ASTContext.cpp revision 8d3ba23f2d9e6c87794d059412a0808c9cbacb25
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/CommentLexer.h"
17#include "clang/AST/CommentSema.h"
18#include "clang/AST/CommentParser.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExternalASTSource.h"
26#include "clang/AST/ASTMutationListener.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/Mangle.h"
29#include "clang/Basic/Builtins.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Support/Capacity.h"
37#include "CXXABI.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59const RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // TODO: handle comments for function parameters properly.
72  if (isa<ParmVarDecl>(D))
73    return NULL;
74
75  ArrayRef<RawComment> RawComments = Comments.getComments();
76
77  // If there are no comments anywhere, we won't find anything.
78  if (RawComments.empty())
79    return NULL;
80
81  // If the declaration doesn't map directly to a location in a file, we
82  // can't find the comment.
83  SourceLocation DeclLoc = D->getLocation();
84  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
85    return NULL;
86
87  // Find the comment that occurs just after this declaration.
88  ArrayRef<RawComment>::iterator Comment
89      = std::lower_bound(RawComments.begin(),
90                         RawComments.end(),
91                         RawComment(SourceMgr, SourceRange(DeclLoc)),
92                         BeforeThanCompare<RawComment>(SourceMgr));
93
94  // Decompose the location for the declaration and find the beginning of the
95  // file buffer.
96  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
97
98  // First check whether we have a trailing comment.
99  if (Comment != RawComments.end() &&
100      Comment->isDocumentation() && Comment->isTrailingComment() &&
101      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D)) {
102    std::pair<FileID, unsigned> CommentBeginDecomp
103      = SourceMgr.getDecomposedLoc(Comment->getSourceRange().getBegin());
104    // Check that Doxygen trailing comment comes after the declaration, starts
105    // on the same line and in the same file as the declaration.
106    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
107        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
108          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
109                                     CommentBeginDecomp.second)) {
110      return &*Comment;
111    }
112  }
113
114  // The comment just after the declaration was not a trailing comment.
115  // Let's look at the previous comment.
116  if (Comment == RawComments.begin())
117    return NULL;
118  --Comment;
119
120  // Check that we actually have a non-member Doxygen comment.
121  if (!Comment->isDocumentation() || Comment->isTrailingComment())
122    return NULL;
123
124  // Decompose the end of the comment.
125  std::pair<FileID, unsigned> CommentEndDecomp
126    = SourceMgr.getDecomposedLoc(Comment->getSourceRange().getEnd());
127
128  // If the comment and the declaration aren't in the same file, then they
129  // aren't related.
130  if (DeclLocDecomp.first != CommentEndDecomp.first)
131    return NULL;
132
133  // Get the corresponding buffer.
134  bool Invalid = false;
135  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
136                                               &Invalid).data();
137  if (Invalid)
138    return NULL;
139
140  // Extract text between the comment and declaration.
141  StringRef Text(Buffer + CommentEndDecomp.second,
142                 DeclLocDecomp.second - CommentEndDecomp.second);
143
144  // There should be no other declarations or preprocessor directives between
145  // comment and declaration.
146  if (Text.find_first_of(",;{}#") != StringRef::npos)
147    return NULL;
148
149  return &*Comment;
150}
151
152const RawComment *ASTContext::getRawCommentForDecl(const Decl *D) const {
153  // Check whether we have cached a comment string for this declaration
154  // already.
155  llvm::DenseMap<const Decl *, RawAndParsedComment>::iterator Pos
156      = DeclComments.find(D);
157  if (Pos != DeclComments.end()) {
158    RawAndParsedComment C = Pos->second;
159    return C.first;
160  }
161
162  const RawComment *RC = getRawCommentForDeclNoCache(D);
163  // If we found a comment, it should be a documentation comment.
164  assert(!RC || RC->isDocumentation());
165  DeclComments[D] = RawAndParsedComment(RC, NULL);
166  return RC;
167}
168
169comments::FullComment *ASTContext::getCommentForDecl(const Decl *D) const {
170  llvm::DenseMap<const Decl *, RawAndParsedComment>::iterator Pos
171      = DeclComments.find(D);
172  const RawComment *RC;
173  if (Pos != DeclComments.end()) {
174    RawAndParsedComment C = Pos->second;
175    if (comments::FullComment *FC = C.second)
176      return FC;
177    RC = C.first;
178  } else
179    RC = getRawCommentForDecl(D);
180
181  if (!RC)
182    return NULL;
183
184  const StringRef RawText = RC->getRawText(SourceMgr);
185  comments::Lexer L(RC->getSourceRange().getBegin(), comments::CommentOptions(),
186                    RawText.begin(), RawText.end());
187
188  comments::Sema S(this->BumpAlloc);
189  comments::Parser P(L, S, this->BumpAlloc);
190
191  comments::FullComment *FC = P.parseFullComment();
192  DeclComments[D].second = FC;
193  return FC;
194}
195
196void
197ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
198                                               TemplateTemplateParmDecl *Parm) {
199  ID.AddInteger(Parm->getDepth());
200  ID.AddInteger(Parm->getPosition());
201  ID.AddBoolean(Parm->isParameterPack());
202
203  TemplateParameterList *Params = Parm->getTemplateParameters();
204  ID.AddInteger(Params->size());
205  for (TemplateParameterList::const_iterator P = Params->begin(),
206                                          PEnd = Params->end();
207       P != PEnd; ++P) {
208    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
209      ID.AddInteger(0);
210      ID.AddBoolean(TTP->isParameterPack());
211      continue;
212    }
213
214    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
215      ID.AddInteger(1);
216      ID.AddBoolean(NTTP->isParameterPack());
217      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
218      if (NTTP->isExpandedParameterPack()) {
219        ID.AddBoolean(true);
220        ID.AddInteger(NTTP->getNumExpansionTypes());
221        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
222          QualType T = NTTP->getExpansionType(I);
223          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
224        }
225      } else
226        ID.AddBoolean(false);
227      continue;
228    }
229
230    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
231    ID.AddInteger(2);
232    Profile(ID, TTP);
233  }
234}
235
236TemplateTemplateParmDecl *
237ASTContext::getCanonicalTemplateTemplateParmDecl(
238                                          TemplateTemplateParmDecl *TTP) const {
239  // Check if we already have a canonical template template parameter.
240  llvm::FoldingSetNodeID ID;
241  CanonicalTemplateTemplateParm::Profile(ID, TTP);
242  void *InsertPos = 0;
243  CanonicalTemplateTemplateParm *Canonical
244    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
245  if (Canonical)
246    return Canonical->getParam();
247
248  // Build a canonical template parameter list.
249  TemplateParameterList *Params = TTP->getTemplateParameters();
250  SmallVector<NamedDecl *, 4> CanonParams;
251  CanonParams.reserve(Params->size());
252  for (TemplateParameterList::const_iterator P = Params->begin(),
253                                          PEnd = Params->end();
254       P != PEnd; ++P) {
255    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
256      CanonParams.push_back(
257                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
258                                               SourceLocation(),
259                                               SourceLocation(),
260                                               TTP->getDepth(),
261                                               TTP->getIndex(), 0, false,
262                                               TTP->isParameterPack()));
263    else if (NonTypeTemplateParmDecl *NTTP
264             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
265      QualType T = getCanonicalType(NTTP->getType());
266      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
267      NonTypeTemplateParmDecl *Param;
268      if (NTTP->isExpandedParameterPack()) {
269        SmallVector<QualType, 2> ExpandedTypes;
270        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
271        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
272          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
273          ExpandedTInfos.push_back(
274                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
275        }
276
277        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
278                                                SourceLocation(),
279                                                SourceLocation(),
280                                                NTTP->getDepth(),
281                                                NTTP->getPosition(), 0,
282                                                T,
283                                                TInfo,
284                                                ExpandedTypes.data(),
285                                                ExpandedTypes.size(),
286                                                ExpandedTInfos.data());
287      } else {
288        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
289                                                SourceLocation(),
290                                                SourceLocation(),
291                                                NTTP->getDepth(),
292                                                NTTP->getPosition(), 0,
293                                                T,
294                                                NTTP->isParameterPack(),
295                                                TInfo);
296      }
297      CanonParams.push_back(Param);
298
299    } else
300      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
301                                           cast<TemplateTemplateParmDecl>(*P)));
302  }
303
304  TemplateTemplateParmDecl *CanonTTP
305    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
306                                       SourceLocation(), TTP->getDepth(),
307                                       TTP->getPosition(),
308                                       TTP->isParameterPack(),
309                                       0,
310                         TemplateParameterList::Create(*this, SourceLocation(),
311                                                       SourceLocation(),
312                                                       CanonParams.data(),
313                                                       CanonParams.size(),
314                                                       SourceLocation()));
315
316  // Get the new insert position for the node we care about.
317  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
318  assert(Canonical == 0 && "Shouldn't be in the map!");
319  (void)Canonical;
320
321  // Create the canonical template template parameter entry.
322  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
323  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
324  return CanonTTP;
325}
326
327CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
328  if (!LangOpts.CPlusPlus) return 0;
329
330  switch (T.getCXXABI()) {
331  case CXXABI_ARM:
332    return CreateARMCXXABI(*this);
333  case CXXABI_Itanium:
334    return CreateItaniumCXXABI(*this);
335  case CXXABI_Microsoft:
336    return CreateMicrosoftCXXABI(*this);
337  }
338  llvm_unreachable("Invalid CXXABI type!");
339}
340
341static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
342                                             const LangOptions &LOpts) {
343  if (LOpts.FakeAddressSpaceMap) {
344    // The fake address space map must have a distinct entry for each
345    // language-specific address space.
346    static const unsigned FakeAddrSpaceMap[] = {
347      1, // opencl_global
348      2, // opencl_local
349      3, // opencl_constant
350      4, // cuda_device
351      5, // cuda_constant
352      6  // cuda_shared
353    };
354    return &FakeAddrSpaceMap;
355  } else {
356    return &T.getAddressSpaceMap();
357  }
358}
359
360ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
361                       const TargetInfo *t,
362                       IdentifierTable &idents, SelectorTable &sels,
363                       Builtin::Context &builtins,
364                       unsigned size_reserve,
365                       bool DelayInitialization)
366  : FunctionProtoTypes(this_()),
367    TemplateSpecializationTypes(this_()),
368    DependentTemplateSpecializationTypes(this_()),
369    SubstTemplateTemplateParmPacks(this_()),
370    GlobalNestedNameSpecifier(0),
371    Int128Decl(0), UInt128Decl(0),
372    BuiltinVaListDecl(0),
373    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
374    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
375    FILEDecl(0),
376    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
377    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
378    cudaConfigureCallDecl(0),
379    NullTypeSourceInfo(QualType()),
380    FirstLocalImport(), LastLocalImport(),
381    SourceMgr(SM), LangOpts(LOpts),
382    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
383    Idents(idents), Selectors(sels),
384    BuiltinInfo(builtins),
385    DeclarationNames(*this),
386    ExternalSource(0), Listener(0),
387    Comments(SM), CommentsLoaded(false),
388    LastSDM(0, 0),
389    UniqueBlockByRefTypeID(0)
390{
391  if (size_reserve > 0) Types.reserve(size_reserve);
392  TUDecl = TranslationUnitDecl::Create(*this);
393
394  if (!DelayInitialization) {
395    assert(t && "No target supplied for ASTContext initialization");
396    InitBuiltinTypes(*t);
397  }
398}
399
400ASTContext::~ASTContext() {
401  // Release the DenseMaps associated with DeclContext objects.
402  // FIXME: Is this the ideal solution?
403  ReleaseDeclContextMaps();
404
405  // Call all of the deallocation functions.
406  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
407    Deallocations[I].first(Deallocations[I].second);
408
409  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
410  // because they can contain DenseMaps.
411  for (llvm::DenseMap<const ObjCContainerDecl*,
412       const ASTRecordLayout*>::iterator
413       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
414    // Increment in loop to prevent using deallocated memory.
415    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
416      R->Destroy(*this);
417
418  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
419       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
420    // Increment in loop to prevent using deallocated memory.
421    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
422      R->Destroy(*this);
423  }
424
425  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
426                                                    AEnd = DeclAttrs.end();
427       A != AEnd; ++A)
428    A->second->~AttrVec();
429}
430
431void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
432  Deallocations.push_back(std::make_pair(Callback, Data));
433}
434
435void
436ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
437  ExternalSource.reset(Source.take());
438}
439
440void ASTContext::PrintStats() const {
441  llvm::errs() << "\n*** AST Context Stats:\n";
442  llvm::errs() << "  " << Types.size() << " types total.\n";
443
444  unsigned counts[] = {
445#define TYPE(Name, Parent) 0,
446#define ABSTRACT_TYPE(Name, Parent)
447#include "clang/AST/TypeNodes.def"
448    0 // Extra
449  };
450
451  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
452    Type *T = Types[i];
453    counts[(unsigned)T->getTypeClass()]++;
454  }
455
456  unsigned Idx = 0;
457  unsigned TotalBytes = 0;
458#define TYPE(Name, Parent)                                              \
459  if (counts[Idx])                                                      \
460    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
461                 << " types\n";                                         \
462  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
463  ++Idx;
464#define ABSTRACT_TYPE(Name, Parent)
465#include "clang/AST/TypeNodes.def"
466
467  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
468
469  // Implicit special member functions.
470  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
471               << NumImplicitDefaultConstructors
472               << " implicit default constructors created\n";
473  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
474               << NumImplicitCopyConstructors
475               << " implicit copy constructors created\n";
476  if (getLangOpts().CPlusPlus)
477    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
478                 << NumImplicitMoveConstructors
479                 << " implicit move constructors created\n";
480  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
481               << NumImplicitCopyAssignmentOperators
482               << " implicit copy assignment operators created\n";
483  if (getLangOpts().CPlusPlus)
484    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
485                 << NumImplicitMoveAssignmentOperators
486                 << " implicit move assignment operators created\n";
487  llvm::errs() << NumImplicitDestructorsDeclared << "/"
488               << NumImplicitDestructors
489               << " implicit destructors created\n";
490
491  if (ExternalSource.get()) {
492    llvm::errs() << "\n";
493    ExternalSource->PrintStats();
494  }
495
496  BumpAlloc.PrintStats();
497}
498
499TypedefDecl *ASTContext::getInt128Decl() const {
500  if (!Int128Decl) {
501    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
502    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
503                                     getTranslationUnitDecl(),
504                                     SourceLocation(),
505                                     SourceLocation(),
506                                     &Idents.get("__int128_t"),
507                                     TInfo);
508  }
509
510  return Int128Decl;
511}
512
513TypedefDecl *ASTContext::getUInt128Decl() const {
514  if (!UInt128Decl) {
515    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
516    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
517                                     getTranslationUnitDecl(),
518                                     SourceLocation(),
519                                     SourceLocation(),
520                                     &Idents.get("__uint128_t"),
521                                     TInfo);
522  }
523
524  return UInt128Decl;
525}
526
527void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
528  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
529  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
530  Types.push_back(Ty);
531}
532
533void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
534  assert((!this->Target || this->Target == &Target) &&
535         "Incorrect target reinitialization");
536  assert(VoidTy.isNull() && "Context reinitialized?");
537
538  this->Target = &Target;
539
540  ABI.reset(createCXXABI(Target));
541  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
542
543  // C99 6.2.5p19.
544  InitBuiltinType(VoidTy,              BuiltinType::Void);
545
546  // C99 6.2.5p2.
547  InitBuiltinType(BoolTy,              BuiltinType::Bool);
548  // C99 6.2.5p3.
549  if (LangOpts.CharIsSigned)
550    InitBuiltinType(CharTy,            BuiltinType::Char_S);
551  else
552    InitBuiltinType(CharTy,            BuiltinType::Char_U);
553  // C99 6.2.5p4.
554  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
555  InitBuiltinType(ShortTy,             BuiltinType::Short);
556  InitBuiltinType(IntTy,               BuiltinType::Int);
557  InitBuiltinType(LongTy,              BuiltinType::Long);
558  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
559
560  // C99 6.2.5p6.
561  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
562  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
563  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
564  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
565  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
566
567  // C99 6.2.5p10.
568  InitBuiltinType(FloatTy,             BuiltinType::Float);
569  InitBuiltinType(DoubleTy,            BuiltinType::Double);
570  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
571
572  // GNU extension, 128-bit integers.
573  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
574  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
575
576  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
577    if (TargetInfo::isTypeSigned(Target.getWCharType()))
578      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
579    else  // -fshort-wchar makes wchar_t be unsigned.
580      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
581  } else // C99
582    WCharTy = getFromTargetType(Target.getWCharType());
583
584  WIntTy = getFromTargetType(Target.getWIntType());
585
586  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
587    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
588  else // C99
589    Char16Ty = getFromTargetType(Target.getChar16Type());
590
591  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
592    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
593  else // C99
594    Char32Ty = getFromTargetType(Target.getChar32Type());
595
596  // Placeholder type for type-dependent expressions whose type is
597  // completely unknown. No code should ever check a type against
598  // DependentTy and users should never see it; however, it is here to
599  // help diagnose failures to properly check for type-dependent
600  // expressions.
601  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
602
603  // Placeholder type for functions.
604  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
605
606  // Placeholder type for bound members.
607  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
608
609  // Placeholder type for pseudo-objects.
610  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
611
612  // "any" type; useful for debugger-like clients.
613  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
614
615  // Placeholder type for unbridged ARC casts.
616  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
617
618  // C99 6.2.5p11.
619  FloatComplexTy      = getComplexType(FloatTy);
620  DoubleComplexTy     = getComplexType(DoubleTy);
621  LongDoubleComplexTy = getComplexType(LongDoubleTy);
622
623  // Builtin types for 'id', 'Class', and 'SEL'.
624  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
625  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
626  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
627
628  // Builtin type for __objc_yes and __objc_no
629  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
630                       SignedCharTy : BoolTy);
631
632  ObjCConstantStringType = QualType();
633
634  // void * type
635  VoidPtrTy = getPointerType(VoidTy);
636
637  // nullptr type (C++0x 2.14.7)
638  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
639
640  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
641  InitBuiltinType(HalfTy, BuiltinType::Half);
642
643  // Builtin type used to help define __builtin_va_list.
644  VaListTagTy = QualType();
645}
646
647DiagnosticsEngine &ASTContext::getDiagnostics() const {
648  return SourceMgr.getDiagnostics();
649}
650
651AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
652  AttrVec *&Result = DeclAttrs[D];
653  if (!Result) {
654    void *Mem = Allocate(sizeof(AttrVec));
655    Result = new (Mem) AttrVec;
656  }
657
658  return *Result;
659}
660
661/// \brief Erase the attributes corresponding to the given declaration.
662void ASTContext::eraseDeclAttrs(const Decl *D) {
663  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
664  if (Pos != DeclAttrs.end()) {
665    Pos->second->~AttrVec();
666    DeclAttrs.erase(Pos);
667  }
668}
669
670MemberSpecializationInfo *
671ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
672  assert(Var->isStaticDataMember() && "Not a static data member");
673  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
674    = InstantiatedFromStaticDataMember.find(Var);
675  if (Pos == InstantiatedFromStaticDataMember.end())
676    return 0;
677
678  return Pos->second;
679}
680
681void
682ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
683                                                TemplateSpecializationKind TSK,
684                                          SourceLocation PointOfInstantiation) {
685  assert(Inst->isStaticDataMember() && "Not a static data member");
686  assert(Tmpl->isStaticDataMember() && "Not a static data member");
687  assert(!InstantiatedFromStaticDataMember[Inst] &&
688         "Already noted what static data member was instantiated from");
689  InstantiatedFromStaticDataMember[Inst]
690    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
691}
692
693FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
694                                                     const FunctionDecl *FD){
695  assert(FD && "Specialization is 0");
696  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
697    = ClassScopeSpecializationPattern.find(FD);
698  if (Pos == ClassScopeSpecializationPattern.end())
699    return 0;
700
701  return Pos->second;
702}
703
704void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
705                                        FunctionDecl *Pattern) {
706  assert(FD && "Specialization is 0");
707  assert(Pattern && "Class scope specialization pattern is 0");
708  ClassScopeSpecializationPattern[FD] = Pattern;
709}
710
711NamedDecl *
712ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
713  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
714    = InstantiatedFromUsingDecl.find(UUD);
715  if (Pos == InstantiatedFromUsingDecl.end())
716    return 0;
717
718  return Pos->second;
719}
720
721void
722ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
723  assert((isa<UsingDecl>(Pattern) ||
724          isa<UnresolvedUsingValueDecl>(Pattern) ||
725          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
726         "pattern decl is not a using decl");
727  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
728  InstantiatedFromUsingDecl[Inst] = Pattern;
729}
730
731UsingShadowDecl *
732ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
733  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
734    = InstantiatedFromUsingShadowDecl.find(Inst);
735  if (Pos == InstantiatedFromUsingShadowDecl.end())
736    return 0;
737
738  return Pos->second;
739}
740
741void
742ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
743                                               UsingShadowDecl *Pattern) {
744  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
745  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
746}
747
748FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
749  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
750    = InstantiatedFromUnnamedFieldDecl.find(Field);
751  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
752    return 0;
753
754  return Pos->second;
755}
756
757void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
758                                                     FieldDecl *Tmpl) {
759  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
760  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
761  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
762         "Already noted what unnamed field was instantiated from");
763
764  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
765}
766
767bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
768                                    const FieldDecl *LastFD) const {
769  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
770          FD->getBitWidthValue(*this) == 0);
771}
772
773bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
774                                             const FieldDecl *LastFD) const {
775  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
776          FD->getBitWidthValue(*this) == 0 &&
777          LastFD->getBitWidthValue(*this) != 0);
778}
779
780bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
781                                         const FieldDecl *LastFD) const {
782  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
783          FD->getBitWidthValue(*this) &&
784          LastFD->getBitWidthValue(*this));
785}
786
787bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
788                                         const FieldDecl *LastFD) const {
789  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
790          LastFD->getBitWidthValue(*this));
791}
792
793bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
794                                             const FieldDecl *LastFD) const {
795  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
796          FD->getBitWidthValue(*this));
797}
798
799ASTContext::overridden_cxx_method_iterator
800ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
801  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
802    = OverriddenMethods.find(Method);
803  if (Pos == OverriddenMethods.end())
804    return 0;
805
806  return Pos->second.begin();
807}
808
809ASTContext::overridden_cxx_method_iterator
810ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
811  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
812    = OverriddenMethods.find(Method);
813  if (Pos == OverriddenMethods.end())
814    return 0;
815
816  return Pos->second.end();
817}
818
819unsigned
820ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
821  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
822    = OverriddenMethods.find(Method);
823  if (Pos == OverriddenMethods.end())
824    return 0;
825
826  return Pos->second.size();
827}
828
829void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
830                                     const CXXMethodDecl *Overridden) {
831  OverriddenMethods[Method].push_back(Overridden);
832}
833
834void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
835  assert(!Import->NextLocalImport && "Import declaration already in the chain");
836  assert(!Import->isFromASTFile() && "Non-local import declaration");
837  if (!FirstLocalImport) {
838    FirstLocalImport = Import;
839    LastLocalImport = Import;
840    return;
841  }
842
843  LastLocalImport->NextLocalImport = Import;
844  LastLocalImport = Import;
845}
846
847//===----------------------------------------------------------------------===//
848//                         Type Sizing and Analysis
849//===----------------------------------------------------------------------===//
850
851/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
852/// scalar floating point type.
853const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
854  const BuiltinType *BT = T->getAs<BuiltinType>();
855  assert(BT && "Not a floating point type!");
856  switch (BT->getKind()) {
857  default: llvm_unreachable("Not a floating point type!");
858  case BuiltinType::Half:       return Target->getHalfFormat();
859  case BuiltinType::Float:      return Target->getFloatFormat();
860  case BuiltinType::Double:     return Target->getDoubleFormat();
861  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
862  }
863}
864
865/// getDeclAlign - Return a conservative estimate of the alignment of the
866/// specified decl.  Note that bitfields do not have a valid alignment, so
867/// this method will assert on them.
868/// If @p RefAsPointee, references are treated like their underlying type
869/// (for alignof), else they're treated like pointers (for CodeGen).
870CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
871  unsigned Align = Target->getCharWidth();
872
873  bool UseAlignAttrOnly = false;
874  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
875    Align = AlignFromAttr;
876
877    // __attribute__((aligned)) can increase or decrease alignment
878    // *except* on a struct or struct member, where it only increases
879    // alignment unless 'packed' is also specified.
880    //
881    // It is an error for alignas to decrease alignment, so we can
882    // ignore that possibility;  Sema should diagnose it.
883    if (isa<FieldDecl>(D)) {
884      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
885        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
886    } else {
887      UseAlignAttrOnly = true;
888    }
889  }
890  else if (isa<FieldDecl>(D))
891      UseAlignAttrOnly =
892        D->hasAttr<PackedAttr>() ||
893        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
894
895  // If we're using the align attribute only, just ignore everything
896  // else about the declaration and its type.
897  if (UseAlignAttrOnly) {
898    // do nothing
899
900  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
901    QualType T = VD->getType();
902    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
903      if (RefAsPointee)
904        T = RT->getPointeeType();
905      else
906        T = getPointerType(RT->getPointeeType());
907    }
908    if (!T->isIncompleteType() && !T->isFunctionType()) {
909      // Adjust alignments of declarations with array type by the
910      // large-array alignment on the target.
911      unsigned MinWidth = Target->getLargeArrayMinWidth();
912      const ArrayType *arrayType;
913      if (MinWidth && (arrayType = getAsArrayType(T))) {
914        if (isa<VariableArrayType>(arrayType))
915          Align = std::max(Align, Target->getLargeArrayAlign());
916        else if (isa<ConstantArrayType>(arrayType) &&
917                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
918          Align = std::max(Align, Target->getLargeArrayAlign());
919
920        // Walk through any array types while we're at it.
921        T = getBaseElementType(arrayType);
922      }
923      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
924    }
925
926    // Fields can be subject to extra alignment constraints, like if
927    // the field is packed, the struct is packed, or the struct has a
928    // a max-field-alignment constraint (#pragma pack).  So calculate
929    // the actual alignment of the field within the struct, and then
930    // (as we're expected to) constrain that by the alignment of the type.
931    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
932      // So calculate the alignment of the field.
933      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
934
935      // Start with the record's overall alignment.
936      unsigned fieldAlign = toBits(layout.getAlignment());
937
938      // Use the GCD of that and the offset within the record.
939      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
940      if (offset > 0) {
941        // Alignment is always a power of 2, so the GCD will be a power of 2,
942        // which means we get to do this crazy thing instead of Euclid's.
943        uint64_t lowBitOfOffset = offset & (~offset + 1);
944        if (lowBitOfOffset < fieldAlign)
945          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
946      }
947
948      Align = std::min(Align, fieldAlign);
949    }
950  }
951
952  return toCharUnitsFromBits(Align);
953}
954
955std::pair<CharUnits, CharUnits>
956ASTContext::getTypeInfoInChars(const Type *T) const {
957  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
958  return std::make_pair(toCharUnitsFromBits(Info.first),
959                        toCharUnitsFromBits(Info.second));
960}
961
962std::pair<CharUnits, CharUnits>
963ASTContext::getTypeInfoInChars(QualType T) const {
964  return getTypeInfoInChars(T.getTypePtr());
965}
966
967std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
968  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
969  if (it != MemoizedTypeInfo.end())
970    return it->second;
971
972  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
973  MemoizedTypeInfo.insert(std::make_pair(T, Info));
974  return Info;
975}
976
977/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
978/// method does not work on incomplete types.
979///
980/// FIXME: Pointers into different addr spaces could have different sizes and
981/// alignment requirements: getPointerInfo should take an AddrSpace, this
982/// should take a QualType, &c.
983std::pair<uint64_t, unsigned>
984ASTContext::getTypeInfoImpl(const Type *T) const {
985  uint64_t Width=0;
986  unsigned Align=8;
987  switch (T->getTypeClass()) {
988#define TYPE(Class, Base)
989#define ABSTRACT_TYPE(Class, Base)
990#define NON_CANONICAL_TYPE(Class, Base)
991#define DEPENDENT_TYPE(Class, Base) case Type::Class:
992#include "clang/AST/TypeNodes.def"
993    llvm_unreachable("Should not see dependent types");
994
995  case Type::FunctionNoProto:
996  case Type::FunctionProto:
997    // GCC extension: alignof(function) = 32 bits
998    Width = 0;
999    Align = 32;
1000    break;
1001
1002  case Type::IncompleteArray:
1003  case Type::VariableArray:
1004    Width = 0;
1005    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1006    break;
1007
1008  case Type::ConstantArray: {
1009    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1010
1011    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1012    uint64_t Size = CAT->getSize().getZExtValue();
1013    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1014           "Overflow in array type bit size evaluation");
1015    Width = EltInfo.first*Size;
1016    Align = EltInfo.second;
1017    Width = llvm::RoundUpToAlignment(Width, Align);
1018    break;
1019  }
1020  case Type::ExtVector:
1021  case Type::Vector: {
1022    const VectorType *VT = cast<VectorType>(T);
1023    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1024    Width = EltInfo.first*VT->getNumElements();
1025    Align = Width;
1026    // If the alignment is not a power of 2, round up to the next power of 2.
1027    // This happens for non-power-of-2 length vectors.
1028    if (Align & (Align-1)) {
1029      Align = llvm::NextPowerOf2(Align);
1030      Width = llvm::RoundUpToAlignment(Width, Align);
1031    }
1032    break;
1033  }
1034
1035  case Type::Builtin:
1036    switch (cast<BuiltinType>(T)->getKind()) {
1037    default: llvm_unreachable("Unknown builtin type!");
1038    case BuiltinType::Void:
1039      // GCC extension: alignof(void) = 8 bits.
1040      Width = 0;
1041      Align = 8;
1042      break;
1043
1044    case BuiltinType::Bool:
1045      Width = Target->getBoolWidth();
1046      Align = Target->getBoolAlign();
1047      break;
1048    case BuiltinType::Char_S:
1049    case BuiltinType::Char_U:
1050    case BuiltinType::UChar:
1051    case BuiltinType::SChar:
1052      Width = Target->getCharWidth();
1053      Align = Target->getCharAlign();
1054      break;
1055    case BuiltinType::WChar_S:
1056    case BuiltinType::WChar_U:
1057      Width = Target->getWCharWidth();
1058      Align = Target->getWCharAlign();
1059      break;
1060    case BuiltinType::Char16:
1061      Width = Target->getChar16Width();
1062      Align = Target->getChar16Align();
1063      break;
1064    case BuiltinType::Char32:
1065      Width = Target->getChar32Width();
1066      Align = Target->getChar32Align();
1067      break;
1068    case BuiltinType::UShort:
1069    case BuiltinType::Short:
1070      Width = Target->getShortWidth();
1071      Align = Target->getShortAlign();
1072      break;
1073    case BuiltinType::UInt:
1074    case BuiltinType::Int:
1075      Width = Target->getIntWidth();
1076      Align = Target->getIntAlign();
1077      break;
1078    case BuiltinType::ULong:
1079    case BuiltinType::Long:
1080      Width = Target->getLongWidth();
1081      Align = Target->getLongAlign();
1082      break;
1083    case BuiltinType::ULongLong:
1084    case BuiltinType::LongLong:
1085      Width = Target->getLongLongWidth();
1086      Align = Target->getLongLongAlign();
1087      break;
1088    case BuiltinType::Int128:
1089    case BuiltinType::UInt128:
1090      Width = 128;
1091      Align = 128; // int128_t is 128-bit aligned on all targets.
1092      break;
1093    case BuiltinType::Half:
1094      Width = Target->getHalfWidth();
1095      Align = Target->getHalfAlign();
1096      break;
1097    case BuiltinType::Float:
1098      Width = Target->getFloatWidth();
1099      Align = Target->getFloatAlign();
1100      break;
1101    case BuiltinType::Double:
1102      Width = Target->getDoubleWidth();
1103      Align = Target->getDoubleAlign();
1104      break;
1105    case BuiltinType::LongDouble:
1106      Width = Target->getLongDoubleWidth();
1107      Align = Target->getLongDoubleAlign();
1108      break;
1109    case BuiltinType::NullPtr:
1110      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1111      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1112      break;
1113    case BuiltinType::ObjCId:
1114    case BuiltinType::ObjCClass:
1115    case BuiltinType::ObjCSel:
1116      Width = Target->getPointerWidth(0);
1117      Align = Target->getPointerAlign(0);
1118      break;
1119    }
1120    break;
1121  case Type::ObjCObjectPointer:
1122    Width = Target->getPointerWidth(0);
1123    Align = Target->getPointerAlign(0);
1124    break;
1125  case Type::BlockPointer: {
1126    unsigned AS = getTargetAddressSpace(
1127        cast<BlockPointerType>(T)->getPointeeType());
1128    Width = Target->getPointerWidth(AS);
1129    Align = Target->getPointerAlign(AS);
1130    break;
1131  }
1132  case Type::LValueReference:
1133  case Type::RValueReference: {
1134    // alignof and sizeof should never enter this code path here, so we go
1135    // the pointer route.
1136    unsigned AS = getTargetAddressSpace(
1137        cast<ReferenceType>(T)->getPointeeType());
1138    Width = Target->getPointerWidth(AS);
1139    Align = Target->getPointerAlign(AS);
1140    break;
1141  }
1142  case Type::Pointer: {
1143    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1144    Width = Target->getPointerWidth(AS);
1145    Align = Target->getPointerAlign(AS);
1146    break;
1147  }
1148  case Type::MemberPointer: {
1149    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1150    std::pair<uint64_t, unsigned> PtrDiffInfo =
1151      getTypeInfo(getPointerDiffType());
1152    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1153    Align = PtrDiffInfo.second;
1154    break;
1155  }
1156  case Type::Complex: {
1157    // Complex types have the same alignment as their elements, but twice the
1158    // size.
1159    std::pair<uint64_t, unsigned> EltInfo =
1160      getTypeInfo(cast<ComplexType>(T)->getElementType());
1161    Width = EltInfo.first*2;
1162    Align = EltInfo.second;
1163    break;
1164  }
1165  case Type::ObjCObject:
1166    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1167  case Type::ObjCInterface: {
1168    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1169    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1170    Width = toBits(Layout.getSize());
1171    Align = toBits(Layout.getAlignment());
1172    break;
1173  }
1174  case Type::Record:
1175  case Type::Enum: {
1176    const TagType *TT = cast<TagType>(T);
1177
1178    if (TT->getDecl()->isInvalidDecl()) {
1179      Width = 8;
1180      Align = 8;
1181      break;
1182    }
1183
1184    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1185      return getTypeInfo(ET->getDecl()->getIntegerType());
1186
1187    const RecordType *RT = cast<RecordType>(TT);
1188    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1189    Width = toBits(Layout.getSize());
1190    Align = toBits(Layout.getAlignment());
1191    break;
1192  }
1193
1194  case Type::SubstTemplateTypeParm:
1195    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1196                       getReplacementType().getTypePtr());
1197
1198  case Type::Auto: {
1199    const AutoType *A = cast<AutoType>(T);
1200    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1201    return getTypeInfo(A->getDeducedType().getTypePtr());
1202  }
1203
1204  case Type::Paren:
1205    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1206
1207  case Type::Typedef: {
1208    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1209    std::pair<uint64_t, unsigned> Info
1210      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1211    // If the typedef has an aligned attribute on it, it overrides any computed
1212    // alignment we have.  This violates the GCC documentation (which says that
1213    // attribute(aligned) can only round up) but matches its implementation.
1214    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1215      Align = AttrAlign;
1216    else
1217      Align = Info.second;
1218    Width = Info.first;
1219    break;
1220  }
1221
1222  case Type::TypeOfExpr:
1223    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1224                         .getTypePtr());
1225
1226  case Type::TypeOf:
1227    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1228
1229  case Type::Decltype:
1230    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1231                        .getTypePtr());
1232
1233  case Type::UnaryTransform:
1234    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1235
1236  case Type::Elaborated:
1237    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1238
1239  case Type::Attributed:
1240    return getTypeInfo(
1241                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1242
1243  case Type::TemplateSpecialization: {
1244    assert(getCanonicalType(T) != T &&
1245           "Cannot request the size of a dependent type");
1246    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1247    // A type alias template specialization may refer to a typedef with the
1248    // aligned attribute on it.
1249    if (TST->isTypeAlias())
1250      return getTypeInfo(TST->getAliasedType().getTypePtr());
1251    else
1252      return getTypeInfo(getCanonicalType(T));
1253  }
1254
1255  case Type::Atomic: {
1256    std::pair<uint64_t, unsigned> Info
1257      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1258    Width = Info.first;
1259    Align = Info.second;
1260    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1261        llvm::isPowerOf2_64(Width)) {
1262      // We can potentially perform lock-free atomic operations for this
1263      // type; promote the alignment appropriately.
1264      // FIXME: We could potentially promote the width here as well...
1265      // is that worthwhile?  (Non-struct atomic types generally have
1266      // power-of-two size anyway, but structs might not.  Requires a bit
1267      // of implementation work to make sure we zero out the extra bits.)
1268      Align = static_cast<unsigned>(Width);
1269    }
1270  }
1271
1272  }
1273
1274  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1275  return std::make_pair(Width, Align);
1276}
1277
1278/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1279CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1280  return CharUnits::fromQuantity(BitSize / getCharWidth());
1281}
1282
1283/// toBits - Convert a size in characters to a size in characters.
1284int64_t ASTContext::toBits(CharUnits CharSize) const {
1285  return CharSize.getQuantity() * getCharWidth();
1286}
1287
1288/// getTypeSizeInChars - Return the size of the specified type, in characters.
1289/// This method does not work on incomplete types.
1290CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1291  return toCharUnitsFromBits(getTypeSize(T));
1292}
1293CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1294  return toCharUnitsFromBits(getTypeSize(T));
1295}
1296
1297/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1298/// characters. This method does not work on incomplete types.
1299CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1300  return toCharUnitsFromBits(getTypeAlign(T));
1301}
1302CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1303  return toCharUnitsFromBits(getTypeAlign(T));
1304}
1305
1306/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1307/// type for the current target in bits.  This can be different than the ABI
1308/// alignment in cases where it is beneficial for performance to overalign
1309/// a data type.
1310unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1311  unsigned ABIAlign = getTypeAlign(T);
1312
1313  // Double and long long should be naturally aligned if possible.
1314  if (const ComplexType* CT = T->getAs<ComplexType>())
1315    T = CT->getElementType().getTypePtr();
1316  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1317      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1318      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1319    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1320
1321  return ABIAlign;
1322}
1323
1324/// DeepCollectObjCIvars -
1325/// This routine first collects all declared, but not synthesized, ivars in
1326/// super class and then collects all ivars, including those synthesized for
1327/// current class. This routine is used for implementation of current class
1328/// when all ivars, declared and synthesized are known.
1329///
1330void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1331                                      bool leafClass,
1332                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1333  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1334    DeepCollectObjCIvars(SuperClass, false, Ivars);
1335  if (!leafClass) {
1336    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1337         E = OI->ivar_end(); I != E; ++I)
1338      Ivars.push_back(*I);
1339  } else {
1340    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1341    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1342         Iv= Iv->getNextIvar())
1343      Ivars.push_back(Iv);
1344  }
1345}
1346
1347/// CollectInheritedProtocols - Collect all protocols in current class and
1348/// those inherited by it.
1349void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1350                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1351  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1352    // We can use protocol_iterator here instead of
1353    // all_referenced_protocol_iterator since we are walking all categories.
1354    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1355         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1356      ObjCProtocolDecl *Proto = (*P);
1357      Protocols.insert(Proto->getCanonicalDecl());
1358      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1359           PE = Proto->protocol_end(); P != PE; ++P) {
1360        Protocols.insert((*P)->getCanonicalDecl());
1361        CollectInheritedProtocols(*P, Protocols);
1362      }
1363    }
1364
1365    // Categories of this Interface.
1366    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1367         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1368      CollectInheritedProtocols(CDeclChain, Protocols);
1369    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1370      while (SD) {
1371        CollectInheritedProtocols(SD, Protocols);
1372        SD = SD->getSuperClass();
1373      }
1374  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1375    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1376         PE = OC->protocol_end(); P != PE; ++P) {
1377      ObjCProtocolDecl *Proto = (*P);
1378      Protocols.insert(Proto->getCanonicalDecl());
1379      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1380           PE = Proto->protocol_end(); P != PE; ++P)
1381        CollectInheritedProtocols(*P, Protocols);
1382    }
1383  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1384    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1385         PE = OP->protocol_end(); P != PE; ++P) {
1386      ObjCProtocolDecl *Proto = (*P);
1387      Protocols.insert(Proto->getCanonicalDecl());
1388      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1389           PE = Proto->protocol_end(); P != PE; ++P)
1390        CollectInheritedProtocols(*P, Protocols);
1391    }
1392  }
1393}
1394
1395unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1396  unsigned count = 0;
1397  // Count ivars declared in class extension.
1398  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1399       CDecl = CDecl->getNextClassExtension())
1400    count += CDecl->ivar_size();
1401
1402  // Count ivar defined in this class's implementation.  This
1403  // includes synthesized ivars.
1404  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1405    count += ImplDecl->ivar_size();
1406
1407  return count;
1408}
1409
1410bool ASTContext::isSentinelNullExpr(const Expr *E) {
1411  if (!E)
1412    return false;
1413
1414  // nullptr_t is always treated as null.
1415  if (E->getType()->isNullPtrType()) return true;
1416
1417  if (E->getType()->isAnyPointerType() &&
1418      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1419                                                Expr::NPC_ValueDependentIsNull))
1420    return true;
1421
1422  // Unfortunately, __null has type 'int'.
1423  if (isa<GNUNullExpr>(E)) return true;
1424
1425  return false;
1426}
1427
1428/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1429ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1430  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1431    I = ObjCImpls.find(D);
1432  if (I != ObjCImpls.end())
1433    return cast<ObjCImplementationDecl>(I->second);
1434  return 0;
1435}
1436/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1437ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1438  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1439    I = ObjCImpls.find(D);
1440  if (I != ObjCImpls.end())
1441    return cast<ObjCCategoryImplDecl>(I->second);
1442  return 0;
1443}
1444
1445/// \brief Set the implementation of ObjCInterfaceDecl.
1446void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1447                           ObjCImplementationDecl *ImplD) {
1448  assert(IFaceD && ImplD && "Passed null params");
1449  ObjCImpls[IFaceD] = ImplD;
1450}
1451/// \brief Set the implementation of ObjCCategoryDecl.
1452void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1453                           ObjCCategoryImplDecl *ImplD) {
1454  assert(CatD && ImplD && "Passed null params");
1455  ObjCImpls[CatD] = ImplD;
1456}
1457
1458ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1459  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1460    return ID;
1461  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1462    return CD->getClassInterface();
1463  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1464    return IMD->getClassInterface();
1465
1466  return 0;
1467}
1468
1469/// \brief Get the copy initialization expression of VarDecl,or NULL if
1470/// none exists.
1471Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1472  assert(VD && "Passed null params");
1473  assert(VD->hasAttr<BlocksAttr>() &&
1474         "getBlockVarCopyInits - not __block var");
1475  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1476    I = BlockVarCopyInits.find(VD);
1477  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1478}
1479
1480/// \brief Set the copy inialization expression of a block var decl.
1481void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1482  assert(VD && Init && "Passed null params");
1483  assert(VD->hasAttr<BlocksAttr>() &&
1484         "setBlockVarCopyInits - not __block var");
1485  BlockVarCopyInits[VD] = Init;
1486}
1487
1488TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1489                                                 unsigned DataSize) const {
1490  if (!DataSize)
1491    DataSize = TypeLoc::getFullDataSizeForType(T);
1492  else
1493    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1494           "incorrect data size provided to CreateTypeSourceInfo!");
1495
1496  TypeSourceInfo *TInfo =
1497    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1498  new (TInfo) TypeSourceInfo(T);
1499  return TInfo;
1500}
1501
1502TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1503                                                     SourceLocation L) const {
1504  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1505  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1506  return DI;
1507}
1508
1509const ASTRecordLayout &
1510ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1511  return getObjCLayout(D, 0);
1512}
1513
1514const ASTRecordLayout &
1515ASTContext::getASTObjCImplementationLayout(
1516                                        const ObjCImplementationDecl *D) const {
1517  return getObjCLayout(D->getClassInterface(), D);
1518}
1519
1520//===----------------------------------------------------------------------===//
1521//                   Type creation/memoization methods
1522//===----------------------------------------------------------------------===//
1523
1524QualType
1525ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1526  unsigned fastQuals = quals.getFastQualifiers();
1527  quals.removeFastQualifiers();
1528
1529  // Check if we've already instantiated this type.
1530  llvm::FoldingSetNodeID ID;
1531  ExtQuals::Profile(ID, baseType, quals);
1532  void *insertPos = 0;
1533  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1534    assert(eq->getQualifiers() == quals);
1535    return QualType(eq, fastQuals);
1536  }
1537
1538  // If the base type is not canonical, make the appropriate canonical type.
1539  QualType canon;
1540  if (!baseType->isCanonicalUnqualified()) {
1541    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1542    canonSplit.Quals.addConsistentQualifiers(quals);
1543    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1544
1545    // Re-find the insert position.
1546    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1547  }
1548
1549  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1550  ExtQualNodes.InsertNode(eq, insertPos);
1551  return QualType(eq, fastQuals);
1552}
1553
1554QualType
1555ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1556  QualType CanT = getCanonicalType(T);
1557  if (CanT.getAddressSpace() == AddressSpace)
1558    return T;
1559
1560  // If we are composing extended qualifiers together, merge together
1561  // into one ExtQuals node.
1562  QualifierCollector Quals;
1563  const Type *TypeNode = Quals.strip(T);
1564
1565  // If this type already has an address space specified, it cannot get
1566  // another one.
1567  assert(!Quals.hasAddressSpace() &&
1568         "Type cannot be in multiple addr spaces!");
1569  Quals.addAddressSpace(AddressSpace);
1570
1571  return getExtQualType(TypeNode, Quals);
1572}
1573
1574QualType ASTContext::getObjCGCQualType(QualType T,
1575                                       Qualifiers::GC GCAttr) const {
1576  QualType CanT = getCanonicalType(T);
1577  if (CanT.getObjCGCAttr() == GCAttr)
1578    return T;
1579
1580  if (const PointerType *ptr = T->getAs<PointerType>()) {
1581    QualType Pointee = ptr->getPointeeType();
1582    if (Pointee->isAnyPointerType()) {
1583      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1584      return getPointerType(ResultType);
1585    }
1586  }
1587
1588  // If we are composing extended qualifiers together, merge together
1589  // into one ExtQuals node.
1590  QualifierCollector Quals;
1591  const Type *TypeNode = Quals.strip(T);
1592
1593  // If this type already has an ObjCGC specified, it cannot get
1594  // another one.
1595  assert(!Quals.hasObjCGCAttr() &&
1596         "Type cannot have multiple ObjCGCs!");
1597  Quals.addObjCGCAttr(GCAttr);
1598
1599  return getExtQualType(TypeNode, Quals);
1600}
1601
1602const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1603                                                   FunctionType::ExtInfo Info) {
1604  if (T->getExtInfo() == Info)
1605    return T;
1606
1607  QualType Result;
1608  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1609    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1610  } else {
1611    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1612    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1613    EPI.ExtInfo = Info;
1614    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1615                             FPT->getNumArgs(), EPI);
1616  }
1617
1618  return cast<FunctionType>(Result.getTypePtr());
1619}
1620
1621/// getComplexType - Return the uniqued reference to the type for a complex
1622/// number with the specified element type.
1623QualType ASTContext::getComplexType(QualType T) const {
1624  // Unique pointers, to guarantee there is only one pointer of a particular
1625  // structure.
1626  llvm::FoldingSetNodeID ID;
1627  ComplexType::Profile(ID, T);
1628
1629  void *InsertPos = 0;
1630  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1631    return QualType(CT, 0);
1632
1633  // If the pointee type isn't canonical, this won't be a canonical type either,
1634  // so fill in the canonical type field.
1635  QualType Canonical;
1636  if (!T.isCanonical()) {
1637    Canonical = getComplexType(getCanonicalType(T));
1638
1639    // Get the new insert position for the node we care about.
1640    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1641    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1642  }
1643  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1644  Types.push_back(New);
1645  ComplexTypes.InsertNode(New, InsertPos);
1646  return QualType(New, 0);
1647}
1648
1649/// getPointerType - Return the uniqued reference to the type for a pointer to
1650/// the specified type.
1651QualType ASTContext::getPointerType(QualType T) const {
1652  // Unique pointers, to guarantee there is only one pointer of a particular
1653  // structure.
1654  llvm::FoldingSetNodeID ID;
1655  PointerType::Profile(ID, T);
1656
1657  void *InsertPos = 0;
1658  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1659    return QualType(PT, 0);
1660
1661  // If the pointee type isn't canonical, this won't be a canonical type either,
1662  // so fill in the canonical type field.
1663  QualType Canonical;
1664  if (!T.isCanonical()) {
1665    Canonical = getPointerType(getCanonicalType(T));
1666
1667    // Get the new insert position for the node we care about.
1668    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1669    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1670  }
1671  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1672  Types.push_back(New);
1673  PointerTypes.InsertNode(New, InsertPos);
1674  return QualType(New, 0);
1675}
1676
1677/// getBlockPointerType - Return the uniqued reference to the type for
1678/// a pointer to the specified block.
1679QualType ASTContext::getBlockPointerType(QualType T) const {
1680  assert(T->isFunctionType() && "block of function types only");
1681  // Unique pointers, to guarantee there is only one block of a particular
1682  // structure.
1683  llvm::FoldingSetNodeID ID;
1684  BlockPointerType::Profile(ID, T);
1685
1686  void *InsertPos = 0;
1687  if (BlockPointerType *PT =
1688        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1689    return QualType(PT, 0);
1690
1691  // If the block pointee type isn't canonical, this won't be a canonical
1692  // type either so fill in the canonical type field.
1693  QualType Canonical;
1694  if (!T.isCanonical()) {
1695    Canonical = getBlockPointerType(getCanonicalType(T));
1696
1697    // Get the new insert position for the node we care about.
1698    BlockPointerType *NewIP =
1699      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1700    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1701  }
1702  BlockPointerType *New
1703    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1704  Types.push_back(New);
1705  BlockPointerTypes.InsertNode(New, InsertPos);
1706  return QualType(New, 0);
1707}
1708
1709/// getLValueReferenceType - Return the uniqued reference to the type for an
1710/// lvalue reference to the specified type.
1711QualType
1712ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1713  assert(getCanonicalType(T) != OverloadTy &&
1714         "Unresolved overloaded function type");
1715
1716  // Unique pointers, to guarantee there is only one pointer of a particular
1717  // structure.
1718  llvm::FoldingSetNodeID ID;
1719  ReferenceType::Profile(ID, T, SpelledAsLValue);
1720
1721  void *InsertPos = 0;
1722  if (LValueReferenceType *RT =
1723        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1724    return QualType(RT, 0);
1725
1726  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1727
1728  // If the referencee type isn't canonical, this won't be a canonical type
1729  // either, so fill in the canonical type field.
1730  QualType Canonical;
1731  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1732    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1733    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1734
1735    // Get the new insert position for the node we care about.
1736    LValueReferenceType *NewIP =
1737      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1738    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1739  }
1740
1741  LValueReferenceType *New
1742    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1743                                                     SpelledAsLValue);
1744  Types.push_back(New);
1745  LValueReferenceTypes.InsertNode(New, InsertPos);
1746
1747  return QualType(New, 0);
1748}
1749
1750/// getRValueReferenceType - Return the uniqued reference to the type for an
1751/// rvalue reference to the specified type.
1752QualType ASTContext::getRValueReferenceType(QualType T) const {
1753  // Unique pointers, to guarantee there is only one pointer of a particular
1754  // structure.
1755  llvm::FoldingSetNodeID ID;
1756  ReferenceType::Profile(ID, T, false);
1757
1758  void *InsertPos = 0;
1759  if (RValueReferenceType *RT =
1760        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1761    return QualType(RT, 0);
1762
1763  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1764
1765  // If the referencee type isn't canonical, this won't be a canonical type
1766  // either, so fill in the canonical type field.
1767  QualType Canonical;
1768  if (InnerRef || !T.isCanonical()) {
1769    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1770    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1771
1772    // Get the new insert position for the node we care about.
1773    RValueReferenceType *NewIP =
1774      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1775    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1776  }
1777
1778  RValueReferenceType *New
1779    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1780  Types.push_back(New);
1781  RValueReferenceTypes.InsertNode(New, InsertPos);
1782  return QualType(New, 0);
1783}
1784
1785/// getMemberPointerType - Return the uniqued reference to the type for a
1786/// member pointer to the specified type, in the specified class.
1787QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1788  // Unique pointers, to guarantee there is only one pointer of a particular
1789  // structure.
1790  llvm::FoldingSetNodeID ID;
1791  MemberPointerType::Profile(ID, T, Cls);
1792
1793  void *InsertPos = 0;
1794  if (MemberPointerType *PT =
1795      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1796    return QualType(PT, 0);
1797
1798  // If the pointee or class type isn't canonical, this won't be a canonical
1799  // type either, so fill in the canonical type field.
1800  QualType Canonical;
1801  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1802    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1803
1804    // Get the new insert position for the node we care about.
1805    MemberPointerType *NewIP =
1806      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1807    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1808  }
1809  MemberPointerType *New
1810    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1811  Types.push_back(New);
1812  MemberPointerTypes.InsertNode(New, InsertPos);
1813  return QualType(New, 0);
1814}
1815
1816/// getConstantArrayType - Return the unique reference to the type for an
1817/// array of the specified element type.
1818QualType ASTContext::getConstantArrayType(QualType EltTy,
1819                                          const llvm::APInt &ArySizeIn,
1820                                          ArrayType::ArraySizeModifier ASM,
1821                                          unsigned IndexTypeQuals) const {
1822  assert((EltTy->isDependentType() ||
1823          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1824         "Constant array of VLAs is illegal!");
1825
1826  // Convert the array size into a canonical width matching the pointer size for
1827  // the target.
1828  llvm::APInt ArySize(ArySizeIn);
1829  ArySize =
1830    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1831
1832  llvm::FoldingSetNodeID ID;
1833  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1834
1835  void *InsertPos = 0;
1836  if (ConstantArrayType *ATP =
1837      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1838    return QualType(ATP, 0);
1839
1840  // If the element type isn't canonical or has qualifiers, this won't
1841  // be a canonical type either, so fill in the canonical type field.
1842  QualType Canon;
1843  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1844    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1845    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
1846                                 ASM, IndexTypeQuals);
1847    Canon = getQualifiedType(Canon, canonSplit.Quals);
1848
1849    // Get the new insert position for the node we care about.
1850    ConstantArrayType *NewIP =
1851      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1852    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1853  }
1854
1855  ConstantArrayType *New = new(*this,TypeAlignment)
1856    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1857  ConstantArrayTypes.InsertNode(New, InsertPos);
1858  Types.push_back(New);
1859  return QualType(New, 0);
1860}
1861
1862/// getVariableArrayDecayedType - Turns the given type, which may be
1863/// variably-modified, into the corresponding type with all the known
1864/// sizes replaced with [*].
1865QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1866  // Vastly most common case.
1867  if (!type->isVariablyModifiedType()) return type;
1868
1869  QualType result;
1870
1871  SplitQualType split = type.getSplitDesugaredType();
1872  const Type *ty = split.Ty;
1873  switch (ty->getTypeClass()) {
1874#define TYPE(Class, Base)
1875#define ABSTRACT_TYPE(Class, Base)
1876#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1877#include "clang/AST/TypeNodes.def"
1878    llvm_unreachable("didn't desugar past all non-canonical types?");
1879
1880  // These types should never be variably-modified.
1881  case Type::Builtin:
1882  case Type::Complex:
1883  case Type::Vector:
1884  case Type::ExtVector:
1885  case Type::DependentSizedExtVector:
1886  case Type::ObjCObject:
1887  case Type::ObjCInterface:
1888  case Type::ObjCObjectPointer:
1889  case Type::Record:
1890  case Type::Enum:
1891  case Type::UnresolvedUsing:
1892  case Type::TypeOfExpr:
1893  case Type::TypeOf:
1894  case Type::Decltype:
1895  case Type::UnaryTransform:
1896  case Type::DependentName:
1897  case Type::InjectedClassName:
1898  case Type::TemplateSpecialization:
1899  case Type::DependentTemplateSpecialization:
1900  case Type::TemplateTypeParm:
1901  case Type::SubstTemplateTypeParmPack:
1902  case Type::Auto:
1903  case Type::PackExpansion:
1904    llvm_unreachable("type should never be variably-modified");
1905
1906  // These types can be variably-modified but should never need to
1907  // further decay.
1908  case Type::FunctionNoProto:
1909  case Type::FunctionProto:
1910  case Type::BlockPointer:
1911  case Type::MemberPointer:
1912    return type;
1913
1914  // These types can be variably-modified.  All these modifications
1915  // preserve structure except as noted by comments.
1916  // TODO: if we ever care about optimizing VLAs, there are no-op
1917  // optimizations available here.
1918  case Type::Pointer:
1919    result = getPointerType(getVariableArrayDecayedType(
1920                              cast<PointerType>(ty)->getPointeeType()));
1921    break;
1922
1923  case Type::LValueReference: {
1924    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1925    result = getLValueReferenceType(
1926                 getVariableArrayDecayedType(lv->getPointeeType()),
1927                                    lv->isSpelledAsLValue());
1928    break;
1929  }
1930
1931  case Type::RValueReference: {
1932    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1933    result = getRValueReferenceType(
1934                 getVariableArrayDecayedType(lv->getPointeeType()));
1935    break;
1936  }
1937
1938  case Type::Atomic: {
1939    const AtomicType *at = cast<AtomicType>(ty);
1940    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1941    break;
1942  }
1943
1944  case Type::ConstantArray: {
1945    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1946    result = getConstantArrayType(
1947                 getVariableArrayDecayedType(cat->getElementType()),
1948                                  cat->getSize(),
1949                                  cat->getSizeModifier(),
1950                                  cat->getIndexTypeCVRQualifiers());
1951    break;
1952  }
1953
1954  case Type::DependentSizedArray: {
1955    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1956    result = getDependentSizedArrayType(
1957                 getVariableArrayDecayedType(dat->getElementType()),
1958                                        dat->getSizeExpr(),
1959                                        dat->getSizeModifier(),
1960                                        dat->getIndexTypeCVRQualifiers(),
1961                                        dat->getBracketsRange());
1962    break;
1963  }
1964
1965  // Turn incomplete types into [*] types.
1966  case Type::IncompleteArray: {
1967    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1968    result = getVariableArrayType(
1969                 getVariableArrayDecayedType(iat->getElementType()),
1970                                  /*size*/ 0,
1971                                  ArrayType::Normal,
1972                                  iat->getIndexTypeCVRQualifiers(),
1973                                  SourceRange());
1974    break;
1975  }
1976
1977  // Turn VLA types into [*] types.
1978  case Type::VariableArray: {
1979    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1980    result = getVariableArrayType(
1981                 getVariableArrayDecayedType(vat->getElementType()),
1982                                  /*size*/ 0,
1983                                  ArrayType::Star,
1984                                  vat->getIndexTypeCVRQualifiers(),
1985                                  vat->getBracketsRange());
1986    break;
1987  }
1988  }
1989
1990  // Apply the top-level qualifiers from the original.
1991  return getQualifiedType(result, split.Quals);
1992}
1993
1994/// getVariableArrayType - Returns a non-unique reference to the type for a
1995/// variable array of the specified element type.
1996QualType ASTContext::getVariableArrayType(QualType EltTy,
1997                                          Expr *NumElts,
1998                                          ArrayType::ArraySizeModifier ASM,
1999                                          unsigned IndexTypeQuals,
2000                                          SourceRange Brackets) const {
2001  // Since we don't unique expressions, it isn't possible to unique VLA's
2002  // that have an expression provided for their size.
2003  QualType Canon;
2004
2005  // Be sure to pull qualifiers off the element type.
2006  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2007    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2008    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2009                                 IndexTypeQuals, Brackets);
2010    Canon = getQualifiedType(Canon, canonSplit.Quals);
2011  }
2012
2013  VariableArrayType *New = new(*this, TypeAlignment)
2014    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2015
2016  VariableArrayTypes.push_back(New);
2017  Types.push_back(New);
2018  return QualType(New, 0);
2019}
2020
2021/// getDependentSizedArrayType - Returns a non-unique reference to
2022/// the type for a dependently-sized array of the specified element
2023/// type.
2024QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2025                                                Expr *numElements,
2026                                                ArrayType::ArraySizeModifier ASM,
2027                                                unsigned elementTypeQuals,
2028                                                SourceRange brackets) const {
2029  assert((!numElements || numElements->isTypeDependent() ||
2030          numElements->isValueDependent()) &&
2031         "Size must be type- or value-dependent!");
2032
2033  // Dependently-sized array types that do not have a specified number
2034  // of elements will have their sizes deduced from a dependent
2035  // initializer.  We do no canonicalization here at all, which is okay
2036  // because they can't be used in most locations.
2037  if (!numElements) {
2038    DependentSizedArrayType *newType
2039      = new (*this, TypeAlignment)
2040          DependentSizedArrayType(*this, elementType, QualType(),
2041                                  numElements, ASM, elementTypeQuals,
2042                                  brackets);
2043    Types.push_back(newType);
2044    return QualType(newType, 0);
2045  }
2046
2047  // Otherwise, we actually build a new type every time, but we
2048  // also build a canonical type.
2049
2050  SplitQualType canonElementType = getCanonicalType(elementType).split();
2051
2052  void *insertPos = 0;
2053  llvm::FoldingSetNodeID ID;
2054  DependentSizedArrayType::Profile(ID, *this,
2055                                   QualType(canonElementType.Ty, 0),
2056                                   ASM, elementTypeQuals, numElements);
2057
2058  // Look for an existing type with these properties.
2059  DependentSizedArrayType *canonTy =
2060    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2061
2062  // If we don't have one, build one.
2063  if (!canonTy) {
2064    canonTy = new (*this, TypeAlignment)
2065      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2066                              QualType(), numElements, ASM, elementTypeQuals,
2067                              brackets);
2068    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2069    Types.push_back(canonTy);
2070  }
2071
2072  // Apply qualifiers from the element type to the array.
2073  QualType canon = getQualifiedType(QualType(canonTy,0),
2074                                    canonElementType.Quals);
2075
2076  // If we didn't need extra canonicalization for the element type,
2077  // then just use that as our result.
2078  if (QualType(canonElementType.Ty, 0) == elementType)
2079    return canon;
2080
2081  // Otherwise, we need to build a type which follows the spelling
2082  // of the element type.
2083  DependentSizedArrayType *sugaredType
2084    = new (*this, TypeAlignment)
2085        DependentSizedArrayType(*this, elementType, canon, numElements,
2086                                ASM, elementTypeQuals, brackets);
2087  Types.push_back(sugaredType);
2088  return QualType(sugaredType, 0);
2089}
2090
2091QualType ASTContext::getIncompleteArrayType(QualType elementType,
2092                                            ArrayType::ArraySizeModifier ASM,
2093                                            unsigned elementTypeQuals) const {
2094  llvm::FoldingSetNodeID ID;
2095  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2096
2097  void *insertPos = 0;
2098  if (IncompleteArrayType *iat =
2099       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2100    return QualType(iat, 0);
2101
2102  // If the element type isn't canonical, this won't be a canonical type
2103  // either, so fill in the canonical type field.  We also have to pull
2104  // qualifiers off the element type.
2105  QualType canon;
2106
2107  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2108    SplitQualType canonSplit = getCanonicalType(elementType).split();
2109    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2110                                   ASM, elementTypeQuals);
2111    canon = getQualifiedType(canon, canonSplit.Quals);
2112
2113    // Get the new insert position for the node we care about.
2114    IncompleteArrayType *existing =
2115      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2116    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2117  }
2118
2119  IncompleteArrayType *newType = new (*this, TypeAlignment)
2120    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2121
2122  IncompleteArrayTypes.InsertNode(newType, insertPos);
2123  Types.push_back(newType);
2124  return QualType(newType, 0);
2125}
2126
2127/// getVectorType - Return the unique reference to a vector type of
2128/// the specified element type and size. VectorType must be a built-in type.
2129QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2130                                   VectorType::VectorKind VecKind) const {
2131  assert(vecType->isBuiltinType());
2132
2133  // Check if we've already instantiated a vector of this type.
2134  llvm::FoldingSetNodeID ID;
2135  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2136
2137  void *InsertPos = 0;
2138  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2139    return QualType(VTP, 0);
2140
2141  // If the element type isn't canonical, this won't be a canonical type either,
2142  // so fill in the canonical type field.
2143  QualType Canonical;
2144  if (!vecType.isCanonical()) {
2145    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2146
2147    // Get the new insert position for the node we care about.
2148    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2149    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2150  }
2151  VectorType *New = new (*this, TypeAlignment)
2152    VectorType(vecType, NumElts, Canonical, VecKind);
2153  VectorTypes.InsertNode(New, InsertPos);
2154  Types.push_back(New);
2155  return QualType(New, 0);
2156}
2157
2158/// getExtVectorType - Return the unique reference to an extended vector type of
2159/// the specified element type and size. VectorType must be a built-in type.
2160QualType
2161ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2162  assert(vecType->isBuiltinType() || vecType->isDependentType());
2163
2164  // Check if we've already instantiated a vector of this type.
2165  llvm::FoldingSetNodeID ID;
2166  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2167                      VectorType::GenericVector);
2168  void *InsertPos = 0;
2169  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2170    return QualType(VTP, 0);
2171
2172  // If the element type isn't canonical, this won't be a canonical type either,
2173  // so fill in the canonical type field.
2174  QualType Canonical;
2175  if (!vecType.isCanonical()) {
2176    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2177
2178    // Get the new insert position for the node we care about.
2179    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2180    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2181  }
2182  ExtVectorType *New = new (*this, TypeAlignment)
2183    ExtVectorType(vecType, NumElts, Canonical);
2184  VectorTypes.InsertNode(New, InsertPos);
2185  Types.push_back(New);
2186  return QualType(New, 0);
2187}
2188
2189QualType
2190ASTContext::getDependentSizedExtVectorType(QualType vecType,
2191                                           Expr *SizeExpr,
2192                                           SourceLocation AttrLoc) const {
2193  llvm::FoldingSetNodeID ID;
2194  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2195                                       SizeExpr);
2196
2197  void *InsertPos = 0;
2198  DependentSizedExtVectorType *Canon
2199    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2200  DependentSizedExtVectorType *New;
2201  if (Canon) {
2202    // We already have a canonical version of this array type; use it as
2203    // the canonical type for a newly-built type.
2204    New = new (*this, TypeAlignment)
2205      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2206                                  SizeExpr, AttrLoc);
2207  } else {
2208    QualType CanonVecTy = getCanonicalType(vecType);
2209    if (CanonVecTy == vecType) {
2210      New = new (*this, TypeAlignment)
2211        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2212                                    AttrLoc);
2213
2214      DependentSizedExtVectorType *CanonCheck
2215        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2216      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2217      (void)CanonCheck;
2218      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2219    } else {
2220      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2221                                                      SourceLocation());
2222      New = new (*this, TypeAlignment)
2223        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2224    }
2225  }
2226
2227  Types.push_back(New);
2228  return QualType(New, 0);
2229}
2230
2231/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2232///
2233QualType
2234ASTContext::getFunctionNoProtoType(QualType ResultTy,
2235                                   const FunctionType::ExtInfo &Info) const {
2236  const CallingConv DefaultCC = Info.getCC();
2237  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2238                               CC_X86StdCall : DefaultCC;
2239  // Unique functions, to guarantee there is only one function of a particular
2240  // structure.
2241  llvm::FoldingSetNodeID ID;
2242  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2243
2244  void *InsertPos = 0;
2245  if (FunctionNoProtoType *FT =
2246        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2247    return QualType(FT, 0);
2248
2249  QualType Canonical;
2250  if (!ResultTy.isCanonical() ||
2251      getCanonicalCallConv(CallConv) != CallConv) {
2252    Canonical =
2253      getFunctionNoProtoType(getCanonicalType(ResultTy),
2254                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2255
2256    // Get the new insert position for the node we care about.
2257    FunctionNoProtoType *NewIP =
2258      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2259    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2260  }
2261
2262  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2263  FunctionNoProtoType *New = new (*this, TypeAlignment)
2264    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2265  Types.push_back(New);
2266  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2267  return QualType(New, 0);
2268}
2269
2270/// getFunctionType - Return a normal function type with a typed argument
2271/// list.  isVariadic indicates whether the argument list includes '...'.
2272QualType
2273ASTContext::getFunctionType(QualType ResultTy,
2274                            const QualType *ArgArray, unsigned NumArgs,
2275                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2276  // Unique functions, to guarantee there is only one function of a particular
2277  // structure.
2278  llvm::FoldingSetNodeID ID;
2279  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2280
2281  void *InsertPos = 0;
2282  if (FunctionProtoType *FTP =
2283        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2284    return QualType(FTP, 0);
2285
2286  // Determine whether the type being created is already canonical or not.
2287  bool isCanonical =
2288    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2289    !EPI.HasTrailingReturn;
2290  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2291    if (!ArgArray[i].isCanonicalAsParam())
2292      isCanonical = false;
2293
2294  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2295  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2296                               CC_X86StdCall : DefaultCC;
2297
2298  // If this type isn't canonical, get the canonical version of it.
2299  // The exception spec is not part of the canonical type.
2300  QualType Canonical;
2301  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2302    SmallVector<QualType, 16> CanonicalArgs;
2303    CanonicalArgs.reserve(NumArgs);
2304    for (unsigned i = 0; i != NumArgs; ++i)
2305      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2306
2307    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2308    CanonicalEPI.HasTrailingReturn = false;
2309    CanonicalEPI.ExceptionSpecType = EST_None;
2310    CanonicalEPI.NumExceptions = 0;
2311    CanonicalEPI.ExtInfo
2312      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2313
2314    Canonical = getFunctionType(getCanonicalType(ResultTy),
2315                                CanonicalArgs.data(), NumArgs,
2316                                CanonicalEPI);
2317
2318    // Get the new insert position for the node we care about.
2319    FunctionProtoType *NewIP =
2320      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2321    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2322  }
2323
2324  // FunctionProtoType objects are allocated with extra bytes after
2325  // them for three variable size arrays at the end:
2326  //  - parameter types
2327  //  - exception types
2328  //  - consumed-arguments flags
2329  // Instead of the exception types, there could be a noexcept
2330  // expression.
2331  size_t Size = sizeof(FunctionProtoType) +
2332                NumArgs * sizeof(QualType);
2333  if (EPI.ExceptionSpecType == EST_Dynamic)
2334    Size += EPI.NumExceptions * sizeof(QualType);
2335  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2336    Size += sizeof(Expr*);
2337  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2338    Size += 2 * sizeof(FunctionDecl*);
2339  }
2340  if (EPI.ConsumedArguments)
2341    Size += NumArgs * sizeof(bool);
2342
2343  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2344  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2345  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2346  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2347  Types.push_back(FTP);
2348  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2349  return QualType(FTP, 0);
2350}
2351
2352#ifndef NDEBUG
2353static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2354  if (!isa<CXXRecordDecl>(D)) return false;
2355  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2356  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2357    return true;
2358  if (RD->getDescribedClassTemplate() &&
2359      !isa<ClassTemplateSpecializationDecl>(RD))
2360    return true;
2361  return false;
2362}
2363#endif
2364
2365/// getInjectedClassNameType - Return the unique reference to the
2366/// injected class name type for the specified templated declaration.
2367QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2368                                              QualType TST) const {
2369  assert(NeedsInjectedClassNameType(Decl));
2370  if (Decl->TypeForDecl) {
2371    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2372  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2373    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2374    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2375    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2376  } else {
2377    Type *newType =
2378      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2379    Decl->TypeForDecl = newType;
2380    Types.push_back(newType);
2381  }
2382  return QualType(Decl->TypeForDecl, 0);
2383}
2384
2385/// getTypeDeclType - Return the unique reference to the type for the
2386/// specified type declaration.
2387QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2388  assert(Decl && "Passed null for Decl param");
2389  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2390
2391  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2392    return getTypedefType(Typedef);
2393
2394  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2395         "Template type parameter types are always available.");
2396
2397  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2398    assert(!Record->getPreviousDecl() &&
2399           "struct/union has previous declaration");
2400    assert(!NeedsInjectedClassNameType(Record));
2401    return getRecordType(Record);
2402  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2403    assert(!Enum->getPreviousDecl() &&
2404           "enum has previous declaration");
2405    return getEnumType(Enum);
2406  } else if (const UnresolvedUsingTypenameDecl *Using =
2407               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2408    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2409    Decl->TypeForDecl = newType;
2410    Types.push_back(newType);
2411  } else
2412    llvm_unreachable("TypeDecl without a type?");
2413
2414  return QualType(Decl->TypeForDecl, 0);
2415}
2416
2417/// getTypedefType - Return the unique reference to the type for the
2418/// specified typedef name decl.
2419QualType
2420ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2421                           QualType Canonical) const {
2422  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2423
2424  if (Canonical.isNull())
2425    Canonical = getCanonicalType(Decl->getUnderlyingType());
2426  TypedefType *newType = new(*this, TypeAlignment)
2427    TypedefType(Type::Typedef, Decl, Canonical);
2428  Decl->TypeForDecl = newType;
2429  Types.push_back(newType);
2430  return QualType(newType, 0);
2431}
2432
2433QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2434  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2435
2436  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2437    if (PrevDecl->TypeForDecl)
2438      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2439
2440  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2441  Decl->TypeForDecl = newType;
2442  Types.push_back(newType);
2443  return QualType(newType, 0);
2444}
2445
2446QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2447  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2448
2449  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2450    if (PrevDecl->TypeForDecl)
2451      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2452
2453  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2454  Decl->TypeForDecl = newType;
2455  Types.push_back(newType);
2456  return QualType(newType, 0);
2457}
2458
2459QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2460                                       QualType modifiedType,
2461                                       QualType equivalentType) {
2462  llvm::FoldingSetNodeID id;
2463  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2464
2465  void *insertPos = 0;
2466  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2467  if (type) return QualType(type, 0);
2468
2469  QualType canon = getCanonicalType(equivalentType);
2470  type = new (*this, TypeAlignment)
2471           AttributedType(canon, attrKind, modifiedType, equivalentType);
2472
2473  Types.push_back(type);
2474  AttributedTypes.InsertNode(type, insertPos);
2475
2476  return QualType(type, 0);
2477}
2478
2479
2480/// \brief Retrieve a substitution-result type.
2481QualType
2482ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2483                                         QualType Replacement) const {
2484  assert(Replacement.isCanonical()
2485         && "replacement types must always be canonical");
2486
2487  llvm::FoldingSetNodeID ID;
2488  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2489  void *InsertPos = 0;
2490  SubstTemplateTypeParmType *SubstParm
2491    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2492
2493  if (!SubstParm) {
2494    SubstParm = new (*this, TypeAlignment)
2495      SubstTemplateTypeParmType(Parm, Replacement);
2496    Types.push_back(SubstParm);
2497    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2498  }
2499
2500  return QualType(SubstParm, 0);
2501}
2502
2503/// \brief Retrieve a
2504QualType ASTContext::getSubstTemplateTypeParmPackType(
2505                                          const TemplateTypeParmType *Parm,
2506                                              const TemplateArgument &ArgPack) {
2507#ifndef NDEBUG
2508  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2509                                    PEnd = ArgPack.pack_end();
2510       P != PEnd; ++P) {
2511    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2512    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2513  }
2514#endif
2515
2516  llvm::FoldingSetNodeID ID;
2517  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2518  void *InsertPos = 0;
2519  if (SubstTemplateTypeParmPackType *SubstParm
2520        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2521    return QualType(SubstParm, 0);
2522
2523  QualType Canon;
2524  if (!Parm->isCanonicalUnqualified()) {
2525    Canon = getCanonicalType(QualType(Parm, 0));
2526    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2527                                             ArgPack);
2528    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2529  }
2530
2531  SubstTemplateTypeParmPackType *SubstParm
2532    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2533                                                               ArgPack);
2534  Types.push_back(SubstParm);
2535  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2536  return QualType(SubstParm, 0);
2537}
2538
2539/// \brief Retrieve the template type parameter type for a template
2540/// parameter or parameter pack with the given depth, index, and (optionally)
2541/// name.
2542QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2543                                             bool ParameterPack,
2544                                             TemplateTypeParmDecl *TTPDecl) const {
2545  llvm::FoldingSetNodeID ID;
2546  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2547  void *InsertPos = 0;
2548  TemplateTypeParmType *TypeParm
2549    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2550
2551  if (TypeParm)
2552    return QualType(TypeParm, 0);
2553
2554  if (TTPDecl) {
2555    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2556    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2557
2558    TemplateTypeParmType *TypeCheck
2559      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2560    assert(!TypeCheck && "Template type parameter canonical type broken");
2561    (void)TypeCheck;
2562  } else
2563    TypeParm = new (*this, TypeAlignment)
2564      TemplateTypeParmType(Depth, Index, ParameterPack);
2565
2566  Types.push_back(TypeParm);
2567  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2568
2569  return QualType(TypeParm, 0);
2570}
2571
2572TypeSourceInfo *
2573ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2574                                              SourceLocation NameLoc,
2575                                        const TemplateArgumentListInfo &Args,
2576                                              QualType Underlying) const {
2577  assert(!Name.getAsDependentTemplateName() &&
2578         "No dependent template names here!");
2579  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2580
2581  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2582  TemplateSpecializationTypeLoc TL
2583    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2584  TL.setTemplateKeywordLoc(SourceLocation());
2585  TL.setTemplateNameLoc(NameLoc);
2586  TL.setLAngleLoc(Args.getLAngleLoc());
2587  TL.setRAngleLoc(Args.getRAngleLoc());
2588  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2589    TL.setArgLocInfo(i, Args[i].getLocInfo());
2590  return DI;
2591}
2592
2593QualType
2594ASTContext::getTemplateSpecializationType(TemplateName Template,
2595                                          const TemplateArgumentListInfo &Args,
2596                                          QualType Underlying) const {
2597  assert(!Template.getAsDependentTemplateName() &&
2598         "No dependent template names here!");
2599
2600  unsigned NumArgs = Args.size();
2601
2602  SmallVector<TemplateArgument, 4> ArgVec;
2603  ArgVec.reserve(NumArgs);
2604  for (unsigned i = 0; i != NumArgs; ++i)
2605    ArgVec.push_back(Args[i].getArgument());
2606
2607  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2608                                       Underlying);
2609}
2610
2611#ifndef NDEBUG
2612static bool hasAnyPackExpansions(const TemplateArgument *Args,
2613                                 unsigned NumArgs) {
2614  for (unsigned I = 0; I != NumArgs; ++I)
2615    if (Args[I].isPackExpansion())
2616      return true;
2617
2618  return true;
2619}
2620#endif
2621
2622QualType
2623ASTContext::getTemplateSpecializationType(TemplateName Template,
2624                                          const TemplateArgument *Args,
2625                                          unsigned NumArgs,
2626                                          QualType Underlying) const {
2627  assert(!Template.getAsDependentTemplateName() &&
2628         "No dependent template names here!");
2629  // Look through qualified template names.
2630  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2631    Template = TemplateName(QTN->getTemplateDecl());
2632
2633  bool IsTypeAlias =
2634    Template.getAsTemplateDecl() &&
2635    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2636  QualType CanonType;
2637  if (!Underlying.isNull())
2638    CanonType = getCanonicalType(Underlying);
2639  else {
2640    // We can get here with an alias template when the specialization contains
2641    // a pack expansion that does not match up with a parameter pack.
2642    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2643           "Caller must compute aliased type");
2644    IsTypeAlias = false;
2645    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2646                                                       NumArgs);
2647  }
2648
2649  // Allocate the (non-canonical) template specialization type, but don't
2650  // try to unique it: these types typically have location information that
2651  // we don't unique and don't want to lose.
2652  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2653                       sizeof(TemplateArgument) * NumArgs +
2654                       (IsTypeAlias? sizeof(QualType) : 0),
2655                       TypeAlignment);
2656  TemplateSpecializationType *Spec
2657    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2658                                         IsTypeAlias ? Underlying : QualType());
2659
2660  Types.push_back(Spec);
2661  return QualType(Spec, 0);
2662}
2663
2664QualType
2665ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2666                                                   const TemplateArgument *Args,
2667                                                   unsigned NumArgs) const {
2668  assert(!Template.getAsDependentTemplateName() &&
2669         "No dependent template names here!");
2670
2671  // Look through qualified template names.
2672  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2673    Template = TemplateName(QTN->getTemplateDecl());
2674
2675  // Build the canonical template specialization type.
2676  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2677  SmallVector<TemplateArgument, 4> CanonArgs;
2678  CanonArgs.reserve(NumArgs);
2679  for (unsigned I = 0; I != NumArgs; ++I)
2680    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2681
2682  // Determine whether this canonical template specialization type already
2683  // exists.
2684  llvm::FoldingSetNodeID ID;
2685  TemplateSpecializationType::Profile(ID, CanonTemplate,
2686                                      CanonArgs.data(), NumArgs, *this);
2687
2688  void *InsertPos = 0;
2689  TemplateSpecializationType *Spec
2690    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2691
2692  if (!Spec) {
2693    // Allocate a new canonical template specialization type.
2694    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2695                          sizeof(TemplateArgument) * NumArgs),
2696                         TypeAlignment);
2697    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2698                                                CanonArgs.data(), NumArgs,
2699                                                QualType(), QualType());
2700    Types.push_back(Spec);
2701    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2702  }
2703
2704  assert(Spec->isDependentType() &&
2705         "Non-dependent template-id type must have a canonical type");
2706  return QualType(Spec, 0);
2707}
2708
2709QualType
2710ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2711                              NestedNameSpecifier *NNS,
2712                              QualType NamedType) const {
2713  llvm::FoldingSetNodeID ID;
2714  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2715
2716  void *InsertPos = 0;
2717  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2718  if (T)
2719    return QualType(T, 0);
2720
2721  QualType Canon = NamedType;
2722  if (!Canon.isCanonical()) {
2723    Canon = getCanonicalType(NamedType);
2724    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2725    assert(!CheckT && "Elaborated canonical type broken");
2726    (void)CheckT;
2727  }
2728
2729  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2730  Types.push_back(T);
2731  ElaboratedTypes.InsertNode(T, InsertPos);
2732  return QualType(T, 0);
2733}
2734
2735QualType
2736ASTContext::getParenType(QualType InnerType) const {
2737  llvm::FoldingSetNodeID ID;
2738  ParenType::Profile(ID, InnerType);
2739
2740  void *InsertPos = 0;
2741  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2742  if (T)
2743    return QualType(T, 0);
2744
2745  QualType Canon = InnerType;
2746  if (!Canon.isCanonical()) {
2747    Canon = getCanonicalType(InnerType);
2748    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2749    assert(!CheckT && "Paren canonical type broken");
2750    (void)CheckT;
2751  }
2752
2753  T = new (*this) ParenType(InnerType, Canon);
2754  Types.push_back(T);
2755  ParenTypes.InsertNode(T, InsertPos);
2756  return QualType(T, 0);
2757}
2758
2759QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2760                                          NestedNameSpecifier *NNS,
2761                                          const IdentifierInfo *Name,
2762                                          QualType Canon) const {
2763  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2764
2765  if (Canon.isNull()) {
2766    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2767    ElaboratedTypeKeyword CanonKeyword = Keyword;
2768    if (Keyword == ETK_None)
2769      CanonKeyword = ETK_Typename;
2770
2771    if (CanonNNS != NNS || CanonKeyword != Keyword)
2772      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2773  }
2774
2775  llvm::FoldingSetNodeID ID;
2776  DependentNameType::Profile(ID, Keyword, NNS, Name);
2777
2778  void *InsertPos = 0;
2779  DependentNameType *T
2780    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2781  if (T)
2782    return QualType(T, 0);
2783
2784  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2785  Types.push_back(T);
2786  DependentNameTypes.InsertNode(T, InsertPos);
2787  return QualType(T, 0);
2788}
2789
2790QualType
2791ASTContext::getDependentTemplateSpecializationType(
2792                                 ElaboratedTypeKeyword Keyword,
2793                                 NestedNameSpecifier *NNS,
2794                                 const IdentifierInfo *Name,
2795                                 const TemplateArgumentListInfo &Args) const {
2796  // TODO: avoid this copy
2797  SmallVector<TemplateArgument, 16> ArgCopy;
2798  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2799    ArgCopy.push_back(Args[I].getArgument());
2800  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2801                                                ArgCopy.size(),
2802                                                ArgCopy.data());
2803}
2804
2805QualType
2806ASTContext::getDependentTemplateSpecializationType(
2807                                 ElaboratedTypeKeyword Keyword,
2808                                 NestedNameSpecifier *NNS,
2809                                 const IdentifierInfo *Name,
2810                                 unsigned NumArgs,
2811                                 const TemplateArgument *Args) const {
2812  assert((!NNS || NNS->isDependent()) &&
2813         "nested-name-specifier must be dependent");
2814
2815  llvm::FoldingSetNodeID ID;
2816  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2817                                               Name, NumArgs, Args);
2818
2819  void *InsertPos = 0;
2820  DependentTemplateSpecializationType *T
2821    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2822  if (T)
2823    return QualType(T, 0);
2824
2825  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2826
2827  ElaboratedTypeKeyword CanonKeyword = Keyword;
2828  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2829
2830  bool AnyNonCanonArgs = false;
2831  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2832  for (unsigned I = 0; I != NumArgs; ++I) {
2833    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2834    if (!CanonArgs[I].structurallyEquals(Args[I]))
2835      AnyNonCanonArgs = true;
2836  }
2837
2838  QualType Canon;
2839  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2840    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2841                                                   Name, NumArgs,
2842                                                   CanonArgs.data());
2843
2844    // Find the insert position again.
2845    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2846  }
2847
2848  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2849                        sizeof(TemplateArgument) * NumArgs),
2850                       TypeAlignment);
2851  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2852                                                    Name, NumArgs, Args, Canon);
2853  Types.push_back(T);
2854  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2855  return QualType(T, 0);
2856}
2857
2858QualType ASTContext::getPackExpansionType(QualType Pattern,
2859                                      llvm::Optional<unsigned> NumExpansions) {
2860  llvm::FoldingSetNodeID ID;
2861  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2862
2863  assert(Pattern->containsUnexpandedParameterPack() &&
2864         "Pack expansions must expand one or more parameter packs");
2865  void *InsertPos = 0;
2866  PackExpansionType *T
2867    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2868  if (T)
2869    return QualType(T, 0);
2870
2871  QualType Canon;
2872  if (!Pattern.isCanonical()) {
2873    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2874
2875    // Find the insert position again.
2876    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2877  }
2878
2879  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2880  Types.push_back(T);
2881  PackExpansionTypes.InsertNode(T, InsertPos);
2882  return QualType(T, 0);
2883}
2884
2885/// CmpProtocolNames - Comparison predicate for sorting protocols
2886/// alphabetically.
2887static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2888                            const ObjCProtocolDecl *RHS) {
2889  return LHS->getDeclName() < RHS->getDeclName();
2890}
2891
2892static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2893                                unsigned NumProtocols) {
2894  if (NumProtocols == 0) return true;
2895
2896  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
2897    return false;
2898
2899  for (unsigned i = 1; i != NumProtocols; ++i)
2900    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
2901        Protocols[i]->getCanonicalDecl() != Protocols[i])
2902      return false;
2903  return true;
2904}
2905
2906static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2907                                   unsigned &NumProtocols) {
2908  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2909
2910  // Sort protocols, keyed by name.
2911  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2912
2913  // Canonicalize.
2914  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
2915    Protocols[I] = Protocols[I]->getCanonicalDecl();
2916
2917  // Remove duplicates.
2918  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2919  NumProtocols = ProtocolsEnd-Protocols;
2920}
2921
2922QualType ASTContext::getObjCObjectType(QualType BaseType,
2923                                       ObjCProtocolDecl * const *Protocols,
2924                                       unsigned NumProtocols) const {
2925  // If the base type is an interface and there aren't any protocols
2926  // to add, then the interface type will do just fine.
2927  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2928    return BaseType;
2929
2930  // Look in the folding set for an existing type.
2931  llvm::FoldingSetNodeID ID;
2932  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2933  void *InsertPos = 0;
2934  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2935    return QualType(QT, 0);
2936
2937  // Build the canonical type, which has the canonical base type and
2938  // a sorted-and-uniqued list of protocols.
2939  QualType Canonical;
2940  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2941  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2942    if (!ProtocolsSorted) {
2943      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2944                                                     Protocols + NumProtocols);
2945      unsigned UniqueCount = NumProtocols;
2946
2947      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2948      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2949                                    &Sorted[0], UniqueCount);
2950    } else {
2951      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2952                                    Protocols, NumProtocols);
2953    }
2954
2955    // Regenerate InsertPos.
2956    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2957  }
2958
2959  unsigned Size = sizeof(ObjCObjectTypeImpl);
2960  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2961  void *Mem = Allocate(Size, TypeAlignment);
2962  ObjCObjectTypeImpl *T =
2963    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2964
2965  Types.push_back(T);
2966  ObjCObjectTypes.InsertNode(T, InsertPos);
2967  return QualType(T, 0);
2968}
2969
2970/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2971/// the given object type.
2972QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2973  llvm::FoldingSetNodeID ID;
2974  ObjCObjectPointerType::Profile(ID, ObjectT);
2975
2976  void *InsertPos = 0;
2977  if (ObjCObjectPointerType *QT =
2978              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2979    return QualType(QT, 0);
2980
2981  // Find the canonical object type.
2982  QualType Canonical;
2983  if (!ObjectT.isCanonical()) {
2984    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2985
2986    // Regenerate InsertPos.
2987    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2988  }
2989
2990  // No match.
2991  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2992  ObjCObjectPointerType *QType =
2993    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2994
2995  Types.push_back(QType);
2996  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2997  return QualType(QType, 0);
2998}
2999
3000/// getObjCInterfaceType - Return the unique reference to the type for the
3001/// specified ObjC interface decl. The list of protocols is optional.
3002QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3003                                          ObjCInterfaceDecl *PrevDecl) const {
3004  if (Decl->TypeForDecl)
3005    return QualType(Decl->TypeForDecl, 0);
3006
3007  if (PrevDecl) {
3008    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3009    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3010    return QualType(PrevDecl->TypeForDecl, 0);
3011  }
3012
3013  // Prefer the definition, if there is one.
3014  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3015    Decl = Def;
3016
3017  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3018  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3019  Decl->TypeForDecl = T;
3020  Types.push_back(T);
3021  return QualType(T, 0);
3022}
3023
3024/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3025/// TypeOfExprType AST's (since expression's are never shared). For example,
3026/// multiple declarations that refer to "typeof(x)" all contain different
3027/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3028/// on canonical type's (which are always unique).
3029QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3030  TypeOfExprType *toe;
3031  if (tofExpr->isTypeDependent()) {
3032    llvm::FoldingSetNodeID ID;
3033    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3034
3035    void *InsertPos = 0;
3036    DependentTypeOfExprType *Canon
3037      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3038    if (Canon) {
3039      // We already have a "canonical" version of an identical, dependent
3040      // typeof(expr) type. Use that as our canonical type.
3041      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3042                                          QualType((TypeOfExprType*)Canon, 0));
3043    } else {
3044      // Build a new, canonical typeof(expr) type.
3045      Canon
3046        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3047      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3048      toe = Canon;
3049    }
3050  } else {
3051    QualType Canonical = getCanonicalType(tofExpr->getType());
3052    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3053  }
3054  Types.push_back(toe);
3055  return QualType(toe, 0);
3056}
3057
3058/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3059/// TypeOfType AST's. The only motivation to unique these nodes would be
3060/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3061/// an issue. This doesn't effect the type checker, since it operates
3062/// on canonical type's (which are always unique).
3063QualType ASTContext::getTypeOfType(QualType tofType) const {
3064  QualType Canonical = getCanonicalType(tofType);
3065  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3066  Types.push_back(tot);
3067  return QualType(tot, 0);
3068}
3069
3070
3071/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3072/// DecltypeType AST's. The only motivation to unique these nodes would be
3073/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3074/// an issue. This doesn't effect the type checker, since it operates
3075/// on canonical types (which are always unique).
3076QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3077  DecltypeType *dt;
3078
3079  // C++0x [temp.type]p2:
3080  //   If an expression e involves a template parameter, decltype(e) denotes a
3081  //   unique dependent type. Two such decltype-specifiers refer to the same
3082  //   type only if their expressions are equivalent (14.5.6.1).
3083  if (e->isInstantiationDependent()) {
3084    llvm::FoldingSetNodeID ID;
3085    DependentDecltypeType::Profile(ID, *this, e);
3086
3087    void *InsertPos = 0;
3088    DependentDecltypeType *Canon
3089      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3090    if (Canon) {
3091      // We already have a "canonical" version of an equivalent, dependent
3092      // decltype type. Use that as our canonical type.
3093      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
3094                                       QualType((DecltypeType*)Canon, 0));
3095    } else {
3096      // Build a new, canonical typeof(expr) type.
3097      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3098      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3099      dt = Canon;
3100    }
3101  } else {
3102    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3103                                      getCanonicalType(UnderlyingType));
3104  }
3105  Types.push_back(dt);
3106  return QualType(dt, 0);
3107}
3108
3109/// getUnaryTransformationType - We don't unique these, since the memory
3110/// savings are minimal and these are rare.
3111QualType ASTContext::getUnaryTransformType(QualType BaseType,
3112                                           QualType UnderlyingType,
3113                                           UnaryTransformType::UTTKind Kind)
3114    const {
3115  UnaryTransformType *Ty =
3116    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3117                                                   Kind,
3118                                 UnderlyingType->isDependentType() ?
3119                                 QualType() : getCanonicalType(UnderlyingType));
3120  Types.push_back(Ty);
3121  return QualType(Ty, 0);
3122}
3123
3124/// getAutoType - We only unique auto types after they've been deduced.
3125QualType ASTContext::getAutoType(QualType DeducedType) const {
3126  void *InsertPos = 0;
3127  if (!DeducedType.isNull()) {
3128    // Look in the folding set for an existing type.
3129    llvm::FoldingSetNodeID ID;
3130    AutoType::Profile(ID, DeducedType);
3131    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3132      return QualType(AT, 0);
3133  }
3134
3135  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3136  Types.push_back(AT);
3137  if (InsertPos)
3138    AutoTypes.InsertNode(AT, InsertPos);
3139  return QualType(AT, 0);
3140}
3141
3142/// getAtomicType - Return the uniqued reference to the atomic type for
3143/// the given value type.
3144QualType ASTContext::getAtomicType(QualType T) const {
3145  // Unique pointers, to guarantee there is only one pointer of a particular
3146  // structure.
3147  llvm::FoldingSetNodeID ID;
3148  AtomicType::Profile(ID, T);
3149
3150  void *InsertPos = 0;
3151  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3152    return QualType(AT, 0);
3153
3154  // If the atomic value type isn't canonical, this won't be a canonical type
3155  // either, so fill in the canonical type field.
3156  QualType Canonical;
3157  if (!T.isCanonical()) {
3158    Canonical = getAtomicType(getCanonicalType(T));
3159
3160    // Get the new insert position for the node we care about.
3161    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3162    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3163  }
3164  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3165  Types.push_back(New);
3166  AtomicTypes.InsertNode(New, InsertPos);
3167  return QualType(New, 0);
3168}
3169
3170/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3171QualType ASTContext::getAutoDeductType() const {
3172  if (AutoDeductTy.isNull())
3173    AutoDeductTy = getAutoType(QualType());
3174  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3175  return AutoDeductTy;
3176}
3177
3178/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3179QualType ASTContext::getAutoRRefDeductType() const {
3180  if (AutoRRefDeductTy.isNull())
3181    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3182  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3183  return AutoRRefDeductTy;
3184}
3185
3186/// getTagDeclType - Return the unique reference to the type for the
3187/// specified TagDecl (struct/union/class/enum) decl.
3188QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3189  assert (Decl);
3190  // FIXME: What is the design on getTagDeclType when it requires casting
3191  // away const?  mutable?
3192  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3193}
3194
3195/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3196/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3197/// needs to agree with the definition in <stddef.h>.
3198CanQualType ASTContext::getSizeType() const {
3199  return getFromTargetType(Target->getSizeType());
3200}
3201
3202/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3203CanQualType ASTContext::getIntMaxType() const {
3204  return getFromTargetType(Target->getIntMaxType());
3205}
3206
3207/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3208CanQualType ASTContext::getUIntMaxType() const {
3209  return getFromTargetType(Target->getUIntMaxType());
3210}
3211
3212/// getSignedWCharType - Return the type of "signed wchar_t".
3213/// Used when in C++, as a GCC extension.
3214QualType ASTContext::getSignedWCharType() const {
3215  // FIXME: derive from "Target" ?
3216  return WCharTy;
3217}
3218
3219/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3220/// Used when in C++, as a GCC extension.
3221QualType ASTContext::getUnsignedWCharType() const {
3222  // FIXME: derive from "Target" ?
3223  return UnsignedIntTy;
3224}
3225
3226/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3227/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3228QualType ASTContext::getPointerDiffType() const {
3229  return getFromTargetType(Target->getPtrDiffType(0));
3230}
3231
3232//===----------------------------------------------------------------------===//
3233//                              Type Operators
3234//===----------------------------------------------------------------------===//
3235
3236CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3237  // Push qualifiers into arrays, and then discard any remaining
3238  // qualifiers.
3239  T = getCanonicalType(T);
3240  T = getVariableArrayDecayedType(T);
3241  const Type *Ty = T.getTypePtr();
3242  QualType Result;
3243  if (isa<ArrayType>(Ty)) {
3244    Result = getArrayDecayedType(QualType(Ty,0));
3245  } else if (isa<FunctionType>(Ty)) {
3246    Result = getPointerType(QualType(Ty, 0));
3247  } else {
3248    Result = QualType(Ty, 0);
3249  }
3250
3251  return CanQualType::CreateUnsafe(Result);
3252}
3253
3254QualType ASTContext::getUnqualifiedArrayType(QualType type,
3255                                             Qualifiers &quals) {
3256  SplitQualType splitType = type.getSplitUnqualifiedType();
3257
3258  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3259  // the unqualified desugared type and then drops it on the floor.
3260  // We then have to strip that sugar back off with
3261  // getUnqualifiedDesugaredType(), which is silly.
3262  const ArrayType *AT =
3263    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3264
3265  // If we don't have an array, just use the results in splitType.
3266  if (!AT) {
3267    quals = splitType.Quals;
3268    return QualType(splitType.Ty, 0);
3269  }
3270
3271  // Otherwise, recurse on the array's element type.
3272  QualType elementType = AT->getElementType();
3273  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3274
3275  // If that didn't change the element type, AT has no qualifiers, so we
3276  // can just use the results in splitType.
3277  if (elementType == unqualElementType) {
3278    assert(quals.empty()); // from the recursive call
3279    quals = splitType.Quals;
3280    return QualType(splitType.Ty, 0);
3281  }
3282
3283  // Otherwise, add in the qualifiers from the outermost type, then
3284  // build the type back up.
3285  quals.addConsistentQualifiers(splitType.Quals);
3286
3287  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3288    return getConstantArrayType(unqualElementType, CAT->getSize(),
3289                                CAT->getSizeModifier(), 0);
3290  }
3291
3292  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3293    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3294  }
3295
3296  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3297    return getVariableArrayType(unqualElementType,
3298                                VAT->getSizeExpr(),
3299                                VAT->getSizeModifier(),
3300                                VAT->getIndexTypeCVRQualifiers(),
3301                                VAT->getBracketsRange());
3302  }
3303
3304  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3305  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3306                                    DSAT->getSizeModifier(), 0,
3307                                    SourceRange());
3308}
3309
3310/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3311/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3312/// they point to and return true. If T1 and T2 aren't pointer types
3313/// or pointer-to-member types, or if they are not similar at this
3314/// level, returns false and leaves T1 and T2 unchanged. Top-level
3315/// qualifiers on T1 and T2 are ignored. This function will typically
3316/// be called in a loop that successively "unwraps" pointer and
3317/// pointer-to-member types to compare them at each level.
3318bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3319  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3320                    *T2PtrType = T2->getAs<PointerType>();
3321  if (T1PtrType && T2PtrType) {
3322    T1 = T1PtrType->getPointeeType();
3323    T2 = T2PtrType->getPointeeType();
3324    return true;
3325  }
3326
3327  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3328                          *T2MPType = T2->getAs<MemberPointerType>();
3329  if (T1MPType && T2MPType &&
3330      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3331                             QualType(T2MPType->getClass(), 0))) {
3332    T1 = T1MPType->getPointeeType();
3333    T2 = T2MPType->getPointeeType();
3334    return true;
3335  }
3336
3337  if (getLangOpts().ObjC1) {
3338    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3339                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3340    if (T1OPType && T2OPType) {
3341      T1 = T1OPType->getPointeeType();
3342      T2 = T2OPType->getPointeeType();
3343      return true;
3344    }
3345  }
3346
3347  // FIXME: Block pointers, too?
3348
3349  return false;
3350}
3351
3352DeclarationNameInfo
3353ASTContext::getNameForTemplate(TemplateName Name,
3354                               SourceLocation NameLoc) const {
3355  switch (Name.getKind()) {
3356  case TemplateName::QualifiedTemplate:
3357  case TemplateName::Template:
3358    // DNInfo work in progress: CHECKME: what about DNLoc?
3359    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3360                               NameLoc);
3361
3362  case TemplateName::OverloadedTemplate: {
3363    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3364    // DNInfo work in progress: CHECKME: what about DNLoc?
3365    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3366  }
3367
3368  case TemplateName::DependentTemplate: {
3369    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3370    DeclarationName DName;
3371    if (DTN->isIdentifier()) {
3372      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3373      return DeclarationNameInfo(DName, NameLoc);
3374    } else {
3375      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3376      // DNInfo work in progress: FIXME: source locations?
3377      DeclarationNameLoc DNLoc;
3378      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3379      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3380      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3381    }
3382  }
3383
3384  case TemplateName::SubstTemplateTemplateParm: {
3385    SubstTemplateTemplateParmStorage *subst
3386      = Name.getAsSubstTemplateTemplateParm();
3387    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3388                               NameLoc);
3389  }
3390
3391  case TemplateName::SubstTemplateTemplateParmPack: {
3392    SubstTemplateTemplateParmPackStorage *subst
3393      = Name.getAsSubstTemplateTemplateParmPack();
3394    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3395                               NameLoc);
3396  }
3397  }
3398
3399  llvm_unreachable("bad template name kind!");
3400}
3401
3402TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3403  switch (Name.getKind()) {
3404  case TemplateName::QualifiedTemplate:
3405  case TemplateName::Template: {
3406    TemplateDecl *Template = Name.getAsTemplateDecl();
3407    if (TemplateTemplateParmDecl *TTP
3408          = dyn_cast<TemplateTemplateParmDecl>(Template))
3409      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3410
3411    // The canonical template name is the canonical template declaration.
3412    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3413  }
3414
3415  case TemplateName::OverloadedTemplate:
3416    llvm_unreachable("cannot canonicalize overloaded template");
3417
3418  case TemplateName::DependentTemplate: {
3419    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3420    assert(DTN && "Non-dependent template names must refer to template decls.");
3421    return DTN->CanonicalTemplateName;
3422  }
3423
3424  case TemplateName::SubstTemplateTemplateParm: {
3425    SubstTemplateTemplateParmStorage *subst
3426      = Name.getAsSubstTemplateTemplateParm();
3427    return getCanonicalTemplateName(subst->getReplacement());
3428  }
3429
3430  case TemplateName::SubstTemplateTemplateParmPack: {
3431    SubstTemplateTemplateParmPackStorage *subst
3432                                  = Name.getAsSubstTemplateTemplateParmPack();
3433    TemplateTemplateParmDecl *canonParameter
3434      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3435    TemplateArgument canonArgPack
3436      = getCanonicalTemplateArgument(subst->getArgumentPack());
3437    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3438  }
3439  }
3440
3441  llvm_unreachable("bad template name!");
3442}
3443
3444bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3445  X = getCanonicalTemplateName(X);
3446  Y = getCanonicalTemplateName(Y);
3447  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3448}
3449
3450TemplateArgument
3451ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3452  switch (Arg.getKind()) {
3453    case TemplateArgument::Null:
3454      return Arg;
3455
3456    case TemplateArgument::Expression:
3457      return Arg;
3458
3459    case TemplateArgument::Declaration: {
3460      if (Decl *D = Arg.getAsDecl())
3461          return TemplateArgument(D->getCanonicalDecl());
3462      return TemplateArgument((Decl*)0);
3463    }
3464
3465    case TemplateArgument::Template:
3466      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3467
3468    case TemplateArgument::TemplateExpansion:
3469      return TemplateArgument(getCanonicalTemplateName(
3470                                         Arg.getAsTemplateOrTemplatePattern()),
3471                              Arg.getNumTemplateExpansions());
3472
3473    case TemplateArgument::Integral:
3474      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3475
3476    case TemplateArgument::Type:
3477      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3478
3479    case TemplateArgument::Pack: {
3480      if (Arg.pack_size() == 0)
3481        return Arg;
3482
3483      TemplateArgument *CanonArgs
3484        = new (*this) TemplateArgument[Arg.pack_size()];
3485      unsigned Idx = 0;
3486      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3487                                        AEnd = Arg.pack_end();
3488           A != AEnd; (void)++A, ++Idx)
3489        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3490
3491      return TemplateArgument(CanonArgs, Arg.pack_size());
3492    }
3493  }
3494
3495  // Silence GCC warning
3496  llvm_unreachable("Unhandled template argument kind");
3497}
3498
3499NestedNameSpecifier *
3500ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3501  if (!NNS)
3502    return 0;
3503
3504  switch (NNS->getKind()) {
3505  case NestedNameSpecifier::Identifier:
3506    // Canonicalize the prefix but keep the identifier the same.
3507    return NestedNameSpecifier::Create(*this,
3508                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3509                                       NNS->getAsIdentifier());
3510
3511  case NestedNameSpecifier::Namespace:
3512    // A namespace is canonical; build a nested-name-specifier with
3513    // this namespace and no prefix.
3514    return NestedNameSpecifier::Create(*this, 0,
3515                                 NNS->getAsNamespace()->getOriginalNamespace());
3516
3517  case NestedNameSpecifier::NamespaceAlias:
3518    // A namespace is canonical; build a nested-name-specifier with
3519    // this namespace and no prefix.
3520    return NestedNameSpecifier::Create(*this, 0,
3521                                    NNS->getAsNamespaceAlias()->getNamespace()
3522                                                      ->getOriginalNamespace());
3523
3524  case NestedNameSpecifier::TypeSpec:
3525  case NestedNameSpecifier::TypeSpecWithTemplate: {
3526    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3527
3528    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3529    // break it apart into its prefix and identifier, then reconsititute those
3530    // as the canonical nested-name-specifier. This is required to canonicalize
3531    // a dependent nested-name-specifier involving typedefs of dependent-name
3532    // types, e.g.,
3533    //   typedef typename T::type T1;
3534    //   typedef typename T1::type T2;
3535    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3536      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3537                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3538
3539    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3540    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3541    // first place?
3542    return NestedNameSpecifier::Create(*this, 0, false,
3543                                       const_cast<Type*>(T.getTypePtr()));
3544  }
3545
3546  case NestedNameSpecifier::Global:
3547    // The global specifier is canonical and unique.
3548    return NNS;
3549  }
3550
3551  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3552}
3553
3554
3555const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3556  // Handle the non-qualified case efficiently.
3557  if (!T.hasLocalQualifiers()) {
3558    // Handle the common positive case fast.
3559    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3560      return AT;
3561  }
3562
3563  // Handle the common negative case fast.
3564  if (!isa<ArrayType>(T.getCanonicalType()))
3565    return 0;
3566
3567  // Apply any qualifiers from the array type to the element type.  This
3568  // implements C99 6.7.3p8: "If the specification of an array type includes
3569  // any type qualifiers, the element type is so qualified, not the array type."
3570
3571  // If we get here, we either have type qualifiers on the type, or we have
3572  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3573  // we must propagate them down into the element type.
3574
3575  SplitQualType split = T.getSplitDesugaredType();
3576  Qualifiers qs = split.Quals;
3577
3578  // If we have a simple case, just return now.
3579  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3580  if (ATy == 0 || qs.empty())
3581    return ATy;
3582
3583  // Otherwise, we have an array and we have qualifiers on it.  Push the
3584  // qualifiers into the array element type and return a new array type.
3585  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3586
3587  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3588    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3589                                                CAT->getSizeModifier(),
3590                                           CAT->getIndexTypeCVRQualifiers()));
3591  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3592    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3593                                                  IAT->getSizeModifier(),
3594                                           IAT->getIndexTypeCVRQualifiers()));
3595
3596  if (const DependentSizedArrayType *DSAT
3597        = dyn_cast<DependentSizedArrayType>(ATy))
3598    return cast<ArrayType>(
3599                     getDependentSizedArrayType(NewEltTy,
3600                                                DSAT->getSizeExpr(),
3601                                                DSAT->getSizeModifier(),
3602                                              DSAT->getIndexTypeCVRQualifiers(),
3603                                                DSAT->getBracketsRange()));
3604
3605  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3606  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3607                                              VAT->getSizeExpr(),
3608                                              VAT->getSizeModifier(),
3609                                              VAT->getIndexTypeCVRQualifiers(),
3610                                              VAT->getBracketsRange()));
3611}
3612
3613QualType ASTContext::getAdjustedParameterType(QualType T) const {
3614  // C99 6.7.5.3p7:
3615  //   A declaration of a parameter as "array of type" shall be
3616  //   adjusted to "qualified pointer to type", where the type
3617  //   qualifiers (if any) are those specified within the [ and ] of
3618  //   the array type derivation.
3619  if (T->isArrayType())
3620    return getArrayDecayedType(T);
3621
3622  // C99 6.7.5.3p8:
3623  //   A declaration of a parameter as "function returning type"
3624  //   shall be adjusted to "pointer to function returning type", as
3625  //   in 6.3.2.1.
3626  if (T->isFunctionType())
3627    return getPointerType(T);
3628
3629  return T;
3630}
3631
3632QualType ASTContext::getSignatureParameterType(QualType T) const {
3633  T = getVariableArrayDecayedType(T);
3634  T = getAdjustedParameterType(T);
3635  return T.getUnqualifiedType();
3636}
3637
3638/// getArrayDecayedType - Return the properly qualified result of decaying the
3639/// specified array type to a pointer.  This operation is non-trivial when
3640/// handling typedefs etc.  The canonical type of "T" must be an array type,
3641/// this returns a pointer to a properly qualified element of the array.
3642///
3643/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3644QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3645  // Get the element type with 'getAsArrayType' so that we don't lose any
3646  // typedefs in the element type of the array.  This also handles propagation
3647  // of type qualifiers from the array type into the element type if present
3648  // (C99 6.7.3p8).
3649  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3650  assert(PrettyArrayType && "Not an array type!");
3651
3652  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3653
3654  // int x[restrict 4] ->  int *restrict
3655  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3656}
3657
3658QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3659  return getBaseElementType(array->getElementType());
3660}
3661
3662QualType ASTContext::getBaseElementType(QualType type) const {
3663  Qualifiers qs;
3664  while (true) {
3665    SplitQualType split = type.getSplitDesugaredType();
3666    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3667    if (!array) break;
3668
3669    type = array->getElementType();
3670    qs.addConsistentQualifiers(split.Quals);
3671  }
3672
3673  return getQualifiedType(type, qs);
3674}
3675
3676/// getConstantArrayElementCount - Returns number of constant array elements.
3677uint64_t
3678ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3679  uint64_t ElementCount = 1;
3680  do {
3681    ElementCount *= CA->getSize().getZExtValue();
3682    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3683  } while (CA);
3684  return ElementCount;
3685}
3686
3687/// getFloatingRank - Return a relative rank for floating point types.
3688/// This routine will assert if passed a built-in type that isn't a float.
3689static FloatingRank getFloatingRank(QualType T) {
3690  if (const ComplexType *CT = T->getAs<ComplexType>())
3691    return getFloatingRank(CT->getElementType());
3692
3693  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3694  switch (T->getAs<BuiltinType>()->getKind()) {
3695  default: llvm_unreachable("getFloatingRank(): not a floating type");
3696  case BuiltinType::Half:       return HalfRank;
3697  case BuiltinType::Float:      return FloatRank;
3698  case BuiltinType::Double:     return DoubleRank;
3699  case BuiltinType::LongDouble: return LongDoubleRank;
3700  }
3701}
3702
3703/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3704/// point or a complex type (based on typeDomain/typeSize).
3705/// 'typeDomain' is a real floating point or complex type.
3706/// 'typeSize' is a real floating point or complex type.
3707QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3708                                                       QualType Domain) const {
3709  FloatingRank EltRank = getFloatingRank(Size);
3710  if (Domain->isComplexType()) {
3711    switch (EltRank) {
3712    case HalfRank: llvm_unreachable("Complex half is not supported");
3713    case FloatRank:      return FloatComplexTy;
3714    case DoubleRank:     return DoubleComplexTy;
3715    case LongDoubleRank: return LongDoubleComplexTy;
3716    }
3717  }
3718
3719  assert(Domain->isRealFloatingType() && "Unknown domain!");
3720  switch (EltRank) {
3721  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3722  case FloatRank:      return FloatTy;
3723  case DoubleRank:     return DoubleTy;
3724  case LongDoubleRank: return LongDoubleTy;
3725  }
3726  llvm_unreachable("getFloatingRank(): illegal value for rank");
3727}
3728
3729/// getFloatingTypeOrder - Compare the rank of the two specified floating
3730/// point types, ignoring the domain of the type (i.e. 'double' ==
3731/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3732/// LHS < RHS, return -1.
3733int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3734  FloatingRank LHSR = getFloatingRank(LHS);
3735  FloatingRank RHSR = getFloatingRank(RHS);
3736
3737  if (LHSR == RHSR)
3738    return 0;
3739  if (LHSR > RHSR)
3740    return 1;
3741  return -1;
3742}
3743
3744/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3745/// routine will assert if passed a built-in type that isn't an integer or enum,
3746/// or if it is not canonicalized.
3747unsigned ASTContext::getIntegerRank(const Type *T) const {
3748  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3749
3750  switch (cast<BuiltinType>(T)->getKind()) {
3751  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3752  case BuiltinType::Bool:
3753    return 1 + (getIntWidth(BoolTy) << 3);
3754  case BuiltinType::Char_S:
3755  case BuiltinType::Char_U:
3756  case BuiltinType::SChar:
3757  case BuiltinType::UChar:
3758    return 2 + (getIntWidth(CharTy) << 3);
3759  case BuiltinType::Short:
3760  case BuiltinType::UShort:
3761    return 3 + (getIntWidth(ShortTy) << 3);
3762  case BuiltinType::Int:
3763  case BuiltinType::UInt:
3764    return 4 + (getIntWidth(IntTy) << 3);
3765  case BuiltinType::Long:
3766  case BuiltinType::ULong:
3767    return 5 + (getIntWidth(LongTy) << 3);
3768  case BuiltinType::LongLong:
3769  case BuiltinType::ULongLong:
3770    return 6 + (getIntWidth(LongLongTy) << 3);
3771  case BuiltinType::Int128:
3772  case BuiltinType::UInt128:
3773    return 7 + (getIntWidth(Int128Ty) << 3);
3774  }
3775}
3776
3777/// \brief Whether this is a promotable bitfield reference according
3778/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3779///
3780/// \returns the type this bit-field will promote to, or NULL if no
3781/// promotion occurs.
3782QualType ASTContext::isPromotableBitField(Expr *E) const {
3783  if (E->isTypeDependent() || E->isValueDependent())
3784    return QualType();
3785
3786  FieldDecl *Field = E->getBitField();
3787  if (!Field)
3788    return QualType();
3789
3790  QualType FT = Field->getType();
3791
3792  uint64_t BitWidth = Field->getBitWidthValue(*this);
3793  uint64_t IntSize = getTypeSize(IntTy);
3794  // GCC extension compatibility: if the bit-field size is less than or equal
3795  // to the size of int, it gets promoted no matter what its type is.
3796  // For instance, unsigned long bf : 4 gets promoted to signed int.
3797  if (BitWidth < IntSize)
3798    return IntTy;
3799
3800  if (BitWidth == IntSize)
3801    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3802
3803  // Types bigger than int are not subject to promotions, and therefore act
3804  // like the base type.
3805  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3806  // is ridiculous.
3807  return QualType();
3808}
3809
3810/// getPromotedIntegerType - Returns the type that Promotable will
3811/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3812/// integer type.
3813QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3814  assert(!Promotable.isNull());
3815  assert(Promotable->isPromotableIntegerType());
3816  if (const EnumType *ET = Promotable->getAs<EnumType>())
3817    return ET->getDecl()->getPromotionType();
3818
3819  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3820    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3821    // (3.9.1) can be converted to a prvalue of the first of the following
3822    // types that can represent all the values of its underlying type:
3823    // int, unsigned int, long int, unsigned long int, long long int, or
3824    // unsigned long long int [...]
3825    // FIXME: Is there some better way to compute this?
3826    if (BT->getKind() == BuiltinType::WChar_S ||
3827        BT->getKind() == BuiltinType::WChar_U ||
3828        BT->getKind() == BuiltinType::Char16 ||
3829        BT->getKind() == BuiltinType::Char32) {
3830      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3831      uint64_t FromSize = getTypeSize(BT);
3832      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3833                                  LongLongTy, UnsignedLongLongTy };
3834      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3835        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3836        if (FromSize < ToSize ||
3837            (FromSize == ToSize &&
3838             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3839          return PromoteTypes[Idx];
3840      }
3841      llvm_unreachable("char type should fit into long long");
3842    }
3843  }
3844
3845  // At this point, we should have a signed or unsigned integer type.
3846  if (Promotable->isSignedIntegerType())
3847    return IntTy;
3848  uint64_t PromotableSize = getTypeSize(Promotable);
3849  uint64_t IntSize = getTypeSize(IntTy);
3850  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3851  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3852}
3853
3854/// \brief Recurses in pointer/array types until it finds an objc retainable
3855/// type and returns its ownership.
3856Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3857  while (!T.isNull()) {
3858    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3859      return T.getObjCLifetime();
3860    if (T->isArrayType())
3861      T = getBaseElementType(T);
3862    else if (const PointerType *PT = T->getAs<PointerType>())
3863      T = PT->getPointeeType();
3864    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3865      T = RT->getPointeeType();
3866    else
3867      break;
3868  }
3869
3870  return Qualifiers::OCL_None;
3871}
3872
3873/// getIntegerTypeOrder - Returns the highest ranked integer type:
3874/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3875/// LHS < RHS, return -1.
3876int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3877  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3878  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3879  if (LHSC == RHSC) return 0;
3880
3881  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3882  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3883
3884  unsigned LHSRank = getIntegerRank(LHSC);
3885  unsigned RHSRank = getIntegerRank(RHSC);
3886
3887  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3888    if (LHSRank == RHSRank) return 0;
3889    return LHSRank > RHSRank ? 1 : -1;
3890  }
3891
3892  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3893  if (LHSUnsigned) {
3894    // If the unsigned [LHS] type is larger, return it.
3895    if (LHSRank >= RHSRank)
3896      return 1;
3897
3898    // If the signed type can represent all values of the unsigned type, it
3899    // wins.  Because we are dealing with 2's complement and types that are
3900    // powers of two larger than each other, this is always safe.
3901    return -1;
3902  }
3903
3904  // If the unsigned [RHS] type is larger, return it.
3905  if (RHSRank >= LHSRank)
3906    return -1;
3907
3908  // If the signed type can represent all values of the unsigned type, it
3909  // wins.  Because we are dealing with 2's complement and types that are
3910  // powers of two larger than each other, this is always safe.
3911  return 1;
3912}
3913
3914static RecordDecl *
3915CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3916                 DeclContext *DC, IdentifierInfo *Id) {
3917  SourceLocation Loc;
3918  if (Ctx.getLangOpts().CPlusPlus)
3919    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3920  else
3921    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3922}
3923
3924// getCFConstantStringType - Return the type used for constant CFStrings.
3925QualType ASTContext::getCFConstantStringType() const {
3926  if (!CFConstantStringTypeDecl) {
3927    CFConstantStringTypeDecl =
3928      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3929                       &Idents.get("NSConstantString"));
3930    CFConstantStringTypeDecl->startDefinition();
3931
3932    QualType FieldTypes[4];
3933
3934    // const int *isa;
3935    FieldTypes[0] = getPointerType(IntTy.withConst());
3936    // int flags;
3937    FieldTypes[1] = IntTy;
3938    // const char *str;
3939    FieldTypes[2] = getPointerType(CharTy.withConst());
3940    // long length;
3941    FieldTypes[3] = LongTy;
3942
3943    // Create fields
3944    for (unsigned i = 0; i < 4; ++i) {
3945      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3946                                           SourceLocation(),
3947                                           SourceLocation(), 0,
3948                                           FieldTypes[i], /*TInfo=*/0,
3949                                           /*BitWidth=*/0,
3950                                           /*Mutable=*/false,
3951                                           ICIS_NoInit);
3952      Field->setAccess(AS_public);
3953      CFConstantStringTypeDecl->addDecl(Field);
3954    }
3955
3956    CFConstantStringTypeDecl->completeDefinition();
3957  }
3958
3959  return getTagDeclType(CFConstantStringTypeDecl);
3960}
3961
3962void ASTContext::setCFConstantStringType(QualType T) {
3963  const RecordType *Rec = T->getAs<RecordType>();
3964  assert(Rec && "Invalid CFConstantStringType");
3965  CFConstantStringTypeDecl = Rec->getDecl();
3966}
3967
3968QualType ASTContext::getBlockDescriptorType() const {
3969  if (BlockDescriptorType)
3970    return getTagDeclType(BlockDescriptorType);
3971
3972  RecordDecl *T;
3973  // FIXME: Needs the FlagAppleBlock bit.
3974  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3975                       &Idents.get("__block_descriptor"));
3976  T->startDefinition();
3977
3978  QualType FieldTypes[] = {
3979    UnsignedLongTy,
3980    UnsignedLongTy,
3981  };
3982
3983  const char *FieldNames[] = {
3984    "reserved",
3985    "Size"
3986  };
3987
3988  for (size_t i = 0; i < 2; ++i) {
3989    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3990                                         SourceLocation(),
3991                                         &Idents.get(FieldNames[i]),
3992                                         FieldTypes[i], /*TInfo=*/0,
3993                                         /*BitWidth=*/0,
3994                                         /*Mutable=*/false,
3995                                         ICIS_NoInit);
3996    Field->setAccess(AS_public);
3997    T->addDecl(Field);
3998  }
3999
4000  T->completeDefinition();
4001
4002  BlockDescriptorType = T;
4003
4004  return getTagDeclType(BlockDescriptorType);
4005}
4006
4007QualType ASTContext::getBlockDescriptorExtendedType() const {
4008  if (BlockDescriptorExtendedType)
4009    return getTagDeclType(BlockDescriptorExtendedType);
4010
4011  RecordDecl *T;
4012  // FIXME: Needs the FlagAppleBlock bit.
4013  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4014                       &Idents.get("__block_descriptor_withcopydispose"));
4015  T->startDefinition();
4016
4017  QualType FieldTypes[] = {
4018    UnsignedLongTy,
4019    UnsignedLongTy,
4020    getPointerType(VoidPtrTy),
4021    getPointerType(VoidPtrTy)
4022  };
4023
4024  const char *FieldNames[] = {
4025    "reserved",
4026    "Size",
4027    "CopyFuncPtr",
4028    "DestroyFuncPtr"
4029  };
4030
4031  for (size_t i = 0; i < 4; ++i) {
4032    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4033                                         SourceLocation(),
4034                                         &Idents.get(FieldNames[i]),
4035                                         FieldTypes[i], /*TInfo=*/0,
4036                                         /*BitWidth=*/0,
4037                                         /*Mutable=*/false,
4038                                         ICIS_NoInit);
4039    Field->setAccess(AS_public);
4040    T->addDecl(Field);
4041  }
4042
4043  T->completeDefinition();
4044
4045  BlockDescriptorExtendedType = T;
4046
4047  return getTagDeclType(BlockDescriptorExtendedType);
4048}
4049
4050bool ASTContext::BlockRequiresCopying(QualType Ty) const {
4051  if (Ty->isObjCRetainableType())
4052    return true;
4053  if (getLangOpts().CPlusPlus) {
4054    if (const RecordType *RT = Ty->getAs<RecordType>()) {
4055      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4056      return RD->hasConstCopyConstructor();
4057
4058    }
4059  }
4060  return false;
4061}
4062
4063QualType
4064ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
4065  //  type = struct __Block_byref_1_X {
4066  //    void *__isa;
4067  //    struct __Block_byref_1_X *__forwarding;
4068  //    unsigned int __flags;
4069  //    unsigned int __size;
4070  //    void *__copy_helper;            // as needed
4071  //    void *__destroy_help            // as needed
4072  //    int X;
4073  //  } *
4074
4075  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
4076
4077  // FIXME: Move up
4078  SmallString<36> Name;
4079  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
4080                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
4081  RecordDecl *T;
4082  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
4083  T->startDefinition();
4084  QualType Int32Ty = IntTy;
4085  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
4086  QualType FieldTypes[] = {
4087    getPointerType(VoidPtrTy),
4088    getPointerType(getTagDeclType(T)),
4089    Int32Ty,
4090    Int32Ty,
4091    getPointerType(VoidPtrTy),
4092    getPointerType(VoidPtrTy),
4093    Ty
4094  };
4095
4096  StringRef FieldNames[] = {
4097    "__isa",
4098    "__forwarding",
4099    "__flags",
4100    "__size",
4101    "__copy_helper",
4102    "__destroy_helper",
4103    DeclName,
4104  };
4105
4106  for (size_t i = 0; i < 7; ++i) {
4107    if (!HasCopyAndDispose && i >=4 && i <= 5)
4108      continue;
4109    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4110                                         SourceLocation(),
4111                                         &Idents.get(FieldNames[i]),
4112                                         FieldTypes[i], /*TInfo=*/0,
4113                                         /*BitWidth=*/0, /*Mutable=*/false,
4114                                         ICIS_NoInit);
4115    Field->setAccess(AS_public);
4116    T->addDecl(Field);
4117  }
4118
4119  T->completeDefinition();
4120
4121  return getPointerType(getTagDeclType(T));
4122}
4123
4124TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4125  if (!ObjCInstanceTypeDecl)
4126    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4127                                               getTranslationUnitDecl(),
4128                                               SourceLocation(),
4129                                               SourceLocation(),
4130                                               &Idents.get("instancetype"),
4131                                     getTrivialTypeSourceInfo(getObjCIdType()));
4132  return ObjCInstanceTypeDecl;
4133}
4134
4135// This returns true if a type has been typedefed to BOOL:
4136// typedef <type> BOOL;
4137static bool isTypeTypedefedAsBOOL(QualType T) {
4138  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4139    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4140      return II->isStr("BOOL");
4141
4142  return false;
4143}
4144
4145/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4146/// purpose.
4147CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4148  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4149    return CharUnits::Zero();
4150
4151  CharUnits sz = getTypeSizeInChars(type);
4152
4153  // Make all integer and enum types at least as large as an int
4154  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4155    sz = std::max(sz, getTypeSizeInChars(IntTy));
4156  // Treat arrays as pointers, since that's how they're passed in.
4157  else if (type->isArrayType())
4158    sz = getTypeSizeInChars(VoidPtrTy);
4159  return sz;
4160}
4161
4162static inline
4163std::string charUnitsToString(const CharUnits &CU) {
4164  return llvm::itostr(CU.getQuantity());
4165}
4166
4167/// getObjCEncodingForBlock - Return the encoded type for this block
4168/// declaration.
4169std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4170  std::string S;
4171
4172  const BlockDecl *Decl = Expr->getBlockDecl();
4173  QualType BlockTy =
4174      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4175  // Encode result type.
4176  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4177  // Compute size of all parameters.
4178  // Start with computing size of a pointer in number of bytes.
4179  // FIXME: There might(should) be a better way of doing this computation!
4180  SourceLocation Loc;
4181  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4182  CharUnits ParmOffset = PtrSize;
4183  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4184       E = Decl->param_end(); PI != E; ++PI) {
4185    QualType PType = (*PI)->getType();
4186    CharUnits sz = getObjCEncodingTypeSize(PType);
4187    if (sz.isZero())
4188      continue;
4189    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4190    ParmOffset += sz;
4191  }
4192  // Size of the argument frame
4193  S += charUnitsToString(ParmOffset);
4194  // Block pointer and offset.
4195  S += "@?0";
4196
4197  // Argument types.
4198  ParmOffset = PtrSize;
4199  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4200       Decl->param_end(); PI != E; ++PI) {
4201    ParmVarDecl *PVDecl = *PI;
4202    QualType PType = PVDecl->getOriginalType();
4203    if (const ArrayType *AT =
4204          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4205      // Use array's original type only if it has known number of
4206      // elements.
4207      if (!isa<ConstantArrayType>(AT))
4208        PType = PVDecl->getType();
4209    } else if (PType->isFunctionType())
4210      PType = PVDecl->getType();
4211    getObjCEncodingForType(PType, S);
4212    S += charUnitsToString(ParmOffset);
4213    ParmOffset += getObjCEncodingTypeSize(PType);
4214  }
4215
4216  return S;
4217}
4218
4219bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4220                                                std::string& S) {
4221  // Encode result type.
4222  getObjCEncodingForType(Decl->getResultType(), S);
4223  CharUnits ParmOffset;
4224  // Compute size of all parameters.
4225  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4226       E = Decl->param_end(); PI != E; ++PI) {
4227    QualType PType = (*PI)->getType();
4228    CharUnits sz = getObjCEncodingTypeSize(PType);
4229    if (sz.isZero())
4230      continue;
4231
4232    assert (sz.isPositive() &&
4233        "getObjCEncodingForFunctionDecl - Incomplete param type");
4234    ParmOffset += sz;
4235  }
4236  S += charUnitsToString(ParmOffset);
4237  ParmOffset = CharUnits::Zero();
4238
4239  // Argument types.
4240  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4241       E = Decl->param_end(); PI != E; ++PI) {
4242    ParmVarDecl *PVDecl = *PI;
4243    QualType PType = PVDecl->getOriginalType();
4244    if (const ArrayType *AT =
4245          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4246      // Use array's original type only if it has known number of
4247      // elements.
4248      if (!isa<ConstantArrayType>(AT))
4249        PType = PVDecl->getType();
4250    } else if (PType->isFunctionType())
4251      PType = PVDecl->getType();
4252    getObjCEncodingForType(PType, S);
4253    S += charUnitsToString(ParmOffset);
4254    ParmOffset += getObjCEncodingTypeSize(PType);
4255  }
4256
4257  return false;
4258}
4259
4260/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4261/// method parameter or return type. If Extended, include class names and
4262/// block object types.
4263void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4264                                                   QualType T, std::string& S,
4265                                                   bool Extended) const {
4266  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4267  getObjCEncodingForTypeQualifier(QT, S);
4268  // Encode parameter type.
4269  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4270                             true     /*OutermostType*/,
4271                             false    /*EncodingProperty*/,
4272                             false    /*StructField*/,
4273                             Extended /*EncodeBlockParameters*/,
4274                             Extended /*EncodeClassNames*/);
4275}
4276
4277/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4278/// declaration.
4279bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4280                                              std::string& S,
4281                                              bool Extended) const {
4282  // FIXME: This is not very efficient.
4283  // Encode return type.
4284  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4285                                    Decl->getResultType(), S, Extended);
4286  // Compute size of all parameters.
4287  // Start with computing size of a pointer in number of bytes.
4288  // FIXME: There might(should) be a better way of doing this computation!
4289  SourceLocation Loc;
4290  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4291  // The first two arguments (self and _cmd) are pointers; account for
4292  // their size.
4293  CharUnits ParmOffset = 2 * PtrSize;
4294  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4295       E = Decl->sel_param_end(); PI != E; ++PI) {
4296    QualType PType = (*PI)->getType();
4297    CharUnits sz = getObjCEncodingTypeSize(PType);
4298    if (sz.isZero())
4299      continue;
4300
4301    assert (sz.isPositive() &&
4302        "getObjCEncodingForMethodDecl - Incomplete param type");
4303    ParmOffset += sz;
4304  }
4305  S += charUnitsToString(ParmOffset);
4306  S += "@0:";
4307  S += charUnitsToString(PtrSize);
4308
4309  // Argument types.
4310  ParmOffset = 2 * PtrSize;
4311  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4312       E = Decl->sel_param_end(); PI != E; ++PI) {
4313    const ParmVarDecl *PVDecl = *PI;
4314    QualType PType = PVDecl->getOriginalType();
4315    if (const ArrayType *AT =
4316          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4317      // Use array's original type only if it has known number of
4318      // elements.
4319      if (!isa<ConstantArrayType>(AT))
4320        PType = PVDecl->getType();
4321    } else if (PType->isFunctionType())
4322      PType = PVDecl->getType();
4323    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4324                                      PType, S, Extended);
4325    S += charUnitsToString(ParmOffset);
4326    ParmOffset += getObjCEncodingTypeSize(PType);
4327  }
4328
4329  return false;
4330}
4331
4332/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4333/// property declaration. If non-NULL, Container must be either an
4334/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4335/// NULL when getting encodings for protocol properties.
4336/// Property attributes are stored as a comma-delimited C string. The simple
4337/// attributes readonly and bycopy are encoded as single characters. The
4338/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4339/// encoded as single characters, followed by an identifier. Property types
4340/// are also encoded as a parametrized attribute. The characters used to encode
4341/// these attributes are defined by the following enumeration:
4342/// @code
4343/// enum PropertyAttributes {
4344/// kPropertyReadOnly = 'R',   // property is read-only.
4345/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4346/// kPropertyByref = '&',  // property is a reference to the value last assigned
4347/// kPropertyDynamic = 'D',    // property is dynamic
4348/// kPropertyGetter = 'G',     // followed by getter selector name
4349/// kPropertySetter = 'S',     // followed by setter selector name
4350/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4351/// kPropertyType = 'T'              // followed by old-style type encoding.
4352/// kPropertyWeak = 'W'              // 'weak' property
4353/// kPropertyStrong = 'P'            // property GC'able
4354/// kPropertyNonAtomic = 'N'         // property non-atomic
4355/// };
4356/// @endcode
4357void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4358                                                const Decl *Container,
4359                                                std::string& S) const {
4360  // Collect information from the property implementation decl(s).
4361  bool Dynamic = false;
4362  ObjCPropertyImplDecl *SynthesizePID = 0;
4363
4364  // FIXME: Duplicated code due to poor abstraction.
4365  if (Container) {
4366    if (const ObjCCategoryImplDecl *CID =
4367        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4368      for (ObjCCategoryImplDecl::propimpl_iterator
4369             i = CID->propimpl_begin(), e = CID->propimpl_end();
4370           i != e; ++i) {
4371        ObjCPropertyImplDecl *PID = *i;
4372        if (PID->getPropertyDecl() == PD) {
4373          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4374            Dynamic = true;
4375          } else {
4376            SynthesizePID = PID;
4377          }
4378        }
4379      }
4380    } else {
4381      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4382      for (ObjCCategoryImplDecl::propimpl_iterator
4383             i = OID->propimpl_begin(), e = OID->propimpl_end();
4384           i != e; ++i) {
4385        ObjCPropertyImplDecl *PID = *i;
4386        if (PID->getPropertyDecl() == PD) {
4387          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4388            Dynamic = true;
4389          } else {
4390            SynthesizePID = PID;
4391          }
4392        }
4393      }
4394    }
4395  }
4396
4397  // FIXME: This is not very efficient.
4398  S = "T";
4399
4400  // Encode result type.
4401  // GCC has some special rules regarding encoding of properties which
4402  // closely resembles encoding of ivars.
4403  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4404                             true /* outermost type */,
4405                             true /* encoding for property */);
4406
4407  if (PD->isReadOnly()) {
4408    S += ",R";
4409  } else {
4410    switch (PD->getSetterKind()) {
4411    case ObjCPropertyDecl::Assign: break;
4412    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4413    case ObjCPropertyDecl::Retain: S += ",&"; break;
4414    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4415    }
4416  }
4417
4418  // It really isn't clear at all what this means, since properties
4419  // are "dynamic by default".
4420  if (Dynamic)
4421    S += ",D";
4422
4423  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4424    S += ",N";
4425
4426  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4427    S += ",G";
4428    S += PD->getGetterName().getAsString();
4429  }
4430
4431  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4432    S += ",S";
4433    S += PD->getSetterName().getAsString();
4434  }
4435
4436  if (SynthesizePID) {
4437    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4438    S += ",V";
4439    S += OID->getNameAsString();
4440  }
4441
4442  // FIXME: OBJCGC: weak & strong
4443}
4444
4445/// getLegacyIntegralTypeEncoding -
4446/// Another legacy compatibility encoding: 32-bit longs are encoded as
4447/// 'l' or 'L' , but not always.  For typedefs, we need to use
4448/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4449///
4450void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4451  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4452    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4453      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4454        PointeeTy = UnsignedIntTy;
4455      else
4456        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4457          PointeeTy = IntTy;
4458    }
4459  }
4460}
4461
4462void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4463                                        const FieldDecl *Field) const {
4464  // We follow the behavior of gcc, expanding structures which are
4465  // directly pointed to, and expanding embedded structures. Note that
4466  // these rules are sufficient to prevent recursive encoding of the
4467  // same type.
4468  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4469                             true /* outermost type */);
4470}
4471
4472static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4473    switch (T->getAs<BuiltinType>()->getKind()) {
4474    default: llvm_unreachable("Unhandled builtin type kind");
4475    case BuiltinType::Void:       return 'v';
4476    case BuiltinType::Bool:       return 'B';
4477    case BuiltinType::Char_U:
4478    case BuiltinType::UChar:      return 'C';
4479    case BuiltinType::UShort:     return 'S';
4480    case BuiltinType::UInt:       return 'I';
4481    case BuiltinType::ULong:
4482        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4483    case BuiltinType::UInt128:    return 'T';
4484    case BuiltinType::ULongLong:  return 'Q';
4485    case BuiltinType::Char_S:
4486    case BuiltinType::SChar:      return 'c';
4487    case BuiltinType::Short:      return 's';
4488    case BuiltinType::WChar_S:
4489    case BuiltinType::WChar_U:
4490    case BuiltinType::Int:        return 'i';
4491    case BuiltinType::Long:
4492      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4493    case BuiltinType::LongLong:   return 'q';
4494    case BuiltinType::Int128:     return 't';
4495    case BuiltinType::Float:      return 'f';
4496    case BuiltinType::Double:     return 'd';
4497    case BuiltinType::LongDouble: return 'D';
4498    }
4499}
4500
4501static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4502  EnumDecl *Enum = ET->getDecl();
4503
4504  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4505  if (!Enum->isFixed())
4506    return 'i';
4507
4508  // The encoding of a fixed enum type matches its fixed underlying type.
4509  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4510}
4511
4512static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4513                           QualType T, const FieldDecl *FD) {
4514  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4515  S += 'b';
4516  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4517  // The GNU runtime requires more information; bitfields are encoded as b,
4518  // then the offset (in bits) of the first element, then the type of the
4519  // bitfield, then the size in bits.  For example, in this structure:
4520  //
4521  // struct
4522  // {
4523  //    int integer;
4524  //    int flags:2;
4525  // };
4526  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4527  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4528  // information is not especially sensible, but we're stuck with it for
4529  // compatibility with GCC, although providing it breaks anything that
4530  // actually uses runtime introspection and wants to work on both runtimes...
4531  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4532    const RecordDecl *RD = FD->getParent();
4533    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4534    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4535    if (const EnumType *ET = T->getAs<EnumType>())
4536      S += ObjCEncodingForEnumType(Ctx, ET);
4537    else
4538      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4539  }
4540  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4541}
4542
4543// FIXME: Use SmallString for accumulating string.
4544void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4545                                            bool ExpandPointedToStructures,
4546                                            bool ExpandStructures,
4547                                            const FieldDecl *FD,
4548                                            bool OutermostType,
4549                                            bool EncodingProperty,
4550                                            bool StructField,
4551                                            bool EncodeBlockParameters,
4552                                            bool EncodeClassNames) const {
4553  if (T->getAs<BuiltinType>()) {
4554    if (FD && FD->isBitField())
4555      return EncodeBitField(this, S, T, FD);
4556    S += ObjCEncodingForPrimitiveKind(this, T);
4557    return;
4558  }
4559
4560  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4561    S += 'j';
4562    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4563                               false);
4564    return;
4565  }
4566
4567  // encoding for pointer or r3eference types.
4568  QualType PointeeTy;
4569  if (const PointerType *PT = T->getAs<PointerType>()) {
4570    if (PT->isObjCSelType()) {
4571      S += ':';
4572      return;
4573    }
4574    PointeeTy = PT->getPointeeType();
4575  }
4576  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4577    PointeeTy = RT->getPointeeType();
4578  if (!PointeeTy.isNull()) {
4579    bool isReadOnly = false;
4580    // For historical/compatibility reasons, the read-only qualifier of the
4581    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4582    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4583    // Also, do not emit the 'r' for anything but the outermost type!
4584    if (isa<TypedefType>(T.getTypePtr())) {
4585      if (OutermostType && T.isConstQualified()) {
4586        isReadOnly = true;
4587        S += 'r';
4588      }
4589    } else if (OutermostType) {
4590      QualType P = PointeeTy;
4591      while (P->getAs<PointerType>())
4592        P = P->getAs<PointerType>()->getPointeeType();
4593      if (P.isConstQualified()) {
4594        isReadOnly = true;
4595        S += 'r';
4596      }
4597    }
4598    if (isReadOnly) {
4599      // Another legacy compatibility encoding. Some ObjC qualifier and type
4600      // combinations need to be rearranged.
4601      // Rewrite "in const" from "nr" to "rn"
4602      if (StringRef(S).endswith("nr"))
4603        S.replace(S.end()-2, S.end(), "rn");
4604    }
4605
4606    if (PointeeTy->isCharType()) {
4607      // char pointer types should be encoded as '*' unless it is a
4608      // type that has been typedef'd to 'BOOL'.
4609      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4610        S += '*';
4611        return;
4612      }
4613    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4614      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4615      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4616        S += '#';
4617        return;
4618      }
4619      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4620      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4621        S += '@';
4622        return;
4623      }
4624      // fall through...
4625    }
4626    S += '^';
4627    getLegacyIntegralTypeEncoding(PointeeTy);
4628
4629    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4630                               NULL);
4631    return;
4632  }
4633
4634  if (const ArrayType *AT =
4635      // Ignore type qualifiers etc.
4636        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4637    if (isa<IncompleteArrayType>(AT) && !StructField) {
4638      // Incomplete arrays are encoded as a pointer to the array element.
4639      S += '^';
4640
4641      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4642                                 false, ExpandStructures, FD);
4643    } else {
4644      S += '[';
4645
4646      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4647        if (getTypeSize(CAT->getElementType()) == 0)
4648          S += '0';
4649        else
4650          S += llvm::utostr(CAT->getSize().getZExtValue());
4651      } else {
4652        //Variable length arrays are encoded as a regular array with 0 elements.
4653        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4654               "Unknown array type!");
4655        S += '0';
4656      }
4657
4658      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4659                                 false, ExpandStructures, FD);
4660      S += ']';
4661    }
4662    return;
4663  }
4664
4665  if (T->getAs<FunctionType>()) {
4666    S += '?';
4667    return;
4668  }
4669
4670  if (const RecordType *RTy = T->getAs<RecordType>()) {
4671    RecordDecl *RDecl = RTy->getDecl();
4672    S += RDecl->isUnion() ? '(' : '{';
4673    // Anonymous structures print as '?'
4674    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4675      S += II->getName();
4676      if (ClassTemplateSpecializationDecl *Spec
4677          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4678        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4679        std::string TemplateArgsStr
4680          = TemplateSpecializationType::PrintTemplateArgumentList(
4681                                            TemplateArgs.data(),
4682                                            TemplateArgs.size(),
4683                                            (*this).getPrintingPolicy());
4684
4685        S += TemplateArgsStr;
4686      }
4687    } else {
4688      S += '?';
4689    }
4690    if (ExpandStructures) {
4691      S += '=';
4692      if (!RDecl->isUnion()) {
4693        getObjCEncodingForStructureImpl(RDecl, S, FD);
4694      } else {
4695        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4696                                     FieldEnd = RDecl->field_end();
4697             Field != FieldEnd; ++Field) {
4698          if (FD) {
4699            S += '"';
4700            S += Field->getNameAsString();
4701            S += '"';
4702          }
4703
4704          // Special case bit-fields.
4705          if (Field->isBitField()) {
4706            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4707                                       *Field);
4708          } else {
4709            QualType qt = Field->getType();
4710            getLegacyIntegralTypeEncoding(qt);
4711            getObjCEncodingForTypeImpl(qt, S, false, true,
4712                                       FD, /*OutermostType*/false,
4713                                       /*EncodingProperty*/false,
4714                                       /*StructField*/true);
4715          }
4716        }
4717      }
4718    }
4719    S += RDecl->isUnion() ? ')' : '}';
4720    return;
4721  }
4722
4723  if (const EnumType *ET = T->getAs<EnumType>()) {
4724    if (FD && FD->isBitField())
4725      EncodeBitField(this, S, T, FD);
4726    else
4727      S += ObjCEncodingForEnumType(this, ET);
4728    return;
4729  }
4730
4731  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4732    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4733    if (EncodeBlockParameters) {
4734      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4735
4736      S += '<';
4737      // Block return type
4738      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4739                                 ExpandPointedToStructures, ExpandStructures,
4740                                 FD,
4741                                 false /* OutermostType */,
4742                                 EncodingProperty,
4743                                 false /* StructField */,
4744                                 EncodeBlockParameters,
4745                                 EncodeClassNames);
4746      // Block self
4747      S += "@?";
4748      // Block parameters
4749      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4750        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4751               E = FPT->arg_type_end(); I && (I != E); ++I) {
4752          getObjCEncodingForTypeImpl(*I, S,
4753                                     ExpandPointedToStructures,
4754                                     ExpandStructures,
4755                                     FD,
4756                                     false /* OutermostType */,
4757                                     EncodingProperty,
4758                                     false /* StructField */,
4759                                     EncodeBlockParameters,
4760                                     EncodeClassNames);
4761        }
4762      }
4763      S += '>';
4764    }
4765    return;
4766  }
4767
4768  // Ignore protocol qualifiers when mangling at this level.
4769  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4770    T = OT->getBaseType();
4771
4772  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4773    // @encode(class_name)
4774    ObjCInterfaceDecl *OI = OIT->getDecl();
4775    S += '{';
4776    const IdentifierInfo *II = OI->getIdentifier();
4777    S += II->getName();
4778    S += '=';
4779    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4780    DeepCollectObjCIvars(OI, true, Ivars);
4781    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4782      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4783      if (Field->isBitField())
4784        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4785      else
4786        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4787    }
4788    S += '}';
4789    return;
4790  }
4791
4792  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4793    if (OPT->isObjCIdType()) {
4794      S += '@';
4795      return;
4796    }
4797
4798    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4799      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4800      // Since this is a binary compatibility issue, need to consult with runtime
4801      // folks. Fortunately, this is a *very* obsure construct.
4802      S += '#';
4803      return;
4804    }
4805
4806    if (OPT->isObjCQualifiedIdType()) {
4807      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4808                                 ExpandPointedToStructures,
4809                                 ExpandStructures, FD);
4810      if (FD || EncodingProperty || EncodeClassNames) {
4811        // Note that we do extended encoding of protocol qualifer list
4812        // Only when doing ivar or property encoding.
4813        S += '"';
4814        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4815             E = OPT->qual_end(); I != E; ++I) {
4816          S += '<';
4817          S += (*I)->getNameAsString();
4818          S += '>';
4819        }
4820        S += '"';
4821      }
4822      return;
4823    }
4824
4825    QualType PointeeTy = OPT->getPointeeType();
4826    if (!EncodingProperty &&
4827        isa<TypedefType>(PointeeTy.getTypePtr())) {
4828      // Another historical/compatibility reason.
4829      // We encode the underlying type which comes out as
4830      // {...};
4831      S += '^';
4832      getObjCEncodingForTypeImpl(PointeeTy, S,
4833                                 false, ExpandPointedToStructures,
4834                                 NULL);
4835      return;
4836    }
4837
4838    S += '@';
4839    if (OPT->getInterfaceDecl() &&
4840        (FD || EncodingProperty || EncodeClassNames)) {
4841      S += '"';
4842      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4843      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4844           E = OPT->qual_end(); I != E; ++I) {
4845        S += '<';
4846        S += (*I)->getNameAsString();
4847        S += '>';
4848      }
4849      S += '"';
4850    }
4851    return;
4852  }
4853
4854  // gcc just blithely ignores member pointers.
4855  // TODO: maybe there should be a mangling for these
4856  if (T->getAs<MemberPointerType>())
4857    return;
4858
4859  if (T->isVectorType()) {
4860    // This matches gcc's encoding, even though technically it is
4861    // insufficient.
4862    // FIXME. We should do a better job than gcc.
4863    return;
4864  }
4865
4866  llvm_unreachable("@encode for type not implemented!");
4867}
4868
4869void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4870                                                 std::string &S,
4871                                                 const FieldDecl *FD,
4872                                                 bool includeVBases) const {
4873  assert(RDecl && "Expected non-null RecordDecl");
4874  assert(!RDecl->isUnion() && "Should not be called for unions");
4875  if (!RDecl->getDefinition())
4876    return;
4877
4878  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4879  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4880  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4881
4882  if (CXXRec) {
4883    for (CXXRecordDecl::base_class_iterator
4884           BI = CXXRec->bases_begin(),
4885           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4886      if (!BI->isVirtual()) {
4887        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4888        if (base->isEmpty())
4889          continue;
4890        uint64_t offs = toBits(layout.getBaseClassOffset(base));
4891        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4892                                  std::make_pair(offs, base));
4893      }
4894    }
4895  }
4896
4897  unsigned i = 0;
4898  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4899                               FieldEnd = RDecl->field_end();
4900       Field != FieldEnd; ++Field, ++i) {
4901    uint64_t offs = layout.getFieldOffset(i);
4902    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4903                              std::make_pair(offs, *Field));
4904  }
4905
4906  if (CXXRec && includeVBases) {
4907    for (CXXRecordDecl::base_class_iterator
4908           BI = CXXRec->vbases_begin(),
4909           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4910      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4911      if (base->isEmpty())
4912        continue;
4913      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
4914      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4915        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4916                                  std::make_pair(offs, base));
4917    }
4918  }
4919
4920  CharUnits size;
4921  if (CXXRec) {
4922    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4923  } else {
4924    size = layout.getSize();
4925  }
4926
4927  uint64_t CurOffs = 0;
4928  std::multimap<uint64_t, NamedDecl *>::iterator
4929    CurLayObj = FieldOrBaseOffsets.begin();
4930
4931  if (CXXRec && CXXRec->isDynamicClass() &&
4932      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
4933    if (FD) {
4934      S += "\"_vptr$";
4935      std::string recname = CXXRec->getNameAsString();
4936      if (recname.empty()) recname = "?";
4937      S += recname;
4938      S += '"';
4939    }
4940    S += "^^?";
4941    CurOffs += getTypeSize(VoidPtrTy);
4942  }
4943
4944  if (!RDecl->hasFlexibleArrayMember()) {
4945    // Mark the end of the structure.
4946    uint64_t offs = toBits(size);
4947    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4948                              std::make_pair(offs, (NamedDecl*)0));
4949  }
4950
4951  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4952    assert(CurOffs <= CurLayObj->first);
4953
4954    if (CurOffs < CurLayObj->first) {
4955      uint64_t padding = CurLayObj->first - CurOffs;
4956      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4957      // packing/alignment of members is different that normal, in which case
4958      // the encoding will be out-of-sync with the real layout.
4959      // If the runtime switches to just consider the size of types without
4960      // taking into account alignment, we could make padding explicit in the
4961      // encoding (e.g. using arrays of chars). The encoding strings would be
4962      // longer then though.
4963      CurOffs += padding;
4964    }
4965
4966    NamedDecl *dcl = CurLayObj->second;
4967    if (dcl == 0)
4968      break; // reached end of structure.
4969
4970    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4971      // We expand the bases without their virtual bases since those are going
4972      // in the initial structure. Note that this differs from gcc which
4973      // expands virtual bases each time one is encountered in the hierarchy,
4974      // making the encoding type bigger than it really is.
4975      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4976      assert(!base->isEmpty());
4977      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4978    } else {
4979      FieldDecl *field = cast<FieldDecl>(dcl);
4980      if (FD) {
4981        S += '"';
4982        S += field->getNameAsString();
4983        S += '"';
4984      }
4985
4986      if (field->isBitField()) {
4987        EncodeBitField(this, S, field->getType(), field);
4988        CurOffs += field->getBitWidthValue(*this);
4989      } else {
4990        QualType qt = field->getType();
4991        getLegacyIntegralTypeEncoding(qt);
4992        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4993                                   /*OutermostType*/false,
4994                                   /*EncodingProperty*/false,
4995                                   /*StructField*/true);
4996        CurOffs += getTypeSize(field->getType());
4997      }
4998    }
4999  }
5000}
5001
5002void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5003                                                 std::string& S) const {
5004  if (QT & Decl::OBJC_TQ_In)
5005    S += 'n';
5006  if (QT & Decl::OBJC_TQ_Inout)
5007    S += 'N';
5008  if (QT & Decl::OBJC_TQ_Out)
5009    S += 'o';
5010  if (QT & Decl::OBJC_TQ_Bycopy)
5011    S += 'O';
5012  if (QT & Decl::OBJC_TQ_Byref)
5013    S += 'R';
5014  if (QT & Decl::OBJC_TQ_Oneway)
5015    S += 'V';
5016}
5017
5018TypedefDecl *ASTContext::getObjCIdDecl() const {
5019  if (!ObjCIdDecl) {
5020    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5021    T = getObjCObjectPointerType(T);
5022    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5023    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5024                                     getTranslationUnitDecl(),
5025                                     SourceLocation(), SourceLocation(),
5026                                     &Idents.get("id"), IdInfo);
5027  }
5028
5029  return ObjCIdDecl;
5030}
5031
5032TypedefDecl *ASTContext::getObjCSelDecl() const {
5033  if (!ObjCSelDecl) {
5034    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5035    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5036    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5037                                      getTranslationUnitDecl(),
5038                                      SourceLocation(), SourceLocation(),
5039                                      &Idents.get("SEL"), SelInfo);
5040  }
5041  return ObjCSelDecl;
5042}
5043
5044TypedefDecl *ASTContext::getObjCClassDecl() const {
5045  if (!ObjCClassDecl) {
5046    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5047    T = getObjCObjectPointerType(T);
5048    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5049    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5050                                        getTranslationUnitDecl(),
5051                                        SourceLocation(), SourceLocation(),
5052                                        &Idents.get("Class"), ClassInfo);
5053  }
5054
5055  return ObjCClassDecl;
5056}
5057
5058ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5059  if (!ObjCProtocolClassDecl) {
5060    ObjCProtocolClassDecl
5061      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5062                                  SourceLocation(),
5063                                  &Idents.get("Protocol"),
5064                                  /*PrevDecl=*/0,
5065                                  SourceLocation(), true);
5066  }
5067
5068  return ObjCProtocolClassDecl;
5069}
5070
5071//===----------------------------------------------------------------------===//
5072// __builtin_va_list Construction Functions
5073//===----------------------------------------------------------------------===//
5074
5075static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5076  // typedef char* __builtin_va_list;
5077  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5078  TypeSourceInfo *TInfo
5079    = Context->getTrivialTypeSourceInfo(CharPtrType);
5080
5081  TypedefDecl *VaListTypeDecl
5082    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5083                          Context->getTranslationUnitDecl(),
5084                          SourceLocation(), SourceLocation(),
5085                          &Context->Idents.get("__builtin_va_list"),
5086                          TInfo);
5087  return VaListTypeDecl;
5088}
5089
5090static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5091  // typedef void* __builtin_va_list;
5092  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5093  TypeSourceInfo *TInfo
5094    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5095
5096  TypedefDecl *VaListTypeDecl
5097    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5098                          Context->getTranslationUnitDecl(),
5099                          SourceLocation(), SourceLocation(),
5100                          &Context->Idents.get("__builtin_va_list"),
5101                          TInfo);
5102  return VaListTypeDecl;
5103}
5104
5105static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5106  // typedef struct __va_list_tag {
5107  RecordDecl *VaListTagDecl;
5108
5109  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5110                                   Context->getTranslationUnitDecl(),
5111                                   &Context->Idents.get("__va_list_tag"));
5112  VaListTagDecl->startDefinition();
5113
5114  const size_t NumFields = 5;
5115  QualType FieldTypes[NumFields];
5116  const char *FieldNames[NumFields];
5117
5118  //   unsigned char gpr;
5119  FieldTypes[0] = Context->UnsignedCharTy;
5120  FieldNames[0] = "gpr";
5121
5122  //   unsigned char fpr;
5123  FieldTypes[1] = Context->UnsignedCharTy;
5124  FieldNames[1] = "fpr";
5125
5126  //   unsigned short reserved;
5127  FieldTypes[2] = Context->UnsignedShortTy;
5128  FieldNames[2] = "reserved";
5129
5130  //   void* overflow_arg_area;
5131  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5132  FieldNames[3] = "overflow_arg_area";
5133
5134  //   void* reg_save_area;
5135  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5136  FieldNames[4] = "reg_save_area";
5137
5138  // Create fields
5139  for (unsigned i = 0; i < NumFields; ++i) {
5140    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5141                                         SourceLocation(),
5142                                         SourceLocation(),
5143                                         &Context->Idents.get(FieldNames[i]),
5144                                         FieldTypes[i], /*TInfo=*/0,
5145                                         /*BitWidth=*/0,
5146                                         /*Mutable=*/false,
5147                                         ICIS_NoInit);
5148    Field->setAccess(AS_public);
5149    VaListTagDecl->addDecl(Field);
5150  }
5151  VaListTagDecl->completeDefinition();
5152  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5153  Context->VaListTagTy = VaListTagType;
5154
5155  // } __va_list_tag;
5156  TypedefDecl *VaListTagTypedefDecl
5157    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5158                          Context->getTranslationUnitDecl(),
5159                          SourceLocation(), SourceLocation(),
5160                          &Context->Idents.get("__va_list_tag"),
5161                          Context->getTrivialTypeSourceInfo(VaListTagType));
5162  QualType VaListTagTypedefType =
5163    Context->getTypedefType(VaListTagTypedefDecl);
5164
5165  // typedef __va_list_tag __builtin_va_list[1];
5166  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5167  QualType VaListTagArrayType
5168    = Context->getConstantArrayType(VaListTagTypedefType,
5169                                    Size, ArrayType::Normal, 0);
5170  TypeSourceInfo *TInfo
5171    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5172  TypedefDecl *VaListTypedefDecl
5173    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5174                          Context->getTranslationUnitDecl(),
5175                          SourceLocation(), SourceLocation(),
5176                          &Context->Idents.get("__builtin_va_list"),
5177                          TInfo);
5178
5179  return VaListTypedefDecl;
5180}
5181
5182static TypedefDecl *
5183CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5184  // typedef struct __va_list_tag {
5185  RecordDecl *VaListTagDecl;
5186  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5187                                   Context->getTranslationUnitDecl(),
5188                                   &Context->Idents.get("__va_list_tag"));
5189  VaListTagDecl->startDefinition();
5190
5191  const size_t NumFields = 4;
5192  QualType FieldTypes[NumFields];
5193  const char *FieldNames[NumFields];
5194
5195  //   unsigned gp_offset;
5196  FieldTypes[0] = Context->UnsignedIntTy;
5197  FieldNames[0] = "gp_offset";
5198
5199  //   unsigned fp_offset;
5200  FieldTypes[1] = Context->UnsignedIntTy;
5201  FieldNames[1] = "fp_offset";
5202
5203  //   void* overflow_arg_area;
5204  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5205  FieldNames[2] = "overflow_arg_area";
5206
5207  //   void* reg_save_area;
5208  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5209  FieldNames[3] = "reg_save_area";
5210
5211  // Create fields
5212  for (unsigned i = 0; i < NumFields; ++i) {
5213    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5214                                         VaListTagDecl,
5215                                         SourceLocation(),
5216                                         SourceLocation(),
5217                                         &Context->Idents.get(FieldNames[i]),
5218                                         FieldTypes[i], /*TInfo=*/0,
5219                                         /*BitWidth=*/0,
5220                                         /*Mutable=*/false,
5221                                         ICIS_NoInit);
5222    Field->setAccess(AS_public);
5223    VaListTagDecl->addDecl(Field);
5224  }
5225  VaListTagDecl->completeDefinition();
5226  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5227  Context->VaListTagTy = VaListTagType;
5228
5229  // } __va_list_tag;
5230  TypedefDecl *VaListTagTypedefDecl
5231    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5232                          Context->getTranslationUnitDecl(),
5233                          SourceLocation(), SourceLocation(),
5234                          &Context->Idents.get("__va_list_tag"),
5235                          Context->getTrivialTypeSourceInfo(VaListTagType));
5236  QualType VaListTagTypedefType =
5237    Context->getTypedefType(VaListTagTypedefDecl);
5238
5239  // typedef __va_list_tag __builtin_va_list[1];
5240  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5241  QualType VaListTagArrayType
5242    = Context->getConstantArrayType(VaListTagTypedefType,
5243                                      Size, ArrayType::Normal,0);
5244  TypeSourceInfo *TInfo
5245    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5246  TypedefDecl *VaListTypedefDecl
5247    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5248                          Context->getTranslationUnitDecl(),
5249                          SourceLocation(), SourceLocation(),
5250                          &Context->Idents.get("__builtin_va_list"),
5251                          TInfo);
5252
5253  return VaListTypedefDecl;
5254}
5255
5256static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5257  // typedef int __builtin_va_list[4];
5258  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5259  QualType IntArrayType
5260    = Context->getConstantArrayType(Context->IntTy,
5261				    Size, ArrayType::Normal, 0);
5262  TypedefDecl *VaListTypedefDecl
5263    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5264                          Context->getTranslationUnitDecl(),
5265                          SourceLocation(), SourceLocation(),
5266                          &Context->Idents.get("__builtin_va_list"),
5267                          Context->getTrivialTypeSourceInfo(IntArrayType));
5268
5269  return VaListTypedefDecl;
5270}
5271
5272static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5273                                     TargetInfo::BuiltinVaListKind Kind) {
5274  switch (Kind) {
5275  case TargetInfo::CharPtrBuiltinVaList:
5276    return CreateCharPtrBuiltinVaListDecl(Context);
5277  case TargetInfo::VoidPtrBuiltinVaList:
5278    return CreateVoidPtrBuiltinVaListDecl(Context);
5279  case TargetInfo::PowerABIBuiltinVaList:
5280    return CreatePowerABIBuiltinVaListDecl(Context);
5281  case TargetInfo::X86_64ABIBuiltinVaList:
5282    return CreateX86_64ABIBuiltinVaListDecl(Context);
5283  case TargetInfo::PNaClABIBuiltinVaList:
5284    return CreatePNaClABIBuiltinVaListDecl(Context);
5285  }
5286
5287  llvm_unreachable("Unhandled __builtin_va_list type kind");
5288}
5289
5290TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5291  if (!BuiltinVaListDecl)
5292    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5293
5294  return BuiltinVaListDecl;
5295}
5296
5297QualType ASTContext::getVaListTagType() const {
5298  // Force the creation of VaListTagTy by building the __builtin_va_list
5299  // declaration.
5300  if (VaListTagTy.isNull())
5301    (void) getBuiltinVaListDecl();
5302
5303  return VaListTagTy;
5304}
5305
5306void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5307  assert(ObjCConstantStringType.isNull() &&
5308         "'NSConstantString' type already set!");
5309
5310  ObjCConstantStringType = getObjCInterfaceType(Decl);
5311}
5312
5313/// \brief Retrieve the template name that corresponds to a non-empty
5314/// lookup.
5315TemplateName
5316ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5317                                      UnresolvedSetIterator End) const {
5318  unsigned size = End - Begin;
5319  assert(size > 1 && "set is not overloaded!");
5320
5321  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5322                          size * sizeof(FunctionTemplateDecl*));
5323  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5324
5325  NamedDecl **Storage = OT->getStorage();
5326  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5327    NamedDecl *D = *I;
5328    assert(isa<FunctionTemplateDecl>(D) ||
5329           (isa<UsingShadowDecl>(D) &&
5330            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5331    *Storage++ = D;
5332  }
5333
5334  return TemplateName(OT);
5335}
5336
5337/// \brief Retrieve the template name that represents a qualified
5338/// template name such as \c std::vector.
5339TemplateName
5340ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5341                                     bool TemplateKeyword,
5342                                     TemplateDecl *Template) const {
5343  assert(NNS && "Missing nested-name-specifier in qualified template name");
5344
5345  // FIXME: Canonicalization?
5346  llvm::FoldingSetNodeID ID;
5347  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5348
5349  void *InsertPos = 0;
5350  QualifiedTemplateName *QTN =
5351    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5352  if (!QTN) {
5353    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
5354    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5355  }
5356
5357  return TemplateName(QTN);
5358}
5359
5360/// \brief Retrieve the template name that represents a dependent
5361/// template name such as \c MetaFun::template apply.
5362TemplateName
5363ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5364                                     const IdentifierInfo *Name) const {
5365  assert((!NNS || NNS->isDependent()) &&
5366         "Nested name specifier must be dependent");
5367
5368  llvm::FoldingSetNodeID ID;
5369  DependentTemplateName::Profile(ID, NNS, Name);
5370
5371  void *InsertPos = 0;
5372  DependentTemplateName *QTN =
5373    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5374
5375  if (QTN)
5376    return TemplateName(QTN);
5377
5378  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5379  if (CanonNNS == NNS) {
5380    QTN = new (*this,4) DependentTemplateName(NNS, Name);
5381  } else {
5382    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5383    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
5384    DependentTemplateName *CheckQTN =
5385      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5386    assert(!CheckQTN && "Dependent type name canonicalization broken");
5387    (void)CheckQTN;
5388  }
5389
5390  DependentTemplateNames.InsertNode(QTN, InsertPos);
5391  return TemplateName(QTN);
5392}
5393
5394/// \brief Retrieve the template name that represents a dependent
5395/// template name such as \c MetaFun::template operator+.
5396TemplateName
5397ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5398                                     OverloadedOperatorKind Operator) const {
5399  assert((!NNS || NNS->isDependent()) &&
5400         "Nested name specifier must be dependent");
5401
5402  llvm::FoldingSetNodeID ID;
5403  DependentTemplateName::Profile(ID, NNS, Operator);
5404
5405  void *InsertPos = 0;
5406  DependentTemplateName *QTN
5407    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5408
5409  if (QTN)
5410    return TemplateName(QTN);
5411
5412  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5413  if (CanonNNS == NNS) {
5414    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5415  } else {
5416    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5417    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5418
5419    DependentTemplateName *CheckQTN
5420      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5421    assert(!CheckQTN && "Dependent template name canonicalization broken");
5422    (void)CheckQTN;
5423  }
5424
5425  DependentTemplateNames.InsertNode(QTN, InsertPos);
5426  return TemplateName(QTN);
5427}
5428
5429TemplateName
5430ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5431                                         TemplateName replacement) const {
5432  llvm::FoldingSetNodeID ID;
5433  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5434
5435  void *insertPos = 0;
5436  SubstTemplateTemplateParmStorage *subst
5437    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5438
5439  if (!subst) {
5440    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5441    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5442  }
5443
5444  return TemplateName(subst);
5445}
5446
5447TemplateName
5448ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5449                                       const TemplateArgument &ArgPack) const {
5450  ASTContext &Self = const_cast<ASTContext &>(*this);
5451  llvm::FoldingSetNodeID ID;
5452  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5453
5454  void *InsertPos = 0;
5455  SubstTemplateTemplateParmPackStorage *Subst
5456    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5457
5458  if (!Subst) {
5459    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5460                                                           ArgPack.pack_size(),
5461                                                         ArgPack.pack_begin());
5462    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5463  }
5464
5465  return TemplateName(Subst);
5466}
5467
5468/// getFromTargetType - Given one of the integer types provided by
5469/// TargetInfo, produce the corresponding type. The unsigned @p Type
5470/// is actually a value of type @c TargetInfo::IntType.
5471CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5472  switch (Type) {
5473  case TargetInfo::NoInt: return CanQualType();
5474  case TargetInfo::SignedShort: return ShortTy;
5475  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5476  case TargetInfo::SignedInt: return IntTy;
5477  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5478  case TargetInfo::SignedLong: return LongTy;
5479  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5480  case TargetInfo::SignedLongLong: return LongLongTy;
5481  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5482  }
5483
5484  llvm_unreachable("Unhandled TargetInfo::IntType value");
5485}
5486
5487//===----------------------------------------------------------------------===//
5488//                        Type Predicates.
5489//===----------------------------------------------------------------------===//
5490
5491/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5492/// garbage collection attribute.
5493///
5494Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5495  if (getLangOpts().getGC() == LangOptions::NonGC)
5496    return Qualifiers::GCNone;
5497
5498  assert(getLangOpts().ObjC1);
5499  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5500
5501  // Default behaviour under objective-C's gc is for ObjC pointers
5502  // (or pointers to them) be treated as though they were declared
5503  // as __strong.
5504  if (GCAttrs == Qualifiers::GCNone) {
5505    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5506      return Qualifiers::Strong;
5507    else if (Ty->isPointerType())
5508      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5509  } else {
5510    // It's not valid to set GC attributes on anything that isn't a
5511    // pointer.
5512#ifndef NDEBUG
5513    QualType CT = Ty->getCanonicalTypeInternal();
5514    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5515      CT = AT->getElementType();
5516    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5517#endif
5518  }
5519  return GCAttrs;
5520}
5521
5522//===----------------------------------------------------------------------===//
5523//                        Type Compatibility Testing
5524//===----------------------------------------------------------------------===//
5525
5526/// areCompatVectorTypes - Return true if the two specified vector types are
5527/// compatible.
5528static bool areCompatVectorTypes(const VectorType *LHS,
5529                                 const VectorType *RHS) {
5530  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5531  return LHS->getElementType() == RHS->getElementType() &&
5532         LHS->getNumElements() == RHS->getNumElements();
5533}
5534
5535bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5536                                          QualType SecondVec) {
5537  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5538  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5539
5540  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5541    return true;
5542
5543  // Treat Neon vector types and most AltiVec vector types as if they are the
5544  // equivalent GCC vector types.
5545  const VectorType *First = FirstVec->getAs<VectorType>();
5546  const VectorType *Second = SecondVec->getAs<VectorType>();
5547  if (First->getNumElements() == Second->getNumElements() &&
5548      hasSameType(First->getElementType(), Second->getElementType()) &&
5549      First->getVectorKind() != VectorType::AltiVecPixel &&
5550      First->getVectorKind() != VectorType::AltiVecBool &&
5551      Second->getVectorKind() != VectorType::AltiVecPixel &&
5552      Second->getVectorKind() != VectorType::AltiVecBool)
5553    return true;
5554
5555  return false;
5556}
5557
5558//===----------------------------------------------------------------------===//
5559// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5560//===----------------------------------------------------------------------===//
5561
5562/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5563/// inheritance hierarchy of 'rProto'.
5564bool
5565ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5566                                           ObjCProtocolDecl *rProto) const {
5567  if (declaresSameEntity(lProto, rProto))
5568    return true;
5569  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5570       E = rProto->protocol_end(); PI != E; ++PI)
5571    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5572      return true;
5573  return false;
5574}
5575
5576/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5577/// return true if lhs's protocols conform to rhs's protocol; false
5578/// otherwise.
5579bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5580  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5581    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5582  return false;
5583}
5584
5585/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5586/// Class<p1, ...>.
5587bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5588                                                      QualType rhs) {
5589  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5590  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5591  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5592
5593  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5594       E = lhsQID->qual_end(); I != E; ++I) {
5595    bool match = false;
5596    ObjCProtocolDecl *lhsProto = *I;
5597    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5598         E = rhsOPT->qual_end(); J != E; ++J) {
5599      ObjCProtocolDecl *rhsProto = *J;
5600      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5601        match = true;
5602        break;
5603      }
5604    }
5605    if (!match)
5606      return false;
5607  }
5608  return true;
5609}
5610
5611/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5612/// ObjCQualifiedIDType.
5613bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5614                                                   bool compare) {
5615  // Allow id<P..> and an 'id' or void* type in all cases.
5616  if (lhs->isVoidPointerType() ||
5617      lhs->isObjCIdType() || lhs->isObjCClassType())
5618    return true;
5619  else if (rhs->isVoidPointerType() ||
5620           rhs->isObjCIdType() || rhs->isObjCClassType())
5621    return true;
5622
5623  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5624    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5625
5626    if (!rhsOPT) return false;
5627
5628    if (rhsOPT->qual_empty()) {
5629      // If the RHS is a unqualified interface pointer "NSString*",
5630      // make sure we check the class hierarchy.
5631      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5632        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5633             E = lhsQID->qual_end(); I != E; ++I) {
5634          // when comparing an id<P> on lhs with a static type on rhs,
5635          // see if static class implements all of id's protocols, directly or
5636          // through its super class and categories.
5637          if (!rhsID->ClassImplementsProtocol(*I, true))
5638            return false;
5639        }
5640      }
5641      // If there are no qualifiers and no interface, we have an 'id'.
5642      return true;
5643    }
5644    // Both the right and left sides have qualifiers.
5645    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5646         E = lhsQID->qual_end(); I != E; ++I) {
5647      ObjCProtocolDecl *lhsProto = *I;
5648      bool match = false;
5649
5650      // when comparing an id<P> on lhs with a static type on rhs,
5651      // see if static class implements all of id's protocols, directly or
5652      // through its super class and categories.
5653      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5654           E = rhsOPT->qual_end(); J != E; ++J) {
5655        ObjCProtocolDecl *rhsProto = *J;
5656        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5657            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5658          match = true;
5659          break;
5660        }
5661      }
5662      // If the RHS is a qualified interface pointer "NSString<P>*",
5663      // make sure we check the class hierarchy.
5664      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5665        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5666             E = lhsQID->qual_end(); I != E; ++I) {
5667          // when comparing an id<P> on lhs with a static type on rhs,
5668          // see if static class implements all of id's protocols, directly or
5669          // through its super class and categories.
5670          if (rhsID->ClassImplementsProtocol(*I, true)) {
5671            match = true;
5672            break;
5673          }
5674        }
5675      }
5676      if (!match)
5677        return false;
5678    }
5679
5680    return true;
5681  }
5682
5683  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5684  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5685
5686  if (const ObjCObjectPointerType *lhsOPT =
5687        lhs->getAsObjCInterfacePointerType()) {
5688    // If both the right and left sides have qualifiers.
5689    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5690         E = lhsOPT->qual_end(); I != E; ++I) {
5691      ObjCProtocolDecl *lhsProto = *I;
5692      bool match = false;
5693
5694      // when comparing an id<P> on rhs with a static type on lhs,
5695      // see if static class implements all of id's protocols, directly or
5696      // through its super class and categories.
5697      // First, lhs protocols in the qualifier list must be found, direct
5698      // or indirect in rhs's qualifier list or it is a mismatch.
5699      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5700           E = rhsQID->qual_end(); J != E; ++J) {
5701        ObjCProtocolDecl *rhsProto = *J;
5702        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5703            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5704          match = true;
5705          break;
5706        }
5707      }
5708      if (!match)
5709        return false;
5710    }
5711
5712    // Static class's protocols, or its super class or category protocols
5713    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5714    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5715      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5716      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5717      // This is rather dubious but matches gcc's behavior. If lhs has
5718      // no type qualifier and its class has no static protocol(s)
5719      // assume that it is mismatch.
5720      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5721        return false;
5722      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5723           LHSInheritedProtocols.begin(),
5724           E = LHSInheritedProtocols.end(); I != E; ++I) {
5725        bool match = false;
5726        ObjCProtocolDecl *lhsProto = (*I);
5727        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5728             E = rhsQID->qual_end(); J != E; ++J) {
5729          ObjCProtocolDecl *rhsProto = *J;
5730          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5731              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5732            match = true;
5733            break;
5734          }
5735        }
5736        if (!match)
5737          return false;
5738      }
5739    }
5740    return true;
5741  }
5742  return false;
5743}
5744
5745/// canAssignObjCInterfaces - Return true if the two interface types are
5746/// compatible for assignment from RHS to LHS.  This handles validation of any
5747/// protocol qualifiers on the LHS or RHS.
5748///
5749bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5750                                         const ObjCObjectPointerType *RHSOPT) {
5751  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5752  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5753
5754  // If either type represents the built-in 'id' or 'Class' types, return true.
5755  if (LHS->isObjCUnqualifiedIdOrClass() ||
5756      RHS->isObjCUnqualifiedIdOrClass())
5757    return true;
5758
5759  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5760    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5761                                             QualType(RHSOPT,0),
5762                                             false);
5763
5764  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5765    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5766                                                QualType(RHSOPT,0));
5767
5768  // If we have 2 user-defined types, fall into that path.
5769  if (LHS->getInterface() && RHS->getInterface())
5770    return canAssignObjCInterfaces(LHS, RHS);
5771
5772  return false;
5773}
5774
5775/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5776/// for providing type-safety for objective-c pointers used to pass/return
5777/// arguments in block literals. When passed as arguments, passing 'A*' where
5778/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5779/// not OK. For the return type, the opposite is not OK.
5780bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5781                                         const ObjCObjectPointerType *LHSOPT,
5782                                         const ObjCObjectPointerType *RHSOPT,
5783                                         bool BlockReturnType) {
5784  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5785    return true;
5786
5787  if (LHSOPT->isObjCBuiltinType()) {
5788    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5789  }
5790
5791  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5792    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5793                                             QualType(RHSOPT,0),
5794                                             false);
5795
5796  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5797  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5798  if (LHS && RHS)  { // We have 2 user-defined types.
5799    if (LHS != RHS) {
5800      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5801        return BlockReturnType;
5802      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5803        return !BlockReturnType;
5804    }
5805    else
5806      return true;
5807  }
5808  return false;
5809}
5810
5811/// getIntersectionOfProtocols - This routine finds the intersection of set
5812/// of protocols inherited from two distinct objective-c pointer objects.
5813/// It is used to build composite qualifier list of the composite type of
5814/// the conditional expression involving two objective-c pointer objects.
5815static
5816void getIntersectionOfProtocols(ASTContext &Context,
5817                                const ObjCObjectPointerType *LHSOPT,
5818                                const ObjCObjectPointerType *RHSOPT,
5819      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5820
5821  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5822  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5823  assert(LHS->getInterface() && "LHS must have an interface base");
5824  assert(RHS->getInterface() && "RHS must have an interface base");
5825
5826  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5827  unsigned LHSNumProtocols = LHS->getNumProtocols();
5828  if (LHSNumProtocols > 0)
5829    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5830  else {
5831    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5832    Context.CollectInheritedProtocols(LHS->getInterface(),
5833                                      LHSInheritedProtocols);
5834    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5835                                LHSInheritedProtocols.end());
5836  }
5837
5838  unsigned RHSNumProtocols = RHS->getNumProtocols();
5839  if (RHSNumProtocols > 0) {
5840    ObjCProtocolDecl **RHSProtocols =
5841      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5842    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5843      if (InheritedProtocolSet.count(RHSProtocols[i]))
5844        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5845  } else {
5846    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5847    Context.CollectInheritedProtocols(RHS->getInterface(),
5848                                      RHSInheritedProtocols);
5849    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5850         RHSInheritedProtocols.begin(),
5851         E = RHSInheritedProtocols.end(); I != E; ++I)
5852      if (InheritedProtocolSet.count((*I)))
5853        IntersectionOfProtocols.push_back((*I));
5854  }
5855}
5856
5857/// areCommonBaseCompatible - Returns common base class of the two classes if
5858/// one found. Note that this is O'2 algorithm. But it will be called as the
5859/// last type comparison in a ?-exp of ObjC pointer types before a
5860/// warning is issued. So, its invokation is extremely rare.
5861QualType ASTContext::areCommonBaseCompatible(
5862                                          const ObjCObjectPointerType *Lptr,
5863                                          const ObjCObjectPointerType *Rptr) {
5864  const ObjCObjectType *LHS = Lptr->getObjectType();
5865  const ObjCObjectType *RHS = Rptr->getObjectType();
5866  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5867  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5868  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5869    return QualType();
5870
5871  do {
5872    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5873    if (canAssignObjCInterfaces(LHS, RHS)) {
5874      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5875      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5876
5877      QualType Result = QualType(LHS, 0);
5878      if (!Protocols.empty())
5879        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5880      Result = getObjCObjectPointerType(Result);
5881      return Result;
5882    }
5883  } while ((LDecl = LDecl->getSuperClass()));
5884
5885  return QualType();
5886}
5887
5888bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5889                                         const ObjCObjectType *RHS) {
5890  assert(LHS->getInterface() && "LHS is not an interface type");
5891  assert(RHS->getInterface() && "RHS is not an interface type");
5892
5893  // Verify that the base decls are compatible: the RHS must be a subclass of
5894  // the LHS.
5895  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5896    return false;
5897
5898  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5899  // protocol qualified at all, then we are good.
5900  if (LHS->getNumProtocols() == 0)
5901    return true;
5902
5903  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5904  // more detailed analysis is required.
5905  if (RHS->getNumProtocols() == 0) {
5906    // OK, if LHS is a superclass of RHS *and*
5907    // this superclass is assignment compatible with LHS.
5908    // false otherwise.
5909    bool IsSuperClass =
5910      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5911    if (IsSuperClass) {
5912      // OK if conversion of LHS to SuperClass results in narrowing of types
5913      // ; i.e., SuperClass may implement at least one of the protocols
5914      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5915      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5916      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5917      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5918      // If super class has no protocols, it is not a match.
5919      if (SuperClassInheritedProtocols.empty())
5920        return false;
5921
5922      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5923           LHSPE = LHS->qual_end();
5924           LHSPI != LHSPE; LHSPI++) {
5925        bool SuperImplementsProtocol = false;
5926        ObjCProtocolDecl *LHSProto = (*LHSPI);
5927
5928        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5929             SuperClassInheritedProtocols.begin(),
5930             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5931          ObjCProtocolDecl *SuperClassProto = (*I);
5932          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5933            SuperImplementsProtocol = true;
5934            break;
5935          }
5936        }
5937        if (!SuperImplementsProtocol)
5938          return false;
5939      }
5940      return true;
5941    }
5942    return false;
5943  }
5944
5945  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5946                                     LHSPE = LHS->qual_end();
5947       LHSPI != LHSPE; LHSPI++) {
5948    bool RHSImplementsProtocol = false;
5949
5950    // If the RHS doesn't implement the protocol on the left, the types
5951    // are incompatible.
5952    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5953                                       RHSPE = RHS->qual_end();
5954         RHSPI != RHSPE; RHSPI++) {
5955      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5956        RHSImplementsProtocol = true;
5957        break;
5958      }
5959    }
5960    // FIXME: For better diagnostics, consider passing back the protocol name.
5961    if (!RHSImplementsProtocol)
5962      return false;
5963  }
5964  // The RHS implements all protocols listed on the LHS.
5965  return true;
5966}
5967
5968bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5969  // get the "pointed to" types
5970  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5971  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5972
5973  if (!LHSOPT || !RHSOPT)
5974    return false;
5975
5976  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5977         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5978}
5979
5980bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5981  return canAssignObjCInterfaces(
5982                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5983                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5984}
5985
5986/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5987/// both shall have the identically qualified version of a compatible type.
5988/// C99 6.2.7p1: Two types have compatible types if their types are the
5989/// same. See 6.7.[2,3,5] for additional rules.
5990bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5991                                    bool CompareUnqualified) {
5992  if (getLangOpts().CPlusPlus)
5993    return hasSameType(LHS, RHS);
5994
5995  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5996}
5997
5998bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5999  return typesAreCompatible(LHS, RHS);
6000}
6001
6002bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6003  return !mergeTypes(LHS, RHS, true).isNull();
6004}
6005
6006/// mergeTransparentUnionType - if T is a transparent union type and a member
6007/// of T is compatible with SubType, return the merged type, else return
6008/// QualType()
6009QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6010                                               bool OfBlockPointer,
6011                                               bool Unqualified) {
6012  if (const RecordType *UT = T->getAsUnionType()) {
6013    RecordDecl *UD = UT->getDecl();
6014    if (UD->hasAttr<TransparentUnionAttr>()) {
6015      for (RecordDecl::field_iterator it = UD->field_begin(),
6016           itend = UD->field_end(); it != itend; ++it) {
6017        QualType ET = it->getType().getUnqualifiedType();
6018        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6019        if (!MT.isNull())
6020          return MT;
6021      }
6022    }
6023  }
6024
6025  return QualType();
6026}
6027
6028/// mergeFunctionArgumentTypes - merge two types which appear as function
6029/// argument types
6030QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6031                                                bool OfBlockPointer,
6032                                                bool Unqualified) {
6033  // GNU extension: two types are compatible if they appear as a function
6034  // argument, one of the types is a transparent union type and the other
6035  // type is compatible with a union member
6036  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6037                                              Unqualified);
6038  if (!lmerge.isNull())
6039    return lmerge;
6040
6041  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6042                                              Unqualified);
6043  if (!rmerge.isNull())
6044    return rmerge;
6045
6046  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6047}
6048
6049QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6050                                        bool OfBlockPointer,
6051                                        bool Unqualified) {
6052  const FunctionType *lbase = lhs->getAs<FunctionType>();
6053  const FunctionType *rbase = rhs->getAs<FunctionType>();
6054  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6055  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6056  bool allLTypes = true;
6057  bool allRTypes = true;
6058
6059  // Check return type
6060  QualType retType;
6061  if (OfBlockPointer) {
6062    QualType RHS = rbase->getResultType();
6063    QualType LHS = lbase->getResultType();
6064    bool UnqualifiedResult = Unqualified;
6065    if (!UnqualifiedResult)
6066      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6067    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6068  }
6069  else
6070    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6071                         Unqualified);
6072  if (retType.isNull()) return QualType();
6073
6074  if (Unqualified)
6075    retType = retType.getUnqualifiedType();
6076
6077  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6078  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6079  if (Unqualified) {
6080    LRetType = LRetType.getUnqualifiedType();
6081    RRetType = RRetType.getUnqualifiedType();
6082  }
6083
6084  if (getCanonicalType(retType) != LRetType)
6085    allLTypes = false;
6086  if (getCanonicalType(retType) != RRetType)
6087    allRTypes = false;
6088
6089  // FIXME: double check this
6090  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6091  //                           rbase->getRegParmAttr() != 0 &&
6092  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6093  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6094  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6095
6096  // Compatible functions must have compatible calling conventions
6097  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6098    return QualType();
6099
6100  // Regparm is part of the calling convention.
6101  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6102    return QualType();
6103  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6104    return QualType();
6105
6106  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6107    return QualType();
6108
6109  // functypes which return are preferred over those that do not.
6110  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
6111    allLTypes = false;
6112  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
6113    allRTypes = false;
6114  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6115  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6116
6117  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6118
6119  if (lproto && rproto) { // two C99 style function prototypes
6120    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6121           "C++ shouldn't be here");
6122    unsigned lproto_nargs = lproto->getNumArgs();
6123    unsigned rproto_nargs = rproto->getNumArgs();
6124
6125    // Compatible functions must have the same number of arguments
6126    if (lproto_nargs != rproto_nargs)
6127      return QualType();
6128
6129    // Variadic and non-variadic functions aren't compatible
6130    if (lproto->isVariadic() != rproto->isVariadic())
6131      return QualType();
6132
6133    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6134      return QualType();
6135
6136    if (LangOpts.ObjCAutoRefCount &&
6137        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6138      return QualType();
6139
6140    // Check argument compatibility
6141    SmallVector<QualType, 10> types;
6142    for (unsigned i = 0; i < lproto_nargs; i++) {
6143      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6144      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6145      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6146                                                    OfBlockPointer,
6147                                                    Unqualified);
6148      if (argtype.isNull()) return QualType();
6149
6150      if (Unqualified)
6151        argtype = argtype.getUnqualifiedType();
6152
6153      types.push_back(argtype);
6154      if (Unqualified) {
6155        largtype = largtype.getUnqualifiedType();
6156        rargtype = rargtype.getUnqualifiedType();
6157      }
6158
6159      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6160        allLTypes = false;
6161      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6162        allRTypes = false;
6163    }
6164
6165    if (allLTypes) return lhs;
6166    if (allRTypes) return rhs;
6167
6168    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6169    EPI.ExtInfo = einfo;
6170    return getFunctionType(retType, types.begin(), types.size(), EPI);
6171  }
6172
6173  if (lproto) allRTypes = false;
6174  if (rproto) allLTypes = false;
6175
6176  const FunctionProtoType *proto = lproto ? lproto : rproto;
6177  if (proto) {
6178    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6179    if (proto->isVariadic()) return QualType();
6180    // Check that the types are compatible with the types that
6181    // would result from default argument promotions (C99 6.7.5.3p15).
6182    // The only types actually affected are promotable integer
6183    // types and floats, which would be passed as a different
6184    // type depending on whether the prototype is visible.
6185    unsigned proto_nargs = proto->getNumArgs();
6186    for (unsigned i = 0; i < proto_nargs; ++i) {
6187      QualType argTy = proto->getArgType(i);
6188
6189      // Look at the promotion type of enum types, since that is the type used
6190      // to pass enum values.
6191      if (const EnumType *Enum = argTy->getAs<EnumType>())
6192        argTy = Enum->getDecl()->getPromotionType();
6193
6194      if (argTy->isPromotableIntegerType() ||
6195          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6196        return QualType();
6197    }
6198
6199    if (allLTypes) return lhs;
6200    if (allRTypes) return rhs;
6201
6202    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6203    EPI.ExtInfo = einfo;
6204    return getFunctionType(retType, proto->arg_type_begin(),
6205                           proto->getNumArgs(), EPI);
6206  }
6207
6208  if (allLTypes) return lhs;
6209  if (allRTypes) return rhs;
6210  return getFunctionNoProtoType(retType, einfo);
6211}
6212
6213QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6214                                bool OfBlockPointer,
6215                                bool Unqualified, bool BlockReturnType) {
6216  // C++ [expr]: If an expression initially has the type "reference to T", the
6217  // type is adjusted to "T" prior to any further analysis, the expression
6218  // designates the object or function denoted by the reference, and the
6219  // expression is an lvalue unless the reference is an rvalue reference and
6220  // the expression is a function call (possibly inside parentheses).
6221  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6222  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6223
6224  if (Unqualified) {
6225    LHS = LHS.getUnqualifiedType();
6226    RHS = RHS.getUnqualifiedType();
6227  }
6228
6229  QualType LHSCan = getCanonicalType(LHS),
6230           RHSCan = getCanonicalType(RHS);
6231
6232  // If two types are identical, they are compatible.
6233  if (LHSCan == RHSCan)
6234    return LHS;
6235
6236  // If the qualifiers are different, the types aren't compatible... mostly.
6237  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6238  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6239  if (LQuals != RQuals) {
6240    // If any of these qualifiers are different, we have a type
6241    // mismatch.
6242    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6243        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6244        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6245      return QualType();
6246
6247    // Exactly one GC qualifier difference is allowed: __strong is
6248    // okay if the other type has no GC qualifier but is an Objective
6249    // C object pointer (i.e. implicitly strong by default).  We fix
6250    // this by pretending that the unqualified type was actually
6251    // qualified __strong.
6252    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6253    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6254    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6255
6256    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6257      return QualType();
6258
6259    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6260      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6261    }
6262    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6263      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6264    }
6265    return QualType();
6266  }
6267
6268  // Okay, qualifiers are equal.
6269
6270  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6271  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6272
6273  // We want to consider the two function types to be the same for these
6274  // comparisons, just force one to the other.
6275  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6276  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6277
6278  // Same as above for arrays
6279  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6280    LHSClass = Type::ConstantArray;
6281  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6282    RHSClass = Type::ConstantArray;
6283
6284  // ObjCInterfaces are just specialized ObjCObjects.
6285  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6286  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6287
6288  // Canonicalize ExtVector -> Vector.
6289  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6290  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6291
6292  // If the canonical type classes don't match.
6293  if (LHSClass != RHSClass) {
6294    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6295    // a signed integer type, or an unsigned integer type.
6296    // Compatibility is based on the underlying type, not the promotion
6297    // type.
6298    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6299      QualType TINT = ETy->getDecl()->getIntegerType();
6300      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6301        return RHS;
6302    }
6303    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6304      QualType TINT = ETy->getDecl()->getIntegerType();
6305      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6306        return LHS;
6307    }
6308    // allow block pointer type to match an 'id' type.
6309    if (OfBlockPointer && !BlockReturnType) {
6310       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6311         return LHS;
6312      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6313        return RHS;
6314    }
6315
6316    return QualType();
6317  }
6318
6319  // The canonical type classes match.
6320  switch (LHSClass) {
6321#define TYPE(Class, Base)
6322#define ABSTRACT_TYPE(Class, Base)
6323#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6324#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6325#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6326#include "clang/AST/TypeNodes.def"
6327    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6328
6329  case Type::LValueReference:
6330  case Type::RValueReference:
6331  case Type::MemberPointer:
6332    llvm_unreachable("C++ should never be in mergeTypes");
6333
6334  case Type::ObjCInterface:
6335  case Type::IncompleteArray:
6336  case Type::VariableArray:
6337  case Type::FunctionProto:
6338  case Type::ExtVector:
6339    llvm_unreachable("Types are eliminated above");
6340
6341  case Type::Pointer:
6342  {
6343    // Merge two pointer types, while trying to preserve typedef info
6344    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6345    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6346    if (Unqualified) {
6347      LHSPointee = LHSPointee.getUnqualifiedType();
6348      RHSPointee = RHSPointee.getUnqualifiedType();
6349    }
6350    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6351                                     Unqualified);
6352    if (ResultType.isNull()) return QualType();
6353    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6354      return LHS;
6355    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6356      return RHS;
6357    return getPointerType(ResultType);
6358  }
6359  case Type::BlockPointer:
6360  {
6361    // Merge two block pointer types, while trying to preserve typedef info
6362    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6363    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6364    if (Unqualified) {
6365      LHSPointee = LHSPointee.getUnqualifiedType();
6366      RHSPointee = RHSPointee.getUnqualifiedType();
6367    }
6368    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6369                                     Unqualified);
6370    if (ResultType.isNull()) return QualType();
6371    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6372      return LHS;
6373    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6374      return RHS;
6375    return getBlockPointerType(ResultType);
6376  }
6377  case Type::Atomic:
6378  {
6379    // Merge two pointer types, while trying to preserve typedef info
6380    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6381    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6382    if (Unqualified) {
6383      LHSValue = LHSValue.getUnqualifiedType();
6384      RHSValue = RHSValue.getUnqualifiedType();
6385    }
6386    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6387                                     Unqualified);
6388    if (ResultType.isNull()) return QualType();
6389    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6390      return LHS;
6391    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6392      return RHS;
6393    return getAtomicType(ResultType);
6394  }
6395  case Type::ConstantArray:
6396  {
6397    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6398    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6399    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6400      return QualType();
6401
6402    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6403    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6404    if (Unqualified) {
6405      LHSElem = LHSElem.getUnqualifiedType();
6406      RHSElem = RHSElem.getUnqualifiedType();
6407    }
6408
6409    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6410    if (ResultType.isNull()) return QualType();
6411    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6412      return LHS;
6413    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6414      return RHS;
6415    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6416                                          ArrayType::ArraySizeModifier(), 0);
6417    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6418                                          ArrayType::ArraySizeModifier(), 0);
6419    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6420    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6421    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6422      return LHS;
6423    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6424      return RHS;
6425    if (LVAT) {
6426      // FIXME: This isn't correct! But tricky to implement because
6427      // the array's size has to be the size of LHS, but the type
6428      // has to be different.
6429      return LHS;
6430    }
6431    if (RVAT) {
6432      // FIXME: This isn't correct! But tricky to implement because
6433      // the array's size has to be the size of RHS, but the type
6434      // has to be different.
6435      return RHS;
6436    }
6437    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6438    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6439    return getIncompleteArrayType(ResultType,
6440                                  ArrayType::ArraySizeModifier(), 0);
6441  }
6442  case Type::FunctionNoProto:
6443    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6444  case Type::Record:
6445  case Type::Enum:
6446    return QualType();
6447  case Type::Builtin:
6448    // Only exactly equal builtin types are compatible, which is tested above.
6449    return QualType();
6450  case Type::Complex:
6451    // Distinct complex types are incompatible.
6452    return QualType();
6453  case Type::Vector:
6454    // FIXME: The merged type should be an ExtVector!
6455    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6456                             RHSCan->getAs<VectorType>()))
6457      return LHS;
6458    return QualType();
6459  case Type::ObjCObject: {
6460    // Check if the types are assignment compatible.
6461    // FIXME: This should be type compatibility, e.g. whether
6462    // "LHS x; RHS x;" at global scope is legal.
6463    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6464    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6465    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6466      return LHS;
6467
6468    return QualType();
6469  }
6470  case Type::ObjCObjectPointer: {
6471    if (OfBlockPointer) {
6472      if (canAssignObjCInterfacesInBlockPointer(
6473                                          LHS->getAs<ObjCObjectPointerType>(),
6474                                          RHS->getAs<ObjCObjectPointerType>(),
6475                                          BlockReturnType))
6476        return LHS;
6477      return QualType();
6478    }
6479    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6480                                RHS->getAs<ObjCObjectPointerType>()))
6481      return LHS;
6482
6483    return QualType();
6484  }
6485  }
6486
6487  llvm_unreachable("Invalid Type::Class!");
6488}
6489
6490bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6491                   const FunctionProtoType *FromFunctionType,
6492                   const FunctionProtoType *ToFunctionType) {
6493  if (FromFunctionType->hasAnyConsumedArgs() !=
6494      ToFunctionType->hasAnyConsumedArgs())
6495    return false;
6496  FunctionProtoType::ExtProtoInfo FromEPI =
6497    FromFunctionType->getExtProtoInfo();
6498  FunctionProtoType::ExtProtoInfo ToEPI =
6499    ToFunctionType->getExtProtoInfo();
6500  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6501    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6502         ArgIdx != NumArgs; ++ArgIdx)  {
6503      if (FromEPI.ConsumedArguments[ArgIdx] !=
6504          ToEPI.ConsumedArguments[ArgIdx])
6505        return false;
6506    }
6507  return true;
6508}
6509
6510/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6511/// 'RHS' attributes and returns the merged version; including for function
6512/// return types.
6513QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6514  QualType LHSCan = getCanonicalType(LHS),
6515  RHSCan = getCanonicalType(RHS);
6516  // If two types are identical, they are compatible.
6517  if (LHSCan == RHSCan)
6518    return LHS;
6519  if (RHSCan->isFunctionType()) {
6520    if (!LHSCan->isFunctionType())
6521      return QualType();
6522    QualType OldReturnType =
6523      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6524    QualType NewReturnType =
6525      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6526    QualType ResReturnType =
6527      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6528    if (ResReturnType.isNull())
6529      return QualType();
6530    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6531      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6532      // In either case, use OldReturnType to build the new function type.
6533      const FunctionType *F = LHS->getAs<FunctionType>();
6534      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6535        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6536        EPI.ExtInfo = getFunctionExtInfo(LHS);
6537        QualType ResultType
6538          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6539                            FPT->getNumArgs(), EPI);
6540        return ResultType;
6541      }
6542    }
6543    return QualType();
6544  }
6545
6546  // If the qualifiers are different, the types can still be merged.
6547  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6548  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6549  if (LQuals != RQuals) {
6550    // If any of these qualifiers are different, we have a type mismatch.
6551    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6552        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6553      return QualType();
6554
6555    // Exactly one GC qualifier difference is allowed: __strong is
6556    // okay if the other type has no GC qualifier but is an Objective
6557    // C object pointer (i.e. implicitly strong by default).  We fix
6558    // this by pretending that the unqualified type was actually
6559    // qualified __strong.
6560    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6561    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6562    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6563
6564    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6565      return QualType();
6566
6567    if (GC_L == Qualifiers::Strong)
6568      return LHS;
6569    if (GC_R == Qualifiers::Strong)
6570      return RHS;
6571    return QualType();
6572  }
6573
6574  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6575    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6576    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6577    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6578    if (ResQT == LHSBaseQT)
6579      return LHS;
6580    if (ResQT == RHSBaseQT)
6581      return RHS;
6582  }
6583  return QualType();
6584}
6585
6586//===----------------------------------------------------------------------===//
6587//                         Integer Predicates
6588//===----------------------------------------------------------------------===//
6589
6590unsigned ASTContext::getIntWidth(QualType T) const {
6591  if (const EnumType *ET = dyn_cast<EnumType>(T))
6592    T = ET->getDecl()->getIntegerType();
6593  if (T->isBooleanType())
6594    return 1;
6595  // For builtin types, just use the standard type sizing method
6596  return (unsigned)getTypeSize(T);
6597}
6598
6599QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6600  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6601
6602  // Turn <4 x signed int> -> <4 x unsigned int>
6603  if (const VectorType *VTy = T->getAs<VectorType>())
6604    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6605                         VTy->getNumElements(), VTy->getVectorKind());
6606
6607  // For enums, we return the unsigned version of the base type.
6608  if (const EnumType *ETy = T->getAs<EnumType>())
6609    T = ETy->getDecl()->getIntegerType();
6610
6611  const BuiltinType *BTy = T->getAs<BuiltinType>();
6612  assert(BTy && "Unexpected signed integer type");
6613  switch (BTy->getKind()) {
6614  case BuiltinType::Char_S:
6615  case BuiltinType::SChar:
6616    return UnsignedCharTy;
6617  case BuiltinType::Short:
6618    return UnsignedShortTy;
6619  case BuiltinType::Int:
6620    return UnsignedIntTy;
6621  case BuiltinType::Long:
6622    return UnsignedLongTy;
6623  case BuiltinType::LongLong:
6624    return UnsignedLongLongTy;
6625  case BuiltinType::Int128:
6626    return UnsignedInt128Ty;
6627  default:
6628    llvm_unreachable("Unexpected signed integer type");
6629  }
6630}
6631
6632ASTMutationListener::~ASTMutationListener() { }
6633
6634
6635//===----------------------------------------------------------------------===//
6636//                          Builtin Type Computation
6637//===----------------------------------------------------------------------===//
6638
6639/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6640/// pointer over the consumed characters.  This returns the resultant type.  If
6641/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6642/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6643/// a vector of "i*".
6644///
6645/// RequiresICE is filled in on return to indicate whether the value is required
6646/// to be an Integer Constant Expression.
6647static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6648                                  ASTContext::GetBuiltinTypeError &Error,
6649                                  bool &RequiresICE,
6650                                  bool AllowTypeModifiers) {
6651  // Modifiers.
6652  int HowLong = 0;
6653  bool Signed = false, Unsigned = false;
6654  RequiresICE = false;
6655
6656  // Read the prefixed modifiers first.
6657  bool Done = false;
6658  while (!Done) {
6659    switch (*Str++) {
6660    default: Done = true; --Str; break;
6661    case 'I':
6662      RequiresICE = true;
6663      break;
6664    case 'S':
6665      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6666      assert(!Signed && "Can't use 'S' modifier multiple times!");
6667      Signed = true;
6668      break;
6669    case 'U':
6670      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6671      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6672      Unsigned = true;
6673      break;
6674    case 'L':
6675      assert(HowLong <= 2 && "Can't have LLLL modifier");
6676      ++HowLong;
6677      break;
6678    }
6679  }
6680
6681  QualType Type;
6682
6683  // Read the base type.
6684  switch (*Str++) {
6685  default: llvm_unreachable("Unknown builtin type letter!");
6686  case 'v':
6687    assert(HowLong == 0 && !Signed && !Unsigned &&
6688           "Bad modifiers used with 'v'!");
6689    Type = Context.VoidTy;
6690    break;
6691  case 'f':
6692    assert(HowLong == 0 && !Signed && !Unsigned &&
6693           "Bad modifiers used with 'f'!");
6694    Type = Context.FloatTy;
6695    break;
6696  case 'd':
6697    assert(HowLong < 2 && !Signed && !Unsigned &&
6698           "Bad modifiers used with 'd'!");
6699    if (HowLong)
6700      Type = Context.LongDoubleTy;
6701    else
6702      Type = Context.DoubleTy;
6703    break;
6704  case 's':
6705    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6706    if (Unsigned)
6707      Type = Context.UnsignedShortTy;
6708    else
6709      Type = Context.ShortTy;
6710    break;
6711  case 'i':
6712    if (HowLong == 3)
6713      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6714    else if (HowLong == 2)
6715      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6716    else if (HowLong == 1)
6717      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6718    else
6719      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6720    break;
6721  case 'c':
6722    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6723    if (Signed)
6724      Type = Context.SignedCharTy;
6725    else if (Unsigned)
6726      Type = Context.UnsignedCharTy;
6727    else
6728      Type = Context.CharTy;
6729    break;
6730  case 'b': // boolean
6731    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6732    Type = Context.BoolTy;
6733    break;
6734  case 'z':  // size_t.
6735    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6736    Type = Context.getSizeType();
6737    break;
6738  case 'F':
6739    Type = Context.getCFConstantStringType();
6740    break;
6741  case 'G':
6742    Type = Context.getObjCIdType();
6743    break;
6744  case 'H':
6745    Type = Context.getObjCSelType();
6746    break;
6747  case 'a':
6748    Type = Context.getBuiltinVaListType();
6749    assert(!Type.isNull() && "builtin va list type not initialized!");
6750    break;
6751  case 'A':
6752    // This is a "reference" to a va_list; however, what exactly
6753    // this means depends on how va_list is defined. There are two
6754    // different kinds of va_list: ones passed by value, and ones
6755    // passed by reference.  An example of a by-value va_list is
6756    // x86, where va_list is a char*. An example of by-ref va_list
6757    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6758    // we want this argument to be a char*&; for x86-64, we want
6759    // it to be a __va_list_tag*.
6760    Type = Context.getBuiltinVaListType();
6761    assert(!Type.isNull() && "builtin va list type not initialized!");
6762    if (Type->isArrayType())
6763      Type = Context.getArrayDecayedType(Type);
6764    else
6765      Type = Context.getLValueReferenceType(Type);
6766    break;
6767  case 'V': {
6768    char *End;
6769    unsigned NumElements = strtoul(Str, &End, 10);
6770    assert(End != Str && "Missing vector size");
6771    Str = End;
6772
6773    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6774                                             RequiresICE, false);
6775    assert(!RequiresICE && "Can't require vector ICE");
6776
6777    // TODO: No way to make AltiVec vectors in builtins yet.
6778    Type = Context.getVectorType(ElementType, NumElements,
6779                                 VectorType::GenericVector);
6780    break;
6781  }
6782  case 'E': {
6783    char *End;
6784
6785    unsigned NumElements = strtoul(Str, &End, 10);
6786    assert(End != Str && "Missing vector size");
6787
6788    Str = End;
6789
6790    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6791                                             false);
6792    Type = Context.getExtVectorType(ElementType, NumElements);
6793    break;
6794  }
6795  case 'X': {
6796    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6797                                             false);
6798    assert(!RequiresICE && "Can't require complex ICE");
6799    Type = Context.getComplexType(ElementType);
6800    break;
6801  }
6802  case 'Y' : {
6803    Type = Context.getPointerDiffType();
6804    break;
6805  }
6806  case 'P':
6807    Type = Context.getFILEType();
6808    if (Type.isNull()) {
6809      Error = ASTContext::GE_Missing_stdio;
6810      return QualType();
6811    }
6812    break;
6813  case 'J':
6814    if (Signed)
6815      Type = Context.getsigjmp_bufType();
6816    else
6817      Type = Context.getjmp_bufType();
6818
6819    if (Type.isNull()) {
6820      Error = ASTContext::GE_Missing_setjmp;
6821      return QualType();
6822    }
6823    break;
6824  case 'K':
6825    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6826    Type = Context.getucontext_tType();
6827
6828    if (Type.isNull()) {
6829      Error = ASTContext::GE_Missing_ucontext;
6830      return QualType();
6831    }
6832    break;
6833  }
6834
6835  // If there are modifiers and if we're allowed to parse them, go for it.
6836  Done = !AllowTypeModifiers;
6837  while (!Done) {
6838    switch (char c = *Str++) {
6839    default: Done = true; --Str; break;
6840    case '*':
6841    case '&': {
6842      // Both pointers and references can have their pointee types
6843      // qualified with an address space.
6844      char *End;
6845      unsigned AddrSpace = strtoul(Str, &End, 10);
6846      if (End != Str && AddrSpace != 0) {
6847        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6848        Str = End;
6849      }
6850      if (c == '*')
6851        Type = Context.getPointerType(Type);
6852      else
6853        Type = Context.getLValueReferenceType(Type);
6854      break;
6855    }
6856    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6857    case 'C':
6858      Type = Type.withConst();
6859      break;
6860    case 'D':
6861      Type = Context.getVolatileType(Type);
6862      break;
6863    case 'R':
6864      Type = Type.withRestrict();
6865      break;
6866    }
6867  }
6868
6869  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6870         "Integer constant 'I' type must be an integer");
6871
6872  return Type;
6873}
6874
6875/// GetBuiltinType - Return the type for the specified builtin.
6876QualType ASTContext::GetBuiltinType(unsigned Id,
6877                                    GetBuiltinTypeError &Error,
6878                                    unsigned *IntegerConstantArgs) const {
6879  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6880
6881  SmallVector<QualType, 8> ArgTypes;
6882
6883  bool RequiresICE = false;
6884  Error = GE_None;
6885  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6886                                       RequiresICE, true);
6887  if (Error != GE_None)
6888    return QualType();
6889
6890  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6891
6892  while (TypeStr[0] && TypeStr[0] != '.') {
6893    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6894    if (Error != GE_None)
6895      return QualType();
6896
6897    // If this argument is required to be an IntegerConstantExpression and the
6898    // caller cares, fill in the bitmask we return.
6899    if (RequiresICE && IntegerConstantArgs)
6900      *IntegerConstantArgs |= 1 << ArgTypes.size();
6901
6902    // Do array -> pointer decay.  The builtin should use the decayed type.
6903    if (Ty->isArrayType())
6904      Ty = getArrayDecayedType(Ty);
6905
6906    ArgTypes.push_back(Ty);
6907  }
6908
6909  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6910         "'.' should only occur at end of builtin type list!");
6911
6912  FunctionType::ExtInfo EI;
6913  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6914
6915  bool Variadic = (TypeStr[0] == '.');
6916
6917  // We really shouldn't be making a no-proto type here, especially in C++.
6918  if (ArgTypes.empty() && Variadic)
6919    return getFunctionNoProtoType(ResType, EI);
6920
6921  FunctionProtoType::ExtProtoInfo EPI;
6922  EPI.ExtInfo = EI;
6923  EPI.Variadic = Variadic;
6924
6925  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6926}
6927
6928GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6929  GVALinkage External = GVA_StrongExternal;
6930
6931  Linkage L = FD->getLinkage();
6932  switch (L) {
6933  case NoLinkage:
6934  case InternalLinkage:
6935  case UniqueExternalLinkage:
6936    return GVA_Internal;
6937
6938  case ExternalLinkage:
6939    switch (FD->getTemplateSpecializationKind()) {
6940    case TSK_Undeclared:
6941    case TSK_ExplicitSpecialization:
6942      External = GVA_StrongExternal;
6943      break;
6944
6945    case TSK_ExplicitInstantiationDefinition:
6946      return GVA_ExplicitTemplateInstantiation;
6947
6948    case TSK_ExplicitInstantiationDeclaration:
6949    case TSK_ImplicitInstantiation:
6950      External = GVA_TemplateInstantiation;
6951      break;
6952    }
6953  }
6954
6955  if (!FD->isInlined())
6956    return External;
6957
6958  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6959    // GNU or C99 inline semantics. Determine whether this symbol should be
6960    // externally visible.
6961    if (FD->isInlineDefinitionExternallyVisible())
6962      return External;
6963
6964    // C99 inline semantics, where the symbol is not externally visible.
6965    return GVA_C99Inline;
6966  }
6967
6968  // C++0x [temp.explicit]p9:
6969  //   [ Note: The intent is that an inline function that is the subject of
6970  //   an explicit instantiation declaration will still be implicitly
6971  //   instantiated when used so that the body can be considered for
6972  //   inlining, but that no out-of-line copy of the inline function would be
6973  //   generated in the translation unit. -- end note ]
6974  if (FD->getTemplateSpecializationKind()
6975                                       == TSK_ExplicitInstantiationDeclaration)
6976    return GVA_C99Inline;
6977
6978  return GVA_CXXInline;
6979}
6980
6981GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6982  // If this is a static data member, compute the kind of template
6983  // specialization. Otherwise, this variable is not part of a
6984  // template.
6985  TemplateSpecializationKind TSK = TSK_Undeclared;
6986  if (VD->isStaticDataMember())
6987    TSK = VD->getTemplateSpecializationKind();
6988
6989  Linkage L = VD->getLinkage();
6990  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
6991      VD->getType()->getLinkage() == UniqueExternalLinkage)
6992    L = UniqueExternalLinkage;
6993
6994  switch (L) {
6995  case NoLinkage:
6996  case InternalLinkage:
6997  case UniqueExternalLinkage:
6998    return GVA_Internal;
6999
7000  case ExternalLinkage:
7001    switch (TSK) {
7002    case TSK_Undeclared:
7003    case TSK_ExplicitSpecialization:
7004      return GVA_StrongExternal;
7005
7006    case TSK_ExplicitInstantiationDeclaration:
7007      llvm_unreachable("Variable should not be instantiated");
7008      // Fall through to treat this like any other instantiation.
7009
7010    case TSK_ExplicitInstantiationDefinition:
7011      return GVA_ExplicitTemplateInstantiation;
7012
7013    case TSK_ImplicitInstantiation:
7014      return GVA_TemplateInstantiation;
7015    }
7016  }
7017
7018  llvm_unreachable("Invalid Linkage!");
7019}
7020
7021bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7022  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7023    if (!VD->isFileVarDecl())
7024      return false;
7025  } else if (!isa<FunctionDecl>(D))
7026    return false;
7027
7028  // Weak references don't produce any output by themselves.
7029  if (D->hasAttr<WeakRefAttr>())
7030    return false;
7031
7032  // Aliases and used decls are required.
7033  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7034    return true;
7035
7036  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7037    // Forward declarations aren't required.
7038    if (!FD->doesThisDeclarationHaveABody())
7039      return FD->doesDeclarationForceExternallyVisibleDefinition();
7040
7041    // Constructors and destructors are required.
7042    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7043      return true;
7044
7045    // The key function for a class is required.
7046    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7047      const CXXRecordDecl *RD = MD->getParent();
7048      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7049        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7050        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7051          return true;
7052      }
7053    }
7054
7055    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7056
7057    // static, static inline, always_inline, and extern inline functions can
7058    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7059    // Implicit template instantiations can also be deferred in C++.
7060    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7061        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7062      return false;
7063    return true;
7064  }
7065
7066  const VarDecl *VD = cast<VarDecl>(D);
7067  assert(VD->isFileVarDecl() && "Expected file scoped var");
7068
7069  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7070    return false;
7071
7072  // Structs that have non-trivial constructors or destructors are required.
7073
7074  // FIXME: Handle references.
7075  // FIXME: Be more selective about which constructors we care about.
7076  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
7077    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
7078      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
7079                                   RD->hasTrivialCopyConstructor() &&
7080                                   RD->hasTrivialMoveConstructor() &&
7081                                   RD->hasTrivialDestructor()))
7082        return true;
7083    }
7084  }
7085
7086  GVALinkage L = GetGVALinkageForVariable(VD);
7087  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
7088    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
7089      return false;
7090  }
7091
7092  return true;
7093}
7094
7095CallingConv ASTContext::getDefaultMethodCallConv() {
7096  // Pass through to the C++ ABI object
7097  return ABI->getDefaultMethodCallConv();
7098}
7099
7100bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7101  // Pass through to the C++ ABI object
7102  return ABI->isNearlyEmpty(RD);
7103}
7104
7105MangleContext *ASTContext::createMangleContext() {
7106  switch (Target->getCXXABI()) {
7107  case CXXABI_ARM:
7108  case CXXABI_Itanium:
7109    return createItaniumMangleContext(*this, getDiagnostics());
7110  case CXXABI_Microsoft:
7111    return createMicrosoftMangleContext(*this, getDiagnostics());
7112  }
7113  llvm_unreachable("Unsupported ABI");
7114}
7115
7116CXXABI::~CXXABI() {}
7117
7118size_t ASTContext::getSideTableAllocatedMemory() const {
7119  return ASTRecordLayouts.getMemorySize()
7120    + llvm::capacity_in_bytes(ObjCLayouts)
7121    + llvm::capacity_in_bytes(KeyFunctions)
7122    + llvm::capacity_in_bytes(ObjCImpls)
7123    + llvm::capacity_in_bytes(BlockVarCopyInits)
7124    + llvm::capacity_in_bytes(DeclAttrs)
7125    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7126    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7127    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7128    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7129    + llvm::capacity_in_bytes(OverriddenMethods)
7130    + llvm::capacity_in_bytes(Types)
7131    + llvm::capacity_in_bytes(VariableArrayTypes)
7132    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7133}
7134
7135unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7136  CXXRecordDecl *Lambda = CallOperator->getParent();
7137  return LambdaMangleContexts[Lambda->getDeclContext()]
7138           .getManglingNumber(CallOperator);
7139}
7140
7141
7142void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7143  ParamIndices[D] = index;
7144}
7145
7146unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7147  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7148  assert(I != ParamIndices.end() &&
7149         "ParmIndices lacks entry set by ParmVarDecl");
7150  return I->second;
7151}
7152