ASTContext.cpp revision 8d2dbbf9ddfd9d762a341d83f83d840ff68ce03d
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Support/Capacity.h"
34#include "CXXABI.h"
35#include <map>
36
37using namespace clang;
38
39unsigned ASTContext::NumImplicitDefaultConstructors;
40unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyConstructors;
42unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
43unsigned ASTContext::NumImplicitMoveConstructors;
44unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyAssignmentOperators;
46unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
47unsigned ASTContext::NumImplicitMoveAssignmentOperators;
48unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
49unsigned ASTContext::NumImplicitDestructors;
50unsigned ASTContext::NumImplicitDestructorsDeclared;
51
52enum FloatingRank {
53  HalfRank, FloatRank, DoubleRank, LongDoubleRank
54};
55
56void
57ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
58                                               TemplateTemplateParmDecl *Parm) {
59  ID.AddInteger(Parm->getDepth());
60  ID.AddInteger(Parm->getPosition());
61  ID.AddBoolean(Parm->isParameterPack());
62
63  TemplateParameterList *Params = Parm->getTemplateParameters();
64  ID.AddInteger(Params->size());
65  for (TemplateParameterList::const_iterator P = Params->begin(),
66                                          PEnd = Params->end();
67       P != PEnd; ++P) {
68    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
69      ID.AddInteger(0);
70      ID.AddBoolean(TTP->isParameterPack());
71      continue;
72    }
73
74    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
75      ID.AddInteger(1);
76      ID.AddBoolean(NTTP->isParameterPack());
77      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
78      if (NTTP->isExpandedParameterPack()) {
79        ID.AddBoolean(true);
80        ID.AddInteger(NTTP->getNumExpansionTypes());
81        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
82          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
83      } else
84        ID.AddBoolean(false);
85      continue;
86    }
87
88    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
89    ID.AddInteger(2);
90    Profile(ID, TTP);
91  }
92}
93
94TemplateTemplateParmDecl *
95ASTContext::getCanonicalTemplateTemplateParmDecl(
96                                          TemplateTemplateParmDecl *TTP) const {
97  // Check if we already have a canonical template template parameter.
98  llvm::FoldingSetNodeID ID;
99  CanonicalTemplateTemplateParm::Profile(ID, TTP);
100  void *InsertPos = 0;
101  CanonicalTemplateTemplateParm *Canonical
102    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
103  if (Canonical)
104    return Canonical->getParam();
105
106  // Build a canonical template parameter list.
107  TemplateParameterList *Params = TTP->getTemplateParameters();
108  SmallVector<NamedDecl *, 4> CanonParams;
109  CanonParams.reserve(Params->size());
110  for (TemplateParameterList::const_iterator P = Params->begin(),
111                                          PEnd = Params->end();
112       P != PEnd; ++P) {
113    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
114      CanonParams.push_back(
115                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
116                                               SourceLocation(),
117                                               SourceLocation(),
118                                               TTP->getDepth(),
119                                               TTP->getIndex(), 0, false,
120                                               TTP->isParameterPack()));
121    else if (NonTypeTemplateParmDecl *NTTP
122             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
123      QualType T = getCanonicalType(NTTP->getType());
124      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
125      NonTypeTemplateParmDecl *Param;
126      if (NTTP->isExpandedParameterPack()) {
127        SmallVector<QualType, 2> ExpandedTypes;
128        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
129        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
130          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
131          ExpandedTInfos.push_back(
132                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
133        }
134
135        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
136                                                SourceLocation(),
137                                                SourceLocation(),
138                                                NTTP->getDepth(),
139                                                NTTP->getPosition(), 0,
140                                                T,
141                                                TInfo,
142                                                ExpandedTypes.data(),
143                                                ExpandedTypes.size(),
144                                                ExpandedTInfos.data());
145      } else {
146        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
147                                                SourceLocation(),
148                                                SourceLocation(),
149                                                NTTP->getDepth(),
150                                                NTTP->getPosition(), 0,
151                                                T,
152                                                NTTP->isParameterPack(),
153                                                TInfo);
154      }
155      CanonParams.push_back(Param);
156
157    } else
158      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
159                                           cast<TemplateTemplateParmDecl>(*P)));
160  }
161
162  TemplateTemplateParmDecl *CanonTTP
163    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
164                                       SourceLocation(), TTP->getDepth(),
165                                       TTP->getPosition(),
166                                       TTP->isParameterPack(),
167                                       0,
168                         TemplateParameterList::Create(*this, SourceLocation(),
169                                                       SourceLocation(),
170                                                       CanonParams.data(),
171                                                       CanonParams.size(),
172                                                       SourceLocation()));
173
174  // Get the new insert position for the node we care about.
175  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
176  assert(Canonical == 0 && "Shouldn't be in the map!");
177  (void)Canonical;
178
179  // Create the canonical template template parameter entry.
180  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
181  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
182  return CanonTTP;
183}
184
185CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
186  if (!LangOpts.CPlusPlus) return 0;
187
188  switch (T.getCXXABI()) {
189  case CXXABI_ARM:
190    return CreateARMCXXABI(*this);
191  case CXXABI_Itanium:
192    return CreateItaniumCXXABI(*this);
193  case CXXABI_Microsoft:
194    return CreateMicrosoftCXXABI(*this);
195  }
196  return 0;
197}
198
199static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
200                                             const LangOptions &LOpts) {
201  if (LOpts.FakeAddressSpaceMap) {
202    // The fake address space map must have a distinct entry for each
203    // language-specific address space.
204    static const unsigned FakeAddrSpaceMap[] = {
205      1, // opencl_global
206      2, // opencl_local
207      3  // opencl_constant
208    };
209    return &FakeAddrSpaceMap;
210  } else {
211    return &T.getAddressSpaceMap();
212  }
213}
214
215ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
216                       const TargetInfo *t,
217                       IdentifierTable &idents, SelectorTable &sels,
218                       Builtin::Context &builtins,
219                       unsigned size_reserve,
220                       bool DelayInitialization)
221  : FunctionProtoTypes(this_()),
222    TemplateSpecializationTypes(this_()),
223    DependentTemplateSpecializationTypes(this_()),
224    SubstTemplateTemplateParmPacks(this_()),
225    GlobalNestedNameSpecifier(0),
226    Int128Decl(0), UInt128Decl(0),
227    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0),
228    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
229    FILEDecl(0),
230    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
231    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
232    cudaConfigureCallDecl(0),
233    NullTypeSourceInfo(QualType()),
234    FirstLocalImport(), LastLocalImport(),
235    SourceMgr(SM), LangOpts(LOpts),
236    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
237    Idents(idents), Selectors(sels),
238    BuiltinInfo(builtins),
239    DeclarationNames(*this),
240    ExternalSource(0), Listener(0),
241    LastSDM(0, 0),
242    UniqueBlockByRefTypeID(0)
243{
244  if (size_reserve > 0) Types.reserve(size_reserve);
245  TUDecl = TranslationUnitDecl::Create(*this);
246
247  if (!DelayInitialization) {
248    assert(t && "No target supplied for ASTContext initialization");
249    InitBuiltinTypes(*t);
250  }
251}
252
253ASTContext::~ASTContext() {
254  // Release the DenseMaps associated with DeclContext objects.
255  // FIXME: Is this the ideal solution?
256  ReleaseDeclContextMaps();
257
258  // Call all of the deallocation functions.
259  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
260    Deallocations[I].first(Deallocations[I].second);
261
262  // Release all of the memory associated with overridden C++ methods.
263  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
264         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
265       OM != OMEnd; ++OM)
266    OM->second.Destroy();
267
268  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
269  // because they can contain DenseMaps.
270  for (llvm::DenseMap<const ObjCContainerDecl*,
271       const ASTRecordLayout*>::iterator
272       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
273    // Increment in loop to prevent using deallocated memory.
274    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
275      R->Destroy(*this);
276
277  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
278       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
279    // Increment in loop to prevent using deallocated memory.
280    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
281      R->Destroy(*this);
282  }
283
284  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
285                                                    AEnd = DeclAttrs.end();
286       A != AEnd; ++A)
287    A->second->~AttrVec();
288}
289
290void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
291  Deallocations.push_back(std::make_pair(Callback, Data));
292}
293
294void
295ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
296  ExternalSource.reset(Source.take());
297}
298
299void ASTContext::PrintStats() const {
300  llvm::errs() << "\n*** AST Context Stats:\n";
301  llvm::errs() << "  " << Types.size() << " types total.\n";
302
303  unsigned counts[] = {
304#define TYPE(Name, Parent) 0,
305#define ABSTRACT_TYPE(Name, Parent)
306#include "clang/AST/TypeNodes.def"
307    0 // Extra
308  };
309
310  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
311    Type *T = Types[i];
312    counts[(unsigned)T->getTypeClass()]++;
313  }
314
315  unsigned Idx = 0;
316  unsigned TotalBytes = 0;
317#define TYPE(Name, Parent)                                              \
318  if (counts[Idx])                                                      \
319    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
320                 << " types\n";                                         \
321  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
322  ++Idx;
323#define ABSTRACT_TYPE(Name, Parent)
324#include "clang/AST/TypeNodes.def"
325
326  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
327
328  // Implicit special member functions.
329  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
330               << NumImplicitDefaultConstructors
331               << " implicit default constructors created\n";
332  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
333               << NumImplicitCopyConstructors
334               << " implicit copy constructors created\n";
335  if (getLangOptions().CPlusPlus)
336    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
337                 << NumImplicitMoveConstructors
338                 << " implicit move constructors created\n";
339  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
340               << NumImplicitCopyAssignmentOperators
341               << " implicit copy assignment operators created\n";
342  if (getLangOptions().CPlusPlus)
343    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
344                 << NumImplicitMoveAssignmentOperators
345                 << " implicit move assignment operators created\n";
346  llvm::errs() << NumImplicitDestructorsDeclared << "/"
347               << NumImplicitDestructors
348               << " implicit destructors created\n";
349
350  if (ExternalSource.get()) {
351    llvm::errs() << "\n";
352    ExternalSource->PrintStats();
353  }
354
355  BumpAlloc.PrintStats();
356}
357
358TypedefDecl *ASTContext::getInt128Decl() const {
359  if (!Int128Decl) {
360    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
361    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
362                                     getTranslationUnitDecl(),
363                                     SourceLocation(),
364                                     SourceLocation(),
365                                     &Idents.get("__int128_t"),
366                                     TInfo);
367  }
368
369  return Int128Decl;
370}
371
372TypedefDecl *ASTContext::getUInt128Decl() const {
373  if (!UInt128Decl) {
374    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
375    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
376                                     getTranslationUnitDecl(),
377                                     SourceLocation(),
378                                     SourceLocation(),
379                                     &Idents.get("__uint128_t"),
380                                     TInfo);
381  }
382
383  return UInt128Decl;
384}
385
386void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
387  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
388  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
389  Types.push_back(Ty);
390}
391
392void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
393  assert((!this->Target || this->Target == &Target) &&
394         "Incorrect target reinitialization");
395  assert(VoidTy.isNull() && "Context reinitialized?");
396
397  this->Target = &Target;
398
399  ABI.reset(createCXXABI(Target));
400  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
401
402  // C99 6.2.5p19.
403  InitBuiltinType(VoidTy,              BuiltinType::Void);
404
405  // C99 6.2.5p2.
406  InitBuiltinType(BoolTy,              BuiltinType::Bool);
407  // C99 6.2.5p3.
408  if (LangOpts.CharIsSigned)
409    InitBuiltinType(CharTy,            BuiltinType::Char_S);
410  else
411    InitBuiltinType(CharTy,            BuiltinType::Char_U);
412  // C99 6.2.5p4.
413  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
414  InitBuiltinType(ShortTy,             BuiltinType::Short);
415  InitBuiltinType(IntTy,               BuiltinType::Int);
416  InitBuiltinType(LongTy,              BuiltinType::Long);
417  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
418
419  // C99 6.2.5p6.
420  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
421  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
422  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
423  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
424  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
425
426  // C99 6.2.5p10.
427  InitBuiltinType(FloatTy,             BuiltinType::Float);
428  InitBuiltinType(DoubleTy,            BuiltinType::Double);
429  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
430
431  // GNU extension, 128-bit integers.
432  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
433  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
434
435  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
436    if (TargetInfo::isTypeSigned(Target.getWCharType()))
437      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
438    else  // -fshort-wchar makes wchar_t be unsigned.
439      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
440  } else // C99
441    WCharTy = getFromTargetType(Target.getWCharType());
442
443  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
444    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
445  else // C99
446    Char16Ty = getFromTargetType(Target.getChar16Type());
447
448  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
449    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
450  else // C99
451    Char32Ty = getFromTargetType(Target.getChar32Type());
452
453  // Placeholder type for type-dependent expressions whose type is
454  // completely unknown. No code should ever check a type against
455  // DependentTy and users should never see it; however, it is here to
456  // help diagnose failures to properly check for type-dependent
457  // expressions.
458  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
459
460  // Placeholder type for functions.
461  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
462
463  // Placeholder type for bound members.
464  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
465
466  // Placeholder type for pseudo-objects.
467  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
468
469  // "any" type; useful for debugger-like clients.
470  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
471
472  // Placeholder type for unbridged ARC casts.
473  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
474
475  // C99 6.2.5p11.
476  FloatComplexTy      = getComplexType(FloatTy);
477  DoubleComplexTy     = getComplexType(DoubleTy);
478  LongDoubleComplexTy = getComplexType(LongDoubleTy);
479
480  BuiltinVaListType = QualType();
481
482  // Builtin types for 'id', 'Class', and 'SEL'.
483  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
484  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
485  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
486
487  ObjCConstantStringType = QualType();
488
489  // void * type
490  VoidPtrTy = getPointerType(VoidTy);
491
492  // nullptr type (C++0x 2.14.7)
493  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
494
495  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
496  InitBuiltinType(HalfTy, BuiltinType::Half);
497}
498
499DiagnosticsEngine &ASTContext::getDiagnostics() const {
500  return SourceMgr.getDiagnostics();
501}
502
503AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
504  AttrVec *&Result = DeclAttrs[D];
505  if (!Result) {
506    void *Mem = Allocate(sizeof(AttrVec));
507    Result = new (Mem) AttrVec;
508  }
509
510  return *Result;
511}
512
513/// \brief Erase the attributes corresponding to the given declaration.
514void ASTContext::eraseDeclAttrs(const Decl *D) {
515  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
516  if (Pos != DeclAttrs.end()) {
517    Pos->second->~AttrVec();
518    DeclAttrs.erase(Pos);
519  }
520}
521
522MemberSpecializationInfo *
523ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
524  assert(Var->isStaticDataMember() && "Not a static data member");
525  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
526    = InstantiatedFromStaticDataMember.find(Var);
527  if (Pos == InstantiatedFromStaticDataMember.end())
528    return 0;
529
530  return Pos->second;
531}
532
533void
534ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
535                                                TemplateSpecializationKind TSK,
536                                          SourceLocation PointOfInstantiation) {
537  assert(Inst->isStaticDataMember() && "Not a static data member");
538  assert(Tmpl->isStaticDataMember() && "Not a static data member");
539  assert(!InstantiatedFromStaticDataMember[Inst] &&
540         "Already noted what static data member was instantiated from");
541  InstantiatedFromStaticDataMember[Inst]
542    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
543}
544
545FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
546                                                     const FunctionDecl *FD){
547  assert(FD && "Specialization is 0");
548  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
549    = ClassScopeSpecializationPattern.find(FD);
550  if (Pos == ClassScopeSpecializationPattern.end())
551    return 0;
552
553  return Pos->second;
554}
555
556void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
557                                        FunctionDecl *Pattern) {
558  assert(FD && "Specialization is 0");
559  assert(Pattern && "Class scope specialization pattern is 0");
560  ClassScopeSpecializationPattern[FD] = Pattern;
561}
562
563NamedDecl *
564ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
565  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
566    = InstantiatedFromUsingDecl.find(UUD);
567  if (Pos == InstantiatedFromUsingDecl.end())
568    return 0;
569
570  return Pos->second;
571}
572
573void
574ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
575  assert((isa<UsingDecl>(Pattern) ||
576          isa<UnresolvedUsingValueDecl>(Pattern) ||
577          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
578         "pattern decl is not a using decl");
579  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
580  InstantiatedFromUsingDecl[Inst] = Pattern;
581}
582
583UsingShadowDecl *
584ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
585  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
586    = InstantiatedFromUsingShadowDecl.find(Inst);
587  if (Pos == InstantiatedFromUsingShadowDecl.end())
588    return 0;
589
590  return Pos->second;
591}
592
593void
594ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
595                                               UsingShadowDecl *Pattern) {
596  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
597  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
598}
599
600FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
601  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
602    = InstantiatedFromUnnamedFieldDecl.find(Field);
603  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
604    return 0;
605
606  return Pos->second;
607}
608
609void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
610                                                     FieldDecl *Tmpl) {
611  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
612  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
613  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
614         "Already noted what unnamed field was instantiated from");
615
616  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
617}
618
619bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
620                                    const FieldDecl *LastFD) const {
621  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
622          FD->getBitWidthValue(*this) == 0);
623}
624
625bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
626                                             const FieldDecl *LastFD) const {
627  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
628          FD->getBitWidthValue(*this) == 0 &&
629          LastFD->getBitWidthValue(*this) != 0);
630}
631
632bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
633                                         const FieldDecl *LastFD) const {
634  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
635          FD->getBitWidthValue(*this) &&
636          LastFD->getBitWidthValue(*this));
637}
638
639bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
640                                         const FieldDecl *LastFD) const {
641  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
642          LastFD->getBitWidthValue(*this));
643}
644
645bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
646                                             const FieldDecl *LastFD) const {
647  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
648          FD->getBitWidthValue(*this));
649}
650
651ASTContext::overridden_cxx_method_iterator
652ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
653  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
654    = OverriddenMethods.find(Method);
655  if (Pos == OverriddenMethods.end())
656    return 0;
657
658  return Pos->second.begin();
659}
660
661ASTContext::overridden_cxx_method_iterator
662ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
663  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
664    = OverriddenMethods.find(Method);
665  if (Pos == OverriddenMethods.end())
666    return 0;
667
668  return Pos->second.end();
669}
670
671unsigned
672ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
673  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
674    = OverriddenMethods.find(Method);
675  if (Pos == OverriddenMethods.end())
676    return 0;
677
678  return Pos->second.size();
679}
680
681void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
682                                     const CXXMethodDecl *Overridden) {
683  OverriddenMethods[Method].push_back(Overridden);
684}
685
686void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
687  assert(!Import->NextLocalImport && "Import declaration already in the chain");
688  assert(!Import->isFromASTFile() && "Non-local import declaration");
689  if (!FirstLocalImport) {
690    FirstLocalImport = Import;
691    LastLocalImport = Import;
692    return;
693  }
694
695  LastLocalImport->NextLocalImport = Import;
696  LastLocalImport = Import;
697}
698
699//===----------------------------------------------------------------------===//
700//                         Type Sizing and Analysis
701//===----------------------------------------------------------------------===//
702
703/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
704/// scalar floating point type.
705const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
706  const BuiltinType *BT = T->getAs<BuiltinType>();
707  assert(BT && "Not a floating point type!");
708  switch (BT->getKind()) {
709  default: llvm_unreachable("Not a floating point type!");
710  case BuiltinType::Half:       return Target->getHalfFormat();
711  case BuiltinType::Float:      return Target->getFloatFormat();
712  case BuiltinType::Double:     return Target->getDoubleFormat();
713  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
714  }
715}
716
717/// getDeclAlign - Return a conservative estimate of the alignment of the
718/// specified decl.  Note that bitfields do not have a valid alignment, so
719/// this method will assert on them.
720/// If @p RefAsPointee, references are treated like their underlying type
721/// (for alignof), else they're treated like pointers (for CodeGen).
722CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
723  unsigned Align = Target->getCharWidth();
724
725  bool UseAlignAttrOnly = false;
726  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
727    Align = AlignFromAttr;
728
729    // __attribute__((aligned)) can increase or decrease alignment
730    // *except* on a struct or struct member, where it only increases
731    // alignment unless 'packed' is also specified.
732    //
733    // It is an error for alignas to decrease alignment, so we can
734    // ignore that possibility;  Sema should diagnose it.
735    if (isa<FieldDecl>(D)) {
736      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
737        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
738    } else {
739      UseAlignAttrOnly = true;
740    }
741  }
742  else if (isa<FieldDecl>(D))
743      UseAlignAttrOnly =
744        D->hasAttr<PackedAttr>() ||
745        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
746
747  // If we're using the align attribute only, just ignore everything
748  // else about the declaration and its type.
749  if (UseAlignAttrOnly) {
750    // do nothing
751
752  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
753    QualType T = VD->getType();
754    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
755      if (RefAsPointee)
756        T = RT->getPointeeType();
757      else
758        T = getPointerType(RT->getPointeeType());
759    }
760    if (!T->isIncompleteType() && !T->isFunctionType()) {
761      // Adjust alignments of declarations with array type by the
762      // large-array alignment on the target.
763      unsigned MinWidth = Target->getLargeArrayMinWidth();
764      const ArrayType *arrayType;
765      if (MinWidth && (arrayType = getAsArrayType(T))) {
766        if (isa<VariableArrayType>(arrayType))
767          Align = std::max(Align, Target->getLargeArrayAlign());
768        else if (isa<ConstantArrayType>(arrayType) &&
769                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
770          Align = std::max(Align, Target->getLargeArrayAlign());
771
772        // Walk through any array types while we're at it.
773        T = getBaseElementType(arrayType);
774      }
775      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
776    }
777
778    // Fields can be subject to extra alignment constraints, like if
779    // the field is packed, the struct is packed, or the struct has a
780    // a max-field-alignment constraint (#pragma pack).  So calculate
781    // the actual alignment of the field within the struct, and then
782    // (as we're expected to) constrain that by the alignment of the type.
783    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
784      // So calculate the alignment of the field.
785      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
786
787      // Start with the record's overall alignment.
788      unsigned fieldAlign = toBits(layout.getAlignment());
789
790      // Use the GCD of that and the offset within the record.
791      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
792      if (offset > 0) {
793        // Alignment is always a power of 2, so the GCD will be a power of 2,
794        // which means we get to do this crazy thing instead of Euclid's.
795        uint64_t lowBitOfOffset = offset & (~offset + 1);
796        if (lowBitOfOffset < fieldAlign)
797          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
798      }
799
800      Align = std::min(Align, fieldAlign);
801    }
802  }
803
804  return toCharUnitsFromBits(Align);
805}
806
807std::pair<CharUnits, CharUnits>
808ASTContext::getTypeInfoInChars(const Type *T) const {
809  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
810  return std::make_pair(toCharUnitsFromBits(Info.first),
811                        toCharUnitsFromBits(Info.second));
812}
813
814std::pair<CharUnits, CharUnits>
815ASTContext::getTypeInfoInChars(QualType T) const {
816  return getTypeInfoInChars(T.getTypePtr());
817}
818
819/// getTypeSize - Return the size of the specified type, in bits.  This method
820/// does not work on incomplete types.
821///
822/// FIXME: Pointers into different addr spaces could have different sizes and
823/// alignment requirements: getPointerInfo should take an AddrSpace, this
824/// should take a QualType, &c.
825std::pair<uint64_t, unsigned>
826ASTContext::getTypeInfo(const Type *T) const {
827  uint64_t Width=0;
828  unsigned Align=8;
829  switch (T->getTypeClass()) {
830#define TYPE(Class, Base)
831#define ABSTRACT_TYPE(Class, Base)
832#define NON_CANONICAL_TYPE(Class, Base)
833#define DEPENDENT_TYPE(Class, Base) case Type::Class:
834#include "clang/AST/TypeNodes.def"
835    llvm_unreachable("Should not see dependent types");
836    break;
837
838  case Type::FunctionNoProto:
839  case Type::FunctionProto:
840    // GCC extension: alignof(function) = 32 bits
841    Width = 0;
842    Align = 32;
843    break;
844
845  case Type::IncompleteArray:
846  case Type::VariableArray:
847    Width = 0;
848    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
849    break;
850
851  case Type::ConstantArray: {
852    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
853
854    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
855    uint64_t Size = CAT->getSize().getZExtValue();
856    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) && "Overflow in array type bit size evaluation");
857    Width = EltInfo.first*Size;
858    Align = EltInfo.second;
859    Width = llvm::RoundUpToAlignment(Width, Align);
860    break;
861  }
862  case Type::ExtVector:
863  case Type::Vector: {
864    const VectorType *VT = cast<VectorType>(T);
865    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
866    Width = EltInfo.first*VT->getNumElements();
867    Align = Width;
868    // If the alignment is not a power of 2, round up to the next power of 2.
869    // This happens for non-power-of-2 length vectors.
870    if (Align & (Align-1)) {
871      Align = llvm::NextPowerOf2(Align);
872      Width = llvm::RoundUpToAlignment(Width, Align);
873    }
874    break;
875  }
876
877  case Type::Builtin:
878    switch (cast<BuiltinType>(T)->getKind()) {
879    default: llvm_unreachable("Unknown builtin type!");
880    case BuiltinType::Void:
881      // GCC extension: alignof(void) = 8 bits.
882      Width = 0;
883      Align = 8;
884      break;
885
886    case BuiltinType::Bool:
887      Width = Target->getBoolWidth();
888      Align = Target->getBoolAlign();
889      break;
890    case BuiltinType::Char_S:
891    case BuiltinType::Char_U:
892    case BuiltinType::UChar:
893    case BuiltinType::SChar:
894      Width = Target->getCharWidth();
895      Align = Target->getCharAlign();
896      break;
897    case BuiltinType::WChar_S:
898    case BuiltinType::WChar_U:
899      Width = Target->getWCharWidth();
900      Align = Target->getWCharAlign();
901      break;
902    case BuiltinType::Char16:
903      Width = Target->getChar16Width();
904      Align = Target->getChar16Align();
905      break;
906    case BuiltinType::Char32:
907      Width = Target->getChar32Width();
908      Align = Target->getChar32Align();
909      break;
910    case BuiltinType::UShort:
911    case BuiltinType::Short:
912      Width = Target->getShortWidth();
913      Align = Target->getShortAlign();
914      break;
915    case BuiltinType::UInt:
916    case BuiltinType::Int:
917      Width = Target->getIntWidth();
918      Align = Target->getIntAlign();
919      break;
920    case BuiltinType::ULong:
921    case BuiltinType::Long:
922      Width = Target->getLongWidth();
923      Align = Target->getLongAlign();
924      break;
925    case BuiltinType::ULongLong:
926    case BuiltinType::LongLong:
927      Width = Target->getLongLongWidth();
928      Align = Target->getLongLongAlign();
929      break;
930    case BuiltinType::Int128:
931    case BuiltinType::UInt128:
932      Width = 128;
933      Align = 128; // int128_t is 128-bit aligned on all targets.
934      break;
935    case BuiltinType::Half:
936      Width = Target->getHalfWidth();
937      Align = Target->getHalfAlign();
938      break;
939    case BuiltinType::Float:
940      Width = Target->getFloatWidth();
941      Align = Target->getFloatAlign();
942      break;
943    case BuiltinType::Double:
944      Width = Target->getDoubleWidth();
945      Align = Target->getDoubleAlign();
946      break;
947    case BuiltinType::LongDouble:
948      Width = Target->getLongDoubleWidth();
949      Align = Target->getLongDoubleAlign();
950      break;
951    case BuiltinType::NullPtr:
952      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
953      Align = Target->getPointerAlign(0); //   == sizeof(void*)
954      break;
955    case BuiltinType::ObjCId:
956    case BuiltinType::ObjCClass:
957    case BuiltinType::ObjCSel:
958      Width = Target->getPointerWidth(0);
959      Align = Target->getPointerAlign(0);
960      break;
961    }
962    break;
963  case Type::ObjCObjectPointer:
964    Width = Target->getPointerWidth(0);
965    Align = Target->getPointerAlign(0);
966    break;
967  case Type::BlockPointer: {
968    unsigned AS = getTargetAddressSpace(
969        cast<BlockPointerType>(T)->getPointeeType());
970    Width = Target->getPointerWidth(AS);
971    Align = Target->getPointerAlign(AS);
972    break;
973  }
974  case Type::LValueReference:
975  case Type::RValueReference: {
976    // alignof and sizeof should never enter this code path here, so we go
977    // the pointer route.
978    unsigned AS = getTargetAddressSpace(
979        cast<ReferenceType>(T)->getPointeeType());
980    Width = Target->getPointerWidth(AS);
981    Align = Target->getPointerAlign(AS);
982    break;
983  }
984  case Type::Pointer: {
985    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
986    Width = Target->getPointerWidth(AS);
987    Align = Target->getPointerAlign(AS);
988    break;
989  }
990  case Type::MemberPointer: {
991    const MemberPointerType *MPT = cast<MemberPointerType>(T);
992    std::pair<uint64_t, unsigned> PtrDiffInfo =
993      getTypeInfo(getPointerDiffType());
994    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
995    Align = PtrDiffInfo.second;
996    break;
997  }
998  case Type::Complex: {
999    // Complex types have the same alignment as their elements, but twice the
1000    // size.
1001    std::pair<uint64_t, unsigned> EltInfo =
1002      getTypeInfo(cast<ComplexType>(T)->getElementType());
1003    Width = EltInfo.first*2;
1004    Align = EltInfo.second;
1005    break;
1006  }
1007  case Type::ObjCObject:
1008    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1009  case Type::ObjCInterface: {
1010    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1011    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1012    Width = toBits(Layout.getSize());
1013    Align = toBits(Layout.getAlignment());
1014    break;
1015  }
1016  case Type::Record:
1017  case Type::Enum: {
1018    const TagType *TT = cast<TagType>(T);
1019
1020    if (TT->getDecl()->isInvalidDecl()) {
1021      Width = 8;
1022      Align = 8;
1023      break;
1024    }
1025
1026    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1027      return getTypeInfo(ET->getDecl()->getIntegerType());
1028
1029    const RecordType *RT = cast<RecordType>(TT);
1030    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1031    Width = toBits(Layout.getSize());
1032    Align = toBits(Layout.getAlignment());
1033    break;
1034  }
1035
1036  case Type::SubstTemplateTypeParm:
1037    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1038                       getReplacementType().getTypePtr());
1039
1040  case Type::Auto: {
1041    const AutoType *A = cast<AutoType>(T);
1042    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1043    return getTypeInfo(A->getDeducedType().getTypePtr());
1044  }
1045
1046  case Type::Paren:
1047    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1048
1049  case Type::Typedef: {
1050    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1051    std::pair<uint64_t, unsigned> Info
1052      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1053    // If the typedef has an aligned attribute on it, it overrides any computed
1054    // alignment we have.  This violates the GCC documentation (which says that
1055    // attribute(aligned) can only round up) but matches its implementation.
1056    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1057      Align = AttrAlign;
1058    else
1059      Align = Info.second;
1060    Width = Info.first;
1061    break;
1062  }
1063
1064  case Type::TypeOfExpr:
1065    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1066                         .getTypePtr());
1067
1068  case Type::TypeOf:
1069    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1070
1071  case Type::Decltype:
1072    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1073                        .getTypePtr());
1074
1075  case Type::UnaryTransform:
1076    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1077
1078  case Type::Elaborated:
1079    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1080
1081  case Type::Attributed:
1082    return getTypeInfo(
1083                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1084
1085  case Type::TemplateSpecialization: {
1086    assert(getCanonicalType(T) != T &&
1087           "Cannot request the size of a dependent type");
1088    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1089    // A type alias template specialization may refer to a typedef with the
1090    // aligned attribute on it.
1091    if (TST->isTypeAlias())
1092      return getTypeInfo(TST->getAliasedType().getTypePtr());
1093    else
1094      return getTypeInfo(getCanonicalType(T));
1095  }
1096
1097  case Type::Atomic: {
1098    std::pair<uint64_t, unsigned> Info
1099      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1100    Width = Info.first;
1101    Align = Info.second;
1102    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1103        llvm::isPowerOf2_64(Width)) {
1104      // We can potentially perform lock-free atomic operations for this
1105      // type; promote the alignment appropriately.
1106      // FIXME: We could potentially promote the width here as well...
1107      // is that worthwhile?  (Non-struct atomic types generally have
1108      // power-of-two size anyway, but structs might not.  Requires a bit
1109      // of implementation work to make sure we zero out the extra bits.)
1110      Align = static_cast<unsigned>(Width);
1111    }
1112  }
1113
1114  }
1115
1116  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1117  return std::make_pair(Width, Align);
1118}
1119
1120/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1121CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1122  return CharUnits::fromQuantity(BitSize / getCharWidth());
1123}
1124
1125/// toBits - Convert a size in characters to a size in characters.
1126int64_t ASTContext::toBits(CharUnits CharSize) const {
1127  return CharSize.getQuantity() * getCharWidth();
1128}
1129
1130/// getTypeSizeInChars - Return the size of the specified type, in characters.
1131/// This method does not work on incomplete types.
1132CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1133  return toCharUnitsFromBits(getTypeSize(T));
1134}
1135CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1136  return toCharUnitsFromBits(getTypeSize(T));
1137}
1138
1139/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1140/// characters. This method does not work on incomplete types.
1141CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1142  return toCharUnitsFromBits(getTypeAlign(T));
1143}
1144CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1145  return toCharUnitsFromBits(getTypeAlign(T));
1146}
1147
1148/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1149/// type for the current target in bits.  This can be different than the ABI
1150/// alignment in cases where it is beneficial for performance to overalign
1151/// a data type.
1152unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1153  unsigned ABIAlign = getTypeAlign(T);
1154
1155  // Double and long long should be naturally aligned if possible.
1156  if (const ComplexType* CT = T->getAs<ComplexType>())
1157    T = CT->getElementType().getTypePtr();
1158  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1159      T->isSpecificBuiltinType(BuiltinType::LongLong))
1160    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1161
1162  return ABIAlign;
1163}
1164
1165/// DeepCollectObjCIvars -
1166/// This routine first collects all declared, but not synthesized, ivars in
1167/// super class and then collects all ivars, including those synthesized for
1168/// current class. This routine is used for implementation of current class
1169/// when all ivars, declared and synthesized are known.
1170///
1171void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1172                                      bool leafClass,
1173                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1174  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1175    DeepCollectObjCIvars(SuperClass, false, Ivars);
1176  if (!leafClass) {
1177    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1178         E = OI->ivar_end(); I != E; ++I)
1179      Ivars.push_back(*I);
1180  } else {
1181    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1182    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1183         Iv= Iv->getNextIvar())
1184      Ivars.push_back(Iv);
1185  }
1186}
1187
1188/// CollectInheritedProtocols - Collect all protocols in current class and
1189/// those inherited by it.
1190void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1191                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1192  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1193    // We can use protocol_iterator here instead of
1194    // all_referenced_protocol_iterator since we are walking all categories.
1195    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1196         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1197      ObjCProtocolDecl *Proto = (*P);
1198      Protocols.insert(Proto);
1199      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1200           PE = Proto->protocol_end(); P != PE; ++P) {
1201        Protocols.insert(*P);
1202        CollectInheritedProtocols(*P, Protocols);
1203      }
1204    }
1205
1206    // Categories of this Interface.
1207    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1208         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1209      CollectInheritedProtocols(CDeclChain, Protocols);
1210    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1211      while (SD) {
1212        CollectInheritedProtocols(SD, Protocols);
1213        SD = SD->getSuperClass();
1214      }
1215  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1216    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1217         PE = OC->protocol_end(); P != PE; ++P) {
1218      ObjCProtocolDecl *Proto = (*P);
1219      Protocols.insert(Proto);
1220      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1221           PE = Proto->protocol_end(); P != PE; ++P)
1222        CollectInheritedProtocols(*P, Protocols);
1223    }
1224  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1225    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1226         PE = OP->protocol_end(); P != PE; ++P) {
1227      ObjCProtocolDecl *Proto = (*P);
1228      Protocols.insert(Proto);
1229      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1230           PE = Proto->protocol_end(); P != PE; ++P)
1231        CollectInheritedProtocols(*P, Protocols);
1232    }
1233  }
1234}
1235
1236unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1237  unsigned count = 0;
1238  // Count ivars declared in class extension.
1239  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1240       CDecl = CDecl->getNextClassExtension())
1241    count += CDecl->ivar_size();
1242
1243  // Count ivar defined in this class's implementation.  This
1244  // includes synthesized ivars.
1245  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1246    count += ImplDecl->ivar_size();
1247
1248  return count;
1249}
1250
1251/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1252ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1253  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1254    I = ObjCImpls.find(D);
1255  if (I != ObjCImpls.end())
1256    return cast<ObjCImplementationDecl>(I->second);
1257  return 0;
1258}
1259/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1260ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1261  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1262    I = ObjCImpls.find(D);
1263  if (I != ObjCImpls.end())
1264    return cast<ObjCCategoryImplDecl>(I->second);
1265  return 0;
1266}
1267
1268/// \brief Set the implementation of ObjCInterfaceDecl.
1269void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1270                           ObjCImplementationDecl *ImplD) {
1271  assert(IFaceD && ImplD && "Passed null params");
1272  ObjCImpls[IFaceD] = ImplD;
1273}
1274/// \brief Set the implementation of ObjCCategoryDecl.
1275void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1276                           ObjCCategoryImplDecl *ImplD) {
1277  assert(CatD && ImplD && "Passed null params");
1278  ObjCImpls[CatD] = ImplD;
1279}
1280
1281ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1282  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1283    return ID;
1284  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1285    return CD->getClassInterface();
1286  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1287    return IMD->getClassInterface();
1288
1289  return 0;
1290}
1291
1292/// \brief Get the copy initialization expression of VarDecl,or NULL if
1293/// none exists.
1294Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1295  assert(VD && "Passed null params");
1296  assert(VD->hasAttr<BlocksAttr>() &&
1297         "getBlockVarCopyInits - not __block var");
1298  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1299    I = BlockVarCopyInits.find(VD);
1300  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1301}
1302
1303/// \brief Set the copy inialization expression of a block var decl.
1304void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1305  assert(VD && Init && "Passed null params");
1306  assert(VD->hasAttr<BlocksAttr>() &&
1307         "setBlockVarCopyInits - not __block var");
1308  BlockVarCopyInits[VD] = Init;
1309}
1310
1311/// \brief Allocate an uninitialized TypeSourceInfo.
1312///
1313/// The caller should initialize the memory held by TypeSourceInfo using
1314/// the TypeLoc wrappers.
1315///
1316/// \param T the type that will be the basis for type source info. This type
1317/// should refer to how the declarator was written in source code, not to
1318/// what type semantic analysis resolved the declarator to.
1319TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1320                                                 unsigned DataSize) const {
1321  if (!DataSize)
1322    DataSize = TypeLoc::getFullDataSizeForType(T);
1323  else
1324    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1325           "incorrect data size provided to CreateTypeSourceInfo!");
1326
1327  TypeSourceInfo *TInfo =
1328    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1329  new (TInfo) TypeSourceInfo(T);
1330  return TInfo;
1331}
1332
1333TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1334                                                     SourceLocation L) const {
1335  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1336  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1337  return DI;
1338}
1339
1340const ASTRecordLayout &
1341ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1342  return getObjCLayout(D, 0);
1343}
1344
1345const ASTRecordLayout &
1346ASTContext::getASTObjCImplementationLayout(
1347                                        const ObjCImplementationDecl *D) const {
1348  return getObjCLayout(D->getClassInterface(), D);
1349}
1350
1351//===----------------------------------------------------------------------===//
1352//                   Type creation/memoization methods
1353//===----------------------------------------------------------------------===//
1354
1355QualType
1356ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1357  unsigned fastQuals = quals.getFastQualifiers();
1358  quals.removeFastQualifiers();
1359
1360  // Check if we've already instantiated this type.
1361  llvm::FoldingSetNodeID ID;
1362  ExtQuals::Profile(ID, baseType, quals);
1363  void *insertPos = 0;
1364  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1365    assert(eq->getQualifiers() == quals);
1366    return QualType(eq, fastQuals);
1367  }
1368
1369  // If the base type is not canonical, make the appropriate canonical type.
1370  QualType canon;
1371  if (!baseType->isCanonicalUnqualified()) {
1372    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1373    canonSplit.second.addConsistentQualifiers(quals);
1374    canon = getExtQualType(canonSplit.first, canonSplit.second);
1375
1376    // Re-find the insert position.
1377    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1378  }
1379
1380  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1381  ExtQualNodes.InsertNode(eq, insertPos);
1382  return QualType(eq, fastQuals);
1383}
1384
1385QualType
1386ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1387  QualType CanT = getCanonicalType(T);
1388  if (CanT.getAddressSpace() == AddressSpace)
1389    return T;
1390
1391  // If we are composing extended qualifiers together, merge together
1392  // into one ExtQuals node.
1393  QualifierCollector Quals;
1394  const Type *TypeNode = Quals.strip(T);
1395
1396  // If this type already has an address space specified, it cannot get
1397  // another one.
1398  assert(!Quals.hasAddressSpace() &&
1399         "Type cannot be in multiple addr spaces!");
1400  Quals.addAddressSpace(AddressSpace);
1401
1402  return getExtQualType(TypeNode, Quals);
1403}
1404
1405QualType ASTContext::getObjCGCQualType(QualType T,
1406                                       Qualifiers::GC GCAttr) const {
1407  QualType CanT = getCanonicalType(T);
1408  if (CanT.getObjCGCAttr() == GCAttr)
1409    return T;
1410
1411  if (const PointerType *ptr = T->getAs<PointerType>()) {
1412    QualType Pointee = ptr->getPointeeType();
1413    if (Pointee->isAnyPointerType()) {
1414      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1415      return getPointerType(ResultType);
1416    }
1417  }
1418
1419  // If we are composing extended qualifiers together, merge together
1420  // into one ExtQuals node.
1421  QualifierCollector Quals;
1422  const Type *TypeNode = Quals.strip(T);
1423
1424  // If this type already has an ObjCGC specified, it cannot get
1425  // another one.
1426  assert(!Quals.hasObjCGCAttr() &&
1427         "Type cannot have multiple ObjCGCs!");
1428  Quals.addObjCGCAttr(GCAttr);
1429
1430  return getExtQualType(TypeNode, Quals);
1431}
1432
1433const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1434                                                   FunctionType::ExtInfo Info) {
1435  if (T->getExtInfo() == Info)
1436    return T;
1437
1438  QualType Result;
1439  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1440    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1441  } else {
1442    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1443    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1444    EPI.ExtInfo = Info;
1445    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1446                             FPT->getNumArgs(), EPI);
1447  }
1448
1449  return cast<FunctionType>(Result.getTypePtr());
1450}
1451
1452/// getComplexType - Return the uniqued reference to the type for a complex
1453/// number with the specified element type.
1454QualType ASTContext::getComplexType(QualType T) const {
1455  // Unique pointers, to guarantee there is only one pointer of a particular
1456  // structure.
1457  llvm::FoldingSetNodeID ID;
1458  ComplexType::Profile(ID, T);
1459
1460  void *InsertPos = 0;
1461  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1462    return QualType(CT, 0);
1463
1464  // If the pointee type isn't canonical, this won't be a canonical type either,
1465  // so fill in the canonical type field.
1466  QualType Canonical;
1467  if (!T.isCanonical()) {
1468    Canonical = getComplexType(getCanonicalType(T));
1469
1470    // Get the new insert position for the node we care about.
1471    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1472    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1473  }
1474  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1475  Types.push_back(New);
1476  ComplexTypes.InsertNode(New, InsertPos);
1477  return QualType(New, 0);
1478}
1479
1480/// getPointerType - Return the uniqued reference to the type for a pointer to
1481/// the specified type.
1482QualType ASTContext::getPointerType(QualType T) const {
1483  // Unique pointers, to guarantee there is only one pointer of a particular
1484  // structure.
1485  llvm::FoldingSetNodeID ID;
1486  PointerType::Profile(ID, T);
1487
1488  void *InsertPos = 0;
1489  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1490    return QualType(PT, 0);
1491
1492  // If the pointee type isn't canonical, this won't be a canonical type either,
1493  // so fill in the canonical type field.
1494  QualType Canonical;
1495  if (!T.isCanonical()) {
1496    Canonical = getPointerType(getCanonicalType(T));
1497
1498    // Get the new insert position for the node we care about.
1499    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1500    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1501  }
1502  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1503  Types.push_back(New);
1504  PointerTypes.InsertNode(New, InsertPos);
1505  return QualType(New, 0);
1506}
1507
1508/// getBlockPointerType - Return the uniqued reference to the type for
1509/// a pointer to the specified block.
1510QualType ASTContext::getBlockPointerType(QualType T) const {
1511  assert(T->isFunctionType() && "block of function types only");
1512  // Unique pointers, to guarantee there is only one block of a particular
1513  // structure.
1514  llvm::FoldingSetNodeID ID;
1515  BlockPointerType::Profile(ID, T);
1516
1517  void *InsertPos = 0;
1518  if (BlockPointerType *PT =
1519        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1520    return QualType(PT, 0);
1521
1522  // If the block pointee type isn't canonical, this won't be a canonical
1523  // type either so fill in the canonical type field.
1524  QualType Canonical;
1525  if (!T.isCanonical()) {
1526    Canonical = getBlockPointerType(getCanonicalType(T));
1527
1528    // Get the new insert position for the node we care about.
1529    BlockPointerType *NewIP =
1530      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1531    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1532  }
1533  BlockPointerType *New
1534    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1535  Types.push_back(New);
1536  BlockPointerTypes.InsertNode(New, InsertPos);
1537  return QualType(New, 0);
1538}
1539
1540/// getLValueReferenceType - Return the uniqued reference to the type for an
1541/// lvalue reference to the specified type.
1542QualType
1543ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1544  assert(getCanonicalType(T) != OverloadTy &&
1545         "Unresolved overloaded function type");
1546
1547  // Unique pointers, to guarantee there is only one pointer of a particular
1548  // structure.
1549  llvm::FoldingSetNodeID ID;
1550  ReferenceType::Profile(ID, T, SpelledAsLValue);
1551
1552  void *InsertPos = 0;
1553  if (LValueReferenceType *RT =
1554        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1555    return QualType(RT, 0);
1556
1557  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1558
1559  // If the referencee type isn't canonical, this won't be a canonical type
1560  // either, so fill in the canonical type field.
1561  QualType Canonical;
1562  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1563    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1564    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1565
1566    // Get the new insert position for the node we care about.
1567    LValueReferenceType *NewIP =
1568      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1569    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1570  }
1571
1572  LValueReferenceType *New
1573    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1574                                                     SpelledAsLValue);
1575  Types.push_back(New);
1576  LValueReferenceTypes.InsertNode(New, InsertPos);
1577
1578  return QualType(New, 0);
1579}
1580
1581/// getRValueReferenceType - Return the uniqued reference to the type for an
1582/// rvalue reference to the specified type.
1583QualType ASTContext::getRValueReferenceType(QualType T) const {
1584  // Unique pointers, to guarantee there is only one pointer of a particular
1585  // structure.
1586  llvm::FoldingSetNodeID ID;
1587  ReferenceType::Profile(ID, T, false);
1588
1589  void *InsertPos = 0;
1590  if (RValueReferenceType *RT =
1591        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1592    return QualType(RT, 0);
1593
1594  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1595
1596  // If the referencee type isn't canonical, this won't be a canonical type
1597  // either, so fill in the canonical type field.
1598  QualType Canonical;
1599  if (InnerRef || !T.isCanonical()) {
1600    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1601    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1602
1603    // Get the new insert position for the node we care about.
1604    RValueReferenceType *NewIP =
1605      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1606    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1607  }
1608
1609  RValueReferenceType *New
1610    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1611  Types.push_back(New);
1612  RValueReferenceTypes.InsertNode(New, InsertPos);
1613  return QualType(New, 0);
1614}
1615
1616/// getMemberPointerType - Return the uniqued reference to the type for a
1617/// member pointer to the specified type, in the specified class.
1618QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1619  // Unique pointers, to guarantee there is only one pointer of a particular
1620  // structure.
1621  llvm::FoldingSetNodeID ID;
1622  MemberPointerType::Profile(ID, T, Cls);
1623
1624  void *InsertPos = 0;
1625  if (MemberPointerType *PT =
1626      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1627    return QualType(PT, 0);
1628
1629  // If the pointee or class type isn't canonical, this won't be a canonical
1630  // type either, so fill in the canonical type field.
1631  QualType Canonical;
1632  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1633    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1634
1635    // Get the new insert position for the node we care about.
1636    MemberPointerType *NewIP =
1637      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1638    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1639  }
1640  MemberPointerType *New
1641    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1642  Types.push_back(New);
1643  MemberPointerTypes.InsertNode(New, InsertPos);
1644  return QualType(New, 0);
1645}
1646
1647/// getConstantArrayType - Return the unique reference to the type for an
1648/// array of the specified element type.
1649QualType ASTContext::getConstantArrayType(QualType EltTy,
1650                                          const llvm::APInt &ArySizeIn,
1651                                          ArrayType::ArraySizeModifier ASM,
1652                                          unsigned IndexTypeQuals) const {
1653  assert((EltTy->isDependentType() ||
1654          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1655         "Constant array of VLAs is illegal!");
1656
1657  // Convert the array size into a canonical width matching the pointer size for
1658  // the target.
1659  llvm::APInt ArySize(ArySizeIn);
1660  ArySize =
1661    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1662
1663  llvm::FoldingSetNodeID ID;
1664  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1665
1666  void *InsertPos = 0;
1667  if (ConstantArrayType *ATP =
1668      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1669    return QualType(ATP, 0);
1670
1671  // If the element type isn't canonical or has qualifiers, this won't
1672  // be a canonical type either, so fill in the canonical type field.
1673  QualType Canon;
1674  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1675    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1676    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1677                                 ASM, IndexTypeQuals);
1678    Canon = getQualifiedType(Canon, canonSplit.second);
1679
1680    // Get the new insert position for the node we care about.
1681    ConstantArrayType *NewIP =
1682      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1683    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1684  }
1685
1686  ConstantArrayType *New = new(*this,TypeAlignment)
1687    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1688  ConstantArrayTypes.InsertNode(New, InsertPos);
1689  Types.push_back(New);
1690  return QualType(New, 0);
1691}
1692
1693/// getVariableArrayDecayedType - Turns the given type, which may be
1694/// variably-modified, into the corresponding type with all the known
1695/// sizes replaced with [*].
1696QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1697  // Vastly most common case.
1698  if (!type->isVariablyModifiedType()) return type;
1699
1700  QualType result;
1701
1702  SplitQualType split = type.getSplitDesugaredType();
1703  const Type *ty = split.first;
1704  switch (ty->getTypeClass()) {
1705#define TYPE(Class, Base)
1706#define ABSTRACT_TYPE(Class, Base)
1707#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1708#include "clang/AST/TypeNodes.def"
1709    llvm_unreachable("didn't desugar past all non-canonical types?");
1710
1711  // These types should never be variably-modified.
1712  case Type::Builtin:
1713  case Type::Complex:
1714  case Type::Vector:
1715  case Type::ExtVector:
1716  case Type::DependentSizedExtVector:
1717  case Type::ObjCObject:
1718  case Type::ObjCInterface:
1719  case Type::ObjCObjectPointer:
1720  case Type::Record:
1721  case Type::Enum:
1722  case Type::UnresolvedUsing:
1723  case Type::TypeOfExpr:
1724  case Type::TypeOf:
1725  case Type::Decltype:
1726  case Type::UnaryTransform:
1727  case Type::DependentName:
1728  case Type::InjectedClassName:
1729  case Type::TemplateSpecialization:
1730  case Type::DependentTemplateSpecialization:
1731  case Type::TemplateTypeParm:
1732  case Type::SubstTemplateTypeParmPack:
1733  case Type::Auto:
1734  case Type::PackExpansion:
1735    llvm_unreachable("type should never be variably-modified");
1736
1737  // These types can be variably-modified but should never need to
1738  // further decay.
1739  case Type::FunctionNoProto:
1740  case Type::FunctionProto:
1741  case Type::BlockPointer:
1742  case Type::MemberPointer:
1743    return type;
1744
1745  // These types can be variably-modified.  All these modifications
1746  // preserve structure except as noted by comments.
1747  // TODO: if we ever care about optimizing VLAs, there are no-op
1748  // optimizations available here.
1749  case Type::Pointer:
1750    result = getPointerType(getVariableArrayDecayedType(
1751                              cast<PointerType>(ty)->getPointeeType()));
1752    break;
1753
1754  case Type::LValueReference: {
1755    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1756    result = getLValueReferenceType(
1757                 getVariableArrayDecayedType(lv->getPointeeType()),
1758                                    lv->isSpelledAsLValue());
1759    break;
1760  }
1761
1762  case Type::RValueReference: {
1763    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1764    result = getRValueReferenceType(
1765                 getVariableArrayDecayedType(lv->getPointeeType()));
1766    break;
1767  }
1768
1769  case Type::Atomic: {
1770    const AtomicType *at = cast<AtomicType>(ty);
1771    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1772    break;
1773  }
1774
1775  case Type::ConstantArray: {
1776    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1777    result = getConstantArrayType(
1778                 getVariableArrayDecayedType(cat->getElementType()),
1779                                  cat->getSize(),
1780                                  cat->getSizeModifier(),
1781                                  cat->getIndexTypeCVRQualifiers());
1782    break;
1783  }
1784
1785  case Type::DependentSizedArray: {
1786    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1787    result = getDependentSizedArrayType(
1788                 getVariableArrayDecayedType(dat->getElementType()),
1789                                        dat->getSizeExpr(),
1790                                        dat->getSizeModifier(),
1791                                        dat->getIndexTypeCVRQualifiers(),
1792                                        dat->getBracketsRange());
1793    break;
1794  }
1795
1796  // Turn incomplete types into [*] types.
1797  case Type::IncompleteArray: {
1798    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1799    result = getVariableArrayType(
1800                 getVariableArrayDecayedType(iat->getElementType()),
1801                                  /*size*/ 0,
1802                                  ArrayType::Normal,
1803                                  iat->getIndexTypeCVRQualifiers(),
1804                                  SourceRange());
1805    break;
1806  }
1807
1808  // Turn VLA types into [*] types.
1809  case Type::VariableArray: {
1810    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1811    result = getVariableArrayType(
1812                 getVariableArrayDecayedType(vat->getElementType()),
1813                                  /*size*/ 0,
1814                                  ArrayType::Star,
1815                                  vat->getIndexTypeCVRQualifiers(),
1816                                  vat->getBracketsRange());
1817    break;
1818  }
1819  }
1820
1821  // Apply the top-level qualifiers from the original.
1822  return getQualifiedType(result, split.second);
1823}
1824
1825/// getVariableArrayType - Returns a non-unique reference to the type for a
1826/// variable array of the specified element type.
1827QualType ASTContext::getVariableArrayType(QualType EltTy,
1828                                          Expr *NumElts,
1829                                          ArrayType::ArraySizeModifier ASM,
1830                                          unsigned IndexTypeQuals,
1831                                          SourceRange Brackets) const {
1832  // Since we don't unique expressions, it isn't possible to unique VLA's
1833  // that have an expression provided for their size.
1834  QualType Canon;
1835
1836  // Be sure to pull qualifiers off the element type.
1837  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1838    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1839    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1840                                 IndexTypeQuals, Brackets);
1841    Canon = getQualifiedType(Canon, canonSplit.second);
1842  }
1843
1844  VariableArrayType *New = new(*this, TypeAlignment)
1845    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1846
1847  VariableArrayTypes.push_back(New);
1848  Types.push_back(New);
1849  return QualType(New, 0);
1850}
1851
1852/// getDependentSizedArrayType - Returns a non-unique reference to
1853/// the type for a dependently-sized array of the specified element
1854/// type.
1855QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1856                                                Expr *numElements,
1857                                                ArrayType::ArraySizeModifier ASM,
1858                                                unsigned elementTypeQuals,
1859                                                SourceRange brackets) const {
1860  assert((!numElements || numElements->isTypeDependent() ||
1861          numElements->isValueDependent()) &&
1862         "Size must be type- or value-dependent!");
1863
1864  // Dependently-sized array types that do not have a specified number
1865  // of elements will have their sizes deduced from a dependent
1866  // initializer.  We do no canonicalization here at all, which is okay
1867  // because they can't be used in most locations.
1868  if (!numElements) {
1869    DependentSizedArrayType *newType
1870      = new (*this, TypeAlignment)
1871          DependentSizedArrayType(*this, elementType, QualType(),
1872                                  numElements, ASM, elementTypeQuals,
1873                                  brackets);
1874    Types.push_back(newType);
1875    return QualType(newType, 0);
1876  }
1877
1878  // Otherwise, we actually build a new type every time, but we
1879  // also build a canonical type.
1880
1881  SplitQualType canonElementType = getCanonicalType(elementType).split();
1882
1883  void *insertPos = 0;
1884  llvm::FoldingSetNodeID ID;
1885  DependentSizedArrayType::Profile(ID, *this,
1886                                   QualType(canonElementType.first, 0),
1887                                   ASM, elementTypeQuals, numElements);
1888
1889  // Look for an existing type with these properties.
1890  DependentSizedArrayType *canonTy =
1891    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1892
1893  // If we don't have one, build one.
1894  if (!canonTy) {
1895    canonTy = new (*this, TypeAlignment)
1896      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1897                              QualType(), numElements, ASM, elementTypeQuals,
1898                              brackets);
1899    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1900    Types.push_back(canonTy);
1901  }
1902
1903  // Apply qualifiers from the element type to the array.
1904  QualType canon = getQualifiedType(QualType(canonTy,0),
1905                                    canonElementType.second);
1906
1907  // If we didn't need extra canonicalization for the element type,
1908  // then just use that as our result.
1909  if (QualType(canonElementType.first, 0) == elementType)
1910    return canon;
1911
1912  // Otherwise, we need to build a type which follows the spelling
1913  // of the element type.
1914  DependentSizedArrayType *sugaredType
1915    = new (*this, TypeAlignment)
1916        DependentSizedArrayType(*this, elementType, canon, numElements,
1917                                ASM, elementTypeQuals, brackets);
1918  Types.push_back(sugaredType);
1919  return QualType(sugaredType, 0);
1920}
1921
1922QualType ASTContext::getIncompleteArrayType(QualType elementType,
1923                                            ArrayType::ArraySizeModifier ASM,
1924                                            unsigned elementTypeQuals) const {
1925  llvm::FoldingSetNodeID ID;
1926  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1927
1928  void *insertPos = 0;
1929  if (IncompleteArrayType *iat =
1930       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1931    return QualType(iat, 0);
1932
1933  // If the element type isn't canonical, this won't be a canonical type
1934  // either, so fill in the canonical type field.  We also have to pull
1935  // qualifiers off the element type.
1936  QualType canon;
1937
1938  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1939    SplitQualType canonSplit = getCanonicalType(elementType).split();
1940    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1941                                   ASM, elementTypeQuals);
1942    canon = getQualifiedType(canon, canonSplit.second);
1943
1944    // Get the new insert position for the node we care about.
1945    IncompleteArrayType *existing =
1946      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1947    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1948  }
1949
1950  IncompleteArrayType *newType = new (*this, TypeAlignment)
1951    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1952
1953  IncompleteArrayTypes.InsertNode(newType, insertPos);
1954  Types.push_back(newType);
1955  return QualType(newType, 0);
1956}
1957
1958/// getVectorType - Return the unique reference to a vector type of
1959/// the specified element type and size. VectorType must be a built-in type.
1960QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1961                                   VectorType::VectorKind VecKind) const {
1962  assert(vecType->isBuiltinType());
1963
1964  // Check if we've already instantiated a vector of this type.
1965  llvm::FoldingSetNodeID ID;
1966  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1967
1968  void *InsertPos = 0;
1969  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1970    return QualType(VTP, 0);
1971
1972  // If the element type isn't canonical, this won't be a canonical type either,
1973  // so fill in the canonical type field.
1974  QualType Canonical;
1975  if (!vecType.isCanonical()) {
1976    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1977
1978    // Get the new insert position for the node we care about.
1979    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1980    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1981  }
1982  VectorType *New = new (*this, TypeAlignment)
1983    VectorType(vecType, NumElts, Canonical, VecKind);
1984  VectorTypes.InsertNode(New, InsertPos);
1985  Types.push_back(New);
1986  return QualType(New, 0);
1987}
1988
1989/// getExtVectorType - Return the unique reference to an extended vector type of
1990/// the specified element type and size. VectorType must be a built-in type.
1991QualType
1992ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1993  assert(vecType->isBuiltinType() || vecType->isDependentType());
1994
1995  // Check if we've already instantiated a vector of this type.
1996  llvm::FoldingSetNodeID ID;
1997  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1998                      VectorType::GenericVector);
1999  void *InsertPos = 0;
2000  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2001    return QualType(VTP, 0);
2002
2003  // If the element type isn't canonical, this won't be a canonical type either,
2004  // so fill in the canonical type field.
2005  QualType Canonical;
2006  if (!vecType.isCanonical()) {
2007    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2008
2009    // Get the new insert position for the node we care about.
2010    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2011    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2012  }
2013  ExtVectorType *New = new (*this, TypeAlignment)
2014    ExtVectorType(vecType, NumElts, Canonical);
2015  VectorTypes.InsertNode(New, InsertPos);
2016  Types.push_back(New);
2017  return QualType(New, 0);
2018}
2019
2020QualType
2021ASTContext::getDependentSizedExtVectorType(QualType vecType,
2022                                           Expr *SizeExpr,
2023                                           SourceLocation AttrLoc) const {
2024  llvm::FoldingSetNodeID ID;
2025  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2026                                       SizeExpr);
2027
2028  void *InsertPos = 0;
2029  DependentSizedExtVectorType *Canon
2030    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2031  DependentSizedExtVectorType *New;
2032  if (Canon) {
2033    // We already have a canonical version of this array type; use it as
2034    // the canonical type for a newly-built type.
2035    New = new (*this, TypeAlignment)
2036      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2037                                  SizeExpr, AttrLoc);
2038  } else {
2039    QualType CanonVecTy = getCanonicalType(vecType);
2040    if (CanonVecTy == vecType) {
2041      New = new (*this, TypeAlignment)
2042        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2043                                    AttrLoc);
2044
2045      DependentSizedExtVectorType *CanonCheck
2046        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2047      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2048      (void)CanonCheck;
2049      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2050    } else {
2051      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2052                                                      SourceLocation());
2053      New = new (*this, TypeAlignment)
2054        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2055    }
2056  }
2057
2058  Types.push_back(New);
2059  return QualType(New, 0);
2060}
2061
2062/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2063///
2064QualType
2065ASTContext::getFunctionNoProtoType(QualType ResultTy,
2066                                   const FunctionType::ExtInfo &Info) const {
2067  const CallingConv DefaultCC = Info.getCC();
2068  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2069                               CC_X86StdCall : DefaultCC;
2070  // Unique functions, to guarantee there is only one function of a particular
2071  // structure.
2072  llvm::FoldingSetNodeID ID;
2073  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2074
2075  void *InsertPos = 0;
2076  if (FunctionNoProtoType *FT =
2077        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2078    return QualType(FT, 0);
2079
2080  QualType Canonical;
2081  if (!ResultTy.isCanonical() ||
2082      getCanonicalCallConv(CallConv) != CallConv) {
2083    Canonical =
2084      getFunctionNoProtoType(getCanonicalType(ResultTy),
2085                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2086
2087    // Get the new insert position for the node we care about.
2088    FunctionNoProtoType *NewIP =
2089      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2090    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2091  }
2092
2093  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2094  FunctionNoProtoType *New = new (*this, TypeAlignment)
2095    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2096  Types.push_back(New);
2097  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2098  return QualType(New, 0);
2099}
2100
2101/// getFunctionType - Return a normal function type with a typed argument
2102/// list.  isVariadic indicates whether the argument list includes '...'.
2103QualType
2104ASTContext::getFunctionType(QualType ResultTy,
2105                            const QualType *ArgArray, unsigned NumArgs,
2106                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2107  // Unique functions, to guarantee there is only one function of a particular
2108  // structure.
2109  llvm::FoldingSetNodeID ID;
2110  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2111
2112  void *InsertPos = 0;
2113  if (FunctionProtoType *FTP =
2114        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2115    return QualType(FTP, 0);
2116
2117  // Determine whether the type being created is already canonical or not.
2118  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
2119  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2120    if (!ArgArray[i].isCanonicalAsParam())
2121      isCanonical = false;
2122
2123  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2124  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2125                               CC_X86StdCall : DefaultCC;
2126
2127  // If this type isn't canonical, get the canonical version of it.
2128  // The exception spec is not part of the canonical type.
2129  QualType Canonical;
2130  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2131    SmallVector<QualType, 16> CanonicalArgs;
2132    CanonicalArgs.reserve(NumArgs);
2133    for (unsigned i = 0; i != NumArgs; ++i)
2134      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2135
2136    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2137    CanonicalEPI.ExceptionSpecType = EST_None;
2138    CanonicalEPI.NumExceptions = 0;
2139    CanonicalEPI.ExtInfo
2140      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2141
2142    Canonical = getFunctionType(getCanonicalType(ResultTy),
2143                                CanonicalArgs.data(), NumArgs,
2144                                CanonicalEPI);
2145
2146    // Get the new insert position for the node we care about.
2147    FunctionProtoType *NewIP =
2148      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2149    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2150  }
2151
2152  // FunctionProtoType objects are allocated with extra bytes after
2153  // them for three variable size arrays at the end:
2154  //  - parameter types
2155  //  - exception types
2156  //  - consumed-arguments flags
2157  // Instead of the exception types, there could be a noexcept
2158  // expression.
2159  size_t Size = sizeof(FunctionProtoType) +
2160                NumArgs * sizeof(QualType);
2161  if (EPI.ExceptionSpecType == EST_Dynamic)
2162    Size += EPI.NumExceptions * sizeof(QualType);
2163  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2164    Size += sizeof(Expr*);
2165  }
2166  if (EPI.ConsumedArguments)
2167    Size += NumArgs * sizeof(bool);
2168
2169  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2170  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2171  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2172  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2173  Types.push_back(FTP);
2174  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2175  return QualType(FTP, 0);
2176}
2177
2178#ifndef NDEBUG
2179static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2180  if (!isa<CXXRecordDecl>(D)) return false;
2181  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2182  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2183    return true;
2184  if (RD->getDescribedClassTemplate() &&
2185      !isa<ClassTemplateSpecializationDecl>(RD))
2186    return true;
2187  return false;
2188}
2189#endif
2190
2191/// getInjectedClassNameType - Return the unique reference to the
2192/// injected class name type for the specified templated declaration.
2193QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2194                                              QualType TST) const {
2195  assert(NeedsInjectedClassNameType(Decl));
2196  if (Decl->TypeForDecl) {
2197    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2198  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
2199    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2200    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2201    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2202  } else {
2203    Type *newType =
2204      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2205    Decl->TypeForDecl = newType;
2206    Types.push_back(newType);
2207  }
2208  return QualType(Decl->TypeForDecl, 0);
2209}
2210
2211/// getTypeDeclType - Return the unique reference to the type for the
2212/// specified type declaration.
2213QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2214  assert(Decl && "Passed null for Decl param");
2215  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2216
2217  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2218    return getTypedefType(Typedef);
2219
2220  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2221         "Template type parameter types are always available.");
2222
2223  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2224    assert(!Record->getPreviousDeclaration() &&
2225           "struct/union has previous declaration");
2226    assert(!NeedsInjectedClassNameType(Record));
2227    return getRecordType(Record);
2228  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2229    assert(!Enum->getPreviousDeclaration() &&
2230           "enum has previous declaration");
2231    return getEnumType(Enum);
2232  } else if (const UnresolvedUsingTypenameDecl *Using =
2233               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2234    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2235    Decl->TypeForDecl = newType;
2236    Types.push_back(newType);
2237  } else
2238    llvm_unreachable("TypeDecl without a type?");
2239
2240  return QualType(Decl->TypeForDecl, 0);
2241}
2242
2243/// getTypedefType - Return the unique reference to the type for the
2244/// specified typedef name decl.
2245QualType
2246ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2247                           QualType Canonical) const {
2248  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2249
2250  if (Canonical.isNull())
2251    Canonical = getCanonicalType(Decl->getUnderlyingType());
2252  TypedefType *newType = new(*this, TypeAlignment)
2253    TypedefType(Type::Typedef, Decl, Canonical);
2254  Decl->TypeForDecl = newType;
2255  Types.push_back(newType);
2256  return QualType(newType, 0);
2257}
2258
2259QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2260  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2261
2262  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2263    if (PrevDecl->TypeForDecl)
2264      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2265
2266  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2267  Decl->TypeForDecl = newType;
2268  Types.push_back(newType);
2269  return QualType(newType, 0);
2270}
2271
2272QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2273  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2274
2275  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2276    if (PrevDecl->TypeForDecl)
2277      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2278
2279  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2280  Decl->TypeForDecl = newType;
2281  Types.push_back(newType);
2282  return QualType(newType, 0);
2283}
2284
2285QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2286                                       QualType modifiedType,
2287                                       QualType equivalentType) {
2288  llvm::FoldingSetNodeID id;
2289  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2290
2291  void *insertPos = 0;
2292  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2293  if (type) return QualType(type, 0);
2294
2295  QualType canon = getCanonicalType(equivalentType);
2296  type = new (*this, TypeAlignment)
2297           AttributedType(canon, attrKind, modifiedType, equivalentType);
2298
2299  Types.push_back(type);
2300  AttributedTypes.InsertNode(type, insertPos);
2301
2302  return QualType(type, 0);
2303}
2304
2305
2306/// \brief Retrieve a substitution-result type.
2307QualType
2308ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2309                                         QualType Replacement) const {
2310  assert(Replacement.isCanonical()
2311         && "replacement types must always be canonical");
2312
2313  llvm::FoldingSetNodeID ID;
2314  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2315  void *InsertPos = 0;
2316  SubstTemplateTypeParmType *SubstParm
2317    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2318
2319  if (!SubstParm) {
2320    SubstParm = new (*this, TypeAlignment)
2321      SubstTemplateTypeParmType(Parm, Replacement);
2322    Types.push_back(SubstParm);
2323    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2324  }
2325
2326  return QualType(SubstParm, 0);
2327}
2328
2329/// \brief Retrieve a
2330QualType ASTContext::getSubstTemplateTypeParmPackType(
2331                                          const TemplateTypeParmType *Parm,
2332                                              const TemplateArgument &ArgPack) {
2333#ifndef NDEBUG
2334  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2335                                    PEnd = ArgPack.pack_end();
2336       P != PEnd; ++P) {
2337    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2338    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2339  }
2340#endif
2341
2342  llvm::FoldingSetNodeID ID;
2343  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2344  void *InsertPos = 0;
2345  if (SubstTemplateTypeParmPackType *SubstParm
2346        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2347    return QualType(SubstParm, 0);
2348
2349  QualType Canon;
2350  if (!Parm->isCanonicalUnqualified()) {
2351    Canon = getCanonicalType(QualType(Parm, 0));
2352    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2353                                             ArgPack);
2354    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2355  }
2356
2357  SubstTemplateTypeParmPackType *SubstParm
2358    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2359                                                               ArgPack);
2360  Types.push_back(SubstParm);
2361  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2362  return QualType(SubstParm, 0);
2363}
2364
2365/// \brief Retrieve the template type parameter type for a template
2366/// parameter or parameter pack with the given depth, index, and (optionally)
2367/// name.
2368QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2369                                             bool ParameterPack,
2370                                             TemplateTypeParmDecl *TTPDecl) const {
2371  llvm::FoldingSetNodeID ID;
2372  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2373  void *InsertPos = 0;
2374  TemplateTypeParmType *TypeParm
2375    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2376
2377  if (TypeParm)
2378    return QualType(TypeParm, 0);
2379
2380  if (TTPDecl) {
2381    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2382    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2383
2384    TemplateTypeParmType *TypeCheck
2385      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2386    assert(!TypeCheck && "Template type parameter canonical type broken");
2387    (void)TypeCheck;
2388  } else
2389    TypeParm = new (*this, TypeAlignment)
2390      TemplateTypeParmType(Depth, Index, ParameterPack);
2391
2392  Types.push_back(TypeParm);
2393  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2394
2395  return QualType(TypeParm, 0);
2396}
2397
2398TypeSourceInfo *
2399ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2400                                              SourceLocation NameLoc,
2401                                        const TemplateArgumentListInfo &Args,
2402                                              QualType Underlying) const {
2403  assert(!Name.getAsDependentTemplateName() &&
2404         "No dependent template names here!");
2405  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2406
2407  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2408  TemplateSpecializationTypeLoc TL
2409    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2410  TL.setTemplateNameLoc(NameLoc);
2411  TL.setLAngleLoc(Args.getLAngleLoc());
2412  TL.setRAngleLoc(Args.getRAngleLoc());
2413  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2414    TL.setArgLocInfo(i, Args[i].getLocInfo());
2415  return DI;
2416}
2417
2418QualType
2419ASTContext::getTemplateSpecializationType(TemplateName Template,
2420                                          const TemplateArgumentListInfo &Args,
2421                                          QualType Underlying) const {
2422  assert(!Template.getAsDependentTemplateName() &&
2423         "No dependent template names here!");
2424
2425  unsigned NumArgs = Args.size();
2426
2427  SmallVector<TemplateArgument, 4> ArgVec;
2428  ArgVec.reserve(NumArgs);
2429  for (unsigned i = 0; i != NumArgs; ++i)
2430    ArgVec.push_back(Args[i].getArgument());
2431
2432  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2433                                       Underlying);
2434}
2435
2436QualType
2437ASTContext::getTemplateSpecializationType(TemplateName Template,
2438                                          const TemplateArgument *Args,
2439                                          unsigned NumArgs,
2440                                          QualType Underlying) const {
2441  assert(!Template.getAsDependentTemplateName() &&
2442         "No dependent template names here!");
2443  // Look through qualified template names.
2444  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2445    Template = TemplateName(QTN->getTemplateDecl());
2446
2447  bool isTypeAlias =
2448    Template.getAsTemplateDecl() &&
2449    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2450
2451  QualType CanonType;
2452  if (!Underlying.isNull())
2453    CanonType = getCanonicalType(Underlying);
2454  else {
2455    assert(!isTypeAlias &&
2456           "Underlying type for template alias must be computed by caller");
2457    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2458                                                       NumArgs);
2459  }
2460
2461  // Allocate the (non-canonical) template specialization type, but don't
2462  // try to unique it: these types typically have location information that
2463  // we don't unique and don't want to lose.
2464  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2465                       sizeof(TemplateArgument) * NumArgs +
2466                       (isTypeAlias ? sizeof(QualType) : 0),
2467                       TypeAlignment);
2468  TemplateSpecializationType *Spec
2469    = new (Mem) TemplateSpecializationType(Template,
2470                                           Args, NumArgs,
2471                                           CanonType,
2472                                         isTypeAlias ? Underlying : QualType());
2473
2474  Types.push_back(Spec);
2475  return QualType(Spec, 0);
2476}
2477
2478QualType
2479ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2480                                                   const TemplateArgument *Args,
2481                                                   unsigned NumArgs) const {
2482  assert(!Template.getAsDependentTemplateName() &&
2483         "No dependent template names here!");
2484  assert((!Template.getAsTemplateDecl() ||
2485          !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2486         "Underlying type for template alias must be computed by caller");
2487
2488  // Look through qualified template names.
2489  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2490    Template = TemplateName(QTN->getTemplateDecl());
2491
2492  // Build the canonical template specialization type.
2493  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2494  SmallVector<TemplateArgument, 4> CanonArgs;
2495  CanonArgs.reserve(NumArgs);
2496  for (unsigned I = 0; I != NumArgs; ++I)
2497    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2498
2499  // Determine whether this canonical template specialization type already
2500  // exists.
2501  llvm::FoldingSetNodeID ID;
2502  TemplateSpecializationType::Profile(ID, CanonTemplate,
2503                                      CanonArgs.data(), NumArgs, *this);
2504
2505  void *InsertPos = 0;
2506  TemplateSpecializationType *Spec
2507    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2508
2509  if (!Spec) {
2510    // Allocate a new canonical template specialization type.
2511    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2512                          sizeof(TemplateArgument) * NumArgs),
2513                         TypeAlignment);
2514    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2515                                                CanonArgs.data(), NumArgs,
2516                                                QualType(), QualType());
2517    Types.push_back(Spec);
2518    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2519  }
2520
2521  assert(Spec->isDependentType() &&
2522         "Non-dependent template-id type must have a canonical type");
2523  return QualType(Spec, 0);
2524}
2525
2526QualType
2527ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2528                              NestedNameSpecifier *NNS,
2529                              QualType NamedType) const {
2530  llvm::FoldingSetNodeID ID;
2531  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2532
2533  void *InsertPos = 0;
2534  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2535  if (T)
2536    return QualType(T, 0);
2537
2538  QualType Canon = NamedType;
2539  if (!Canon.isCanonical()) {
2540    Canon = getCanonicalType(NamedType);
2541    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2542    assert(!CheckT && "Elaborated canonical type broken");
2543    (void)CheckT;
2544  }
2545
2546  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2547  Types.push_back(T);
2548  ElaboratedTypes.InsertNode(T, InsertPos);
2549  return QualType(T, 0);
2550}
2551
2552QualType
2553ASTContext::getParenType(QualType InnerType) const {
2554  llvm::FoldingSetNodeID ID;
2555  ParenType::Profile(ID, InnerType);
2556
2557  void *InsertPos = 0;
2558  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2559  if (T)
2560    return QualType(T, 0);
2561
2562  QualType Canon = InnerType;
2563  if (!Canon.isCanonical()) {
2564    Canon = getCanonicalType(InnerType);
2565    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2566    assert(!CheckT && "Paren canonical type broken");
2567    (void)CheckT;
2568  }
2569
2570  T = new (*this) ParenType(InnerType, Canon);
2571  Types.push_back(T);
2572  ParenTypes.InsertNode(T, InsertPos);
2573  return QualType(T, 0);
2574}
2575
2576QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2577                                          NestedNameSpecifier *NNS,
2578                                          const IdentifierInfo *Name,
2579                                          QualType Canon) const {
2580  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2581
2582  if (Canon.isNull()) {
2583    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2584    ElaboratedTypeKeyword CanonKeyword = Keyword;
2585    if (Keyword == ETK_None)
2586      CanonKeyword = ETK_Typename;
2587
2588    if (CanonNNS != NNS || CanonKeyword != Keyword)
2589      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2590  }
2591
2592  llvm::FoldingSetNodeID ID;
2593  DependentNameType::Profile(ID, Keyword, NNS, Name);
2594
2595  void *InsertPos = 0;
2596  DependentNameType *T
2597    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2598  if (T)
2599    return QualType(T, 0);
2600
2601  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2602  Types.push_back(T);
2603  DependentNameTypes.InsertNode(T, InsertPos);
2604  return QualType(T, 0);
2605}
2606
2607QualType
2608ASTContext::getDependentTemplateSpecializationType(
2609                                 ElaboratedTypeKeyword Keyword,
2610                                 NestedNameSpecifier *NNS,
2611                                 const IdentifierInfo *Name,
2612                                 const TemplateArgumentListInfo &Args) const {
2613  // TODO: avoid this copy
2614  SmallVector<TemplateArgument, 16> ArgCopy;
2615  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2616    ArgCopy.push_back(Args[I].getArgument());
2617  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2618                                                ArgCopy.size(),
2619                                                ArgCopy.data());
2620}
2621
2622QualType
2623ASTContext::getDependentTemplateSpecializationType(
2624                                 ElaboratedTypeKeyword Keyword,
2625                                 NestedNameSpecifier *NNS,
2626                                 const IdentifierInfo *Name,
2627                                 unsigned NumArgs,
2628                                 const TemplateArgument *Args) const {
2629  assert((!NNS || NNS->isDependent()) &&
2630         "nested-name-specifier must be dependent");
2631
2632  llvm::FoldingSetNodeID ID;
2633  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2634                                               Name, NumArgs, Args);
2635
2636  void *InsertPos = 0;
2637  DependentTemplateSpecializationType *T
2638    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2639  if (T)
2640    return QualType(T, 0);
2641
2642  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2643
2644  ElaboratedTypeKeyword CanonKeyword = Keyword;
2645  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2646
2647  bool AnyNonCanonArgs = false;
2648  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2649  for (unsigned I = 0; I != NumArgs; ++I) {
2650    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2651    if (!CanonArgs[I].structurallyEquals(Args[I]))
2652      AnyNonCanonArgs = true;
2653  }
2654
2655  QualType Canon;
2656  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2657    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2658                                                   Name, NumArgs,
2659                                                   CanonArgs.data());
2660
2661    // Find the insert position again.
2662    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2663  }
2664
2665  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2666                        sizeof(TemplateArgument) * NumArgs),
2667                       TypeAlignment);
2668  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2669                                                    Name, NumArgs, Args, Canon);
2670  Types.push_back(T);
2671  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2672  return QualType(T, 0);
2673}
2674
2675QualType ASTContext::getPackExpansionType(QualType Pattern,
2676                                      llvm::Optional<unsigned> NumExpansions) {
2677  llvm::FoldingSetNodeID ID;
2678  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2679
2680  assert(Pattern->containsUnexpandedParameterPack() &&
2681         "Pack expansions must expand one or more parameter packs");
2682  void *InsertPos = 0;
2683  PackExpansionType *T
2684    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2685  if (T)
2686    return QualType(T, 0);
2687
2688  QualType Canon;
2689  if (!Pattern.isCanonical()) {
2690    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2691
2692    // Find the insert position again.
2693    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2694  }
2695
2696  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2697  Types.push_back(T);
2698  PackExpansionTypes.InsertNode(T, InsertPos);
2699  return QualType(T, 0);
2700}
2701
2702/// CmpProtocolNames - Comparison predicate for sorting protocols
2703/// alphabetically.
2704static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2705                            const ObjCProtocolDecl *RHS) {
2706  return LHS->getDeclName() < RHS->getDeclName();
2707}
2708
2709static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2710                                unsigned NumProtocols) {
2711  if (NumProtocols == 0) return true;
2712
2713  for (unsigned i = 1; i != NumProtocols; ++i)
2714    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2715      return false;
2716  return true;
2717}
2718
2719static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2720                                   unsigned &NumProtocols) {
2721  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2722
2723  // Sort protocols, keyed by name.
2724  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2725
2726  // Remove duplicates.
2727  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2728  NumProtocols = ProtocolsEnd-Protocols;
2729}
2730
2731QualType ASTContext::getObjCObjectType(QualType BaseType,
2732                                       ObjCProtocolDecl * const *Protocols,
2733                                       unsigned NumProtocols) const {
2734  // If the base type is an interface and there aren't any protocols
2735  // to add, then the interface type will do just fine.
2736  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2737    return BaseType;
2738
2739  // Look in the folding set for an existing type.
2740  llvm::FoldingSetNodeID ID;
2741  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2742  void *InsertPos = 0;
2743  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2744    return QualType(QT, 0);
2745
2746  // Build the canonical type, which has the canonical base type and
2747  // a sorted-and-uniqued list of protocols.
2748  QualType Canonical;
2749  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2750  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2751    if (!ProtocolsSorted) {
2752      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2753                                                     Protocols + NumProtocols);
2754      unsigned UniqueCount = NumProtocols;
2755
2756      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2757      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2758                                    &Sorted[0], UniqueCount);
2759    } else {
2760      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2761                                    Protocols, NumProtocols);
2762    }
2763
2764    // Regenerate InsertPos.
2765    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2766  }
2767
2768  unsigned Size = sizeof(ObjCObjectTypeImpl);
2769  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2770  void *Mem = Allocate(Size, TypeAlignment);
2771  ObjCObjectTypeImpl *T =
2772    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2773
2774  Types.push_back(T);
2775  ObjCObjectTypes.InsertNode(T, InsertPos);
2776  return QualType(T, 0);
2777}
2778
2779/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2780/// the given object type.
2781QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2782  llvm::FoldingSetNodeID ID;
2783  ObjCObjectPointerType::Profile(ID, ObjectT);
2784
2785  void *InsertPos = 0;
2786  if (ObjCObjectPointerType *QT =
2787              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2788    return QualType(QT, 0);
2789
2790  // Find the canonical object type.
2791  QualType Canonical;
2792  if (!ObjectT.isCanonical()) {
2793    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2794
2795    // Regenerate InsertPos.
2796    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2797  }
2798
2799  // No match.
2800  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2801  ObjCObjectPointerType *QType =
2802    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2803
2804  Types.push_back(QType);
2805  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2806  return QualType(QType, 0);
2807}
2808
2809/// getObjCInterfaceType - Return the unique reference to the type for the
2810/// specified ObjC interface decl. The list of protocols is optional.
2811QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2812                                          ObjCInterfaceDecl *PrevDecl) const {
2813  if (Decl->TypeForDecl)
2814    return QualType(Decl->TypeForDecl, 0);
2815
2816  if (PrevDecl) {
2817    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
2818    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2819    return QualType(PrevDecl->TypeForDecl, 0);
2820  }
2821
2822  // Prefer the definition, if there is one.
2823  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
2824    Decl = Def;
2825
2826  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2827  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2828  Decl->TypeForDecl = T;
2829  Types.push_back(T);
2830  return QualType(T, 0);
2831}
2832
2833/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2834/// TypeOfExprType AST's (since expression's are never shared). For example,
2835/// multiple declarations that refer to "typeof(x)" all contain different
2836/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2837/// on canonical type's (which are always unique).
2838QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2839  TypeOfExprType *toe;
2840  if (tofExpr->isTypeDependent()) {
2841    llvm::FoldingSetNodeID ID;
2842    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2843
2844    void *InsertPos = 0;
2845    DependentTypeOfExprType *Canon
2846      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2847    if (Canon) {
2848      // We already have a "canonical" version of an identical, dependent
2849      // typeof(expr) type. Use that as our canonical type.
2850      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2851                                          QualType((TypeOfExprType*)Canon, 0));
2852    } else {
2853      // Build a new, canonical typeof(expr) type.
2854      Canon
2855        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2856      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2857      toe = Canon;
2858    }
2859  } else {
2860    QualType Canonical = getCanonicalType(tofExpr->getType());
2861    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2862  }
2863  Types.push_back(toe);
2864  return QualType(toe, 0);
2865}
2866
2867/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2868/// TypeOfType AST's. The only motivation to unique these nodes would be
2869/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2870/// an issue. This doesn't effect the type checker, since it operates
2871/// on canonical type's (which are always unique).
2872QualType ASTContext::getTypeOfType(QualType tofType) const {
2873  QualType Canonical = getCanonicalType(tofType);
2874  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2875  Types.push_back(tot);
2876  return QualType(tot, 0);
2877}
2878
2879/// getDecltypeForExpr - Given an expr, will return the decltype for that
2880/// expression, according to the rules in C++0x [dcl.type.simple]p4
2881static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2882  if (e->isTypeDependent())
2883    return Context.DependentTy;
2884
2885  // If e is an id expression or a class member access, decltype(e) is defined
2886  // as the type of the entity named by e.
2887  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2888    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2889      return VD->getType();
2890  }
2891  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2892    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2893      return FD->getType();
2894  }
2895  // If e is a function call or an invocation of an overloaded operator,
2896  // (parentheses around e are ignored), decltype(e) is defined as the
2897  // return type of that function.
2898  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2899    return CE->getCallReturnType();
2900
2901  QualType T = e->getType();
2902
2903  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2904  // defined as T&, otherwise decltype(e) is defined as T.
2905  if (e->isLValue())
2906    T = Context.getLValueReferenceType(T);
2907
2908  return T;
2909}
2910
2911/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2912/// DecltypeType AST's. The only motivation to unique these nodes would be
2913/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2914/// an issue. This doesn't effect the type checker, since it operates
2915/// on canonical types (which are always unique).
2916QualType ASTContext::getDecltypeType(Expr *e) const {
2917  DecltypeType *dt;
2918
2919  // C++0x [temp.type]p2:
2920  //   If an expression e involves a template parameter, decltype(e) denotes a
2921  //   unique dependent type. Two such decltype-specifiers refer to the same
2922  //   type only if their expressions are equivalent (14.5.6.1).
2923  if (e->isInstantiationDependent()) {
2924    llvm::FoldingSetNodeID ID;
2925    DependentDecltypeType::Profile(ID, *this, e);
2926
2927    void *InsertPos = 0;
2928    DependentDecltypeType *Canon
2929      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2930    if (Canon) {
2931      // We already have a "canonical" version of an equivalent, dependent
2932      // decltype type. Use that as our canonical type.
2933      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2934                                       QualType((DecltypeType*)Canon, 0));
2935    } else {
2936      // Build a new, canonical typeof(expr) type.
2937      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2938      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2939      dt = Canon;
2940    }
2941  } else {
2942    QualType T = getDecltypeForExpr(e, *this);
2943    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2944  }
2945  Types.push_back(dt);
2946  return QualType(dt, 0);
2947}
2948
2949/// getUnaryTransformationType - We don't unique these, since the memory
2950/// savings are minimal and these are rare.
2951QualType ASTContext::getUnaryTransformType(QualType BaseType,
2952                                           QualType UnderlyingType,
2953                                           UnaryTransformType::UTTKind Kind)
2954    const {
2955  UnaryTransformType *Ty =
2956    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2957                                                   Kind,
2958                                 UnderlyingType->isDependentType() ?
2959                                    QualType() : UnderlyingType);
2960  Types.push_back(Ty);
2961  return QualType(Ty, 0);
2962}
2963
2964/// getAutoType - We only unique auto types after they've been deduced.
2965QualType ASTContext::getAutoType(QualType DeducedType) const {
2966  void *InsertPos = 0;
2967  if (!DeducedType.isNull()) {
2968    // Look in the folding set for an existing type.
2969    llvm::FoldingSetNodeID ID;
2970    AutoType::Profile(ID, DeducedType);
2971    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2972      return QualType(AT, 0);
2973  }
2974
2975  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2976  Types.push_back(AT);
2977  if (InsertPos)
2978    AutoTypes.InsertNode(AT, InsertPos);
2979  return QualType(AT, 0);
2980}
2981
2982/// getAtomicType - Return the uniqued reference to the atomic type for
2983/// the given value type.
2984QualType ASTContext::getAtomicType(QualType T) const {
2985  // Unique pointers, to guarantee there is only one pointer of a particular
2986  // structure.
2987  llvm::FoldingSetNodeID ID;
2988  AtomicType::Profile(ID, T);
2989
2990  void *InsertPos = 0;
2991  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
2992    return QualType(AT, 0);
2993
2994  // If the atomic value type isn't canonical, this won't be a canonical type
2995  // either, so fill in the canonical type field.
2996  QualType Canonical;
2997  if (!T.isCanonical()) {
2998    Canonical = getAtomicType(getCanonicalType(T));
2999
3000    // Get the new insert position for the node we care about.
3001    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3002    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3003  }
3004  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3005  Types.push_back(New);
3006  AtomicTypes.InsertNode(New, InsertPos);
3007  return QualType(New, 0);
3008}
3009
3010/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3011QualType ASTContext::getAutoDeductType() const {
3012  if (AutoDeductTy.isNull())
3013    AutoDeductTy = getAutoType(QualType());
3014  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3015  return AutoDeductTy;
3016}
3017
3018/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3019QualType ASTContext::getAutoRRefDeductType() const {
3020  if (AutoRRefDeductTy.isNull())
3021    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3022  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3023  return AutoRRefDeductTy;
3024}
3025
3026/// getTagDeclType - Return the unique reference to the type for the
3027/// specified TagDecl (struct/union/class/enum) decl.
3028QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3029  assert (Decl);
3030  // FIXME: What is the design on getTagDeclType when it requires casting
3031  // away const?  mutable?
3032  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3033}
3034
3035/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3036/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3037/// needs to agree with the definition in <stddef.h>.
3038CanQualType ASTContext::getSizeType() const {
3039  return getFromTargetType(Target->getSizeType());
3040}
3041
3042/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3043CanQualType ASTContext::getIntMaxType() const {
3044  return getFromTargetType(Target->getIntMaxType());
3045}
3046
3047/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3048CanQualType ASTContext::getUIntMaxType() const {
3049  return getFromTargetType(Target->getUIntMaxType());
3050}
3051
3052/// getSignedWCharType - Return the type of "signed wchar_t".
3053/// Used when in C++, as a GCC extension.
3054QualType ASTContext::getSignedWCharType() const {
3055  // FIXME: derive from "Target" ?
3056  return WCharTy;
3057}
3058
3059/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3060/// Used when in C++, as a GCC extension.
3061QualType ASTContext::getUnsignedWCharType() const {
3062  // FIXME: derive from "Target" ?
3063  return UnsignedIntTy;
3064}
3065
3066/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3067/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3068QualType ASTContext::getPointerDiffType() const {
3069  return getFromTargetType(Target->getPtrDiffType(0));
3070}
3071
3072//===----------------------------------------------------------------------===//
3073//                              Type Operators
3074//===----------------------------------------------------------------------===//
3075
3076CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3077  // Push qualifiers into arrays, and then discard any remaining
3078  // qualifiers.
3079  T = getCanonicalType(T);
3080  T = getVariableArrayDecayedType(T);
3081  const Type *Ty = T.getTypePtr();
3082  QualType Result;
3083  if (isa<ArrayType>(Ty)) {
3084    Result = getArrayDecayedType(QualType(Ty,0));
3085  } else if (isa<FunctionType>(Ty)) {
3086    Result = getPointerType(QualType(Ty, 0));
3087  } else {
3088    Result = QualType(Ty, 0);
3089  }
3090
3091  return CanQualType::CreateUnsafe(Result);
3092}
3093
3094QualType ASTContext::getUnqualifiedArrayType(QualType type,
3095                                             Qualifiers &quals) {
3096  SplitQualType splitType = type.getSplitUnqualifiedType();
3097
3098  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3099  // the unqualified desugared type and then drops it on the floor.
3100  // We then have to strip that sugar back off with
3101  // getUnqualifiedDesugaredType(), which is silly.
3102  const ArrayType *AT =
3103    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
3104
3105  // If we don't have an array, just use the results in splitType.
3106  if (!AT) {
3107    quals = splitType.second;
3108    return QualType(splitType.first, 0);
3109  }
3110
3111  // Otherwise, recurse on the array's element type.
3112  QualType elementType = AT->getElementType();
3113  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3114
3115  // If that didn't change the element type, AT has no qualifiers, so we
3116  // can just use the results in splitType.
3117  if (elementType == unqualElementType) {
3118    assert(quals.empty()); // from the recursive call
3119    quals = splitType.second;
3120    return QualType(splitType.first, 0);
3121  }
3122
3123  // Otherwise, add in the qualifiers from the outermost type, then
3124  // build the type back up.
3125  quals.addConsistentQualifiers(splitType.second);
3126
3127  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3128    return getConstantArrayType(unqualElementType, CAT->getSize(),
3129                                CAT->getSizeModifier(), 0);
3130  }
3131
3132  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3133    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3134  }
3135
3136  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3137    return getVariableArrayType(unqualElementType,
3138                                VAT->getSizeExpr(),
3139                                VAT->getSizeModifier(),
3140                                VAT->getIndexTypeCVRQualifiers(),
3141                                VAT->getBracketsRange());
3142  }
3143
3144  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3145  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3146                                    DSAT->getSizeModifier(), 0,
3147                                    SourceRange());
3148}
3149
3150/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3151/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3152/// they point to and return true. If T1 and T2 aren't pointer types
3153/// or pointer-to-member types, or if they are not similar at this
3154/// level, returns false and leaves T1 and T2 unchanged. Top-level
3155/// qualifiers on T1 and T2 are ignored. This function will typically
3156/// be called in a loop that successively "unwraps" pointer and
3157/// pointer-to-member types to compare them at each level.
3158bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3159  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3160                    *T2PtrType = T2->getAs<PointerType>();
3161  if (T1PtrType && T2PtrType) {
3162    T1 = T1PtrType->getPointeeType();
3163    T2 = T2PtrType->getPointeeType();
3164    return true;
3165  }
3166
3167  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3168                          *T2MPType = T2->getAs<MemberPointerType>();
3169  if (T1MPType && T2MPType &&
3170      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3171                             QualType(T2MPType->getClass(), 0))) {
3172    T1 = T1MPType->getPointeeType();
3173    T2 = T2MPType->getPointeeType();
3174    return true;
3175  }
3176
3177  if (getLangOptions().ObjC1) {
3178    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3179                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3180    if (T1OPType && T2OPType) {
3181      T1 = T1OPType->getPointeeType();
3182      T2 = T2OPType->getPointeeType();
3183      return true;
3184    }
3185  }
3186
3187  // FIXME: Block pointers, too?
3188
3189  return false;
3190}
3191
3192DeclarationNameInfo
3193ASTContext::getNameForTemplate(TemplateName Name,
3194                               SourceLocation NameLoc) const {
3195  switch (Name.getKind()) {
3196  case TemplateName::QualifiedTemplate:
3197  case TemplateName::Template:
3198    // DNInfo work in progress: CHECKME: what about DNLoc?
3199    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3200                               NameLoc);
3201
3202  case TemplateName::OverloadedTemplate: {
3203    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3204    // DNInfo work in progress: CHECKME: what about DNLoc?
3205    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3206  }
3207
3208  case TemplateName::DependentTemplate: {
3209    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3210    DeclarationName DName;
3211    if (DTN->isIdentifier()) {
3212      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3213      return DeclarationNameInfo(DName, NameLoc);
3214    } else {
3215      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3216      // DNInfo work in progress: FIXME: source locations?
3217      DeclarationNameLoc DNLoc;
3218      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3219      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3220      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3221    }
3222  }
3223
3224  case TemplateName::SubstTemplateTemplateParm: {
3225    SubstTemplateTemplateParmStorage *subst
3226      = Name.getAsSubstTemplateTemplateParm();
3227    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3228                               NameLoc);
3229  }
3230
3231  case TemplateName::SubstTemplateTemplateParmPack: {
3232    SubstTemplateTemplateParmPackStorage *subst
3233      = Name.getAsSubstTemplateTemplateParmPack();
3234    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3235                               NameLoc);
3236  }
3237  }
3238
3239  llvm_unreachable("bad template name kind!");
3240}
3241
3242TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3243  switch (Name.getKind()) {
3244  case TemplateName::QualifiedTemplate:
3245  case TemplateName::Template: {
3246    TemplateDecl *Template = Name.getAsTemplateDecl();
3247    if (TemplateTemplateParmDecl *TTP
3248          = dyn_cast<TemplateTemplateParmDecl>(Template))
3249      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3250
3251    // The canonical template name is the canonical template declaration.
3252    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3253  }
3254
3255  case TemplateName::OverloadedTemplate:
3256    llvm_unreachable("cannot canonicalize overloaded template");
3257
3258  case TemplateName::DependentTemplate: {
3259    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3260    assert(DTN && "Non-dependent template names must refer to template decls.");
3261    return DTN->CanonicalTemplateName;
3262  }
3263
3264  case TemplateName::SubstTemplateTemplateParm: {
3265    SubstTemplateTemplateParmStorage *subst
3266      = Name.getAsSubstTemplateTemplateParm();
3267    return getCanonicalTemplateName(subst->getReplacement());
3268  }
3269
3270  case TemplateName::SubstTemplateTemplateParmPack: {
3271    SubstTemplateTemplateParmPackStorage *subst
3272                                  = Name.getAsSubstTemplateTemplateParmPack();
3273    TemplateTemplateParmDecl *canonParameter
3274      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3275    TemplateArgument canonArgPack
3276      = getCanonicalTemplateArgument(subst->getArgumentPack());
3277    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3278  }
3279  }
3280
3281  llvm_unreachable("bad template name!");
3282}
3283
3284bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3285  X = getCanonicalTemplateName(X);
3286  Y = getCanonicalTemplateName(Y);
3287  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3288}
3289
3290TemplateArgument
3291ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3292  switch (Arg.getKind()) {
3293    case TemplateArgument::Null:
3294      return Arg;
3295
3296    case TemplateArgument::Expression:
3297      return Arg;
3298
3299    case TemplateArgument::Declaration:
3300      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3301
3302    case TemplateArgument::Template:
3303      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3304
3305    case TemplateArgument::TemplateExpansion:
3306      return TemplateArgument(getCanonicalTemplateName(
3307                                         Arg.getAsTemplateOrTemplatePattern()),
3308                              Arg.getNumTemplateExpansions());
3309
3310    case TemplateArgument::Integral:
3311      return TemplateArgument(*Arg.getAsIntegral(),
3312                              getCanonicalType(Arg.getIntegralType()));
3313
3314    case TemplateArgument::Type:
3315      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3316
3317    case TemplateArgument::Pack: {
3318      if (Arg.pack_size() == 0)
3319        return Arg;
3320
3321      TemplateArgument *CanonArgs
3322        = new (*this) TemplateArgument[Arg.pack_size()];
3323      unsigned Idx = 0;
3324      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3325                                        AEnd = Arg.pack_end();
3326           A != AEnd; (void)++A, ++Idx)
3327        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3328
3329      return TemplateArgument(CanonArgs, Arg.pack_size());
3330    }
3331  }
3332
3333  // Silence GCC warning
3334  llvm_unreachable("Unhandled template argument kind");
3335}
3336
3337NestedNameSpecifier *
3338ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3339  if (!NNS)
3340    return 0;
3341
3342  switch (NNS->getKind()) {
3343  case NestedNameSpecifier::Identifier:
3344    // Canonicalize the prefix but keep the identifier the same.
3345    return NestedNameSpecifier::Create(*this,
3346                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3347                                       NNS->getAsIdentifier());
3348
3349  case NestedNameSpecifier::Namespace:
3350    // A namespace is canonical; build a nested-name-specifier with
3351    // this namespace and no prefix.
3352    return NestedNameSpecifier::Create(*this, 0,
3353                                 NNS->getAsNamespace()->getOriginalNamespace());
3354
3355  case NestedNameSpecifier::NamespaceAlias:
3356    // A namespace is canonical; build a nested-name-specifier with
3357    // this namespace and no prefix.
3358    return NestedNameSpecifier::Create(*this, 0,
3359                                    NNS->getAsNamespaceAlias()->getNamespace()
3360                                                      ->getOriginalNamespace());
3361
3362  case NestedNameSpecifier::TypeSpec:
3363  case NestedNameSpecifier::TypeSpecWithTemplate: {
3364    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3365
3366    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3367    // break it apart into its prefix and identifier, then reconsititute those
3368    // as the canonical nested-name-specifier. This is required to canonicalize
3369    // a dependent nested-name-specifier involving typedefs of dependent-name
3370    // types, e.g.,
3371    //   typedef typename T::type T1;
3372    //   typedef typename T1::type T2;
3373    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3374      NestedNameSpecifier *Prefix
3375        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3376      return NestedNameSpecifier::Create(*this, Prefix,
3377                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3378    }
3379
3380    // Do the same thing as above, but with dependent-named specializations.
3381    if (const DependentTemplateSpecializationType *DTST
3382          = T->getAs<DependentTemplateSpecializationType>()) {
3383      NestedNameSpecifier *Prefix
3384        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3385
3386      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3387                                                 Prefix, DTST->getIdentifier(),
3388                                                 DTST->getNumArgs(),
3389                                                 DTST->getArgs());
3390      T = getCanonicalType(T);
3391    }
3392
3393    return NestedNameSpecifier::Create(*this, 0, false,
3394                                       const_cast<Type*>(T.getTypePtr()));
3395  }
3396
3397  case NestedNameSpecifier::Global:
3398    // The global specifier is canonical and unique.
3399    return NNS;
3400  }
3401
3402  // Required to silence a GCC warning
3403  return 0;
3404}
3405
3406
3407const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3408  // Handle the non-qualified case efficiently.
3409  if (!T.hasLocalQualifiers()) {
3410    // Handle the common positive case fast.
3411    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3412      return AT;
3413  }
3414
3415  // Handle the common negative case fast.
3416  if (!isa<ArrayType>(T.getCanonicalType()))
3417    return 0;
3418
3419  // Apply any qualifiers from the array type to the element type.  This
3420  // implements C99 6.7.3p8: "If the specification of an array type includes
3421  // any type qualifiers, the element type is so qualified, not the array type."
3422
3423  // If we get here, we either have type qualifiers on the type, or we have
3424  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3425  // we must propagate them down into the element type.
3426
3427  SplitQualType split = T.getSplitDesugaredType();
3428  Qualifiers qs = split.second;
3429
3430  // If we have a simple case, just return now.
3431  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3432  if (ATy == 0 || qs.empty())
3433    return ATy;
3434
3435  // Otherwise, we have an array and we have qualifiers on it.  Push the
3436  // qualifiers into the array element type and return a new array type.
3437  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3438
3439  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3440    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3441                                                CAT->getSizeModifier(),
3442                                           CAT->getIndexTypeCVRQualifiers()));
3443  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3444    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3445                                                  IAT->getSizeModifier(),
3446                                           IAT->getIndexTypeCVRQualifiers()));
3447
3448  if (const DependentSizedArrayType *DSAT
3449        = dyn_cast<DependentSizedArrayType>(ATy))
3450    return cast<ArrayType>(
3451                     getDependentSizedArrayType(NewEltTy,
3452                                                DSAT->getSizeExpr(),
3453                                                DSAT->getSizeModifier(),
3454                                              DSAT->getIndexTypeCVRQualifiers(),
3455                                                DSAT->getBracketsRange()));
3456
3457  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3458  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3459                                              VAT->getSizeExpr(),
3460                                              VAT->getSizeModifier(),
3461                                              VAT->getIndexTypeCVRQualifiers(),
3462                                              VAT->getBracketsRange()));
3463}
3464
3465QualType ASTContext::getAdjustedParameterType(QualType T) {
3466  // C99 6.7.5.3p7:
3467  //   A declaration of a parameter as "array of type" shall be
3468  //   adjusted to "qualified pointer to type", where the type
3469  //   qualifiers (if any) are those specified within the [ and ] of
3470  //   the array type derivation.
3471  if (T->isArrayType())
3472    return getArrayDecayedType(T);
3473
3474  // C99 6.7.5.3p8:
3475  //   A declaration of a parameter as "function returning type"
3476  //   shall be adjusted to "pointer to function returning type", as
3477  //   in 6.3.2.1.
3478  if (T->isFunctionType())
3479    return getPointerType(T);
3480
3481  return T;
3482}
3483
3484QualType ASTContext::getSignatureParameterType(QualType T) {
3485  T = getVariableArrayDecayedType(T);
3486  T = getAdjustedParameterType(T);
3487  return T.getUnqualifiedType();
3488}
3489
3490/// getArrayDecayedType - Return the properly qualified result of decaying the
3491/// specified array type to a pointer.  This operation is non-trivial when
3492/// handling typedefs etc.  The canonical type of "T" must be an array type,
3493/// this returns a pointer to a properly qualified element of the array.
3494///
3495/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3496QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3497  // Get the element type with 'getAsArrayType' so that we don't lose any
3498  // typedefs in the element type of the array.  This also handles propagation
3499  // of type qualifiers from the array type into the element type if present
3500  // (C99 6.7.3p8).
3501  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3502  assert(PrettyArrayType && "Not an array type!");
3503
3504  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3505
3506  // int x[restrict 4] ->  int *restrict
3507  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3508}
3509
3510QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3511  return getBaseElementType(array->getElementType());
3512}
3513
3514QualType ASTContext::getBaseElementType(QualType type) const {
3515  Qualifiers qs;
3516  while (true) {
3517    SplitQualType split = type.getSplitDesugaredType();
3518    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3519    if (!array) break;
3520
3521    type = array->getElementType();
3522    qs.addConsistentQualifiers(split.second);
3523  }
3524
3525  return getQualifiedType(type, qs);
3526}
3527
3528/// getConstantArrayElementCount - Returns number of constant array elements.
3529uint64_t
3530ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3531  uint64_t ElementCount = 1;
3532  do {
3533    ElementCount *= CA->getSize().getZExtValue();
3534    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3535  } while (CA);
3536  return ElementCount;
3537}
3538
3539/// getFloatingRank - Return a relative rank for floating point types.
3540/// This routine will assert if passed a built-in type that isn't a float.
3541static FloatingRank getFloatingRank(QualType T) {
3542  if (const ComplexType *CT = T->getAs<ComplexType>())
3543    return getFloatingRank(CT->getElementType());
3544
3545  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3546  switch (T->getAs<BuiltinType>()->getKind()) {
3547  default: llvm_unreachable("getFloatingRank(): not a floating type");
3548  case BuiltinType::Half:       return HalfRank;
3549  case BuiltinType::Float:      return FloatRank;
3550  case BuiltinType::Double:     return DoubleRank;
3551  case BuiltinType::LongDouble: return LongDoubleRank;
3552  }
3553}
3554
3555/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3556/// point or a complex type (based on typeDomain/typeSize).
3557/// 'typeDomain' is a real floating point or complex type.
3558/// 'typeSize' is a real floating point or complex type.
3559QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3560                                                       QualType Domain) const {
3561  FloatingRank EltRank = getFloatingRank(Size);
3562  if (Domain->isComplexType()) {
3563    switch (EltRank) {
3564    default: llvm_unreachable("getFloatingRank(): illegal value for rank");
3565    case FloatRank:      return FloatComplexTy;
3566    case DoubleRank:     return DoubleComplexTy;
3567    case LongDoubleRank: return LongDoubleComplexTy;
3568    }
3569  }
3570
3571  assert(Domain->isRealFloatingType() && "Unknown domain!");
3572  switch (EltRank) {
3573  default: llvm_unreachable("getFloatingRank(): illegal value for rank");
3574  case FloatRank:      return FloatTy;
3575  case DoubleRank:     return DoubleTy;
3576  case LongDoubleRank: return LongDoubleTy;
3577  }
3578}
3579
3580/// getFloatingTypeOrder - Compare the rank of the two specified floating
3581/// point types, ignoring the domain of the type (i.e. 'double' ==
3582/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3583/// LHS < RHS, return -1.
3584int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3585  FloatingRank LHSR = getFloatingRank(LHS);
3586  FloatingRank RHSR = getFloatingRank(RHS);
3587
3588  if (LHSR == RHSR)
3589    return 0;
3590  if (LHSR > RHSR)
3591    return 1;
3592  return -1;
3593}
3594
3595/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3596/// routine will assert if passed a built-in type that isn't an integer or enum,
3597/// or if it is not canonicalized.
3598unsigned ASTContext::getIntegerRank(const Type *T) const {
3599  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3600
3601  switch (cast<BuiltinType>(T)->getKind()) {
3602  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3603  case BuiltinType::Bool:
3604    return 1 + (getIntWidth(BoolTy) << 3);
3605  case BuiltinType::Char_S:
3606  case BuiltinType::Char_U:
3607  case BuiltinType::SChar:
3608  case BuiltinType::UChar:
3609    return 2 + (getIntWidth(CharTy) << 3);
3610  case BuiltinType::Short:
3611  case BuiltinType::UShort:
3612    return 3 + (getIntWidth(ShortTy) << 3);
3613  case BuiltinType::Int:
3614  case BuiltinType::UInt:
3615    return 4 + (getIntWidth(IntTy) << 3);
3616  case BuiltinType::Long:
3617  case BuiltinType::ULong:
3618    return 5 + (getIntWidth(LongTy) << 3);
3619  case BuiltinType::LongLong:
3620  case BuiltinType::ULongLong:
3621    return 6 + (getIntWidth(LongLongTy) << 3);
3622  case BuiltinType::Int128:
3623  case BuiltinType::UInt128:
3624    return 7 + (getIntWidth(Int128Ty) << 3);
3625  }
3626}
3627
3628/// \brief Whether this is a promotable bitfield reference according
3629/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3630///
3631/// \returns the type this bit-field will promote to, or NULL if no
3632/// promotion occurs.
3633QualType ASTContext::isPromotableBitField(Expr *E) const {
3634  if (E->isTypeDependent() || E->isValueDependent())
3635    return QualType();
3636
3637  FieldDecl *Field = E->getBitField();
3638  if (!Field)
3639    return QualType();
3640
3641  QualType FT = Field->getType();
3642
3643  uint64_t BitWidth = Field->getBitWidthValue(*this);
3644  uint64_t IntSize = getTypeSize(IntTy);
3645  // GCC extension compatibility: if the bit-field size is less than or equal
3646  // to the size of int, it gets promoted no matter what its type is.
3647  // For instance, unsigned long bf : 4 gets promoted to signed int.
3648  if (BitWidth < IntSize)
3649    return IntTy;
3650
3651  if (BitWidth == IntSize)
3652    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3653
3654  // Types bigger than int are not subject to promotions, and therefore act
3655  // like the base type.
3656  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3657  // is ridiculous.
3658  return QualType();
3659}
3660
3661/// getPromotedIntegerType - Returns the type that Promotable will
3662/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3663/// integer type.
3664QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3665  assert(!Promotable.isNull());
3666  assert(Promotable->isPromotableIntegerType());
3667  if (const EnumType *ET = Promotable->getAs<EnumType>())
3668    return ET->getDecl()->getPromotionType();
3669
3670  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3671    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3672    // (3.9.1) can be converted to a prvalue of the first of the following
3673    // types that can represent all the values of its underlying type:
3674    // int, unsigned int, long int, unsigned long int, long long int, or
3675    // unsigned long long int [...]
3676    // FIXME: Is there some better way to compute this?
3677    if (BT->getKind() == BuiltinType::WChar_S ||
3678        BT->getKind() == BuiltinType::WChar_U ||
3679        BT->getKind() == BuiltinType::Char16 ||
3680        BT->getKind() == BuiltinType::Char32) {
3681      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3682      uint64_t FromSize = getTypeSize(BT);
3683      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3684                                  LongLongTy, UnsignedLongLongTy };
3685      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3686        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3687        if (FromSize < ToSize ||
3688            (FromSize == ToSize &&
3689             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3690          return PromoteTypes[Idx];
3691      }
3692      llvm_unreachable("char type should fit into long long");
3693    }
3694  }
3695
3696  // At this point, we should have a signed or unsigned integer type.
3697  if (Promotable->isSignedIntegerType())
3698    return IntTy;
3699  uint64_t PromotableSize = getTypeSize(Promotable);
3700  uint64_t IntSize = getTypeSize(IntTy);
3701  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3702  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3703}
3704
3705/// \brief Recurses in pointer/array types until it finds an objc retainable
3706/// type and returns its ownership.
3707Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3708  while (!T.isNull()) {
3709    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3710      return T.getObjCLifetime();
3711    if (T->isArrayType())
3712      T = getBaseElementType(T);
3713    else if (const PointerType *PT = T->getAs<PointerType>())
3714      T = PT->getPointeeType();
3715    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3716      T = RT->getPointeeType();
3717    else
3718      break;
3719  }
3720
3721  return Qualifiers::OCL_None;
3722}
3723
3724/// getIntegerTypeOrder - Returns the highest ranked integer type:
3725/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3726/// LHS < RHS, return -1.
3727int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3728  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3729  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3730  if (LHSC == RHSC) return 0;
3731
3732  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3733  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3734
3735  unsigned LHSRank = getIntegerRank(LHSC);
3736  unsigned RHSRank = getIntegerRank(RHSC);
3737
3738  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3739    if (LHSRank == RHSRank) return 0;
3740    return LHSRank > RHSRank ? 1 : -1;
3741  }
3742
3743  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3744  if (LHSUnsigned) {
3745    // If the unsigned [LHS] type is larger, return it.
3746    if (LHSRank >= RHSRank)
3747      return 1;
3748
3749    // If the signed type can represent all values of the unsigned type, it
3750    // wins.  Because we are dealing with 2's complement and types that are
3751    // powers of two larger than each other, this is always safe.
3752    return -1;
3753  }
3754
3755  // If the unsigned [RHS] type is larger, return it.
3756  if (RHSRank >= LHSRank)
3757    return -1;
3758
3759  // If the signed type can represent all values of the unsigned type, it
3760  // wins.  Because we are dealing with 2's complement and types that are
3761  // powers of two larger than each other, this is always safe.
3762  return 1;
3763}
3764
3765static RecordDecl *
3766CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3767                 DeclContext *DC, IdentifierInfo *Id) {
3768  SourceLocation Loc;
3769  if (Ctx.getLangOptions().CPlusPlus)
3770    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3771  else
3772    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3773}
3774
3775// getCFConstantStringType - Return the type used for constant CFStrings.
3776QualType ASTContext::getCFConstantStringType() const {
3777  if (!CFConstantStringTypeDecl) {
3778    CFConstantStringTypeDecl =
3779      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3780                       &Idents.get("NSConstantString"));
3781    CFConstantStringTypeDecl->startDefinition();
3782
3783    QualType FieldTypes[4];
3784
3785    // const int *isa;
3786    FieldTypes[0] = getPointerType(IntTy.withConst());
3787    // int flags;
3788    FieldTypes[1] = IntTy;
3789    // const char *str;
3790    FieldTypes[2] = getPointerType(CharTy.withConst());
3791    // long length;
3792    FieldTypes[3] = LongTy;
3793
3794    // Create fields
3795    for (unsigned i = 0; i < 4; ++i) {
3796      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3797                                           SourceLocation(),
3798                                           SourceLocation(), 0,
3799                                           FieldTypes[i], /*TInfo=*/0,
3800                                           /*BitWidth=*/0,
3801                                           /*Mutable=*/false,
3802                                           /*HasInit=*/false);
3803      Field->setAccess(AS_public);
3804      CFConstantStringTypeDecl->addDecl(Field);
3805    }
3806
3807    CFConstantStringTypeDecl->completeDefinition();
3808  }
3809
3810  return getTagDeclType(CFConstantStringTypeDecl);
3811}
3812
3813void ASTContext::setCFConstantStringType(QualType T) {
3814  const RecordType *Rec = T->getAs<RecordType>();
3815  assert(Rec && "Invalid CFConstantStringType");
3816  CFConstantStringTypeDecl = Rec->getDecl();
3817}
3818
3819QualType ASTContext::getBlockDescriptorType() const {
3820  if (BlockDescriptorType)
3821    return getTagDeclType(BlockDescriptorType);
3822
3823  RecordDecl *T;
3824  // FIXME: Needs the FlagAppleBlock bit.
3825  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3826                       &Idents.get("__block_descriptor"));
3827  T->startDefinition();
3828
3829  QualType FieldTypes[] = {
3830    UnsignedLongTy,
3831    UnsignedLongTy,
3832  };
3833
3834  const char *FieldNames[] = {
3835    "reserved",
3836    "Size"
3837  };
3838
3839  for (size_t i = 0; i < 2; ++i) {
3840    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3841                                         SourceLocation(),
3842                                         &Idents.get(FieldNames[i]),
3843                                         FieldTypes[i], /*TInfo=*/0,
3844                                         /*BitWidth=*/0,
3845                                         /*Mutable=*/false,
3846                                         /*HasInit=*/false);
3847    Field->setAccess(AS_public);
3848    T->addDecl(Field);
3849  }
3850
3851  T->completeDefinition();
3852
3853  BlockDescriptorType = T;
3854
3855  return getTagDeclType(BlockDescriptorType);
3856}
3857
3858QualType ASTContext::getBlockDescriptorExtendedType() const {
3859  if (BlockDescriptorExtendedType)
3860    return getTagDeclType(BlockDescriptorExtendedType);
3861
3862  RecordDecl *T;
3863  // FIXME: Needs the FlagAppleBlock bit.
3864  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3865                       &Idents.get("__block_descriptor_withcopydispose"));
3866  T->startDefinition();
3867
3868  QualType FieldTypes[] = {
3869    UnsignedLongTy,
3870    UnsignedLongTy,
3871    getPointerType(VoidPtrTy),
3872    getPointerType(VoidPtrTy)
3873  };
3874
3875  const char *FieldNames[] = {
3876    "reserved",
3877    "Size",
3878    "CopyFuncPtr",
3879    "DestroyFuncPtr"
3880  };
3881
3882  for (size_t i = 0; i < 4; ++i) {
3883    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3884                                         SourceLocation(),
3885                                         &Idents.get(FieldNames[i]),
3886                                         FieldTypes[i], /*TInfo=*/0,
3887                                         /*BitWidth=*/0,
3888                                         /*Mutable=*/false,
3889                                         /*HasInit=*/false);
3890    Field->setAccess(AS_public);
3891    T->addDecl(Field);
3892  }
3893
3894  T->completeDefinition();
3895
3896  BlockDescriptorExtendedType = T;
3897
3898  return getTagDeclType(BlockDescriptorExtendedType);
3899}
3900
3901bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3902  if (Ty->isObjCRetainableType())
3903    return true;
3904  if (getLangOptions().CPlusPlus) {
3905    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3906      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3907      return RD->hasConstCopyConstructor();
3908
3909    }
3910  }
3911  return false;
3912}
3913
3914QualType
3915ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
3916  //  type = struct __Block_byref_1_X {
3917  //    void *__isa;
3918  //    struct __Block_byref_1_X *__forwarding;
3919  //    unsigned int __flags;
3920  //    unsigned int __size;
3921  //    void *__copy_helper;            // as needed
3922  //    void *__destroy_help            // as needed
3923  //    int X;
3924  //  } *
3925
3926  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3927
3928  // FIXME: Move up
3929  llvm::SmallString<36> Name;
3930  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3931                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3932  RecordDecl *T;
3933  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3934  T->startDefinition();
3935  QualType Int32Ty = IntTy;
3936  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3937  QualType FieldTypes[] = {
3938    getPointerType(VoidPtrTy),
3939    getPointerType(getTagDeclType(T)),
3940    Int32Ty,
3941    Int32Ty,
3942    getPointerType(VoidPtrTy),
3943    getPointerType(VoidPtrTy),
3944    Ty
3945  };
3946
3947  StringRef FieldNames[] = {
3948    "__isa",
3949    "__forwarding",
3950    "__flags",
3951    "__size",
3952    "__copy_helper",
3953    "__destroy_helper",
3954    DeclName,
3955  };
3956
3957  for (size_t i = 0; i < 7; ++i) {
3958    if (!HasCopyAndDispose && i >=4 && i <= 5)
3959      continue;
3960    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3961                                         SourceLocation(),
3962                                         &Idents.get(FieldNames[i]),
3963                                         FieldTypes[i], /*TInfo=*/0,
3964                                         /*BitWidth=*/0, /*Mutable=*/false,
3965                                         /*HasInit=*/false);
3966    Field->setAccess(AS_public);
3967    T->addDecl(Field);
3968  }
3969
3970  T->completeDefinition();
3971
3972  return getPointerType(getTagDeclType(T));
3973}
3974
3975TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
3976  if (!ObjCInstanceTypeDecl)
3977    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
3978                                               getTranslationUnitDecl(),
3979                                               SourceLocation(),
3980                                               SourceLocation(),
3981                                               &Idents.get("instancetype"),
3982                                     getTrivialTypeSourceInfo(getObjCIdType()));
3983  return ObjCInstanceTypeDecl;
3984}
3985
3986// This returns true if a type has been typedefed to BOOL:
3987// typedef <type> BOOL;
3988static bool isTypeTypedefedAsBOOL(QualType T) {
3989  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3990    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3991      return II->isStr("BOOL");
3992
3993  return false;
3994}
3995
3996/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3997/// purpose.
3998CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3999  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4000    return CharUnits::Zero();
4001
4002  CharUnits sz = getTypeSizeInChars(type);
4003
4004  // Make all integer and enum types at least as large as an int
4005  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4006    sz = std::max(sz, getTypeSizeInChars(IntTy));
4007  // Treat arrays as pointers, since that's how they're passed in.
4008  else if (type->isArrayType())
4009    sz = getTypeSizeInChars(VoidPtrTy);
4010  return sz;
4011}
4012
4013static inline
4014std::string charUnitsToString(const CharUnits &CU) {
4015  return llvm::itostr(CU.getQuantity());
4016}
4017
4018/// getObjCEncodingForBlock - Return the encoded type for this block
4019/// declaration.
4020std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4021  std::string S;
4022
4023  const BlockDecl *Decl = Expr->getBlockDecl();
4024  QualType BlockTy =
4025      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4026  // Encode result type.
4027  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4028  // Compute size of all parameters.
4029  // Start with computing size of a pointer in number of bytes.
4030  // FIXME: There might(should) be a better way of doing this computation!
4031  SourceLocation Loc;
4032  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4033  CharUnits ParmOffset = PtrSize;
4034  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4035       E = Decl->param_end(); PI != E; ++PI) {
4036    QualType PType = (*PI)->getType();
4037    CharUnits sz = getObjCEncodingTypeSize(PType);
4038    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4039    ParmOffset += sz;
4040  }
4041  // Size of the argument frame
4042  S += charUnitsToString(ParmOffset);
4043  // Block pointer and offset.
4044  S += "@?0";
4045
4046  // Argument types.
4047  ParmOffset = PtrSize;
4048  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4049       Decl->param_end(); PI != E; ++PI) {
4050    ParmVarDecl *PVDecl = *PI;
4051    QualType PType = PVDecl->getOriginalType();
4052    if (const ArrayType *AT =
4053          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4054      // Use array's original type only if it has known number of
4055      // elements.
4056      if (!isa<ConstantArrayType>(AT))
4057        PType = PVDecl->getType();
4058    } else if (PType->isFunctionType())
4059      PType = PVDecl->getType();
4060    getObjCEncodingForType(PType, S);
4061    S += charUnitsToString(ParmOffset);
4062    ParmOffset += getObjCEncodingTypeSize(PType);
4063  }
4064
4065  return S;
4066}
4067
4068bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4069                                                std::string& S) {
4070  // Encode result type.
4071  getObjCEncodingForType(Decl->getResultType(), S);
4072  CharUnits ParmOffset;
4073  // Compute size of all parameters.
4074  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4075       E = Decl->param_end(); PI != E; ++PI) {
4076    QualType PType = (*PI)->getType();
4077    CharUnits sz = getObjCEncodingTypeSize(PType);
4078    if (sz.isZero())
4079      return true;
4080
4081    assert (sz.isPositive() &&
4082        "getObjCEncodingForFunctionDecl - Incomplete param type");
4083    ParmOffset += sz;
4084  }
4085  S += charUnitsToString(ParmOffset);
4086  ParmOffset = CharUnits::Zero();
4087
4088  // Argument types.
4089  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4090       E = Decl->param_end(); PI != E; ++PI) {
4091    ParmVarDecl *PVDecl = *PI;
4092    QualType PType = PVDecl->getOriginalType();
4093    if (const ArrayType *AT =
4094          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4095      // Use array's original type only if it has known number of
4096      // elements.
4097      if (!isa<ConstantArrayType>(AT))
4098        PType = PVDecl->getType();
4099    } else if (PType->isFunctionType())
4100      PType = PVDecl->getType();
4101    getObjCEncodingForType(PType, S);
4102    S += charUnitsToString(ParmOffset);
4103    ParmOffset += getObjCEncodingTypeSize(PType);
4104  }
4105
4106  return false;
4107}
4108
4109/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4110/// method parameter or return type. If Extended, include class names and
4111/// block object types.
4112void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4113                                                   QualType T, std::string& S,
4114                                                   bool Extended) const {
4115  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4116  getObjCEncodingForTypeQualifier(QT, S);
4117  // Encode parameter type.
4118  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4119                             true     /*OutermostType*/,
4120                             false    /*EncodingProperty*/,
4121                             false    /*StructField*/,
4122                             Extended /*EncodeBlockParameters*/,
4123                             Extended /*EncodeClassNames*/);
4124}
4125
4126/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4127/// declaration.
4128bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4129                                              std::string& S,
4130                                              bool Extended) const {
4131  // FIXME: This is not very efficient.
4132  // Encode return type.
4133  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4134                                    Decl->getResultType(), S, Extended);
4135  // Compute size of all parameters.
4136  // Start with computing size of a pointer in number of bytes.
4137  // FIXME: There might(should) be a better way of doing this computation!
4138  SourceLocation Loc;
4139  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4140  // The first two arguments (self and _cmd) are pointers; account for
4141  // their size.
4142  CharUnits ParmOffset = 2 * PtrSize;
4143  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4144       E = Decl->sel_param_end(); PI != E; ++PI) {
4145    QualType PType = (*PI)->getType();
4146    CharUnits sz = getObjCEncodingTypeSize(PType);
4147    if (sz.isZero())
4148      return true;
4149
4150    assert (sz.isPositive() &&
4151        "getObjCEncodingForMethodDecl - Incomplete param type");
4152    ParmOffset += sz;
4153  }
4154  S += charUnitsToString(ParmOffset);
4155  S += "@0:";
4156  S += charUnitsToString(PtrSize);
4157
4158  // Argument types.
4159  ParmOffset = 2 * PtrSize;
4160  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4161       E = Decl->sel_param_end(); PI != E; ++PI) {
4162    const ParmVarDecl *PVDecl = *PI;
4163    QualType PType = PVDecl->getOriginalType();
4164    if (const ArrayType *AT =
4165          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4166      // Use array's original type only if it has known number of
4167      // elements.
4168      if (!isa<ConstantArrayType>(AT))
4169        PType = PVDecl->getType();
4170    } else if (PType->isFunctionType())
4171      PType = PVDecl->getType();
4172    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4173                                      PType, S, Extended);
4174    S += charUnitsToString(ParmOffset);
4175    ParmOffset += getObjCEncodingTypeSize(PType);
4176  }
4177
4178  return false;
4179}
4180
4181/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4182/// property declaration. If non-NULL, Container must be either an
4183/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4184/// NULL when getting encodings for protocol properties.
4185/// Property attributes are stored as a comma-delimited C string. The simple
4186/// attributes readonly and bycopy are encoded as single characters. The
4187/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4188/// encoded as single characters, followed by an identifier. Property types
4189/// are also encoded as a parametrized attribute. The characters used to encode
4190/// these attributes are defined by the following enumeration:
4191/// @code
4192/// enum PropertyAttributes {
4193/// kPropertyReadOnly = 'R',   // property is read-only.
4194/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4195/// kPropertyByref = '&',  // property is a reference to the value last assigned
4196/// kPropertyDynamic = 'D',    // property is dynamic
4197/// kPropertyGetter = 'G',     // followed by getter selector name
4198/// kPropertySetter = 'S',     // followed by setter selector name
4199/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4200/// kPropertyType = 't'              // followed by old-style type encoding.
4201/// kPropertyWeak = 'W'              // 'weak' property
4202/// kPropertyStrong = 'P'            // property GC'able
4203/// kPropertyNonAtomic = 'N'         // property non-atomic
4204/// };
4205/// @endcode
4206void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4207                                                const Decl *Container,
4208                                                std::string& S) const {
4209  // Collect information from the property implementation decl(s).
4210  bool Dynamic = false;
4211  ObjCPropertyImplDecl *SynthesizePID = 0;
4212
4213  // FIXME: Duplicated code due to poor abstraction.
4214  if (Container) {
4215    if (const ObjCCategoryImplDecl *CID =
4216        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4217      for (ObjCCategoryImplDecl::propimpl_iterator
4218             i = CID->propimpl_begin(), e = CID->propimpl_end();
4219           i != e; ++i) {
4220        ObjCPropertyImplDecl *PID = *i;
4221        if (PID->getPropertyDecl() == PD) {
4222          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4223            Dynamic = true;
4224          } else {
4225            SynthesizePID = PID;
4226          }
4227        }
4228      }
4229    } else {
4230      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4231      for (ObjCCategoryImplDecl::propimpl_iterator
4232             i = OID->propimpl_begin(), e = OID->propimpl_end();
4233           i != e; ++i) {
4234        ObjCPropertyImplDecl *PID = *i;
4235        if (PID->getPropertyDecl() == PD) {
4236          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4237            Dynamic = true;
4238          } else {
4239            SynthesizePID = PID;
4240          }
4241        }
4242      }
4243    }
4244  }
4245
4246  // FIXME: This is not very efficient.
4247  S = "T";
4248
4249  // Encode result type.
4250  // GCC has some special rules regarding encoding of properties which
4251  // closely resembles encoding of ivars.
4252  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4253                             true /* outermost type */,
4254                             true /* encoding for property */);
4255
4256  if (PD->isReadOnly()) {
4257    S += ",R";
4258  } else {
4259    switch (PD->getSetterKind()) {
4260    case ObjCPropertyDecl::Assign: break;
4261    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4262    case ObjCPropertyDecl::Retain: S += ",&"; break;
4263    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4264    }
4265  }
4266
4267  // It really isn't clear at all what this means, since properties
4268  // are "dynamic by default".
4269  if (Dynamic)
4270    S += ",D";
4271
4272  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4273    S += ",N";
4274
4275  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4276    S += ",G";
4277    S += PD->getGetterName().getAsString();
4278  }
4279
4280  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4281    S += ",S";
4282    S += PD->getSetterName().getAsString();
4283  }
4284
4285  if (SynthesizePID) {
4286    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4287    S += ",V";
4288    S += OID->getNameAsString();
4289  }
4290
4291  // FIXME: OBJCGC: weak & strong
4292}
4293
4294/// getLegacyIntegralTypeEncoding -
4295/// Another legacy compatibility encoding: 32-bit longs are encoded as
4296/// 'l' or 'L' , but not always.  For typedefs, we need to use
4297/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4298///
4299void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4300  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4301    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4302      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4303        PointeeTy = UnsignedIntTy;
4304      else
4305        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4306          PointeeTy = IntTy;
4307    }
4308  }
4309}
4310
4311void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4312                                        const FieldDecl *Field) const {
4313  // We follow the behavior of gcc, expanding structures which are
4314  // directly pointed to, and expanding embedded structures. Note that
4315  // these rules are sufficient to prevent recursive encoding of the
4316  // same type.
4317  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4318                             true /* outermost type */);
4319}
4320
4321static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4322    switch (T->getAs<BuiltinType>()->getKind()) {
4323    default: llvm_unreachable("Unhandled builtin type kind");
4324    case BuiltinType::Void:       return 'v';
4325    case BuiltinType::Bool:       return 'B';
4326    case BuiltinType::Char_U:
4327    case BuiltinType::UChar:      return 'C';
4328    case BuiltinType::UShort:     return 'S';
4329    case BuiltinType::UInt:       return 'I';
4330    case BuiltinType::ULong:
4331        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4332    case BuiltinType::UInt128:    return 'T';
4333    case BuiltinType::ULongLong:  return 'Q';
4334    case BuiltinType::Char_S:
4335    case BuiltinType::SChar:      return 'c';
4336    case BuiltinType::Short:      return 's';
4337    case BuiltinType::WChar_S:
4338    case BuiltinType::WChar_U:
4339    case BuiltinType::Int:        return 'i';
4340    case BuiltinType::Long:
4341      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4342    case BuiltinType::LongLong:   return 'q';
4343    case BuiltinType::Int128:     return 't';
4344    case BuiltinType::Float:      return 'f';
4345    case BuiltinType::Double:     return 'd';
4346    case BuiltinType::LongDouble: return 'D';
4347    }
4348}
4349
4350static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4351  EnumDecl *Enum = ET->getDecl();
4352
4353  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4354  if (!Enum->isFixed())
4355    return 'i';
4356
4357  // The encoding of a fixed enum type matches its fixed underlying type.
4358  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4359}
4360
4361static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4362                           QualType T, const FieldDecl *FD) {
4363  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4364  S += 'b';
4365  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4366  // The GNU runtime requires more information; bitfields are encoded as b,
4367  // then the offset (in bits) of the first element, then the type of the
4368  // bitfield, then the size in bits.  For example, in this structure:
4369  //
4370  // struct
4371  // {
4372  //    int integer;
4373  //    int flags:2;
4374  // };
4375  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4376  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4377  // information is not especially sensible, but we're stuck with it for
4378  // compatibility with GCC, although providing it breaks anything that
4379  // actually uses runtime introspection and wants to work on both runtimes...
4380  if (!Ctx->getLangOptions().NeXTRuntime) {
4381    const RecordDecl *RD = FD->getParent();
4382    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4383    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4384    if (const EnumType *ET = T->getAs<EnumType>())
4385      S += ObjCEncodingForEnumType(Ctx, ET);
4386    else
4387      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4388  }
4389  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4390}
4391
4392// FIXME: Use SmallString for accumulating string.
4393void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4394                                            bool ExpandPointedToStructures,
4395                                            bool ExpandStructures,
4396                                            const FieldDecl *FD,
4397                                            bool OutermostType,
4398                                            bool EncodingProperty,
4399                                            bool StructField,
4400                                            bool EncodeBlockParameters,
4401                                            bool EncodeClassNames) const {
4402  if (T->getAs<BuiltinType>()) {
4403    if (FD && FD->isBitField())
4404      return EncodeBitField(this, S, T, FD);
4405    S += ObjCEncodingForPrimitiveKind(this, T);
4406    return;
4407  }
4408
4409  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4410    S += 'j';
4411    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4412                               false);
4413    return;
4414  }
4415
4416  // encoding for pointer or r3eference types.
4417  QualType PointeeTy;
4418  if (const PointerType *PT = T->getAs<PointerType>()) {
4419    if (PT->isObjCSelType()) {
4420      S += ':';
4421      return;
4422    }
4423    PointeeTy = PT->getPointeeType();
4424  }
4425  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4426    PointeeTy = RT->getPointeeType();
4427  if (!PointeeTy.isNull()) {
4428    bool isReadOnly = false;
4429    // For historical/compatibility reasons, the read-only qualifier of the
4430    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4431    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4432    // Also, do not emit the 'r' for anything but the outermost type!
4433    if (isa<TypedefType>(T.getTypePtr())) {
4434      if (OutermostType && T.isConstQualified()) {
4435        isReadOnly = true;
4436        S += 'r';
4437      }
4438    } else if (OutermostType) {
4439      QualType P = PointeeTy;
4440      while (P->getAs<PointerType>())
4441        P = P->getAs<PointerType>()->getPointeeType();
4442      if (P.isConstQualified()) {
4443        isReadOnly = true;
4444        S += 'r';
4445      }
4446    }
4447    if (isReadOnly) {
4448      // Another legacy compatibility encoding. Some ObjC qualifier and type
4449      // combinations need to be rearranged.
4450      // Rewrite "in const" from "nr" to "rn"
4451      if (StringRef(S).endswith("nr"))
4452        S.replace(S.end()-2, S.end(), "rn");
4453    }
4454
4455    if (PointeeTy->isCharType()) {
4456      // char pointer types should be encoded as '*' unless it is a
4457      // type that has been typedef'd to 'BOOL'.
4458      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4459        S += '*';
4460        return;
4461      }
4462    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4463      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4464      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4465        S += '#';
4466        return;
4467      }
4468      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4469      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4470        S += '@';
4471        return;
4472      }
4473      // fall through...
4474    }
4475    S += '^';
4476    getLegacyIntegralTypeEncoding(PointeeTy);
4477
4478    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4479                               NULL);
4480    return;
4481  }
4482
4483  if (const ArrayType *AT =
4484      // Ignore type qualifiers etc.
4485        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4486    if (isa<IncompleteArrayType>(AT) && !StructField) {
4487      // Incomplete arrays are encoded as a pointer to the array element.
4488      S += '^';
4489
4490      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4491                                 false, ExpandStructures, FD);
4492    } else {
4493      S += '[';
4494
4495      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4496        if (getTypeSize(CAT->getElementType()) == 0)
4497          S += '0';
4498        else
4499          S += llvm::utostr(CAT->getSize().getZExtValue());
4500      } else {
4501        //Variable length arrays are encoded as a regular array with 0 elements.
4502        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4503               "Unknown array type!");
4504        S += '0';
4505      }
4506
4507      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4508                                 false, ExpandStructures, FD);
4509      S += ']';
4510    }
4511    return;
4512  }
4513
4514  if (T->getAs<FunctionType>()) {
4515    S += '?';
4516    return;
4517  }
4518
4519  if (const RecordType *RTy = T->getAs<RecordType>()) {
4520    RecordDecl *RDecl = RTy->getDecl();
4521    S += RDecl->isUnion() ? '(' : '{';
4522    // Anonymous structures print as '?'
4523    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4524      S += II->getName();
4525      if (ClassTemplateSpecializationDecl *Spec
4526          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4527        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4528        std::string TemplateArgsStr
4529          = TemplateSpecializationType::PrintTemplateArgumentList(
4530                                            TemplateArgs.data(),
4531                                            TemplateArgs.size(),
4532                                            (*this).getPrintingPolicy());
4533
4534        S += TemplateArgsStr;
4535      }
4536    } else {
4537      S += '?';
4538    }
4539    if (ExpandStructures) {
4540      S += '=';
4541      if (!RDecl->isUnion()) {
4542        getObjCEncodingForStructureImpl(RDecl, S, FD);
4543      } else {
4544        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4545                                     FieldEnd = RDecl->field_end();
4546             Field != FieldEnd; ++Field) {
4547          if (FD) {
4548            S += '"';
4549            S += Field->getNameAsString();
4550            S += '"';
4551          }
4552
4553          // Special case bit-fields.
4554          if (Field->isBitField()) {
4555            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4556                                       (*Field));
4557          } else {
4558            QualType qt = Field->getType();
4559            getLegacyIntegralTypeEncoding(qt);
4560            getObjCEncodingForTypeImpl(qt, S, false, true,
4561                                       FD, /*OutermostType*/false,
4562                                       /*EncodingProperty*/false,
4563                                       /*StructField*/true);
4564          }
4565        }
4566      }
4567    }
4568    S += RDecl->isUnion() ? ')' : '}';
4569    return;
4570  }
4571
4572  if (const EnumType *ET = T->getAs<EnumType>()) {
4573    if (FD && FD->isBitField())
4574      EncodeBitField(this, S, T, FD);
4575    else
4576      S += ObjCEncodingForEnumType(this, ET);
4577    return;
4578  }
4579
4580  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4581    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4582    if (EncodeBlockParameters) {
4583      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4584
4585      S += '<';
4586      // Block return type
4587      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4588                                 ExpandPointedToStructures, ExpandStructures,
4589                                 FD,
4590                                 false /* OutermostType */,
4591                                 EncodingProperty,
4592                                 false /* StructField */,
4593                                 EncodeBlockParameters,
4594                                 EncodeClassNames);
4595      // Block self
4596      S += "@?";
4597      // Block parameters
4598      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4599        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4600               E = FPT->arg_type_end(); I && (I != E); ++I) {
4601          getObjCEncodingForTypeImpl(*I, S,
4602                                     ExpandPointedToStructures,
4603                                     ExpandStructures,
4604                                     FD,
4605                                     false /* OutermostType */,
4606                                     EncodingProperty,
4607                                     false /* StructField */,
4608                                     EncodeBlockParameters,
4609                                     EncodeClassNames);
4610        }
4611      }
4612      S += '>';
4613    }
4614    return;
4615  }
4616
4617  // Ignore protocol qualifiers when mangling at this level.
4618  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4619    T = OT->getBaseType();
4620
4621  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4622    // @encode(class_name)
4623    ObjCInterfaceDecl *OI = OIT->getDecl();
4624    S += '{';
4625    const IdentifierInfo *II = OI->getIdentifier();
4626    S += II->getName();
4627    S += '=';
4628    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4629    DeepCollectObjCIvars(OI, true, Ivars);
4630    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4631      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4632      if (Field->isBitField())
4633        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4634      else
4635        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4636    }
4637    S += '}';
4638    return;
4639  }
4640
4641  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4642    if (OPT->isObjCIdType()) {
4643      S += '@';
4644      return;
4645    }
4646
4647    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4648      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4649      // Since this is a binary compatibility issue, need to consult with runtime
4650      // folks. Fortunately, this is a *very* obsure construct.
4651      S += '#';
4652      return;
4653    }
4654
4655    if (OPT->isObjCQualifiedIdType()) {
4656      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4657                                 ExpandPointedToStructures,
4658                                 ExpandStructures, FD);
4659      if (FD || EncodingProperty || EncodeClassNames) {
4660        // Note that we do extended encoding of protocol qualifer list
4661        // Only when doing ivar or property encoding.
4662        S += '"';
4663        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4664             E = OPT->qual_end(); I != E; ++I) {
4665          S += '<';
4666          S += (*I)->getNameAsString();
4667          S += '>';
4668        }
4669        S += '"';
4670      }
4671      return;
4672    }
4673
4674    QualType PointeeTy = OPT->getPointeeType();
4675    if (!EncodingProperty &&
4676        isa<TypedefType>(PointeeTy.getTypePtr())) {
4677      // Another historical/compatibility reason.
4678      // We encode the underlying type which comes out as
4679      // {...};
4680      S += '^';
4681      getObjCEncodingForTypeImpl(PointeeTy, S,
4682                                 false, ExpandPointedToStructures,
4683                                 NULL);
4684      return;
4685    }
4686
4687    S += '@';
4688    if (OPT->getInterfaceDecl() &&
4689        (FD || EncodingProperty || EncodeClassNames)) {
4690      S += '"';
4691      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4692      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4693           E = OPT->qual_end(); I != E; ++I) {
4694        S += '<';
4695        S += (*I)->getNameAsString();
4696        S += '>';
4697      }
4698      S += '"';
4699    }
4700    return;
4701  }
4702
4703  // gcc just blithely ignores member pointers.
4704  // TODO: maybe there should be a mangling for these
4705  if (T->getAs<MemberPointerType>())
4706    return;
4707
4708  if (T->isVectorType()) {
4709    // This matches gcc's encoding, even though technically it is
4710    // insufficient.
4711    // FIXME. We should do a better job than gcc.
4712    return;
4713  }
4714
4715  llvm_unreachable("@encode for type not implemented!");
4716}
4717
4718void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4719                                                 std::string &S,
4720                                                 const FieldDecl *FD,
4721                                                 bool includeVBases) const {
4722  assert(RDecl && "Expected non-null RecordDecl");
4723  assert(!RDecl->isUnion() && "Should not be called for unions");
4724  if (!RDecl->getDefinition())
4725    return;
4726
4727  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4728  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4729  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4730
4731  if (CXXRec) {
4732    for (CXXRecordDecl::base_class_iterator
4733           BI = CXXRec->bases_begin(),
4734           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4735      if (!BI->isVirtual()) {
4736        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4737        if (base->isEmpty())
4738          continue;
4739        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4740        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4741                                  std::make_pair(offs, base));
4742      }
4743    }
4744  }
4745
4746  unsigned i = 0;
4747  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4748                               FieldEnd = RDecl->field_end();
4749       Field != FieldEnd; ++Field, ++i) {
4750    uint64_t offs = layout.getFieldOffset(i);
4751    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4752                              std::make_pair(offs, *Field));
4753  }
4754
4755  if (CXXRec && includeVBases) {
4756    for (CXXRecordDecl::base_class_iterator
4757           BI = CXXRec->vbases_begin(),
4758           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4759      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4760      if (base->isEmpty())
4761        continue;
4762      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4763      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4764        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4765                                  std::make_pair(offs, base));
4766    }
4767  }
4768
4769  CharUnits size;
4770  if (CXXRec) {
4771    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4772  } else {
4773    size = layout.getSize();
4774  }
4775
4776  uint64_t CurOffs = 0;
4777  std::multimap<uint64_t, NamedDecl *>::iterator
4778    CurLayObj = FieldOrBaseOffsets.begin();
4779
4780  if ((CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) ||
4781      (CurLayObj == FieldOrBaseOffsets.end() &&
4782         CXXRec && CXXRec->isDynamicClass())) {
4783    assert(CXXRec && CXXRec->isDynamicClass() &&
4784           "Offset 0 was empty but no VTable ?");
4785    if (FD) {
4786      S += "\"_vptr$";
4787      std::string recname = CXXRec->getNameAsString();
4788      if (recname.empty()) recname = "?";
4789      S += recname;
4790      S += '"';
4791    }
4792    S += "^^?";
4793    CurOffs += getTypeSize(VoidPtrTy);
4794  }
4795
4796  if (!RDecl->hasFlexibleArrayMember()) {
4797    // Mark the end of the structure.
4798    uint64_t offs = toBits(size);
4799    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4800                              std::make_pair(offs, (NamedDecl*)0));
4801  }
4802
4803  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4804    assert(CurOffs <= CurLayObj->first);
4805
4806    if (CurOffs < CurLayObj->first) {
4807      uint64_t padding = CurLayObj->first - CurOffs;
4808      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4809      // packing/alignment of members is different that normal, in which case
4810      // the encoding will be out-of-sync with the real layout.
4811      // If the runtime switches to just consider the size of types without
4812      // taking into account alignment, we could make padding explicit in the
4813      // encoding (e.g. using arrays of chars). The encoding strings would be
4814      // longer then though.
4815      CurOffs += padding;
4816    }
4817
4818    NamedDecl *dcl = CurLayObj->second;
4819    if (dcl == 0)
4820      break; // reached end of structure.
4821
4822    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4823      // We expand the bases without their virtual bases since those are going
4824      // in the initial structure. Note that this differs from gcc which
4825      // expands virtual bases each time one is encountered in the hierarchy,
4826      // making the encoding type bigger than it really is.
4827      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4828      assert(!base->isEmpty());
4829      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4830    } else {
4831      FieldDecl *field = cast<FieldDecl>(dcl);
4832      if (FD) {
4833        S += '"';
4834        S += field->getNameAsString();
4835        S += '"';
4836      }
4837
4838      if (field->isBitField()) {
4839        EncodeBitField(this, S, field->getType(), field);
4840        CurOffs += field->getBitWidthValue(*this);
4841      } else {
4842        QualType qt = field->getType();
4843        getLegacyIntegralTypeEncoding(qt);
4844        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4845                                   /*OutermostType*/false,
4846                                   /*EncodingProperty*/false,
4847                                   /*StructField*/true);
4848        CurOffs += getTypeSize(field->getType());
4849      }
4850    }
4851  }
4852}
4853
4854void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4855                                                 std::string& S) const {
4856  if (QT & Decl::OBJC_TQ_In)
4857    S += 'n';
4858  if (QT & Decl::OBJC_TQ_Inout)
4859    S += 'N';
4860  if (QT & Decl::OBJC_TQ_Out)
4861    S += 'o';
4862  if (QT & Decl::OBJC_TQ_Bycopy)
4863    S += 'O';
4864  if (QT & Decl::OBJC_TQ_Byref)
4865    S += 'R';
4866  if (QT & Decl::OBJC_TQ_Oneway)
4867    S += 'V';
4868}
4869
4870void ASTContext::setBuiltinVaListType(QualType T) {
4871  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4872
4873  BuiltinVaListType = T;
4874}
4875
4876TypedefDecl *ASTContext::getObjCIdDecl() const {
4877  if (!ObjCIdDecl) {
4878    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
4879    T = getObjCObjectPointerType(T);
4880    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
4881    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4882                                     getTranslationUnitDecl(),
4883                                     SourceLocation(), SourceLocation(),
4884                                     &Idents.get("id"), IdInfo);
4885  }
4886
4887  return ObjCIdDecl;
4888}
4889
4890TypedefDecl *ASTContext::getObjCSelDecl() const {
4891  if (!ObjCSelDecl) {
4892    QualType SelT = getPointerType(ObjCBuiltinSelTy);
4893    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
4894    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4895                                      getTranslationUnitDecl(),
4896                                      SourceLocation(), SourceLocation(),
4897                                      &Idents.get("SEL"), SelInfo);
4898  }
4899  return ObjCSelDecl;
4900}
4901
4902void ASTContext::setObjCProtoType(QualType QT) {
4903  ObjCProtoType = QT;
4904}
4905
4906TypedefDecl *ASTContext::getObjCClassDecl() const {
4907  if (!ObjCClassDecl) {
4908    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
4909    T = getObjCObjectPointerType(T);
4910    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
4911    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4912                                        getTranslationUnitDecl(),
4913                                        SourceLocation(), SourceLocation(),
4914                                        &Idents.get("Class"), ClassInfo);
4915  }
4916
4917  return ObjCClassDecl;
4918}
4919
4920void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4921  assert(ObjCConstantStringType.isNull() &&
4922         "'NSConstantString' type already set!");
4923
4924  ObjCConstantStringType = getObjCInterfaceType(Decl);
4925}
4926
4927/// \brief Retrieve the template name that corresponds to a non-empty
4928/// lookup.
4929TemplateName
4930ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4931                                      UnresolvedSetIterator End) const {
4932  unsigned size = End - Begin;
4933  assert(size > 1 && "set is not overloaded!");
4934
4935  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4936                          size * sizeof(FunctionTemplateDecl*));
4937  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4938
4939  NamedDecl **Storage = OT->getStorage();
4940  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4941    NamedDecl *D = *I;
4942    assert(isa<FunctionTemplateDecl>(D) ||
4943           (isa<UsingShadowDecl>(D) &&
4944            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4945    *Storage++ = D;
4946  }
4947
4948  return TemplateName(OT);
4949}
4950
4951/// \brief Retrieve the template name that represents a qualified
4952/// template name such as \c std::vector.
4953TemplateName
4954ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4955                                     bool TemplateKeyword,
4956                                     TemplateDecl *Template) const {
4957  assert(NNS && "Missing nested-name-specifier in qualified template name");
4958
4959  // FIXME: Canonicalization?
4960  llvm::FoldingSetNodeID ID;
4961  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4962
4963  void *InsertPos = 0;
4964  QualifiedTemplateName *QTN =
4965    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4966  if (!QTN) {
4967    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4968    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4969  }
4970
4971  return TemplateName(QTN);
4972}
4973
4974/// \brief Retrieve the template name that represents a dependent
4975/// template name such as \c MetaFun::template apply.
4976TemplateName
4977ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4978                                     const IdentifierInfo *Name) const {
4979  assert((!NNS || NNS->isDependent()) &&
4980         "Nested name specifier must be dependent");
4981
4982  llvm::FoldingSetNodeID ID;
4983  DependentTemplateName::Profile(ID, NNS, Name);
4984
4985  void *InsertPos = 0;
4986  DependentTemplateName *QTN =
4987    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4988
4989  if (QTN)
4990    return TemplateName(QTN);
4991
4992  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4993  if (CanonNNS == NNS) {
4994    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4995  } else {
4996    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4997    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4998    DependentTemplateName *CheckQTN =
4999      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5000    assert(!CheckQTN && "Dependent type name canonicalization broken");
5001    (void)CheckQTN;
5002  }
5003
5004  DependentTemplateNames.InsertNode(QTN, InsertPos);
5005  return TemplateName(QTN);
5006}
5007
5008/// \brief Retrieve the template name that represents a dependent
5009/// template name such as \c MetaFun::template operator+.
5010TemplateName
5011ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5012                                     OverloadedOperatorKind Operator) const {
5013  assert((!NNS || NNS->isDependent()) &&
5014         "Nested name specifier must be dependent");
5015
5016  llvm::FoldingSetNodeID ID;
5017  DependentTemplateName::Profile(ID, NNS, Operator);
5018
5019  void *InsertPos = 0;
5020  DependentTemplateName *QTN
5021    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5022
5023  if (QTN)
5024    return TemplateName(QTN);
5025
5026  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5027  if (CanonNNS == NNS) {
5028    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5029  } else {
5030    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5031    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5032
5033    DependentTemplateName *CheckQTN
5034      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5035    assert(!CheckQTN && "Dependent template name canonicalization broken");
5036    (void)CheckQTN;
5037  }
5038
5039  DependentTemplateNames.InsertNode(QTN, InsertPos);
5040  return TemplateName(QTN);
5041}
5042
5043TemplateName
5044ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5045                                         TemplateName replacement) const {
5046  llvm::FoldingSetNodeID ID;
5047  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5048
5049  void *insertPos = 0;
5050  SubstTemplateTemplateParmStorage *subst
5051    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5052
5053  if (!subst) {
5054    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5055    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5056  }
5057
5058  return TemplateName(subst);
5059}
5060
5061TemplateName
5062ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5063                                       const TemplateArgument &ArgPack) const {
5064  ASTContext &Self = const_cast<ASTContext &>(*this);
5065  llvm::FoldingSetNodeID ID;
5066  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5067
5068  void *InsertPos = 0;
5069  SubstTemplateTemplateParmPackStorage *Subst
5070    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5071
5072  if (!Subst) {
5073    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5074                                                           ArgPack.pack_size(),
5075                                                         ArgPack.pack_begin());
5076    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5077  }
5078
5079  return TemplateName(Subst);
5080}
5081
5082/// getFromTargetType - Given one of the integer types provided by
5083/// TargetInfo, produce the corresponding type. The unsigned @p Type
5084/// is actually a value of type @c TargetInfo::IntType.
5085CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5086  switch (Type) {
5087  case TargetInfo::NoInt: return CanQualType();
5088  case TargetInfo::SignedShort: return ShortTy;
5089  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5090  case TargetInfo::SignedInt: return IntTy;
5091  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5092  case TargetInfo::SignedLong: return LongTy;
5093  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5094  case TargetInfo::SignedLongLong: return LongLongTy;
5095  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5096  }
5097
5098  llvm_unreachable("Unhandled TargetInfo::IntType value");
5099}
5100
5101//===----------------------------------------------------------------------===//
5102//                        Type Predicates.
5103//===----------------------------------------------------------------------===//
5104
5105/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5106/// garbage collection attribute.
5107///
5108Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5109  if (getLangOptions().getGC() == LangOptions::NonGC)
5110    return Qualifiers::GCNone;
5111
5112  assert(getLangOptions().ObjC1);
5113  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5114
5115  // Default behaviour under objective-C's gc is for ObjC pointers
5116  // (or pointers to them) be treated as though they were declared
5117  // as __strong.
5118  if (GCAttrs == Qualifiers::GCNone) {
5119    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5120      return Qualifiers::Strong;
5121    else if (Ty->isPointerType())
5122      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5123  } else {
5124    // It's not valid to set GC attributes on anything that isn't a
5125    // pointer.
5126#ifndef NDEBUG
5127    QualType CT = Ty->getCanonicalTypeInternal();
5128    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5129      CT = AT->getElementType();
5130    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5131#endif
5132  }
5133  return GCAttrs;
5134}
5135
5136//===----------------------------------------------------------------------===//
5137//                        Type Compatibility Testing
5138//===----------------------------------------------------------------------===//
5139
5140/// areCompatVectorTypes - Return true if the two specified vector types are
5141/// compatible.
5142static bool areCompatVectorTypes(const VectorType *LHS,
5143                                 const VectorType *RHS) {
5144  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5145  return LHS->getElementType() == RHS->getElementType() &&
5146         LHS->getNumElements() == RHS->getNumElements();
5147}
5148
5149bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5150                                          QualType SecondVec) {
5151  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5152  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5153
5154  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5155    return true;
5156
5157  // Treat Neon vector types and most AltiVec vector types as if they are the
5158  // equivalent GCC vector types.
5159  const VectorType *First = FirstVec->getAs<VectorType>();
5160  const VectorType *Second = SecondVec->getAs<VectorType>();
5161  if (First->getNumElements() == Second->getNumElements() &&
5162      hasSameType(First->getElementType(), Second->getElementType()) &&
5163      First->getVectorKind() != VectorType::AltiVecPixel &&
5164      First->getVectorKind() != VectorType::AltiVecBool &&
5165      Second->getVectorKind() != VectorType::AltiVecPixel &&
5166      Second->getVectorKind() != VectorType::AltiVecBool)
5167    return true;
5168
5169  return false;
5170}
5171
5172//===----------------------------------------------------------------------===//
5173// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5174//===----------------------------------------------------------------------===//
5175
5176/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5177/// inheritance hierarchy of 'rProto'.
5178bool
5179ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5180                                           ObjCProtocolDecl *rProto) const {
5181  if (lProto == rProto)
5182    return true;
5183  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5184       E = rProto->protocol_end(); PI != E; ++PI)
5185    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5186      return true;
5187  return false;
5188}
5189
5190/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5191/// return true if lhs's protocols conform to rhs's protocol; false
5192/// otherwise.
5193bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5194  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5195    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5196  return false;
5197}
5198
5199/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5200/// Class<p1, ...>.
5201bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5202                                                      QualType rhs) {
5203  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5204  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5205  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5206
5207  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5208       E = lhsQID->qual_end(); I != E; ++I) {
5209    bool match = false;
5210    ObjCProtocolDecl *lhsProto = *I;
5211    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5212         E = rhsOPT->qual_end(); J != E; ++J) {
5213      ObjCProtocolDecl *rhsProto = *J;
5214      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5215        match = true;
5216        break;
5217      }
5218    }
5219    if (!match)
5220      return false;
5221  }
5222  return true;
5223}
5224
5225/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5226/// ObjCQualifiedIDType.
5227bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5228                                                   bool compare) {
5229  // Allow id<P..> and an 'id' or void* type in all cases.
5230  if (lhs->isVoidPointerType() ||
5231      lhs->isObjCIdType() || lhs->isObjCClassType())
5232    return true;
5233  else if (rhs->isVoidPointerType() ||
5234           rhs->isObjCIdType() || rhs->isObjCClassType())
5235    return true;
5236
5237  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5238    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5239
5240    if (!rhsOPT) return false;
5241
5242    if (rhsOPT->qual_empty()) {
5243      // If the RHS is a unqualified interface pointer "NSString*",
5244      // make sure we check the class hierarchy.
5245      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5246        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5247             E = lhsQID->qual_end(); I != E; ++I) {
5248          // when comparing an id<P> on lhs with a static type on rhs,
5249          // see if static class implements all of id's protocols, directly or
5250          // through its super class and categories.
5251          if (!rhsID->ClassImplementsProtocol(*I, true))
5252            return false;
5253        }
5254      }
5255      // If there are no qualifiers and no interface, we have an 'id'.
5256      return true;
5257    }
5258    // Both the right and left sides have qualifiers.
5259    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5260         E = lhsQID->qual_end(); I != E; ++I) {
5261      ObjCProtocolDecl *lhsProto = *I;
5262      bool match = false;
5263
5264      // when comparing an id<P> on lhs with a static type on rhs,
5265      // see if static class implements all of id's protocols, directly or
5266      // through its super class and categories.
5267      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5268           E = rhsOPT->qual_end(); J != E; ++J) {
5269        ObjCProtocolDecl *rhsProto = *J;
5270        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5271            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5272          match = true;
5273          break;
5274        }
5275      }
5276      // If the RHS is a qualified interface pointer "NSString<P>*",
5277      // make sure we check the class hierarchy.
5278      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5279        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5280             E = lhsQID->qual_end(); I != E; ++I) {
5281          // when comparing an id<P> on lhs with a static type on rhs,
5282          // see if static class implements all of id's protocols, directly or
5283          // through its super class and categories.
5284          if (rhsID->ClassImplementsProtocol(*I, true)) {
5285            match = true;
5286            break;
5287          }
5288        }
5289      }
5290      if (!match)
5291        return false;
5292    }
5293
5294    return true;
5295  }
5296
5297  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5298  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5299
5300  if (const ObjCObjectPointerType *lhsOPT =
5301        lhs->getAsObjCInterfacePointerType()) {
5302    // If both the right and left sides have qualifiers.
5303    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5304         E = lhsOPT->qual_end(); I != E; ++I) {
5305      ObjCProtocolDecl *lhsProto = *I;
5306      bool match = false;
5307
5308      // when comparing an id<P> on rhs with a static type on lhs,
5309      // see if static class implements all of id's protocols, directly or
5310      // through its super class and categories.
5311      // First, lhs protocols in the qualifier list must be found, direct
5312      // or indirect in rhs's qualifier list or it is a mismatch.
5313      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5314           E = rhsQID->qual_end(); J != E; ++J) {
5315        ObjCProtocolDecl *rhsProto = *J;
5316        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5317            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5318          match = true;
5319          break;
5320        }
5321      }
5322      if (!match)
5323        return false;
5324    }
5325
5326    // Static class's protocols, or its super class or category protocols
5327    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5328    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5329      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5330      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5331      // This is rather dubious but matches gcc's behavior. If lhs has
5332      // no type qualifier and its class has no static protocol(s)
5333      // assume that it is mismatch.
5334      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5335        return false;
5336      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5337           LHSInheritedProtocols.begin(),
5338           E = LHSInheritedProtocols.end(); I != E; ++I) {
5339        bool match = false;
5340        ObjCProtocolDecl *lhsProto = (*I);
5341        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5342             E = rhsQID->qual_end(); J != E; ++J) {
5343          ObjCProtocolDecl *rhsProto = *J;
5344          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5345              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5346            match = true;
5347            break;
5348          }
5349        }
5350        if (!match)
5351          return false;
5352      }
5353    }
5354    return true;
5355  }
5356  return false;
5357}
5358
5359/// canAssignObjCInterfaces - Return true if the two interface types are
5360/// compatible for assignment from RHS to LHS.  This handles validation of any
5361/// protocol qualifiers on the LHS or RHS.
5362///
5363bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5364                                         const ObjCObjectPointerType *RHSOPT) {
5365  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5366  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5367
5368  // If either type represents the built-in 'id' or 'Class' types, return true.
5369  if (LHS->isObjCUnqualifiedIdOrClass() ||
5370      RHS->isObjCUnqualifiedIdOrClass())
5371    return true;
5372
5373  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5374    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5375                                             QualType(RHSOPT,0),
5376                                             false);
5377
5378  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5379    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5380                                                QualType(RHSOPT,0));
5381
5382  // If we have 2 user-defined types, fall into that path.
5383  if (LHS->getInterface() && RHS->getInterface())
5384    return canAssignObjCInterfaces(LHS, RHS);
5385
5386  return false;
5387}
5388
5389/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5390/// for providing type-safety for objective-c pointers used to pass/return
5391/// arguments in block literals. When passed as arguments, passing 'A*' where
5392/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5393/// not OK. For the return type, the opposite is not OK.
5394bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5395                                         const ObjCObjectPointerType *LHSOPT,
5396                                         const ObjCObjectPointerType *RHSOPT,
5397                                         bool BlockReturnType) {
5398  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5399    return true;
5400
5401  if (LHSOPT->isObjCBuiltinType()) {
5402    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5403  }
5404
5405  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5406    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5407                                             QualType(RHSOPT,0),
5408                                             false);
5409
5410  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5411  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5412  if (LHS && RHS)  { // We have 2 user-defined types.
5413    if (LHS != RHS) {
5414      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5415        return BlockReturnType;
5416      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5417        return !BlockReturnType;
5418    }
5419    else
5420      return true;
5421  }
5422  return false;
5423}
5424
5425/// getIntersectionOfProtocols - This routine finds the intersection of set
5426/// of protocols inherited from two distinct objective-c pointer objects.
5427/// It is used to build composite qualifier list of the composite type of
5428/// the conditional expression involving two objective-c pointer objects.
5429static
5430void getIntersectionOfProtocols(ASTContext &Context,
5431                                const ObjCObjectPointerType *LHSOPT,
5432                                const ObjCObjectPointerType *RHSOPT,
5433      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5434
5435  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5436  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5437  assert(LHS->getInterface() && "LHS must have an interface base");
5438  assert(RHS->getInterface() && "RHS must have an interface base");
5439
5440  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5441  unsigned LHSNumProtocols = LHS->getNumProtocols();
5442  if (LHSNumProtocols > 0)
5443    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5444  else {
5445    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5446    Context.CollectInheritedProtocols(LHS->getInterface(),
5447                                      LHSInheritedProtocols);
5448    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5449                                LHSInheritedProtocols.end());
5450  }
5451
5452  unsigned RHSNumProtocols = RHS->getNumProtocols();
5453  if (RHSNumProtocols > 0) {
5454    ObjCProtocolDecl **RHSProtocols =
5455      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5456    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5457      if (InheritedProtocolSet.count(RHSProtocols[i]))
5458        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5459  } else {
5460    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5461    Context.CollectInheritedProtocols(RHS->getInterface(),
5462                                      RHSInheritedProtocols);
5463    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5464         RHSInheritedProtocols.begin(),
5465         E = RHSInheritedProtocols.end(); I != E; ++I)
5466      if (InheritedProtocolSet.count((*I)))
5467        IntersectionOfProtocols.push_back((*I));
5468  }
5469}
5470
5471/// areCommonBaseCompatible - Returns common base class of the two classes if
5472/// one found. Note that this is O'2 algorithm. But it will be called as the
5473/// last type comparison in a ?-exp of ObjC pointer types before a
5474/// warning is issued. So, its invokation is extremely rare.
5475QualType ASTContext::areCommonBaseCompatible(
5476                                          const ObjCObjectPointerType *Lptr,
5477                                          const ObjCObjectPointerType *Rptr) {
5478  const ObjCObjectType *LHS = Lptr->getObjectType();
5479  const ObjCObjectType *RHS = Rptr->getObjectType();
5480  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5481  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5482  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5483    return QualType();
5484
5485  do {
5486    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5487    if (canAssignObjCInterfaces(LHS, RHS)) {
5488      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5489      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5490
5491      QualType Result = QualType(LHS, 0);
5492      if (!Protocols.empty())
5493        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5494      Result = getObjCObjectPointerType(Result);
5495      return Result;
5496    }
5497  } while ((LDecl = LDecl->getSuperClass()));
5498
5499  return QualType();
5500}
5501
5502bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5503                                         const ObjCObjectType *RHS) {
5504  assert(LHS->getInterface() && "LHS is not an interface type");
5505  assert(RHS->getInterface() && "RHS is not an interface type");
5506
5507  // Verify that the base decls are compatible: the RHS must be a subclass of
5508  // the LHS.
5509  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5510    return false;
5511
5512  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5513  // protocol qualified at all, then we are good.
5514  if (LHS->getNumProtocols() == 0)
5515    return true;
5516
5517  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5518  // more detailed analysis is required.
5519  if (RHS->getNumProtocols() == 0) {
5520    // OK, if LHS is a superclass of RHS *and*
5521    // this superclass is assignment compatible with LHS.
5522    // false otherwise.
5523    bool IsSuperClass =
5524      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5525    if (IsSuperClass) {
5526      // OK if conversion of LHS to SuperClass results in narrowing of types
5527      // ; i.e., SuperClass may implement at least one of the protocols
5528      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5529      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5530      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5531      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5532      // If super class has no protocols, it is not a match.
5533      if (SuperClassInheritedProtocols.empty())
5534        return false;
5535
5536      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5537           LHSPE = LHS->qual_end();
5538           LHSPI != LHSPE; LHSPI++) {
5539        bool SuperImplementsProtocol = false;
5540        ObjCProtocolDecl *LHSProto = (*LHSPI);
5541
5542        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5543             SuperClassInheritedProtocols.begin(),
5544             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5545          ObjCProtocolDecl *SuperClassProto = (*I);
5546          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5547            SuperImplementsProtocol = true;
5548            break;
5549          }
5550        }
5551        if (!SuperImplementsProtocol)
5552          return false;
5553      }
5554      return true;
5555    }
5556    return false;
5557  }
5558
5559  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5560                                     LHSPE = LHS->qual_end();
5561       LHSPI != LHSPE; LHSPI++) {
5562    bool RHSImplementsProtocol = false;
5563
5564    // If the RHS doesn't implement the protocol on the left, the types
5565    // are incompatible.
5566    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5567                                       RHSPE = RHS->qual_end();
5568         RHSPI != RHSPE; RHSPI++) {
5569      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5570        RHSImplementsProtocol = true;
5571        break;
5572      }
5573    }
5574    // FIXME: For better diagnostics, consider passing back the protocol name.
5575    if (!RHSImplementsProtocol)
5576      return false;
5577  }
5578  // The RHS implements all protocols listed on the LHS.
5579  return true;
5580}
5581
5582bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5583  // get the "pointed to" types
5584  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5585  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5586
5587  if (!LHSOPT || !RHSOPT)
5588    return false;
5589
5590  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5591         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5592}
5593
5594bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5595  return canAssignObjCInterfaces(
5596                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5597                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5598}
5599
5600/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5601/// both shall have the identically qualified version of a compatible type.
5602/// C99 6.2.7p1: Two types have compatible types if their types are the
5603/// same. See 6.7.[2,3,5] for additional rules.
5604bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5605                                    bool CompareUnqualified) {
5606  if (getLangOptions().CPlusPlus)
5607    return hasSameType(LHS, RHS);
5608
5609  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5610}
5611
5612bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5613  return typesAreCompatible(LHS, RHS);
5614}
5615
5616bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5617  return !mergeTypes(LHS, RHS, true).isNull();
5618}
5619
5620/// mergeTransparentUnionType - if T is a transparent union type and a member
5621/// of T is compatible with SubType, return the merged type, else return
5622/// QualType()
5623QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5624                                               bool OfBlockPointer,
5625                                               bool Unqualified) {
5626  if (const RecordType *UT = T->getAsUnionType()) {
5627    RecordDecl *UD = UT->getDecl();
5628    if (UD->hasAttr<TransparentUnionAttr>()) {
5629      for (RecordDecl::field_iterator it = UD->field_begin(),
5630           itend = UD->field_end(); it != itend; ++it) {
5631        QualType ET = it->getType().getUnqualifiedType();
5632        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5633        if (!MT.isNull())
5634          return MT;
5635      }
5636    }
5637  }
5638
5639  return QualType();
5640}
5641
5642/// mergeFunctionArgumentTypes - merge two types which appear as function
5643/// argument types
5644QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5645                                                bool OfBlockPointer,
5646                                                bool Unqualified) {
5647  // GNU extension: two types are compatible if they appear as a function
5648  // argument, one of the types is a transparent union type and the other
5649  // type is compatible with a union member
5650  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5651                                              Unqualified);
5652  if (!lmerge.isNull())
5653    return lmerge;
5654
5655  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5656                                              Unqualified);
5657  if (!rmerge.isNull())
5658    return rmerge;
5659
5660  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5661}
5662
5663QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5664                                        bool OfBlockPointer,
5665                                        bool Unqualified) {
5666  const FunctionType *lbase = lhs->getAs<FunctionType>();
5667  const FunctionType *rbase = rhs->getAs<FunctionType>();
5668  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5669  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5670  bool allLTypes = true;
5671  bool allRTypes = true;
5672
5673  // Check return type
5674  QualType retType;
5675  if (OfBlockPointer) {
5676    QualType RHS = rbase->getResultType();
5677    QualType LHS = lbase->getResultType();
5678    bool UnqualifiedResult = Unqualified;
5679    if (!UnqualifiedResult)
5680      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5681    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5682  }
5683  else
5684    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5685                         Unqualified);
5686  if (retType.isNull()) return QualType();
5687
5688  if (Unqualified)
5689    retType = retType.getUnqualifiedType();
5690
5691  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5692  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5693  if (Unqualified) {
5694    LRetType = LRetType.getUnqualifiedType();
5695    RRetType = RRetType.getUnqualifiedType();
5696  }
5697
5698  if (getCanonicalType(retType) != LRetType)
5699    allLTypes = false;
5700  if (getCanonicalType(retType) != RRetType)
5701    allRTypes = false;
5702
5703  // FIXME: double check this
5704  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5705  //                           rbase->getRegParmAttr() != 0 &&
5706  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5707  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5708  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5709
5710  // Compatible functions must have compatible calling conventions
5711  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5712    return QualType();
5713
5714  // Regparm is part of the calling convention.
5715  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5716    return QualType();
5717  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5718    return QualType();
5719
5720  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5721    return QualType();
5722
5723  // functypes which return are preferred over those that do not.
5724  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
5725    allLTypes = false;
5726  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
5727    allRTypes = false;
5728  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5729  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5730
5731  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5732
5733  if (lproto && rproto) { // two C99 style function prototypes
5734    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5735           "C++ shouldn't be here");
5736    unsigned lproto_nargs = lproto->getNumArgs();
5737    unsigned rproto_nargs = rproto->getNumArgs();
5738
5739    // Compatible functions must have the same number of arguments
5740    if (lproto_nargs != rproto_nargs)
5741      return QualType();
5742
5743    // Variadic and non-variadic functions aren't compatible
5744    if (lproto->isVariadic() != rproto->isVariadic())
5745      return QualType();
5746
5747    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5748      return QualType();
5749
5750    if (LangOpts.ObjCAutoRefCount &&
5751        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
5752      return QualType();
5753
5754    // Check argument compatibility
5755    SmallVector<QualType, 10> types;
5756    for (unsigned i = 0; i < lproto_nargs; i++) {
5757      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5758      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5759      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5760                                                    OfBlockPointer,
5761                                                    Unqualified);
5762      if (argtype.isNull()) return QualType();
5763
5764      if (Unqualified)
5765        argtype = argtype.getUnqualifiedType();
5766
5767      types.push_back(argtype);
5768      if (Unqualified) {
5769        largtype = largtype.getUnqualifiedType();
5770        rargtype = rargtype.getUnqualifiedType();
5771      }
5772
5773      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5774        allLTypes = false;
5775      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5776        allRTypes = false;
5777    }
5778
5779    if (allLTypes) return lhs;
5780    if (allRTypes) return rhs;
5781
5782    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5783    EPI.ExtInfo = einfo;
5784    return getFunctionType(retType, types.begin(), types.size(), EPI);
5785  }
5786
5787  if (lproto) allRTypes = false;
5788  if (rproto) allLTypes = false;
5789
5790  const FunctionProtoType *proto = lproto ? lproto : rproto;
5791  if (proto) {
5792    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5793    if (proto->isVariadic()) return QualType();
5794    // Check that the types are compatible with the types that
5795    // would result from default argument promotions (C99 6.7.5.3p15).
5796    // The only types actually affected are promotable integer
5797    // types and floats, which would be passed as a different
5798    // type depending on whether the prototype is visible.
5799    unsigned proto_nargs = proto->getNumArgs();
5800    for (unsigned i = 0; i < proto_nargs; ++i) {
5801      QualType argTy = proto->getArgType(i);
5802
5803      // Look at the promotion type of enum types, since that is the type used
5804      // to pass enum values.
5805      if (const EnumType *Enum = argTy->getAs<EnumType>())
5806        argTy = Enum->getDecl()->getPromotionType();
5807
5808      if (argTy->isPromotableIntegerType() ||
5809          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5810        return QualType();
5811    }
5812
5813    if (allLTypes) return lhs;
5814    if (allRTypes) return rhs;
5815
5816    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5817    EPI.ExtInfo = einfo;
5818    return getFunctionType(retType, proto->arg_type_begin(),
5819                           proto->getNumArgs(), EPI);
5820  }
5821
5822  if (allLTypes) return lhs;
5823  if (allRTypes) return rhs;
5824  return getFunctionNoProtoType(retType, einfo);
5825}
5826
5827QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5828                                bool OfBlockPointer,
5829                                bool Unqualified, bool BlockReturnType) {
5830  // C++ [expr]: If an expression initially has the type "reference to T", the
5831  // type is adjusted to "T" prior to any further analysis, the expression
5832  // designates the object or function denoted by the reference, and the
5833  // expression is an lvalue unless the reference is an rvalue reference and
5834  // the expression is a function call (possibly inside parentheses).
5835  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5836  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5837
5838  if (Unqualified) {
5839    LHS = LHS.getUnqualifiedType();
5840    RHS = RHS.getUnqualifiedType();
5841  }
5842
5843  QualType LHSCan = getCanonicalType(LHS),
5844           RHSCan = getCanonicalType(RHS);
5845
5846  // If two types are identical, they are compatible.
5847  if (LHSCan == RHSCan)
5848    return LHS;
5849
5850  // If the qualifiers are different, the types aren't compatible... mostly.
5851  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5852  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5853  if (LQuals != RQuals) {
5854    // If any of these qualifiers are different, we have a type
5855    // mismatch.
5856    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5857        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5858        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5859      return QualType();
5860
5861    // Exactly one GC qualifier difference is allowed: __strong is
5862    // okay if the other type has no GC qualifier but is an Objective
5863    // C object pointer (i.e. implicitly strong by default).  We fix
5864    // this by pretending that the unqualified type was actually
5865    // qualified __strong.
5866    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5867    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5868    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5869
5870    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5871      return QualType();
5872
5873    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5874      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5875    }
5876    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5877      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5878    }
5879    return QualType();
5880  }
5881
5882  // Okay, qualifiers are equal.
5883
5884  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5885  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5886
5887  // We want to consider the two function types to be the same for these
5888  // comparisons, just force one to the other.
5889  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5890  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5891
5892  // Same as above for arrays
5893  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5894    LHSClass = Type::ConstantArray;
5895  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5896    RHSClass = Type::ConstantArray;
5897
5898  // ObjCInterfaces are just specialized ObjCObjects.
5899  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5900  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5901
5902  // Canonicalize ExtVector -> Vector.
5903  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5904  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5905
5906  // If the canonical type classes don't match.
5907  if (LHSClass != RHSClass) {
5908    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5909    // a signed integer type, or an unsigned integer type.
5910    // Compatibility is based on the underlying type, not the promotion
5911    // type.
5912    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5913      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5914        return RHS;
5915    }
5916    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5917      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5918        return LHS;
5919    }
5920
5921    return QualType();
5922  }
5923
5924  // The canonical type classes match.
5925  switch (LHSClass) {
5926#define TYPE(Class, Base)
5927#define ABSTRACT_TYPE(Class, Base)
5928#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5929#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5930#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5931#include "clang/AST/TypeNodes.def"
5932    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
5933
5934  case Type::LValueReference:
5935  case Type::RValueReference:
5936  case Type::MemberPointer:
5937    llvm_unreachable("C++ should never be in mergeTypes");
5938
5939  case Type::ObjCInterface:
5940  case Type::IncompleteArray:
5941  case Type::VariableArray:
5942  case Type::FunctionProto:
5943  case Type::ExtVector:
5944    llvm_unreachable("Types are eliminated above");
5945
5946  case Type::Pointer:
5947  {
5948    // Merge two pointer types, while trying to preserve typedef info
5949    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5950    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5951    if (Unqualified) {
5952      LHSPointee = LHSPointee.getUnqualifiedType();
5953      RHSPointee = RHSPointee.getUnqualifiedType();
5954    }
5955    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5956                                     Unqualified);
5957    if (ResultType.isNull()) return QualType();
5958    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5959      return LHS;
5960    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5961      return RHS;
5962    return getPointerType(ResultType);
5963  }
5964  case Type::BlockPointer:
5965  {
5966    // Merge two block pointer types, while trying to preserve typedef info
5967    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5968    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5969    if (Unqualified) {
5970      LHSPointee = LHSPointee.getUnqualifiedType();
5971      RHSPointee = RHSPointee.getUnqualifiedType();
5972    }
5973    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5974                                     Unqualified);
5975    if (ResultType.isNull()) return QualType();
5976    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5977      return LHS;
5978    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5979      return RHS;
5980    return getBlockPointerType(ResultType);
5981  }
5982  case Type::Atomic:
5983  {
5984    // Merge two pointer types, while trying to preserve typedef info
5985    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
5986    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
5987    if (Unqualified) {
5988      LHSValue = LHSValue.getUnqualifiedType();
5989      RHSValue = RHSValue.getUnqualifiedType();
5990    }
5991    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
5992                                     Unqualified);
5993    if (ResultType.isNull()) return QualType();
5994    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
5995      return LHS;
5996    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
5997      return RHS;
5998    return getAtomicType(ResultType);
5999  }
6000  case Type::ConstantArray:
6001  {
6002    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6003    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6004    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6005      return QualType();
6006
6007    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6008    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6009    if (Unqualified) {
6010      LHSElem = LHSElem.getUnqualifiedType();
6011      RHSElem = RHSElem.getUnqualifiedType();
6012    }
6013
6014    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6015    if (ResultType.isNull()) return QualType();
6016    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6017      return LHS;
6018    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6019      return RHS;
6020    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6021                                          ArrayType::ArraySizeModifier(), 0);
6022    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6023                                          ArrayType::ArraySizeModifier(), 0);
6024    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6025    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6026    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6027      return LHS;
6028    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6029      return RHS;
6030    if (LVAT) {
6031      // FIXME: This isn't correct! But tricky to implement because
6032      // the array's size has to be the size of LHS, but the type
6033      // has to be different.
6034      return LHS;
6035    }
6036    if (RVAT) {
6037      // FIXME: This isn't correct! But tricky to implement because
6038      // the array's size has to be the size of RHS, but the type
6039      // has to be different.
6040      return RHS;
6041    }
6042    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6043    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6044    return getIncompleteArrayType(ResultType,
6045                                  ArrayType::ArraySizeModifier(), 0);
6046  }
6047  case Type::FunctionNoProto:
6048    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6049  case Type::Record:
6050  case Type::Enum:
6051    return QualType();
6052  case Type::Builtin:
6053    // Only exactly equal builtin types are compatible, which is tested above.
6054    return QualType();
6055  case Type::Complex:
6056    // Distinct complex types are incompatible.
6057    return QualType();
6058  case Type::Vector:
6059    // FIXME: The merged type should be an ExtVector!
6060    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6061                             RHSCan->getAs<VectorType>()))
6062      return LHS;
6063    return QualType();
6064  case Type::ObjCObject: {
6065    // Check if the types are assignment compatible.
6066    // FIXME: This should be type compatibility, e.g. whether
6067    // "LHS x; RHS x;" at global scope is legal.
6068    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6069    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6070    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6071      return LHS;
6072
6073    return QualType();
6074  }
6075  case Type::ObjCObjectPointer: {
6076    if (OfBlockPointer) {
6077      if (canAssignObjCInterfacesInBlockPointer(
6078                                          LHS->getAs<ObjCObjectPointerType>(),
6079                                          RHS->getAs<ObjCObjectPointerType>(),
6080                                          BlockReturnType))
6081      return LHS;
6082      return QualType();
6083    }
6084    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6085                                RHS->getAs<ObjCObjectPointerType>()))
6086      return LHS;
6087
6088    return QualType();
6089    }
6090  }
6091
6092  return QualType();
6093}
6094
6095bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6096                   const FunctionProtoType *FromFunctionType,
6097                   const FunctionProtoType *ToFunctionType) {
6098  if (FromFunctionType->hasAnyConsumedArgs() !=
6099      ToFunctionType->hasAnyConsumedArgs())
6100    return false;
6101  FunctionProtoType::ExtProtoInfo FromEPI =
6102    FromFunctionType->getExtProtoInfo();
6103  FunctionProtoType::ExtProtoInfo ToEPI =
6104    ToFunctionType->getExtProtoInfo();
6105  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6106    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6107         ArgIdx != NumArgs; ++ArgIdx)  {
6108      if (FromEPI.ConsumedArguments[ArgIdx] !=
6109          ToEPI.ConsumedArguments[ArgIdx])
6110        return false;
6111    }
6112  return true;
6113}
6114
6115/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6116/// 'RHS' attributes and returns the merged version; including for function
6117/// return types.
6118QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6119  QualType LHSCan = getCanonicalType(LHS),
6120  RHSCan = getCanonicalType(RHS);
6121  // If two types are identical, they are compatible.
6122  if (LHSCan == RHSCan)
6123    return LHS;
6124  if (RHSCan->isFunctionType()) {
6125    if (!LHSCan->isFunctionType())
6126      return QualType();
6127    QualType OldReturnType =
6128      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6129    QualType NewReturnType =
6130      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6131    QualType ResReturnType =
6132      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6133    if (ResReturnType.isNull())
6134      return QualType();
6135    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6136      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6137      // In either case, use OldReturnType to build the new function type.
6138      const FunctionType *F = LHS->getAs<FunctionType>();
6139      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6140        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6141        EPI.ExtInfo = getFunctionExtInfo(LHS);
6142        QualType ResultType
6143          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6144                            FPT->getNumArgs(), EPI);
6145        return ResultType;
6146      }
6147    }
6148    return QualType();
6149  }
6150
6151  // If the qualifiers are different, the types can still be merged.
6152  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6153  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6154  if (LQuals != RQuals) {
6155    // If any of these qualifiers are different, we have a type mismatch.
6156    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6157        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6158      return QualType();
6159
6160    // Exactly one GC qualifier difference is allowed: __strong is
6161    // okay if the other type has no GC qualifier but is an Objective
6162    // C object pointer (i.e. implicitly strong by default).  We fix
6163    // this by pretending that the unqualified type was actually
6164    // qualified __strong.
6165    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6166    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6167    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6168
6169    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6170      return QualType();
6171
6172    if (GC_L == Qualifiers::Strong)
6173      return LHS;
6174    if (GC_R == Qualifiers::Strong)
6175      return RHS;
6176    return QualType();
6177  }
6178
6179  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6180    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6181    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6182    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6183    if (ResQT == LHSBaseQT)
6184      return LHS;
6185    if (ResQT == RHSBaseQT)
6186      return RHS;
6187  }
6188  return QualType();
6189}
6190
6191//===----------------------------------------------------------------------===//
6192//                         Integer Predicates
6193//===----------------------------------------------------------------------===//
6194
6195unsigned ASTContext::getIntWidth(QualType T) const {
6196  if (const EnumType *ET = dyn_cast<EnumType>(T))
6197    T = ET->getDecl()->getIntegerType();
6198  if (T->isBooleanType())
6199    return 1;
6200  // For builtin types, just use the standard type sizing method
6201  return (unsigned)getTypeSize(T);
6202}
6203
6204QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6205  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6206
6207  // Turn <4 x signed int> -> <4 x unsigned int>
6208  if (const VectorType *VTy = T->getAs<VectorType>())
6209    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6210                         VTy->getNumElements(), VTy->getVectorKind());
6211
6212  // For enums, we return the unsigned version of the base type.
6213  if (const EnumType *ETy = T->getAs<EnumType>())
6214    T = ETy->getDecl()->getIntegerType();
6215
6216  const BuiltinType *BTy = T->getAs<BuiltinType>();
6217  assert(BTy && "Unexpected signed integer type");
6218  switch (BTy->getKind()) {
6219  case BuiltinType::Char_S:
6220  case BuiltinType::SChar:
6221    return UnsignedCharTy;
6222  case BuiltinType::Short:
6223    return UnsignedShortTy;
6224  case BuiltinType::Int:
6225    return UnsignedIntTy;
6226  case BuiltinType::Long:
6227    return UnsignedLongTy;
6228  case BuiltinType::LongLong:
6229    return UnsignedLongLongTy;
6230  case BuiltinType::Int128:
6231    return UnsignedInt128Ty;
6232  default:
6233    llvm_unreachable("Unexpected signed integer type");
6234  }
6235}
6236
6237ASTMutationListener::~ASTMutationListener() { }
6238
6239
6240//===----------------------------------------------------------------------===//
6241//                          Builtin Type Computation
6242//===----------------------------------------------------------------------===//
6243
6244/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6245/// pointer over the consumed characters.  This returns the resultant type.  If
6246/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6247/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6248/// a vector of "i*".
6249///
6250/// RequiresICE is filled in on return to indicate whether the value is required
6251/// to be an Integer Constant Expression.
6252static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6253                                  ASTContext::GetBuiltinTypeError &Error,
6254                                  bool &RequiresICE,
6255                                  bool AllowTypeModifiers) {
6256  // Modifiers.
6257  int HowLong = 0;
6258  bool Signed = false, Unsigned = false;
6259  RequiresICE = false;
6260
6261  // Read the prefixed modifiers first.
6262  bool Done = false;
6263  while (!Done) {
6264    switch (*Str++) {
6265    default: Done = true; --Str; break;
6266    case 'I':
6267      RequiresICE = true;
6268      break;
6269    case 'S':
6270      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6271      assert(!Signed && "Can't use 'S' modifier multiple times!");
6272      Signed = true;
6273      break;
6274    case 'U':
6275      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6276      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6277      Unsigned = true;
6278      break;
6279    case 'L':
6280      assert(HowLong <= 2 && "Can't have LLLL modifier");
6281      ++HowLong;
6282      break;
6283    }
6284  }
6285
6286  QualType Type;
6287
6288  // Read the base type.
6289  switch (*Str++) {
6290  default: llvm_unreachable("Unknown builtin type letter!");
6291  case 'v':
6292    assert(HowLong == 0 && !Signed && !Unsigned &&
6293           "Bad modifiers used with 'v'!");
6294    Type = Context.VoidTy;
6295    break;
6296  case 'f':
6297    assert(HowLong == 0 && !Signed && !Unsigned &&
6298           "Bad modifiers used with 'f'!");
6299    Type = Context.FloatTy;
6300    break;
6301  case 'd':
6302    assert(HowLong < 2 && !Signed && !Unsigned &&
6303           "Bad modifiers used with 'd'!");
6304    if (HowLong)
6305      Type = Context.LongDoubleTy;
6306    else
6307      Type = Context.DoubleTy;
6308    break;
6309  case 's':
6310    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6311    if (Unsigned)
6312      Type = Context.UnsignedShortTy;
6313    else
6314      Type = Context.ShortTy;
6315    break;
6316  case 'i':
6317    if (HowLong == 3)
6318      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6319    else if (HowLong == 2)
6320      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6321    else if (HowLong == 1)
6322      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6323    else
6324      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6325    break;
6326  case 'c':
6327    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6328    if (Signed)
6329      Type = Context.SignedCharTy;
6330    else if (Unsigned)
6331      Type = Context.UnsignedCharTy;
6332    else
6333      Type = Context.CharTy;
6334    break;
6335  case 'b': // boolean
6336    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6337    Type = Context.BoolTy;
6338    break;
6339  case 'z':  // size_t.
6340    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6341    Type = Context.getSizeType();
6342    break;
6343  case 'F':
6344    Type = Context.getCFConstantStringType();
6345    break;
6346  case 'G':
6347    Type = Context.getObjCIdType();
6348    break;
6349  case 'H':
6350    Type = Context.getObjCSelType();
6351    break;
6352  case 'a':
6353    Type = Context.getBuiltinVaListType();
6354    assert(!Type.isNull() && "builtin va list type not initialized!");
6355    break;
6356  case 'A':
6357    // This is a "reference" to a va_list; however, what exactly
6358    // this means depends on how va_list is defined. There are two
6359    // different kinds of va_list: ones passed by value, and ones
6360    // passed by reference.  An example of a by-value va_list is
6361    // x86, where va_list is a char*. An example of by-ref va_list
6362    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6363    // we want this argument to be a char*&; for x86-64, we want
6364    // it to be a __va_list_tag*.
6365    Type = Context.getBuiltinVaListType();
6366    assert(!Type.isNull() && "builtin va list type not initialized!");
6367    if (Type->isArrayType())
6368      Type = Context.getArrayDecayedType(Type);
6369    else
6370      Type = Context.getLValueReferenceType(Type);
6371    break;
6372  case 'V': {
6373    char *End;
6374    unsigned NumElements = strtoul(Str, &End, 10);
6375    assert(End != Str && "Missing vector size");
6376    Str = End;
6377
6378    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6379                                             RequiresICE, false);
6380    assert(!RequiresICE && "Can't require vector ICE");
6381
6382    // TODO: No way to make AltiVec vectors in builtins yet.
6383    Type = Context.getVectorType(ElementType, NumElements,
6384                                 VectorType::GenericVector);
6385    break;
6386  }
6387  case 'X': {
6388    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6389                                             false);
6390    assert(!RequiresICE && "Can't require complex ICE");
6391    Type = Context.getComplexType(ElementType);
6392    break;
6393  }
6394  case 'Y' : {
6395    Type = Context.getPointerDiffType();
6396    break;
6397  }
6398  case 'P':
6399    Type = Context.getFILEType();
6400    if (Type.isNull()) {
6401      Error = ASTContext::GE_Missing_stdio;
6402      return QualType();
6403    }
6404    break;
6405  case 'J':
6406    if (Signed)
6407      Type = Context.getsigjmp_bufType();
6408    else
6409      Type = Context.getjmp_bufType();
6410
6411    if (Type.isNull()) {
6412      Error = ASTContext::GE_Missing_setjmp;
6413      return QualType();
6414    }
6415    break;
6416  case 'K':
6417    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6418    Type = Context.getucontext_tType();
6419
6420    if (Type.isNull()) {
6421      Error = ASTContext::GE_Missing_ucontext;
6422      return QualType();
6423    }
6424    break;
6425  }
6426
6427  // If there are modifiers and if we're allowed to parse them, go for it.
6428  Done = !AllowTypeModifiers;
6429  while (!Done) {
6430    switch (char c = *Str++) {
6431    default: Done = true; --Str; break;
6432    case '*':
6433    case '&': {
6434      // Both pointers and references can have their pointee types
6435      // qualified with an address space.
6436      char *End;
6437      unsigned AddrSpace = strtoul(Str, &End, 10);
6438      if (End != Str && AddrSpace != 0) {
6439        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6440        Str = End;
6441      }
6442      if (c == '*')
6443        Type = Context.getPointerType(Type);
6444      else
6445        Type = Context.getLValueReferenceType(Type);
6446      break;
6447    }
6448    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6449    case 'C':
6450      Type = Type.withConst();
6451      break;
6452    case 'D':
6453      Type = Context.getVolatileType(Type);
6454      break;
6455    }
6456  }
6457
6458  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6459         "Integer constant 'I' type must be an integer");
6460
6461  return Type;
6462}
6463
6464/// GetBuiltinType - Return the type for the specified builtin.
6465QualType ASTContext::GetBuiltinType(unsigned Id,
6466                                    GetBuiltinTypeError &Error,
6467                                    unsigned *IntegerConstantArgs) const {
6468  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6469
6470  SmallVector<QualType, 8> ArgTypes;
6471
6472  bool RequiresICE = false;
6473  Error = GE_None;
6474  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6475                                       RequiresICE, true);
6476  if (Error != GE_None)
6477    return QualType();
6478
6479  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6480
6481  while (TypeStr[0] && TypeStr[0] != '.') {
6482    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6483    if (Error != GE_None)
6484      return QualType();
6485
6486    // If this argument is required to be an IntegerConstantExpression and the
6487    // caller cares, fill in the bitmask we return.
6488    if (RequiresICE && IntegerConstantArgs)
6489      *IntegerConstantArgs |= 1 << ArgTypes.size();
6490
6491    // Do array -> pointer decay.  The builtin should use the decayed type.
6492    if (Ty->isArrayType())
6493      Ty = getArrayDecayedType(Ty);
6494
6495    ArgTypes.push_back(Ty);
6496  }
6497
6498  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6499         "'.' should only occur at end of builtin type list!");
6500
6501  FunctionType::ExtInfo EI;
6502  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6503
6504  bool Variadic = (TypeStr[0] == '.');
6505
6506  // We really shouldn't be making a no-proto type here, especially in C++.
6507  if (ArgTypes.empty() && Variadic)
6508    return getFunctionNoProtoType(ResType, EI);
6509
6510  FunctionProtoType::ExtProtoInfo EPI;
6511  EPI.ExtInfo = EI;
6512  EPI.Variadic = Variadic;
6513
6514  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6515}
6516
6517GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6518  GVALinkage External = GVA_StrongExternal;
6519
6520  Linkage L = FD->getLinkage();
6521  switch (L) {
6522  case NoLinkage:
6523  case InternalLinkage:
6524  case UniqueExternalLinkage:
6525    return GVA_Internal;
6526
6527  case ExternalLinkage:
6528    switch (FD->getTemplateSpecializationKind()) {
6529    case TSK_Undeclared:
6530    case TSK_ExplicitSpecialization:
6531      External = GVA_StrongExternal;
6532      break;
6533
6534    case TSK_ExplicitInstantiationDefinition:
6535      return GVA_ExplicitTemplateInstantiation;
6536
6537    case TSK_ExplicitInstantiationDeclaration:
6538    case TSK_ImplicitInstantiation:
6539      External = GVA_TemplateInstantiation;
6540      break;
6541    }
6542  }
6543
6544  if (!FD->isInlined())
6545    return External;
6546
6547  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6548    // GNU or C99 inline semantics. Determine whether this symbol should be
6549    // externally visible.
6550    if (FD->isInlineDefinitionExternallyVisible())
6551      return External;
6552
6553    // C99 inline semantics, where the symbol is not externally visible.
6554    return GVA_C99Inline;
6555  }
6556
6557  // C++0x [temp.explicit]p9:
6558  //   [ Note: The intent is that an inline function that is the subject of
6559  //   an explicit instantiation declaration will still be implicitly
6560  //   instantiated when used so that the body can be considered for
6561  //   inlining, but that no out-of-line copy of the inline function would be
6562  //   generated in the translation unit. -- end note ]
6563  if (FD->getTemplateSpecializationKind()
6564                                       == TSK_ExplicitInstantiationDeclaration)
6565    return GVA_C99Inline;
6566
6567  return GVA_CXXInline;
6568}
6569
6570GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6571  // If this is a static data member, compute the kind of template
6572  // specialization. Otherwise, this variable is not part of a
6573  // template.
6574  TemplateSpecializationKind TSK = TSK_Undeclared;
6575  if (VD->isStaticDataMember())
6576    TSK = VD->getTemplateSpecializationKind();
6577
6578  Linkage L = VD->getLinkage();
6579  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6580      VD->getType()->getLinkage() == UniqueExternalLinkage)
6581    L = UniqueExternalLinkage;
6582
6583  switch (L) {
6584  case NoLinkage:
6585  case InternalLinkage:
6586  case UniqueExternalLinkage:
6587    return GVA_Internal;
6588
6589  case ExternalLinkage:
6590    switch (TSK) {
6591    case TSK_Undeclared:
6592    case TSK_ExplicitSpecialization:
6593      return GVA_StrongExternal;
6594
6595    case TSK_ExplicitInstantiationDeclaration:
6596      llvm_unreachable("Variable should not be instantiated");
6597      // Fall through to treat this like any other instantiation.
6598
6599    case TSK_ExplicitInstantiationDefinition:
6600      return GVA_ExplicitTemplateInstantiation;
6601
6602    case TSK_ImplicitInstantiation:
6603      return GVA_TemplateInstantiation;
6604    }
6605  }
6606
6607  return GVA_StrongExternal;
6608}
6609
6610bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6611  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6612    if (!VD->isFileVarDecl())
6613      return false;
6614  } else if (!isa<FunctionDecl>(D))
6615    return false;
6616
6617  // Weak references don't produce any output by themselves.
6618  if (D->hasAttr<WeakRefAttr>())
6619    return false;
6620
6621  // Aliases and used decls are required.
6622  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6623    return true;
6624
6625  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6626    // Forward declarations aren't required.
6627    if (!FD->doesThisDeclarationHaveABody())
6628      return FD->doesDeclarationForceExternallyVisibleDefinition();
6629
6630    // Constructors and destructors are required.
6631    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6632      return true;
6633
6634    // The key function for a class is required.
6635    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6636      const CXXRecordDecl *RD = MD->getParent();
6637      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6638        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6639        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6640          return true;
6641      }
6642    }
6643
6644    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6645
6646    // static, static inline, always_inline, and extern inline functions can
6647    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6648    // Implicit template instantiations can also be deferred in C++.
6649    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6650        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6651      return false;
6652    return true;
6653  }
6654
6655  const VarDecl *VD = cast<VarDecl>(D);
6656  assert(VD->isFileVarDecl() && "Expected file scoped var");
6657
6658  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6659    return false;
6660
6661  // Structs that have non-trivial constructors or destructors are required.
6662
6663  // FIXME: Handle references.
6664  // FIXME: Be more selective about which constructors we care about.
6665  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6666    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6667      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6668                                   RD->hasTrivialCopyConstructor() &&
6669                                   RD->hasTrivialMoveConstructor() &&
6670                                   RD->hasTrivialDestructor()))
6671        return true;
6672    }
6673  }
6674
6675  GVALinkage L = GetGVALinkageForVariable(VD);
6676  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6677    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6678      return false;
6679  }
6680
6681  return true;
6682}
6683
6684CallingConv ASTContext::getDefaultMethodCallConv() {
6685  // Pass through to the C++ ABI object
6686  return ABI->getDefaultMethodCallConv();
6687}
6688
6689bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6690  // Pass through to the C++ ABI object
6691  return ABI->isNearlyEmpty(RD);
6692}
6693
6694MangleContext *ASTContext::createMangleContext() {
6695  switch (Target->getCXXABI()) {
6696  case CXXABI_ARM:
6697  case CXXABI_Itanium:
6698    return createItaniumMangleContext(*this, getDiagnostics());
6699  case CXXABI_Microsoft:
6700    return createMicrosoftMangleContext(*this, getDiagnostics());
6701  }
6702  llvm_unreachable("Unsupported ABI");
6703}
6704
6705CXXABI::~CXXABI() {}
6706
6707size_t ASTContext::getSideTableAllocatedMemory() const {
6708  return ASTRecordLayouts.getMemorySize()
6709    + llvm::capacity_in_bytes(ObjCLayouts)
6710    + llvm::capacity_in_bytes(KeyFunctions)
6711    + llvm::capacity_in_bytes(ObjCImpls)
6712    + llvm::capacity_in_bytes(BlockVarCopyInits)
6713    + llvm::capacity_in_bytes(DeclAttrs)
6714    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
6715    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
6716    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
6717    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
6718    + llvm::capacity_in_bytes(OverriddenMethods)
6719    + llvm::capacity_in_bytes(Types)
6720    + llvm::capacity_in_bytes(VariableArrayTypes)
6721    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
6722}
6723
6724void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
6725  ParamIndices[D] = index;
6726}
6727
6728unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
6729  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
6730  assert(I != ParamIndices.end() &&
6731         "ParmIndices lacks entry set by ParmVarDecl");
6732  return I->second;
6733}
6734