImplDecl *SynthesizePID = 0;
4108
4109  // FIXME: Duplicated code due to poor abstraction.
4110  if (Container) {
4111    if (const ObjCCategoryImplDecl *CID =
4112        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4113      for (ObjCCategoryImplDecl::propimpl_iterator
4114             i = CID->propimpl_begin(), e = CID->propimpl_end();
4115           i != e; ++i) {
4116        ObjCPropertyImplDecl *PID = *i;
4117        if (PID->getPropertyDecl() == PD) {
4118          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4119            Dynamic = true;
4120          } else {
4121            SynthesizePID = PID;
4122          }
4123        }
4124      }
4125    } else {
4126      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4127      for (ObjCCategoryImplDecl::propimpl_iterator
4128             i = OID->propimpl_begin(), e = OID->propimpl_end();
4129           i != e; ++i) {
4130        ObjCPropertyImplDecl *PID = *i;
4131        if (PID->getPropertyDecl() == PD) {
4132          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4133            Dynamic = true;
4134          } else {
4135            SynthesizePID = PID;
4136          }
4137        }
4138      }
4139    }
4140  }
4141
4142  // FIXME: This is not very efficient.
4143  S = "T";
4144
4145  // Encode result type.
4146  // GCC has some special rules regarding encoding of properties which
4147  // closely resembles encoding of ivars.
4148  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4149                             true /* outermost type */,
4150                             true /* encoding for property */);
4151
4152  if (PD->isReadOnly()) {
4153    S += ",R";
4154  } else {
4155    switch (PD->getSetterKind()) {
4156    case ObjCPropertyDecl::Assign: break;
4157    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4158    case ObjCPropertyDecl::Retain: S += ",&"; break;
4159    }
4160  }
4161
4162  // It really isn't clear at all what this means, since properties
4163  // are "dynamic by default".
4164  if (Dynamic)
4165    S += ",D";
4166
4167  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4168    S += ",N";
4169
4170  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4171    S += ",G";
4172    S += PD->getGetterName().getAsString();
4173  }
4174
4175  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4176    S += ",S";
4177    S += PD->getSetterName().getAsString();
4178  }
4179
4180  if (SynthesizePID) {
4181    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4182    S += ",V";
4183    S += OID->getNameAsString();
4184  }
4185
4186  // FIXME: OBJCGC: weak & strong
4187}
4188
4189/// getLegacyIntegralTypeEncoding -
4190/// Another legacy compatibility encoding: 32-bit longs are encoded as
4191/// 'l' or 'L' , but not always.  For typedefs, we need to use
4192/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4193///
4194void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4195  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4196    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4197      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4198        PointeeTy = UnsignedIntTy;
4199      else
4200        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4201          PointeeTy = IntTy;
4202    }
4203  }
4204}
4205
4206void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4207                                        const FieldDecl *Field) const {
4208  // We follow the behavior of gcc, expanding structures which are
4209  // directly pointed to, and expanding embedded structures. Note that
4210  // these rules are sufficient to prevent recursive encoding of the
4211  // same type.
4212  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4213                             true /* outermost type */);
4214}
4215
4216static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4217    switch (T->getAs<BuiltinType>()->getKind()) {
4218    default: assert(0 && "Unhandled builtin type kind");
4219    case BuiltinType::Void:       return 'v';
4220    case BuiltinType::Bool:       return 'B';
4221    case BuiltinType::Char_U:
4222    case BuiltinType::UChar:      return 'C';
4223    case BuiltinType::UShort:     return 'S';
4224    case BuiltinType::UInt:       return 'I';
4225    case BuiltinType::ULong:
4226        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4227    case BuiltinType::UInt128:    return 'T';
4228    case BuiltinType::ULongLong:  return 'Q';
4229    case BuiltinType::Char_S:
4230    case BuiltinType::SChar:      return 'c';
4231    case BuiltinType::Short:      return 's';
4232    case BuiltinType::WChar_S:
4233    case BuiltinType::WChar_U:
4234    case BuiltinType::Int:        return 'i';
4235    case BuiltinType::Long:
4236      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4237    case BuiltinType::LongLong:   return 'q';
4238    case BuiltinType::Int128:     return 't';
4239    case BuiltinType::Float:      return 'f';
4240    case BuiltinType::Double:     return 'd';
4241    case BuiltinType::LongDouble: return 'D';
4242    }
4243}
4244
4245static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4246                           QualType T, const FieldDecl *FD) {
4247  const Expr *E = FD->getBitWidth();
4248  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
4249  S += 'b';
4250  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4251  // The GNU runtime requires more information; bitfields are encoded as b,
4252  // then the offset (in bits) of the first element, then the type of the
4253  // bitfield, then the size in bits.  For example, in this structure:
4254  //
4255  // struct
4256  // {
4257  //    int integer;
4258  //    int flags:2;
4259  // };
4260  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4261  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4262  // information is not especially sensible, but we're stuck with it for
4263  // compatibility with GCC, although providing it breaks anything that
4264  // actually uses runtime introspection and wants to work on both runtimes...
4265  if (!Ctx->getLangOptions().NeXTRuntime) {
4266    const RecordDecl *RD = FD->getParent();
4267    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4268    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4269    if (T->isEnumeralType())
4270      S += 'i';
4271    else
4272      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4273  }
4274  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
4275  S += llvm::utostr(N);
4276}
4277
4278// FIXME: Use SmallString for accumulating string.
4279void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4280                                            bool ExpandPointedToStructures,
4281                                            bool ExpandStructures,
4282                                            const FieldDecl *FD,
4283                                            bool OutermostType,
4284                                            bool EncodingProperty,
4285                                            bool StructField) const {
4286  if (T->getAs<BuiltinType>()) {
4287    if (FD && FD->isBitField())
4288      return EncodeBitField(this, S, T, FD);
4289    S += ObjCEncodingForPrimitiveKind(this, T);
4290    return;
4291  }
4292
4293  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4294    S += 'j';
4295    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4296                               false);
4297    return;
4298  }
4299
4300  // encoding for pointer or r3eference types.
4301  QualType PointeeTy;
4302  if (const PointerType *PT = T->getAs<PointerType>()) {
4303    if (PT->isObjCSelType()) {
4304      S += ':';
4305      return;
4306    }
4307    PointeeTy = PT->getPointeeType();
4308  }
4309  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4310    PointeeTy = RT->getPointeeType();
4311  if (!PointeeTy.isNull()) {
4312    bool isReadOnly = false;
4313    // For historical/compatibility reasons, the read-only qualifier of the
4314    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4315    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4316    // Also, do not emit the 'r' for anything but the outermost type!
4317    if (isa<TypedefType>(T.getTypePtr())) {
4318      if (OutermostType && T.isConstQualified()) {
4319        isReadOnly = true;
4320        S += 'r';
4321      }
4322    } else if (OutermostType) {
4323      QualType P = PointeeTy;
4324      while (P->getAs<PointerType>())
4325        P = P->getAs<PointerType>()->getPointeeType();
4326      if (P.isConstQualified()) {
4327        isReadOnly = true;
4328        S += 'r';
4329      }
4330    }
4331    if (isReadOnly) {
4332      // Another legacy compatibility encoding. Some ObjC qualifier and type
4333      // combinations need to be rearranged.
4334      // Rewrite "in const" from "nr" to "rn"
4335      if (StringRef(S).endswith("nr"))
4336        S.replace(S.end()-2, S.end(), "rn");
4337    }
4338
4339    if (PointeeTy->isCharType()) {
4340      // char pointer types should be encoded as '*' unless it is a
4341      // type that has been typedef'd to 'BOOL'.
4342      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4343        S += '*';
4344        return;
4345      }
4346    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4347      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4348      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4349        S += '#';
4350        return;
4351      }
4352      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4353      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4354        S += '@';
4355        return;
4356      }
4357      // fall through...
4358    }
4359    S += '^';
4360    getLegacyIntegralTypeEncoding(PointeeTy);
4361
4362    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4363                               NULL);
4364    return;
4365  }
4366
4367  if (const ArrayType *AT =
4368      // Ignore type qualifiers etc.
4369        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4370    if (isa<IncompleteArrayType>(AT) && !StructField) {
4371      // Incomplete arrays are encoded as a pointer to the array element.
4372      S += '^';
4373
4374      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4375                                 false, ExpandStructures, FD);
4376    } else {
4377      S += '[';
4378
4379      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4380        if (getTypeSize(CAT->getElementType()) == 0)
4381          S += '0';
4382        else
4383          S += llvm::utostr(CAT->getSize().getZExtValue());
4384      } else {
4385        //Variable length arrays are encoded as a regular array with 0 elements.
4386        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4387               "Unknown array type!");
4388        S += '0';
4389      }
4390
4391      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4392                                 false, ExpandStructures, FD);
4393      S += ']';
4394    }
4395    return;
4396  }
4397
4398  if (T->getAs<FunctionType>()) {
4399    S += '?';
4400    return;
4401  }
4402
4403  if (const RecordType *RTy = T->getAs<RecordType>()) {
4404    RecordDecl *RDecl = RTy->getDecl();
4405    S += RDecl->isUnion() ? '(' : '{';
4406    // Anonymous structures print as '?'
4407    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4408      S += II->getName();
4409      if (ClassTemplateSpecializationDecl *Spec
4410          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4411        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4412        std::string TemplateArgsStr
4413          = TemplateSpecializationType::PrintTemplateArgumentList(
4414                                            TemplateArgs.data(),
4415                                            TemplateArgs.size(),
4416                                            (*this).PrintingPolicy);
4417
4418        S += TemplateArgsStr;
4419      }
4420    } else {
4421      S += '?';
4422    }
4423    if (ExpandStructures) {
4424      S += '=';
4425      if (!RDecl->isUnion()) {
4426        getObjCEncodingForStructureImpl(RDecl, S, FD);
4427      } else {
4428        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4429                                     FieldEnd = RDecl->field_end();
4430             Field != FieldEnd; ++Field) {
4431          if (FD) {
4432            S += '"';
4433            S += Field->getNameAsString();
4434            S += '"';
4435          }
4436
4437          // Special case bit-fields.
4438          if (Field->isBitField()) {
4439            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4440                                       (*Field));
4441          } else {
4442            QualType qt = Field->getType();
4443            getLegacyIntegralTypeEncoding(qt);
4444            getObjCEncodingForTypeImpl(qt, S, false, true,
4445                                       FD, /*OutermostType*/false,
4446                                       /*EncodingProperty*/false,
4447                                       /*StructField*/true);
4448          }
4449        }
4450      }
4451    }
4452    S += RDecl->isUnion() ? ')' : '}';
4453    return;
4454  }
4455
4456  if (T->isEnumeralType()) {
4457    if (FD && FD->isBitField())
4458      EncodeBitField(this, S, T, FD);
4459    else
4460      S += 'i';
4461    return;
4462  }
4463
4464  if (T->isBlockPointerType()) {
4465    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4466    return;
4467  }
4468
4469  // Ignore protocol qualifiers when mangling at this level.
4470  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4471    T = OT->getBaseType();
4472
4473  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4474    // @encode(class_name)
4475    ObjCInterfaceDecl *OI = OIT->getDecl();
4476    S += '{';
4477    const IdentifierInfo *II = OI->getIdentifier();
4478    S += II->getName();
4479    S += '=';
4480    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4481    DeepCollectObjCIvars(OI, true, Ivars);
4482    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4483      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4484      if (Field->isBitField())
4485        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4486      else
4487        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4488    }
4489    S += '}';
4490    return;
4491  }
4492
4493  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4494    if (OPT->isObjCIdType()) {
4495      S += '@';
4496      return;
4497    }
4498
4499    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4500      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4501      // Since this is a binary compatibility issue, need to consult with runtime
4502      // folks. Fortunately, this is a *very* obsure construct.
4503      S += '#';
4504      return;
4505    }
4506
4507    if (OPT->isObjCQualifiedIdType()) {
4508      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4509                                 ExpandPointedToStructures,
4510                                 ExpandStructures, FD);
4511      if (FD || EncodingProperty) {
4512        // Note that we do extended encoding of protocol qualifer list
4513        // Only when doing ivar or property encoding.
4514        S += '"';
4515        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4516             E = OPT->qual_end(); I != E; ++I) {
4517          S += '<';
4518          S += (*I)->getNameAsString();
4519          S += '>';
4520        }
4521        S += '"';
4522      }
4523      return;
4524    }
4525
4526    QualType PointeeTy = OPT->getPointeeType();
4527    if (!EncodingProperty &&
4528        isa<TypedefType>(PointeeTy.getTypePtr())) {
4529      // Another historical/compatibility reason.
4530      // We encode the underlying type which comes out as
4531      // {...};
4532      S += '^';
4533      getObjCEncodingForTypeImpl(PointeeTy, S,
4534                                 false, ExpandPointedToStructures,
4535                                 NULL);
4536      return;
4537    }
4538
4539    S += '@';
4540    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4541      S += '"';
4542      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4543      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4544           E = OPT->qual_end(); I != E; ++I) {
4545        S += '<';
4546        S += (*I)->getNameAsString();
4547        S += '>';
4548      }
4549      S += '"';
4550    }
4551    return;
4552  }
4553
4554  // gcc just blithely ignores member pointers.
4555  // TODO: maybe there should be a mangling for these
4556  if (T->getAs<MemberPointerType>())
4557    return;
4558
4559  if (T->isVectorType()) {
4560    // This matches gcc's encoding, even though technically it is
4561    // insufficient.
4562    // FIXME. We should do a better job than gcc.
4563    return;
4564  }
4565
4566  assert(0 && "@encode for type not implemented!");
4567}
4568
4569void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4570                                                 std::string &S,
4571                                                 const FieldDecl *FD,
4572                                                 bool includeVBases) const {
4573  assert(RDecl && "Expected non-null RecordDecl");
4574  assert(!RDecl->isUnion() && "Should not be called for unions");
4575  if (!RDecl->getDefinition())
4576    return;
4577
4578  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4579  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4580  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4581
4582  if (CXXRec) {
4583    for (CXXRecordDecl::base_class_iterator
4584           BI = CXXRec->bases_begin(),
4585           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4586      if (!BI->isVirtual()) {
4587        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4588        if (base->isEmpty())
4589          continue;
4590        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4591        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4592                                  std::make_pair(offs, base));
4593      }
4594    }
4595  }
4596
4597  unsigned i = 0;
4598  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4599                               FieldEnd = RDecl->field_end();
4600       Field != FieldEnd; ++Field, ++i) {
4601    uint64_t offs = layout.getFieldOffset(i);
4602    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4603                              std::make_pair(offs, *Field));
4604  }
4605
4606  if (CXXRec && includeVBases) {
4607    for (CXXRecordDecl::base_class_iterator
4608           BI = CXXRec->vbases_begin(),
4609           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4610      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4611      if (base->isEmpty())
4612        continue;
4613      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4614      FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4615                                std::make_pair(offs, base));
4616    }
4617  }
4618
4619  CharUnits size;
4620  if (CXXRec) {
4621    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4622  } else {
4623    size = layout.getSize();
4624  }
4625
4626  uint64_t CurOffs = 0;
4627  std::multimap<uint64_t, NamedDecl *>::iterator
4628    CurLayObj = FieldOrBaseOffsets.begin();
4629
4630  if (CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) {
4631    assert(CXXRec && CXXRec->isDynamicClass() &&
4632           "Offset 0 was empty but no VTable ?");
4633    if (FD) {
4634      S += "\"_vptr$";
4635      std::string recname = CXXRec->getNameAsString();
4636      if (recname.empty()) recname = "?";
4637      S += recname;
4638      S += '"';
4639    }
4640    S += "^^?";
4641    CurOffs += getTypeSize(VoidPtrTy);
4642  }
4643
4644  if (!RDecl->hasFlexibleArrayMember()) {
4645    // Mark the end of the structure.
4646    uint64_t offs = toBits(size);
4647    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4648                              std::make_pair(offs, (NamedDecl*)0));
4649  }
4650
4651  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4652    assert(CurOffs <= CurLayObj->first);
4653
4654    if (CurOffs < CurLayObj->first) {
4655      uint64_t padding = CurLayObj->first - CurOffs;
4656      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4657      // packing/alignment of members is different that normal, in which case
4658      // the encoding will be out-of-sync with the real layout.
4659      // If the runtime switches to just consider the size of types without
4660      // taking into account alignment, we could make padding explicit in the
4661      // encoding (e.g. using arrays of chars). The encoding strings would be
4662      // longer then though.
4663      CurOffs += padding;
4664    }
4665
4666    NamedDecl *dcl = CurLayObj->second;
4667    if (dcl == 0)
4668      break; // reached end of structure.
4669
4670    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4671      // We expand the bases without their virtual bases since those are going
4672      // in the initial structure. Note that this differs from gcc which
4673      // expands virtual bases each time one is encountered in the hierarchy,
4674      // making the encoding type bigger than it really is.
4675      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4676      assert(!base->isEmpty());
4677      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4678    } else {
4679      FieldDecl *field = cast<FieldDecl>(dcl);
4680      if (FD) {
4681        S += '"';
4682        S += field->getNameAsString();
4683        S += '"';
4684      }
4685
4686      if (field->isBitField()) {
4687        EncodeBitField(this, S, field->getType(), field);
4688        CurOffs += field->getBitWidth()->EvaluateAsInt(*this).getZExtValue();
4689      } else {
4690        QualType qt = field->getType();
4691        getLegacyIntegralTypeEncoding(qt);
4692        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4693                                   /*OutermostType*/false,
4694                                   /*EncodingProperty*/false,
4695                                   /*StructField*/true);
4696        CurOffs += getTypeSize(field->getType());
4697      }
4698    }
4699  }
4700}
4701
4702void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4703                                                 std::string& S) const {
4704  if (QT & Decl::OBJC_TQ_In)
4705    S += 'n';
4706  if (QT & Decl::OBJC_TQ_Inout)
4707    S += 'N';
4708  if (QT & Decl::OBJC_TQ_Out)
4709    S += 'o';
4710  if (QT & Decl::OBJC_TQ_Bycopy)
4711    S += 'O';
4712  if (QT & Decl::OBJC_TQ_Byref)
4713    S += 'R';
4714  if (QT & Decl::OBJC_TQ_Oneway)
4715    S += 'V';
4716}
4717
4718void ASTContext::setBuiltinVaListType(QualType T) {
4719  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4720
4721  BuiltinVaListType = T;
4722}
4723
4724void ASTContext::setObjCIdType(QualType T) {
4725  ObjCIdTypedefType = T;
4726}
4727
4728void ASTContext::setObjCSelType(QualType T) {
4729  ObjCSelTypedefType = T;
4730}
4731
4732void ASTContext::setObjCProtoType(QualType QT) {
4733  ObjCProtoType = QT;
4734}
4735
4736void ASTContext::setObjCClassType(QualType T) {
4737  ObjCClassTypedefType = T;
4738}
4739
4740void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4741  assert(ObjCConstantStringType.isNull() &&
4742         "'NSConstantString' type already set!");
4743
4744  ObjCConstantStringType = getObjCInterfaceType(Decl);
4745}
4746
4747/// \brief Retrieve the template name that corresponds to a non-empty
4748/// lookup.
4749TemplateName
4750ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4751                                      UnresolvedSetIterator End) const {
4752  unsigned size = End - Begin;
4753  assert(size > 1 && "set is not overloaded!");
4754
4755  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4756                          size * sizeof(FunctionTemplateDecl*));
4757  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4758
4759  NamedDecl **Storage = OT->getStorage();
4760  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4761    NamedDecl *D = *I;
4762    assert(isa<FunctionTemplateDecl>(D) ||
4763           (isa<UsingShadowDecl>(D) &&
4764            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4765    *Storage++ = D;
4766  }
4767
4768  return TemplateName(OT);
4769}
4770
4771/// \brief Retrieve the template name that represents a qualified
4772/// template name such as \c std::vector.
4773TemplateName
4774ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4775                                     bool TemplateKeyword,
4776                                     TemplateDecl *Template) const {
4777  assert(NNS && "Missing nested-name-specifier in qualified template name");
4778
4779  // FIXME: Canonicalization?
4780  llvm::FoldingSetNodeID ID;
4781  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4782
4783  void *InsertPos = 0;
4784  QualifiedTemplateName *QTN =
4785    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4786  if (!QTN) {
4787    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4788    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4789  }
4790
4791  return TemplateName(QTN);
4792}
4793
4794/// \brief Retrieve the template name that represents a dependent
4795/// template name such as \c MetaFun::template apply.
4796TemplateName
4797ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4798                                     const IdentifierInfo *Name) const {
4799  assert((!NNS || NNS->isDependent()) &&
4800         "Nested name specifier must be dependent");
4801
4802  llvm::FoldingSetNodeID ID;
4803  DependentTemplateName::Profile(ID, NNS, Name);
4804
4805  void *InsertPos = 0;
4806  DependentTemplateName *QTN =
4807    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4808
4809  if (QTN)
4810    return TemplateName(QTN);
4811
4812  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4813  if (CanonNNS == NNS) {
4814    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4815  } else {
4816    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4817    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4818    DependentTemplateName *CheckQTN =
4819      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4820    assert(!CheckQTN && "Dependent type name canonicalization broken");
4821    (void)CheckQTN;
4822  }
4823
4824  DependentTemplateNames.InsertNode(QTN, InsertPos);
4825  return TemplateName(QTN);
4826}
4827
4828/// \brief Retrieve the template name that represents a dependent
4829/// template name such as \c MetaFun::template operator+.
4830TemplateName
4831ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4832                                     OverloadedOperatorKind Operator) const {
4833  assert((!NNS || NNS->isDependent()) &&
4834         "Nested name specifier must be dependent");
4835
4836  llvm::FoldingSetNodeID ID;
4837  DependentTemplateName::Profile(ID, NNS, Operator);
4838
4839  void *InsertPos = 0;
4840  DependentTemplateName *QTN
4841    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4842
4843  if (QTN)
4844    return TemplateName(QTN);
4845
4846  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4847  if (CanonNNS == NNS) {
4848    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4849  } else {
4850    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4851    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4852
4853    DependentTemplateName *CheckQTN
4854      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4855    assert(!CheckQTN && "Dependent template name canonicalization broken");
4856    (void)CheckQTN;
4857  }
4858
4859  DependentTemplateNames.InsertNode(QTN, InsertPos);
4860  return TemplateName(QTN);
4861}
4862
4863TemplateName
4864ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
4865                                         TemplateName replacement) const {
4866  llvm::FoldingSetNodeID ID;
4867  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
4868
4869  void *insertPos = 0;
4870  SubstTemplateTemplateParmStorage *subst
4871    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
4872
4873  if (!subst) {
4874    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
4875    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
4876  }
4877
4878  return TemplateName(subst);
4879}
4880
4881TemplateName
4882ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4883                                       const TemplateArgument &ArgPack) const {
4884  ASTContext &Self = const_cast<ASTContext &>(*this);
4885  llvm::FoldingSetNodeID ID;
4886  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4887
4888  void *InsertPos = 0;
4889  SubstTemplateTemplateParmPackStorage *Subst
4890    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4891
4892  if (!Subst) {
4893    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
4894                                                           ArgPack.pack_size(),
4895                                                         ArgPack.pack_begin());
4896    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4897  }
4898
4899  return TemplateName(Subst);
4900}
4901
4902/// getFromTargetType - Given one of the integer types provided by
4903/// TargetInfo, produce the corresponding type. The unsigned @p Type
4904/// is actually a value of type @c TargetInfo::IntType.
4905CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4906  switch (Type) {
4907  case TargetInfo::NoInt: return CanQualType();
4908  case TargetInfo::SignedShort: return ShortTy;
4909  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4910  case TargetInfo::SignedInt: return IntTy;
4911  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4912  case TargetInfo::SignedLong: return LongTy;
4913  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4914  case TargetInfo::SignedLongLong: return LongLongTy;
4915  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4916  }
4917
4918  assert(false && "Unhandled TargetInfo::IntType value");
4919  return CanQualType();
4920}
4921
4922//===----------------------------------------------------------------------===//
4923//                        Type Predicates.
4924//===----------------------------------------------------------------------===//
4925
4926/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4927/// garbage collection attribute.
4928///
4929Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4930  if (getLangOptions().getGCMode() == LangOptions::NonGC)
4931    return Qualifiers::GCNone;
4932
4933  assert(getLangOptions().ObjC1);
4934  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4935
4936  // Default behaviour under objective-C's gc is for ObjC pointers
4937  // (or pointers to them) be treated as though they were declared
4938  // as __strong.
4939  if (GCAttrs == Qualifiers::GCNone) {
4940    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4941      return Qualifiers::Strong;
4942    else if (Ty->isPointerType())
4943      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4944  } else {
4945    // It's not valid to set GC attributes on anything that isn't a
4946    // pointer.
4947#ifndef NDEBUG
4948    QualType CT = Ty->getCanonicalTypeInternal();
4949    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4950      CT = AT->getElementType();
4951    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4952#endif
4953  }
4954  return GCAttrs;
4955}
4956
4957//===----------------------------------------------------------------------===//
4958//                        Type Compatibility Testing
4959//===----------------------------------------------------------------------===//
4960
4961/// areCompatVectorTypes - Return true if the two specified vector types are
4962/// compatible.
4963static bool areCompatVectorTypes(const VectorType *LHS,
4964                                 const VectorType *RHS) {
4965  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4966  return LHS->getElementType() == RHS->getElementType() &&
4967         LHS->getNumElements() == RHS->getNumElements();
4968}
4969
4970bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4971                                          QualType SecondVec) {
4972  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4973  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4974
4975  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4976    return true;
4977
4978  // Treat Neon vector types and most AltiVec vector types as if they are the
4979  // equivalent GCC vector types.
4980  const VectorType *First = FirstVec->getAs<VectorType>();
4981  const VectorType *Second = SecondVec->getAs<VectorType>();
4982  if (First->getNumElements() == Second->getNumElements() &&
4983      hasSameType(First->getElementType(), Second->getElementType()) &&
4984      First->getVectorKind() != VectorType::AltiVecPixel &&
4985      First->getVectorKind() != VectorType::AltiVecBool &&
4986      Second->getVectorKind() != VectorType::AltiVecPixel &&
4987      Second->getVectorKind() != VectorType::AltiVecBool)
4988    return true;
4989
4990  return false;
4991}
4992
4993//===----------------------------------------------------------------------===//
4994// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4995//===----------------------------------------------------------------------===//
4996
4997/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4998/// inheritance hierarchy of 'rProto'.
4999bool
5000ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5001                                           ObjCProtocolDecl *rProto) const {
5002  if (lProto == rProto)
5003    return true;
5004  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5005       E = rProto->protocol_end(); PI != E; ++PI)
5006    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5007      return true;
5008  return false;
5009}
5010
5011/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5012/// return true if lhs's protocols conform to rhs's protocol; false
5013/// otherwise.
5014bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5015  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5016    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5017  return false;
5018}
5019
5020/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5021/// Class<p1, ...>.
5022bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5023                                                      QualType rhs) {
5024  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5025  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5026  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5027
5028  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5029       E = lhsQID->qual_end(); I != E; ++I) {
5030    bool match = false;
5031    ObjCProtocolDecl *lhsProto = *I;
5032    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5033         E = rhsOPT->qual_end(); J != E; ++J) {
5034      ObjCProtocolDecl *rhsProto = *J;
5035      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5036        match = true;
5037        break;
5038      }
5039    }
5040    if (!match)
5041      return false;
5042  }
5043  return true;
5044}
5045
5046/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5047/// ObjCQualifiedIDType.
5048bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5049                                                   bool compare) {
5050  // Allow id<P..> and an 'id' or void* type in all cases.
5051  if (lhs->isVoidPointerType() ||
5052      lhs->isObjCIdType() || lhs->isObjCClassType())
5053    return true;
5054  else if (rhs->isVoidPointerType() ||
5055           rhs->isObjCIdType() || rhs->isObjCClassType())
5056    return true;
5057
5058  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5059    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5060
5061    if (!rhsOPT) return false;
5062
5063    if (rhsOPT->qual_empty()) {
5064      // If the RHS is a unqualified interface pointer "NSString*",
5065      // make sure we check the class hierarchy.
5066      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5067        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5068             E = lhsQID->qual_end(); I != E; ++I) {
5069          // when comparing an id<P> on lhs with a static type on rhs,
5070          // see if static class implements all of id's protocols, directly or
5071          // through its super class and categories.
5072          if (!rhsID->ClassImplementsProtocol(*I, true))
5073            return false;
5074        }
5075      }
5076      // If there are no qualifiers and no interface, we have an 'id'.
5077      return true;
5078    }
5079    // Both the right and left sides have qualifiers.
5080    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5081         E = lhsQID->qual_end(); I != E; ++I) {
5082      ObjCProtocolDecl *lhsProto = *I;
5083      bool match = false;
5084
5085      // when comparing an id<P> on lhs with a static type on rhs,
5086      // see if static class implements all of id's protocols, directly or
5087      // through its super class and categories.
5088      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5089           E = rhsOPT->qual_end(); J != E; ++J) {
5090        ObjCProtocolDecl *rhsProto = *J;
5091        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5092            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5093          match = true;
5094          break;
5095        }
5096      }
5097      // If the RHS is a qualified interface pointer "NSString<P>*",
5098      // make sure we check the class hierarchy.
5099      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5100        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5101             E = lhsQID->qual_end(); I != E; ++I) {
5102          // when comparing an id<P> on lhs with a static type on rhs,
5103          // see if static class implements all of id's protocols, directly or
5104          // through its super class and categories.
5105          if (rhsID->ClassImplementsProtocol(*I, true)) {
5106            match = true;
5107            break;
5108          }
5109        }
5110      }
5111      if (!match)
5112        return false;
5113    }
5114
5115    return true;
5116  }
5117
5118  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5119  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5120
5121  if (const ObjCObjectPointerType *lhsOPT =
5122        lhs->getAsObjCInterfacePointerType()) {
5123    // If both the right and left sides have qualifiers.
5124    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5125         E = lhsOPT->qual_end(); I != E; ++I) {
5126      ObjCProtocolDecl *lhsProto = *I;
5127      bool match = false;
5128
5129      // when comparing an id<P> on rhs with a static type on lhs,
5130      // see if static class implements all of id's protocols, directly or
5131      // through its super class and categories.
5132      // First, lhs protocols in the qualifier list must be found, direct
5133      // or indirect in rhs's qualifier list or it is a mismatch.
5134      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5135           E = rhsQID->qual_end(); J != E; ++J) {
5136        ObjCProtocolDecl *rhsProto = *J;
5137        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5138            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5139          match = true;
5140          break;
5141        }
5142      }
5143      if (!match)
5144        return false;
5145    }
5146
5147    // Static class's protocols, or its super class or category protocols
5148    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5149    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5150      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5151      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5152      // This is rather dubious but matches gcc's behavior. If lhs has
5153      // no type qualifier and its class has no static protocol(s)
5154      // assume that it is mismatch.
5155      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5156        return false;
5157      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5158           LHSInheritedProtocols.begin(),
5159           E = LHSInheritedProtocols.end(); I != E; ++I) {
5160        bool match = false;
5161        ObjCProtocolDecl *lhsProto = (*I);
5162        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5163             E = rhsQID->qual_end(); J != E; ++J) {
5164          ObjCProtocolDecl *rhsProto = *J;
5165          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5166              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5167            match = true;
5168            break;
5169          }
5170        }
5171        if (!match)
5172          return false;
5173      }
5174    }
5175    return true;
5176  }
5177  return false;
5178}
5179
5180/// canAssignObjCInterfaces - Return true if the two interface types are
5181/// compatible for assignment from RHS to LHS.  This handles validation of any
5182/// protocol qualifiers on the LHS or RHS.
5183///
5184bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5185                                         const ObjCObjectPointerType *RHSOPT) {
5186  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5187  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5188
5189  // If either type represents the built-in 'id' or 'Class' types, return true.
5190  if (LHS->isObjCUnqualifiedIdOrClass() ||
5191      RHS->isObjCUnqualifiedIdOrClass())
5192    return true;
5193
5194  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5195    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5196                                             QualType(RHSOPT,0),
5197                                             false);
5198
5199  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5200    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5201                                                QualType(RHSOPT,0));
5202
5203  // If we have 2 user-defined types, fall into that path.
5204  if (LHS->getInterface() && RHS->getInterface())
5205    return canAssignObjCInterfaces(LHS, RHS);
5206
5207  return false;
5208}
5209
5210/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5211/// for providing type-safety for objective-c pointers used to pass/return
5212/// arguments in block literals. When passed as arguments, passing 'A*' where
5213/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5214/// not OK. For the return type, the opposite is not OK.
5215bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5216                                         const ObjCObjectPointerType *LHSOPT,
5217                                         const ObjCObjectPointerType *RHSOPT,
5218                                         bool BlockReturnType) {
5219  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5220    return true;
5221
5222  if (LHSOPT->isObjCBuiltinType()) {
5223    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5224  }
5225
5226  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5227    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5228                                             QualType(RHSOPT,0),
5229                                             false);
5230
5231  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5232  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5233  if (LHS && RHS)  { // We have 2 user-defined types.
5234    if (LHS != RHS) {
5235      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5236        return BlockReturnType;
5237      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5238        return !BlockReturnType;
5239    }
5240    else
5241      return true;
5242  }
5243  return false;
5244}
5245
5246/// getIntersectionOfProtocols - This routine finds the intersection of set
5247/// of protocols inherited from two distinct objective-c pointer objects.
5248/// It is used to build composite qualifier list of the composite type of
5249/// the conditional expression involving two objective-c pointer objects.
5250static
5251void getIntersectionOfProtocols(ASTContext &Context,
5252                                const ObjCObjectPointerType *LHSOPT,
5253                                const ObjCObjectPointerType *RHSOPT,
5254      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5255
5256  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5257  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5258  assert(LHS->getInterface() && "LHS must have an interface base");
5259  assert(RHS->getInterface() && "RHS must have an interface base");
5260
5261  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5262  unsigned LHSNumProtocols = LHS->getNumProtocols();
5263  if (LHSNumProtocols > 0)
5264    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5265  else {
5266    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5267    Context.CollectInheritedProtocols(LHS->getInterface(),
5268                                      LHSInheritedProtocols);
5269    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5270                                LHSInheritedProtocols.end());
5271  }
5272
5273  unsigned RHSNumProtocols = RHS->getNumProtocols();
5274  if (RHSNumProtocols > 0) {
5275    ObjCProtocolDecl **RHSProtocols =
5276      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5277    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5278      if (InheritedProtocolSet.count(RHSProtocols[i]))
5279        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5280  }
5281  else {
5282    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5283    Context.CollectInheritedProtocols(RHS->getInterface(),
5284                                      RHSInheritedProtocols);
5285    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5286         RHSInheritedProtocols.begin(),
5287         E = RHSInheritedProtocols.end(); I != E; ++I)
5288      if (InheritedProtocolSet.count((*I)))
5289        IntersectionOfProtocols.push_back((*I));
5290  }
5291}
5292
5293/// areCommonBaseCompatible - Returns common base class of the two classes if
5294/// one found. Note that this is O'2 algorithm. But it will be called as the
5295/// last type comparison in a ?-exp of ObjC pointer types before a
5296/// warning is issued. So, its invokation is extremely rare.
5297QualType ASTContext::areCommonBaseCompatible(
5298                                          const ObjCObjectPointerType *Lptr,
5299                                          const ObjCObjectPointerType *Rptr) {
5300  const ObjCObjectType *LHS = Lptr->getObjectType();
5301  const ObjCObjectType *RHS = Rptr->getObjectType();
5302  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5303  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5304  if (!LDecl || !RDecl || (LDecl == RDecl))
5305    return QualType();
5306
5307  do {
5308    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5309    if (canAssignObjCInterfaces(LHS, RHS)) {
5310      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5311      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5312
5313      QualType Result = QualType(LHS, 0);
5314      if (!Protocols.empty())
5315        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5316      Result = getObjCObjectPointerType(Result);
5317      return Result;
5318    }
5319  } while ((LDecl = LDecl->getSuperClass()));
5320
5321  return QualType();
5322}
5323
5324bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5325                                         const ObjCObjectType *RHS) {
5326  assert(LHS->getInterface() && "LHS is not an interface type");
5327  assert(RHS->getInterface() && "RHS is not an interface type");
5328
5329  // Verify that the base decls are compatible: the RHS must be a subclass of
5330  // the LHS.
5331  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5332    return false;
5333
5334  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5335  // protocol qualified at all, then we are good.
5336  if (LHS->getNumProtocols() == 0)
5337    return true;
5338
5339  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5340  // more detailed analysis is required.
5341  if (RHS->getNumProtocols() == 0) {
5342    // OK, if LHS is a superclass of RHS *and*
5343    // this superclass is assignment compatible with LHS.
5344    // false otherwise.
5345    bool IsSuperClass =
5346      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5347    if (IsSuperClass) {
5348      // OK if conversion of LHS to SuperClass results in narrowing of types
5349      // ; i.e., SuperClass may implement at least one of the protocols
5350      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5351      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5352      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5353      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5354      // If super class has no protocols, it is not a match.
5355      if (SuperClassInheritedProtocols.empty())
5356        return false;
5357
5358      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5359           LHSPE = LHS->qual_end();
5360           LHSPI != LHSPE; LHSPI++) {
5361        bool SuperImplementsProtocol = false;
5362        ObjCProtocolDecl *LHSProto = (*LHSPI);
5363
5364        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5365             SuperClassInheritedProtocols.begin(),
5366             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5367          ObjCProtocolDecl *SuperClassProto = (*I);
5368          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5369            SuperImplementsProtocol = true;
5370            break;
5371          }
5372        }
5373        if (!SuperImplementsProtocol)
5374          return false;
5375      }
5376      return true;
5377    }
5378    return false;
5379  }
5380
5381  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5382                                     LHSPE = LHS->qual_end();
5383       LHSPI != LHSPE; LHSPI++) {
5384    bool RHSImplementsProtocol = false;
5385
5386    // If the RHS doesn't implement the protocol on the left, the types
5387    // are incompatible.
5388    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5389                                       RHSPE = RHS->qual_end();
5390         RHSPI != RHSPE; RHSPI++) {
5391      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5392        RHSImplementsProtocol = true;
5393        break;
5394      }
5395    }
5396    // FIXME: For better diagnostics, consider passing back the protocol name.
5397    if (!RHSImplementsProtocol)
5398      return false;
5399  }
5400  // The RHS implements all protocols listed on the LHS.
5401  return true;
5402}
5403
5404bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5405  // get the "pointed to" types
5406  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5407  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5408
5409  if (!LHSOPT || !RHSOPT)
5410    return false;
5411
5412  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5413         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5414}
5415
5416bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5417  return canAssignObjCInterfaces(
5418                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5419                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5420}
5421
5422/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5423/// both shall have the identically qualified version of a compatible type.
5424/// C99 6.2.7p1: Two types have compatible types if their types are the
5425/// same. See 6.7.[2,3,5] for additional rules.
5426bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5427                                    bool CompareUnqualified) {
5428  if (getLangOptions().CPlusPlus)
5429    return hasSameType(LHS, RHS);
5430
5431  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5432}
5433
5434bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5435  return typesAreCompatible(LHS, RHS);
5436}
5437
5438bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5439  return !mergeTypes(LHS, RHS, true).isNull();
5440}
5441
5442/// mergeTransparentUnionType - if T is a transparent union type and a member
5443/// of T is compatible with SubType, return the merged type, else return
5444/// QualType()
5445QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5446                                               bool OfBlockPointer,
5447                                               bool Unqualified) {
5448  if (const RecordType *UT = T->getAsUnionType()) {
5449    RecordDecl *UD = UT->getDecl();
5450    if (UD->hasAttr<TransparentUnionAttr>()) {
5451      for (RecordDecl::field_iterator it = UD->field_begin(),
5452           itend = UD->field_end(); it != itend; ++it) {
5453        QualType ET = it->getType().getUnqualifiedType();
5454        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5455        if (!MT.isNull())
5456          return MT;
5457      }
5458    }
5459  }
5460
5461  return QualType();
5462}
5463
5464/// mergeFunctionArgumentTypes - merge two types which appear as function
5465/// argument types
5466QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5467                                                bool OfBlockPointer,
5468                                                bool Unqualified) {
5469  // GNU extension: two types are compatible if they appear as a function
5470  // argument, one of the types is a transparent union type and the other
5471  // type is compatible with a union member
5472  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5473                                              Unqualified);
5474  if (!lmerge.isNull())
5475    return lmerge;
5476
5477  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5478                                              Unqualified);
5479  if (!rmerge.isNull())
5480    return rmerge;
5481
5482  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5483}
5484
5485QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5486                                        bool OfBlockPointer,
5487                                        bool Unqualified) {
5488  const FunctionType *lbase = lhs->getAs<FunctionType>();
5489  const FunctionType *rbase = rhs->getAs<FunctionType>();
5490  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5491  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5492  bool allLTypes = true;
5493  bool allRTypes = true;
5494
5495  // Check return type
5496  QualType retType;
5497  if (OfBlockPointer) {
5498    QualType RHS = rbase->getResultType();
5499    QualType LHS = lbase->getResultType();
5500    bool UnqualifiedResult = Unqualified;
5501    if (!UnqualifiedResult)
5502      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5503    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5504  }
5505  else
5506    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5507                         Unqualified);
5508  if (retType.isNull()) return QualType();
5509
5510  if (Unqualified)
5511    retType = retType.getUnqualifiedType();
5512
5513  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5514  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5515  if (Unqualified) {
5516    LRetType = LRetType.getUnqualifiedType();
5517    RRetType = RRetType.getUnqualifiedType();
5518  }
5519
5520  if (getCanonicalType(retType) != LRetType)
5521    allLTypes = false;
5522  if (getCanonicalType(retType) != RRetType)
5523    allRTypes = false;
5524
5525  // FIXME: double check this
5526  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5527  //                           rbase->getRegParmAttr() != 0 &&
5528  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5529  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5530  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5531
5532  // Compatible functions must have compatible calling conventions
5533  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5534    return QualType();
5535
5536  // Regparm is part of the calling convention.
5537  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5538    return QualType();
5539  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5540    return QualType();
5541
5542  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5543    return QualType();
5544
5545  // It's noreturn if either type is.
5546  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5547  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5548  if (NoReturn != lbaseInfo.getNoReturn())
5549    allLTypes = false;
5550  if (NoReturn != rbaseInfo.getNoReturn())
5551    allRTypes = false;
5552
5553  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5554
5555  if (lproto && rproto) { // two C99 style function prototypes
5556    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5557           "C++ shouldn't be here");
5558    unsigned lproto_nargs = lproto->getNumArgs();
5559    unsigned rproto_nargs = rproto->getNumArgs();
5560
5561    // Compatible functions must have the same number of arguments
5562    if (lproto_nargs != rproto_nargs)
5563      return QualType();
5564
5565    // Variadic and non-variadic functions aren't compatible
5566    if (lproto->isVariadic() != rproto->isVariadic())
5567      return QualType();
5568
5569    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5570      return QualType();
5571
5572    // Check argument compatibility
5573    SmallVector<QualType, 10> types;
5574    for (unsigned i = 0; i < lproto_nargs; i++) {
5575      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5576      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5577      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5578                                                    OfBlockPointer,
5579                                                    Unqualified);
5580      if (argtype.isNull()) return QualType();
5581
5582      if (Unqualified)
5583        argtype = argtype.getUnqualifiedType();
5584
5585      types.push_back(argtype);
5586      if (Unqualified) {
5587        largtype = largtype.getUnqualifiedType();
5588        rargtype = rargtype.getUnqualifiedType();
5589      }
5590
5591      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5592        allLTypes = false;
5593      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5594        allRTypes = false;
5595    }
5596    if (allLTypes) return lhs;
5597    if (allRTypes) return rhs;
5598
5599    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5600    EPI.ExtInfo = einfo;
5601    return getFunctionType(retType, types.begin(), types.size(), EPI);
5602  }
5603
5604  if (lproto) allRTypes = false;
5605  if (rproto) allLTypes = false;
5606
5607  const FunctionProtoType *proto = lproto ? lproto : rproto;
5608  if (proto) {
5609    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5610    if (proto->isVariadic()) return QualType();
5611    // Check that the types are compatible with the types that
5612    // would result from default argument promotions (C99 6.7.5.3p15).
5613    // The only types actually affected are promotable integer
5614    // types and floats, which would be passed as a different
5615    // type depending on whether the prototype is visible.
5616    unsigned proto_nargs = proto->getNumArgs();
5617    for (unsigned i = 0; i < proto_nargs; ++i) {
5618      QualType argTy = proto->getArgType(i);
5619
5620      // Look at the promotion type of enum types, since that is the type used
5621      // to pass enum values.
5622      if (const EnumType *Enum = argTy->getAs<EnumType>())
5623        argTy = Enum->getDecl()->getPromotionType();
5624
5625      if (argTy->isPromotableIntegerType() ||
5626          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5627        return QualType();
5628    }
5629
5630    if (allLTypes) return lhs;
5631    if (allRTypes) return rhs;
5632
5633    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5634    EPI.ExtInfo = einfo;
5635    return getFunctionType(retType, proto->arg_type_begin(),
5636                           proto->getNumArgs(), EPI);
5637  }
5638
5639  if (allLTypes) return lhs;
5640  if (allRTypes) return rhs;
5641  return getFunctionNoProtoType(retType, einfo);
5642}
5643
5644QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5645                                bool OfBlockPointer,
5646                                bool Unqualified, bool BlockReturnType) {
5647  // C++ [expr]: If an expression initially has the type "reference to T", the
5648  // type is adjusted to "T" prior to any further analysis, the expression
5649  // designates the object or function denoted by the reference, and the
5650  // expression is an lvalue unless the reference is an rvalue reference and
5651  // the expression is a function call (possibly inside parentheses).
5652  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5653  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5654
5655  if (Unqualified) {
5656    LHS = LHS.getUnqualifiedType();
5657    RHS = RHS.getUnqualifiedType();
5658  }
5659
5660  QualType LHSCan = getCanonicalType(LHS),
5661           RHSCan = getCanonicalType(RHS);
5662
5663  // If two types are identical, they are compatible.
5664  if (LHSCan == RHSCan)
5665    return LHS;
5666
5667  // If the qualifiers are different, the types aren't compatible... mostly.
5668  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5669  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5670  if (LQuals != RQuals) {
5671    // If any of these qualifiers are different, we have a type
5672    // mismatch.
5673    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5674        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5675        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5676      return QualType();
5677
5678    // Exactly one GC qualifier difference is allowed: __strong is
5679    // okay if the other type has no GC qualifier but is an Objective
5680    // C object pointer (i.e. implicitly strong by default).  We fix
5681    // this by pretending that the unqualified type was actually
5682    // qualified __strong.
5683    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5684    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5685    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5686
5687    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5688      return QualType();
5689
5690    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5691      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5692    }
5693    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5694      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5695    }
5696    return QualType();
5697  }
5698
5699  // Okay, qualifiers are equal.
5700
5701  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5702  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5703
5704  // We want to consider the two function types to be the same for these
5705  // comparisons, just force one to the other.
5706  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5707  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5708
5709  // Same as above for arrays
5710  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5711    LHSClass = Type::ConstantArray;
5712  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5713    RHSClass = Type::ConstantArray;
5714
5715  // ObjCInterfaces are just specialized ObjCObjects.
5716  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5717  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5718
5719  // Canonicalize ExtVector -> Vector.
5720  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5721  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5722
5723  // If the canonical type classes don't match.
5724  if (LHSClass != RHSClass) {
5725    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5726    // a signed integer type, or an unsigned integer type.
5727    // Compatibility is based on the underlying type, not the promotion
5728    // type.
5729    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5730      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5731        return RHS;
5732    }
5733    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5734      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5735        return LHS;
5736    }
5737
5738    return QualType();
5739  }
5740
5741  // The canonical type classes match.
5742  switch (LHSClass) {
5743#define TYPE(Class, Base)
5744#define ABSTRACT_TYPE(Class, Base)
5745#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5746#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5747#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5748#include "clang/AST/TypeNodes.def"
5749    assert(false && "Non-canonical and dependent types shouldn't get here");
5750    return QualType();
5751
5752  case Type::LValueReference:
5753  case Type::RValueReference:
5754  case Type::MemberPointer:
5755    assert(false && "C++ should never be in mergeTypes");
5756    return QualType();
5757
5758  case Type::ObjCInterface:
5759  case Type::IncompleteArray:
5760  case Type::VariableArray:
5761  case Type::FunctionProto:
5762  case Type::ExtVector:
5763    assert(false && "Types are eliminated above");
5764    return QualType();
5765
5766  case Type::Pointer:
5767  {
5768    // Merge two pointer types, while trying to preserve typedef info
5769    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5770    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5771    if (Unqualified) {
5772      LHSPointee = LHSPointee.getUnqualifiedType();
5773      RHSPointee = RHSPointee.getUnqualifiedType();
5774    }
5775    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5776                                     Unqualified);
5777    if (ResultType.isNull()) return QualType();
5778    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5779      return LHS;
5780    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5781      return RHS;
5782    return getPointerType(ResultType);
5783  }
5784  case Type::BlockPointer:
5785  {
5786    // Merge two block pointer types, while trying to preserve typedef info
5787    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5788    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5789    if (Unqualified) {
5790      LHSPointee = LHSPointee.getUnqualifiedType();
5791      RHSPointee = RHSPointee.getUnqualifiedType();
5792    }
5793    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5794                                     Unqualified);
5795    if (ResultType.isNull()) return QualType();
5796    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5797      return LHS;
5798    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5799      return RHS;
5800    return getBlockPointerType(ResultType);
5801  }
5802  case Type::ConstantArray:
5803  {
5804    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5805    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5806    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5807      return QualType();
5808
5809    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5810    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5811    if (Unqualified) {
5812      LHSElem = LHSElem.getUnqualifiedType();
5813      RHSElem = RHSElem.getUnqualifiedType();
5814    }
5815
5816    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5817    if (ResultType.isNull()) return QualType();
5818    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5819      return LHS;
5820    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5821      return RHS;
5822    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5823                                          ArrayType::ArraySizeModifier(), 0);
5824    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5825                                          ArrayType::ArraySizeModifier(), 0);
5826    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5827    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5828    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5829      return LHS;
5830    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5831      return RHS;
5832    if (LVAT) {
5833      // FIXME: This isn't correct! But tricky to implement because
5834      // the array's size has to be the size of LHS, but the type
5835      // has to be different.
5836      return LHS;
5837    }
5838    if (RVAT) {
5839      // FIXME: This isn't correct! But tricky to implement because
5840      // the array's size has to be the size of RHS, but the type
5841      // has to be different.
5842      return RHS;
5843    }
5844    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5845    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5846    return getIncompleteArrayType(ResultType,
5847                                  ArrayType::ArraySizeModifier(), 0);
5848  }
5849  case Type::FunctionNoProto:
5850    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5851  case Type::Record:
5852  case Type::Enum:
5853    return QualType();
5854  case Type::Builtin:
5855    // Only exactly equal builtin types are compatible, which is tested above.
5856    return QualType();
5857  case Type::Complex:
5858    // Distinct complex types are incompatible.
5859    return QualType();
5860  case Type::Vector:
5861    // FIXME: The merged type should be an ExtVector!
5862    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5863                             RHSCan->getAs<VectorType>()))
5864      return LHS;
5865    return QualType();
5866  case Type::ObjCObject: {
5867    // Check if the types are assignment compatible.
5868    // FIXME: This should be type compatibility, e.g. whether
5869    // "LHS x; RHS x;" at global scope is legal.
5870    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5871    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5872    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5873      return LHS;
5874
5875    return QualType();
5876  }
5877  case Type::ObjCObjectPointer: {
5878    if (OfBlockPointer) {
5879      if (canAssignObjCInterfacesInBlockPointer(
5880                                          LHS->getAs<ObjCObjectPointerType>(),
5881                                          RHS->getAs<ObjCObjectPointerType>(),
5882                                          BlockReturnType))
5883      return LHS;
5884      return QualType();
5885    }
5886    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5887                                RHS->getAs<ObjCObjectPointerType>()))
5888      return LHS;
5889
5890    return QualType();
5891    }
5892  }
5893
5894  return QualType();
5895}
5896
5897/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5898/// 'RHS' attributes and returns the merged version; including for function
5899/// return types.
5900QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5901  QualType LHSCan = getCanonicalType(LHS),
5902  RHSCan = getCanonicalType(RHS);
5903  // If two types are identical, they are compatible.
5904  if (LHSCan == RHSCan)
5905    return LHS;
5906  if (RHSCan->isFunctionType()) {
5907    if (!LHSCan->isFunctionType())
5908      return QualType();
5909    QualType OldReturnType =
5910      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5911    QualType NewReturnType =
5912      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5913    QualType ResReturnType =
5914      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5915    if (ResReturnType.isNull())
5916      return QualType();
5917    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5918      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5919      // In either case, use OldReturnType to build the new function type.
5920      const FunctionType *F = LHS->getAs<FunctionType>();
5921      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5922        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5923        EPI.ExtInfo = getFunctionExtInfo(LHS);
5924        QualType ResultType
5925          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5926                            FPT->getNumArgs(), EPI);
5927        return ResultType;
5928      }
5929    }
5930    return QualType();
5931  }
5932
5933  // If the qualifiers are different, the types can still be merged.
5934  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5935  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5936  if (LQuals != RQuals) {
5937    // If any of these qualifiers are different, we have a type mismatch.
5938    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5939        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5940      return QualType();
5941
5942    // Exactly one GC qualifier difference is allowed: __strong is
5943    // okay if the other type has no GC qualifier but is an Objective
5944    // C object pointer (i.e. implicitly strong by default).  We fix
5945    // this by pretending that the unqualified type was actually
5946    // qualified __strong.
5947    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5948    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5949    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5950
5951    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5952      return QualType();
5953
5954    if (GC_L == Qualifiers::Strong)
5955      return LHS;
5956    if (GC_R == Qualifiers::Strong)
5957      return RHS;
5958    return QualType();
5959  }
5960
5961  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5962    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5963    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5964    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5965    if (ResQT == LHSBaseQT)
5966      return LHS;
5967    if (ResQT == RHSBaseQT)
5968      return RHS;
5969  }
5970  return QualType();
5971}
5972
5973//===----------------------------------------------------------------------===//
5974//                         Integer Predicates
5975//===----------------------------------------------------------------------===//
5976
5977unsigned ASTContext::getIntWidth(QualType T) const {
5978  if (const EnumType *ET = dyn_cast<EnumType>(T))
5979    T = ET->getDecl()->getIntegerType();
5980  if (T->isBooleanType())
5981    return 1;
5982  // For builtin types, just use the standard type sizing method
5983  return (unsigned)getTypeSize(T);
5984}
5985
5986QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5987  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5988
5989  // Turn <4 x signed int> -> <4 x unsigned int>
5990  if (const VectorType *VTy = T->getAs<VectorType>())
5991    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5992                         VTy->getNumElements(), VTy->getVectorKind());
5993
5994  // For enums, we return the unsigned version of the base type.
5995  if (const EnumType *ETy = T->getAs<EnumType>())
5996    T = ETy->getDecl()->getIntegerType();
5997
5998  const BuiltinType *BTy = T->getAs<BuiltinType>();
5999  assert(BTy && "Unexpected signed integer type");
6000  switch (BTy->getKind()) {
6001  case BuiltinType::Char_S:
6002  case BuiltinType::SChar:
6003    return UnsignedCharTy;
6004  case BuiltinType::Short:
6005    return UnsignedShortTy;
6006  case BuiltinType::Int:
6007    return UnsignedIntTy;
6008  case BuiltinType::Long:
6009    return UnsignedLongTy;
6010  case BuiltinType::LongLong:
6011    return UnsignedLongLongTy;
6012  case BuiltinType::Int128:
6013    return UnsignedInt128Ty;
6014  default:
6015    assert(0 && "Unexpected signed integer type");
6016    return QualType();
6017  }
6018}
6019
6020ASTMutationListener::~ASTMutationListener() { }
6021
6022
6023//===----------------------------------------------------------------------===//
6024//                          Builtin Type Computation
6025//===----------------------------------------------------------------------===//
6026
6027/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6028/// pointer over the consumed characters.  This returns the resultant type.  If
6029/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6030/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6031/// a vector of "i*".
6032///
6033/// RequiresICE is filled in on return to indicate whether the value is required
6034/// to be an Integer Constant Expression.
6035static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6036                                  ASTContext::GetBuiltinTypeError &Error,
6037                                  bool &RequiresICE,
6038                                  bool AllowTypeModifiers) {
6039  // Modifiers.
6040  int HowLong = 0;
6041  bool Signed = false, Unsigned = false;
6042  RequiresICE = false;
6043
6044  // Read the prefixed modifiers first.
6045  bool Done = false;
6046  while (!Done) {
6047    switch (*Str++) {
6048    default: Done = true; --Str; break;
6049    case 'I':
6050      RequiresICE = true;
6051      break;
6052    case 'S':
6053      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6054      assert(!Signed && "Can't use 'S' modifier multiple times!");
6055      Signed = true;
6056      break;
6057    case 'U':
6058      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6059      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6060      Unsigned = true;
6061      break;
6062    case 'L':
6063      assert(HowLong <= 2 && "Can't have LLLL modifier");
6064      ++HowLong;
6065      break;
6066    }
6067  }
6068
6069  QualType Type;
6070
6071  // Read the base type.
6072  switch (*Str++) {
6073  default: assert(0 && "Unknown builtin type letter!");
6074  case 'v':
6075    assert(HowLong == 0 && !Signed && !Unsigned &&
6076           "Bad modifiers used with 'v'!");
6077    Type = Context.VoidTy;
6078    break;
6079  case 'f':
6080    assert(HowLong == 0 && !Signed && !Unsigned &&
6081           "Bad modifiers used with 'f'!");
6082    Type = Context.FloatTy;
6083    break;
6084  case 'd':
6085    assert(HowLong < 2 && !Signed && !Unsigned &&
6086           "Bad modifiers used with 'd'!");
6087    if (HowLong)
6088      Type = Context.LongDoubleTy;
6089    else
6090      Type = Context.DoubleTy;
6091    break;
6092  case 's':
6093    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6094    if (Unsigned)
6095      Type = Context.UnsignedShortTy;
6096    else
6097      Type = Context.ShortTy;
6098    break;
6099  case 'i':
6100    if (HowLong == 3)
6101      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6102    else if (HowLong == 2)
6103      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6104    else if (HowLong == 1)
6105      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6106    else
6107      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6108    break;
6109  case 'c':
6110    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6111    if (Signed)
6112      Type = Context.SignedCharTy;
6113    else if (Unsigned)
6114      Type = Context.UnsignedCharTy;
6115    else
6116      Type = Context.CharTy;
6117    break;
6118  case 'b': // boolean
6119    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6120    Type = Context.BoolTy;
6121    break;
6122  case 'z':  // size_t.
6123    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6124    Type = Context.getSizeType();
6125    break;
6126  case 'F':
6127    Type = Context.getCFConstantStringType();
6128    break;
6129  case 'G':
6130    Type = Context.getObjCIdType();
6131    break;
6132  case 'H':
6133    Type = Context.getObjCSelType();
6134    break;
6135  case 'a':
6136    Type = Context.getBuiltinVaListType();
6137    assert(!Type.isNull() && "builtin va list type not initialized!");
6138    break;
6139  case 'A':
6140    // This is a "reference" to a va_list; however, what exactly
6141    // this means depends on how va_list is defined. There are two
6142    // different kinds of va_list: ones passed by value, and ones
6143    // passed by reference.  An example of a by-value va_list is
6144    // x86, where va_list is a char*. An example of by-ref va_list
6145    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6146    // we want this argument to be a char*&; for x86-64, we want
6147    // it to be a __va_list_tag*.
6148    Type = Context.getBuiltinVaListType();
6149    assert(!Type.isNull() && "builtin va list type not initialized!");
6150    if (Type->isArrayType())
6151      Type = Context.getArrayDecayedType(Type);
6152    else
6153      Type = Context.getLValueReferenceType(Type);
6154    break;
6155  case 'V': {
6156    char *End;
6157    unsigned NumElements = strtoul(Str, &End, 10);
6158    assert(End != Str && "Missing vector size");
6159    Str = End;
6160
6161    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6162                                             RequiresICE, false);
6163    assert(!RequiresICE && "Can't require vector ICE");
6164
6165    // TODO: No way to make AltiVec vectors in builtins yet.
6166    Type = Context.getVectorType(ElementType, NumElements,
6167                                 VectorType::GenericVector);
6168    break;
6169  }
6170  case 'X': {
6171    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6172                                             false);
6173    assert(!RequiresICE && "Can't require complex ICE");
6174    Type = Context.getComplexType(ElementType);
6175    break;
6176  }
6177  case 'P':
6178    Type = Context.getFILEType();
6179    if (Type.isNull()) {
6180      Error = ASTContext::GE_Missing_stdio;
6181      return QualType();
6182    }
6183    break;
6184  case 'J':
6185    if (Signed)
6186      Type = Context.getsigjmp_bufType();
6187    else
6188      Type = Context.getjmp_bufType();
6189
6190    if (Type.isNull()) {
6191      Error = ASTContext::GE_Missing_setjmp;
6192      return QualType();
6193    }
6194    break;
6195  }
6196
6197  // If there are modifiers and if we're allowed to parse them, go for it.
6198  Done = !AllowTypeModifiers;
6199  while (!Done) {
6200    switch (char c = *Str++) {
6201    default: Done = true; --Str; break;
6202    case '*':
6203    case '&': {
6204      // Both pointers and references can have their pointee types
6205      // qualified with an address space.
6206      char *End;
6207      unsigned AddrSpace = strtoul(Str, &End, 10);
6208      if (End != Str && AddrSpace != 0) {
6209        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6210        Str = End;
6211      }
6212      if (c == '*')
6213        Type = Context.getPointerType(Type);
6214      else
6215        Type = Context.getLValueReferenceType(Type);
6216      break;
6217    }
6218    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6219    case 'C':
6220      Type = Type.withConst();
6221      break;
6222    case 'D':
6223      Type = Context.getVolatileType(Type);
6224      break;
6225    }
6226  }
6227
6228  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6229         "Integer constant 'I' type must be an integer");
6230
6231  return Type;
6232}
6233
6234/// GetBuiltinType - Return the type for the specified builtin.
6235QualType ASTContext::GetBuiltinType(unsigned Id,
6236                                    GetBuiltinTypeError &Error,
6237                                    unsigned *IntegerConstantArgs) const {
6238  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6239
6240  SmallVector<QualType, 8> ArgTypes;
6241
6242  bool RequiresICE = false;
6243  Error = GE_None;
6244  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6245                                       RequiresICE, true);
6246  if (Error != GE_None)
6247    return QualType();
6248
6249  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6250
6251  while (TypeStr[0] && TypeStr[0] != '.') {
6252    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6253    if (Error != GE_None)
6254      return QualType();
6255
6256    // If this argument is required to be an IntegerConstantExpression and the
6257    // caller cares, fill in the bitmask we return.
6258    if (RequiresICE && IntegerConstantArgs)
6259      *IntegerConstantArgs |= 1 << ArgTypes.size();
6260
6261    // Do array -> pointer decay.  The builtin should use the decayed type.
6262    if (Ty->isArrayType())
6263      Ty = getArrayDecayedType(Ty);
6264
6265    ArgTypes.push_back(Ty);
6266  }
6267
6268  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6269         "'.' should only occur at end of builtin type list!");
6270
6271  FunctionType::ExtInfo EI;
6272  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6273
6274  bool Variadic = (TypeStr[0] == '.');
6275
6276  // We really shouldn't be making a no-proto type here, especially in C++.
6277  if (ArgTypes.empty() && Variadic)
6278    return getFunctionNoProtoType(ResType, EI);
6279
6280  FunctionProtoType::ExtProtoInfo EPI;
6281  EPI.ExtInfo = EI;
6282  EPI.Variadic = Variadic;
6283
6284  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6285}
6286
6287GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6288  GVALinkage External = GVA_StrongExternal;
6289
6290  Linkage L = FD->getLinkage();
6291  switch (L) {
6292  case NoLinkage:
6293  case InternalLinkage:
6294  case UniqueExternalLinkage:
6295    return GVA_Internal;
6296
6297  case ExternalLinkage:
6298    switch (FD->getTemplateSpecializationKind()) {
6299    case TSK_Undeclared:
6300    case TSK_ExplicitSpecialization:
6301      External = GVA_StrongExternal;
6302      break;
6303
6304    case TSK_ExplicitInstantiationDefinition:
6305      return GVA_ExplicitTemplateInstantiation;
6306
6307    case TSK_ExplicitInstantiationDeclaration:
6308    case TSK_ImplicitInstantiation:
6309      External = GVA_TemplateInstantiation;
6310      break;
6311    }
6312  }
6313
6314  if (!FD->isInlined())
6315    return External;
6316
6317  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6318    // GNU or C99 inline semantics. Determine whether this symbol should be
6319    // externally visible.
6320    if (FD->isInlineDefinitionExternallyVisible())
6321      return External;
6322
6323    // C99 inline semantics, where the symbol is not externally visible.
6324    return GVA_C99Inline;
6325  }
6326
6327  // C++0x [temp.explicit]p9:
6328  //   [ Note: The intent is that an inline function that is the subject of
6329  //   an explicit instantiation declaration will still be implicitly
6330  //   instantiated when used so that the body can be considered for
6331  //   inlining, but that no out-of-line copy of the inline function would be
6332  //   generated in the translation unit. -- end note ]
6333  if (FD->getTemplateSpecializationKind()
6334                                       == TSK_ExplicitInstantiationDeclaration)
6335    return GVA_C99Inline;
6336
6337  return GVA_CXXInline;
6338}
6339
6340GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6341  // If this is a static data member, compute the kind of template
6342  // specialization. Otherwise, this variable is not part of a
6343  // template.
6344  TemplateSpecializationKind TSK = TSK_Undeclared;
6345  if (VD->isStaticDataMember())
6346    TSK = VD->getTemplateSpecializationKind();
6347
6348  Linkage L = VD->getLinkage();
6349  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6350      VD->getType()->getLinkage() == UniqueExternalLinkage)
6351    L = UniqueExternalLinkage;
6352
6353  switch (L) {
6354  case NoLinkage:
6355  case InternalLinkage:
6356  case UniqueExternalLinkage:
6357    return GVA_Internal;
6358
6359  case ExternalLinkage:
6360    switch (TSK) {
6361    case TSK_Undeclared:
6362    case TSK_ExplicitSpecialization:
6363      return GVA_StrongExternal;
6364
6365    case TSK_ExplicitInstantiationDeclaration:
6366      llvm_unreachable("Variable should not be instantiated");
6367      // Fall through to treat this like any other instantiation.
6368
6369    case TSK_ExplicitInstantiationDefinition:
6370      return GVA_ExplicitTemplateInstantiation;
6371
6372    case TSK_ImplicitInstantiation:
6373      return GVA_TemplateInstantiation;
6374    }
6375  }
6376
6377  return GVA_StrongExternal;
6378}
6379
6380bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6381  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6382    if (!VD->isFileVarDecl())
6383      return false;
6384  } else if (!isa<FunctionDecl>(D))
6385    return false;
6386
6387  // Weak references don't produce any output by themselves.
6388  if (D->hasAttr<WeakRefAttr>())
6389    return false;
6390
6391  // Aliases and used decls are required.
6392  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6393    return true;
6394
6395  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6396    // Forward declarations aren't required.
6397    if (!FD->doesThisDeclarationHaveABody())
6398      return FD->doesDeclarationForceExternallyVisibleDefinition();
6399
6400    // Constructors and destructors are required.
6401    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6402      return true;
6403
6404    // The key function for a class is required.
6405    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6406      const CXXRecordDecl *RD = MD->getParent();
6407      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6408        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6409        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6410          return true;
6411      }
6412    }
6413
6414    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6415
6416    // static, static inline, always_inline, and extern inline functions can
6417    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6418    // Implicit template instantiations can also be deferred in C++.
6419    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6420        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6421      return false;
6422    return true;
6423  }
6424
6425  const VarDecl *VD = cast<VarDecl>(D);
6426  assert(VD->isFileVarDecl() && "Expected file scoped var");
6427
6428  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6429    return false;
6430
6431  // Structs that have non-trivial constructors or destructors are required.
6432
6433  // FIXME: Handle references.
6434  // FIXME: Be more selective about which constructors we care about.
6435  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6436    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6437      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6438                                   RD->hasTrivialCopyConstructor() &&
6439                                   RD->hasTrivialMoveConstructor() &&
6440                                   RD->hasTrivialDestructor()))
6441        return true;
6442    }
6443  }
6444
6445  GVALinkage L = GetGVALinkageForVariable(VD);
6446  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6447    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6448      return false;
6449  }
6450
6451  return true;
6452}
6453
6454CallingConv ASTContext::getDefaultMethodCallConv() {
6455  // Pass through to the C++ ABI object
6456  return ABI->getDefaultMethodCallConv();
6457}
6458
6459bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6460  // Pass through to the C++ ABI object
6461  return ABI->isNearlyEmpty(RD);
6462}
6463
6464MangleContext *ASTContext::createMangleContext() {
6465  switch (Target.getCXXABI()) {
6466  case CXXABI_ARM:
6467  case CXXABI_Itanium:
6468    return createItaniumMangleContext(*this, getDiagnostics());
6469  case CXXABI_Microsoft:
6470    return createMicrosoftMangleContext(*this, getDiagnostics());
6471  }
6472  assert(0 && "Unsupported ABI");
6473  return 0;
6474}
6475
6476CXXABI::~CXXABI() {}
6477
6478size_t ASTContext::getSideTableAllocatedMemory() const {
6479  size_t bytes = 0;
6480  bytes += ASTRecordLayouts.getMemorySize();
6481  bytes += ObjCLayouts.getMemorySize();
6482  bytes += KeyFunctions.getMemorySize();
6483  bytes += ObjCImpls.getMemorySize();
6484  bytes += BlockVarCopyInits.getMemorySize();
6485  bytes += DeclAttrs.getMemorySize();
6486  bytes += InstantiatedFromStaticDataMember.getMemorySize();
6487  bytes += InstantiatedFromUsingDecl.getMemorySize();
6488  bytes += InstantiatedFromUsingShadowDecl.getMemorySize();
6489  bytes += InstantiatedFromUnnamedFieldDecl.getMemorySize();
6490  return bytes;
6491}
6492