ASTContext.cpp revision 8bdb58a7835a9a90dd9b9791fccf269cbc1dcef3
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Support/Capacity.h"
34#include "CXXABI.h"
35#include <map>
36
37using namespace clang;
38
39unsigned ASTContext::NumImplicitDefaultConstructors;
40unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyConstructors;
42unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
43unsigned ASTContext::NumImplicitMoveConstructors;
44unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyAssignmentOperators;
46unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
47unsigned ASTContext::NumImplicitMoveAssignmentOperators;
48unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
49unsigned ASTContext::NumImplicitDestructors;
50unsigned ASTContext::NumImplicitDestructorsDeclared;
51
52enum FloatingRank {
53  HalfRank, FloatRank, DoubleRank, LongDoubleRank
54};
55
56const RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
57  if (!CommentsLoaded && ExternalSource) {
58    ExternalSource->ReadComments();
59    CommentsLoaded = true;
60  }
61
62  assert(D);
63
64  // TODO: handle comments for function parameters properly.
65  if (isa<ParmVarDecl>(D))
66    return NULL;
67
68  ArrayRef<RawComment> RawComments = Comments.getComments();
69
70  // If there are no comments anywhere, we won't find anything.
71  if (RawComments.empty())
72    return NULL;
73
74  // If the declaration doesn't map directly to a location in a file, we
75  // can't find the comment.
76  SourceLocation DeclLoc = D->getLocation();
77  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
78    return NULL;
79
80  // Find the comment that occurs just after this declaration.
81  ArrayRef<RawComment>::iterator Comment
82      = std::lower_bound(RawComments.begin(),
83                         RawComments.end(),
84                         RawComment(SourceMgr, SourceRange(DeclLoc)),
85                         BeforeThanCompare<RawComment>(SourceMgr));
86
87  // Decompose the location for the declaration and find the beginning of the
88  // file buffer.
89  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
90
91  // First check whether we have a trailing comment.
92  if (Comment != RawComments.end() &&
93      Comment->isDocumentation() && Comment->isTrailingComment() &&
94      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D)) {
95    std::pair<FileID, unsigned> CommentBeginDecomp
96      = SourceMgr.getDecomposedLoc(Comment->getSourceRange().getBegin());
97    // Check that Doxygen trailing comment comes after the declaration, starts
98    // on the same line and in the same file as the declaration.
99    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
100        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
101          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
102                                     CommentBeginDecomp.second)) {
103      return &*Comment;
104    }
105  }
106
107  // The comment just after the declaration was not a trailing comment.
108  // Let's look at the previous comment.
109  if (Comment == RawComments.begin())
110    return NULL;
111  --Comment;
112
113  // Check that we actually have a non-member Doxygen comment.
114  if (!Comment->isDocumentation() || Comment->isTrailingComment())
115    return NULL;
116
117  // Decompose the end of the comment.
118  std::pair<FileID, unsigned> CommentEndDecomp
119    = SourceMgr.getDecomposedLoc(Comment->getSourceRange().getEnd());
120
121  // If the comment and the declaration aren't in the same file, then they
122  // aren't related.
123  if (DeclLocDecomp.first != CommentEndDecomp.first)
124    return NULL;
125
126  // Get the corresponding buffer.
127  bool Invalid = false;
128  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
129                                               &Invalid).data();
130  if (Invalid)
131    return NULL;
132
133  // Extract text between the comment and declaration.
134  StringRef Text(Buffer + CommentEndDecomp.second,
135                 DeclLocDecomp.second - CommentEndDecomp.second);
136
137  // There should be no other declarations or preprocessor directives between
138  // comment and declaration.
139  if (Text.find_first_of(",;{}#") != StringRef::npos)
140    return NULL;
141
142  return &*Comment;
143}
144
145const RawComment *ASTContext::getRawCommentForDecl(const Decl *D) const {
146  // Check whether we have cached a comment string for this declaration
147  // already.
148  llvm::DenseMap<const Decl *, const RawComment *>::iterator Pos
149      = DeclComments.find(D);
150  if (Pos != DeclComments.end())
151      return Pos->second;
152
153  const RawComment *RC = getRawCommentForDeclNoCache(D);
154  DeclComments[D] = RC;
155  return RC;
156}
157
158void
159ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
160                                               TemplateTemplateParmDecl *Parm) {
161  ID.AddInteger(Parm->getDepth());
162  ID.AddInteger(Parm->getPosition());
163  ID.AddBoolean(Parm->isParameterPack());
164
165  TemplateParameterList *Params = Parm->getTemplateParameters();
166  ID.AddInteger(Params->size());
167  for (TemplateParameterList::const_iterator P = Params->begin(),
168                                          PEnd = Params->end();
169       P != PEnd; ++P) {
170    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
171      ID.AddInteger(0);
172      ID.AddBoolean(TTP->isParameterPack());
173      continue;
174    }
175
176    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
177      ID.AddInteger(1);
178      ID.AddBoolean(NTTP->isParameterPack());
179      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
180      if (NTTP->isExpandedParameterPack()) {
181        ID.AddBoolean(true);
182        ID.AddInteger(NTTP->getNumExpansionTypes());
183        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
184          QualType T = NTTP->getExpansionType(I);
185          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
186        }
187      } else
188        ID.AddBoolean(false);
189      continue;
190    }
191
192    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
193    ID.AddInteger(2);
194    Profile(ID, TTP);
195  }
196}
197
198TemplateTemplateParmDecl *
199ASTContext::getCanonicalTemplateTemplateParmDecl(
200                                          TemplateTemplateParmDecl *TTP) const {
201  // Check if we already have a canonical template template parameter.
202  llvm::FoldingSetNodeID ID;
203  CanonicalTemplateTemplateParm::Profile(ID, TTP);
204  void *InsertPos = 0;
205  CanonicalTemplateTemplateParm *Canonical
206    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
207  if (Canonical)
208    return Canonical->getParam();
209
210  // Build a canonical template parameter list.
211  TemplateParameterList *Params = TTP->getTemplateParameters();
212  SmallVector<NamedDecl *, 4> CanonParams;
213  CanonParams.reserve(Params->size());
214  for (TemplateParameterList::const_iterator P = Params->begin(),
215                                          PEnd = Params->end();
216       P != PEnd; ++P) {
217    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
218      CanonParams.push_back(
219                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
220                                               SourceLocation(),
221                                               SourceLocation(),
222                                               TTP->getDepth(),
223                                               TTP->getIndex(), 0, false,
224                                               TTP->isParameterPack()));
225    else if (NonTypeTemplateParmDecl *NTTP
226             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
227      QualType T = getCanonicalType(NTTP->getType());
228      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
229      NonTypeTemplateParmDecl *Param;
230      if (NTTP->isExpandedParameterPack()) {
231        SmallVector<QualType, 2> ExpandedTypes;
232        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
233        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
234          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
235          ExpandedTInfos.push_back(
236                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
237        }
238
239        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
240                                                SourceLocation(),
241                                                SourceLocation(),
242                                                NTTP->getDepth(),
243                                                NTTP->getPosition(), 0,
244                                                T,
245                                                TInfo,
246                                                ExpandedTypes.data(),
247                                                ExpandedTypes.size(),
248                                                ExpandedTInfos.data());
249      } else {
250        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
251                                                SourceLocation(),
252                                                SourceLocation(),
253                                                NTTP->getDepth(),
254                                                NTTP->getPosition(), 0,
255                                                T,
256                                                NTTP->isParameterPack(),
257                                                TInfo);
258      }
259      CanonParams.push_back(Param);
260
261    } else
262      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
263                                           cast<TemplateTemplateParmDecl>(*P)));
264  }
265
266  TemplateTemplateParmDecl *CanonTTP
267    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
268                                       SourceLocation(), TTP->getDepth(),
269                                       TTP->getPosition(),
270                                       TTP->isParameterPack(),
271                                       0,
272                         TemplateParameterList::Create(*this, SourceLocation(),
273                                                       SourceLocation(),
274                                                       CanonParams.data(),
275                                                       CanonParams.size(),
276                                                       SourceLocation()));
277
278  // Get the new insert position for the node we care about.
279  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
280  assert(Canonical == 0 && "Shouldn't be in the map!");
281  (void)Canonical;
282
283  // Create the canonical template template parameter entry.
284  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
285  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
286  return CanonTTP;
287}
288
289CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
290  if (!LangOpts.CPlusPlus) return 0;
291
292  switch (T.getCXXABI()) {
293  case CXXABI_ARM:
294    return CreateARMCXXABI(*this);
295  case CXXABI_Itanium:
296    return CreateItaniumCXXABI(*this);
297  case CXXABI_Microsoft:
298    return CreateMicrosoftCXXABI(*this);
299  }
300  llvm_unreachable("Invalid CXXABI type!");
301}
302
303static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
304                                             const LangOptions &LOpts) {
305  if (LOpts.FakeAddressSpaceMap) {
306    // The fake address space map must have a distinct entry for each
307    // language-specific address space.
308    static const unsigned FakeAddrSpaceMap[] = {
309      1, // opencl_global
310      2, // opencl_local
311      3, // opencl_constant
312      4, // cuda_device
313      5, // cuda_constant
314      6  // cuda_shared
315    };
316    return &FakeAddrSpaceMap;
317  } else {
318    return &T.getAddressSpaceMap();
319  }
320}
321
322ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
323                       const TargetInfo *t,
324                       IdentifierTable &idents, SelectorTable &sels,
325                       Builtin::Context &builtins,
326                       unsigned size_reserve,
327                       bool DelayInitialization)
328  : FunctionProtoTypes(this_()),
329    TemplateSpecializationTypes(this_()),
330    DependentTemplateSpecializationTypes(this_()),
331    SubstTemplateTemplateParmPacks(this_()),
332    GlobalNestedNameSpecifier(0),
333    Int128Decl(0), UInt128Decl(0),
334    BuiltinVaListDecl(0),
335    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
336    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
337    FILEDecl(0),
338    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
339    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
340    cudaConfigureCallDecl(0),
341    NullTypeSourceInfo(QualType()),
342    FirstLocalImport(), LastLocalImport(),
343    SourceMgr(SM), LangOpts(LOpts),
344    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
345    Idents(idents), Selectors(sels),
346    BuiltinInfo(builtins),
347    DeclarationNames(*this),
348    ExternalSource(0), Listener(0),
349    Comments(SM), CommentsLoaded(false),
350    LastSDM(0, 0),
351    UniqueBlockByRefTypeID(0)
352{
353  if (size_reserve > 0) Types.reserve(size_reserve);
354  TUDecl = TranslationUnitDecl::Create(*this);
355
356  if (!DelayInitialization) {
357    assert(t && "No target supplied for ASTContext initialization");
358    InitBuiltinTypes(*t);
359  }
360}
361
362ASTContext::~ASTContext() {
363  // Release the DenseMaps associated with DeclContext objects.
364  // FIXME: Is this the ideal solution?
365  ReleaseDeclContextMaps();
366
367  // Call all of the deallocation functions.
368  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
369    Deallocations[I].first(Deallocations[I].second);
370
371  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
372  // because they can contain DenseMaps.
373  for (llvm::DenseMap<const ObjCContainerDecl*,
374       const ASTRecordLayout*>::iterator
375       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
376    // Increment in loop to prevent using deallocated memory.
377    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
378      R->Destroy(*this);
379
380  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
381       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
382    // Increment in loop to prevent using deallocated memory.
383    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
384      R->Destroy(*this);
385  }
386
387  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
388                                                    AEnd = DeclAttrs.end();
389       A != AEnd; ++A)
390    A->second->~AttrVec();
391}
392
393void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
394  Deallocations.push_back(std::make_pair(Callback, Data));
395}
396
397void
398ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
399  ExternalSource.reset(Source.take());
400}
401
402void ASTContext::PrintStats() const {
403  llvm::errs() << "\n*** AST Context Stats:\n";
404  llvm::errs() << "  " << Types.size() << " types total.\n";
405
406  unsigned counts[] = {
407#define TYPE(Name, Parent) 0,
408#define ABSTRACT_TYPE(Name, Parent)
409#include "clang/AST/TypeNodes.def"
410    0 // Extra
411  };
412
413  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
414    Type *T = Types[i];
415    counts[(unsigned)T->getTypeClass()]++;
416  }
417
418  unsigned Idx = 0;
419  unsigned TotalBytes = 0;
420#define TYPE(Name, Parent)                                              \
421  if (counts[Idx])                                                      \
422    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
423                 << " types\n";                                         \
424  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
425  ++Idx;
426#define ABSTRACT_TYPE(Name, Parent)
427#include "clang/AST/TypeNodes.def"
428
429  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
430
431  // Implicit special member functions.
432  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
433               << NumImplicitDefaultConstructors
434               << " implicit default constructors created\n";
435  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
436               << NumImplicitCopyConstructors
437               << " implicit copy constructors created\n";
438  if (getLangOpts().CPlusPlus)
439    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
440                 << NumImplicitMoveConstructors
441                 << " implicit move constructors created\n";
442  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
443               << NumImplicitCopyAssignmentOperators
444               << " implicit copy assignment operators created\n";
445  if (getLangOpts().CPlusPlus)
446    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
447                 << NumImplicitMoveAssignmentOperators
448                 << " implicit move assignment operators created\n";
449  llvm::errs() << NumImplicitDestructorsDeclared << "/"
450               << NumImplicitDestructors
451               << " implicit destructors created\n";
452
453  if (ExternalSource.get()) {
454    llvm::errs() << "\n";
455    ExternalSource->PrintStats();
456  }
457
458  BumpAlloc.PrintStats();
459}
460
461TypedefDecl *ASTContext::getInt128Decl() const {
462  if (!Int128Decl) {
463    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
464    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
465                                     getTranslationUnitDecl(),
466                                     SourceLocation(),
467                                     SourceLocation(),
468                                     &Idents.get("__int128_t"),
469                                     TInfo);
470  }
471
472  return Int128Decl;
473}
474
475TypedefDecl *ASTContext::getUInt128Decl() const {
476  if (!UInt128Decl) {
477    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
478    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
479                                     getTranslationUnitDecl(),
480                                     SourceLocation(),
481                                     SourceLocation(),
482                                     &Idents.get("__uint128_t"),
483                                     TInfo);
484  }
485
486  return UInt128Decl;
487}
488
489void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
490  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
491  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
492  Types.push_back(Ty);
493}
494
495void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
496  assert((!this->Target || this->Target == &Target) &&
497         "Incorrect target reinitialization");
498  assert(VoidTy.isNull() && "Context reinitialized?");
499
500  this->Target = &Target;
501
502  ABI.reset(createCXXABI(Target));
503  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
504
505  // C99 6.2.5p19.
506  InitBuiltinType(VoidTy,              BuiltinType::Void);
507
508  // C99 6.2.5p2.
509  InitBuiltinType(BoolTy,              BuiltinType::Bool);
510  // C99 6.2.5p3.
511  if (LangOpts.CharIsSigned)
512    InitBuiltinType(CharTy,            BuiltinType::Char_S);
513  else
514    InitBuiltinType(CharTy,            BuiltinType::Char_U);
515  // C99 6.2.5p4.
516  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
517  InitBuiltinType(ShortTy,             BuiltinType::Short);
518  InitBuiltinType(IntTy,               BuiltinType::Int);
519  InitBuiltinType(LongTy,              BuiltinType::Long);
520  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
521
522  // C99 6.2.5p6.
523  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
524  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
525  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
526  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
527  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
528
529  // C99 6.2.5p10.
530  InitBuiltinType(FloatTy,             BuiltinType::Float);
531  InitBuiltinType(DoubleTy,            BuiltinType::Double);
532  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
533
534  // GNU extension, 128-bit integers.
535  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
536  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
537
538  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
539    if (TargetInfo::isTypeSigned(Target.getWCharType()))
540      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
541    else  // -fshort-wchar makes wchar_t be unsigned.
542      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
543  } else // C99
544    WCharTy = getFromTargetType(Target.getWCharType());
545
546  WIntTy = getFromTargetType(Target.getWIntType());
547
548  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
549    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
550  else // C99
551    Char16Ty = getFromTargetType(Target.getChar16Type());
552
553  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
554    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
555  else // C99
556    Char32Ty = getFromTargetType(Target.getChar32Type());
557
558  // Placeholder type for type-dependent expressions whose type is
559  // completely unknown. No code should ever check a type against
560  // DependentTy and users should never see it; however, it is here to
561  // help diagnose failures to properly check for type-dependent
562  // expressions.
563  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
564
565  // Placeholder type for functions.
566  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
567
568  // Placeholder type for bound members.
569  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
570
571  // Placeholder type for pseudo-objects.
572  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
573
574  // "any" type; useful for debugger-like clients.
575  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
576
577  // Placeholder type for unbridged ARC casts.
578  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
579
580  // C99 6.2.5p11.
581  FloatComplexTy      = getComplexType(FloatTy);
582  DoubleComplexTy     = getComplexType(DoubleTy);
583  LongDoubleComplexTy = getComplexType(LongDoubleTy);
584
585  // Builtin types for 'id', 'Class', and 'SEL'.
586  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
587  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
588  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
589
590  // Builtin type for __objc_yes and __objc_no
591  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
592                       SignedCharTy : BoolTy);
593
594  ObjCConstantStringType = QualType();
595
596  // void * type
597  VoidPtrTy = getPointerType(VoidTy);
598
599  // nullptr type (C++0x 2.14.7)
600  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
601
602  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
603  InitBuiltinType(HalfTy, BuiltinType::Half);
604}
605
606DiagnosticsEngine &ASTContext::getDiagnostics() const {
607  return SourceMgr.getDiagnostics();
608}
609
610AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
611  AttrVec *&Result = DeclAttrs[D];
612  if (!Result) {
613    void *Mem = Allocate(sizeof(AttrVec));
614    Result = new (Mem) AttrVec;
615  }
616
617  return *Result;
618}
619
620/// \brief Erase the attributes corresponding to the given declaration.
621void ASTContext::eraseDeclAttrs(const Decl *D) {
622  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
623  if (Pos != DeclAttrs.end()) {
624    Pos->second->~AttrVec();
625    DeclAttrs.erase(Pos);
626  }
627}
628
629MemberSpecializationInfo *
630ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
631  assert(Var->isStaticDataMember() && "Not a static data member");
632  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
633    = InstantiatedFromStaticDataMember.find(Var);
634  if (Pos == InstantiatedFromStaticDataMember.end())
635    return 0;
636
637  return Pos->second;
638}
639
640void
641ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
642                                                TemplateSpecializationKind TSK,
643                                          SourceLocation PointOfInstantiation) {
644  assert(Inst->isStaticDataMember() && "Not a static data member");
645  assert(Tmpl->isStaticDataMember() && "Not a static data member");
646  assert(!InstantiatedFromStaticDataMember[Inst] &&
647         "Already noted what static data member was instantiated from");
648  InstantiatedFromStaticDataMember[Inst]
649    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
650}
651
652FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
653                                                     const FunctionDecl *FD){
654  assert(FD && "Specialization is 0");
655  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
656    = ClassScopeSpecializationPattern.find(FD);
657  if (Pos == ClassScopeSpecializationPattern.end())
658    return 0;
659
660  return Pos->second;
661}
662
663void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
664                                        FunctionDecl *Pattern) {
665  assert(FD && "Specialization is 0");
666  assert(Pattern && "Class scope specialization pattern is 0");
667  ClassScopeSpecializationPattern[FD] = Pattern;
668}
669
670NamedDecl *
671ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
672  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
673    = InstantiatedFromUsingDecl.find(UUD);
674  if (Pos == InstantiatedFromUsingDecl.end())
675    return 0;
676
677  return Pos->second;
678}
679
680void
681ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
682  assert((isa<UsingDecl>(Pattern) ||
683          isa<UnresolvedUsingValueDecl>(Pattern) ||
684          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
685         "pattern decl is not a using decl");
686  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
687  InstantiatedFromUsingDecl[Inst] = Pattern;
688}
689
690UsingShadowDecl *
691ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
692  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
693    = InstantiatedFromUsingShadowDecl.find(Inst);
694  if (Pos == InstantiatedFromUsingShadowDecl.end())
695    return 0;
696
697  return Pos->second;
698}
699
700void
701ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
702                                               UsingShadowDecl *Pattern) {
703  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
704  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
705}
706
707FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
708  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
709    = InstantiatedFromUnnamedFieldDecl.find(Field);
710  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
711    return 0;
712
713  return Pos->second;
714}
715
716void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
717                                                     FieldDecl *Tmpl) {
718  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
719  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
720  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
721         "Already noted what unnamed field was instantiated from");
722
723  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
724}
725
726bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
727                                    const FieldDecl *LastFD) const {
728  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
729          FD->getBitWidthValue(*this) == 0);
730}
731
732bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
733                                             const FieldDecl *LastFD) const {
734  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
735          FD->getBitWidthValue(*this) == 0 &&
736          LastFD->getBitWidthValue(*this) != 0);
737}
738
739bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
740                                         const FieldDecl *LastFD) const {
741  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
742          FD->getBitWidthValue(*this) &&
743          LastFD->getBitWidthValue(*this));
744}
745
746bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
747                                         const FieldDecl *LastFD) const {
748  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
749          LastFD->getBitWidthValue(*this));
750}
751
752bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
753                                             const FieldDecl *LastFD) const {
754  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
755          FD->getBitWidthValue(*this));
756}
757
758ASTContext::overridden_cxx_method_iterator
759ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
760  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
761    = OverriddenMethods.find(Method);
762  if (Pos == OverriddenMethods.end())
763    return 0;
764
765  return Pos->second.begin();
766}
767
768ASTContext::overridden_cxx_method_iterator
769ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
770  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
771    = OverriddenMethods.find(Method);
772  if (Pos == OverriddenMethods.end())
773    return 0;
774
775  return Pos->second.end();
776}
777
778unsigned
779ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
780  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
781    = OverriddenMethods.find(Method);
782  if (Pos == OverriddenMethods.end())
783    return 0;
784
785  return Pos->second.size();
786}
787
788void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
789                                     const CXXMethodDecl *Overridden) {
790  OverriddenMethods[Method].push_back(Overridden);
791}
792
793void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
794  assert(!Import->NextLocalImport && "Import declaration already in the chain");
795  assert(!Import->isFromASTFile() && "Non-local import declaration");
796  if (!FirstLocalImport) {
797    FirstLocalImport = Import;
798    LastLocalImport = Import;
799    return;
800  }
801
802  LastLocalImport->NextLocalImport = Import;
803  LastLocalImport = Import;
804}
805
806//===----------------------------------------------------------------------===//
807//                         Type Sizing and Analysis
808//===----------------------------------------------------------------------===//
809
810/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
811/// scalar floating point type.
812const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
813  const BuiltinType *BT = T->getAs<BuiltinType>();
814  assert(BT && "Not a floating point type!");
815  switch (BT->getKind()) {
816  default: llvm_unreachable("Not a floating point type!");
817  case BuiltinType::Half:       return Target->getHalfFormat();
818  case BuiltinType::Float:      return Target->getFloatFormat();
819  case BuiltinType::Double:     return Target->getDoubleFormat();
820  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
821  }
822}
823
824/// getDeclAlign - Return a conservative estimate of the alignment of the
825/// specified decl.  Note that bitfields do not have a valid alignment, so
826/// this method will assert on them.
827/// If @p RefAsPointee, references are treated like their underlying type
828/// (for alignof), else they're treated like pointers (for CodeGen).
829CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
830  unsigned Align = Target->getCharWidth();
831
832  bool UseAlignAttrOnly = false;
833  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
834    Align = AlignFromAttr;
835
836    // __attribute__((aligned)) can increase or decrease alignment
837    // *except* on a struct or struct member, where it only increases
838    // alignment unless 'packed' is also specified.
839    //
840    // It is an error for alignas to decrease alignment, so we can
841    // ignore that possibility;  Sema should diagnose it.
842    if (isa<FieldDecl>(D)) {
843      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
844        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
845    } else {
846      UseAlignAttrOnly = true;
847    }
848  }
849  else if (isa<FieldDecl>(D))
850      UseAlignAttrOnly =
851        D->hasAttr<PackedAttr>() ||
852        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
853
854  // If we're using the align attribute only, just ignore everything
855  // else about the declaration and its type.
856  if (UseAlignAttrOnly) {
857    // do nothing
858
859  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
860    QualType T = VD->getType();
861    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
862      if (RefAsPointee)
863        T = RT->getPointeeType();
864      else
865        T = getPointerType(RT->getPointeeType());
866    }
867    if (!T->isIncompleteType() && !T->isFunctionType()) {
868      // Adjust alignments of declarations with array type by the
869      // large-array alignment on the target.
870      unsigned MinWidth = Target->getLargeArrayMinWidth();
871      const ArrayType *arrayType;
872      if (MinWidth && (arrayType = getAsArrayType(T))) {
873        if (isa<VariableArrayType>(arrayType))
874          Align = std::max(Align, Target->getLargeArrayAlign());
875        else if (isa<ConstantArrayType>(arrayType) &&
876                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
877          Align = std::max(Align, Target->getLargeArrayAlign());
878
879        // Walk through any array types while we're at it.
880        T = getBaseElementType(arrayType);
881      }
882      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
883    }
884
885    // Fields can be subject to extra alignment constraints, like if
886    // the field is packed, the struct is packed, or the struct has a
887    // a max-field-alignment constraint (#pragma pack).  So calculate
888    // the actual alignment of the field within the struct, and then
889    // (as we're expected to) constrain that by the alignment of the type.
890    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
891      // So calculate the alignment of the field.
892      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
893
894      // Start with the record's overall alignment.
895      unsigned fieldAlign = toBits(layout.getAlignment());
896
897      // Use the GCD of that and the offset within the record.
898      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
899      if (offset > 0) {
900        // Alignment is always a power of 2, so the GCD will be a power of 2,
901        // which means we get to do this crazy thing instead of Euclid's.
902        uint64_t lowBitOfOffset = offset & (~offset + 1);
903        if (lowBitOfOffset < fieldAlign)
904          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
905      }
906
907      Align = std::min(Align, fieldAlign);
908    }
909  }
910
911  return toCharUnitsFromBits(Align);
912}
913
914std::pair<CharUnits, CharUnits>
915ASTContext::getTypeInfoInChars(const Type *T) const {
916  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
917  return std::make_pair(toCharUnitsFromBits(Info.first),
918                        toCharUnitsFromBits(Info.second));
919}
920
921std::pair<CharUnits, CharUnits>
922ASTContext::getTypeInfoInChars(QualType T) const {
923  return getTypeInfoInChars(T.getTypePtr());
924}
925
926std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
927  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
928  if (it != MemoizedTypeInfo.end())
929    return it->second;
930
931  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
932  MemoizedTypeInfo.insert(std::make_pair(T, Info));
933  return Info;
934}
935
936/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
937/// method does not work on incomplete types.
938///
939/// FIXME: Pointers into different addr spaces could have different sizes and
940/// alignment requirements: getPointerInfo should take an AddrSpace, this
941/// should take a QualType, &c.
942std::pair<uint64_t, unsigned>
943ASTContext::getTypeInfoImpl(const Type *T) const {
944  uint64_t Width=0;
945  unsigned Align=8;
946  switch (T->getTypeClass()) {
947#define TYPE(Class, Base)
948#define ABSTRACT_TYPE(Class, Base)
949#define NON_CANONICAL_TYPE(Class, Base)
950#define DEPENDENT_TYPE(Class, Base) case Type::Class:
951#include "clang/AST/TypeNodes.def"
952    llvm_unreachable("Should not see dependent types");
953
954  case Type::FunctionNoProto:
955  case Type::FunctionProto:
956    // GCC extension: alignof(function) = 32 bits
957    Width = 0;
958    Align = 32;
959    break;
960
961  case Type::IncompleteArray:
962  case Type::VariableArray:
963    Width = 0;
964    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
965    break;
966
967  case Type::ConstantArray: {
968    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
969
970    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
971    uint64_t Size = CAT->getSize().getZExtValue();
972    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
973           "Overflow in array type bit size evaluation");
974    Width = EltInfo.first*Size;
975    Align = EltInfo.second;
976    Width = llvm::RoundUpToAlignment(Width, Align);
977    break;
978  }
979  case Type::ExtVector:
980  case Type::Vector: {
981    const VectorType *VT = cast<VectorType>(T);
982    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
983    Width = EltInfo.first*VT->getNumElements();
984    Align = Width;
985    // If the alignment is not a power of 2, round up to the next power of 2.
986    // This happens for non-power-of-2 length vectors.
987    if (Align & (Align-1)) {
988      Align = llvm::NextPowerOf2(Align);
989      Width = llvm::RoundUpToAlignment(Width, Align);
990    }
991    break;
992  }
993
994  case Type::Builtin:
995    switch (cast<BuiltinType>(T)->getKind()) {
996    default: llvm_unreachable("Unknown builtin type!");
997    case BuiltinType::Void:
998      // GCC extension: alignof(void) = 8 bits.
999      Width = 0;
1000      Align = 8;
1001      break;
1002
1003    case BuiltinType::Bool:
1004      Width = Target->getBoolWidth();
1005      Align = Target->getBoolAlign();
1006      break;
1007    case BuiltinType::Char_S:
1008    case BuiltinType::Char_U:
1009    case BuiltinType::UChar:
1010    case BuiltinType::SChar:
1011      Width = Target->getCharWidth();
1012      Align = Target->getCharAlign();
1013      break;
1014    case BuiltinType::WChar_S:
1015    case BuiltinType::WChar_U:
1016      Width = Target->getWCharWidth();
1017      Align = Target->getWCharAlign();
1018      break;
1019    case BuiltinType::Char16:
1020      Width = Target->getChar16Width();
1021      Align = Target->getChar16Align();
1022      break;
1023    case BuiltinType::Char32:
1024      Width = Target->getChar32Width();
1025      Align = Target->getChar32Align();
1026      break;
1027    case BuiltinType::UShort:
1028    case BuiltinType::Short:
1029      Width = Target->getShortWidth();
1030      Align = Target->getShortAlign();
1031      break;
1032    case BuiltinType::UInt:
1033    case BuiltinType::Int:
1034      Width = Target->getIntWidth();
1035      Align = Target->getIntAlign();
1036      break;
1037    case BuiltinType::ULong:
1038    case BuiltinType::Long:
1039      Width = Target->getLongWidth();
1040      Align = Target->getLongAlign();
1041      break;
1042    case BuiltinType::ULongLong:
1043    case BuiltinType::LongLong:
1044      Width = Target->getLongLongWidth();
1045      Align = Target->getLongLongAlign();
1046      break;
1047    case BuiltinType::Int128:
1048    case BuiltinType::UInt128:
1049      Width = 128;
1050      Align = 128; // int128_t is 128-bit aligned on all targets.
1051      break;
1052    case BuiltinType::Half:
1053      Width = Target->getHalfWidth();
1054      Align = Target->getHalfAlign();
1055      break;
1056    case BuiltinType::Float:
1057      Width = Target->getFloatWidth();
1058      Align = Target->getFloatAlign();
1059      break;
1060    case BuiltinType::Double:
1061      Width = Target->getDoubleWidth();
1062      Align = Target->getDoubleAlign();
1063      break;
1064    case BuiltinType::LongDouble:
1065      Width = Target->getLongDoubleWidth();
1066      Align = Target->getLongDoubleAlign();
1067      break;
1068    case BuiltinType::NullPtr:
1069      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1070      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1071      break;
1072    case BuiltinType::ObjCId:
1073    case BuiltinType::ObjCClass:
1074    case BuiltinType::ObjCSel:
1075      Width = Target->getPointerWidth(0);
1076      Align = Target->getPointerAlign(0);
1077      break;
1078    }
1079    break;
1080  case Type::ObjCObjectPointer:
1081    Width = Target->getPointerWidth(0);
1082    Align = Target->getPointerAlign(0);
1083    break;
1084  case Type::BlockPointer: {
1085    unsigned AS = getTargetAddressSpace(
1086        cast<BlockPointerType>(T)->getPointeeType());
1087    Width = Target->getPointerWidth(AS);
1088    Align = Target->getPointerAlign(AS);
1089    break;
1090  }
1091  case Type::LValueReference:
1092  case Type::RValueReference: {
1093    // alignof and sizeof should never enter this code path here, so we go
1094    // the pointer route.
1095    unsigned AS = getTargetAddressSpace(
1096        cast<ReferenceType>(T)->getPointeeType());
1097    Width = Target->getPointerWidth(AS);
1098    Align = Target->getPointerAlign(AS);
1099    break;
1100  }
1101  case Type::Pointer: {
1102    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1103    Width = Target->getPointerWidth(AS);
1104    Align = Target->getPointerAlign(AS);
1105    break;
1106  }
1107  case Type::MemberPointer: {
1108    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1109    std::pair<uint64_t, unsigned> PtrDiffInfo =
1110      getTypeInfo(getPointerDiffType());
1111    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1112    Align = PtrDiffInfo.second;
1113    break;
1114  }
1115  case Type::Complex: {
1116    // Complex types have the same alignment as their elements, but twice the
1117    // size.
1118    std::pair<uint64_t, unsigned> EltInfo =
1119      getTypeInfo(cast<ComplexType>(T)->getElementType());
1120    Width = EltInfo.first*2;
1121    Align = EltInfo.second;
1122    break;
1123  }
1124  case Type::ObjCObject:
1125    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1126  case Type::ObjCInterface: {
1127    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1128    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1129    Width = toBits(Layout.getSize());
1130    Align = toBits(Layout.getAlignment());
1131    break;
1132  }
1133  case Type::Record:
1134  case Type::Enum: {
1135    const TagType *TT = cast<TagType>(T);
1136
1137    if (TT->getDecl()->isInvalidDecl()) {
1138      Width = 8;
1139      Align = 8;
1140      break;
1141    }
1142
1143    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1144      return getTypeInfo(ET->getDecl()->getIntegerType());
1145
1146    const RecordType *RT = cast<RecordType>(TT);
1147    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1148    Width = toBits(Layout.getSize());
1149    Align = toBits(Layout.getAlignment());
1150    break;
1151  }
1152
1153  case Type::SubstTemplateTypeParm:
1154    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1155                       getReplacementType().getTypePtr());
1156
1157  case Type::Auto: {
1158    const AutoType *A = cast<AutoType>(T);
1159    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1160    return getTypeInfo(A->getDeducedType().getTypePtr());
1161  }
1162
1163  case Type::Paren:
1164    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1165
1166  case Type::Typedef: {
1167    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1168    std::pair<uint64_t, unsigned> Info
1169      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1170    // If the typedef has an aligned attribute on it, it overrides any computed
1171    // alignment we have.  This violates the GCC documentation (which says that
1172    // attribute(aligned) can only round up) but matches its implementation.
1173    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1174      Align = AttrAlign;
1175    else
1176      Align = Info.second;
1177    Width = Info.first;
1178    break;
1179  }
1180
1181  case Type::TypeOfExpr:
1182    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1183                         .getTypePtr());
1184
1185  case Type::TypeOf:
1186    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1187
1188  case Type::Decltype:
1189    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1190                        .getTypePtr());
1191
1192  case Type::UnaryTransform:
1193    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1194
1195  case Type::Elaborated:
1196    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1197
1198  case Type::Attributed:
1199    return getTypeInfo(
1200                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1201
1202  case Type::TemplateSpecialization: {
1203    assert(getCanonicalType(T) != T &&
1204           "Cannot request the size of a dependent type");
1205    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1206    // A type alias template specialization may refer to a typedef with the
1207    // aligned attribute on it.
1208    if (TST->isTypeAlias())
1209      return getTypeInfo(TST->getAliasedType().getTypePtr());
1210    else
1211      return getTypeInfo(getCanonicalType(T));
1212  }
1213
1214  case Type::Atomic: {
1215    std::pair<uint64_t, unsigned> Info
1216      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1217    Width = Info.first;
1218    Align = Info.second;
1219    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1220        llvm::isPowerOf2_64(Width)) {
1221      // We can potentially perform lock-free atomic operations for this
1222      // type; promote the alignment appropriately.
1223      // FIXME: We could potentially promote the width here as well...
1224      // is that worthwhile?  (Non-struct atomic types generally have
1225      // power-of-two size anyway, but structs might not.  Requires a bit
1226      // of implementation work to make sure we zero out the extra bits.)
1227      Align = static_cast<unsigned>(Width);
1228    }
1229  }
1230
1231  }
1232
1233  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1234  return std::make_pair(Width, Align);
1235}
1236
1237/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1238CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1239  return CharUnits::fromQuantity(BitSize / getCharWidth());
1240}
1241
1242/// toBits - Convert a size in characters to a size in characters.
1243int64_t ASTContext::toBits(CharUnits CharSize) const {
1244  return CharSize.getQuantity() * getCharWidth();
1245}
1246
1247/// getTypeSizeInChars - Return the size of the specified type, in characters.
1248/// This method does not work on incomplete types.
1249CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1250  return toCharUnitsFromBits(getTypeSize(T));
1251}
1252CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1253  return toCharUnitsFromBits(getTypeSize(T));
1254}
1255
1256/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1257/// characters. This method does not work on incomplete types.
1258CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1259  return toCharUnitsFromBits(getTypeAlign(T));
1260}
1261CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1262  return toCharUnitsFromBits(getTypeAlign(T));
1263}
1264
1265/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1266/// type for the current target in bits.  This can be different than the ABI
1267/// alignment in cases where it is beneficial for performance to overalign
1268/// a data type.
1269unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1270  unsigned ABIAlign = getTypeAlign(T);
1271
1272  // Double and long long should be naturally aligned if possible.
1273  if (const ComplexType* CT = T->getAs<ComplexType>())
1274    T = CT->getElementType().getTypePtr();
1275  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1276      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1277      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1278    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1279
1280  return ABIAlign;
1281}
1282
1283/// DeepCollectObjCIvars -
1284/// This routine first collects all declared, but not synthesized, ivars in
1285/// super class and then collects all ivars, including those synthesized for
1286/// current class. This routine is used for implementation of current class
1287/// when all ivars, declared and synthesized are known.
1288///
1289void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1290                                      bool leafClass,
1291                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1292  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1293    DeepCollectObjCIvars(SuperClass, false, Ivars);
1294  if (!leafClass) {
1295    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1296         E = OI->ivar_end(); I != E; ++I)
1297      Ivars.push_back(*I);
1298  } else {
1299    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1300    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1301         Iv= Iv->getNextIvar())
1302      Ivars.push_back(Iv);
1303  }
1304}
1305
1306/// CollectInheritedProtocols - Collect all protocols in current class and
1307/// those inherited by it.
1308void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1309                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1310  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1311    // We can use protocol_iterator here instead of
1312    // all_referenced_protocol_iterator since we are walking all categories.
1313    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1314         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1315      ObjCProtocolDecl *Proto = (*P);
1316      Protocols.insert(Proto->getCanonicalDecl());
1317      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1318           PE = Proto->protocol_end(); P != PE; ++P) {
1319        Protocols.insert((*P)->getCanonicalDecl());
1320        CollectInheritedProtocols(*P, Protocols);
1321      }
1322    }
1323
1324    // Categories of this Interface.
1325    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1326         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1327      CollectInheritedProtocols(CDeclChain, Protocols);
1328    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1329      while (SD) {
1330        CollectInheritedProtocols(SD, Protocols);
1331        SD = SD->getSuperClass();
1332      }
1333  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1334    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1335         PE = OC->protocol_end(); P != PE; ++P) {
1336      ObjCProtocolDecl *Proto = (*P);
1337      Protocols.insert(Proto->getCanonicalDecl());
1338      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1339           PE = Proto->protocol_end(); P != PE; ++P)
1340        CollectInheritedProtocols(*P, Protocols);
1341    }
1342  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1343    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1344         PE = OP->protocol_end(); P != PE; ++P) {
1345      ObjCProtocolDecl *Proto = (*P);
1346      Protocols.insert(Proto->getCanonicalDecl());
1347      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1348           PE = Proto->protocol_end(); P != PE; ++P)
1349        CollectInheritedProtocols(*P, Protocols);
1350    }
1351  }
1352}
1353
1354unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1355  unsigned count = 0;
1356  // Count ivars declared in class extension.
1357  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1358       CDecl = CDecl->getNextClassExtension())
1359    count += CDecl->ivar_size();
1360
1361  // Count ivar defined in this class's implementation.  This
1362  // includes synthesized ivars.
1363  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1364    count += ImplDecl->ivar_size();
1365
1366  return count;
1367}
1368
1369bool ASTContext::isSentinelNullExpr(const Expr *E) {
1370  if (!E)
1371    return false;
1372
1373  // nullptr_t is always treated as null.
1374  if (E->getType()->isNullPtrType()) return true;
1375
1376  if (E->getType()->isAnyPointerType() &&
1377      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1378                                                Expr::NPC_ValueDependentIsNull))
1379    return true;
1380
1381  // Unfortunately, __null has type 'int'.
1382  if (isa<GNUNullExpr>(E)) return true;
1383
1384  return false;
1385}
1386
1387/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1388ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1389  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1390    I = ObjCImpls.find(D);
1391  if (I != ObjCImpls.end())
1392    return cast<ObjCImplementationDecl>(I->second);
1393  return 0;
1394}
1395/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1396ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1397  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1398    I = ObjCImpls.find(D);
1399  if (I != ObjCImpls.end())
1400    return cast<ObjCCategoryImplDecl>(I->second);
1401  return 0;
1402}
1403
1404/// \brief Set the implementation of ObjCInterfaceDecl.
1405void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1406                           ObjCImplementationDecl *ImplD) {
1407  assert(IFaceD && ImplD && "Passed null params");
1408  ObjCImpls[IFaceD] = ImplD;
1409}
1410/// \brief Set the implementation of ObjCCategoryDecl.
1411void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1412                           ObjCCategoryImplDecl *ImplD) {
1413  assert(CatD && ImplD && "Passed null params");
1414  ObjCImpls[CatD] = ImplD;
1415}
1416
1417ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1418  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1419    return ID;
1420  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1421    return CD->getClassInterface();
1422  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1423    return IMD->getClassInterface();
1424
1425  return 0;
1426}
1427
1428/// \brief Get the copy initialization expression of VarDecl,or NULL if
1429/// none exists.
1430Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1431  assert(VD && "Passed null params");
1432  assert(VD->hasAttr<BlocksAttr>() &&
1433         "getBlockVarCopyInits - not __block var");
1434  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1435    I = BlockVarCopyInits.find(VD);
1436  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1437}
1438
1439/// \brief Set the copy inialization expression of a block var decl.
1440void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1441  assert(VD && Init && "Passed null params");
1442  assert(VD->hasAttr<BlocksAttr>() &&
1443         "setBlockVarCopyInits - not __block var");
1444  BlockVarCopyInits[VD] = Init;
1445}
1446
1447TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1448                                                 unsigned DataSize) const {
1449  if (!DataSize)
1450    DataSize = TypeLoc::getFullDataSizeForType(T);
1451  else
1452    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1453           "incorrect data size provided to CreateTypeSourceInfo!");
1454
1455  TypeSourceInfo *TInfo =
1456    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1457  new (TInfo) TypeSourceInfo(T);
1458  return TInfo;
1459}
1460
1461TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1462                                                     SourceLocation L) const {
1463  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1464  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1465  return DI;
1466}
1467
1468const ASTRecordLayout &
1469ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1470  return getObjCLayout(D, 0);
1471}
1472
1473const ASTRecordLayout &
1474ASTContext::getASTObjCImplementationLayout(
1475                                        const ObjCImplementationDecl *D) const {
1476  return getObjCLayout(D->getClassInterface(), D);
1477}
1478
1479//===----------------------------------------------------------------------===//
1480//                   Type creation/memoization methods
1481//===----------------------------------------------------------------------===//
1482
1483QualType
1484ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1485  unsigned fastQuals = quals.getFastQualifiers();
1486  quals.removeFastQualifiers();
1487
1488  // Check if we've already instantiated this type.
1489  llvm::FoldingSetNodeID ID;
1490  ExtQuals::Profile(ID, baseType, quals);
1491  void *insertPos = 0;
1492  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1493    assert(eq->getQualifiers() == quals);
1494    return QualType(eq, fastQuals);
1495  }
1496
1497  // If the base type is not canonical, make the appropriate canonical type.
1498  QualType canon;
1499  if (!baseType->isCanonicalUnqualified()) {
1500    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1501    canonSplit.Quals.addConsistentQualifiers(quals);
1502    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1503
1504    // Re-find the insert position.
1505    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1506  }
1507
1508  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1509  ExtQualNodes.InsertNode(eq, insertPos);
1510  return QualType(eq, fastQuals);
1511}
1512
1513QualType
1514ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1515  QualType CanT = getCanonicalType(T);
1516  if (CanT.getAddressSpace() == AddressSpace)
1517    return T;
1518
1519  // If we are composing extended qualifiers together, merge together
1520  // into one ExtQuals node.
1521  QualifierCollector Quals;
1522  const Type *TypeNode = Quals.strip(T);
1523
1524  // If this type already has an address space specified, it cannot get
1525  // another one.
1526  assert(!Quals.hasAddressSpace() &&
1527         "Type cannot be in multiple addr spaces!");
1528  Quals.addAddressSpace(AddressSpace);
1529
1530  return getExtQualType(TypeNode, Quals);
1531}
1532
1533QualType ASTContext::getObjCGCQualType(QualType T,
1534                                       Qualifiers::GC GCAttr) const {
1535  QualType CanT = getCanonicalType(T);
1536  if (CanT.getObjCGCAttr() == GCAttr)
1537    return T;
1538
1539  if (const PointerType *ptr = T->getAs<PointerType>()) {
1540    QualType Pointee = ptr->getPointeeType();
1541    if (Pointee->isAnyPointerType()) {
1542      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1543      return getPointerType(ResultType);
1544    }
1545  }
1546
1547  // If we are composing extended qualifiers together, merge together
1548  // into one ExtQuals node.
1549  QualifierCollector Quals;
1550  const Type *TypeNode = Quals.strip(T);
1551
1552  // If this type already has an ObjCGC specified, it cannot get
1553  // another one.
1554  assert(!Quals.hasObjCGCAttr() &&
1555         "Type cannot have multiple ObjCGCs!");
1556  Quals.addObjCGCAttr(GCAttr);
1557
1558  return getExtQualType(TypeNode, Quals);
1559}
1560
1561const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1562                                                   FunctionType::ExtInfo Info) {
1563  if (T->getExtInfo() == Info)
1564    return T;
1565
1566  QualType Result;
1567  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1568    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1569  } else {
1570    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1571    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1572    EPI.ExtInfo = Info;
1573    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1574                             FPT->getNumArgs(), EPI);
1575  }
1576
1577  return cast<FunctionType>(Result.getTypePtr());
1578}
1579
1580/// getComplexType - Return the uniqued reference to the type for a complex
1581/// number with the specified element type.
1582QualType ASTContext::getComplexType(QualType T) const {
1583  // Unique pointers, to guarantee there is only one pointer of a particular
1584  // structure.
1585  llvm::FoldingSetNodeID ID;
1586  ComplexType::Profile(ID, T);
1587
1588  void *InsertPos = 0;
1589  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1590    return QualType(CT, 0);
1591
1592  // If the pointee type isn't canonical, this won't be a canonical type either,
1593  // so fill in the canonical type field.
1594  QualType Canonical;
1595  if (!T.isCanonical()) {
1596    Canonical = getComplexType(getCanonicalType(T));
1597
1598    // Get the new insert position for the node we care about.
1599    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1600    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1601  }
1602  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1603  Types.push_back(New);
1604  ComplexTypes.InsertNode(New, InsertPos);
1605  return QualType(New, 0);
1606}
1607
1608/// getPointerType - Return the uniqued reference to the type for a pointer to
1609/// the specified type.
1610QualType ASTContext::getPointerType(QualType T) const {
1611  // Unique pointers, to guarantee there is only one pointer of a particular
1612  // structure.
1613  llvm::FoldingSetNodeID ID;
1614  PointerType::Profile(ID, T);
1615
1616  void *InsertPos = 0;
1617  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1618    return QualType(PT, 0);
1619
1620  // If the pointee type isn't canonical, this won't be a canonical type either,
1621  // so fill in the canonical type field.
1622  QualType Canonical;
1623  if (!T.isCanonical()) {
1624    Canonical = getPointerType(getCanonicalType(T));
1625
1626    // Get the new insert position for the node we care about.
1627    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1628    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1629  }
1630  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1631  Types.push_back(New);
1632  PointerTypes.InsertNode(New, InsertPos);
1633  return QualType(New, 0);
1634}
1635
1636/// getBlockPointerType - Return the uniqued reference to the type for
1637/// a pointer to the specified block.
1638QualType ASTContext::getBlockPointerType(QualType T) const {
1639  assert(T->isFunctionType() && "block of function types only");
1640  // Unique pointers, to guarantee there is only one block of a particular
1641  // structure.
1642  llvm::FoldingSetNodeID ID;
1643  BlockPointerType::Profile(ID, T);
1644
1645  void *InsertPos = 0;
1646  if (BlockPointerType *PT =
1647        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1648    return QualType(PT, 0);
1649
1650  // If the block pointee type isn't canonical, this won't be a canonical
1651  // type either so fill in the canonical type field.
1652  QualType Canonical;
1653  if (!T.isCanonical()) {
1654    Canonical = getBlockPointerType(getCanonicalType(T));
1655
1656    // Get the new insert position for the node we care about.
1657    BlockPointerType *NewIP =
1658      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1659    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1660  }
1661  BlockPointerType *New
1662    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1663  Types.push_back(New);
1664  BlockPointerTypes.InsertNode(New, InsertPos);
1665  return QualType(New, 0);
1666}
1667
1668/// getLValueReferenceType - Return the uniqued reference to the type for an
1669/// lvalue reference to the specified type.
1670QualType
1671ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1672  assert(getCanonicalType(T) != OverloadTy &&
1673         "Unresolved overloaded function type");
1674
1675  // Unique pointers, to guarantee there is only one pointer of a particular
1676  // structure.
1677  llvm::FoldingSetNodeID ID;
1678  ReferenceType::Profile(ID, T, SpelledAsLValue);
1679
1680  void *InsertPos = 0;
1681  if (LValueReferenceType *RT =
1682        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1683    return QualType(RT, 0);
1684
1685  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1686
1687  // If the referencee type isn't canonical, this won't be a canonical type
1688  // either, so fill in the canonical type field.
1689  QualType Canonical;
1690  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1691    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1692    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1693
1694    // Get the new insert position for the node we care about.
1695    LValueReferenceType *NewIP =
1696      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1697    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1698  }
1699
1700  LValueReferenceType *New
1701    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1702                                                     SpelledAsLValue);
1703  Types.push_back(New);
1704  LValueReferenceTypes.InsertNode(New, InsertPos);
1705
1706  return QualType(New, 0);
1707}
1708
1709/// getRValueReferenceType - Return the uniqued reference to the type for an
1710/// rvalue reference to the specified type.
1711QualType ASTContext::getRValueReferenceType(QualType T) const {
1712  // Unique pointers, to guarantee there is only one pointer of a particular
1713  // structure.
1714  llvm::FoldingSetNodeID ID;
1715  ReferenceType::Profile(ID, T, false);
1716
1717  void *InsertPos = 0;
1718  if (RValueReferenceType *RT =
1719        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1720    return QualType(RT, 0);
1721
1722  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1723
1724  // If the referencee type isn't canonical, this won't be a canonical type
1725  // either, so fill in the canonical type field.
1726  QualType Canonical;
1727  if (InnerRef || !T.isCanonical()) {
1728    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1729    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1730
1731    // Get the new insert position for the node we care about.
1732    RValueReferenceType *NewIP =
1733      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1734    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1735  }
1736
1737  RValueReferenceType *New
1738    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1739  Types.push_back(New);
1740  RValueReferenceTypes.InsertNode(New, InsertPos);
1741  return QualType(New, 0);
1742}
1743
1744/// getMemberPointerType - Return the uniqued reference to the type for a
1745/// member pointer to the specified type, in the specified class.
1746QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1747  // Unique pointers, to guarantee there is only one pointer of a particular
1748  // structure.
1749  llvm::FoldingSetNodeID ID;
1750  MemberPointerType::Profile(ID, T, Cls);
1751
1752  void *InsertPos = 0;
1753  if (MemberPointerType *PT =
1754      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1755    return QualType(PT, 0);
1756
1757  // If the pointee or class type isn't canonical, this won't be a canonical
1758  // type either, so fill in the canonical type field.
1759  QualType Canonical;
1760  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1761    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1762
1763    // Get the new insert position for the node we care about.
1764    MemberPointerType *NewIP =
1765      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1766    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1767  }
1768  MemberPointerType *New
1769    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1770  Types.push_back(New);
1771  MemberPointerTypes.InsertNode(New, InsertPos);
1772  return QualType(New, 0);
1773}
1774
1775/// getConstantArrayType - Return the unique reference to the type for an
1776/// array of the specified element type.
1777QualType ASTContext::getConstantArrayType(QualType EltTy,
1778                                          const llvm::APInt &ArySizeIn,
1779                                          ArrayType::ArraySizeModifier ASM,
1780                                          unsigned IndexTypeQuals) const {
1781  assert((EltTy->isDependentType() ||
1782          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1783         "Constant array of VLAs is illegal!");
1784
1785  // Convert the array size into a canonical width matching the pointer size for
1786  // the target.
1787  llvm::APInt ArySize(ArySizeIn);
1788  ArySize =
1789    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1790
1791  llvm::FoldingSetNodeID ID;
1792  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1793
1794  void *InsertPos = 0;
1795  if (ConstantArrayType *ATP =
1796      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1797    return QualType(ATP, 0);
1798
1799  // If the element type isn't canonical or has qualifiers, this won't
1800  // be a canonical type either, so fill in the canonical type field.
1801  QualType Canon;
1802  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1803    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1804    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
1805                                 ASM, IndexTypeQuals);
1806    Canon = getQualifiedType(Canon, canonSplit.Quals);
1807
1808    // Get the new insert position for the node we care about.
1809    ConstantArrayType *NewIP =
1810      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1811    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1812  }
1813
1814  ConstantArrayType *New = new(*this,TypeAlignment)
1815    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1816  ConstantArrayTypes.InsertNode(New, InsertPos);
1817  Types.push_back(New);
1818  return QualType(New, 0);
1819}
1820
1821/// getVariableArrayDecayedType - Turns the given type, which may be
1822/// variably-modified, into the corresponding type with all the known
1823/// sizes replaced with [*].
1824QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1825  // Vastly most common case.
1826  if (!type->isVariablyModifiedType()) return type;
1827
1828  QualType result;
1829
1830  SplitQualType split = type.getSplitDesugaredType();
1831  const Type *ty = split.Ty;
1832  switch (ty->getTypeClass()) {
1833#define TYPE(Class, Base)
1834#define ABSTRACT_TYPE(Class, Base)
1835#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1836#include "clang/AST/TypeNodes.def"
1837    llvm_unreachable("didn't desugar past all non-canonical types?");
1838
1839  // These types should never be variably-modified.
1840  case Type::Builtin:
1841  case Type::Complex:
1842  case Type::Vector:
1843  case Type::ExtVector:
1844  case Type::DependentSizedExtVector:
1845  case Type::ObjCObject:
1846  case Type::ObjCInterface:
1847  case Type::ObjCObjectPointer:
1848  case Type::Record:
1849  case Type::Enum:
1850  case Type::UnresolvedUsing:
1851  case Type::TypeOfExpr:
1852  case Type::TypeOf:
1853  case Type::Decltype:
1854  case Type::UnaryTransform:
1855  case Type::DependentName:
1856  case Type::InjectedClassName:
1857  case Type::TemplateSpecialization:
1858  case Type::DependentTemplateSpecialization:
1859  case Type::TemplateTypeParm:
1860  case Type::SubstTemplateTypeParmPack:
1861  case Type::Auto:
1862  case Type::PackExpansion:
1863    llvm_unreachable("type should never be variably-modified");
1864
1865  // These types can be variably-modified but should never need to
1866  // further decay.
1867  case Type::FunctionNoProto:
1868  case Type::FunctionProto:
1869  case Type::BlockPointer:
1870  case Type::MemberPointer:
1871    return type;
1872
1873  // These types can be variably-modified.  All these modifications
1874  // preserve structure except as noted by comments.
1875  // TODO: if we ever care about optimizing VLAs, there are no-op
1876  // optimizations available here.
1877  case Type::Pointer:
1878    result = getPointerType(getVariableArrayDecayedType(
1879                              cast<PointerType>(ty)->getPointeeType()));
1880    break;
1881
1882  case Type::LValueReference: {
1883    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1884    result = getLValueReferenceType(
1885                 getVariableArrayDecayedType(lv->getPointeeType()),
1886                                    lv->isSpelledAsLValue());
1887    break;
1888  }
1889
1890  case Type::RValueReference: {
1891    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1892    result = getRValueReferenceType(
1893                 getVariableArrayDecayedType(lv->getPointeeType()));
1894    break;
1895  }
1896
1897  case Type::Atomic: {
1898    const AtomicType *at = cast<AtomicType>(ty);
1899    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1900    break;
1901  }
1902
1903  case Type::ConstantArray: {
1904    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1905    result = getConstantArrayType(
1906                 getVariableArrayDecayedType(cat->getElementType()),
1907                                  cat->getSize(),
1908                                  cat->getSizeModifier(),
1909                                  cat->getIndexTypeCVRQualifiers());
1910    break;
1911  }
1912
1913  case Type::DependentSizedArray: {
1914    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1915    result = getDependentSizedArrayType(
1916                 getVariableArrayDecayedType(dat->getElementType()),
1917                                        dat->getSizeExpr(),
1918                                        dat->getSizeModifier(),
1919                                        dat->getIndexTypeCVRQualifiers(),
1920                                        dat->getBracketsRange());
1921    break;
1922  }
1923
1924  // Turn incomplete types into [*] types.
1925  case Type::IncompleteArray: {
1926    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1927    result = getVariableArrayType(
1928                 getVariableArrayDecayedType(iat->getElementType()),
1929                                  /*size*/ 0,
1930                                  ArrayType::Normal,
1931                                  iat->getIndexTypeCVRQualifiers(),
1932                                  SourceRange());
1933    break;
1934  }
1935
1936  // Turn VLA types into [*] types.
1937  case Type::VariableArray: {
1938    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1939    result = getVariableArrayType(
1940                 getVariableArrayDecayedType(vat->getElementType()),
1941                                  /*size*/ 0,
1942                                  ArrayType::Star,
1943                                  vat->getIndexTypeCVRQualifiers(),
1944                                  vat->getBracketsRange());
1945    break;
1946  }
1947  }
1948
1949  // Apply the top-level qualifiers from the original.
1950  return getQualifiedType(result, split.Quals);
1951}
1952
1953/// getVariableArrayType - Returns a non-unique reference to the type for a
1954/// variable array of the specified element type.
1955QualType ASTContext::getVariableArrayType(QualType EltTy,
1956                                          Expr *NumElts,
1957                                          ArrayType::ArraySizeModifier ASM,
1958                                          unsigned IndexTypeQuals,
1959                                          SourceRange Brackets) const {
1960  // Since we don't unique expressions, it isn't possible to unique VLA's
1961  // that have an expression provided for their size.
1962  QualType Canon;
1963
1964  // Be sure to pull qualifiers off the element type.
1965  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1966    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1967    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
1968                                 IndexTypeQuals, Brackets);
1969    Canon = getQualifiedType(Canon, canonSplit.Quals);
1970  }
1971
1972  VariableArrayType *New = new(*this, TypeAlignment)
1973    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1974
1975  VariableArrayTypes.push_back(New);
1976  Types.push_back(New);
1977  return QualType(New, 0);
1978}
1979
1980/// getDependentSizedArrayType - Returns a non-unique reference to
1981/// the type for a dependently-sized array of the specified element
1982/// type.
1983QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1984                                                Expr *numElements,
1985                                                ArrayType::ArraySizeModifier ASM,
1986                                                unsigned elementTypeQuals,
1987                                                SourceRange brackets) const {
1988  assert((!numElements || numElements->isTypeDependent() ||
1989          numElements->isValueDependent()) &&
1990         "Size must be type- or value-dependent!");
1991
1992  // Dependently-sized array types that do not have a specified number
1993  // of elements will have their sizes deduced from a dependent
1994  // initializer.  We do no canonicalization here at all, which is okay
1995  // because they can't be used in most locations.
1996  if (!numElements) {
1997    DependentSizedArrayType *newType
1998      = new (*this, TypeAlignment)
1999          DependentSizedArrayType(*this, elementType, QualType(),
2000                                  numElements, ASM, elementTypeQuals,
2001                                  brackets);
2002    Types.push_back(newType);
2003    return QualType(newType, 0);
2004  }
2005
2006  // Otherwise, we actually build a new type every time, but we
2007  // also build a canonical type.
2008
2009  SplitQualType canonElementType = getCanonicalType(elementType).split();
2010
2011  void *insertPos = 0;
2012  llvm::FoldingSetNodeID ID;
2013  DependentSizedArrayType::Profile(ID, *this,
2014                                   QualType(canonElementType.Ty, 0),
2015                                   ASM, elementTypeQuals, numElements);
2016
2017  // Look for an existing type with these properties.
2018  DependentSizedArrayType *canonTy =
2019    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2020
2021  // If we don't have one, build one.
2022  if (!canonTy) {
2023    canonTy = new (*this, TypeAlignment)
2024      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2025                              QualType(), numElements, ASM, elementTypeQuals,
2026                              brackets);
2027    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2028    Types.push_back(canonTy);
2029  }
2030
2031  // Apply qualifiers from the element type to the array.
2032  QualType canon = getQualifiedType(QualType(canonTy,0),
2033                                    canonElementType.Quals);
2034
2035  // If we didn't need extra canonicalization for the element type,
2036  // then just use that as our result.
2037  if (QualType(canonElementType.Ty, 0) == elementType)
2038    return canon;
2039
2040  // Otherwise, we need to build a type which follows the spelling
2041  // of the element type.
2042  DependentSizedArrayType *sugaredType
2043    = new (*this, TypeAlignment)
2044        DependentSizedArrayType(*this, elementType, canon, numElements,
2045                                ASM, elementTypeQuals, brackets);
2046  Types.push_back(sugaredType);
2047  return QualType(sugaredType, 0);
2048}
2049
2050QualType ASTContext::getIncompleteArrayType(QualType elementType,
2051                                            ArrayType::ArraySizeModifier ASM,
2052                                            unsigned elementTypeQuals) const {
2053  llvm::FoldingSetNodeID ID;
2054  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2055
2056  void *insertPos = 0;
2057  if (IncompleteArrayType *iat =
2058       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2059    return QualType(iat, 0);
2060
2061  // If the element type isn't canonical, this won't be a canonical type
2062  // either, so fill in the canonical type field.  We also have to pull
2063  // qualifiers off the element type.
2064  QualType canon;
2065
2066  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2067    SplitQualType canonSplit = getCanonicalType(elementType).split();
2068    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2069                                   ASM, elementTypeQuals);
2070    canon = getQualifiedType(canon, canonSplit.Quals);
2071
2072    // Get the new insert position for the node we care about.
2073    IncompleteArrayType *existing =
2074      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2075    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2076  }
2077
2078  IncompleteArrayType *newType = new (*this, TypeAlignment)
2079    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2080
2081  IncompleteArrayTypes.InsertNode(newType, insertPos);
2082  Types.push_back(newType);
2083  return QualType(newType, 0);
2084}
2085
2086/// getVectorType - Return the unique reference to a vector type of
2087/// the specified element type and size. VectorType must be a built-in type.
2088QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2089                                   VectorType::VectorKind VecKind) const {
2090  assert(vecType->isBuiltinType());
2091
2092  // Check if we've already instantiated a vector of this type.
2093  llvm::FoldingSetNodeID ID;
2094  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2095
2096  void *InsertPos = 0;
2097  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2098    return QualType(VTP, 0);
2099
2100  // If the element type isn't canonical, this won't be a canonical type either,
2101  // so fill in the canonical type field.
2102  QualType Canonical;
2103  if (!vecType.isCanonical()) {
2104    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2105
2106    // Get the new insert position for the node we care about.
2107    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2108    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2109  }
2110  VectorType *New = new (*this, TypeAlignment)
2111    VectorType(vecType, NumElts, Canonical, VecKind);
2112  VectorTypes.InsertNode(New, InsertPos);
2113  Types.push_back(New);
2114  return QualType(New, 0);
2115}
2116
2117/// getExtVectorType - Return the unique reference to an extended vector type of
2118/// the specified element type and size. VectorType must be a built-in type.
2119QualType
2120ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2121  assert(vecType->isBuiltinType() || vecType->isDependentType());
2122
2123  // Check if we've already instantiated a vector of this type.
2124  llvm::FoldingSetNodeID ID;
2125  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2126                      VectorType::GenericVector);
2127  void *InsertPos = 0;
2128  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2129    return QualType(VTP, 0);
2130
2131  // If the element type isn't canonical, this won't be a canonical type either,
2132  // so fill in the canonical type field.
2133  QualType Canonical;
2134  if (!vecType.isCanonical()) {
2135    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2136
2137    // Get the new insert position for the node we care about.
2138    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2139    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2140  }
2141  ExtVectorType *New = new (*this, TypeAlignment)
2142    ExtVectorType(vecType, NumElts, Canonical);
2143  VectorTypes.InsertNode(New, InsertPos);
2144  Types.push_back(New);
2145  return QualType(New, 0);
2146}
2147
2148QualType
2149ASTContext::getDependentSizedExtVectorType(QualType vecType,
2150                                           Expr *SizeExpr,
2151                                           SourceLocation AttrLoc) const {
2152  llvm::FoldingSetNodeID ID;
2153  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2154                                       SizeExpr);
2155
2156  void *InsertPos = 0;
2157  DependentSizedExtVectorType *Canon
2158    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2159  DependentSizedExtVectorType *New;
2160  if (Canon) {
2161    // We already have a canonical version of this array type; use it as
2162    // the canonical type for a newly-built type.
2163    New = new (*this, TypeAlignment)
2164      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2165                                  SizeExpr, AttrLoc);
2166  } else {
2167    QualType CanonVecTy = getCanonicalType(vecType);
2168    if (CanonVecTy == vecType) {
2169      New = new (*this, TypeAlignment)
2170        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2171                                    AttrLoc);
2172
2173      DependentSizedExtVectorType *CanonCheck
2174        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2175      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2176      (void)CanonCheck;
2177      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2178    } else {
2179      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2180                                                      SourceLocation());
2181      New = new (*this, TypeAlignment)
2182        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2183    }
2184  }
2185
2186  Types.push_back(New);
2187  return QualType(New, 0);
2188}
2189
2190/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2191///
2192QualType
2193ASTContext::getFunctionNoProtoType(QualType ResultTy,
2194                                   const FunctionType::ExtInfo &Info) const {
2195  const CallingConv DefaultCC = Info.getCC();
2196  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2197                               CC_X86StdCall : DefaultCC;
2198  // Unique functions, to guarantee there is only one function of a particular
2199  // structure.
2200  llvm::FoldingSetNodeID ID;
2201  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2202
2203  void *InsertPos = 0;
2204  if (FunctionNoProtoType *FT =
2205        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2206    return QualType(FT, 0);
2207
2208  QualType Canonical;
2209  if (!ResultTy.isCanonical() ||
2210      getCanonicalCallConv(CallConv) != CallConv) {
2211    Canonical =
2212      getFunctionNoProtoType(getCanonicalType(ResultTy),
2213                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2214
2215    // Get the new insert position for the node we care about.
2216    FunctionNoProtoType *NewIP =
2217      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2218    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2219  }
2220
2221  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2222  FunctionNoProtoType *New = new (*this, TypeAlignment)
2223    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2224  Types.push_back(New);
2225  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2226  return QualType(New, 0);
2227}
2228
2229/// getFunctionType - Return a normal function type with a typed argument
2230/// list.  isVariadic indicates whether the argument list includes '...'.
2231QualType
2232ASTContext::getFunctionType(QualType ResultTy,
2233                            const QualType *ArgArray, unsigned NumArgs,
2234                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2235  // Unique functions, to guarantee there is only one function of a particular
2236  // structure.
2237  llvm::FoldingSetNodeID ID;
2238  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2239
2240  void *InsertPos = 0;
2241  if (FunctionProtoType *FTP =
2242        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2243    return QualType(FTP, 0);
2244
2245  // Determine whether the type being created is already canonical or not.
2246  bool isCanonical =
2247    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2248    !EPI.HasTrailingReturn;
2249  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2250    if (!ArgArray[i].isCanonicalAsParam())
2251      isCanonical = false;
2252
2253  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2254  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2255                               CC_X86StdCall : DefaultCC;
2256
2257  // If this type isn't canonical, get the canonical version of it.
2258  // The exception spec is not part of the canonical type.
2259  QualType Canonical;
2260  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2261    SmallVector<QualType, 16> CanonicalArgs;
2262    CanonicalArgs.reserve(NumArgs);
2263    for (unsigned i = 0; i != NumArgs; ++i)
2264      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2265
2266    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2267    CanonicalEPI.HasTrailingReturn = false;
2268    CanonicalEPI.ExceptionSpecType = EST_None;
2269    CanonicalEPI.NumExceptions = 0;
2270    CanonicalEPI.ExtInfo
2271      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2272
2273    Canonical = getFunctionType(getCanonicalType(ResultTy),
2274                                CanonicalArgs.data(), NumArgs,
2275                                CanonicalEPI);
2276
2277    // Get the new insert position for the node we care about.
2278    FunctionProtoType *NewIP =
2279      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2280    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2281  }
2282
2283  // FunctionProtoType objects are allocated with extra bytes after
2284  // them for three variable size arrays at the end:
2285  //  - parameter types
2286  //  - exception types
2287  //  - consumed-arguments flags
2288  // Instead of the exception types, there could be a noexcept
2289  // expression.
2290  size_t Size = sizeof(FunctionProtoType) +
2291                NumArgs * sizeof(QualType);
2292  if (EPI.ExceptionSpecType == EST_Dynamic)
2293    Size += EPI.NumExceptions * sizeof(QualType);
2294  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2295    Size += sizeof(Expr*);
2296  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2297    Size += 2 * sizeof(FunctionDecl*);
2298  }
2299  if (EPI.ConsumedArguments)
2300    Size += NumArgs * sizeof(bool);
2301
2302  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2303  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2304  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2305  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2306  Types.push_back(FTP);
2307  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2308  return QualType(FTP, 0);
2309}
2310
2311#ifndef NDEBUG
2312static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2313  if (!isa<CXXRecordDecl>(D)) return false;
2314  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2315  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2316    return true;
2317  if (RD->getDescribedClassTemplate() &&
2318      !isa<ClassTemplateSpecializationDecl>(RD))
2319    return true;
2320  return false;
2321}
2322#endif
2323
2324/// getInjectedClassNameType - Return the unique reference to the
2325/// injected class name type for the specified templated declaration.
2326QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2327                                              QualType TST) const {
2328  assert(NeedsInjectedClassNameType(Decl));
2329  if (Decl->TypeForDecl) {
2330    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2331  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2332    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2333    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2334    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2335  } else {
2336    Type *newType =
2337      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2338    Decl->TypeForDecl = newType;
2339    Types.push_back(newType);
2340  }
2341  return QualType(Decl->TypeForDecl, 0);
2342}
2343
2344/// getTypeDeclType - Return the unique reference to the type for the
2345/// specified type declaration.
2346QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2347  assert(Decl && "Passed null for Decl param");
2348  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2349
2350  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2351    return getTypedefType(Typedef);
2352
2353  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2354         "Template type parameter types are always available.");
2355
2356  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2357    assert(!Record->getPreviousDecl() &&
2358           "struct/union has previous declaration");
2359    assert(!NeedsInjectedClassNameType(Record));
2360    return getRecordType(Record);
2361  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2362    assert(!Enum->getPreviousDecl() &&
2363           "enum has previous declaration");
2364    return getEnumType(Enum);
2365  } else if (const UnresolvedUsingTypenameDecl *Using =
2366               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2367    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2368    Decl->TypeForDecl = newType;
2369    Types.push_back(newType);
2370  } else
2371    llvm_unreachable("TypeDecl without a type?");
2372
2373  return QualType(Decl->TypeForDecl, 0);
2374}
2375
2376/// getTypedefType - Return the unique reference to the type for the
2377/// specified typedef name decl.
2378QualType
2379ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2380                           QualType Canonical) const {
2381  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2382
2383  if (Canonical.isNull())
2384    Canonical = getCanonicalType(Decl->getUnderlyingType());
2385  TypedefType *newType = new(*this, TypeAlignment)
2386    TypedefType(Type::Typedef, Decl, Canonical);
2387  Decl->TypeForDecl = newType;
2388  Types.push_back(newType);
2389  return QualType(newType, 0);
2390}
2391
2392QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2393  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2394
2395  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2396    if (PrevDecl->TypeForDecl)
2397      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2398
2399  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2400  Decl->TypeForDecl = newType;
2401  Types.push_back(newType);
2402  return QualType(newType, 0);
2403}
2404
2405QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2406  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2407
2408  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2409    if (PrevDecl->TypeForDecl)
2410      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2411
2412  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2413  Decl->TypeForDecl = newType;
2414  Types.push_back(newType);
2415  return QualType(newType, 0);
2416}
2417
2418QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2419                                       QualType modifiedType,
2420                                       QualType equivalentType) {
2421  llvm::FoldingSetNodeID id;
2422  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2423
2424  void *insertPos = 0;
2425  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2426  if (type) return QualType(type, 0);
2427
2428  QualType canon = getCanonicalType(equivalentType);
2429  type = new (*this, TypeAlignment)
2430           AttributedType(canon, attrKind, modifiedType, equivalentType);
2431
2432  Types.push_back(type);
2433  AttributedTypes.InsertNode(type, insertPos);
2434
2435  return QualType(type, 0);
2436}
2437
2438
2439/// \brief Retrieve a substitution-result type.
2440QualType
2441ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2442                                         QualType Replacement) const {
2443  assert(Replacement.isCanonical()
2444         && "replacement types must always be canonical");
2445
2446  llvm::FoldingSetNodeID ID;
2447  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2448  void *InsertPos = 0;
2449  SubstTemplateTypeParmType *SubstParm
2450    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2451
2452  if (!SubstParm) {
2453    SubstParm = new (*this, TypeAlignment)
2454      SubstTemplateTypeParmType(Parm, Replacement);
2455    Types.push_back(SubstParm);
2456    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2457  }
2458
2459  return QualType(SubstParm, 0);
2460}
2461
2462/// \brief Retrieve a
2463QualType ASTContext::getSubstTemplateTypeParmPackType(
2464                                          const TemplateTypeParmType *Parm,
2465                                              const TemplateArgument &ArgPack) {
2466#ifndef NDEBUG
2467  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2468                                    PEnd = ArgPack.pack_end();
2469       P != PEnd; ++P) {
2470    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2471    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2472  }
2473#endif
2474
2475  llvm::FoldingSetNodeID ID;
2476  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2477  void *InsertPos = 0;
2478  if (SubstTemplateTypeParmPackType *SubstParm
2479        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2480    return QualType(SubstParm, 0);
2481
2482  QualType Canon;
2483  if (!Parm->isCanonicalUnqualified()) {
2484    Canon = getCanonicalType(QualType(Parm, 0));
2485    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2486                                             ArgPack);
2487    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2488  }
2489
2490  SubstTemplateTypeParmPackType *SubstParm
2491    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2492                                                               ArgPack);
2493  Types.push_back(SubstParm);
2494  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2495  return QualType(SubstParm, 0);
2496}
2497
2498/// \brief Retrieve the template type parameter type for a template
2499/// parameter or parameter pack with the given depth, index, and (optionally)
2500/// name.
2501QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2502                                             bool ParameterPack,
2503                                             TemplateTypeParmDecl *TTPDecl) const {
2504  llvm::FoldingSetNodeID ID;
2505  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2506  void *InsertPos = 0;
2507  TemplateTypeParmType *TypeParm
2508    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2509
2510  if (TypeParm)
2511    return QualType(TypeParm, 0);
2512
2513  if (TTPDecl) {
2514    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2515    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2516
2517    TemplateTypeParmType *TypeCheck
2518      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2519    assert(!TypeCheck && "Template type parameter canonical type broken");
2520    (void)TypeCheck;
2521  } else
2522    TypeParm = new (*this, TypeAlignment)
2523      TemplateTypeParmType(Depth, Index, ParameterPack);
2524
2525  Types.push_back(TypeParm);
2526  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2527
2528  return QualType(TypeParm, 0);
2529}
2530
2531TypeSourceInfo *
2532ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2533                                              SourceLocation NameLoc,
2534                                        const TemplateArgumentListInfo &Args,
2535                                              QualType Underlying) const {
2536  assert(!Name.getAsDependentTemplateName() &&
2537         "No dependent template names here!");
2538  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2539
2540  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2541  TemplateSpecializationTypeLoc TL
2542    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2543  TL.setTemplateKeywordLoc(SourceLocation());
2544  TL.setTemplateNameLoc(NameLoc);
2545  TL.setLAngleLoc(Args.getLAngleLoc());
2546  TL.setRAngleLoc(Args.getRAngleLoc());
2547  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2548    TL.setArgLocInfo(i, Args[i].getLocInfo());
2549  return DI;
2550}
2551
2552QualType
2553ASTContext::getTemplateSpecializationType(TemplateName Template,
2554                                          const TemplateArgumentListInfo &Args,
2555                                          QualType Underlying) const {
2556  assert(!Template.getAsDependentTemplateName() &&
2557         "No dependent template names here!");
2558
2559  unsigned NumArgs = Args.size();
2560
2561  SmallVector<TemplateArgument, 4> ArgVec;
2562  ArgVec.reserve(NumArgs);
2563  for (unsigned i = 0; i != NumArgs; ++i)
2564    ArgVec.push_back(Args[i].getArgument());
2565
2566  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2567                                       Underlying);
2568}
2569
2570#ifndef NDEBUG
2571static bool hasAnyPackExpansions(const TemplateArgument *Args,
2572                                 unsigned NumArgs) {
2573  for (unsigned I = 0; I != NumArgs; ++I)
2574    if (Args[I].isPackExpansion())
2575      return true;
2576
2577  return true;
2578}
2579#endif
2580
2581QualType
2582ASTContext::getTemplateSpecializationType(TemplateName Template,
2583                                          const TemplateArgument *Args,
2584                                          unsigned NumArgs,
2585                                          QualType Underlying) const {
2586  assert(!Template.getAsDependentTemplateName() &&
2587         "No dependent template names here!");
2588  // Look through qualified template names.
2589  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2590    Template = TemplateName(QTN->getTemplateDecl());
2591
2592  bool IsTypeAlias =
2593    Template.getAsTemplateDecl() &&
2594    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2595  QualType CanonType;
2596  if (!Underlying.isNull())
2597    CanonType = getCanonicalType(Underlying);
2598  else {
2599    // We can get here with an alias template when the specialization contains
2600    // a pack expansion that does not match up with a parameter pack.
2601    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2602           "Caller must compute aliased type");
2603    IsTypeAlias = false;
2604    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2605                                                       NumArgs);
2606  }
2607
2608  // Allocate the (non-canonical) template specialization type, but don't
2609  // try to unique it: these types typically have location information that
2610  // we don't unique and don't want to lose.
2611  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2612                       sizeof(TemplateArgument) * NumArgs +
2613                       (IsTypeAlias? sizeof(QualType) : 0),
2614                       TypeAlignment);
2615  TemplateSpecializationType *Spec
2616    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2617                                         IsTypeAlias ? Underlying : QualType());
2618
2619  Types.push_back(Spec);
2620  return QualType(Spec, 0);
2621}
2622
2623QualType
2624ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2625                                                   const TemplateArgument *Args,
2626                                                   unsigned NumArgs) const {
2627  assert(!Template.getAsDependentTemplateName() &&
2628         "No dependent template names here!");
2629
2630  // Look through qualified template names.
2631  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2632    Template = TemplateName(QTN->getTemplateDecl());
2633
2634  // Build the canonical template specialization type.
2635  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2636  SmallVector<TemplateArgument, 4> CanonArgs;
2637  CanonArgs.reserve(NumArgs);
2638  for (unsigned I = 0; I != NumArgs; ++I)
2639    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2640
2641  // Determine whether this canonical template specialization type already
2642  // exists.
2643  llvm::FoldingSetNodeID ID;
2644  TemplateSpecializationType::Profile(ID, CanonTemplate,
2645                                      CanonArgs.data(), NumArgs, *this);
2646
2647  void *InsertPos = 0;
2648  TemplateSpecializationType *Spec
2649    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2650
2651  if (!Spec) {
2652    // Allocate a new canonical template specialization type.
2653    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2654                          sizeof(TemplateArgument) * NumArgs),
2655                         TypeAlignment);
2656    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2657                                                CanonArgs.data(), NumArgs,
2658                                                QualType(), QualType());
2659    Types.push_back(Spec);
2660    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2661  }
2662
2663  assert(Spec->isDependentType() &&
2664         "Non-dependent template-id type must have a canonical type");
2665  return QualType(Spec, 0);
2666}
2667
2668QualType
2669ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2670                              NestedNameSpecifier *NNS,
2671                              QualType NamedType) const {
2672  llvm::FoldingSetNodeID ID;
2673  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2674
2675  void *InsertPos = 0;
2676  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2677  if (T)
2678    return QualType(T, 0);
2679
2680  QualType Canon = NamedType;
2681  if (!Canon.isCanonical()) {
2682    Canon = getCanonicalType(NamedType);
2683    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2684    assert(!CheckT && "Elaborated canonical type broken");
2685    (void)CheckT;
2686  }
2687
2688  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2689  Types.push_back(T);
2690  ElaboratedTypes.InsertNode(T, InsertPos);
2691  return QualType(T, 0);
2692}
2693
2694QualType
2695ASTContext::getParenType(QualType InnerType) const {
2696  llvm::FoldingSetNodeID ID;
2697  ParenType::Profile(ID, InnerType);
2698
2699  void *InsertPos = 0;
2700  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2701  if (T)
2702    return QualType(T, 0);
2703
2704  QualType Canon = InnerType;
2705  if (!Canon.isCanonical()) {
2706    Canon = getCanonicalType(InnerType);
2707    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2708    assert(!CheckT && "Paren canonical type broken");
2709    (void)CheckT;
2710  }
2711
2712  T = new (*this) ParenType(InnerType, Canon);
2713  Types.push_back(T);
2714  ParenTypes.InsertNode(T, InsertPos);
2715  return QualType(T, 0);
2716}
2717
2718QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2719                                          NestedNameSpecifier *NNS,
2720                                          const IdentifierInfo *Name,
2721                                          QualType Canon) const {
2722  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2723
2724  if (Canon.isNull()) {
2725    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2726    ElaboratedTypeKeyword CanonKeyword = Keyword;
2727    if (Keyword == ETK_None)
2728      CanonKeyword = ETK_Typename;
2729
2730    if (CanonNNS != NNS || CanonKeyword != Keyword)
2731      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2732  }
2733
2734  llvm::FoldingSetNodeID ID;
2735  DependentNameType::Profile(ID, Keyword, NNS, Name);
2736
2737  void *InsertPos = 0;
2738  DependentNameType *T
2739    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2740  if (T)
2741    return QualType(T, 0);
2742
2743  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2744  Types.push_back(T);
2745  DependentNameTypes.InsertNode(T, InsertPos);
2746  return QualType(T, 0);
2747}
2748
2749QualType
2750ASTContext::getDependentTemplateSpecializationType(
2751                                 ElaboratedTypeKeyword Keyword,
2752                                 NestedNameSpecifier *NNS,
2753                                 const IdentifierInfo *Name,
2754                                 const TemplateArgumentListInfo &Args) const {
2755  // TODO: avoid this copy
2756  SmallVector<TemplateArgument, 16> ArgCopy;
2757  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2758    ArgCopy.push_back(Args[I].getArgument());
2759  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2760                                                ArgCopy.size(),
2761                                                ArgCopy.data());
2762}
2763
2764QualType
2765ASTContext::getDependentTemplateSpecializationType(
2766                                 ElaboratedTypeKeyword Keyword,
2767                                 NestedNameSpecifier *NNS,
2768                                 const IdentifierInfo *Name,
2769                                 unsigned NumArgs,
2770                                 const TemplateArgument *Args) const {
2771  assert((!NNS || NNS->isDependent()) &&
2772         "nested-name-specifier must be dependent");
2773
2774  llvm::FoldingSetNodeID ID;
2775  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2776                                               Name, NumArgs, Args);
2777
2778  void *InsertPos = 0;
2779  DependentTemplateSpecializationType *T
2780    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2781  if (T)
2782    return QualType(T, 0);
2783
2784  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2785
2786  ElaboratedTypeKeyword CanonKeyword = Keyword;
2787  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2788
2789  bool AnyNonCanonArgs = false;
2790  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2791  for (unsigned I = 0; I != NumArgs; ++I) {
2792    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2793    if (!CanonArgs[I].structurallyEquals(Args[I]))
2794      AnyNonCanonArgs = true;
2795  }
2796
2797  QualType Canon;
2798  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2799    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2800                                                   Name, NumArgs,
2801                                                   CanonArgs.data());
2802
2803    // Find the insert position again.
2804    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2805  }
2806
2807  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2808                        sizeof(TemplateArgument) * NumArgs),
2809                       TypeAlignment);
2810  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2811                                                    Name, NumArgs, Args, Canon);
2812  Types.push_back(T);
2813  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2814  return QualType(T, 0);
2815}
2816
2817QualType ASTContext::getPackExpansionType(QualType Pattern,
2818                                      llvm::Optional<unsigned> NumExpansions) {
2819  llvm::FoldingSetNodeID ID;
2820  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2821
2822  assert(Pattern->containsUnexpandedParameterPack() &&
2823         "Pack expansions must expand one or more parameter packs");
2824  void *InsertPos = 0;
2825  PackExpansionType *T
2826    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2827  if (T)
2828    return QualType(T, 0);
2829
2830  QualType Canon;
2831  if (!Pattern.isCanonical()) {
2832    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2833
2834    // Find the insert position again.
2835    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2836  }
2837
2838  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2839  Types.push_back(T);
2840  PackExpansionTypes.InsertNode(T, InsertPos);
2841  return QualType(T, 0);
2842}
2843
2844/// CmpProtocolNames - Comparison predicate for sorting protocols
2845/// alphabetically.
2846static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2847                            const ObjCProtocolDecl *RHS) {
2848  return LHS->getDeclName() < RHS->getDeclName();
2849}
2850
2851static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2852                                unsigned NumProtocols) {
2853  if (NumProtocols == 0) return true;
2854
2855  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
2856    return false;
2857
2858  for (unsigned i = 1; i != NumProtocols; ++i)
2859    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
2860        Protocols[i]->getCanonicalDecl() != Protocols[i])
2861      return false;
2862  return true;
2863}
2864
2865static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2866                                   unsigned &NumProtocols) {
2867  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2868
2869  // Sort protocols, keyed by name.
2870  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2871
2872  // Canonicalize.
2873  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
2874    Protocols[I] = Protocols[I]->getCanonicalDecl();
2875
2876  // Remove duplicates.
2877  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2878  NumProtocols = ProtocolsEnd-Protocols;
2879}
2880
2881QualType ASTContext::getObjCObjectType(QualType BaseType,
2882                                       ObjCProtocolDecl * const *Protocols,
2883                                       unsigned NumProtocols) const {
2884  // If the base type is an interface and there aren't any protocols
2885  // to add, then the interface type will do just fine.
2886  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2887    return BaseType;
2888
2889  // Look in the folding set for an existing type.
2890  llvm::FoldingSetNodeID ID;
2891  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2892  void *InsertPos = 0;
2893  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2894    return QualType(QT, 0);
2895
2896  // Build the canonical type, which has the canonical base type and
2897  // a sorted-and-uniqued list of protocols.
2898  QualType Canonical;
2899  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2900  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2901    if (!ProtocolsSorted) {
2902      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2903                                                     Protocols + NumProtocols);
2904      unsigned UniqueCount = NumProtocols;
2905
2906      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2907      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2908                                    &Sorted[0], UniqueCount);
2909    } else {
2910      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2911                                    Protocols, NumProtocols);
2912    }
2913
2914    // Regenerate InsertPos.
2915    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2916  }
2917
2918  unsigned Size = sizeof(ObjCObjectTypeImpl);
2919  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2920  void *Mem = Allocate(Size, TypeAlignment);
2921  ObjCObjectTypeImpl *T =
2922    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2923
2924  Types.push_back(T);
2925  ObjCObjectTypes.InsertNode(T, InsertPos);
2926  return QualType(T, 0);
2927}
2928
2929/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2930/// the given object type.
2931QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2932  llvm::FoldingSetNodeID ID;
2933  ObjCObjectPointerType::Profile(ID, ObjectT);
2934
2935  void *InsertPos = 0;
2936  if (ObjCObjectPointerType *QT =
2937              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2938    return QualType(QT, 0);
2939
2940  // Find the canonical object type.
2941  QualType Canonical;
2942  if (!ObjectT.isCanonical()) {
2943    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2944
2945    // Regenerate InsertPos.
2946    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2947  }
2948
2949  // No match.
2950  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2951  ObjCObjectPointerType *QType =
2952    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2953
2954  Types.push_back(QType);
2955  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2956  return QualType(QType, 0);
2957}
2958
2959/// getObjCInterfaceType - Return the unique reference to the type for the
2960/// specified ObjC interface decl. The list of protocols is optional.
2961QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2962                                          ObjCInterfaceDecl *PrevDecl) const {
2963  if (Decl->TypeForDecl)
2964    return QualType(Decl->TypeForDecl, 0);
2965
2966  if (PrevDecl) {
2967    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
2968    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2969    return QualType(PrevDecl->TypeForDecl, 0);
2970  }
2971
2972  // Prefer the definition, if there is one.
2973  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
2974    Decl = Def;
2975
2976  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2977  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2978  Decl->TypeForDecl = T;
2979  Types.push_back(T);
2980  return QualType(T, 0);
2981}
2982
2983/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2984/// TypeOfExprType AST's (since expression's are never shared). For example,
2985/// multiple declarations that refer to "typeof(x)" all contain different
2986/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2987/// on canonical type's (which are always unique).
2988QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2989  TypeOfExprType *toe;
2990  if (tofExpr->isTypeDependent()) {
2991    llvm::FoldingSetNodeID ID;
2992    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2993
2994    void *InsertPos = 0;
2995    DependentTypeOfExprType *Canon
2996      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2997    if (Canon) {
2998      // We already have a "canonical" version of an identical, dependent
2999      // typeof(expr) type. Use that as our canonical type.
3000      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3001                                          QualType((TypeOfExprType*)Canon, 0));
3002    } else {
3003      // Build a new, canonical typeof(expr) type.
3004      Canon
3005        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3006      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3007      toe = Canon;
3008    }
3009  } else {
3010    QualType Canonical = getCanonicalType(tofExpr->getType());
3011    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3012  }
3013  Types.push_back(toe);
3014  return QualType(toe, 0);
3015}
3016
3017/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3018/// TypeOfType AST's. The only motivation to unique these nodes would be
3019/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3020/// an issue. This doesn't effect the type checker, since it operates
3021/// on canonical type's (which are always unique).
3022QualType ASTContext::getTypeOfType(QualType tofType) const {
3023  QualType Canonical = getCanonicalType(tofType);
3024  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3025  Types.push_back(tot);
3026  return QualType(tot, 0);
3027}
3028
3029
3030/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3031/// DecltypeType AST's. The only motivation to unique these nodes would be
3032/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3033/// an issue. This doesn't effect the type checker, since it operates
3034/// on canonical types (which are always unique).
3035QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3036  DecltypeType *dt;
3037
3038  // C++0x [temp.type]p2:
3039  //   If an expression e involves a template parameter, decltype(e) denotes a
3040  //   unique dependent type. Two such decltype-specifiers refer to the same
3041  //   type only if their expressions are equivalent (14.5.6.1).
3042  if (e->isInstantiationDependent()) {
3043    llvm::FoldingSetNodeID ID;
3044    DependentDecltypeType::Profile(ID, *this, e);
3045
3046    void *InsertPos = 0;
3047    DependentDecltypeType *Canon
3048      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3049    if (Canon) {
3050      // We already have a "canonical" version of an equivalent, dependent
3051      // decltype type. Use that as our canonical type.
3052      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
3053                                       QualType((DecltypeType*)Canon, 0));
3054    } else {
3055      // Build a new, canonical typeof(expr) type.
3056      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3057      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3058      dt = Canon;
3059    }
3060  } else {
3061    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3062                                      getCanonicalType(UnderlyingType));
3063  }
3064  Types.push_back(dt);
3065  return QualType(dt, 0);
3066}
3067
3068/// getUnaryTransformationType - We don't unique these, since the memory
3069/// savings are minimal and these are rare.
3070QualType ASTContext::getUnaryTransformType(QualType BaseType,
3071                                           QualType UnderlyingType,
3072                                           UnaryTransformType::UTTKind Kind)
3073    const {
3074  UnaryTransformType *Ty =
3075    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3076                                                   Kind,
3077                                 UnderlyingType->isDependentType() ?
3078                                 QualType() : getCanonicalType(UnderlyingType));
3079  Types.push_back(Ty);
3080  return QualType(Ty, 0);
3081}
3082
3083/// getAutoType - We only unique auto types after they've been deduced.
3084QualType ASTContext::getAutoType(QualType DeducedType) const {
3085  void *InsertPos = 0;
3086  if (!DeducedType.isNull()) {
3087    // Look in the folding set for an existing type.
3088    llvm::FoldingSetNodeID ID;
3089    AutoType::Profile(ID, DeducedType);
3090    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3091      return QualType(AT, 0);
3092  }
3093
3094  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3095  Types.push_back(AT);
3096  if (InsertPos)
3097    AutoTypes.InsertNode(AT, InsertPos);
3098  return QualType(AT, 0);
3099}
3100
3101/// getAtomicType - Return the uniqued reference to the atomic type for
3102/// the given value type.
3103QualType ASTContext::getAtomicType(QualType T) const {
3104  // Unique pointers, to guarantee there is only one pointer of a particular
3105  // structure.
3106  llvm::FoldingSetNodeID ID;
3107  AtomicType::Profile(ID, T);
3108
3109  void *InsertPos = 0;
3110  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3111    return QualType(AT, 0);
3112
3113  // If the atomic value type isn't canonical, this won't be a canonical type
3114  // either, so fill in the canonical type field.
3115  QualType Canonical;
3116  if (!T.isCanonical()) {
3117    Canonical = getAtomicType(getCanonicalType(T));
3118
3119    // Get the new insert position for the node we care about.
3120    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3121    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3122  }
3123  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3124  Types.push_back(New);
3125  AtomicTypes.InsertNode(New, InsertPos);
3126  return QualType(New, 0);
3127}
3128
3129/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3130QualType ASTContext::getAutoDeductType() const {
3131  if (AutoDeductTy.isNull())
3132    AutoDeductTy = getAutoType(QualType());
3133  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3134  return AutoDeductTy;
3135}
3136
3137/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3138QualType ASTContext::getAutoRRefDeductType() const {
3139  if (AutoRRefDeductTy.isNull())
3140    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3141  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3142  return AutoRRefDeductTy;
3143}
3144
3145/// getTagDeclType - Return the unique reference to the type for the
3146/// specified TagDecl (struct/union/class/enum) decl.
3147QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3148  assert (Decl);
3149  // FIXME: What is the design on getTagDeclType when it requires casting
3150  // away const?  mutable?
3151  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3152}
3153
3154/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3155/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3156/// needs to agree with the definition in <stddef.h>.
3157CanQualType ASTContext::getSizeType() const {
3158  return getFromTargetType(Target->getSizeType());
3159}
3160
3161/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3162CanQualType ASTContext::getIntMaxType() const {
3163  return getFromTargetType(Target->getIntMaxType());
3164}
3165
3166/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3167CanQualType ASTContext::getUIntMaxType() const {
3168  return getFromTargetType(Target->getUIntMaxType());
3169}
3170
3171/// getSignedWCharType - Return the type of "signed wchar_t".
3172/// Used when in C++, as a GCC extension.
3173QualType ASTContext::getSignedWCharType() const {
3174  // FIXME: derive from "Target" ?
3175  return WCharTy;
3176}
3177
3178/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3179/// Used when in C++, as a GCC extension.
3180QualType ASTContext::getUnsignedWCharType() const {
3181  // FIXME: derive from "Target" ?
3182  return UnsignedIntTy;
3183}
3184
3185/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3186/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3187QualType ASTContext::getPointerDiffType() const {
3188  return getFromTargetType(Target->getPtrDiffType(0));
3189}
3190
3191//===----------------------------------------------------------------------===//
3192//                              Type Operators
3193//===----------------------------------------------------------------------===//
3194
3195CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3196  // Push qualifiers into arrays, and then discard any remaining
3197  // qualifiers.
3198  T = getCanonicalType(T);
3199  T = getVariableArrayDecayedType(T);
3200  const Type *Ty = T.getTypePtr();
3201  QualType Result;
3202  if (isa<ArrayType>(Ty)) {
3203    Result = getArrayDecayedType(QualType(Ty,0));
3204  } else if (isa<FunctionType>(Ty)) {
3205    Result = getPointerType(QualType(Ty, 0));
3206  } else {
3207    Result = QualType(Ty, 0);
3208  }
3209
3210  return CanQualType::CreateUnsafe(Result);
3211}
3212
3213QualType ASTContext::getUnqualifiedArrayType(QualType type,
3214                                             Qualifiers &quals) {
3215  SplitQualType splitType = type.getSplitUnqualifiedType();
3216
3217  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3218  // the unqualified desugared type and then drops it on the floor.
3219  // We then have to strip that sugar back off with
3220  // getUnqualifiedDesugaredType(), which is silly.
3221  const ArrayType *AT =
3222    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3223
3224  // If we don't have an array, just use the results in splitType.
3225  if (!AT) {
3226    quals = splitType.Quals;
3227    return QualType(splitType.Ty, 0);
3228  }
3229
3230  // Otherwise, recurse on the array's element type.
3231  QualType elementType = AT->getElementType();
3232  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3233
3234  // If that didn't change the element type, AT has no qualifiers, so we
3235  // can just use the results in splitType.
3236  if (elementType == unqualElementType) {
3237    assert(quals.empty()); // from the recursive call
3238    quals = splitType.Quals;
3239    return QualType(splitType.Ty, 0);
3240  }
3241
3242  // Otherwise, add in the qualifiers from the outermost type, then
3243  // build the type back up.
3244  quals.addConsistentQualifiers(splitType.Quals);
3245
3246  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3247    return getConstantArrayType(unqualElementType, CAT->getSize(),
3248                                CAT->getSizeModifier(), 0);
3249  }
3250
3251  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3252    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3253  }
3254
3255  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3256    return getVariableArrayType(unqualElementType,
3257                                VAT->getSizeExpr(),
3258                                VAT->getSizeModifier(),
3259                                VAT->getIndexTypeCVRQualifiers(),
3260                                VAT->getBracketsRange());
3261  }
3262
3263  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3264  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3265                                    DSAT->getSizeModifier(), 0,
3266                                    SourceRange());
3267}
3268
3269/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3270/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3271/// they point to and return true. If T1 and T2 aren't pointer types
3272/// or pointer-to-member types, or if they are not similar at this
3273/// level, returns false and leaves T1 and T2 unchanged. Top-level
3274/// qualifiers on T1 and T2 are ignored. This function will typically
3275/// be called in a loop that successively "unwraps" pointer and
3276/// pointer-to-member types to compare them at each level.
3277bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3278  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3279                    *T2PtrType = T2->getAs<PointerType>();
3280  if (T1PtrType && T2PtrType) {
3281    T1 = T1PtrType->getPointeeType();
3282    T2 = T2PtrType->getPointeeType();
3283    return true;
3284  }
3285
3286  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3287                          *T2MPType = T2->getAs<MemberPointerType>();
3288  if (T1MPType && T2MPType &&
3289      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3290                             QualType(T2MPType->getClass(), 0))) {
3291    T1 = T1MPType->getPointeeType();
3292    T2 = T2MPType->getPointeeType();
3293    return true;
3294  }
3295
3296  if (getLangOpts().ObjC1) {
3297    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3298                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3299    if (T1OPType && T2OPType) {
3300      T1 = T1OPType->getPointeeType();
3301      T2 = T2OPType->getPointeeType();
3302      return true;
3303    }
3304  }
3305
3306  // FIXME: Block pointers, too?
3307
3308  return false;
3309}
3310
3311DeclarationNameInfo
3312ASTContext::getNameForTemplate(TemplateName Name,
3313                               SourceLocation NameLoc) const {
3314  switch (Name.getKind()) {
3315  case TemplateName::QualifiedTemplate:
3316  case TemplateName::Template:
3317    // DNInfo work in progress: CHECKME: what about DNLoc?
3318    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3319                               NameLoc);
3320
3321  case TemplateName::OverloadedTemplate: {
3322    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3323    // DNInfo work in progress: CHECKME: what about DNLoc?
3324    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3325  }
3326
3327  case TemplateName::DependentTemplate: {
3328    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3329    DeclarationName DName;
3330    if (DTN->isIdentifier()) {
3331      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3332      return DeclarationNameInfo(DName, NameLoc);
3333    } else {
3334      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3335      // DNInfo work in progress: FIXME: source locations?
3336      DeclarationNameLoc DNLoc;
3337      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3338      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3339      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3340    }
3341  }
3342
3343  case TemplateName::SubstTemplateTemplateParm: {
3344    SubstTemplateTemplateParmStorage *subst
3345      = Name.getAsSubstTemplateTemplateParm();
3346    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3347                               NameLoc);
3348  }
3349
3350  case TemplateName::SubstTemplateTemplateParmPack: {
3351    SubstTemplateTemplateParmPackStorage *subst
3352      = Name.getAsSubstTemplateTemplateParmPack();
3353    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3354                               NameLoc);
3355  }
3356  }
3357
3358  llvm_unreachable("bad template name kind!");
3359}
3360
3361TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3362  switch (Name.getKind()) {
3363  case TemplateName::QualifiedTemplate:
3364  case TemplateName::Template: {
3365    TemplateDecl *Template = Name.getAsTemplateDecl();
3366    if (TemplateTemplateParmDecl *TTP
3367          = dyn_cast<TemplateTemplateParmDecl>(Template))
3368      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3369
3370    // The canonical template name is the canonical template declaration.
3371    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3372  }
3373
3374  case TemplateName::OverloadedTemplate:
3375    llvm_unreachable("cannot canonicalize overloaded template");
3376
3377  case TemplateName::DependentTemplate: {
3378    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3379    assert(DTN && "Non-dependent template names must refer to template decls.");
3380    return DTN->CanonicalTemplateName;
3381  }
3382
3383  case TemplateName::SubstTemplateTemplateParm: {
3384    SubstTemplateTemplateParmStorage *subst
3385      = Name.getAsSubstTemplateTemplateParm();
3386    return getCanonicalTemplateName(subst->getReplacement());
3387  }
3388
3389  case TemplateName::SubstTemplateTemplateParmPack: {
3390    SubstTemplateTemplateParmPackStorage *subst
3391                                  = Name.getAsSubstTemplateTemplateParmPack();
3392    TemplateTemplateParmDecl *canonParameter
3393      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3394    TemplateArgument canonArgPack
3395      = getCanonicalTemplateArgument(subst->getArgumentPack());
3396    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3397  }
3398  }
3399
3400  llvm_unreachable("bad template name!");
3401}
3402
3403bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3404  X = getCanonicalTemplateName(X);
3405  Y = getCanonicalTemplateName(Y);
3406  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3407}
3408
3409TemplateArgument
3410ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3411  switch (Arg.getKind()) {
3412    case TemplateArgument::Null:
3413      return Arg;
3414
3415    case TemplateArgument::Expression:
3416      return Arg;
3417
3418    case TemplateArgument::Declaration: {
3419      if (Decl *D = Arg.getAsDecl())
3420          return TemplateArgument(D->getCanonicalDecl());
3421      return TemplateArgument((Decl*)0);
3422    }
3423
3424    case TemplateArgument::Template:
3425      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3426
3427    case TemplateArgument::TemplateExpansion:
3428      return TemplateArgument(getCanonicalTemplateName(
3429                                         Arg.getAsTemplateOrTemplatePattern()),
3430                              Arg.getNumTemplateExpansions());
3431
3432    case TemplateArgument::Integral:
3433      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3434
3435    case TemplateArgument::Type:
3436      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3437
3438    case TemplateArgument::Pack: {
3439      if (Arg.pack_size() == 0)
3440        return Arg;
3441
3442      TemplateArgument *CanonArgs
3443        = new (*this) TemplateArgument[Arg.pack_size()];
3444      unsigned Idx = 0;
3445      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3446                                        AEnd = Arg.pack_end();
3447           A != AEnd; (void)++A, ++Idx)
3448        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3449
3450      return TemplateArgument(CanonArgs, Arg.pack_size());
3451    }
3452  }
3453
3454  // Silence GCC warning
3455  llvm_unreachable("Unhandled template argument kind");
3456}
3457
3458NestedNameSpecifier *
3459ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3460  if (!NNS)
3461    return 0;
3462
3463  switch (NNS->getKind()) {
3464  case NestedNameSpecifier::Identifier:
3465    // Canonicalize the prefix but keep the identifier the same.
3466    return NestedNameSpecifier::Create(*this,
3467                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3468                                       NNS->getAsIdentifier());
3469
3470  case NestedNameSpecifier::Namespace:
3471    // A namespace is canonical; build a nested-name-specifier with
3472    // this namespace and no prefix.
3473    return NestedNameSpecifier::Create(*this, 0,
3474                                 NNS->getAsNamespace()->getOriginalNamespace());
3475
3476  case NestedNameSpecifier::NamespaceAlias:
3477    // A namespace is canonical; build a nested-name-specifier with
3478    // this namespace and no prefix.
3479    return NestedNameSpecifier::Create(*this, 0,
3480                                    NNS->getAsNamespaceAlias()->getNamespace()
3481                                                      ->getOriginalNamespace());
3482
3483  case NestedNameSpecifier::TypeSpec:
3484  case NestedNameSpecifier::TypeSpecWithTemplate: {
3485    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3486
3487    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3488    // break it apart into its prefix and identifier, then reconsititute those
3489    // as the canonical nested-name-specifier. This is required to canonicalize
3490    // a dependent nested-name-specifier involving typedefs of dependent-name
3491    // types, e.g.,
3492    //   typedef typename T::type T1;
3493    //   typedef typename T1::type T2;
3494    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3495      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3496                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3497
3498    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3499    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3500    // first place?
3501    return NestedNameSpecifier::Create(*this, 0, false,
3502                                       const_cast<Type*>(T.getTypePtr()));
3503  }
3504
3505  case NestedNameSpecifier::Global:
3506    // The global specifier is canonical and unique.
3507    return NNS;
3508  }
3509
3510  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3511}
3512
3513
3514const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3515  // Handle the non-qualified case efficiently.
3516  if (!T.hasLocalQualifiers()) {
3517    // Handle the common positive case fast.
3518    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3519      return AT;
3520  }
3521
3522  // Handle the common negative case fast.
3523  if (!isa<ArrayType>(T.getCanonicalType()))
3524    return 0;
3525
3526  // Apply any qualifiers from the array type to the element type.  This
3527  // implements C99 6.7.3p8: "If the specification of an array type includes
3528  // any type qualifiers, the element type is so qualified, not the array type."
3529
3530  // If we get here, we either have type qualifiers on the type, or we have
3531  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3532  // we must propagate them down into the element type.
3533
3534  SplitQualType split = T.getSplitDesugaredType();
3535  Qualifiers qs = split.Quals;
3536
3537  // If we have a simple case, just return now.
3538  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3539  if (ATy == 0 || qs.empty())
3540    return ATy;
3541
3542  // Otherwise, we have an array and we have qualifiers on it.  Push the
3543  // qualifiers into the array element type and return a new array type.
3544  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3545
3546  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3547    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3548                                                CAT->getSizeModifier(),
3549                                           CAT->getIndexTypeCVRQualifiers()));
3550  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3551    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3552                                                  IAT->getSizeModifier(),
3553                                           IAT->getIndexTypeCVRQualifiers()));
3554
3555  if (const DependentSizedArrayType *DSAT
3556        = dyn_cast<DependentSizedArrayType>(ATy))
3557    return cast<ArrayType>(
3558                     getDependentSizedArrayType(NewEltTy,
3559                                                DSAT->getSizeExpr(),
3560                                                DSAT->getSizeModifier(),
3561                                              DSAT->getIndexTypeCVRQualifiers(),
3562                                                DSAT->getBracketsRange()));
3563
3564  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3565  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3566                                              VAT->getSizeExpr(),
3567                                              VAT->getSizeModifier(),
3568                                              VAT->getIndexTypeCVRQualifiers(),
3569                                              VAT->getBracketsRange()));
3570}
3571
3572QualType ASTContext::getAdjustedParameterType(QualType T) const {
3573  // C99 6.7.5.3p7:
3574  //   A declaration of a parameter as "array of type" shall be
3575  //   adjusted to "qualified pointer to type", where the type
3576  //   qualifiers (if any) are those specified within the [ and ] of
3577  //   the array type derivation.
3578  if (T->isArrayType())
3579    return getArrayDecayedType(T);
3580
3581  // C99 6.7.5.3p8:
3582  //   A declaration of a parameter as "function returning type"
3583  //   shall be adjusted to "pointer to function returning type", as
3584  //   in 6.3.2.1.
3585  if (T->isFunctionType())
3586    return getPointerType(T);
3587
3588  return T;
3589}
3590
3591QualType ASTContext::getSignatureParameterType(QualType T) const {
3592  T = getVariableArrayDecayedType(T);
3593  T = getAdjustedParameterType(T);
3594  return T.getUnqualifiedType();
3595}
3596
3597/// getArrayDecayedType - Return the properly qualified result of decaying the
3598/// specified array type to a pointer.  This operation is non-trivial when
3599/// handling typedefs etc.  The canonical type of "T" must be an array type,
3600/// this returns a pointer to a properly qualified element of the array.
3601///
3602/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3603QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3604  // Get the element type with 'getAsArrayType' so that we don't lose any
3605  // typedefs in the element type of the array.  This also handles propagation
3606  // of type qualifiers from the array type into the element type if present
3607  // (C99 6.7.3p8).
3608  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3609  assert(PrettyArrayType && "Not an array type!");
3610
3611  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3612
3613  // int x[restrict 4] ->  int *restrict
3614  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3615}
3616
3617QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3618  return getBaseElementType(array->getElementType());
3619}
3620
3621QualType ASTContext::getBaseElementType(QualType type) const {
3622  Qualifiers qs;
3623  while (true) {
3624    SplitQualType split = type.getSplitDesugaredType();
3625    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3626    if (!array) break;
3627
3628    type = array->getElementType();
3629    qs.addConsistentQualifiers(split.Quals);
3630  }
3631
3632  return getQualifiedType(type, qs);
3633}
3634
3635/// getConstantArrayElementCount - Returns number of constant array elements.
3636uint64_t
3637ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3638  uint64_t ElementCount = 1;
3639  do {
3640    ElementCount *= CA->getSize().getZExtValue();
3641    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3642  } while (CA);
3643  return ElementCount;
3644}
3645
3646/// getFloatingRank - Return a relative rank for floating point types.
3647/// This routine will assert if passed a built-in type that isn't a float.
3648static FloatingRank getFloatingRank(QualType T) {
3649  if (const ComplexType *CT = T->getAs<ComplexType>())
3650    return getFloatingRank(CT->getElementType());
3651
3652  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3653  switch (T->getAs<BuiltinType>()->getKind()) {
3654  default: llvm_unreachable("getFloatingRank(): not a floating type");
3655  case BuiltinType::Half:       return HalfRank;
3656  case BuiltinType::Float:      return FloatRank;
3657  case BuiltinType::Double:     return DoubleRank;
3658  case BuiltinType::LongDouble: return LongDoubleRank;
3659  }
3660}
3661
3662/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3663/// point or a complex type (based on typeDomain/typeSize).
3664/// 'typeDomain' is a real floating point or complex type.
3665/// 'typeSize' is a real floating point or complex type.
3666QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3667                                                       QualType Domain) const {
3668  FloatingRank EltRank = getFloatingRank(Size);
3669  if (Domain->isComplexType()) {
3670    switch (EltRank) {
3671    case HalfRank: llvm_unreachable("Complex half is not supported");
3672    case FloatRank:      return FloatComplexTy;
3673    case DoubleRank:     return DoubleComplexTy;
3674    case LongDoubleRank: return LongDoubleComplexTy;
3675    }
3676  }
3677
3678  assert(Domain->isRealFloatingType() && "Unknown domain!");
3679  switch (EltRank) {
3680  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3681  case FloatRank:      return FloatTy;
3682  case DoubleRank:     return DoubleTy;
3683  case LongDoubleRank: return LongDoubleTy;
3684  }
3685  llvm_unreachable("getFloatingRank(): illegal value for rank");
3686}
3687
3688/// getFloatingTypeOrder - Compare the rank of the two specified floating
3689/// point types, ignoring the domain of the type (i.e. 'double' ==
3690/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3691/// LHS < RHS, return -1.
3692int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3693  FloatingRank LHSR = getFloatingRank(LHS);
3694  FloatingRank RHSR = getFloatingRank(RHS);
3695
3696  if (LHSR == RHSR)
3697    return 0;
3698  if (LHSR > RHSR)
3699    return 1;
3700  return -1;
3701}
3702
3703/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3704/// routine will assert if passed a built-in type that isn't an integer or enum,
3705/// or if it is not canonicalized.
3706unsigned ASTContext::getIntegerRank(const Type *T) const {
3707  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3708
3709  switch (cast<BuiltinType>(T)->getKind()) {
3710  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3711  case BuiltinType::Bool:
3712    return 1 + (getIntWidth(BoolTy) << 3);
3713  case BuiltinType::Char_S:
3714  case BuiltinType::Char_U:
3715  case BuiltinType::SChar:
3716  case BuiltinType::UChar:
3717    return 2 + (getIntWidth(CharTy) << 3);
3718  case BuiltinType::Short:
3719  case BuiltinType::UShort:
3720    return 3 + (getIntWidth(ShortTy) << 3);
3721  case BuiltinType::Int:
3722  case BuiltinType::UInt:
3723    return 4 + (getIntWidth(IntTy) << 3);
3724  case BuiltinType::Long:
3725  case BuiltinType::ULong:
3726    return 5 + (getIntWidth(LongTy) << 3);
3727  case BuiltinType::LongLong:
3728  case BuiltinType::ULongLong:
3729    return 6 + (getIntWidth(LongLongTy) << 3);
3730  case BuiltinType::Int128:
3731  case BuiltinType::UInt128:
3732    return 7 + (getIntWidth(Int128Ty) << 3);
3733  }
3734}
3735
3736/// \brief Whether this is a promotable bitfield reference according
3737/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3738///
3739/// \returns the type this bit-field will promote to, or NULL if no
3740/// promotion occurs.
3741QualType ASTContext::isPromotableBitField(Expr *E) const {
3742  if (E->isTypeDependent() || E->isValueDependent())
3743    return QualType();
3744
3745  FieldDecl *Field = E->getBitField();
3746  if (!Field)
3747    return QualType();
3748
3749  QualType FT = Field->getType();
3750
3751  uint64_t BitWidth = Field->getBitWidthValue(*this);
3752  uint64_t IntSize = getTypeSize(IntTy);
3753  // GCC extension compatibility: if the bit-field size is less than or equal
3754  // to the size of int, it gets promoted no matter what its type is.
3755  // For instance, unsigned long bf : 4 gets promoted to signed int.
3756  if (BitWidth < IntSize)
3757    return IntTy;
3758
3759  if (BitWidth == IntSize)
3760    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3761
3762  // Types bigger than int are not subject to promotions, and therefore act
3763  // like the base type.
3764  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3765  // is ridiculous.
3766  return QualType();
3767}
3768
3769/// getPromotedIntegerType - Returns the type that Promotable will
3770/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3771/// integer type.
3772QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3773  assert(!Promotable.isNull());
3774  assert(Promotable->isPromotableIntegerType());
3775  if (const EnumType *ET = Promotable->getAs<EnumType>())
3776    return ET->getDecl()->getPromotionType();
3777
3778  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3779    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3780    // (3.9.1) can be converted to a prvalue of the first of the following
3781    // types that can represent all the values of its underlying type:
3782    // int, unsigned int, long int, unsigned long int, long long int, or
3783    // unsigned long long int [...]
3784    // FIXME: Is there some better way to compute this?
3785    if (BT->getKind() == BuiltinType::WChar_S ||
3786        BT->getKind() == BuiltinType::WChar_U ||
3787        BT->getKind() == BuiltinType::Char16 ||
3788        BT->getKind() == BuiltinType::Char32) {
3789      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3790      uint64_t FromSize = getTypeSize(BT);
3791      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3792                                  LongLongTy, UnsignedLongLongTy };
3793      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3794        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3795        if (FromSize < ToSize ||
3796            (FromSize == ToSize &&
3797             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3798          return PromoteTypes[Idx];
3799      }
3800      llvm_unreachable("char type should fit into long long");
3801    }
3802  }
3803
3804  // At this point, we should have a signed or unsigned integer type.
3805  if (Promotable->isSignedIntegerType())
3806    return IntTy;
3807  uint64_t PromotableSize = getTypeSize(Promotable);
3808  uint64_t IntSize = getTypeSize(IntTy);
3809  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3810  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3811}
3812
3813/// \brief Recurses in pointer/array types until it finds an objc retainable
3814/// type and returns its ownership.
3815Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3816  while (!T.isNull()) {
3817    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3818      return T.getObjCLifetime();
3819    if (T->isArrayType())
3820      T = getBaseElementType(T);
3821    else if (const PointerType *PT = T->getAs<PointerType>())
3822      T = PT->getPointeeType();
3823    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3824      T = RT->getPointeeType();
3825    else
3826      break;
3827  }
3828
3829  return Qualifiers::OCL_None;
3830}
3831
3832/// getIntegerTypeOrder - Returns the highest ranked integer type:
3833/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3834/// LHS < RHS, return -1.
3835int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3836  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3837  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3838  if (LHSC == RHSC) return 0;
3839
3840  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3841  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3842
3843  unsigned LHSRank = getIntegerRank(LHSC);
3844  unsigned RHSRank = getIntegerRank(RHSC);
3845
3846  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3847    if (LHSRank == RHSRank) return 0;
3848    return LHSRank > RHSRank ? 1 : -1;
3849  }
3850
3851  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3852  if (LHSUnsigned) {
3853    // If the unsigned [LHS] type is larger, return it.
3854    if (LHSRank >= RHSRank)
3855      return 1;
3856
3857    // If the signed type can represent all values of the unsigned type, it
3858    // wins.  Because we are dealing with 2's complement and types that are
3859    // powers of two larger than each other, this is always safe.
3860    return -1;
3861  }
3862
3863  // If the unsigned [RHS] type is larger, return it.
3864  if (RHSRank >= LHSRank)
3865    return -1;
3866
3867  // If the signed type can represent all values of the unsigned type, it
3868  // wins.  Because we are dealing with 2's complement and types that are
3869  // powers of two larger than each other, this is always safe.
3870  return 1;
3871}
3872
3873static RecordDecl *
3874CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3875                 DeclContext *DC, IdentifierInfo *Id) {
3876  SourceLocation Loc;
3877  if (Ctx.getLangOpts().CPlusPlus)
3878    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3879  else
3880    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3881}
3882
3883// getCFConstantStringType - Return the type used for constant CFStrings.
3884QualType ASTContext::getCFConstantStringType() const {
3885  if (!CFConstantStringTypeDecl) {
3886    CFConstantStringTypeDecl =
3887      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3888                       &Idents.get("NSConstantString"));
3889    CFConstantStringTypeDecl->startDefinition();
3890
3891    QualType FieldTypes[4];
3892
3893    // const int *isa;
3894    FieldTypes[0] = getPointerType(IntTy.withConst());
3895    // int flags;
3896    FieldTypes[1] = IntTy;
3897    // const char *str;
3898    FieldTypes[2] = getPointerType(CharTy.withConst());
3899    // long length;
3900    FieldTypes[3] = LongTy;
3901
3902    // Create fields
3903    for (unsigned i = 0; i < 4; ++i) {
3904      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3905                                           SourceLocation(),
3906                                           SourceLocation(), 0,
3907                                           FieldTypes[i], /*TInfo=*/0,
3908                                           /*BitWidth=*/0,
3909                                           /*Mutable=*/false,
3910                                           ICIS_NoInit);
3911      Field->setAccess(AS_public);
3912      CFConstantStringTypeDecl->addDecl(Field);
3913    }
3914
3915    CFConstantStringTypeDecl->completeDefinition();
3916  }
3917
3918  return getTagDeclType(CFConstantStringTypeDecl);
3919}
3920
3921void ASTContext::setCFConstantStringType(QualType T) {
3922  const RecordType *Rec = T->getAs<RecordType>();
3923  assert(Rec && "Invalid CFConstantStringType");
3924  CFConstantStringTypeDecl = Rec->getDecl();
3925}
3926
3927QualType ASTContext::getBlockDescriptorType() const {
3928  if (BlockDescriptorType)
3929    return getTagDeclType(BlockDescriptorType);
3930
3931  RecordDecl *T;
3932  // FIXME: Needs the FlagAppleBlock bit.
3933  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3934                       &Idents.get("__block_descriptor"));
3935  T->startDefinition();
3936
3937  QualType FieldTypes[] = {
3938    UnsignedLongTy,
3939    UnsignedLongTy,
3940  };
3941
3942  const char *FieldNames[] = {
3943    "reserved",
3944    "Size"
3945  };
3946
3947  for (size_t i = 0; i < 2; ++i) {
3948    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3949                                         SourceLocation(),
3950                                         &Idents.get(FieldNames[i]),
3951                                         FieldTypes[i], /*TInfo=*/0,
3952                                         /*BitWidth=*/0,
3953                                         /*Mutable=*/false,
3954                                         ICIS_NoInit);
3955    Field->setAccess(AS_public);
3956    T->addDecl(Field);
3957  }
3958
3959  T->completeDefinition();
3960
3961  BlockDescriptorType = T;
3962
3963  return getTagDeclType(BlockDescriptorType);
3964}
3965
3966QualType ASTContext::getBlockDescriptorExtendedType() const {
3967  if (BlockDescriptorExtendedType)
3968    return getTagDeclType(BlockDescriptorExtendedType);
3969
3970  RecordDecl *T;
3971  // FIXME: Needs the FlagAppleBlock bit.
3972  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3973                       &Idents.get("__block_descriptor_withcopydispose"));
3974  T->startDefinition();
3975
3976  QualType FieldTypes[] = {
3977    UnsignedLongTy,
3978    UnsignedLongTy,
3979    getPointerType(VoidPtrTy),
3980    getPointerType(VoidPtrTy)
3981  };
3982
3983  const char *FieldNames[] = {
3984    "reserved",
3985    "Size",
3986    "CopyFuncPtr",
3987    "DestroyFuncPtr"
3988  };
3989
3990  for (size_t i = 0; i < 4; ++i) {
3991    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3992                                         SourceLocation(),
3993                                         &Idents.get(FieldNames[i]),
3994                                         FieldTypes[i], /*TInfo=*/0,
3995                                         /*BitWidth=*/0,
3996                                         /*Mutable=*/false,
3997                                         ICIS_NoInit);
3998    Field->setAccess(AS_public);
3999    T->addDecl(Field);
4000  }
4001
4002  T->completeDefinition();
4003
4004  BlockDescriptorExtendedType = T;
4005
4006  return getTagDeclType(BlockDescriptorExtendedType);
4007}
4008
4009bool ASTContext::BlockRequiresCopying(QualType Ty) const {
4010  if (Ty->isObjCRetainableType())
4011    return true;
4012  if (getLangOpts().CPlusPlus) {
4013    if (const RecordType *RT = Ty->getAs<RecordType>()) {
4014      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4015      return RD->hasConstCopyConstructor();
4016
4017    }
4018  }
4019  return false;
4020}
4021
4022QualType
4023ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
4024  //  type = struct __Block_byref_1_X {
4025  //    void *__isa;
4026  //    struct __Block_byref_1_X *__forwarding;
4027  //    unsigned int __flags;
4028  //    unsigned int __size;
4029  //    void *__copy_helper;            // as needed
4030  //    void *__destroy_help            // as needed
4031  //    int X;
4032  //  } *
4033
4034  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
4035
4036  // FIXME: Move up
4037  SmallString<36> Name;
4038  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
4039                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
4040  RecordDecl *T;
4041  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
4042  T->startDefinition();
4043  QualType Int32Ty = IntTy;
4044  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
4045  QualType FieldTypes[] = {
4046    getPointerType(VoidPtrTy),
4047    getPointerType(getTagDeclType(T)),
4048    Int32Ty,
4049    Int32Ty,
4050    getPointerType(VoidPtrTy),
4051    getPointerType(VoidPtrTy),
4052    Ty
4053  };
4054
4055  StringRef FieldNames[] = {
4056    "__isa",
4057    "__forwarding",
4058    "__flags",
4059    "__size",
4060    "__copy_helper",
4061    "__destroy_helper",
4062    DeclName,
4063  };
4064
4065  for (size_t i = 0; i < 7; ++i) {
4066    if (!HasCopyAndDispose && i >=4 && i <= 5)
4067      continue;
4068    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4069                                         SourceLocation(),
4070                                         &Idents.get(FieldNames[i]),
4071                                         FieldTypes[i], /*TInfo=*/0,
4072                                         /*BitWidth=*/0, /*Mutable=*/false,
4073                                         ICIS_NoInit);
4074    Field->setAccess(AS_public);
4075    T->addDecl(Field);
4076  }
4077
4078  T->completeDefinition();
4079
4080  return getPointerType(getTagDeclType(T));
4081}
4082
4083TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4084  if (!ObjCInstanceTypeDecl)
4085    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4086                                               getTranslationUnitDecl(),
4087                                               SourceLocation(),
4088                                               SourceLocation(),
4089                                               &Idents.get("instancetype"),
4090                                     getTrivialTypeSourceInfo(getObjCIdType()));
4091  return ObjCInstanceTypeDecl;
4092}
4093
4094// This returns true if a type has been typedefed to BOOL:
4095// typedef <type> BOOL;
4096static bool isTypeTypedefedAsBOOL(QualType T) {
4097  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4098    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4099      return II->isStr("BOOL");
4100
4101  return false;
4102}
4103
4104/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4105/// purpose.
4106CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4107  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4108    return CharUnits::Zero();
4109
4110  CharUnits sz = getTypeSizeInChars(type);
4111
4112  // Make all integer and enum types at least as large as an int
4113  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4114    sz = std::max(sz, getTypeSizeInChars(IntTy));
4115  // Treat arrays as pointers, since that's how they're passed in.
4116  else if (type->isArrayType())
4117    sz = getTypeSizeInChars(VoidPtrTy);
4118  return sz;
4119}
4120
4121static inline
4122std::string charUnitsToString(const CharUnits &CU) {
4123  return llvm::itostr(CU.getQuantity());
4124}
4125
4126/// getObjCEncodingForBlock - Return the encoded type for this block
4127/// declaration.
4128std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4129  std::string S;
4130
4131  const BlockDecl *Decl = Expr->getBlockDecl();
4132  QualType BlockTy =
4133      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4134  // Encode result type.
4135  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4136  // Compute size of all parameters.
4137  // Start with computing size of a pointer in number of bytes.
4138  // FIXME: There might(should) be a better way of doing this computation!
4139  SourceLocation Loc;
4140  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4141  CharUnits ParmOffset = PtrSize;
4142  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4143       E = Decl->param_end(); PI != E; ++PI) {
4144    QualType PType = (*PI)->getType();
4145    CharUnits sz = getObjCEncodingTypeSize(PType);
4146    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4147    ParmOffset += sz;
4148  }
4149  // Size of the argument frame
4150  S += charUnitsToString(ParmOffset);
4151  // Block pointer and offset.
4152  S += "@?0";
4153
4154  // Argument types.
4155  ParmOffset = PtrSize;
4156  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4157       Decl->param_end(); PI != E; ++PI) {
4158    ParmVarDecl *PVDecl = *PI;
4159    QualType PType = PVDecl->getOriginalType();
4160    if (const ArrayType *AT =
4161          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4162      // Use array's original type only if it has known number of
4163      // elements.
4164      if (!isa<ConstantArrayType>(AT))
4165        PType = PVDecl->getType();
4166    } else if (PType->isFunctionType())
4167      PType = PVDecl->getType();
4168    getObjCEncodingForType(PType, S);
4169    S += charUnitsToString(ParmOffset);
4170    ParmOffset += getObjCEncodingTypeSize(PType);
4171  }
4172
4173  return S;
4174}
4175
4176bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4177                                                std::string& S) {
4178  // Encode result type.
4179  getObjCEncodingForType(Decl->getResultType(), S);
4180  CharUnits ParmOffset;
4181  // Compute size of all parameters.
4182  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4183       E = Decl->param_end(); PI != E; ++PI) {
4184    QualType PType = (*PI)->getType();
4185    CharUnits sz = getObjCEncodingTypeSize(PType);
4186    if (sz.isZero())
4187      return true;
4188
4189    assert (sz.isPositive() &&
4190        "getObjCEncodingForFunctionDecl - Incomplete param type");
4191    ParmOffset += sz;
4192  }
4193  S += charUnitsToString(ParmOffset);
4194  ParmOffset = CharUnits::Zero();
4195
4196  // Argument types.
4197  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4198       E = Decl->param_end(); PI != E; ++PI) {
4199    ParmVarDecl *PVDecl = *PI;
4200    QualType PType = PVDecl->getOriginalType();
4201    if (const ArrayType *AT =
4202          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4203      // Use array's original type only if it has known number of
4204      // elements.
4205      if (!isa<ConstantArrayType>(AT))
4206        PType = PVDecl->getType();
4207    } else if (PType->isFunctionType())
4208      PType = PVDecl->getType();
4209    getObjCEncodingForType(PType, S);
4210    S += charUnitsToString(ParmOffset);
4211    ParmOffset += getObjCEncodingTypeSize(PType);
4212  }
4213
4214  return false;
4215}
4216
4217/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4218/// method parameter or return type. If Extended, include class names and
4219/// block object types.
4220void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4221                                                   QualType T, std::string& S,
4222                                                   bool Extended) const {
4223  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4224  getObjCEncodingForTypeQualifier(QT, S);
4225  // Encode parameter type.
4226  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4227                             true     /*OutermostType*/,
4228                             false    /*EncodingProperty*/,
4229                             false    /*StructField*/,
4230                             Extended /*EncodeBlockParameters*/,
4231                             Extended /*EncodeClassNames*/);
4232}
4233
4234/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4235/// declaration.
4236bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4237                                              std::string& S,
4238                                              bool Extended) const {
4239  // FIXME: This is not very efficient.
4240  // Encode return type.
4241  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4242                                    Decl->getResultType(), S, Extended);
4243  // Compute size of all parameters.
4244  // Start with computing size of a pointer in number of bytes.
4245  // FIXME: There might(should) be a better way of doing this computation!
4246  SourceLocation Loc;
4247  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4248  // The first two arguments (self and _cmd) are pointers; account for
4249  // their size.
4250  CharUnits ParmOffset = 2 * PtrSize;
4251  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4252       E = Decl->sel_param_end(); PI != E; ++PI) {
4253    QualType PType = (*PI)->getType();
4254    CharUnits sz = getObjCEncodingTypeSize(PType);
4255    if (sz.isZero())
4256      return true;
4257
4258    assert (sz.isPositive() &&
4259        "getObjCEncodingForMethodDecl - Incomplete param type");
4260    ParmOffset += sz;
4261  }
4262  S += charUnitsToString(ParmOffset);
4263  S += "@0:";
4264  S += charUnitsToString(PtrSize);
4265
4266  // Argument types.
4267  ParmOffset = 2 * PtrSize;
4268  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4269       E = Decl->sel_param_end(); PI != E; ++PI) {
4270    const ParmVarDecl *PVDecl = *PI;
4271    QualType PType = PVDecl->getOriginalType();
4272    if (const ArrayType *AT =
4273          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4274      // Use array's original type only if it has known number of
4275      // elements.
4276      if (!isa<ConstantArrayType>(AT))
4277        PType = PVDecl->getType();
4278    } else if (PType->isFunctionType())
4279      PType = PVDecl->getType();
4280    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4281                                      PType, S, Extended);
4282    S += charUnitsToString(ParmOffset);
4283    ParmOffset += getObjCEncodingTypeSize(PType);
4284  }
4285
4286  return false;
4287}
4288
4289/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4290/// property declaration. If non-NULL, Container must be either an
4291/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4292/// NULL when getting encodings for protocol properties.
4293/// Property attributes are stored as a comma-delimited C string. The simple
4294/// attributes readonly and bycopy are encoded as single characters. The
4295/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4296/// encoded as single characters, followed by an identifier. Property types
4297/// are also encoded as a parametrized attribute. The characters used to encode
4298/// these attributes are defined by the following enumeration:
4299/// @code
4300/// enum PropertyAttributes {
4301/// kPropertyReadOnly = 'R',   // property is read-only.
4302/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4303/// kPropertyByref = '&',  // property is a reference to the value last assigned
4304/// kPropertyDynamic = 'D',    // property is dynamic
4305/// kPropertyGetter = 'G',     // followed by getter selector name
4306/// kPropertySetter = 'S',     // followed by setter selector name
4307/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4308/// kPropertyType = 'T'              // followed by old-style type encoding.
4309/// kPropertyWeak = 'W'              // 'weak' property
4310/// kPropertyStrong = 'P'            // property GC'able
4311/// kPropertyNonAtomic = 'N'         // property non-atomic
4312/// };
4313/// @endcode
4314void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4315                                                const Decl *Container,
4316                                                std::string& S) const {
4317  // Collect information from the property implementation decl(s).
4318  bool Dynamic = false;
4319  ObjCPropertyImplDecl *SynthesizePID = 0;
4320
4321  // FIXME: Duplicated code due to poor abstraction.
4322  if (Container) {
4323    if (const ObjCCategoryImplDecl *CID =
4324        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4325      for (ObjCCategoryImplDecl::propimpl_iterator
4326             i = CID->propimpl_begin(), e = CID->propimpl_end();
4327           i != e; ++i) {
4328        ObjCPropertyImplDecl *PID = *i;
4329        if (PID->getPropertyDecl() == PD) {
4330          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4331            Dynamic = true;
4332          } else {
4333            SynthesizePID = PID;
4334          }
4335        }
4336      }
4337    } else {
4338      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4339      for (ObjCCategoryImplDecl::propimpl_iterator
4340             i = OID->propimpl_begin(), e = OID->propimpl_end();
4341           i != e; ++i) {
4342        ObjCPropertyImplDecl *PID = *i;
4343        if (PID->getPropertyDecl() == PD) {
4344          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4345            Dynamic = true;
4346          } else {
4347            SynthesizePID = PID;
4348          }
4349        }
4350      }
4351    }
4352  }
4353
4354  // FIXME: This is not very efficient.
4355  S = "T";
4356
4357  // Encode result type.
4358  // GCC has some special rules regarding encoding of properties which
4359  // closely resembles encoding of ivars.
4360  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4361                             true /* outermost type */,
4362                             true /* encoding for property */);
4363
4364  if (PD->isReadOnly()) {
4365    S += ",R";
4366  } else {
4367    switch (PD->getSetterKind()) {
4368    case ObjCPropertyDecl::Assign: break;
4369    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4370    case ObjCPropertyDecl::Retain: S += ",&"; break;
4371    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4372    }
4373  }
4374
4375  // It really isn't clear at all what this means, since properties
4376  // are "dynamic by default".
4377  if (Dynamic)
4378    S += ",D";
4379
4380  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4381    S += ",N";
4382
4383  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4384    S += ",G";
4385    S += PD->getGetterName().getAsString();
4386  }
4387
4388  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4389    S += ",S";
4390    S += PD->getSetterName().getAsString();
4391  }
4392
4393  if (SynthesizePID) {
4394    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4395    S += ",V";
4396    S += OID->getNameAsString();
4397  }
4398
4399  // FIXME: OBJCGC: weak & strong
4400}
4401
4402/// getLegacyIntegralTypeEncoding -
4403/// Another legacy compatibility encoding: 32-bit longs are encoded as
4404/// 'l' or 'L' , but not always.  For typedefs, we need to use
4405/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4406///
4407void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4408  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4409    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4410      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4411        PointeeTy = UnsignedIntTy;
4412      else
4413        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4414          PointeeTy = IntTy;
4415    }
4416  }
4417}
4418
4419void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4420                                        const FieldDecl *Field) const {
4421  // We follow the behavior of gcc, expanding structures which are
4422  // directly pointed to, and expanding embedded structures. Note that
4423  // these rules are sufficient to prevent recursive encoding of the
4424  // same type.
4425  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4426                             true /* outermost type */);
4427}
4428
4429static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4430    switch (T->getAs<BuiltinType>()->getKind()) {
4431    default: llvm_unreachable("Unhandled builtin type kind");
4432    case BuiltinType::Void:       return 'v';
4433    case BuiltinType::Bool:       return 'B';
4434    case BuiltinType::Char_U:
4435    case BuiltinType::UChar:      return 'C';
4436    case BuiltinType::UShort:     return 'S';
4437    case BuiltinType::UInt:       return 'I';
4438    case BuiltinType::ULong:
4439        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4440    case BuiltinType::UInt128:    return 'T';
4441    case BuiltinType::ULongLong:  return 'Q';
4442    case BuiltinType::Char_S:
4443    case BuiltinType::SChar:      return 'c';
4444    case BuiltinType::Short:      return 's';
4445    case BuiltinType::WChar_S:
4446    case BuiltinType::WChar_U:
4447    case BuiltinType::Int:        return 'i';
4448    case BuiltinType::Long:
4449      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4450    case BuiltinType::LongLong:   return 'q';
4451    case BuiltinType::Int128:     return 't';
4452    case BuiltinType::Float:      return 'f';
4453    case BuiltinType::Double:     return 'd';
4454    case BuiltinType::LongDouble: return 'D';
4455    }
4456}
4457
4458static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4459  EnumDecl *Enum = ET->getDecl();
4460
4461  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4462  if (!Enum->isFixed())
4463    return 'i';
4464
4465  // The encoding of a fixed enum type matches its fixed underlying type.
4466  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4467}
4468
4469static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4470                           QualType T, const FieldDecl *FD) {
4471  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4472  S += 'b';
4473  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4474  // The GNU runtime requires more information; bitfields are encoded as b,
4475  // then the offset (in bits) of the first element, then the type of the
4476  // bitfield, then the size in bits.  For example, in this structure:
4477  //
4478  // struct
4479  // {
4480  //    int integer;
4481  //    int flags:2;
4482  // };
4483  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4484  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4485  // information is not especially sensible, but we're stuck with it for
4486  // compatibility with GCC, although providing it breaks anything that
4487  // actually uses runtime introspection and wants to work on both runtimes...
4488  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4489    const RecordDecl *RD = FD->getParent();
4490    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4491    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4492    if (const EnumType *ET = T->getAs<EnumType>())
4493      S += ObjCEncodingForEnumType(Ctx, ET);
4494    else
4495      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4496  }
4497  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4498}
4499
4500// FIXME: Use SmallString for accumulating string.
4501void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4502                                            bool ExpandPointedToStructures,
4503                                            bool ExpandStructures,
4504                                            const FieldDecl *FD,
4505                                            bool OutermostType,
4506                                            bool EncodingProperty,
4507                                            bool StructField,
4508                                            bool EncodeBlockParameters,
4509                                            bool EncodeClassNames) const {
4510  if (T->getAs<BuiltinType>()) {
4511    if (FD && FD->isBitField())
4512      return EncodeBitField(this, S, T, FD);
4513    S += ObjCEncodingForPrimitiveKind(this, T);
4514    return;
4515  }
4516
4517  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4518    S += 'j';
4519    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4520                               false);
4521    return;
4522  }
4523
4524  // encoding for pointer or r3eference types.
4525  QualType PointeeTy;
4526  if (const PointerType *PT = T->getAs<PointerType>()) {
4527    if (PT->isObjCSelType()) {
4528      S += ':';
4529      return;
4530    }
4531    PointeeTy = PT->getPointeeType();
4532  }
4533  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4534    PointeeTy = RT->getPointeeType();
4535  if (!PointeeTy.isNull()) {
4536    bool isReadOnly = false;
4537    // For historical/compatibility reasons, the read-only qualifier of the
4538    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4539    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4540    // Also, do not emit the 'r' for anything but the outermost type!
4541    if (isa<TypedefType>(T.getTypePtr())) {
4542      if (OutermostType && T.isConstQualified()) {
4543        isReadOnly = true;
4544        S += 'r';
4545      }
4546    } else if (OutermostType) {
4547      QualType P = PointeeTy;
4548      while (P->getAs<PointerType>())
4549        P = P->getAs<PointerType>()->getPointeeType();
4550      if (P.isConstQualified()) {
4551        isReadOnly = true;
4552        S += 'r';
4553      }
4554    }
4555    if (isReadOnly) {
4556      // Another legacy compatibility encoding. Some ObjC qualifier and type
4557      // combinations need to be rearranged.
4558      // Rewrite "in const" from "nr" to "rn"
4559      if (StringRef(S).endswith("nr"))
4560        S.replace(S.end()-2, S.end(), "rn");
4561    }
4562
4563    if (PointeeTy->isCharType()) {
4564      // char pointer types should be encoded as '*' unless it is a
4565      // type that has been typedef'd to 'BOOL'.
4566      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4567        S += '*';
4568        return;
4569      }
4570    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4571      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4572      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4573        S += '#';
4574        return;
4575      }
4576      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4577      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4578        S += '@';
4579        return;
4580      }
4581      // fall through...
4582    }
4583    S += '^';
4584    getLegacyIntegralTypeEncoding(PointeeTy);
4585
4586    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4587                               NULL);
4588    return;
4589  }
4590
4591  if (const ArrayType *AT =
4592      // Ignore type qualifiers etc.
4593        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4594    if (isa<IncompleteArrayType>(AT) && !StructField) {
4595      // Incomplete arrays are encoded as a pointer to the array element.
4596      S += '^';
4597
4598      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4599                                 false, ExpandStructures, FD);
4600    } else {
4601      S += '[';
4602
4603      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4604        if (getTypeSize(CAT->getElementType()) == 0)
4605          S += '0';
4606        else
4607          S += llvm::utostr(CAT->getSize().getZExtValue());
4608      } else {
4609        //Variable length arrays are encoded as a regular array with 0 elements.
4610        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4611               "Unknown array type!");
4612        S += '0';
4613      }
4614
4615      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4616                                 false, ExpandStructures, FD);
4617      S += ']';
4618    }
4619    return;
4620  }
4621
4622  if (T->getAs<FunctionType>()) {
4623    S += '?';
4624    return;
4625  }
4626
4627  if (const RecordType *RTy = T->getAs<RecordType>()) {
4628    RecordDecl *RDecl = RTy->getDecl();
4629    S += RDecl->isUnion() ? '(' : '{';
4630    // Anonymous structures print as '?'
4631    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4632      S += II->getName();
4633      if (ClassTemplateSpecializationDecl *Spec
4634          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4635        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4636        std::string TemplateArgsStr
4637          = TemplateSpecializationType::PrintTemplateArgumentList(
4638                                            TemplateArgs.data(),
4639                                            TemplateArgs.size(),
4640                                            (*this).getPrintingPolicy());
4641
4642        S += TemplateArgsStr;
4643      }
4644    } else {
4645      S += '?';
4646    }
4647    if (ExpandStructures) {
4648      S += '=';
4649      if (!RDecl->isUnion()) {
4650        getObjCEncodingForStructureImpl(RDecl, S, FD);
4651      } else {
4652        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4653                                     FieldEnd = RDecl->field_end();
4654             Field != FieldEnd; ++Field) {
4655          if (FD) {
4656            S += '"';
4657            S += Field->getNameAsString();
4658            S += '"';
4659          }
4660
4661          // Special case bit-fields.
4662          if (Field->isBitField()) {
4663            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4664                                       *Field);
4665          } else {
4666            QualType qt = Field->getType();
4667            getLegacyIntegralTypeEncoding(qt);
4668            getObjCEncodingForTypeImpl(qt, S, false, true,
4669                                       FD, /*OutermostType*/false,
4670                                       /*EncodingProperty*/false,
4671                                       /*StructField*/true);
4672          }
4673        }
4674      }
4675    }
4676    S += RDecl->isUnion() ? ')' : '}';
4677    return;
4678  }
4679
4680  if (const EnumType *ET = T->getAs<EnumType>()) {
4681    if (FD && FD->isBitField())
4682      EncodeBitField(this, S, T, FD);
4683    else
4684      S += ObjCEncodingForEnumType(this, ET);
4685    return;
4686  }
4687
4688  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4689    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4690    if (EncodeBlockParameters) {
4691      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4692
4693      S += '<';
4694      // Block return type
4695      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4696                                 ExpandPointedToStructures, ExpandStructures,
4697                                 FD,
4698                                 false /* OutermostType */,
4699                                 EncodingProperty,
4700                                 false /* StructField */,
4701                                 EncodeBlockParameters,
4702                                 EncodeClassNames);
4703      // Block self
4704      S += "@?";
4705      // Block parameters
4706      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4707        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4708               E = FPT->arg_type_end(); I && (I != E); ++I) {
4709          getObjCEncodingForTypeImpl(*I, S,
4710                                     ExpandPointedToStructures,
4711                                     ExpandStructures,
4712                                     FD,
4713                                     false /* OutermostType */,
4714                                     EncodingProperty,
4715                                     false /* StructField */,
4716                                     EncodeBlockParameters,
4717                                     EncodeClassNames);
4718        }
4719      }
4720      S += '>';
4721    }
4722    return;
4723  }
4724
4725  // Ignore protocol qualifiers when mangling at this level.
4726  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4727    T = OT->getBaseType();
4728
4729  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4730    // @encode(class_name)
4731    ObjCInterfaceDecl *OI = OIT->getDecl();
4732    S += '{';
4733    const IdentifierInfo *II = OI->getIdentifier();
4734    S += II->getName();
4735    S += '=';
4736    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4737    DeepCollectObjCIvars(OI, true, Ivars);
4738    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4739      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4740      if (Field->isBitField())
4741        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4742      else
4743        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4744    }
4745    S += '}';
4746    return;
4747  }
4748
4749  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4750    if (OPT->isObjCIdType()) {
4751      S += '@';
4752      return;
4753    }
4754
4755    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4756      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4757      // Since this is a binary compatibility issue, need to consult with runtime
4758      // folks. Fortunately, this is a *very* obsure construct.
4759      S += '#';
4760      return;
4761    }
4762
4763    if (OPT->isObjCQualifiedIdType()) {
4764      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4765                                 ExpandPointedToStructures,
4766                                 ExpandStructures, FD);
4767      if (FD || EncodingProperty || EncodeClassNames) {
4768        // Note that we do extended encoding of protocol qualifer list
4769        // Only when doing ivar or property encoding.
4770        S += '"';
4771        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4772             E = OPT->qual_end(); I != E; ++I) {
4773          S += '<';
4774          S += (*I)->getNameAsString();
4775          S += '>';
4776        }
4777        S += '"';
4778      }
4779      return;
4780    }
4781
4782    QualType PointeeTy = OPT->getPointeeType();
4783    if (!EncodingProperty &&
4784        isa<TypedefType>(PointeeTy.getTypePtr())) {
4785      // Another historical/compatibility reason.
4786      // We encode the underlying type which comes out as
4787      // {...};
4788      S += '^';
4789      getObjCEncodingForTypeImpl(PointeeTy, S,
4790                                 false, ExpandPointedToStructures,
4791                                 NULL);
4792      return;
4793    }
4794
4795    S += '@';
4796    if (OPT->getInterfaceDecl() &&
4797        (FD || EncodingProperty || EncodeClassNames)) {
4798      S += '"';
4799      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4800      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4801           E = OPT->qual_end(); I != E; ++I) {
4802        S += '<';
4803        S += (*I)->getNameAsString();
4804        S += '>';
4805      }
4806      S += '"';
4807    }
4808    return;
4809  }
4810
4811  // gcc just blithely ignores member pointers.
4812  // TODO: maybe there should be a mangling for these
4813  if (T->getAs<MemberPointerType>())
4814    return;
4815
4816  if (T->isVectorType()) {
4817    // This matches gcc's encoding, even though technically it is
4818    // insufficient.
4819    // FIXME. We should do a better job than gcc.
4820    return;
4821  }
4822
4823  llvm_unreachable("@encode for type not implemented!");
4824}
4825
4826void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4827                                                 std::string &S,
4828                                                 const FieldDecl *FD,
4829                                                 bool includeVBases) const {
4830  assert(RDecl && "Expected non-null RecordDecl");
4831  assert(!RDecl->isUnion() && "Should not be called for unions");
4832  if (!RDecl->getDefinition())
4833    return;
4834
4835  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4836  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4837  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4838
4839  if (CXXRec) {
4840    for (CXXRecordDecl::base_class_iterator
4841           BI = CXXRec->bases_begin(),
4842           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4843      if (!BI->isVirtual()) {
4844        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4845        if (base->isEmpty())
4846          continue;
4847        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4848        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4849                                  std::make_pair(offs, base));
4850      }
4851    }
4852  }
4853
4854  unsigned i = 0;
4855  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4856                               FieldEnd = RDecl->field_end();
4857       Field != FieldEnd; ++Field, ++i) {
4858    uint64_t offs = layout.getFieldOffset(i);
4859    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4860                              std::make_pair(offs, *Field));
4861  }
4862
4863  if (CXXRec && includeVBases) {
4864    for (CXXRecordDecl::base_class_iterator
4865           BI = CXXRec->vbases_begin(),
4866           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4867      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4868      if (base->isEmpty())
4869        continue;
4870      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4871      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4872        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4873                                  std::make_pair(offs, base));
4874    }
4875  }
4876
4877  CharUnits size;
4878  if (CXXRec) {
4879    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4880  } else {
4881    size = layout.getSize();
4882  }
4883
4884  uint64_t CurOffs = 0;
4885  std::multimap<uint64_t, NamedDecl *>::iterator
4886    CurLayObj = FieldOrBaseOffsets.begin();
4887
4888  if (CXXRec && CXXRec->isDynamicClass() &&
4889      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
4890    if (FD) {
4891      S += "\"_vptr$";
4892      std::string recname = CXXRec->getNameAsString();
4893      if (recname.empty()) recname = "?";
4894      S += recname;
4895      S += '"';
4896    }
4897    S += "^^?";
4898    CurOffs += getTypeSize(VoidPtrTy);
4899  }
4900
4901  if (!RDecl->hasFlexibleArrayMember()) {
4902    // Mark the end of the structure.
4903    uint64_t offs = toBits(size);
4904    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4905                              std::make_pair(offs, (NamedDecl*)0));
4906  }
4907
4908  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4909    assert(CurOffs <= CurLayObj->first);
4910
4911    if (CurOffs < CurLayObj->first) {
4912      uint64_t padding = CurLayObj->first - CurOffs;
4913      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4914      // packing/alignment of members is different that normal, in which case
4915      // the encoding will be out-of-sync with the real layout.
4916      // If the runtime switches to just consider the size of types without
4917      // taking into account alignment, we could make padding explicit in the
4918      // encoding (e.g. using arrays of chars). The encoding strings would be
4919      // longer then though.
4920      CurOffs += padding;
4921    }
4922
4923    NamedDecl *dcl = CurLayObj->second;
4924    if (dcl == 0)
4925      break; // reached end of structure.
4926
4927    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4928      // We expand the bases without their virtual bases since those are going
4929      // in the initial structure. Note that this differs from gcc which
4930      // expands virtual bases each time one is encountered in the hierarchy,
4931      // making the encoding type bigger than it really is.
4932      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4933      assert(!base->isEmpty());
4934      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4935    } else {
4936      FieldDecl *field = cast<FieldDecl>(dcl);
4937      if (FD) {
4938        S += '"';
4939        S += field->getNameAsString();
4940        S += '"';
4941      }
4942
4943      if (field->isBitField()) {
4944        EncodeBitField(this, S, field->getType(), field);
4945        CurOffs += field->getBitWidthValue(*this);
4946      } else {
4947        QualType qt = field->getType();
4948        getLegacyIntegralTypeEncoding(qt);
4949        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4950                                   /*OutermostType*/false,
4951                                   /*EncodingProperty*/false,
4952                                   /*StructField*/true);
4953        CurOffs += getTypeSize(field->getType());
4954      }
4955    }
4956  }
4957}
4958
4959void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4960                                                 std::string& S) const {
4961  if (QT & Decl::OBJC_TQ_In)
4962    S += 'n';
4963  if (QT & Decl::OBJC_TQ_Inout)
4964    S += 'N';
4965  if (QT & Decl::OBJC_TQ_Out)
4966    S += 'o';
4967  if (QT & Decl::OBJC_TQ_Bycopy)
4968    S += 'O';
4969  if (QT & Decl::OBJC_TQ_Byref)
4970    S += 'R';
4971  if (QT & Decl::OBJC_TQ_Oneway)
4972    S += 'V';
4973}
4974
4975TypedefDecl *ASTContext::getObjCIdDecl() const {
4976  if (!ObjCIdDecl) {
4977    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
4978    T = getObjCObjectPointerType(T);
4979    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
4980    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4981                                     getTranslationUnitDecl(),
4982                                     SourceLocation(), SourceLocation(),
4983                                     &Idents.get("id"), IdInfo);
4984  }
4985
4986  return ObjCIdDecl;
4987}
4988
4989TypedefDecl *ASTContext::getObjCSelDecl() const {
4990  if (!ObjCSelDecl) {
4991    QualType SelT = getPointerType(ObjCBuiltinSelTy);
4992    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
4993    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4994                                      getTranslationUnitDecl(),
4995                                      SourceLocation(), SourceLocation(),
4996                                      &Idents.get("SEL"), SelInfo);
4997  }
4998  return ObjCSelDecl;
4999}
5000
5001TypedefDecl *ASTContext::getObjCClassDecl() const {
5002  if (!ObjCClassDecl) {
5003    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5004    T = getObjCObjectPointerType(T);
5005    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5006    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5007                                        getTranslationUnitDecl(),
5008                                        SourceLocation(), SourceLocation(),
5009                                        &Idents.get("Class"), ClassInfo);
5010  }
5011
5012  return ObjCClassDecl;
5013}
5014
5015ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5016  if (!ObjCProtocolClassDecl) {
5017    ObjCProtocolClassDecl
5018      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5019                                  SourceLocation(),
5020                                  &Idents.get("Protocol"),
5021                                  /*PrevDecl=*/0,
5022                                  SourceLocation(), true);
5023  }
5024
5025  return ObjCProtocolClassDecl;
5026}
5027
5028//===----------------------------------------------------------------------===//
5029// __builtin_va_list Construction Functions
5030//===----------------------------------------------------------------------===//
5031
5032static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5033  // typedef char* __builtin_va_list;
5034  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5035  TypeSourceInfo *TInfo
5036    = Context->getTrivialTypeSourceInfo(CharPtrType);
5037
5038  TypedefDecl *VaListTypeDecl
5039    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5040                          Context->getTranslationUnitDecl(),
5041                          SourceLocation(), SourceLocation(),
5042                          &Context->Idents.get("__builtin_va_list"),
5043                          TInfo);
5044  return VaListTypeDecl;
5045}
5046
5047static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5048  // typedef void* __builtin_va_list;
5049  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5050  TypeSourceInfo *TInfo
5051    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5052
5053  TypedefDecl *VaListTypeDecl
5054    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5055                          Context->getTranslationUnitDecl(),
5056                          SourceLocation(), SourceLocation(),
5057                          &Context->Idents.get("__builtin_va_list"),
5058                          TInfo);
5059  return VaListTypeDecl;
5060}
5061
5062static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5063  // typedef struct __va_list_tag {
5064  RecordDecl *VaListTagDecl;
5065
5066  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5067                                   Context->getTranslationUnitDecl(),
5068                                   &Context->Idents.get("__va_list_tag"));
5069  VaListTagDecl->startDefinition();
5070
5071  const size_t NumFields = 5;
5072  QualType FieldTypes[NumFields];
5073  const char *FieldNames[NumFields];
5074
5075  //   unsigned char gpr;
5076  FieldTypes[0] = Context->UnsignedCharTy;
5077  FieldNames[0] = "gpr";
5078
5079  //   unsigned char fpr;
5080  FieldTypes[1] = Context->UnsignedCharTy;
5081  FieldNames[1] = "fpr";
5082
5083  //   unsigned short reserved;
5084  FieldTypes[2] = Context->UnsignedShortTy;
5085  FieldNames[2] = "reserved";
5086
5087  //   void* overflow_arg_area;
5088  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5089  FieldNames[3] = "overflow_arg_area";
5090
5091  //   void* reg_save_area;
5092  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5093  FieldNames[4] = "reg_save_area";
5094
5095  // Create fields
5096  for (unsigned i = 0; i < NumFields; ++i) {
5097    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5098                                         SourceLocation(),
5099                                         SourceLocation(),
5100                                         &Context->Idents.get(FieldNames[i]),
5101                                         FieldTypes[i], /*TInfo=*/0,
5102                                         /*BitWidth=*/0,
5103                                         /*Mutable=*/false,
5104                                         ICIS_NoInit);
5105    Field->setAccess(AS_public);
5106    VaListTagDecl->addDecl(Field);
5107  }
5108  VaListTagDecl->completeDefinition();
5109  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5110
5111  // } __va_list_tag;
5112  TypedefDecl *VaListTagTypedefDecl
5113    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5114                          Context->getTranslationUnitDecl(),
5115                          SourceLocation(), SourceLocation(),
5116                          &Context->Idents.get("__va_list_tag"),
5117                          Context->getTrivialTypeSourceInfo(VaListTagType));
5118  QualType VaListTagTypedefType =
5119    Context->getTypedefType(VaListTagTypedefDecl);
5120
5121  // typedef __va_list_tag __builtin_va_list[1];
5122  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5123  QualType VaListTagArrayType
5124    = Context->getConstantArrayType(VaListTagTypedefType,
5125                                    Size, ArrayType::Normal, 0);
5126  TypeSourceInfo *TInfo
5127    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5128  TypedefDecl *VaListTypedefDecl
5129    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5130                          Context->getTranslationUnitDecl(),
5131                          SourceLocation(), SourceLocation(),
5132                          &Context->Idents.get("__builtin_va_list"),
5133                          TInfo);
5134
5135  return VaListTypedefDecl;
5136}
5137
5138static TypedefDecl *
5139CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5140  // typedef struct __va_list_tag {
5141  RecordDecl *VaListTagDecl;
5142  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5143                                   Context->getTranslationUnitDecl(),
5144                                   &Context->Idents.get("__va_list_tag"));
5145  VaListTagDecl->startDefinition();
5146
5147  const size_t NumFields = 4;
5148  QualType FieldTypes[NumFields];
5149  const char *FieldNames[NumFields];
5150
5151  //   unsigned gp_offset;
5152  FieldTypes[0] = Context->UnsignedIntTy;
5153  FieldNames[0] = "gp_offset";
5154
5155  //   unsigned fp_offset;
5156  FieldTypes[1] = Context->UnsignedIntTy;
5157  FieldNames[1] = "fp_offset";
5158
5159  //   void* overflow_arg_area;
5160  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5161  FieldNames[2] = "overflow_arg_area";
5162
5163  //   void* reg_save_area;
5164  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5165  FieldNames[3] = "reg_save_area";
5166
5167  // Create fields
5168  for (unsigned i = 0; i < NumFields; ++i) {
5169    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5170                                         VaListTagDecl,
5171                                         SourceLocation(),
5172                                         SourceLocation(),
5173                                         &Context->Idents.get(FieldNames[i]),
5174                                         FieldTypes[i], /*TInfo=*/0,
5175                                         /*BitWidth=*/0,
5176                                         /*Mutable=*/false,
5177                                         ICIS_NoInit);
5178    Field->setAccess(AS_public);
5179    VaListTagDecl->addDecl(Field);
5180  }
5181  VaListTagDecl->completeDefinition();
5182  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5183
5184  // } __va_list_tag;
5185  TypedefDecl *VaListTagTypedefDecl
5186    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5187                          Context->getTranslationUnitDecl(),
5188                          SourceLocation(), SourceLocation(),
5189                          &Context->Idents.get("__va_list_tag"),
5190                          Context->getTrivialTypeSourceInfo(VaListTagType));
5191  QualType VaListTagTypedefType =
5192    Context->getTypedefType(VaListTagTypedefDecl);
5193
5194  // typedef __va_list_tag __builtin_va_list[1];
5195  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5196  QualType VaListTagArrayType
5197    = Context->getConstantArrayType(VaListTagTypedefType,
5198                                      Size, ArrayType::Normal,0);
5199  TypeSourceInfo *TInfo
5200    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5201  TypedefDecl *VaListTypedefDecl
5202    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5203                          Context->getTranslationUnitDecl(),
5204                          SourceLocation(), SourceLocation(),
5205                          &Context->Idents.get("__builtin_va_list"),
5206                          TInfo);
5207
5208  return VaListTypedefDecl;
5209}
5210
5211static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5212  // typedef int __builtin_va_list[4];
5213  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5214  QualType IntArrayType
5215    = Context->getConstantArrayType(Context->IntTy,
5216				    Size, ArrayType::Normal, 0);
5217  TypedefDecl *VaListTypedefDecl
5218    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5219                          Context->getTranslationUnitDecl(),
5220                          SourceLocation(), SourceLocation(),
5221                          &Context->Idents.get("__builtin_va_list"),
5222                          Context->getTrivialTypeSourceInfo(IntArrayType));
5223
5224  return VaListTypedefDecl;
5225}
5226
5227static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5228                                     TargetInfo::BuiltinVaListKind Kind) {
5229  switch (Kind) {
5230  case TargetInfo::CharPtrBuiltinVaList:
5231    return CreateCharPtrBuiltinVaListDecl(Context);
5232  case TargetInfo::VoidPtrBuiltinVaList:
5233    return CreateVoidPtrBuiltinVaListDecl(Context);
5234  case TargetInfo::PowerABIBuiltinVaList:
5235    return CreatePowerABIBuiltinVaListDecl(Context);
5236  case TargetInfo::X86_64ABIBuiltinVaList:
5237    return CreateX86_64ABIBuiltinVaListDecl(Context);
5238  case TargetInfo::PNaClABIBuiltinVaList:
5239    return CreatePNaClABIBuiltinVaListDecl(Context);
5240  }
5241
5242  llvm_unreachable("Unhandled __builtin_va_list type kind");
5243}
5244
5245TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5246  if (!BuiltinVaListDecl)
5247    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5248
5249  return BuiltinVaListDecl;
5250}
5251
5252void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5253  assert(ObjCConstantStringType.isNull() &&
5254         "'NSConstantString' type already set!");
5255
5256  ObjCConstantStringType = getObjCInterfaceType(Decl);
5257}
5258
5259/// \brief Retrieve the template name that corresponds to a non-empty
5260/// lookup.
5261TemplateName
5262ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5263                                      UnresolvedSetIterator End) const {
5264  unsigned size = End - Begin;
5265  assert(size > 1 && "set is not overloaded!");
5266
5267  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5268                          size * sizeof(FunctionTemplateDecl*));
5269  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5270
5271  NamedDecl **Storage = OT->getStorage();
5272  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5273    NamedDecl *D = *I;
5274    assert(isa<FunctionTemplateDecl>(D) ||
5275           (isa<UsingShadowDecl>(D) &&
5276            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5277    *Storage++ = D;
5278  }
5279
5280  return TemplateName(OT);
5281}
5282
5283/// \brief Retrieve the template name that represents a qualified
5284/// template name such as \c std::vector.
5285TemplateName
5286ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5287                                     bool TemplateKeyword,
5288                                     TemplateDecl *Template) const {
5289  assert(NNS && "Missing nested-name-specifier in qualified template name");
5290
5291  // FIXME: Canonicalization?
5292  llvm::FoldingSetNodeID ID;
5293  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5294
5295  void *InsertPos = 0;
5296  QualifiedTemplateName *QTN =
5297    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5298  if (!QTN) {
5299    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
5300    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5301  }
5302
5303  return TemplateName(QTN);
5304}
5305
5306/// \brief Retrieve the template name that represents a dependent
5307/// template name such as \c MetaFun::template apply.
5308TemplateName
5309ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5310                                     const IdentifierInfo *Name) const {
5311  assert((!NNS || NNS->isDependent()) &&
5312         "Nested name specifier must be dependent");
5313
5314  llvm::FoldingSetNodeID ID;
5315  DependentTemplateName::Profile(ID, NNS, Name);
5316
5317  void *InsertPos = 0;
5318  DependentTemplateName *QTN =
5319    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5320
5321  if (QTN)
5322    return TemplateName(QTN);
5323
5324  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5325  if (CanonNNS == NNS) {
5326    QTN = new (*this,4) DependentTemplateName(NNS, Name);
5327  } else {
5328    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5329    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
5330    DependentTemplateName *CheckQTN =
5331      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5332    assert(!CheckQTN && "Dependent type name canonicalization broken");
5333    (void)CheckQTN;
5334  }
5335
5336  DependentTemplateNames.InsertNode(QTN, InsertPos);
5337  return TemplateName(QTN);
5338}
5339
5340/// \brief Retrieve the template name that represents a dependent
5341/// template name such as \c MetaFun::template operator+.
5342TemplateName
5343ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5344                                     OverloadedOperatorKind Operator) const {
5345  assert((!NNS || NNS->isDependent()) &&
5346         "Nested name specifier must be dependent");
5347
5348  llvm::FoldingSetNodeID ID;
5349  DependentTemplateName::Profile(ID, NNS, Operator);
5350
5351  void *InsertPos = 0;
5352  DependentTemplateName *QTN
5353    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5354
5355  if (QTN)
5356    return TemplateName(QTN);
5357
5358  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5359  if (CanonNNS == NNS) {
5360    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5361  } else {
5362    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5363    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5364
5365    DependentTemplateName *CheckQTN
5366      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5367    assert(!CheckQTN && "Dependent template name canonicalization broken");
5368    (void)CheckQTN;
5369  }
5370
5371  DependentTemplateNames.InsertNode(QTN, InsertPos);
5372  return TemplateName(QTN);
5373}
5374
5375TemplateName
5376ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5377                                         TemplateName replacement) const {
5378  llvm::FoldingSetNodeID ID;
5379  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5380
5381  void *insertPos = 0;
5382  SubstTemplateTemplateParmStorage *subst
5383    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5384
5385  if (!subst) {
5386    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5387    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5388  }
5389
5390  return TemplateName(subst);
5391}
5392
5393TemplateName
5394ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5395                                       const TemplateArgument &ArgPack) const {
5396  ASTContext &Self = const_cast<ASTContext &>(*this);
5397  llvm::FoldingSetNodeID ID;
5398  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5399
5400  void *InsertPos = 0;
5401  SubstTemplateTemplateParmPackStorage *Subst
5402    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5403
5404  if (!Subst) {
5405    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5406                                                           ArgPack.pack_size(),
5407                                                         ArgPack.pack_begin());
5408    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5409  }
5410
5411  return TemplateName(Subst);
5412}
5413
5414/// getFromTargetType - Given one of the integer types provided by
5415/// TargetInfo, produce the corresponding type. The unsigned @p Type
5416/// is actually a value of type @c TargetInfo::IntType.
5417CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5418  switch (Type) {
5419  case TargetInfo::NoInt: return CanQualType();
5420  case TargetInfo::SignedShort: return ShortTy;
5421  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5422  case TargetInfo::SignedInt: return IntTy;
5423  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5424  case TargetInfo::SignedLong: return LongTy;
5425  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5426  case TargetInfo::SignedLongLong: return LongLongTy;
5427  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5428  }
5429
5430  llvm_unreachable("Unhandled TargetInfo::IntType value");
5431}
5432
5433//===----------------------------------------------------------------------===//
5434//                        Type Predicates.
5435//===----------------------------------------------------------------------===//
5436
5437/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5438/// garbage collection attribute.
5439///
5440Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5441  if (getLangOpts().getGC() == LangOptions::NonGC)
5442    return Qualifiers::GCNone;
5443
5444  assert(getLangOpts().ObjC1);
5445  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5446
5447  // Default behaviour under objective-C's gc is for ObjC pointers
5448  // (or pointers to them) be treated as though they were declared
5449  // as __strong.
5450  if (GCAttrs == Qualifiers::GCNone) {
5451    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5452      return Qualifiers::Strong;
5453    else if (Ty->isPointerType())
5454      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5455  } else {
5456    // It's not valid to set GC attributes on anything that isn't a
5457    // pointer.
5458#ifndef NDEBUG
5459    QualType CT = Ty->getCanonicalTypeInternal();
5460    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5461      CT = AT->getElementType();
5462    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5463#endif
5464  }
5465  return GCAttrs;
5466}
5467
5468//===----------------------------------------------------------------------===//
5469//                        Type Compatibility Testing
5470//===----------------------------------------------------------------------===//
5471
5472/// areCompatVectorTypes - Return true if the two specified vector types are
5473/// compatible.
5474static bool areCompatVectorTypes(const VectorType *LHS,
5475                                 const VectorType *RHS) {
5476  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5477  return LHS->getElementType() == RHS->getElementType() &&
5478         LHS->getNumElements() == RHS->getNumElements();
5479}
5480
5481bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5482                                          QualType SecondVec) {
5483  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5484  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5485
5486  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5487    return true;
5488
5489  // Treat Neon vector types and most AltiVec vector types as if they are the
5490  // equivalent GCC vector types.
5491  const VectorType *First = FirstVec->getAs<VectorType>();
5492  const VectorType *Second = SecondVec->getAs<VectorType>();
5493  if (First->getNumElements() == Second->getNumElements() &&
5494      hasSameType(First->getElementType(), Second->getElementType()) &&
5495      First->getVectorKind() != VectorType::AltiVecPixel &&
5496      First->getVectorKind() != VectorType::AltiVecBool &&
5497      Second->getVectorKind() != VectorType::AltiVecPixel &&
5498      Second->getVectorKind() != VectorType::AltiVecBool)
5499    return true;
5500
5501  return false;
5502}
5503
5504//===----------------------------------------------------------------------===//
5505// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5506//===----------------------------------------------------------------------===//
5507
5508/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5509/// inheritance hierarchy of 'rProto'.
5510bool
5511ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5512                                           ObjCProtocolDecl *rProto) const {
5513  if (declaresSameEntity(lProto, rProto))
5514    return true;
5515  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5516       E = rProto->protocol_end(); PI != E; ++PI)
5517    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5518      return true;
5519  return false;
5520}
5521
5522/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5523/// return true if lhs's protocols conform to rhs's protocol; false
5524/// otherwise.
5525bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5526  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5527    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5528  return false;
5529}
5530
5531/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5532/// Class<p1, ...>.
5533bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5534                                                      QualType rhs) {
5535  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5536  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5537  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5538
5539  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5540       E = lhsQID->qual_end(); I != E; ++I) {
5541    bool match = false;
5542    ObjCProtocolDecl *lhsProto = *I;
5543    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5544         E = rhsOPT->qual_end(); J != E; ++J) {
5545      ObjCProtocolDecl *rhsProto = *J;
5546      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5547        match = true;
5548        break;
5549      }
5550    }
5551    if (!match)
5552      return false;
5553  }
5554  return true;
5555}
5556
5557/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5558/// ObjCQualifiedIDType.
5559bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5560                                                   bool compare) {
5561  // Allow id<P..> and an 'id' or void* type in all cases.
5562  if (lhs->isVoidPointerType() ||
5563      lhs->isObjCIdType() || lhs->isObjCClassType())
5564    return true;
5565  else if (rhs->isVoidPointerType() ||
5566           rhs->isObjCIdType() || rhs->isObjCClassType())
5567    return true;
5568
5569  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5570    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5571
5572    if (!rhsOPT) return false;
5573
5574    if (rhsOPT->qual_empty()) {
5575      // If the RHS is a unqualified interface pointer "NSString*",
5576      // make sure we check the class hierarchy.
5577      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5578        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5579             E = lhsQID->qual_end(); I != E; ++I) {
5580          // when comparing an id<P> on lhs with a static type on rhs,
5581          // see if static class implements all of id's protocols, directly or
5582          // through its super class and categories.
5583          if (!rhsID->ClassImplementsProtocol(*I, true))
5584            return false;
5585        }
5586      }
5587      // If there are no qualifiers and no interface, we have an 'id'.
5588      return true;
5589    }
5590    // Both the right and left sides have qualifiers.
5591    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5592         E = lhsQID->qual_end(); I != E; ++I) {
5593      ObjCProtocolDecl *lhsProto = *I;
5594      bool match = false;
5595
5596      // when comparing an id<P> on lhs with a static type on rhs,
5597      // see if static class implements all of id's protocols, directly or
5598      // through its super class and categories.
5599      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5600           E = rhsOPT->qual_end(); J != E; ++J) {
5601        ObjCProtocolDecl *rhsProto = *J;
5602        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5603            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5604          match = true;
5605          break;
5606        }
5607      }
5608      // If the RHS is a qualified interface pointer "NSString<P>*",
5609      // make sure we check the class hierarchy.
5610      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5611        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5612             E = lhsQID->qual_end(); I != E; ++I) {
5613          // when comparing an id<P> on lhs with a static type on rhs,
5614          // see if static class implements all of id's protocols, directly or
5615          // through its super class and categories.
5616          if (rhsID->ClassImplementsProtocol(*I, true)) {
5617            match = true;
5618            break;
5619          }
5620        }
5621      }
5622      if (!match)
5623        return false;
5624    }
5625
5626    return true;
5627  }
5628
5629  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5630  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5631
5632  if (const ObjCObjectPointerType *lhsOPT =
5633        lhs->getAsObjCInterfacePointerType()) {
5634    // If both the right and left sides have qualifiers.
5635    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5636         E = lhsOPT->qual_end(); I != E; ++I) {
5637      ObjCProtocolDecl *lhsProto = *I;
5638      bool match = false;
5639
5640      // when comparing an id<P> on rhs with a static type on lhs,
5641      // see if static class implements all of id's protocols, directly or
5642      // through its super class and categories.
5643      // First, lhs protocols in the qualifier list must be found, direct
5644      // or indirect in rhs's qualifier list or it is a mismatch.
5645      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5646           E = rhsQID->qual_end(); J != E; ++J) {
5647        ObjCProtocolDecl *rhsProto = *J;
5648        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5649            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5650          match = true;
5651          break;
5652        }
5653      }
5654      if (!match)
5655        return false;
5656    }
5657
5658    // Static class's protocols, or its super class or category protocols
5659    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5660    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5661      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5662      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5663      // This is rather dubious but matches gcc's behavior. If lhs has
5664      // no type qualifier and its class has no static protocol(s)
5665      // assume that it is mismatch.
5666      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5667        return false;
5668      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5669           LHSInheritedProtocols.begin(),
5670           E = LHSInheritedProtocols.end(); I != E; ++I) {
5671        bool match = false;
5672        ObjCProtocolDecl *lhsProto = (*I);
5673        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5674             E = rhsQID->qual_end(); J != E; ++J) {
5675          ObjCProtocolDecl *rhsProto = *J;
5676          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5677              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5678            match = true;
5679            break;
5680          }
5681        }
5682        if (!match)
5683          return false;
5684      }
5685    }
5686    return true;
5687  }
5688  return false;
5689}
5690
5691/// canAssignObjCInterfaces - Return true if the two interface types are
5692/// compatible for assignment from RHS to LHS.  This handles validation of any
5693/// protocol qualifiers on the LHS or RHS.
5694///
5695bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5696                                         const ObjCObjectPointerType *RHSOPT) {
5697  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5698  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5699
5700  // If either type represents the built-in 'id' or 'Class' types, return true.
5701  if (LHS->isObjCUnqualifiedIdOrClass() ||
5702      RHS->isObjCUnqualifiedIdOrClass())
5703    return true;
5704
5705  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5706    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5707                                             QualType(RHSOPT,0),
5708                                             false);
5709
5710  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5711    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5712                                                QualType(RHSOPT,0));
5713
5714  // If we have 2 user-defined types, fall into that path.
5715  if (LHS->getInterface() && RHS->getInterface())
5716    return canAssignObjCInterfaces(LHS, RHS);
5717
5718  return false;
5719}
5720
5721/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5722/// for providing type-safety for objective-c pointers used to pass/return
5723/// arguments in block literals. When passed as arguments, passing 'A*' where
5724/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5725/// not OK. For the return type, the opposite is not OK.
5726bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5727                                         const ObjCObjectPointerType *LHSOPT,
5728                                         const ObjCObjectPointerType *RHSOPT,
5729                                         bool BlockReturnType) {
5730  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5731    return true;
5732
5733  if (LHSOPT->isObjCBuiltinType()) {
5734    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5735  }
5736
5737  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5738    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5739                                             QualType(RHSOPT,0),
5740                                             false);
5741
5742  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5743  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5744  if (LHS && RHS)  { // We have 2 user-defined types.
5745    if (LHS != RHS) {
5746      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5747        return BlockReturnType;
5748      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5749        return !BlockReturnType;
5750    }
5751    else
5752      return true;
5753  }
5754  return false;
5755}
5756
5757/// getIntersectionOfProtocols - This routine finds the intersection of set
5758/// of protocols inherited from two distinct objective-c pointer objects.
5759/// It is used to build composite qualifier list of the composite type of
5760/// the conditional expression involving two objective-c pointer objects.
5761static
5762void getIntersectionOfProtocols(ASTContext &Context,
5763                                const ObjCObjectPointerType *LHSOPT,
5764                                const ObjCObjectPointerType *RHSOPT,
5765      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5766
5767  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5768  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5769  assert(LHS->getInterface() && "LHS must have an interface base");
5770  assert(RHS->getInterface() && "RHS must have an interface base");
5771
5772  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5773  unsigned LHSNumProtocols = LHS->getNumProtocols();
5774  if (LHSNumProtocols > 0)
5775    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5776  else {
5777    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5778    Context.CollectInheritedProtocols(LHS->getInterface(),
5779                                      LHSInheritedProtocols);
5780    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5781                                LHSInheritedProtocols.end());
5782  }
5783
5784  unsigned RHSNumProtocols = RHS->getNumProtocols();
5785  if (RHSNumProtocols > 0) {
5786    ObjCProtocolDecl **RHSProtocols =
5787      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5788    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5789      if (InheritedProtocolSet.count(RHSProtocols[i]))
5790        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5791  } else {
5792    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5793    Context.CollectInheritedProtocols(RHS->getInterface(),
5794                                      RHSInheritedProtocols);
5795    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5796         RHSInheritedProtocols.begin(),
5797         E = RHSInheritedProtocols.end(); I != E; ++I)
5798      if (InheritedProtocolSet.count((*I)))
5799        IntersectionOfProtocols.push_back((*I));
5800  }
5801}
5802
5803/// areCommonBaseCompatible - Returns common base class of the two classes if
5804/// one found. Note that this is O'2 algorithm. But it will be called as the
5805/// last type comparison in a ?-exp of ObjC pointer types before a
5806/// warning is issued. So, its invokation is extremely rare.
5807QualType ASTContext::areCommonBaseCompatible(
5808                                          const ObjCObjectPointerType *Lptr,
5809                                          const ObjCObjectPointerType *Rptr) {
5810  const ObjCObjectType *LHS = Lptr->getObjectType();
5811  const ObjCObjectType *RHS = Rptr->getObjectType();
5812  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5813  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5814  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5815    return QualType();
5816
5817  do {
5818    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5819    if (canAssignObjCInterfaces(LHS, RHS)) {
5820      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5821      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5822
5823      QualType Result = QualType(LHS, 0);
5824      if (!Protocols.empty())
5825        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5826      Result = getObjCObjectPointerType(Result);
5827      return Result;
5828    }
5829  } while ((LDecl = LDecl->getSuperClass()));
5830
5831  return QualType();
5832}
5833
5834bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5835                                         const ObjCObjectType *RHS) {
5836  assert(LHS->getInterface() && "LHS is not an interface type");
5837  assert(RHS->getInterface() && "RHS is not an interface type");
5838
5839  // Verify that the base decls are compatible: the RHS must be a subclass of
5840  // the LHS.
5841  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5842    return false;
5843
5844  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5845  // protocol qualified at all, then we are good.
5846  if (LHS->getNumProtocols() == 0)
5847    return true;
5848
5849  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5850  // more detailed analysis is required.
5851  if (RHS->getNumProtocols() == 0) {
5852    // OK, if LHS is a superclass of RHS *and*
5853    // this superclass is assignment compatible with LHS.
5854    // false otherwise.
5855    bool IsSuperClass =
5856      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5857    if (IsSuperClass) {
5858      // OK if conversion of LHS to SuperClass results in narrowing of types
5859      // ; i.e., SuperClass may implement at least one of the protocols
5860      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5861      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5862      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5863      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5864      // If super class has no protocols, it is not a match.
5865      if (SuperClassInheritedProtocols.empty())
5866        return false;
5867
5868      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5869           LHSPE = LHS->qual_end();
5870           LHSPI != LHSPE; LHSPI++) {
5871        bool SuperImplementsProtocol = false;
5872        ObjCProtocolDecl *LHSProto = (*LHSPI);
5873
5874        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5875             SuperClassInheritedProtocols.begin(),
5876             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5877          ObjCProtocolDecl *SuperClassProto = (*I);
5878          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5879            SuperImplementsProtocol = true;
5880            break;
5881          }
5882        }
5883        if (!SuperImplementsProtocol)
5884          return false;
5885      }
5886      return true;
5887    }
5888    return false;
5889  }
5890
5891  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5892                                     LHSPE = LHS->qual_end();
5893       LHSPI != LHSPE; LHSPI++) {
5894    bool RHSImplementsProtocol = false;
5895
5896    // If the RHS doesn't implement the protocol on the left, the types
5897    // are incompatible.
5898    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5899                                       RHSPE = RHS->qual_end();
5900         RHSPI != RHSPE; RHSPI++) {
5901      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5902        RHSImplementsProtocol = true;
5903        break;
5904      }
5905    }
5906    // FIXME: For better diagnostics, consider passing back the protocol name.
5907    if (!RHSImplementsProtocol)
5908      return false;
5909  }
5910  // The RHS implements all protocols listed on the LHS.
5911  return true;
5912}
5913
5914bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5915  // get the "pointed to" types
5916  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5917  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5918
5919  if (!LHSOPT || !RHSOPT)
5920    return false;
5921
5922  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5923         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5924}
5925
5926bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5927  return canAssignObjCInterfaces(
5928                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5929                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5930}
5931
5932/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5933/// both shall have the identically qualified version of a compatible type.
5934/// C99 6.2.7p1: Two types have compatible types if their types are the
5935/// same. See 6.7.[2,3,5] for additional rules.
5936bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5937                                    bool CompareUnqualified) {
5938  if (getLangOpts().CPlusPlus)
5939    return hasSameType(LHS, RHS);
5940
5941  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5942}
5943
5944bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5945  return typesAreCompatible(LHS, RHS);
5946}
5947
5948bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5949  return !mergeTypes(LHS, RHS, true).isNull();
5950}
5951
5952/// mergeTransparentUnionType - if T is a transparent union type and a member
5953/// of T is compatible with SubType, return the merged type, else return
5954/// QualType()
5955QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5956                                               bool OfBlockPointer,
5957                                               bool Unqualified) {
5958  if (const RecordType *UT = T->getAsUnionType()) {
5959    RecordDecl *UD = UT->getDecl();
5960    if (UD->hasAttr<TransparentUnionAttr>()) {
5961      for (RecordDecl::field_iterator it = UD->field_begin(),
5962           itend = UD->field_end(); it != itend; ++it) {
5963        QualType ET = it->getType().getUnqualifiedType();
5964        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5965        if (!MT.isNull())
5966          return MT;
5967      }
5968    }
5969  }
5970
5971  return QualType();
5972}
5973
5974/// mergeFunctionArgumentTypes - merge two types which appear as function
5975/// argument types
5976QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5977                                                bool OfBlockPointer,
5978                                                bool Unqualified) {
5979  // GNU extension: two types are compatible if they appear as a function
5980  // argument, one of the types is a transparent union type and the other
5981  // type is compatible with a union member
5982  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5983                                              Unqualified);
5984  if (!lmerge.isNull())
5985    return lmerge;
5986
5987  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5988                                              Unqualified);
5989  if (!rmerge.isNull())
5990    return rmerge;
5991
5992  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5993}
5994
5995QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5996                                        bool OfBlockPointer,
5997                                        bool Unqualified) {
5998  const FunctionType *lbase = lhs->getAs<FunctionType>();
5999  const FunctionType *rbase = rhs->getAs<FunctionType>();
6000  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6001  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6002  bool allLTypes = true;
6003  bool allRTypes = true;
6004
6005  // Check return type
6006  QualType retType;
6007  if (OfBlockPointer) {
6008    QualType RHS = rbase->getResultType();
6009    QualType LHS = lbase->getResultType();
6010    bool UnqualifiedResult = Unqualified;
6011    if (!UnqualifiedResult)
6012      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6013    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6014  }
6015  else
6016    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6017                         Unqualified);
6018  if (retType.isNull()) return QualType();
6019
6020  if (Unqualified)
6021    retType = retType.getUnqualifiedType();
6022
6023  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6024  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6025  if (Unqualified) {
6026    LRetType = LRetType.getUnqualifiedType();
6027    RRetType = RRetType.getUnqualifiedType();
6028  }
6029
6030  if (getCanonicalType(retType) != LRetType)
6031    allLTypes = false;
6032  if (getCanonicalType(retType) != RRetType)
6033    allRTypes = false;
6034
6035  // FIXME: double check this
6036  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6037  //                           rbase->getRegParmAttr() != 0 &&
6038  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6039  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6040  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6041
6042  // Compatible functions must have compatible calling conventions
6043  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6044    return QualType();
6045
6046  // Regparm is part of the calling convention.
6047  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6048    return QualType();
6049  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6050    return QualType();
6051
6052  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6053    return QualType();
6054
6055  // functypes which return are preferred over those that do not.
6056  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
6057    allLTypes = false;
6058  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
6059    allRTypes = false;
6060  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6061  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6062
6063  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6064
6065  if (lproto && rproto) { // two C99 style function prototypes
6066    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6067           "C++ shouldn't be here");
6068    unsigned lproto_nargs = lproto->getNumArgs();
6069    unsigned rproto_nargs = rproto->getNumArgs();
6070
6071    // Compatible functions must have the same number of arguments
6072    if (lproto_nargs != rproto_nargs)
6073      return QualType();
6074
6075    // Variadic and non-variadic functions aren't compatible
6076    if (lproto->isVariadic() != rproto->isVariadic())
6077      return QualType();
6078
6079    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6080      return QualType();
6081
6082    if (LangOpts.ObjCAutoRefCount &&
6083        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6084      return QualType();
6085
6086    // Check argument compatibility
6087    SmallVector<QualType, 10> types;
6088    for (unsigned i = 0; i < lproto_nargs; i++) {
6089      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6090      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6091      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6092                                                    OfBlockPointer,
6093                                                    Unqualified);
6094      if (argtype.isNull()) return QualType();
6095
6096      if (Unqualified)
6097        argtype = argtype.getUnqualifiedType();
6098
6099      types.push_back(argtype);
6100      if (Unqualified) {
6101        largtype = largtype.getUnqualifiedType();
6102        rargtype = rargtype.getUnqualifiedType();
6103      }
6104
6105      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6106        allLTypes = false;
6107      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6108        allRTypes = false;
6109    }
6110
6111    if (allLTypes) return lhs;
6112    if (allRTypes) return rhs;
6113
6114    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6115    EPI.ExtInfo = einfo;
6116    return getFunctionType(retType, types.begin(), types.size(), EPI);
6117  }
6118
6119  if (lproto) allRTypes = false;
6120  if (rproto) allLTypes = false;
6121
6122  const FunctionProtoType *proto = lproto ? lproto : rproto;
6123  if (proto) {
6124    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6125    if (proto->isVariadic()) return QualType();
6126    // Check that the types are compatible with the types that
6127    // would result from default argument promotions (C99 6.7.5.3p15).
6128    // The only types actually affected are promotable integer
6129    // types and floats, which would be passed as a different
6130    // type depending on whether the prototype is visible.
6131    unsigned proto_nargs = proto->getNumArgs();
6132    for (unsigned i = 0; i < proto_nargs; ++i) {
6133      QualType argTy = proto->getArgType(i);
6134
6135      // Look at the promotion type of enum types, since that is the type used
6136      // to pass enum values.
6137      if (const EnumType *Enum = argTy->getAs<EnumType>())
6138        argTy = Enum->getDecl()->getPromotionType();
6139
6140      if (argTy->isPromotableIntegerType() ||
6141          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6142        return QualType();
6143    }
6144
6145    if (allLTypes) return lhs;
6146    if (allRTypes) return rhs;
6147
6148    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6149    EPI.ExtInfo = einfo;
6150    return getFunctionType(retType, proto->arg_type_begin(),
6151                           proto->getNumArgs(), EPI);
6152  }
6153
6154  if (allLTypes) return lhs;
6155  if (allRTypes) return rhs;
6156  return getFunctionNoProtoType(retType, einfo);
6157}
6158
6159QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6160                                bool OfBlockPointer,
6161                                bool Unqualified, bool BlockReturnType) {
6162  // C++ [expr]: If an expression initially has the type "reference to T", the
6163  // type is adjusted to "T" prior to any further analysis, the expression
6164  // designates the object or function denoted by the reference, and the
6165  // expression is an lvalue unless the reference is an rvalue reference and
6166  // the expression is a function call (possibly inside parentheses).
6167  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6168  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6169
6170  if (Unqualified) {
6171    LHS = LHS.getUnqualifiedType();
6172    RHS = RHS.getUnqualifiedType();
6173  }
6174
6175  QualType LHSCan = getCanonicalType(LHS),
6176           RHSCan = getCanonicalType(RHS);
6177
6178  // If two types are identical, they are compatible.
6179  if (LHSCan == RHSCan)
6180    return LHS;
6181
6182  // If the qualifiers are different, the types aren't compatible... mostly.
6183  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6184  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6185  if (LQuals != RQuals) {
6186    // If any of these qualifiers are different, we have a type
6187    // mismatch.
6188    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6189        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6190        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6191      return QualType();
6192
6193    // Exactly one GC qualifier difference is allowed: __strong is
6194    // okay if the other type has no GC qualifier but is an Objective
6195    // C object pointer (i.e. implicitly strong by default).  We fix
6196    // this by pretending that the unqualified type was actually
6197    // qualified __strong.
6198    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6199    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6200    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6201
6202    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6203      return QualType();
6204
6205    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6206      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6207    }
6208    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6209      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6210    }
6211    return QualType();
6212  }
6213
6214  // Okay, qualifiers are equal.
6215
6216  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6217  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6218
6219  // We want to consider the two function types to be the same for these
6220  // comparisons, just force one to the other.
6221  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6222  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6223
6224  // Same as above for arrays
6225  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6226    LHSClass = Type::ConstantArray;
6227  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6228    RHSClass = Type::ConstantArray;
6229
6230  // ObjCInterfaces are just specialized ObjCObjects.
6231  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6232  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6233
6234  // Canonicalize ExtVector -> Vector.
6235  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6236  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6237
6238  // If the canonical type classes don't match.
6239  if (LHSClass != RHSClass) {
6240    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6241    // a signed integer type, or an unsigned integer type.
6242    // Compatibility is based on the underlying type, not the promotion
6243    // type.
6244    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6245      QualType TINT = ETy->getDecl()->getIntegerType();
6246      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6247        return RHS;
6248    }
6249    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6250      QualType TINT = ETy->getDecl()->getIntegerType();
6251      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6252        return LHS;
6253    }
6254    // allow block pointer type to match an 'id' type.
6255    if (OfBlockPointer && !BlockReturnType) {
6256       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6257         return LHS;
6258      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6259        return RHS;
6260    }
6261
6262    return QualType();
6263  }
6264
6265  // The canonical type classes match.
6266  switch (LHSClass) {
6267#define TYPE(Class, Base)
6268#define ABSTRACT_TYPE(Class, Base)
6269#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6270#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6271#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6272#include "clang/AST/TypeNodes.def"
6273    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6274
6275  case Type::LValueReference:
6276  case Type::RValueReference:
6277  case Type::MemberPointer:
6278    llvm_unreachable("C++ should never be in mergeTypes");
6279
6280  case Type::ObjCInterface:
6281  case Type::IncompleteArray:
6282  case Type::VariableArray:
6283  case Type::FunctionProto:
6284  case Type::ExtVector:
6285    llvm_unreachable("Types are eliminated above");
6286
6287  case Type::Pointer:
6288  {
6289    // Merge two pointer types, while trying to preserve typedef info
6290    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6291    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6292    if (Unqualified) {
6293      LHSPointee = LHSPointee.getUnqualifiedType();
6294      RHSPointee = RHSPointee.getUnqualifiedType();
6295    }
6296    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6297                                     Unqualified);
6298    if (ResultType.isNull()) return QualType();
6299    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6300      return LHS;
6301    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6302      return RHS;
6303    return getPointerType(ResultType);
6304  }
6305  case Type::BlockPointer:
6306  {
6307    // Merge two block pointer types, while trying to preserve typedef info
6308    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6309    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6310    if (Unqualified) {
6311      LHSPointee = LHSPointee.getUnqualifiedType();
6312      RHSPointee = RHSPointee.getUnqualifiedType();
6313    }
6314    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6315                                     Unqualified);
6316    if (ResultType.isNull()) return QualType();
6317    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6318      return LHS;
6319    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6320      return RHS;
6321    return getBlockPointerType(ResultType);
6322  }
6323  case Type::Atomic:
6324  {
6325    // Merge two pointer types, while trying to preserve typedef info
6326    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6327    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6328    if (Unqualified) {
6329      LHSValue = LHSValue.getUnqualifiedType();
6330      RHSValue = RHSValue.getUnqualifiedType();
6331    }
6332    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6333                                     Unqualified);
6334    if (ResultType.isNull()) return QualType();
6335    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6336      return LHS;
6337    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6338      return RHS;
6339    return getAtomicType(ResultType);
6340  }
6341  case Type::ConstantArray:
6342  {
6343    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6344    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6345    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6346      return QualType();
6347
6348    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6349    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6350    if (Unqualified) {
6351      LHSElem = LHSElem.getUnqualifiedType();
6352      RHSElem = RHSElem.getUnqualifiedType();
6353    }
6354
6355    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6356    if (ResultType.isNull()) return QualType();
6357    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6358      return LHS;
6359    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6360      return RHS;
6361    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6362                                          ArrayType::ArraySizeModifier(), 0);
6363    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6364                                          ArrayType::ArraySizeModifier(), 0);
6365    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6366    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6367    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6368      return LHS;
6369    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6370      return RHS;
6371    if (LVAT) {
6372      // FIXME: This isn't correct! But tricky to implement because
6373      // the array's size has to be the size of LHS, but the type
6374      // has to be different.
6375      return LHS;
6376    }
6377    if (RVAT) {
6378      // FIXME: This isn't correct! But tricky to implement because
6379      // the array's size has to be the size of RHS, but the type
6380      // has to be different.
6381      return RHS;
6382    }
6383    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6384    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6385    return getIncompleteArrayType(ResultType,
6386                                  ArrayType::ArraySizeModifier(), 0);
6387  }
6388  case Type::FunctionNoProto:
6389    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6390  case Type::Record:
6391  case Type::Enum:
6392    return QualType();
6393  case Type::Builtin:
6394    // Only exactly equal builtin types are compatible, which is tested above.
6395    return QualType();
6396  case Type::Complex:
6397    // Distinct complex types are incompatible.
6398    return QualType();
6399  case Type::Vector:
6400    // FIXME: The merged type should be an ExtVector!
6401    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6402                             RHSCan->getAs<VectorType>()))
6403      return LHS;
6404    return QualType();
6405  case Type::ObjCObject: {
6406    // Check if the types are assignment compatible.
6407    // FIXME: This should be type compatibility, e.g. whether
6408    // "LHS x; RHS x;" at global scope is legal.
6409    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6410    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6411    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6412      return LHS;
6413
6414    return QualType();
6415  }
6416  case Type::ObjCObjectPointer: {
6417    if (OfBlockPointer) {
6418      if (canAssignObjCInterfacesInBlockPointer(
6419                                          LHS->getAs<ObjCObjectPointerType>(),
6420                                          RHS->getAs<ObjCObjectPointerType>(),
6421                                          BlockReturnType))
6422        return LHS;
6423      return QualType();
6424    }
6425    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6426                                RHS->getAs<ObjCObjectPointerType>()))
6427      return LHS;
6428
6429    return QualType();
6430  }
6431  }
6432
6433  llvm_unreachable("Invalid Type::Class!");
6434}
6435
6436bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6437                   const FunctionProtoType *FromFunctionType,
6438                   const FunctionProtoType *ToFunctionType) {
6439  if (FromFunctionType->hasAnyConsumedArgs() !=
6440      ToFunctionType->hasAnyConsumedArgs())
6441    return false;
6442  FunctionProtoType::ExtProtoInfo FromEPI =
6443    FromFunctionType->getExtProtoInfo();
6444  FunctionProtoType::ExtProtoInfo ToEPI =
6445    ToFunctionType->getExtProtoInfo();
6446  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6447    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6448         ArgIdx != NumArgs; ++ArgIdx)  {
6449      if (FromEPI.ConsumedArguments[ArgIdx] !=
6450          ToEPI.ConsumedArguments[ArgIdx])
6451        return false;
6452    }
6453  return true;
6454}
6455
6456/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6457/// 'RHS' attributes and returns the merged version; including for function
6458/// return types.
6459QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6460  QualType LHSCan = getCanonicalType(LHS),
6461  RHSCan = getCanonicalType(RHS);
6462  // If two types are identical, they are compatible.
6463  if (LHSCan == RHSCan)
6464    return LHS;
6465  if (RHSCan->isFunctionType()) {
6466    if (!LHSCan->isFunctionType())
6467      return QualType();
6468    QualType OldReturnType =
6469      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6470    QualType NewReturnType =
6471      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6472    QualType ResReturnType =
6473      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6474    if (ResReturnType.isNull())
6475      return QualType();
6476    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6477      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6478      // In either case, use OldReturnType to build the new function type.
6479      const FunctionType *F = LHS->getAs<FunctionType>();
6480      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6481        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6482        EPI.ExtInfo = getFunctionExtInfo(LHS);
6483        QualType ResultType
6484          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6485                            FPT->getNumArgs(), EPI);
6486        return ResultType;
6487      }
6488    }
6489    return QualType();
6490  }
6491
6492  // If the qualifiers are different, the types can still be merged.
6493  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6494  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6495  if (LQuals != RQuals) {
6496    // If any of these qualifiers are different, we have a type mismatch.
6497    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6498        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6499      return QualType();
6500
6501    // Exactly one GC qualifier difference is allowed: __strong is
6502    // okay if the other type has no GC qualifier but is an Objective
6503    // C object pointer (i.e. implicitly strong by default).  We fix
6504    // this by pretending that the unqualified type was actually
6505    // qualified __strong.
6506    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6507    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6508    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6509
6510    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6511      return QualType();
6512
6513    if (GC_L == Qualifiers::Strong)
6514      return LHS;
6515    if (GC_R == Qualifiers::Strong)
6516      return RHS;
6517    return QualType();
6518  }
6519
6520  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6521    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6522    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6523    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6524    if (ResQT == LHSBaseQT)
6525      return LHS;
6526    if (ResQT == RHSBaseQT)
6527      return RHS;
6528  }
6529  return QualType();
6530}
6531
6532//===----------------------------------------------------------------------===//
6533//                         Integer Predicates
6534//===----------------------------------------------------------------------===//
6535
6536unsigned ASTContext::getIntWidth(QualType T) const {
6537  if (const EnumType *ET = dyn_cast<EnumType>(T))
6538    T = ET->getDecl()->getIntegerType();
6539  if (T->isBooleanType())
6540    return 1;
6541  // For builtin types, just use the standard type sizing method
6542  return (unsigned)getTypeSize(T);
6543}
6544
6545QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6546  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6547
6548  // Turn <4 x signed int> -> <4 x unsigned int>
6549  if (const VectorType *VTy = T->getAs<VectorType>())
6550    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6551                         VTy->getNumElements(), VTy->getVectorKind());
6552
6553  // For enums, we return the unsigned version of the base type.
6554  if (const EnumType *ETy = T->getAs<EnumType>())
6555    T = ETy->getDecl()->getIntegerType();
6556
6557  const BuiltinType *BTy = T->getAs<BuiltinType>();
6558  assert(BTy && "Unexpected signed integer type");
6559  switch (BTy->getKind()) {
6560  case BuiltinType::Char_S:
6561  case BuiltinType::SChar:
6562    return UnsignedCharTy;
6563  case BuiltinType::Short:
6564    return UnsignedShortTy;
6565  case BuiltinType::Int:
6566    return UnsignedIntTy;
6567  case BuiltinType::Long:
6568    return UnsignedLongTy;
6569  case BuiltinType::LongLong:
6570    return UnsignedLongLongTy;
6571  case BuiltinType::Int128:
6572    return UnsignedInt128Ty;
6573  default:
6574    llvm_unreachable("Unexpected signed integer type");
6575  }
6576}
6577
6578ASTMutationListener::~ASTMutationListener() { }
6579
6580
6581//===----------------------------------------------------------------------===//
6582//                          Builtin Type Computation
6583//===----------------------------------------------------------------------===//
6584
6585/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6586/// pointer over the consumed characters.  This returns the resultant type.  If
6587/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6588/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6589/// a vector of "i*".
6590///
6591/// RequiresICE is filled in on return to indicate whether the value is required
6592/// to be an Integer Constant Expression.
6593static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6594                                  ASTContext::GetBuiltinTypeError &Error,
6595                                  bool &RequiresICE,
6596                                  bool AllowTypeModifiers) {
6597  // Modifiers.
6598  int HowLong = 0;
6599  bool Signed = false, Unsigned = false;
6600  RequiresICE = false;
6601
6602  // Read the prefixed modifiers first.
6603  bool Done = false;
6604  while (!Done) {
6605    switch (*Str++) {
6606    default: Done = true; --Str; break;
6607    case 'I':
6608      RequiresICE = true;
6609      break;
6610    case 'S':
6611      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6612      assert(!Signed && "Can't use 'S' modifier multiple times!");
6613      Signed = true;
6614      break;
6615    case 'U':
6616      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6617      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6618      Unsigned = true;
6619      break;
6620    case 'L':
6621      assert(HowLong <= 2 && "Can't have LLLL modifier");
6622      ++HowLong;
6623      break;
6624    }
6625  }
6626
6627  QualType Type;
6628
6629  // Read the base type.
6630  switch (*Str++) {
6631  default: llvm_unreachable("Unknown builtin type letter!");
6632  case 'v':
6633    assert(HowLong == 0 && !Signed && !Unsigned &&
6634           "Bad modifiers used with 'v'!");
6635    Type = Context.VoidTy;
6636    break;
6637  case 'f':
6638    assert(HowLong == 0 && !Signed && !Unsigned &&
6639           "Bad modifiers used with 'f'!");
6640    Type = Context.FloatTy;
6641    break;
6642  case 'd':
6643    assert(HowLong < 2 && !Signed && !Unsigned &&
6644           "Bad modifiers used with 'd'!");
6645    if (HowLong)
6646      Type = Context.LongDoubleTy;
6647    else
6648      Type = Context.DoubleTy;
6649    break;
6650  case 's':
6651    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6652    if (Unsigned)
6653      Type = Context.UnsignedShortTy;
6654    else
6655      Type = Context.ShortTy;
6656    break;
6657  case 'i':
6658    if (HowLong == 3)
6659      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6660    else if (HowLong == 2)
6661      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6662    else if (HowLong == 1)
6663      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6664    else
6665      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6666    break;
6667  case 'c':
6668    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6669    if (Signed)
6670      Type = Context.SignedCharTy;
6671    else if (Unsigned)
6672      Type = Context.UnsignedCharTy;
6673    else
6674      Type = Context.CharTy;
6675    break;
6676  case 'b': // boolean
6677    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6678    Type = Context.BoolTy;
6679    break;
6680  case 'z':  // size_t.
6681    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6682    Type = Context.getSizeType();
6683    break;
6684  case 'F':
6685    Type = Context.getCFConstantStringType();
6686    break;
6687  case 'G':
6688    Type = Context.getObjCIdType();
6689    break;
6690  case 'H':
6691    Type = Context.getObjCSelType();
6692    break;
6693  case 'a':
6694    Type = Context.getBuiltinVaListType();
6695    assert(!Type.isNull() && "builtin va list type not initialized!");
6696    break;
6697  case 'A':
6698    // This is a "reference" to a va_list; however, what exactly
6699    // this means depends on how va_list is defined. There are two
6700    // different kinds of va_list: ones passed by value, and ones
6701    // passed by reference.  An example of a by-value va_list is
6702    // x86, where va_list is a char*. An example of by-ref va_list
6703    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6704    // we want this argument to be a char*&; for x86-64, we want
6705    // it to be a __va_list_tag*.
6706    Type = Context.getBuiltinVaListType();
6707    assert(!Type.isNull() && "builtin va list type not initialized!");
6708    if (Type->isArrayType())
6709      Type = Context.getArrayDecayedType(Type);
6710    else
6711      Type = Context.getLValueReferenceType(Type);
6712    break;
6713  case 'V': {
6714    char *End;
6715    unsigned NumElements = strtoul(Str, &End, 10);
6716    assert(End != Str && "Missing vector size");
6717    Str = End;
6718
6719    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6720                                             RequiresICE, false);
6721    assert(!RequiresICE && "Can't require vector ICE");
6722
6723    // TODO: No way to make AltiVec vectors in builtins yet.
6724    Type = Context.getVectorType(ElementType, NumElements,
6725                                 VectorType::GenericVector);
6726    break;
6727  }
6728  case 'E': {
6729    char *End;
6730
6731    unsigned NumElements = strtoul(Str, &End, 10);
6732    assert(End != Str && "Missing vector size");
6733
6734    Str = End;
6735
6736    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6737                                             false);
6738    Type = Context.getExtVectorType(ElementType, NumElements);
6739    break;
6740  }
6741  case 'X': {
6742    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6743                                             false);
6744    assert(!RequiresICE && "Can't require complex ICE");
6745    Type = Context.getComplexType(ElementType);
6746    break;
6747  }
6748  case 'Y' : {
6749    Type = Context.getPointerDiffType();
6750    break;
6751  }
6752  case 'P':
6753    Type = Context.getFILEType();
6754    if (Type.isNull()) {
6755      Error = ASTContext::GE_Missing_stdio;
6756      return QualType();
6757    }
6758    break;
6759  case 'J':
6760    if (Signed)
6761      Type = Context.getsigjmp_bufType();
6762    else
6763      Type = Context.getjmp_bufType();
6764
6765    if (Type.isNull()) {
6766      Error = ASTContext::GE_Missing_setjmp;
6767      return QualType();
6768    }
6769    break;
6770  case 'K':
6771    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6772    Type = Context.getucontext_tType();
6773
6774    if (Type.isNull()) {
6775      Error = ASTContext::GE_Missing_ucontext;
6776      return QualType();
6777    }
6778    break;
6779  }
6780
6781  // If there are modifiers and if we're allowed to parse them, go for it.
6782  Done = !AllowTypeModifiers;
6783  while (!Done) {
6784    switch (char c = *Str++) {
6785    default: Done = true; --Str; break;
6786    case '*':
6787    case '&': {
6788      // Both pointers and references can have their pointee types
6789      // qualified with an address space.
6790      char *End;
6791      unsigned AddrSpace = strtoul(Str, &End, 10);
6792      if (End != Str && AddrSpace != 0) {
6793        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6794        Str = End;
6795      }
6796      if (c == '*')
6797        Type = Context.getPointerType(Type);
6798      else
6799        Type = Context.getLValueReferenceType(Type);
6800      break;
6801    }
6802    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6803    case 'C':
6804      Type = Type.withConst();
6805      break;
6806    case 'D':
6807      Type = Context.getVolatileType(Type);
6808      break;
6809    case 'R':
6810      Type = Type.withRestrict();
6811      break;
6812    }
6813  }
6814
6815  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6816         "Integer constant 'I' type must be an integer");
6817
6818  return Type;
6819}
6820
6821/// GetBuiltinType - Return the type for the specified builtin.
6822QualType ASTContext::GetBuiltinType(unsigned Id,
6823                                    GetBuiltinTypeError &Error,
6824                                    unsigned *IntegerConstantArgs) const {
6825  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6826
6827  SmallVector<QualType, 8> ArgTypes;
6828
6829  bool RequiresICE = false;
6830  Error = GE_None;
6831  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6832                                       RequiresICE, true);
6833  if (Error != GE_None)
6834    return QualType();
6835
6836  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6837
6838  while (TypeStr[0] && TypeStr[0] != '.') {
6839    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6840    if (Error != GE_None)
6841      return QualType();
6842
6843    // If this argument is required to be an IntegerConstantExpression and the
6844    // caller cares, fill in the bitmask we return.
6845    if (RequiresICE && IntegerConstantArgs)
6846      *IntegerConstantArgs |= 1 << ArgTypes.size();
6847
6848    // Do array -> pointer decay.  The builtin should use the decayed type.
6849    if (Ty->isArrayType())
6850      Ty = getArrayDecayedType(Ty);
6851
6852    ArgTypes.push_back(Ty);
6853  }
6854
6855  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6856         "'.' should only occur at end of builtin type list!");
6857
6858  FunctionType::ExtInfo EI;
6859  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6860
6861  bool Variadic = (TypeStr[0] == '.');
6862
6863  // We really shouldn't be making a no-proto type here, especially in C++.
6864  if (ArgTypes.empty() && Variadic)
6865    return getFunctionNoProtoType(ResType, EI);
6866
6867  FunctionProtoType::ExtProtoInfo EPI;
6868  EPI.ExtInfo = EI;
6869  EPI.Variadic = Variadic;
6870
6871  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6872}
6873
6874GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6875  GVALinkage External = GVA_StrongExternal;
6876
6877  Linkage L = FD->getLinkage();
6878  switch (L) {
6879  case NoLinkage:
6880  case InternalLinkage:
6881  case UniqueExternalLinkage:
6882    return GVA_Internal;
6883
6884  case ExternalLinkage:
6885    switch (FD->getTemplateSpecializationKind()) {
6886    case TSK_Undeclared:
6887    case TSK_ExplicitSpecialization:
6888      External = GVA_StrongExternal;
6889      break;
6890
6891    case TSK_ExplicitInstantiationDefinition:
6892      return GVA_ExplicitTemplateInstantiation;
6893
6894    case TSK_ExplicitInstantiationDeclaration:
6895    case TSK_ImplicitInstantiation:
6896      External = GVA_TemplateInstantiation;
6897      break;
6898    }
6899  }
6900
6901  if (!FD->isInlined())
6902    return External;
6903
6904  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6905    // GNU or C99 inline semantics. Determine whether this symbol should be
6906    // externally visible.
6907    if (FD->isInlineDefinitionExternallyVisible())
6908      return External;
6909
6910    // C99 inline semantics, where the symbol is not externally visible.
6911    return GVA_C99Inline;
6912  }
6913
6914  // C++0x [temp.explicit]p9:
6915  //   [ Note: The intent is that an inline function that is the subject of
6916  //   an explicit instantiation declaration will still be implicitly
6917  //   instantiated when used so that the body can be considered for
6918  //   inlining, but that no out-of-line copy of the inline function would be
6919  //   generated in the translation unit. -- end note ]
6920  if (FD->getTemplateSpecializationKind()
6921                                       == TSK_ExplicitInstantiationDeclaration)
6922    return GVA_C99Inline;
6923
6924  return GVA_CXXInline;
6925}
6926
6927GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6928  // If this is a static data member, compute the kind of template
6929  // specialization. Otherwise, this variable is not part of a
6930  // template.
6931  TemplateSpecializationKind TSK = TSK_Undeclared;
6932  if (VD->isStaticDataMember())
6933    TSK = VD->getTemplateSpecializationKind();
6934
6935  Linkage L = VD->getLinkage();
6936  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
6937      VD->getType()->getLinkage() == UniqueExternalLinkage)
6938    L = UniqueExternalLinkage;
6939
6940  switch (L) {
6941  case NoLinkage:
6942  case InternalLinkage:
6943  case UniqueExternalLinkage:
6944    return GVA_Internal;
6945
6946  case ExternalLinkage:
6947    switch (TSK) {
6948    case TSK_Undeclared:
6949    case TSK_ExplicitSpecialization:
6950      return GVA_StrongExternal;
6951
6952    case TSK_ExplicitInstantiationDeclaration:
6953      llvm_unreachable("Variable should not be instantiated");
6954      // Fall through to treat this like any other instantiation.
6955
6956    case TSK_ExplicitInstantiationDefinition:
6957      return GVA_ExplicitTemplateInstantiation;
6958
6959    case TSK_ImplicitInstantiation:
6960      return GVA_TemplateInstantiation;
6961    }
6962  }
6963
6964  llvm_unreachable("Invalid Linkage!");
6965}
6966
6967bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6968  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6969    if (!VD->isFileVarDecl())
6970      return false;
6971  } else if (!isa<FunctionDecl>(D))
6972    return false;
6973
6974  // Weak references don't produce any output by themselves.
6975  if (D->hasAttr<WeakRefAttr>())
6976    return false;
6977
6978  // Aliases and used decls are required.
6979  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6980    return true;
6981
6982  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6983    // Forward declarations aren't required.
6984    if (!FD->doesThisDeclarationHaveABody())
6985      return FD->doesDeclarationForceExternallyVisibleDefinition();
6986
6987    // Constructors and destructors are required.
6988    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6989      return true;
6990
6991    // The key function for a class is required.
6992    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6993      const CXXRecordDecl *RD = MD->getParent();
6994      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6995        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6996        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6997          return true;
6998      }
6999    }
7000
7001    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7002
7003    // static, static inline, always_inline, and extern inline functions can
7004    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7005    // Implicit template instantiations can also be deferred in C++.
7006    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7007        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7008      return false;
7009    return true;
7010  }
7011
7012  const VarDecl *VD = cast<VarDecl>(D);
7013  assert(VD->isFileVarDecl() && "Expected file scoped var");
7014
7015  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7016    return false;
7017
7018  // Structs that have non-trivial constructors or destructors are required.
7019
7020  // FIXME: Handle references.
7021  // FIXME: Be more selective about which constructors we care about.
7022  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
7023    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
7024      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
7025                                   RD->hasTrivialCopyConstructor() &&
7026                                   RD->hasTrivialMoveConstructor() &&
7027                                   RD->hasTrivialDestructor()))
7028        return true;
7029    }
7030  }
7031
7032  GVALinkage L = GetGVALinkageForVariable(VD);
7033  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
7034    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
7035      return false;
7036  }
7037
7038  return true;
7039}
7040
7041CallingConv ASTContext::getDefaultMethodCallConv() {
7042  // Pass through to the C++ ABI object
7043  return ABI->getDefaultMethodCallConv();
7044}
7045
7046bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7047  // Pass through to the C++ ABI object
7048  return ABI->isNearlyEmpty(RD);
7049}
7050
7051MangleContext *ASTContext::createMangleContext() {
7052  switch (Target->getCXXABI()) {
7053  case CXXABI_ARM:
7054  case CXXABI_Itanium:
7055    return createItaniumMangleContext(*this, getDiagnostics());
7056  case CXXABI_Microsoft:
7057    return createMicrosoftMangleContext(*this, getDiagnostics());
7058  }
7059  llvm_unreachable("Unsupported ABI");
7060}
7061
7062CXXABI::~CXXABI() {}
7063
7064size_t ASTContext::getSideTableAllocatedMemory() const {
7065  return ASTRecordLayouts.getMemorySize()
7066    + llvm::capacity_in_bytes(ObjCLayouts)
7067    + llvm::capacity_in_bytes(KeyFunctions)
7068    + llvm::capacity_in_bytes(ObjCImpls)
7069    + llvm::capacity_in_bytes(BlockVarCopyInits)
7070    + llvm::capacity_in_bytes(DeclAttrs)
7071    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7072    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7073    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7074    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7075    + llvm::capacity_in_bytes(OverriddenMethods)
7076    + llvm::capacity_in_bytes(Types)
7077    + llvm::capacity_in_bytes(VariableArrayTypes)
7078    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7079}
7080
7081unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7082  CXXRecordDecl *Lambda = CallOperator->getParent();
7083  return LambdaMangleContexts[Lambda->getDeclContext()]
7084           .getManglingNumber(CallOperator);
7085}
7086
7087
7088void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7089  ParamIndices[D] = index;
7090}
7091
7092unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7093  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7094  assert(I != ParamIndices.end() &&
7095         "ParmIndices lacks entry set by ParmVarDecl");
7096  return I->second;
7097}
7098