ASTContext.cpp revision 8f88a1dcc57cfe8580eb1558a783ad8499bfe8e0
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/CommentLexer.h"
17#include "clang/AST/CommentSema.h"
18#include "clang/AST/CommentParser.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExternalASTSource.h"
26#include "clang/AST/ASTMutationListener.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/Mangle.h"
29#include "clang/Basic/Builtins.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Support/Capacity.h"
37#include "CXXABI.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // TODO: handle comments for function parameters properly.
72  if (isa<ParmVarDecl>(D))
73    return NULL;
74
75  ArrayRef<RawComment *> RawComments = Comments.getComments();
76
77  // If there are no comments anywhere, we won't find anything.
78  if (RawComments.empty())
79    return NULL;
80
81  // If the declaration doesn't map directly to a location in a file, we
82  // can't find the comment.
83  SourceLocation DeclLoc = D->getLocation();
84  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
85    return NULL;
86
87  // Find the comment that occurs just after this declaration.
88  RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
89  ArrayRef<RawComment *>::iterator Comment
90      = std::lower_bound(RawComments.begin(),
91                         RawComments.end(),
92                         &CommentAtDeclLoc,
93                         BeforeThanCompare<RawComment>(SourceMgr));
94
95  // Decompose the location for the declaration and find the beginning of the
96  // file buffer.
97  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
98
99  // First check whether we have a trailing comment.
100  if (Comment != RawComments.end() &&
101      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
102      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
103    std::pair<FileID, unsigned> CommentBeginDecomp
104      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
105    // Check that Doxygen trailing comment comes after the declaration, starts
106    // on the same line and in the same file as the declaration.
107    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
108        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
109          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
110                                     CommentBeginDecomp.second)) {
111      return *Comment;
112    }
113  }
114
115  // The comment just after the declaration was not a trailing comment.
116  // Let's look at the previous comment.
117  if (Comment == RawComments.begin())
118    return NULL;
119  --Comment;
120
121  // Check that we actually have a non-member Doxygen comment.
122  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
123    return NULL;
124
125  // Decompose the end of the comment.
126  std::pair<FileID, unsigned> CommentEndDecomp
127    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
128
129  // If the comment and the declaration aren't in the same file, then they
130  // aren't related.
131  if (DeclLocDecomp.first != CommentEndDecomp.first)
132    return NULL;
133
134  // Get the corresponding buffer.
135  bool Invalid = false;
136  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
137                                               &Invalid).data();
138  if (Invalid)
139    return NULL;
140
141  // Extract text between the comment and declaration.
142  StringRef Text(Buffer + CommentEndDecomp.second,
143                 DeclLocDecomp.second - CommentEndDecomp.second);
144
145  // There should be no other declarations or preprocessor directives between
146  // comment and declaration.
147  if (Text.find_first_of(",;{}#") != StringRef::npos)
148    return NULL;
149
150  return *Comment;
151}
152
153const RawComment *ASTContext::getRawCommentForDecl(const Decl *D) const {
154  // Check whether we have cached a comment string for this declaration
155  // already.
156  llvm::DenseMap<const Decl *, RawAndParsedComment>::iterator Pos
157      = DeclComments.find(D);
158  if (Pos != DeclComments.end()) {
159    RawAndParsedComment C = Pos->second;
160    return C.first;
161  }
162
163  RawComment *RC = getRawCommentForDeclNoCache(D);
164  // If we found a comment, it should be a documentation comment.
165  assert(!RC || RC->isDocumentation());
166  DeclComments[D] =
167      RawAndParsedComment(RC, static_cast<comments::FullComment *>(NULL));
168  if (RC)
169    RC->setAttached();
170  return RC;
171}
172
173comments::FullComment *ASTContext::getCommentForDecl(const Decl *D) const {
174  llvm::DenseMap<const Decl *, RawAndParsedComment>::iterator Pos
175      = DeclComments.find(D);
176  const RawComment *RC;
177  if (Pos != DeclComments.end()) {
178    RawAndParsedComment C = Pos->second;
179    if (comments::FullComment *FC = C.second)
180      return FC;
181    RC = C.first;
182  } else
183    RC = getRawCommentForDecl(D);
184
185  if (!RC)
186    return NULL;
187
188  const StringRef RawText = RC->getRawText(SourceMgr);
189  comments::Lexer L(RC->getSourceRange().getBegin(), comments::CommentOptions(),
190                    RawText.begin(), RawText.end());
191
192  comments::Sema S(getAllocator(), getSourceManager(), getDiagnostics());
193  S.setDecl(D);
194  comments::Parser P(L, S, getAllocator(), getSourceManager(),
195                     getDiagnostics());
196
197  comments::FullComment *FC = P.parseFullComment();
198  DeclComments[D].second = FC;
199  return FC;
200}
201
202void
203ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
204                                               TemplateTemplateParmDecl *Parm) {
205  ID.AddInteger(Parm->getDepth());
206  ID.AddInteger(Parm->getPosition());
207  ID.AddBoolean(Parm->isParameterPack());
208
209  TemplateParameterList *Params = Parm->getTemplateParameters();
210  ID.AddInteger(Params->size());
211  for (TemplateParameterList::const_iterator P = Params->begin(),
212                                          PEnd = Params->end();
213       P != PEnd; ++P) {
214    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
215      ID.AddInteger(0);
216      ID.AddBoolean(TTP->isParameterPack());
217      continue;
218    }
219
220    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
221      ID.AddInteger(1);
222      ID.AddBoolean(NTTP->isParameterPack());
223      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
224      if (NTTP->isExpandedParameterPack()) {
225        ID.AddBoolean(true);
226        ID.AddInteger(NTTP->getNumExpansionTypes());
227        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
228          QualType T = NTTP->getExpansionType(I);
229          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
230        }
231      } else
232        ID.AddBoolean(false);
233      continue;
234    }
235
236    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
237    ID.AddInteger(2);
238    Profile(ID, TTP);
239  }
240}
241
242TemplateTemplateParmDecl *
243ASTContext::getCanonicalTemplateTemplateParmDecl(
244                                          TemplateTemplateParmDecl *TTP) const {
245  // Check if we already have a canonical template template parameter.
246  llvm::FoldingSetNodeID ID;
247  CanonicalTemplateTemplateParm::Profile(ID, TTP);
248  void *InsertPos = 0;
249  CanonicalTemplateTemplateParm *Canonical
250    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
251  if (Canonical)
252    return Canonical->getParam();
253
254  // Build a canonical template parameter list.
255  TemplateParameterList *Params = TTP->getTemplateParameters();
256  SmallVector<NamedDecl *, 4> CanonParams;
257  CanonParams.reserve(Params->size());
258  for (TemplateParameterList::const_iterator P = Params->begin(),
259                                          PEnd = Params->end();
260       P != PEnd; ++P) {
261    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
262      CanonParams.push_back(
263                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
264                                               SourceLocation(),
265                                               SourceLocation(),
266                                               TTP->getDepth(),
267                                               TTP->getIndex(), 0, false,
268                                               TTP->isParameterPack()));
269    else if (NonTypeTemplateParmDecl *NTTP
270             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
271      QualType T = getCanonicalType(NTTP->getType());
272      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
273      NonTypeTemplateParmDecl *Param;
274      if (NTTP->isExpandedParameterPack()) {
275        SmallVector<QualType, 2> ExpandedTypes;
276        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
277        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
278          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
279          ExpandedTInfos.push_back(
280                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
281        }
282
283        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
284                                                SourceLocation(),
285                                                SourceLocation(),
286                                                NTTP->getDepth(),
287                                                NTTP->getPosition(), 0,
288                                                T,
289                                                TInfo,
290                                                ExpandedTypes.data(),
291                                                ExpandedTypes.size(),
292                                                ExpandedTInfos.data());
293      } else {
294        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
295                                                SourceLocation(),
296                                                SourceLocation(),
297                                                NTTP->getDepth(),
298                                                NTTP->getPosition(), 0,
299                                                T,
300                                                NTTP->isParameterPack(),
301                                                TInfo);
302      }
303      CanonParams.push_back(Param);
304
305    } else
306      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
307                                           cast<TemplateTemplateParmDecl>(*P)));
308  }
309
310  TemplateTemplateParmDecl *CanonTTP
311    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
312                                       SourceLocation(), TTP->getDepth(),
313                                       TTP->getPosition(),
314                                       TTP->isParameterPack(),
315                                       0,
316                         TemplateParameterList::Create(*this, SourceLocation(),
317                                                       SourceLocation(),
318                                                       CanonParams.data(),
319                                                       CanonParams.size(),
320                                                       SourceLocation()));
321
322  // Get the new insert position for the node we care about.
323  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
324  assert(Canonical == 0 && "Shouldn't be in the map!");
325  (void)Canonical;
326
327  // Create the canonical template template parameter entry.
328  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
329  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
330  return CanonTTP;
331}
332
333CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
334  if (!LangOpts.CPlusPlus) return 0;
335
336  switch (T.getCXXABI()) {
337  case CXXABI_ARM:
338    return CreateARMCXXABI(*this);
339  case CXXABI_Itanium:
340    return CreateItaniumCXXABI(*this);
341  case CXXABI_Microsoft:
342    return CreateMicrosoftCXXABI(*this);
343  }
344  llvm_unreachable("Invalid CXXABI type!");
345}
346
347static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
348                                             const LangOptions &LOpts) {
349  if (LOpts.FakeAddressSpaceMap) {
350    // The fake address space map must have a distinct entry for each
351    // language-specific address space.
352    static const unsigned FakeAddrSpaceMap[] = {
353      1, // opencl_global
354      2, // opencl_local
355      3, // opencl_constant
356      4, // cuda_device
357      5, // cuda_constant
358      6  // cuda_shared
359    };
360    return &FakeAddrSpaceMap;
361  } else {
362    return &T.getAddressSpaceMap();
363  }
364}
365
366ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
367                       const TargetInfo *t,
368                       IdentifierTable &idents, SelectorTable &sels,
369                       Builtin::Context &builtins,
370                       unsigned size_reserve,
371                       bool DelayInitialization)
372  : FunctionProtoTypes(this_()),
373    TemplateSpecializationTypes(this_()),
374    DependentTemplateSpecializationTypes(this_()),
375    SubstTemplateTemplateParmPacks(this_()),
376    GlobalNestedNameSpecifier(0),
377    Int128Decl(0), UInt128Decl(0),
378    BuiltinVaListDecl(0),
379    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
380    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
381    FILEDecl(0),
382    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
383    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
384    cudaConfigureCallDecl(0),
385    NullTypeSourceInfo(QualType()),
386    FirstLocalImport(), LastLocalImport(),
387    SourceMgr(SM), LangOpts(LOpts),
388    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
389    Idents(idents), Selectors(sels),
390    BuiltinInfo(builtins),
391    DeclarationNames(*this),
392    ExternalSource(0), Listener(0),
393    Comments(SM), CommentsLoaded(false),
394    LastSDM(0, 0),
395    UniqueBlockByRefTypeID(0)
396{
397  if (size_reserve > 0) Types.reserve(size_reserve);
398  TUDecl = TranslationUnitDecl::Create(*this);
399
400  if (!DelayInitialization) {
401    assert(t && "No target supplied for ASTContext initialization");
402    InitBuiltinTypes(*t);
403  }
404}
405
406ASTContext::~ASTContext() {
407  // Release the DenseMaps associated with DeclContext objects.
408  // FIXME: Is this the ideal solution?
409  ReleaseDeclContextMaps();
410
411  // Call all of the deallocation functions.
412  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
413    Deallocations[I].first(Deallocations[I].second);
414
415  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
416  // because they can contain DenseMaps.
417  for (llvm::DenseMap<const ObjCContainerDecl*,
418       const ASTRecordLayout*>::iterator
419       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
420    // Increment in loop to prevent using deallocated memory.
421    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
422      R->Destroy(*this);
423
424  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
425       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
426    // Increment in loop to prevent using deallocated memory.
427    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
428      R->Destroy(*this);
429  }
430
431  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
432                                                    AEnd = DeclAttrs.end();
433       A != AEnd; ++A)
434    A->second->~AttrVec();
435}
436
437void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
438  Deallocations.push_back(std::make_pair(Callback, Data));
439}
440
441void
442ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
443  ExternalSource.reset(Source.take());
444}
445
446void ASTContext::PrintStats() const {
447  llvm::errs() << "\n*** AST Context Stats:\n";
448  llvm::errs() << "  " << Types.size() << " types total.\n";
449
450  unsigned counts[] = {
451#define TYPE(Name, Parent) 0,
452#define ABSTRACT_TYPE(Name, Parent)
453#include "clang/AST/TypeNodes.def"
454    0 // Extra
455  };
456
457  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
458    Type *T = Types[i];
459    counts[(unsigned)T->getTypeClass()]++;
460  }
461
462  unsigned Idx = 0;
463  unsigned TotalBytes = 0;
464#define TYPE(Name, Parent)                                              \
465  if (counts[Idx])                                                      \
466    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
467                 << " types\n";                                         \
468  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
469  ++Idx;
470#define ABSTRACT_TYPE(Name, Parent)
471#include "clang/AST/TypeNodes.def"
472
473  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
474
475  // Implicit special member functions.
476  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
477               << NumImplicitDefaultConstructors
478               << " implicit default constructors created\n";
479  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
480               << NumImplicitCopyConstructors
481               << " implicit copy constructors created\n";
482  if (getLangOpts().CPlusPlus)
483    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
484                 << NumImplicitMoveConstructors
485                 << " implicit move constructors created\n";
486  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
487               << NumImplicitCopyAssignmentOperators
488               << " implicit copy assignment operators created\n";
489  if (getLangOpts().CPlusPlus)
490    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
491                 << NumImplicitMoveAssignmentOperators
492                 << " implicit move assignment operators created\n";
493  llvm::errs() << NumImplicitDestructorsDeclared << "/"
494               << NumImplicitDestructors
495               << " implicit destructors created\n";
496
497  if (ExternalSource.get()) {
498    llvm::errs() << "\n";
499    ExternalSource->PrintStats();
500  }
501
502  BumpAlloc.PrintStats();
503}
504
505TypedefDecl *ASTContext::getInt128Decl() const {
506  if (!Int128Decl) {
507    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
508    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
509                                     getTranslationUnitDecl(),
510                                     SourceLocation(),
511                                     SourceLocation(),
512                                     &Idents.get("__int128_t"),
513                                     TInfo);
514  }
515
516  return Int128Decl;
517}
518
519TypedefDecl *ASTContext::getUInt128Decl() const {
520  if (!UInt128Decl) {
521    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
522    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
523                                     getTranslationUnitDecl(),
524                                     SourceLocation(),
525                                     SourceLocation(),
526                                     &Idents.get("__uint128_t"),
527                                     TInfo);
528  }
529
530  return UInt128Decl;
531}
532
533void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
534  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
535  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
536  Types.push_back(Ty);
537}
538
539void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
540  assert((!this->Target || this->Target == &Target) &&
541         "Incorrect target reinitialization");
542  assert(VoidTy.isNull() && "Context reinitialized?");
543
544  this->Target = &Target;
545
546  ABI.reset(createCXXABI(Target));
547  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
548
549  // C99 6.2.5p19.
550  InitBuiltinType(VoidTy,              BuiltinType::Void);
551
552  // C99 6.2.5p2.
553  InitBuiltinType(BoolTy,              BuiltinType::Bool);
554  // C99 6.2.5p3.
555  if (LangOpts.CharIsSigned)
556    InitBuiltinType(CharTy,            BuiltinType::Char_S);
557  else
558    InitBuiltinType(CharTy,            BuiltinType::Char_U);
559  // C99 6.2.5p4.
560  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
561  InitBuiltinType(ShortTy,             BuiltinType::Short);
562  InitBuiltinType(IntTy,               BuiltinType::Int);
563  InitBuiltinType(LongTy,              BuiltinType::Long);
564  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
565
566  // C99 6.2.5p6.
567  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
568  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
569  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
570  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
571  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
572
573  // C99 6.2.5p10.
574  InitBuiltinType(FloatTy,             BuiltinType::Float);
575  InitBuiltinType(DoubleTy,            BuiltinType::Double);
576  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
577
578  // GNU extension, 128-bit integers.
579  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
580  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
581
582  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
583    if (TargetInfo::isTypeSigned(Target.getWCharType()))
584      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
585    else  // -fshort-wchar makes wchar_t be unsigned.
586      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
587  } else // C99
588    WCharTy = getFromTargetType(Target.getWCharType());
589
590  WIntTy = getFromTargetType(Target.getWIntType());
591
592  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
593    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
594  else // C99
595    Char16Ty = getFromTargetType(Target.getChar16Type());
596
597  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
598    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
599  else // C99
600    Char32Ty = getFromTargetType(Target.getChar32Type());
601
602  // Placeholder type for type-dependent expressions whose type is
603  // completely unknown. No code should ever check a type against
604  // DependentTy and users should never see it; however, it is here to
605  // help diagnose failures to properly check for type-dependent
606  // expressions.
607  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
608
609  // Placeholder type for functions.
610  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
611
612  // Placeholder type for bound members.
613  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
614
615  // Placeholder type for pseudo-objects.
616  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
617
618  // "any" type; useful for debugger-like clients.
619  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
620
621  // Placeholder type for unbridged ARC casts.
622  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
623
624  // C99 6.2.5p11.
625  FloatComplexTy      = getComplexType(FloatTy);
626  DoubleComplexTy     = getComplexType(DoubleTy);
627  LongDoubleComplexTy = getComplexType(LongDoubleTy);
628
629  // Builtin types for 'id', 'Class', and 'SEL'.
630  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
631  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
632  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
633
634  // Builtin type for __objc_yes and __objc_no
635  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
636                       SignedCharTy : BoolTy);
637
638  ObjCConstantStringType = QualType();
639
640  // void * type
641  VoidPtrTy = getPointerType(VoidTy);
642
643  // nullptr type (C++0x 2.14.7)
644  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
645
646  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
647  InitBuiltinType(HalfTy, BuiltinType::Half);
648
649  // Builtin type used to help define __builtin_va_list.
650  VaListTagTy = QualType();
651}
652
653DiagnosticsEngine &ASTContext::getDiagnostics() const {
654  return SourceMgr.getDiagnostics();
655}
656
657AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
658  AttrVec *&Result = DeclAttrs[D];
659  if (!Result) {
660    void *Mem = Allocate(sizeof(AttrVec));
661    Result = new (Mem) AttrVec;
662  }
663
664  return *Result;
665}
666
667/// \brief Erase the attributes corresponding to the given declaration.
668void ASTContext::eraseDeclAttrs(const Decl *D) {
669  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
670  if (Pos != DeclAttrs.end()) {
671    Pos->second->~AttrVec();
672    DeclAttrs.erase(Pos);
673  }
674}
675
676MemberSpecializationInfo *
677ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
678  assert(Var->isStaticDataMember() && "Not a static data member");
679  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
680    = InstantiatedFromStaticDataMember.find(Var);
681  if (Pos == InstantiatedFromStaticDataMember.end())
682    return 0;
683
684  return Pos->second;
685}
686
687void
688ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
689                                                TemplateSpecializationKind TSK,
690                                          SourceLocation PointOfInstantiation) {
691  assert(Inst->isStaticDataMember() && "Not a static data member");
692  assert(Tmpl->isStaticDataMember() && "Not a static data member");
693  assert(!InstantiatedFromStaticDataMember[Inst] &&
694         "Already noted what static data member was instantiated from");
695  InstantiatedFromStaticDataMember[Inst]
696    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
697}
698
699FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
700                                                     const FunctionDecl *FD){
701  assert(FD && "Specialization is 0");
702  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
703    = ClassScopeSpecializationPattern.find(FD);
704  if (Pos == ClassScopeSpecializationPattern.end())
705    return 0;
706
707  return Pos->second;
708}
709
710void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
711                                        FunctionDecl *Pattern) {
712  assert(FD && "Specialization is 0");
713  assert(Pattern && "Class scope specialization pattern is 0");
714  ClassScopeSpecializationPattern[FD] = Pattern;
715}
716
717NamedDecl *
718ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
719  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
720    = InstantiatedFromUsingDecl.find(UUD);
721  if (Pos == InstantiatedFromUsingDecl.end())
722    return 0;
723
724  return Pos->second;
725}
726
727void
728ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
729  assert((isa<UsingDecl>(Pattern) ||
730          isa<UnresolvedUsingValueDecl>(Pattern) ||
731          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
732         "pattern decl is not a using decl");
733  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
734  InstantiatedFromUsingDecl[Inst] = Pattern;
735}
736
737UsingShadowDecl *
738ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
739  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
740    = InstantiatedFromUsingShadowDecl.find(Inst);
741  if (Pos == InstantiatedFromUsingShadowDecl.end())
742    return 0;
743
744  return Pos->second;
745}
746
747void
748ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
749                                               UsingShadowDecl *Pattern) {
750  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
751  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
752}
753
754FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
755  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
756    = InstantiatedFromUnnamedFieldDecl.find(Field);
757  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
758    return 0;
759
760  return Pos->second;
761}
762
763void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
764                                                     FieldDecl *Tmpl) {
765  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
766  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
767  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
768         "Already noted what unnamed field was instantiated from");
769
770  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
771}
772
773bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
774                                    const FieldDecl *LastFD) const {
775  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
776          FD->getBitWidthValue(*this) == 0);
777}
778
779bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
780                                             const FieldDecl *LastFD) const {
781  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
782          FD->getBitWidthValue(*this) == 0 &&
783          LastFD->getBitWidthValue(*this) != 0);
784}
785
786bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
787                                         const FieldDecl *LastFD) const {
788  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
789          FD->getBitWidthValue(*this) &&
790          LastFD->getBitWidthValue(*this));
791}
792
793bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
794                                         const FieldDecl *LastFD) const {
795  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
796          LastFD->getBitWidthValue(*this));
797}
798
799bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
800                                             const FieldDecl *LastFD) const {
801  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
802          FD->getBitWidthValue(*this));
803}
804
805ASTContext::overridden_cxx_method_iterator
806ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
807  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
808    = OverriddenMethods.find(Method);
809  if (Pos == OverriddenMethods.end())
810    return 0;
811
812  return Pos->second.begin();
813}
814
815ASTContext::overridden_cxx_method_iterator
816ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
817  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
818    = OverriddenMethods.find(Method);
819  if (Pos == OverriddenMethods.end())
820    return 0;
821
822  return Pos->second.end();
823}
824
825unsigned
826ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
827  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
828    = OverriddenMethods.find(Method);
829  if (Pos == OverriddenMethods.end())
830    return 0;
831
832  return Pos->second.size();
833}
834
835void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
836                                     const CXXMethodDecl *Overridden) {
837  OverriddenMethods[Method].push_back(Overridden);
838}
839
840void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
841  assert(!Import->NextLocalImport && "Import declaration already in the chain");
842  assert(!Import->isFromASTFile() && "Non-local import declaration");
843  if (!FirstLocalImport) {
844    FirstLocalImport = Import;
845    LastLocalImport = Import;
846    return;
847  }
848
849  LastLocalImport->NextLocalImport = Import;
850  LastLocalImport = Import;
851}
852
853//===----------------------------------------------------------------------===//
854//                         Type Sizing and Analysis
855//===----------------------------------------------------------------------===//
856
857/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
858/// scalar floating point type.
859const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
860  const BuiltinType *BT = T->getAs<BuiltinType>();
861  assert(BT && "Not a floating point type!");
862  switch (BT->getKind()) {
863  default: llvm_unreachable("Not a floating point type!");
864  case BuiltinType::Half:       return Target->getHalfFormat();
865  case BuiltinType::Float:      return Target->getFloatFormat();
866  case BuiltinType::Double:     return Target->getDoubleFormat();
867  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
868  }
869}
870
871/// getDeclAlign - Return a conservative estimate of the alignment of the
872/// specified decl.  Note that bitfields do not have a valid alignment, so
873/// this method will assert on them.
874/// If @p RefAsPointee, references are treated like their underlying type
875/// (for alignof), else they're treated like pointers (for CodeGen).
876CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
877  unsigned Align = Target->getCharWidth();
878
879  bool UseAlignAttrOnly = false;
880  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
881    Align = AlignFromAttr;
882
883    // __attribute__((aligned)) can increase or decrease alignment
884    // *except* on a struct or struct member, where it only increases
885    // alignment unless 'packed' is also specified.
886    //
887    // It is an error for alignas to decrease alignment, so we can
888    // ignore that possibility;  Sema should diagnose it.
889    if (isa<FieldDecl>(D)) {
890      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
891        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
892    } else {
893      UseAlignAttrOnly = true;
894    }
895  }
896  else if (isa<FieldDecl>(D))
897      UseAlignAttrOnly =
898        D->hasAttr<PackedAttr>() ||
899        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
900
901  // If we're using the align attribute only, just ignore everything
902  // else about the declaration and its type.
903  if (UseAlignAttrOnly) {
904    // do nothing
905
906  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
907    QualType T = VD->getType();
908    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
909      if (RefAsPointee)
910        T = RT->getPointeeType();
911      else
912        T = getPointerType(RT->getPointeeType());
913    }
914    if (!T->isIncompleteType() && !T->isFunctionType()) {
915      // Adjust alignments of declarations with array type by the
916      // large-array alignment on the target.
917      unsigned MinWidth = Target->getLargeArrayMinWidth();
918      const ArrayType *arrayType;
919      if (MinWidth && (arrayType = getAsArrayType(T))) {
920        if (isa<VariableArrayType>(arrayType))
921          Align = std::max(Align, Target->getLargeArrayAlign());
922        else if (isa<ConstantArrayType>(arrayType) &&
923                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
924          Align = std::max(Align, Target->getLargeArrayAlign());
925
926        // Walk through any array types while we're at it.
927        T = getBaseElementType(arrayType);
928      }
929      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
930    }
931
932    // Fields can be subject to extra alignment constraints, like if
933    // the field is packed, the struct is packed, or the struct has a
934    // a max-field-alignment constraint (#pragma pack).  So calculate
935    // the actual alignment of the field within the struct, and then
936    // (as we're expected to) constrain that by the alignment of the type.
937    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
938      // So calculate the alignment of the field.
939      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
940
941      // Start with the record's overall alignment.
942      unsigned fieldAlign = toBits(layout.getAlignment());
943
944      // Use the GCD of that and the offset within the record.
945      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
946      if (offset > 0) {
947        // Alignment is always a power of 2, so the GCD will be a power of 2,
948        // which means we get to do this crazy thing instead of Euclid's.
949        uint64_t lowBitOfOffset = offset & (~offset + 1);
950        if (lowBitOfOffset < fieldAlign)
951          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
952      }
953
954      Align = std::min(Align, fieldAlign);
955    }
956  }
957
958  return toCharUnitsFromBits(Align);
959}
960
961std::pair<CharUnits, CharUnits>
962ASTContext::getTypeInfoInChars(const Type *T) const {
963  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
964  return std::make_pair(toCharUnitsFromBits(Info.first),
965                        toCharUnitsFromBits(Info.second));
966}
967
968std::pair<CharUnits, CharUnits>
969ASTContext::getTypeInfoInChars(QualType T) const {
970  return getTypeInfoInChars(T.getTypePtr());
971}
972
973std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
974  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
975  if (it != MemoizedTypeInfo.end())
976    return it->second;
977
978  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
979  MemoizedTypeInfo.insert(std::make_pair(T, Info));
980  return Info;
981}
982
983/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
984/// method does not work on incomplete types.
985///
986/// FIXME: Pointers into different addr spaces could have different sizes and
987/// alignment requirements: getPointerInfo should take an AddrSpace, this
988/// should take a QualType, &c.
989std::pair<uint64_t, unsigned>
990ASTContext::getTypeInfoImpl(const Type *T) const {
991  uint64_t Width=0;
992  unsigned Align=8;
993  switch (T->getTypeClass()) {
994#define TYPE(Class, Base)
995#define ABSTRACT_TYPE(Class, Base)
996#define NON_CANONICAL_TYPE(Class, Base)
997#define DEPENDENT_TYPE(Class, Base) case Type::Class:
998#include "clang/AST/TypeNodes.def"
999    llvm_unreachable("Should not see dependent types");
1000
1001  case Type::FunctionNoProto:
1002  case Type::FunctionProto:
1003    // GCC extension: alignof(function) = 32 bits
1004    Width = 0;
1005    Align = 32;
1006    break;
1007
1008  case Type::IncompleteArray:
1009  case Type::VariableArray:
1010    Width = 0;
1011    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1012    break;
1013
1014  case Type::ConstantArray: {
1015    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1016
1017    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1018    uint64_t Size = CAT->getSize().getZExtValue();
1019    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1020           "Overflow in array type bit size evaluation");
1021    Width = EltInfo.first*Size;
1022    Align = EltInfo.second;
1023    Width = llvm::RoundUpToAlignment(Width, Align);
1024    break;
1025  }
1026  case Type::ExtVector:
1027  case Type::Vector: {
1028    const VectorType *VT = cast<VectorType>(T);
1029    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1030    Width = EltInfo.first*VT->getNumElements();
1031    Align = Width;
1032    // If the alignment is not a power of 2, round up to the next power of 2.
1033    // This happens for non-power-of-2 length vectors.
1034    if (Align & (Align-1)) {
1035      Align = llvm::NextPowerOf2(Align);
1036      Width = llvm::RoundUpToAlignment(Width, Align);
1037    }
1038    break;
1039  }
1040
1041  case Type::Builtin:
1042    switch (cast<BuiltinType>(T)->getKind()) {
1043    default: llvm_unreachable("Unknown builtin type!");
1044    case BuiltinType::Void:
1045      // GCC extension: alignof(void) = 8 bits.
1046      Width = 0;
1047      Align = 8;
1048      break;
1049
1050    case BuiltinType::Bool:
1051      Width = Target->getBoolWidth();
1052      Align = Target->getBoolAlign();
1053      break;
1054    case BuiltinType::Char_S:
1055    case BuiltinType::Char_U:
1056    case BuiltinType::UChar:
1057    case BuiltinType::SChar:
1058      Width = Target->getCharWidth();
1059      Align = Target->getCharAlign();
1060      break;
1061    case BuiltinType::WChar_S:
1062    case BuiltinType::WChar_U:
1063      Width = Target->getWCharWidth();
1064      Align = Target->getWCharAlign();
1065      break;
1066    case BuiltinType::Char16:
1067      Width = Target->getChar16Width();
1068      Align = Target->getChar16Align();
1069      break;
1070    case BuiltinType::Char32:
1071      Width = Target->getChar32Width();
1072      Align = Target->getChar32Align();
1073      break;
1074    case BuiltinType::UShort:
1075    case BuiltinType::Short:
1076      Width = Target->getShortWidth();
1077      Align = Target->getShortAlign();
1078      break;
1079    case BuiltinType::UInt:
1080    case BuiltinType::Int:
1081      Width = Target->getIntWidth();
1082      Align = Target->getIntAlign();
1083      break;
1084    case BuiltinType::ULong:
1085    case BuiltinType::Long:
1086      Width = Target->getLongWidth();
1087      Align = Target->getLongAlign();
1088      break;
1089    case BuiltinType::ULongLong:
1090    case BuiltinType::LongLong:
1091      Width = Target->getLongLongWidth();
1092      Align = Target->getLongLongAlign();
1093      break;
1094    case BuiltinType::Int128:
1095    case BuiltinType::UInt128:
1096      Width = 128;
1097      Align = 128; // int128_t is 128-bit aligned on all targets.
1098      break;
1099    case BuiltinType::Half:
1100      Width = Target->getHalfWidth();
1101      Align = Target->getHalfAlign();
1102      break;
1103    case BuiltinType::Float:
1104      Width = Target->getFloatWidth();
1105      Align = Target->getFloatAlign();
1106      break;
1107    case BuiltinType::Double:
1108      Width = Target->getDoubleWidth();
1109      Align = Target->getDoubleAlign();
1110      break;
1111    case BuiltinType::LongDouble:
1112      Width = Target->getLongDoubleWidth();
1113      Align = Target->getLongDoubleAlign();
1114      break;
1115    case BuiltinType::NullPtr:
1116      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1117      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1118      break;
1119    case BuiltinType::ObjCId:
1120    case BuiltinType::ObjCClass:
1121    case BuiltinType::ObjCSel:
1122      Width = Target->getPointerWidth(0);
1123      Align = Target->getPointerAlign(0);
1124      break;
1125    }
1126    break;
1127  case Type::ObjCObjectPointer:
1128    Width = Target->getPointerWidth(0);
1129    Align = Target->getPointerAlign(0);
1130    break;
1131  case Type::BlockPointer: {
1132    unsigned AS = getTargetAddressSpace(
1133        cast<BlockPointerType>(T)->getPointeeType());
1134    Width = Target->getPointerWidth(AS);
1135    Align = Target->getPointerAlign(AS);
1136    break;
1137  }
1138  case Type::LValueReference:
1139  case Type::RValueReference: {
1140    // alignof and sizeof should never enter this code path here, so we go
1141    // the pointer route.
1142    unsigned AS = getTargetAddressSpace(
1143        cast<ReferenceType>(T)->getPointeeType());
1144    Width = Target->getPointerWidth(AS);
1145    Align = Target->getPointerAlign(AS);
1146    break;
1147  }
1148  case Type::Pointer: {
1149    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1150    Width = Target->getPointerWidth(AS);
1151    Align = Target->getPointerAlign(AS);
1152    break;
1153  }
1154  case Type::MemberPointer: {
1155    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1156    std::pair<uint64_t, unsigned> PtrDiffInfo =
1157      getTypeInfo(getPointerDiffType());
1158    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1159    Align = PtrDiffInfo.second;
1160    break;
1161  }
1162  case Type::Complex: {
1163    // Complex types have the same alignment as their elements, but twice the
1164    // size.
1165    std::pair<uint64_t, unsigned> EltInfo =
1166      getTypeInfo(cast<ComplexType>(T)->getElementType());
1167    Width = EltInfo.first*2;
1168    Align = EltInfo.second;
1169    break;
1170  }
1171  case Type::ObjCObject:
1172    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1173  case Type::ObjCInterface: {
1174    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1175    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1176    Width = toBits(Layout.getSize());
1177    Align = toBits(Layout.getAlignment());
1178    break;
1179  }
1180  case Type::Record:
1181  case Type::Enum: {
1182    const TagType *TT = cast<TagType>(T);
1183
1184    if (TT->getDecl()->isInvalidDecl()) {
1185      Width = 8;
1186      Align = 8;
1187      break;
1188    }
1189
1190    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1191      return getTypeInfo(ET->getDecl()->getIntegerType());
1192
1193    const RecordType *RT = cast<RecordType>(TT);
1194    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1195    Width = toBits(Layout.getSize());
1196    Align = toBits(Layout.getAlignment());
1197    break;
1198  }
1199
1200  case Type::SubstTemplateTypeParm:
1201    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1202                       getReplacementType().getTypePtr());
1203
1204  case Type::Auto: {
1205    const AutoType *A = cast<AutoType>(T);
1206    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1207    return getTypeInfo(A->getDeducedType().getTypePtr());
1208  }
1209
1210  case Type::Paren:
1211    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1212
1213  case Type::Typedef: {
1214    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1215    std::pair<uint64_t, unsigned> Info
1216      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1217    // If the typedef has an aligned attribute on it, it overrides any computed
1218    // alignment we have.  This violates the GCC documentation (which says that
1219    // attribute(aligned) can only round up) but matches its implementation.
1220    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1221      Align = AttrAlign;
1222    else
1223      Align = Info.second;
1224    Width = Info.first;
1225    break;
1226  }
1227
1228  case Type::TypeOfExpr:
1229    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1230                         .getTypePtr());
1231
1232  case Type::TypeOf:
1233    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1234
1235  case Type::Decltype:
1236    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1237                        .getTypePtr());
1238
1239  case Type::UnaryTransform:
1240    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1241
1242  case Type::Elaborated:
1243    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1244
1245  case Type::Attributed:
1246    return getTypeInfo(
1247                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1248
1249  case Type::TemplateSpecialization: {
1250    assert(getCanonicalType(T) != T &&
1251           "Cannot request the size of a dependent type");
1252    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1253    // A type alias template specialization may refer to a typedef with the
1254    // aligned attribute on it.
1255    if (TST->isTypeAlias())
1256      return getTypeInfo(TST->getAliasedType().getTypePtr());
1257    else
1258      return getTypeInfo(getCanonicalType(T));
1259  }
1260
1261  case Type::Atomic: {
1262    std::pair<uint64_t, unsigned> Info
1263      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1264    Width = Info.first;
1265    Align = Info.second;
1266    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1267        llvm::isPowerOf2_64(Width)) {
1268      // We can potentially perform lock-free atomic operations for this
1269      // type; promote the alignment appropriately.
1270      // FIXME: We could potentially promote the width here as well...
1271      // is that worthwhile?  (Non-struct atomic types generally have
1272      // power-of-two size anyway, but structs might not.  Requires a bit
1273      // of implementation work to make sure we zero out the extra bits.)
1274      Align = static_cast<unsigned>(Width);
1275    }
1276  }
1277
1278  }
1279
1280  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1281  return std::make_pair(Width, Align);
1282}
1283
1284/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1285CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1286  return CharUnits::fromQuantity(BitSize / getCharWidth());
1287}
1288
1289/// toBits - Convert a size in characters to a size in characters.
1290int64_t ASTContext::toBits(CharUnits CharSize) const {
1291  return CharSize.getQuantity() * getCharWidth();
1292}
1293
1294/// getTypeSizeInChars - Return the size of the specified type, in characters.
1295/// This method does not work on incomplete types.
1296CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1297  return toCharUnitsFromBits(getTypeSize(T));
1298}
1299CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1300  return toCharUnitsFromBits(getTypeSize(T));
1301}
1302
1303/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1304/// characters. This method does not work on incomplete types.
1305CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1306  return toCharUnitsFromBits(getTypeAlign(T));
1307}
1308CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1309  return toCharUnitsFromBits(getTypeAlign(T));
1310}
1311
1312/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1313/// type for the current target in bits.  This can be different than the ABI
1314/// alignment in cases where it is beneficial for performance to overalign
1315/// a data type.
1316unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1317  unsigned ABIAlign = getTypeAlign(T);
1318
1319  // Double and long long should be naturally aligned if possible.
1320  if (const ComplexType* CT = T->getAs<ComplexType>())
1321    T = CT->getElementType().getTypePtr();
1322  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1323      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1324      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1325    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1326
1327  return ABIAlign;
1328}
1329
1330/// DeepCollectObjCIvars -
1331/// This routine first collects all declared, but not synthesized, ivars in
1332/// super class and then collects all ivars, including those synthesized for
1333/// current class. This routine is used for implementation of current class
1334/// when all ivars, declared and synthesized are known.
1335///
1336void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1337                                      bool leafClass,
1338                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1339  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1340    DeepCollectObjCIvars(SuperClass, false, Ivars);
1341  if (!leafClass) {
1342    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1343         E = OI->ivar_end(); I != E; ++I)
1344      Ivars.push_back(*I);
1345  } else {
1346    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1347    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1348         Iv= Iv->getNextIvar())
1349      Ivars.push_back(Iv);
1350  }
1351}
1352
1353/// CollectInheritedProtocols - Collect all protocols in current class and
1354/// those inherited by it.
1355void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1356                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1357  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1358    // We can use protocol_iterator here instead of
1359    // all_referenced_protocol_iterator since we are walking all categories.
1360    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1361         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1362      ObjCProtocolDecl *Proto = (*P);
1363      Protocols.insert(Proto->getCanonicalDecl());
1364      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1365           PE = Proto->protocol_end(); P != PE; ++P) {
1366        Protocols.insert((*P)->getCanonicalDecl());
1367        CollectInheritedProtocols(*P, Protocols);
1368      }
1369    }
1370
1371    // Categories of this Interface.
1372    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1373         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1374      CollectInheritedProtocols(CDeclChain, Protocols);
1375    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1376      while (SD) {
1377        CollectInheritedProtocols(SD, Protocols);
1378        SD = SD->getSuperClass();
1379      }
1380  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1381    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1382         PE = OC->protocol_end(); P != PE; ++P) {
1383      ObjCProtocolDecl *Proto = (*P);
1384      Protocols.insert(Proto->getCanonicalDecl());
1385      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1386           PE = Proto->protocol_end(); P != PE; ++P)
1387        CollectInheritedProtocols(*P, Protocols);
1388    }
1389  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1390    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1391         PE = OP->protocol_end(); P != PE; ++P) {
1392      ObjCProtocolDecl *Proto = (*P);
1393      Protocols.insert(Proto->getCanonicalDecl());
1394      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1395           PE = Proto->protocol_end(); P != PE; ++P)
1396        CollectInheritedProtocols(*P, Protocols);
1397    }
1398  }
1399}
1400
1401unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1402  unsigned count = 0;
1403  // Count ivars declared in class extension.
1404  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1405       CDecl = CDecl->getNextClassExtension())
1406    count += CDecl->ivar_size();
1407
1408  // Count ivar defined in this class's implementation.  This
1409  // includes synthesized ivars.
1410  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1411    count += ImplDecl->ivar_size();
1412
1413  return count;
1414}
1415
1416bool ASTContext::isSentinelNullExpr(const Expr *E) {
1417  if (!E)
1418    return false;
1419
1420  // nullptr_t is always treated as null.
1421  if (E->getType()->isNullPtrType()) return true;
1422
1423  if (E->getType()->isAnyPointerType() &&
1424      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1425                                                Expr::NPC_ValueDependentIsNull))
1426    return true;
1427
1428  // Unfortunately, __null has type 'int'.
1429  if (isa<GNUNullExpr>(E)) return true;
1430
1431  return false;
1432}
1433
1434/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1435ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1436  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1437    I = ObjCImpls.find(D);
1438  if (I != ObjCImpls.end())
1439    return cast<ObjCImplementationDecl>(I->second);
1440  return 0;
1441}
1442/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1443ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1444  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1445    I = ObjCImpls.find(D);
1446  if (I != ObjCImpls.end())
1447    return cast<ObjCCategoryImplDecl>(I->second);
1448  return 0;
1449}
1450
1451/// \brief Set the implementation of ObjCInterfaceDecl.
1452void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1453                           ObjCImplementationDecl *ImplD) {
1454  assert(IFaceD && ImplD && "Passed null params");
1455  ObjCImpls[IFaceD] = ImplD;
1456}
1457/// \brief Set the implementation of ObjCCategoryDecl.
1458void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1459                           ObjCCategoryImplDecl *ImplD) {
1460  assert(CatD && ImplD && "Passed null params");
1461  ObjCImpls[CatD] = ImplD;
1462}
1463
1464ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1465  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1466    return ID;
1467  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1468    return CD->getClassInterface();
1469  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1470    return IMD->getClassInterface();
1471
1472  return 0;
1473}
1474
1475/// \brief Get the copy initialization expression of VarDecl,or NULL if
1476/// none exists.
1477Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1478  assert(VD && "Passed null params");
1479  assert(VD->hasAttr<BlocksAttr>() &&
1480         "getBlockVarCopyInits - not __block var");
1481  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1482    I = BlockVarCopyInits.find(VD);
1483  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1484}
1485
1486/// \brief Set the copy inialization expression of a block var decl.
1487void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1488  assert(VD && Init && "Passed null params");
1489  assert(VD->hasAttr<BlocksAttr>() &&
1490         "setBlockVarCopyInits - not __block var");
1491  BlockVarCopyInits[VD] = Init;
1492}
1493
1494TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1495                                                 unsigned DataSize) const {
1496  if (!DataSize)
1497    DataSize = TypeLoc::getFullDataSizeForType(T);
1498  else
1499    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1500           "incorrect data size provided to CreateTypeSourceInfo!");
1501
1502  TypeSourceInfo *TInfo =
1503    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1504  new (TInfo) TypeSourceInfo(T);
1505  return TInfo;
1506}
1507
1508TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1509                                                     SourceLocation L) const {
1510  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1511  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1512  return DI;
1513}
1514
1515const ASTRecordLayout &
1516ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1517  return getObjCLayout(D, 0);
1518}
1519
1520const ASTRecordLayout &
1521ASTContext::getASTObjCImplementationLayout(
1522                                        const ObjCImplementationDecl *D) const {
1523  return getObjCLayout(D->getClassInterface(), D);
1524}
1525
1526//===----------------------------------------------------------------------===//
1527//                   Type creation/memoization methods
1528//===----------------------------------------------------------------------===//
1529
1530QualType
1531ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1532  unsigned fastQuals = quals.getFastQualifiers();
1533  quals.removeFastQualifiers();
1534
1535  // Check if we've already instantiated this type.
1536  llvm::FoldingSetNodeID ID;
1537  ExtQuals::Profile(ID, baseType, quals);
1538  void *insertPos = 0;
1539  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1540    assert(eq->getQualifiers() == quals);
1541    return QualType(eq, fastQuals);
1542  }
1543
1544  // If the base type is not canonical, make the appropriate canonical type.
1545  QualType canon;
1546  if (!baseType->isCanonicalUnqualified()) {
1547    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1548    canonSplit.Quals.addConsistentQualifiers(quals);
1549    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1550
1551    // Re-find the insert position.
1552    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1553  }
1554
1555  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1556  ExtQualNodes.InsertNode(eq, insertPos);
1557  return QualType(eq, fastQuals);
1558}
1559
1560QualType
1561ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1562  QualType CanT = getCanonicalType(T);
1563  if (CanT.getAddressSpace() == AddressSpace)
1564    return T;
1565
1566  // If we are composing extended qualifiers together, merge together
1567  // into one ExtQuals node.
1568  QualifierCollector Quals;
1569  const Type *TypeNode = Quals.strip(T);
1570
1571  // If this type already has an address space specified, it cannot get
1572  // another one.
1573  assert(!Quals.hasAddressSpace() &&
1574         "Type cannot be in multiple addr spaces!");
1575  Quals.addAddressSpace(AddressSpace);
1576
1577  return getExtQualType(TypeNode, Quals);
1578}
1579
1580QualType ASTContext::getObjCGCQualType(QualType T,
1581                                       Qualifiers::GC GCAttr) const {
1582  QualType CanT = getCanonicalType(T);
1583  if (CanT.getObjCGCAttr() == GCAttr)
1584    return T;
1585
1586  if (const PointerType *ptr = T->getAs<PointerType>()) {
1587    QualType Pointee = ptr->getPointeeType();
1588    if (Pointee->isAnyPointerType()) {
1589      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1590      return getPointerType(ResultType);
1591    }
1592  }
1593
1594  // If we are composing extended qualifiers together, merge together
1595  // into one ExtQuals node.
1596  QualifierCollector Quals;
1597  const Type *TypeNode = Quals.strip(T);
1598
1599  // If this type already has an ObjCGC specified, it cannot get
1600  // another one.
1601  assert(!Quals.hasObjCGCAttr() &&
1602         "Type cannot have multiple ObjCGCs!");
1603  Quals.addObjCGCAttr(GCAttr);
1604
1605  return getExtQualType(TypeNode, Quals);
1606}
1607
1608const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1609                                                   FunctionType::ExtInfo Info) {
1610  if (T->getExtInfo() == Info)
1611    return T;
1612
1613  QualType Result;
1614  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1615    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1616  } else {
1617    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1618    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1619    EPI.ExtInfo = Info;
1620    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1621                             FPT->getNumArgs(), EPI);
1622  }
1623
1624  return cast<FunctionType>(Result.getTypePtr());
1625}
1626
1627/// getComplexType - Return the uniqued reference to the type for a complex
1628/// number with the specified element type.
1629QualType ASTContext::getComplexType(QualType T) const {
1630  // Unique pointers, to guarantee there is only one pointer of a particular
1631  // structure.
1632  llvm::FoldingSetNodeID ID;
1633  ComplexType::Profile(ID, T);
1634
1635  void *InsertPos = 0;
1636  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1637    return QualType(CT, 0);
1638
1639  // If the pointee type isn't canonical, this won't be a canonical type either,
1640  // so fill in the canonical type field.
1641  QualType Canonical;
1642  if (!T.isCanonical()) {
1643    Canonical = getComplexType(getCanonicalType(T));
1644
1645    // Get the new insert position for the node we care about.
1646    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1647    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1648  }
1649  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1650  Types.push_back(New);
1651  ComplexTypes.InsertNode(New, InsertPos);
1652  return QualType(New, 0);
1653}
1654
1655/// getPointerType - Return the uniqued reference to the type for a pointer to
1656/// the specified type.
1657QualType ASTContext::getPointerType(QualType T) const {
1658  // Unique pointers, to guarantee there is only one pointer of a particular
1659  // structure.
1660  llvm::FoldingSetNodeID ID;
1661  PointerType::Profile(ID, T);
1662
1663  void *InsertPos = 0;
1664  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1665    return QualType(PT, 0);
1666
1667  // If the pointee type isn't canonical, this won't be a canonical type either,
1668  // so fill in the canonical type field.
1669  QualType Canonical;
1670  if (!T.isCanonical()) {
1671    Canonical = getPointerType(getCanonicalType(T));
1672
1673    // Get the new insert position for the node we care about.
1674    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1675    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1676  }
1677  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1678  Types.push_back(New);
1679  PointerTypes.InsertNode(New, InsertPos);
1680  return QualType(New, 0);
1681}
1682
1683/// getBlockPointerType - Return the uniqued reference to the type for
1684/// a pointer to the specified block.
1685QualType ASTContext::getBlockPointerType(QualType T) const {
1686  assert(T->isFunctionType() && "block of function types only");
1687  // Unique pointers, to guarantee there is only one block of a particular
1688  // structure.
1689  llvm::FoldingSetNodeID ID;
1690  BlockPointerType::Profile(ID, T);
1691
1692  void *InsertPos = 0;
1693  if (BlockPointerType *PT =
1694        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1695    return QualType(PT, 0);
1696
1697  // If the block pointee type isn't canonical, this won't be a canonical
1698  // type either so fill in the canonical type field.
1699  QualType Canonical;
1700  if (!T.isCanonical()) {
1701    Canonical = getBlockPointerType(getCanonicalType(T));
1702
1703    // Get the new insert position for the node we care about.
1704    BlockPointerType *NewIP =
1705      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1706    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1707  }
1708  BlockPointerType *New
1709    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1710  Types.push_back(New);
1711  BlockPointerTypes.InsertNode(New, InsertPos);
1712  return QualType(New, 0);
1713}
1714
1715/// getLValueReferenceType - Return the uniqued reference to the type for an
1716/// lvalue reference to the specified type.
1717QualType
1718ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1719  assert(getCanonicalType(T) != OverloadTy &&
1720         "Unresolved overloaded function type");
1721
1722  // Unique pointers, to guarantee there is only one pointer of a particular
1723  // structure.
1724  llvm::FoldingSetNodeID ID;
1725  ReferenceType::Profile(ID, T, SpelledAsLValue);
1726
1727  void *InsertPos = 0;
1728  if (LValueReferenceType *RT =
1729        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1730    return QualType(RT, 0);
1731
1732  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1733
1734  // If the referencee type isn't canonical, this won't be a canonical type
1735  // either, so fill in the canonical type field.
1736  QualType Canonical;
1737  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1738    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1739    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1740
1741    // Get the new insert position for the node we care about.
1742    LValueReferenceType *NewIP =
1743      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1744    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1745  }
1746
1747  LValueReferenceType *New
1748    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1749                                                     SpelledAsLValue);
1750  Types.push_back(New);
1751  LValueReferenceTypes.InsertNode(New, InsertPos);
1752
1753  return QualType(New, 0);
1754}
1755
1756/// getRValueReferenceType - Return the uniqued reference to the type for an
1757/// rvalue reference to the specified type.
1758QualType ASTContext::getRValueReferenceType(QualType T) const {
1759  // Unique pointers, to guarantee there is only one pointer of a particular
1760  // structure.
1761  llvm::FoldingSetNodeID ID;
1762  ReferenceType::Profile(ID, T, false);
1763
1764  void *InsertPos = 0;
1765  if (RValueReferenceType *RT =
1766        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1767    return QualType(RT, 0);
1768
1769  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1770
1771  // If the referencee type isn't canonical, this won't be a canonical type
1772  // either, so fill in the canonical type field.
1773  QualType Canonical;
1774  if (InnerRef || !T.isCanonical()) {
1775    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1776    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1777
1778    // Get the new insert position for the node we care about.
1779    RValueReferenceType *NewIP =
1780      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1781    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1782  }
1783
1784  RValueReferenceType *New
1785    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1786  Types.push_back(New);
1787  RValueReferenceTypes.InsertNode(New, InsertPos);
1788  return QualType(New, 0);
1789}
1790
1791/// getMemberPointerType - Return the uniqued reference to the type for a
1792/// member pointer to the specified type, in the specified class.
1793QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1794  // Unique pointers, to guarantee there is only one pointer of a particular
1795  // structure.
1796  llvm::FoldingSetNodeID ID;
1797  MemberPointerType::Profile(ID, T, Cls);
1798
1799  void *InsertPos = 0;
1800  if (MemberPointerType *PT =
1801      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1802    return QualType(PT, 0);
1803
1804  // If the pointee or class type isn't canonical, this won't be a canonical
1805  // type either, so fill in the canonical type field.
1806  QualType Canonical;
1807  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1808    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1809
1810    // Get the new insert position for the node we care about.
1811    MemberPointerType *NewIP =
1812      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1813    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1814  }
1815  MemberPointerType *New
1816    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1817  Types.push_back(New);
1818  MemberPointerTypes.InsertNode(New, InsertPos);
1819  return QualType(New, 0);
1820}
1821
1822/// getConstantArrayType - Return the unique reference to the type for an
1823/// array of the specified element type.
1824QualType ASTContext::getConstantArrayType(QualType EltTy,
1825                                          const llvm::APInt &ArySizeIn,
1826                                          ArrayType::ArraySizeModifier ASM,
1827                                          unsigned IndexTypeQuals) const {
1828  assert((EltTy->isDependentType() ||
1829          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1830         "Constant array of VLAs is illegal!");
1831
1832  // Convert the array size into a canonical width matching the pointer size for
1833  // the target.
1834  llvm::APInt ArySize(ArySizeIn);
1835  ArySize =
1836    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1837
1838  llvm::FoldingSetNodeID ID;
1839  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1840
1841  void *InsertPos = 0;
1842  if (ConstantArrayType *ATP =
1843      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1844    return QualType(ATP, 0);
1845
1846  // If the element type isn't canonical or has qualifiers, this won't
1847  // be a canonical type either, so fill in the canonical type field.
1848  QualType Canon;
1849  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1850    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1851    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
1852                                 ASM, IndexTypeQuals);
1853    Canon = getQualifiedType(Canon, canonSplit.Quals);
1854
1855    // Get the new insert position for the node we care about.
1856    ConstantArrayType *NewIP =
1857      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1858    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1859  }
1860
1861  ConstantArrayType *New = new(*this,TypeAlignment)
1862    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1863  ConstantArrayTypes.InsertNode(New, InsertPos);
1864  Types.push_back(New);
1865  return QualType(New, 0);
1866}
1867
1868/// getVariableArrayDecayedType - Turns the given type, which may be
1869/// variably-modified, into the corresponding type with all the known
1870/// sizes replaced with [*].
1871QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1872  // Vastly most common case.
1873  if (!type->isVariablyModifiedType()) return type;
1874
1875  QualType result;
1876
1877  SplitQualType split = type.getSplitDesugaredType();
1878  const Type *ty = split.Ty;
1879  switch (ty->getTypeClass()) {
1880#define TYPE(Class, Base)
1881#define ABSTRACT_TYPE(Class, Base)
1882#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1883#include "clang/AST/TypeNodes.def"
1884    llvm_unreachable("didn't desugar past all non-canonical types?");
1885
1886  // These types should never be variably-modified.
1887  case Type::Builtin:
1888  case Type::Complex:
1889  case Type::Vector:
1890  case Type::ExtVector:
1891  case Type::DependentSizedExtVector:
1892  case Type::ObjCObject:
1893  case Type::ObjCInterface:
1894  case Type::ObjCObjectPointer:
1895  case Type::Record:
1896  case Type::Enum:
1897  case Type::UnresolvedUsing:
1898  case Type::TypeOfExpr:
1899  case Type::TypeOf:
1900  case Type::Decltype:
1901  case Type::UnaryTransform:
1902  case Type::DependentName:
1903  case Type::InjectedClassName:
1904  case Type::TemplateSpecialization:
1905  case Type::DependentTemplateSpecialization:
1906  case Type::TemplateTypeParm:
1907  case Type::SubstTemplateTypeParmPack:
1908  case Type::Auto:
1909  case Type::PackExpansion:
1910    llvm_unreachable("type should never be variably-modified");
1911
1912  // These types can be variably-modified but should never need to
1913  // further decay.
1914  case Type::FunctionNoProto:
1915  case Type::FunctionProto:
1916  case Type::BlockPointer:
1917  case Type::MemberPointer:
1918    return type;
1919
1920  // These types can be variably-modified.  All these modifications
1921  // preserve structure except as noted by comments.
1922  // TODO: if we ever care about optimizing VLAs, there are no-op
1923  // optimizations available here.
1924  case Type::Pointer:
1925    result = getPointerType(getVariableArrayDecayedType(
1926                              cast<PointerType>(ty)->getPointeeType()));
1927    break;
1928
1929  case Type::LValueReference: {
1930    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1931    result = getLValueReferenceType(
1932                 getVariableArrayDecayedType(lv->getPointeeType()),
1933                                    lv->isSpelledAsLValue());
1934    break;
1935  }
1936
1937  case Type::RValueReference: {
1938    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1939    result = getRValueReferenceType(
1940                 getVariableArrayDecayedType(lv->getPointeeType()));
1941    break;
1942  }
1943
1944  case Type::Atomic: {
1945    const AtomicType *at = cast<AtomicType>(ty);
1946    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1947    break;
1948  }
1949
1950  case Type::ConstantArray: {
1951    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1952    result = getConstantArrayType(
1953                 getVariableArrayDecayedType(cat->getElementType()),
1954                                  cat->getSize(),
1955                                  cat->getSizeModifier(),
1956                                  cat->getIndexTypeCVRQualifiers());
1957    break;
1958  }
1959
1960  case Type::DependentSizedArray: {
1961    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1962    result = getDependentSizedArrayType(
1963                 getVariableArrayDecayedType(dat->getElementType()),
1964                                        dat->getSizeExpr(),
1965                                        dat->getSizeModifier(),
1966                                        dat->getIndexTypeCVRQualifiers(),
1967                                        dat->getBracketsRange());
1968    break;
1969  }
1970
1971  // Turn incomplete types into [*] types.
1972  case Type::IncompleteArray: {
1973    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1974    result = getVariableArrayType(
1975                 getVariableArrayDecayedType(iat->getElementType()),
1976                                  /*size*/ 0,
1977                                  ArrayType::Normal,
1978                                  iat->getIndexTypeCVRQualifiers(),
1979                                  SourceRange());
1980    break;
1981  }
1982
1983  // Turn VLA types into [*] types.
1984  case Type::VariableArray: {
1985    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1986    result = getVariableArrayType(
1987                 getVariableArrayDecayedType(vat->getElementType()),
1988                                  /*size*/ 0,
1989                                  ArrayType::Star,
1990                                  vat->getIndexTypeCVRQualifiers(),
1991                                  vat->getBracketsRange());
1992    break;
1993  }
1994  }
1995
1996  // Apply the top-level qualifiers from the original.
1997  return getQualifiedType(result, split.Quals);
1998}
1999
2000/// getVariableArrayType - Returns a non-unique reference to the type for a
2001/// variable array of the specified element type.
2002QualType ASTContext::getVariableArrayType(QualType EltTy,
2003                                          Expr *NumElts,
2004                                          ArrayType::ArraySizeModifier ASM,
2005                                          unsigned IndexTypeQuals,
2006                                          SourceRange Brackets) const {
2007  // Since we don't unique expressions, it isn't possible to unique VLA's
2008  // that have an expression provided for their size.
2009  QualType Canon;
2010
2011  // Be sure to pull qualifiers off the element type.
2012  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2013    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2014    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2015                                 IndexTypeQuals, Brackets);
2016    Canon = getQualifiedType(Canon, canonSplit.Quals);
2017  }
2018
2019  VariableArrayType *New = new(*this, TypeAlignment)
2020    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2021
2022  VariableArrayTypes.push_back(New);
2023  Types.push_back(New);
2024  return QualType(New, 0);
2025}
2026
2027/// getDependentSizedArrayType - Returns a non-unique reference to
2028/// the type for a dependently-sized array of the specified element
2029/// type.
2030QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2031                                                Expr *numElements,
2032                                                ArrayType::ArraySizeModifier ASM,
2033                                                unsigned elementTypeQuals,
2034                                                SourceRange brackets) const {
2035  assert((!numElements || numElements->isTypeDependent() ||
2036          numElements->isValueDependent()) &&
2037         "Size must be type- or value-dependent!");
2038
2039  // Dependently-sized array types that do not have a specified number
2040  // of elements will have their sizes deduced from a dependent
2041  // initializer.  We do no canonicalization here at all, which is okay
2042  // because they can't be used in most locations.
2043  if (!numElements) {
2044    DependentSizedArrayType *newType
2045      = new (*this, TypeAlignment)
2046          DependentSizedArrayType(*this, elementType, QualType(),
2047                                  numElements, ASM, elementTypeQuals,
2048                                  brackets);
2049    Types.push_back(newType);
2050    return QualType(newType, 0);
2051  }
2052
2053  // Otherwise, we actually build a new type every time, but we
2054  // also build a canonical type.
2055
2056  SplitQualType canonElementType = getCanonicalType(elementType).split();
2057
2058  void *insertPos = 0;
2059  llvm::FoldingSetNodeID ID;
2060  DependentSizedArrayType::Profile(ID, *this,
2061                                   QualType(canonElementType.Ty, 0),
2062                                   ASM, elementTypeQuals, numElements);
2063
2064  // Look for an existing type with these properties.
2065  DependentSizedArrayType *canonTy =
2066    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2067
2068  // If we don't have one, build one.
2069  if (!canonTy) {
2070    canonTy = new (*this, TypeAlignment)
2071      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2072                              QualType(), numElements, ASM, elementTypeQuals,
2073                              brackets);
2074    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2075    Types.push_back(canonTy);
2076  }
2077
2078  // Apply qualifiers from the element type to the array.
2079  QualType canon = getQualifiedType(QualType(canonTy,0),
2080                                    canonElementType.Quals);
2081
2082  // If we didn't need extra canonicalization for the element type,
2083  // then just use that as our result.
2084  if (QualType(canonElementType.Ty, 0) == elementType)
2085    return canon;
2086
2087  // Otherwise, we need to build a type which follows the spelling
2088  // of the element type.
2089  DependentSizedArrayType *sugaredType
2090    = new (*this, TypeAlignment)
2091        DependentSizedArrayType(*this, elementType, canon, numElements,
2092                                ASM, elementTypeQuals, brackets);
2093  Types.push_back(sugaredType);
2094  return QualType(sugaredType, 0);
2095}
2096
2097QualType ASTContext::getIncompleteArrayType(QualType elementType,
2098                                            ArrayType::ArraySizeModifier ASM,
2099                                            unsigned elementTypeQuals) const {
2100  llvm::FoldingSetNodeID ID;
2101  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2102
2103  void *insertPos = 0;
2104  if (IncompleteArrayType *iat =
2105       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2106    return QualType(iat, 0);
2107
2108  // If the element type isn't canonical, this won't be a canonical type
2109  // either, so fill in the canonical type field.  We also have to pull
2110  // qualifiers off the element type.
2111  QualType canon;
2112
2113  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2114    SplitQualType canonSplit = getCanonicalType(elementType).split();
2115    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2116                                   ASM, elementTypeQuals);
2117    canon = getQualifiedType(canon, canonSplit.Quals);
2118
2119    // Get the new insert position for the node we care about.
2120    IncompleteArrayType *existing =
2121      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2122    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2123  }
2124
2125  IncompleteArrayType *newType = new (*this, TypeAlignment)
2126    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2127
2128  IncompleteArrayTypes.InsertNode(newType, insertPos);
2129  Types.push_back(newType);
2130  return QualType(newType, 0);
2131}
2132
2133/// getVectorType - Return the unique reference to a vector type of
2134/// the specified element type and size. VectorType must be a built-in type.
2135QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2136                                   VectorType::VectorKind VecKind) const {
2137  assert(vecType->isBuiltinType());
2138
2139  // Check if we've already instantiated a vector of this type.
2140  llvm::FoldingSetNodeID ID;
2141  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2142
2143  void *InsertPos = 0;
2144  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2145    return QualType(VTP, 0);
2146
2147  // If the element type isn't canonical, this won't be a canonical type either,
2148  // so fill in the canonical type field.
2149  QualType Canonical;
2150  if (!vecType.isCanonical()) {
2151    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2152
2153    // Get the new insert position for the node we care about.
2154    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2155    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2156  }
2157  VectorType *New = new (*this, TypeAlignment)
2158    VectorType(vecType, NumElts, Canonical, VecKind);
2159  VectorTypes.InsertNode(New, InsertPos);
2160  Types.push_back(New);
2161  return QualType(New, 0);
2162}
2163
2164/// getExtVectorType - Return the unique reference to an extended vector type of
2165/// the specified element type and size. VectorType must be a built-in type.
2166QualType
2167ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2168  assert(vecType->isBuiltinType() || vecType->isDependentType());
2169
2170  // Check if we've already instantiated a vector of this type.
2171  llvm::FoldingSetNodeID ID;
2172  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2173                      VectorType::GenericVector);
2174  void *InsertPos = 0;
2175  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2176    return QualType(VTP, 0);
2177
2178  // If the element type isn't canonical, this won't be a canonical type either,
2179  // so fill in the canonical type field.
2180  QualType Canonical;
2181  if (!vecType.isCanonical()) {
2182    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2183
2184    // Get the new insert position for the node we care about.
2185    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2186    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2187  }
2188  ExtVectorType *New = new (*this, TypeAlignment)
2189    ExtVectorType(vecType, NumElts, Canonical);
2190  VectorTypes.InsertNode(New, InsertPos);
2191  Types.push_back(New);
2192  return QualType(New, 0);
2193}
2194
2195QualType
2196ASTContext::getDependentSizedExtVectorType(QualType vecType,
2197                                           Expr *SizeExpr,
2198                                           SourceLocation AttrLoc) const {
2199  llvm::FoldingSetNodeID ID;
2200  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2201                                       SizeExpr);
2202
2203  void *InsertPos = 0;
2204  DependentSizedExtVectorType *Canon
2205    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2206  DependentSizedExtVectorType *New;
2207  if (Canon) {
2208    // We already have a canonical version of this array type; use it as
2209    // the canonical type for a newly-built type.
2210    New = new (*this, TypeAlignment)
2211      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2212                                  SizeExpr, AttrLoc);
2213  } else {
2214    QualType CanonVecTy = getCanonicalType(vecType);
2215    if (CanonVecTy == vecType) {
2216      New = new (*this, TypeAlignment)
2217        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2218                                    AttrLoc);
2219
2220      DependentSizedExtVectorType *CanonCheck
2221        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2222      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2223      (void)CanonCheck;
2224      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2225    } else {
2226      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2227                                                      SourceLocation());
2228      New = new (*this, TypeAlignment)
2229        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2230    }
2231  }
2232
2233  Types.push_back(New);
2234  return QualType(New, 0);
2235}
2236
2237/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2238///
2239QualType
2240ASTContext::getFunctionNoProtoType(QualType ResultTy,
2241                                   const FunctionType::ExtInfo &Info) const {
2242  const CallingConv DefaultCC = Info.getCC();
2243  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2244                               CC_X86StdCall : DefaultCC;
2245  // Unique functions, to guarantee there is only one function of a particular
2246  // structure.
2247  llvm::FoldingSetNodeID ID;
2248  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2249
2250  void *InsertPos = 0;
2251  if (FunctionNoProtoType *FT =
2252        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2253    return QualType(FT, 0);
2254
2255  QualType Canonical;
2256  if (!ResultTy.isCanonical() ||
2257      getCanonicalCallConv(CallConv) != CallConv) {
2258    Canonical =
2259      getFunctionNoProtoType(getCanonicalType(ResultTy),
2260                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2261
2262    // Get the new insert position for the node we care about.
2263    FunctionNoProtoType *NewIP =
2264      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2265    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2266  }
2267
2268  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2269  FunctionNoProtoType *New = new (*this, TypeAlignment)
2270    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2271  Types.push_back(New);
2272  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2273  return QualType(New, 0);
2274}
2275
2276/// getFunctionType - Return a normal function type with a typed argument
2277/// list.  isVariadic indicates whether the argument list includes '...'.
2278QualType
2279ASTContext::getFunctionType(QualType ResultTy,
2280                            const QualType *ArgArray, unsigned NumArgs,
2281                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2282  // Unique functions, to guarantee there is only one function of a particular
2283  // structure.
2284  llvm::FoldingSetNodeID ID;
2285  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2286
2287  void *InsertPos = 0;
2288  if (FunctionProtoType *FTP =
2289        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2290    return QualType(FTP, 0);
2291
2292  // Determine whether the type being created is already canonical or not.
2293  bool isCanonical =
2294    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2295    !EPI.HasTrailingReturn;
2296  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2297    if (!ArgArray[i].isCanonicalAsParam())
2298      isCanonical = false;
2299
2300  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2301  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2302                               CC_X86StdCall : DefaultCC;
2303
2304  // If this type isn't canonical, get the canonical version of it.
2305  // The exception spec is not part of the canonical type.
2306  QualType Canonical;
2307  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2308    SmallVector<QualType, 16> CanonicalArgs;
2309    CanonicalArgs.reserve(NumArgs);
2310    for (unsigned i = 0; i != NumArgs; ++i)
2311      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2312
2313    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2314    CanonicalEPI.HasTrailingReturn = false;
2315    CanonicalEPI.ExceptionSpecType = EST_None;
2316    CanonicalEPI.NumExceptions = 0;
2317    CanonicalEPI.ExtInfo
2318      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2319
2320    Canonical = getFunctionType(getCanonicalType(ResultTy),
2321                                CanonicalArgs.data(), NumArgs,
2322                                CanonicalEPI);
2323
2324    // Get the new insert position for the node we care about.
2325    FunctionProtoType *NewIP =
2326      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2327    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2328  }
2329
2330  // FunctionProtoType objects are allocated with extra bytes after
2331  // them for three variable size arrays at the end:
2332  //  - parameter types
2333  //  - exception types
2334  //  - consumed-arguments flags
2335  // Instead of the exception types, there could be a noexcept
2336  // expression.
2337  size_t Size = sizeof(FunctionProtoType) +
2338                NumArgs * sizeof(QualType);
2339  if (EPI.ExceptionSpecType == EST_Dynamic)
2340    Size += EPI.NumExceptions * sizeof(QualType);
2341  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2342    Size += sizeof(Expr*);
2343  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2344    Size += 2 * sizeof(FunctionDecl*);
2345  }
2346  if (EPI.ConsumedArguments)
2347    Size += NumArgs * sizeof(bool);
2348
2349  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2350  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2351  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2352  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2353  Types.push_back(FTP);
2354  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2355  return QualType(FTP, 0);
2356}
2357
2358#ifndef NDEBUG
2359static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2360  if (!isa<CXXRecordDecl>(D)) return false;
2361  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2362  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2363    return true;
2364  if (RD->getDescribedClassTemplate() &&
2365      !isa<ClassTemplateSpecializationDecl>(RD))
2366    return true;
2367  return false;
2368}
2369#endif
2370
2371/// getInjectedClassNameType - Return the unique reference to the
2372/// injected class name type for the specified templated declaration.
2373QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2374                                              QualType TST) const {
2375  assert(NeedsInjectedClassNameType(Decl));
2376  if (Decl->TypeForDecl) {
2377    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2378  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2379    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2380    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2381    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2382  } else {
2383    Type *newType =
2384      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2385    Decl->TypeForDecl = newType;
2386    Types.push_back(newType);
2387  }
2388  return QualType(Decl->TypeForDecl, 0);
2389}
2390
2391/// getTypeDeclType - Return the unique reference to the type for the
2392/// specified type declaration.
2393QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2394  assert(Decl && "Passed null for Decl param");
2395  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2396
2397  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2398    return getTypedefType(Typedef);
2399
2400  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2401         "Template type parameter types are always available.");
2402
2403  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2404    assert(!Record->getPreviousDecl() &&
2405           "struct/union has previous declaration");
2406    assert(!NeedsInjectedClassNameType(Record));
2407    return getRecordType(Record);
2408  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2409    assert(!Enum->getPreviousDecl() &&
2410           "enum has previous declaration");
2411    return getEnumType(Enum);
2412  } else if (const UnresolvedUsingTypenameDecl *Using =
2413               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2414    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2415    Decl->TypeForDecl = newType;
2416    Types.push_back(newType);
2417  } else
2418    llvm_unreachable("TypeDecl without a type?");
2419
2420  return QualType(Decl->TypeForDecl, 0);
2421}
2422
2423/// getTypedefType - Return the unique reference to the type for the
2424/// specified typedef name decl.
2425QualType
2426ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2427                           QualType Canonical) const {
2428  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2429
2430  if (Canonical.isNull())
2431    Canonical = getCanonicalType(Decl->getUnderlyingType());
2432  TypedefType *newType = new(*this, TypeAlignment)
2433    TypedefType(Type::Typedef, Decl, Canonical);
2434  Decl->TypeForDecl = newType;
2435  Types.push_back(newType);
2436  return QualType(newType, 0);
2437}
2438
2439QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2440  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2441
2442  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2443    if (PrevDecl->TypeForDecl)
2444      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2445
2446  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2447  Decl->TypeForDecl = newType;
2448  Types.push_back(newType);
2449  return QualType(newType, 0);
2450}
2451
2452QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2453  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2454
2455  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2456    if (PrevDecl->TypeForDecl)
2457      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2458
2459  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2460  Decl->TypeForDecl = newType;
2461  Types.push_back(newType);
2462  return QualType(newType, 0);
2463}
2464
2465QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2466                                       QualType modifiedType,
2467                                       QualType equivalentType) {
2468  llvm::FoldingSetNodeID id;
2469  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2470
2471  void *insertPos = 0;
2472  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2473  if (type) return QualType(type, 0);
2474
2475  QualType canon = getCanonicalType(equivalentType);
2476  type = new (*this, TypeAlignment)
2477           AttributedType(canon, attrKind, modifiedType, equivalentType);
2478
2479  Types.push_back(type);
2480  AttributedTypes.InsertNode(type, insertPos);
2481
2482  return QualType(type, 0);
2483}
2484
2485
2486/// \brief Retrieve a substitution-result type.
2487QualType
2488ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2489                                         QualType Replacement) const {
2490  assert(Replacement.isCanonical()
2491         && "replacement types must always be canonical");
2492
2493  llvm::FoldingSetNodeID ID;
2494  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2495  void *InsertPos = 0;
2496  SubstTemplateTypeParmType *SubstParm
2497    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2498
2499  if (!SubstParm) {
2500    SubstParm = new (*this, TypeAlignment)
2501      SubstTemplateTypeParmType(Parm, Replacement);
2502    Types.push_back(SubstParm);
2503    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2504  }
2505
2506  return QualType(SubstParm, 0);
2507}
2508
2509/// \brief Retrieve a
2510QualType ASTContext::getSubstTemplateTypeParmPackType(
2511                                          const TemplateTypeParmType *Parm,
2512                                              const TemplateArgument &ArgPack) {
2513#ifndef NDEBUG
2514  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2515                                    PEnd = ArgPack.pack_end();
2516       P != PEnd; ++P) {
2517    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2518    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2519  }
2520#endif
2521
2522  llvm::FoldingSetNodeID ID;
2523  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2524  void *InsertPos = 0;
2525  if (SubstTemplateTypeParmPackType *SubstParm
2526        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2527    return QualType(SubstParm, 0);
2528
2529  QualType Canon;
2530  if (!Parm->isCanonicalUnqualified()) {
2531    Canon = getCanonicalType(QualType(Parm, 0));
2532    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2533                                             ArgPack);
2534    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2535  }
2536
2537  SubstTemplateTypeParmPackType *SubstParm
2538    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2539                                                               ArgPack);
2540  Types.push_back(SubstParm);
2541  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2542  return QualType(SubstParm, 0);
2543}
2544
2545/// \brief Retrieve the template type parameter type for a template
2546/// parameter or parameter pack with the given depth, index, and (optionally)
2547/// name.
2548QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2549                                             bool ParameterPack,
2550                                             TemplateTypeParmDecl *TTPDecl) const {
2551  llvm::FoldingSetNodeID ID;
2552  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2553  void *InsertPos = 0;
2554  TemplateTypeParmType *TypeParm
2555    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2556
2557  if (TypeParm)
2558    return QualType(TypeParm, 0);
2559
2560  if (TTPDecl) {
2561    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2562    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2563
2564    TemplateTypeParmType *TypeCheck
2565      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2566    assert(!TypeCheck && "Template type parameter canonical type broken");
2567    (void)TypeCheck;
2568  } else
2569    TypeParm = new (*this, TypeAlignment)
2570      TemplateTypeParmType(Depth, Index, ParameterPack);
2571
2572  Types.push_back(TypeParm);
2573  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2574
2575  return QualType(TypeParm, 0);
2576}
2577
2578TypeSourceInfo *
2579ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2580                                              SourceLocation NameLoc,
2581                                        const TemplateArgumentListInfo &Args,
2582                                              QualType Underlying) const {
2583  assert(!Name.getAsDependentTemplateName() &&
2584         "No dependent template names here!");
2585  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2586
2587  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2588  TemplateSpecializationTypeLoc TL
2589    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2590  TL.setTemplateKeywordLoc(SourceLocation());
2591  TL.setTemplateNameLoc(NameLoc);
2592  TL.setLAngleLoc(Args.getLAngleLoc());
2593  TL.setRAngleLoc(Args.getRAngleLoc());
2594  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2595    TL.setArgLocInfo(i, Args[i].getLocInfo());
2596  return DI;
2597}
2598
2599QualType
2600ASTContext::getTemplateSpecializationType(TemplateName Template,
2601                                          const TemplateArgumentListInfo &Args,
2602                                          QualType Underlying) const {
2603  assert(!Template.getAsDependentTemplateName() &&
2604         "No dependent template names here!");
2605
2606  unsigned NumArgs = Args.size();
2607
2608  SmallVector<TemplateArgument, 4> ArgVec;
2609  ArgVec.reserve(NumArgs);
2610  for (unsigned i = 0; i != NumArgs; ++i)
2611    ArgVec.push_back(Args[i].getArgument());
2612
2613  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2614                                       Underlying);
2615}
2616
2617#ifndef NDEBUG
2618static bool hasAnyPackExpansions(const TemplateArgument *Args,
2619                                 unsigned NumArgs) {
2620  for (unsigned I = 0; I != NumArgs; ++I)
2621    if (Args[I].isPackExpansion())
2622      return true;
2623
2624  return true;
2625}
2626#endif
2627
2628QualType
2629ASTContext::getTemplateSpecializationType(TemplateName Template,
2630                                          const TemplateArgument *Args,
2631                                          unsigned NumArgs,
2632                                          QualType Underlying) const {
2633  assert(!Template.getAsDependentTemplateName() &&
2634         "No dependent template names here!");
2635  // Look through qualified template names.
2636  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2637    Template = TemplateName(QTN->getTemplateDecl());
2638
2639  bool IsTypeAlias =
2640    Template.getAsTemplateDecl() &&
2641    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2642  QualType CanonType;
2643  if (!Underlying.isNull())
2644    CanonType = getCanonicalType(Underlying);
2645  else {
2646    // We can get here with an alias template when the specialization contains
2647    // a pack expansion that does not match up with a parameter pack.
2648    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2649           "Caller must compute aliased type");
2650    IsTypeAlias = false;
2651    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2652                                                       NumArgs);
2653  }
2654
2655  // Allocate the (non-canonical) template specialization type, but don't
2656  // try to unique it: these types typically have location information that
2657  // we don't unique and don't want to lose.
2658  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2659                       sizeof(TemplateArgument) * NumArgs +
2660                       (IsTypeAlias? sizeof(QualType) : 0),
2661                       TypeAlignment);
2662  TemplateSpecializationType *Spec
2663    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2664                                         IsTypeAlias ? Underlying : QualType());
2665
2666  Types.push_back(Spec);
2667  return QualType(Spec, 0);
2668}
2669
2670QualType
2671ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2672                                                   const TemplateArgument *Args,
2673                                                   unsigned NumArgs) const {
2674  assert(!Template.getAsDependentTemplateName() &&
2675         "No dependent template names here!");
2676
2677  // Look through qualified template names.
2678  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2679    Template = TemplateName(QTN->getTemplateDecl());
2680
2681  // Build the canonical template specialization type.
2682  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2683  SmallVector<TemplateArgument, 4> CanonArgs;
2684  CanonArgs.reserve(NumArgs);
2685  for (unsigned I = 0; I != NumArgs; ++I)
2686    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2687
2688  // Determine whether this canonical template specialization type already
2689  // exists.
2690  llvm::FoldingSetNodeID ID;
2691  TemplateSpecializationType::Profile(ID, CanonTemplate,
2692                                      CanonArgs.data(), NumArgs, *this);
2693
2694  void *InsertPos = 0;
2695  TemplateSpecializationType *Spec
2696    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2697
2698  if (!Spec) {
2699    // Allocate a new canonical template specialization type.
2700    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2701                          sizeof(TemplateArgument) * NumArgs),
2702                         TypeAlignment);
2703    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2704                                                CanonArgs.data(), NumArgs,
2705                                                QualType(), QualType());
2706    Types.push_back(Spec);
2707    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2708  }
2709
2710  assert(Spec->isDependentType() &&
2711         "Non-dependent template-id type must have a canonical type");
2712  return QualType(Spec, 0);
2713}
2714
2715QualType
2716ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2717                              NestedNameSpecifier *NNS,
2718                              QualType NamedType) const {
2719  llvm::FoldingSetNodeID ID;
2720  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2721
2722  void *InsertPos = 0;
2723  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2724  if (T)
2725    return QualType(T, 0);
2726
2727  QualType Canon = NamedType;
2728  if (!Canon.isCanonical()) {
2729    Canon = getCanonicalType(NamedType);
2730    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2731    assert(!CheckT && "Elaborated canonical type broken");
2732    (void)CheckT;
2733  }
2734
2735  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2736  Types.push_back(T);
2737  ElaboratedTypes.InsertNode(T, InsertPos);
2738  return QualType(T, 0);
2739}
2740
2741QualType
2742ASTContext::getParenType(QualType InnerType) const {
2743  llvm::FoldingSetNodeID ID;
2744  ParenType::Profile(ID, InnerType);
2745
2746  void *InsertPos = 0;
2747  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2748  if (T)
2749    return QualType(T, 0);
2750
2751  QualType Canon = InnerType;
2752  if (!Canon.isCanonical()) {
2753    Canon = getCanonicalType(InnerType);
2754    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2755    assert(!CheckT && "Paren canonical type broken");
2756    (void)CheckT;
2757  }
2758
2759  T = new (*this) ParenType(InnerType, Canon);
2760  Types.push_back(T);
2761  ParenTypes.InsertNode(T, InsertPos);
2762  return QualType(T, 0);
2763}
2764
2765QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2766                                          NestedNameSpecifier *NNS,
2767                                          const IdentifierInfo *Name,
2768                                          QualType Canon) const {
2769  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2770
2771  if (Canon.isNull()) {
2772    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2773    ElaboratedTypeKeyword CanonKeyword = Keyword;
2774    if (Keyword == ETK_None)
2775      CanonKeyword = ETK_Typename;
2776
2777    if (CanonNNS != NNS || CanonKeyword != Keyword)
2778      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2779  }
2780
2781  llvm::FoldingSetNodeID ID;
2782  DependentNameType::Profile(ID, Keyword, NNS, Name);
2783
2784  void *InsertPos = 0;
2785  DependentNameType *T
2786    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2787  if (T)
2788    return QualType(T, 0);
2789
2790  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2791  Types.push_back(T);
2792  DependentNameTypes.InsertNode(T, InsertPos);
2793  return QualType(T, 0);
2794}
2795
2796QualType
2797ASTContext::getDependentTemplateSpecializationType(
2798                                 ElaboratedTypeKeyword Keyword,
2799                                 NestedNameSpecifier *NNS,
2800                                 const IdentifierInfo *Name,
2801                                 const TemplateArgumentListInfo &Args) const {
2802  // TODO: avoid this copy
2803  SmallVector<TemplateArgument, 16> ArgCopy;
2804  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2805    ArgCopy.push_back(Args[I].getArgument());
2806  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2807                                                ArgCopy.size(),
2808                                                ArgCopy.data());
2809}
2810
2811QualType
2812ASTContext::getDependentTemplateSpecializationType(
2813                                 ElaboratedTypeKeyword Keyword,
2814                                 NestedNameSpecifier *NNS,
2815                                 const IdentifierInfo *Name,
2816                                 unsigned NumArgs,
2817                                 const TemplateArgument *Args) const {
2818  assert((!NNS || NNS->isDependent()) &&
2819         "nested-name-specifier must be dependent");
2820
2821  llvm::FoldingSetNodeID ID;
2822  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2823                                               Name, NumArgs, Args);
2824
2825  void *InsertPos = 0;
2826  DependentTemplateSpecializationType *T
2827    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2828  if (T)
2829    return QualType(T, 0);
2830
2831  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2832
2833  ElaboratedTypeKeyword CanonKeyword = Keyword;
2834  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2835
2836  bool AnyNonCanonArgs = false;
2837  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2838  for (unsigned I = 0; I != NumArgs; ++I) {
2839    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2840    if (!CanonArgs[I].structurallyEquals(Args[I]))
2841      AnyNonCanonArgs = true;
2842  }
2843
2844  QualType Canon;
2845  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2846    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2847                                                   Name, NumArgs,
2848                                                   CanonArgs.data());
2849
2850    // Find the insert position again.
2851    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2852  }
2853
2854  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2855                        sizeof(TemplateArgument) * NumArgs),
2856                       TypeAlignment);
2857  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2858                                                    Name, NumArgs, Args, Canon);
2859  Types.push_back(T);
2860  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2861  return QualType(T, 0);
2862}
2863
2864QualType ASTContext::getPackExpansionType(QualType Pattern,
2865                                      llvm::Optional<unsigned> NumExpansions) {
2866  llvm::FoldingSetNodeID ID;
2867  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2868
2869  assert(Pattern->containsUnexpandedParameterPack() &&
2870         "Pack expansions must expand one or more parameter packs");
2871  void *InsertPos = 0;
2872  PackExpansionType *T
2873    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2874  if (T)
2875    return QualType(T, 0);
2876
2877  QualType Canon;
2878  if (!Pattern.isCanonical()) {
2879    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2880
2881    // Find the insert position again.
2882    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2883  }
2884
2885  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2886  Types.push_back(T);
2887  PackExpansionTypes.InsertNode(T, InsertPos);
2888  return QualType(T, 0);
2889}
2890
2891/// CmpProtocolNames - Comparison predicate for sorting protocols
2892/// alphabetically.
2893static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2894                            const ObjCProtocolDecl *RHS) {
2895  return LHS->getDeclName() < RHS->getDeclName();
2896}
2897
2898static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2899                                unsigned NumProtocols) {
2900  if (NumProtocols == 0) return true;
2901
2902  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
2903    return false;
2904
2905  for (unsigned i = 1; i != NumProtocols; ++i)
2906    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
2907        Protocols[i]->getCanonicalDecl() != Protocols[i])
2908      return false;
2909  return true;
2910}
2911
2912static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2913                                   unsigned &NumProtocols) {
2914  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2915
2916  // Sort protocols, keyed by name.
2917  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2918
2919  // Canonicalize.
2920  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
2921    Protocols[I] = Protocols[I]->getCanonicalDecl();
2922
2923  // Remove duplicates.
2924  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2925  NumProtocols = ProtocolsEnd-Protocols;
2926}
2927
2928QualType ASTContext::getObjCObjectType(QualType BaseType,
2929                                       ObjCProtocolDecl * const *Protocols,
2930                                       unsigned NumProtocols) const {
2931  // If the base type is an interface and there aren't any protocols
2932  // to add, then the interface type will do just fine.
2933  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2934    return BaseType;
2935
2936  // Look in the folding set for an existing type.
2937  llvm::FoldingSetNodeID ID;
2938  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2939  void *InsertPos = 0;
2940  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2941    return QualType(QT, 0);
2942
2943  // Build the canonical type, which has the canonical base type and
2944  // a sorted-and-uniqued list of protocols.
2945  QualType Canonical;
2946  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2947  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2948    if (!ProtocolsSorted) {
2949      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2950                                                     Protocols + NumProtocols);
2951      unsigned UniqueCount = NumProtocols;
2952
2953      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2954      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2955                                    &Sorted[0], UniqueCount);
2956    } else {
2957      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2958                                    Protocols, NumProtocols);
2959    }
2960
2961    // Regenerate InsertPos.
2962    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2963  }
2964
2965  unsigned Size = sizeof(ObjCObjectTypeImpl);
2966  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2967  void *Mem = Allocate(Size, TypeAlignment);
2968  ObjCObjectTypeImpl *T =
2969    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2970
2971  Types.push_back(T);
2972  ObjCObjectTypes.InsertNode(T, InsertPos);
2973  return QualType(T, 0);
2974}
2975
2976/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2977/// the given object type.
2978QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2979  llvm::FoldingSetNodeID ID;
2980  ObjCObjectPointerType::Profile(ID, ObjectT);
2981
2982  void *InsertPos = 0;
2983  if (ObjCObjectPointerType *QT =
2984              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2985    return QualType(QT, 0);
2986
2987  // Find the canonical object type.
2988  QualType Canonical;
2989  if (!ObjectT.isCanonical()) {
2990    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2991
2992    // Regenerate InsertPos.
2993    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2994  }
2995
2996  // No match.
2997  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2998  ObjCObjectPointerType *QType =
2999    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3000
3001  Types.push_back(QType);
3002  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3003  return QualType(QType, 0);
3004}
3005
3006/// getObjCInterfaceType - Return the unique reference to the type for the
3007/// specified ObjC interface decl. The list of protocols is optional.
3008QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3009                                          ObjCInterfaceDecl *PrevDecl) const {
3010  if (Decl->TypeForDecl)
3011    return QualType(Decl->TypeForDecl, 0);
3012
3013  if (PrevDecl) {
3014    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3015    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3016    return QualType(PrevDecl->TypeForDecl, 0);
3017  }
3018
3019  // Prefer the definition, if there is one.
3020  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3021    Decl = Def;
3022
3023  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3024  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3025  Decl->TypeForDecl = T;
3026  Types.push_back(T);
3027  return QualType(T, 0);
3028}
3029
3030/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3031/// TypeOfExprType AST's (since expression's are never shared). For example,
3032/// multiple declarations that refer to "typeof(x)" all contain different
3033/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3034/// on canonical type's (which are always unique).
3035QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3036  TypeOfExprType *toe;
3037  if (tofExpr->isTypeDependent()) {
3038    llvm::FoldingSetNodeID ID;
3039    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3040
3041    void *InsertPos = 0;
3042    DependentTypeOfExprType *Canon
3043      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3044    if (Canon) {
3045      // We already have a "canonical" version of an identical, dependent
3046      // typeof(expr) type. Use that as our canonical type.
3047      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3048                                          QualType((TypeOfExprType*)Canon, 0));
3049    } else {
3050      // Build a new, canonical typeof(expr) type.
3051      Canon
3052        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3053      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3054      toe = Canon;
3055    }
3056  } else {
3057    QualType Canonical = getCanonicalType(tofExpr->getType());
3058    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3059  }
3060  Types.push_back(toe);
3061  return QualType(toe, 0);
3062}
3063
3064/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3065/// TypeOfType AST's. The only motivation to unique these nodes would be
3066/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3067/// an issue. This doesn't effect the type checker, since it operates
3068/// on canonical type's (which are always unique).
3069QualType ASTContext::getTypeOfType(QualType tofType) const {
3070  QualType Canonical = getCanonicalType(tofType);
3071  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3072  Types.push_back(tot);
3073  return QualType(tot, 0);
3074}
3075
3076
3077/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3078/// DecltypeType AST's. The only motivation to unique these nodes would be
3079/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3080/// an issue. This doesn't effect the type checker, since it operates
3081/// on canonical types (which are always unique).
3082QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3083  DecltypeType *dt;
3084
3085  // C++0x [temp.type]p2:
3086  //   If an expression e involves a template parameter, decltype(e) denotes a
3087  //   unique dependent type. Two such decltype-specifiers refer to the same
3088  //   type only if their expressions are equivalent (14.5.6.1).
3089  if (e->isInstantiationDependent()) {
3090    llvm::FoldingSetNodeID ID;
3091    DependentDecltypeType::Profile(ID, *this, e);
3092
3093    void *InsertPos = 0;
3094    DependentDecltypeType *Canon
3095      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3096    if (Canon) {
3097      // We already have a "canonical" version of an equivalent, dependent
3098      // decltype type. Use that as our canonical type.
3099      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
3100                                       QualType((DecltypeType*)Canon, 0));
3101    } else {
3102      // Build a new, canonical typeof(expr) type.
3103      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3104      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3105      dt = Canon;
3106    }
3107  } else {
3108    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3109                                      getCanonicalType(UnderlyingType));
3110  }
3111  Types.push_back(dt);
3112  return QualType(dt, 0);
3113}
3114
3115/// getUnaryTransformationType - We don't unique these, since the memory
3116/// savings are minimal and these are rare.
3117QualType ASTContext::getUnaryTransformType(QualType BaseType,
3118                                           QualType UnderlyingType,
3119                                           UnaryTransformType::UTTKind Kind)
3120    const {
3121  UnaryTransformType *Ty =
3122    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3123                                                   Kind,
3124                                 UnderlyingType->isDependentType() ?
3125                                 QualType() : getCanonicalType(UnderlyingType));
3126  Types.push_back(Ty);
3127  return QualType(Ty, 0);
3128}
3129
3130/// getAutoType - We only unique auto types after they've been deduced.
3131QualType ASTContext::getAutoType(QualType DeducedType) const {
3132  void *InsertPos = 0;
3133  if (!DeducedType.isNull()) {
3134    // Look in the folding set for an existing type.
3135    llvm::FoldingSetNodeID ID;
3136    AutoType::Profile(ID, DeducedType);
3137    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3138      return QualType(AT, 0);
3139  }
3140
3141  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3142  Types.push_back(AT);
3143  if (InsertPos)
3144    AutoTypes.InsertNode(AT, InsertPos);
3145  return QualType(AT, 0);
3146}
3147
3148/// getAtomicType - Return the uniqued reference to the atomic type for
3149/// the given value type.
3150QualType ASTContext::getAtomicType(QualType T) const {
3151  // Unique pointers, to guarantee there is only one pointer of a particular
3152  // structure.
3153  llvm::FoldingSetNodeID ID;
3154  AtomicType::Profile(ID, T);
3155
3156  void *InsertPos = 0;
3157  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3158    return QualType(AT, 0);
3159
3160  // If the atomic value type isn't canonical, this won't be a canonical type
3161  // either, so fill in the canonical type field.
3162  QualType Canonical;
3163  if (!T.isCanonical()) {
3164    Canonical = getAtomicType(getCanonicalType(T));
3165
3166    // Get the new insert position for the node we care about.
3167    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3168    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3169  }
3170  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3171  Types.push_back(New);
3172  AtomicTypes.InsertNode(New, InsertPos);
3173  return QualType(New, 0);
3174}
3175
3176/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3177QualType ASTContext::getAutoDeductType() const {
3178  if (AutoDeductTy.isNull())
3179    AutoDeductTy = getAutoType(QualType());
3180  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3181  return AutoDeductTy;
3182}
3183
3184/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3185QualType ASTContext::getAutoRRefDeductType() const {
3186  if (AutoRRefDeductTy.isNull())
3187    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3188  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3189  return AutoRRefDeductTy;
3190}
3191
3192/// getTagDeclType - Return the unique reference to the type for the
3193/// specified TagDecl (struct/union/class/enum) decl.
3194QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3195  assert (Decl);
3196  // FIXME: What is the design on getTagDeclType when it requires casting
3197  // away const?  mutable?
3198  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3199}
3200
3201/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3202/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3203/// needs to agree with the definition in <stddef.h>.
3204CanQualType ASTContext::getSizeType() const {
3205  return getFromTargetType(Target->getSizeType());
3206}
3207
3208/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3209CanQualType ASTContext::getIntMaxType() const {
3210  return getFromTargetType(Target->getIntMaxType());
3211}
3212
3213/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3214CanQualType ASTContext::getUIntMaxType() const {
3215  return getFromTargetType(Target->getUIntMaxType());
3216}
3217
3218/// getSignedWCharType - Return the type of "signed wchar_t".
3219/// Used when in C++, as a GCC extension.
3220QualType ASTContext::getSignedWCharType() const {
3221  // FIXME: derive from "Target" ?
3222  return WCharTy;
3223}
3224
3225/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3226/// Used when in C++, as a GCC extension.
3227QualType ASTContext::getUnsignedWCharType() const {
3228  // FIXME: derive from "Target" ?
3229  return UnsignedIntTy;
3230}
3231
3232/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3233/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3234QualType ASTContext::getPointerDiffType() const {
3235  return getFromTargetType(Target->getPtrDiffType(0));
3236}
3237
3238//===----------------------------------------------------------------------===//
3239//                              Type Operators
3240//===----------------------------------------------------------------------===//
3241
3242CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3243  // Push qualifiers into arrays, and then discard any remaining
3244  // qualifiers.
3245  T = getCanonicalType(T);
3246  T = getVariableArrayDecayedType(T);
3247  const Type *Ty = T.getTypePtr();
3248  QualType Result;
3249  if (isa<ArrayType>(Ty)) {
3250    Result = getArrayDecayedType(QualType(Ty,0));
3251  } else if (isa<FunctionType>(Ty)) {
3252    Result = getPointerType(QualType(Ty, 0));
3253  } else {
3254    Result = QualType(Ty, 0);
3255  }
3256
3257  return CanQualType::CreateUnsafe(Result);
3258}
3259
3260QualType ASTContext::getUnqualifiedArrayType(QualType type,
3261                                             Qualifiers &quals) {
3262  SplitQualType splitType = type.getSplitUnqualifiedType();
3263
3264  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3265  // the unqualified desugared type and then drops it on the floor.
3266  // We then have to strip that sugar back off with
3267  // getUnqualifiedDesugaredType(), which is silly.
3268  const ArrayType *AT =
3269    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3270
3271  // If we don't have an array, just use the results in splitType.
3272  if (!AT) {
3273    quals = splitType.Quals;
3274    return QualType(splitType.Ty, 0);
3275  }
3276
3277  // Otherwise, recurse on the array's element type.
3278  QualType elementType = AT->getElementType();
3279  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3280
3281  // If that didn't change the element type, AT has no qualifiers, so we
3282  // can just use the results in splitType.
3283  if (elementType == unqualElementType) {
3284    assert(quals.empty()); // from the recursive call
3285    quals = splitType.Quals;
3286    return QualType(splitType.Ty, 0);
3287  }
3288
3289  // Otherwise, add in the qualifiers from the outermost type, then
3290  // build the type back up.
3291  quals.addConsistentQualifiers(splitType.Quals);
3292
3293  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3294    return getConstantArrayType(unqualElementType, CAT->getSize(),
3295                                CAT->getSizeModifier(), 0);
3296  }
3297
3298  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3299    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3300  }
3301
3302  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3303    return getVariableArrayType(unqualElementType,
3304                                VAT->getSizeExpr(),
3305                                VAT->getSizeModifier(),
3306                                VAT->getIndexTypeCVRQualifiers(),
3307                                VAT->getBracketsRange());
3308  }
3309
3310  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3311  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3312                                    DSAT->getSizeModifier(), 0,
3313                                    SourceRange());
3314}
3315
3316/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3317/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3318/// they point to and return true. If T1 and T2 aren't pointer types
3319/// or pointer-to-member types, or if they are not similar at this
3320/// level, returns false and leaves T1 and T2 unchanged. Top-level
3321/// qualifiers on T1 and T2 are ignored. This function will typically
3322/// be called in a loop that successively "unwraps" pointer and
3323/// pointer-to-member types to compare them at each level.
3324bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3325  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3326                    *T2PtrType = T2->getAs<PointerType>();
3327  if (T1PtrType && T2PtrType) {
3328    T1 = T1PtrType->getPointeeType();
3329    T2 = T2PtrType->getPointeeType();
3330    return true;
3331  }
3332
3333  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3334                          *T2MPType = T2->getAs<MemberPointerType>();
3335  if (T1MPType && T2MPType &&
3336      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3337                             QualType(T2MPType->getClass(), 0))) {
3338    T1 = T1MPType->getPointeeType();
3339    T2 = T2MPType->getPointeeType();
3340    return true;
3341  }
3342
3343  if (getLangOpts().ObjC1) {
3344    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3345                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3346    if (T1OPType && T2OPType) {
3347      T1 = T1OPType->getPointeeType();
3348      T2 = T2OPType->getPointeeType();
3349      return true;
3350    }
3351  }
3352
3353  // FIXME: Block pointers, too?
3354
3355  return false;
3356}
3357
3358DeclarationNameInfo
3359ASTContext::getNameForTemplate(TemplateName Name,
3360                               SourceLocation NameLoc) const {
3361  switch (Name.getKind()) {
3362  case TemplateName::QualifiedTemplate:
3363  case TemplateName::Template:
3364    // DNInfo work in progress: CHECKME: what about DNLoc?
3365    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3366                               NameLoc);
3367
3368  case TemplateName::OverloadedTemplate: {
3369    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3370    // DNInfo work in progress: CHECKME: what about DNLoc?
3371    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3372  }
3373
3374  case TemplateName::DependentTemplate: {
3375    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3376    DeclarationName DName;
3377    if (DTN->isIdentifier()) {
3378      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3379      return DeclarationNameInfo(DName, NameLoc);
3380    } else {
3381      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3382      // DNInfo work in progress: FIXME: source locations?
3383      DeclarationNameLoc DNLoc;
3384      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3385      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3386      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3387    }
3388  }
3389
3390  case TemplateName::SubstTemplateTemplateParm: {
3391    SubstTemplateTemplateParmStorage *subst
3392      = Name.getAsSubstTemplateTemplateParm();
3393    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3394                               NameLoc);
3395  }
3396
3397  case TemplateName::SubstTemplateTemplateParmPack: {
3398    SubstTemplateTemplateParmPackStorage *subst
3399      = Name.getAsSubstTemplateTemplateParmPack();
3400    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3401                               NameLoc);
3402  }
3403  }
3404
3405  llvm_unreachable("bad template name kind!");
3406}
3407
3408TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3409  switch (Name.getKind()) {
3410  case TemplateName::QualifiedTemplate:
3411  case TemplateName::Template: {
3412    TemplateDecl *Template = Name.getAsTemplateDecl();
3413    if (TemplateTemplateParmDecl *TTP
3414          = dyn_cast<TemplateTemplateParmDecl>(Template))
3415      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3416
3417    // The canonical template name is the canonical template declaration.
3418    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3419  }
3420
3421  case TemplateName::OverloadedTemplate:
3422    llvm_unreachable("cannot canonicalize overloaded template");
3423
3424  case TemplateName::DependentTemplate: {
3425    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3426    assert(DTN && "Non-dependent template names must refer to template decls.");
3427    return DTN->CanonicalTemplateName;
3428  }
3429
3430  case TemplateName::SubstTemplateTemplateParm: {
3431    SubstTemplateTemplateParmStorage *subst
3432      = Name.getAsSubstTemplateTemplateParm();
3433    return getCanonicalTemplateName(subst->getReplacement());
3434  }
3435
3436  case TemplateName::SubstTemplateTemplateParmPack: {
3437    SubstTemplateTemplateParmPackStorage *subst
3438                                  = Name.getAsSubstTemplateTemplateParmPack();
3439    TemplateTemplateParmDecl *canonParameter
3440      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3441    TemplateArgument canonArgPack
3442      = getCanonicalTemplateArgument(subst->getArgumentPack());
3443    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3444  }
3445  }
3446
3447  llvm_unreachable("bad template name!");
3448}
3449
3450bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3451  X = getCanonicalTemplateName(X);
3452  Y = getCanonicalTemplateName(Y);
3453  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3454}
3455
3456TemplateArgument
3457ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3458  switch (Arg.getKind()) {
3459    case TemplateArgument::Null:
3460      return Arg;
3461
3462    case TemplateArgument::Expression:
3463      return Arg;
3464
3465    case TemplateArgument::Declaration: {
3466      if (Decl *D = Arg.getAsDecl())
3467          return TemplateArgument(D->getCanonicalDecl());
3468      return TemplateArgument((Decl*)0);
3469    }
3470
3471    case TemplateArgument::Template:
3472      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3473
3474    case TemplateArgument::TemplateExpansion:
3475      return TemplateArgument(getCanonicalTemplateName(
3476                                         Arg.getAsTemplateOrTemplatePattern()),
3477                              Arg.getNumTemplateExpansions());
3478
3479    case TemplateArgument::Integral:
3480      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3481
3482    case TemplateArgument::Type:
3483      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3484
3485    case TemplateArgument::Pack: {
3486      if (Arg.pack_size() == 0)
3487        return Arg;
3488
3489      TemplateArgument *CanonArgs
3490        = new (*this) TemplateArgument[Arg.pack_size()];
3491      unsigned Idx = 0;
3492      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3493                                        AEnd = Arg.pack_end();
3494           A != AEnd; (void)++A, ++Idx)
3495        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3496
3497      return TemplateArgument(CanonArgs, Arg.pack_size());
3498    }
3499  }
3500
3501  // Silence GCC warning
3502  llvm_unreachable("Unhandled template argument kind");
3503}
3504
3505NestedNameSpecifier *
3506ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3507  if (!NNS)
3508    return 0;
3509
3510  switch (NNS->getKind()) {
3511  case NestedNameSpecifier::Identifier:
3512    // Canonicalize the prefix but keep the identifier the same.
3513    return NestedNameSpecifier::Create(*this,
3514                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3515                                       NNS->getAsIdentifier());
3516
3517  case NestedNameSpecifier::Namespace:
3518    // A namespace is canonical; build a nested-name-specifier with
3519    // this namespace and no prefix.
3520    return NestedNameSpecifier::Create(*this, 0,
3521                                 NNS->getAsNamespace()->getOriginalNamespace());
3522
3523  case NestedNameSpecifier::NamespaceAlias:
3524    // A namespace is canonical; build a nested-name-specifier with
3525    // this namespace and no prefix.
3526    return NestedNameSpecifier::Create(*this, 0,
3527                                    NNS->getAsNamespaceAlias()->getNamespace()
3528                                                      ->getOriginalNamespace());
3529
3530  case NestedNameSpecifier::TypeSpec:
3531  case NestedNameSpecifier::TypeSpecWithTemplate: {
3532    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3533
3534    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3535    // break it apart into its prefix and identifier, then reconsititute those
3536    // as the canonical nested-name-specifier. This is required to canonicalize
3537    // a dependent nested-name-specifier involving typedefs of dependent-name
3538    // types, e.g.,
3539    //   typedef typename T::type T1;
3540    //   typedef typename T1::type T2;
3541    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3542      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3543                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3544
3545    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3546    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3547    // first place?
3548    return NestedNameSpecifier::Create(*this, 0, false,
3549                                       const_cast<Type*>(T.getTypePtr()));
3550  }
3551
3552  case NestedNameSpecifier::Global:
3553    // The global specifier is canonical and unique.
3554    return NNS;
3555  }
3556
3557  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3558}
3559
3560
3561const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3562  // Handle the non-qualified case efficiently.
3563  if (!T.hasLocalQualifiers()) {
3564    // Handle the common positive case fast.
3565    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3566      return AT;
3567  }
3568
3569  // Handle the common negative case fast.
3570  if (!isa<ArrayType>(T.getCanonicalType()))
3571    return 0;
3572
3573  // Apply any qualifiers from the array type to the element type.  This
3574  // implements C99 6.7.3p8: "If the specification of an array type includes
3575  // any type qualifiers, the element type is so qualified, not the array type."
3576
3577  // If we get here, we either have type qualifiers on the type, or we have
3578  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3579  // we must propagate them down into the element type.
3580
3581  SplitQualType split = T.getSplitDesugaredType();
3582  Qualifiers qs = split.Quals;
3583
3584  // If we have a simple case, just return now.
3585  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3586  if (ATy == 0 || qs.empty())
3587    return ATy;
3588
3589  // Otherwise, we have an array and we have qualifiers on it.  Push the
3590  // qualifiers into the array element type and return a new array type.
3591  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3592
3593  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3594    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3595                                                CAT->getSizeModifier(),
3596                                           CAT->getIndexTypeCVRQualifiers()));
3597  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3598    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3599                                                  IAT->getSizeModifier(),
3600                                           IAT->getIndexTypeCVRQualifiers()));
3601
3602  if (const DependentSizedArrayType *DSAT
3603        = dyn_cast<DependentSizedArrayType>(ATy))
3604    return cast<ArrayType>(
3605                     getDependentSizedArrayType(NewEltTy,
3606                                                DSAT->getSizeExpr(),
3607                                                DSAT->getSizeModifier(),
3608                                              DSAT->getIndexTypeCVRQualifiers(),
3609                                                DSAT->getBracketsRange()));
3610
3611  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3612  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3613                                              VAT->getSizeExpr(),
3614                                              VAT->getSizeModifier(),
3615                                              VAT->getIndexTypeCVRQualifiers(),
3616                                              VAT->getBracketsRange()));
3617}
3618
3619QualType ASTContext::getAdjustedParameterType(QualType T) const {
3620  // C99 6.7.5.3p7:
3621  //   A declaration of a parameter as "array of type" shall be
3622  //   adjusted to "qualified pointer to type", where the type
3623  //   qualifiers (if any) are those specified within the [ and ] of
3624  //   the array type derivation.
3625  if (T->isArrayType())
3626    return getArrayDecayedType(T);
3627
3628  // C99 6.7.5.3p8:
3629  //   A declaration of a parameter as "function returning type"
3630  //   shall be adjusted to "pointer to function returning type", as
3631  //   in 6.3.2.1.
3632  if (T->isFunctionType())
3633    return getPointerType(T);
3634
3635  return T;
3636}
3637
3638QualType ASTContext::getSignatureParameterType(QualType T) const {
3639  T = getVariableArrayDecayedType(T);
3640  T = getAdjustedParameterType(T);
3641  return T.getUnqualifiedType();
3642}
3643
3644/// getArrayDecayedType - Return the properly qualified result of decaying the
3645/// specified array type to a pointer.  This operation is non-trivial when
3646/// handling typedefs etc.  The canonical type of "T" must be an array type,
3647/// this returns a pointer to a properly qualified element of the array.
3648///
3649/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3650QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3651  // Get the element type with 'getAsArrayType' so that we don't lose any
3652  // typedefs in the element type of the array.  This also handles propagation
3653  // of type qualifiers from the array type into the element type if present
3654  // (C99 6.7.3p8).
3655  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3656  assert(PrettyArrayType && "Not an array type!");
3657
3658  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3659
3660  // int x[restrict 4] ->  int *restrict
3661  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3662}
3663
3664QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3665  return getBaseElementType(array->getElementType());
3666}
3667
3668QualType ASTContext::getBaseElementType(QualType type) const {
3669  Qualifiers qs;
3670  while (true) {
3671    SplitQualType split = type.getSplitDesugaredType();
3672    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3673    if (!array) break;
3674
3675    type = array->getElementType();
3676    qs.addConsistentQualifiers(split.Quals);
3677  }
3678
3679  return getQualifiedType(type, qs);
3680}
3681
3682/// getConstantArrayElementCount - Returns number of constant array elements.
3683uint64_t
3684ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3685  uint64_t ElementCount = 1;
3686  do {
3687    ElementCount *= CA->getSize().getZExtValue();
3688    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3689  } while (CA);
3690  return ElementCount;
3691}
3692
3693/// getFloatingRank - Return a relative rank for floating point types.
3694/// This routine will assert if passed a built-in type that isn't a float.
3695static FloatingRank getFloatingRank(QualType T) {
3696  if (const ComplexType *CT = T->getAs<ComplexType>())
3697    return getFloatingRank(CT->getElementType());
3698
3699  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3700  switch (T->getAs<BuiltinType>()->getKind()) {
3701  default: llvm_unreachable("getFloatingRank(): not a floating type");
3702  case BuiltinType::Half:       return HalfRank;
3703  case BuiltinType::Float:      return FloatRank;
3704  case BuiltinType::Double:     return DoubleRank;
3705  case BuiltinType::LongDouble: return LongDoubleRank;
3706  }
3707}
3708
3709/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3710/// point or a complex type (based on typeDomain/typeSize).
3711/// 'typeDomain' is a real floating point or complex type.
3712/// 'typeSize' is a real floating point or complex type.
3713QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3714                                                       QualType Domain) const {
3715  FloatingRank EltRank = getFloatingRank(Size);
3716  if (Domain->isComplexType()) {
3717    switch (EltRank) {
3718    case HalfRank: llvm_unreachable("Complex half is not supported");
3719    case FloatRank:      return FloatComplexTy;
3720    case DoubleRank:     return DoubleComplexTy;
3721    case LongDoubleRank: return LongDoubleComplexTy;
3722    }
3723  }
3724
3725  assert(Domain->isRealFloatingType() && "Unknown domain!");
3726  switch (EltRank) {
3727  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3728  case FloatRank:      return FloatTy;
3729  case DoubleRank:     return DoubleTy;
3730  case LongDoubleRank: return LongDoubleTy;
3731  }
3732  llvm_unreachable("getFloatingRank(): illegal value for rank");
3733}
3734
3735/// getFloatingTypeOrder - Compare the rank of the two specified floating
3736/// point types, ignoring the domain of the type (i.e. 'double' ==
3737/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3738/// LHS < RHS, return -1.
3739int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3740  FloatingRank LHSR = getFloatingRank(LHS);
3741  FloatingRank RHSR = getFloatingRank(RHS);
3742
3743  if (LHSR == RHSR)
3744    return 0;
3745  if (LHSR > RHSR)
3746    return 1;
3747  return -1;
3748}
3749
3750/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3751/// routine will assert if passed a built-in type that isn't an integer or enum,
3752/// or if it is not canonicalized.
3753unsigned ASTContext::getIntegerRank(const Type *T) const {
3754  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3755
3756  switch (cast<BuiltinType>(T)->getKind()) {
3757  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3758  case BuiltinType::Bool:
3759    return 1 + (getIntWidth(BoolTy) << 3);
3760  case BuiltinType::Char_S:
3761  case BuiltinType::Char_U:
3762  case BuiltinType::SChar:
3763  case BuiltinType::UChar:
3764    return 2 + (getIntWidth(CharTy) << 3);
3765  case BuiltinType::Short:
3766  case BuiltinType::UShort:
3767    return 3 + (getIntWidth(ShortTy) << 3);
3768  case BuiltinType::Int:
3769  case BuiltinType::UInt:
3770    return 4 + (getIntWidth(IntTy) << 3);
3771  case BuiltinType::Long:
3772  case BuiltinType::ULong:
3773    return 5 + (getIntWidth(LongTy) << 3);
3774  case BuiltinType::LongLong:
3775  case BuiltinType::ULongLong:
3776    return 6 + (getIntWidth(LongLongTy) << 3);
3777  case BuiltinType::Int128:
3778  case BuiltinType::UInt128:
3779    return 7 + (getIntWidth(Int128Ty) << 3);
3780  }
3781}
3782
3783/// \brief Whether this is a promotable bitfield reference according
3784/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3785///
3786/// \returns the type this bit-field will promote to, or NULL if no
3787/// promotion occurs.
3788QualType ASTContext::isPromotableBitField(Expr *E) const {
3789  if (E->isTypeDependent() || E->isValueDependent())
3790    return QualType();
3791
3792  FieldDecl *Field = E->getBitField();
3793  if (!Field)
3794    return QualType();
3795
3796  QualType FT = Field->getType();
3797
3798  uint64_t BitWidth = Field->getBitWidthValue(*this);
3799  uint64_t IntSize = getTypeSize(IntTy);
3800  // GCC extension compatibility: if the bit-field size is less than or equal
3801  // to the size of int, it gets promoted no matter what its type is.
3802  // For instance, unsigned long bf : 4 gets promoted to signed int.
3803  if (BitWidth < IntSize)
3804    return IntTy;
3805
3806  if (BitWidth == IntSize)
3807    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3808
3809  // Types bigger than int are not subject to promotions, and therefore act
3810  // like the base type.
3811  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3812  // is ridiculous.
3813  return QualType();
3814}
3815
3816/// getPromotedIntegerType - Returns the type that Promotable will
3817/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3818/// integer type.
3819QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3820  assert(!Promotable.isNull());
3821  assert(Promotable->isPromotableIntegerType());
3822  if (const EnumType *ET = Promotable->getAs<EnumType>())
3823    return ET->getDecl()->getPromotionType();
3824
3825  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3826    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3827    // (3.9.1) can be converted to a prvalue of the first of the following
3828    // types that can represent all the values of its underlying type:
3829    // int, unsigned int, long int, unsigned long int, long long int, or
3830    // unsigned long long int [...]
3831    // FIXME: Is there some better way to compute this?
3832    if (BT->getKind() == BuiltinType::WChar_S ||
3833        BT->getKind() == BuiltinType::WChar_U ||
3834        BT->getKind() == BuiltinType::Char16 ||
3835        BT->getKind() == BuiltinType::Char32) {
3836      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3837      uint64_t FromSize = getTypeSize(BT);
3838      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3839                                  LongLongTy, UnsignedLongLongTy };
3840      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3841        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3842        if (FromSize < ToSize ||
3843            (FromSize == ToSize &&
3844             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3845          return PromoteTypes[Idx];
3846      }
3847      llvm_unreachable("char type should fit into long long");
3848    }
3849  }
3850
3851  // At this point, we should have a signed or unsigned integer type.
3852  if (Promotable->isSignedIntegerType())
3853    return IntTy;
3854  uint64_t PromotableSize = getTypeSize(Promotable);
3855  uint64_t IntSize = getTypeSize(IntTy);
3856  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3857  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3858}
3859
3860/// \brief Recurses in pointer/array types until it finds an objc retainable
3861/// type and returns its ownership.
3862Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3863  while (!T.isNull()) {
3864    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3865      return T.getObjCLifetime();
3866    if (T->isArrayType())
3867      T = getBaseElementType(T);
3868    else if (const PointerType *PT = T->getAs<PointerType>())
3869      T = PT->getPointeeType();
3870    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3871      T = RT->getPointeeType();
3872    else
3873      break;
3874  }
3875
3876  return Qualifiers::OCL_None;
3877}
3878
3879/// getIntegerTypeOrder - Returns the highest ranked integer type:
3880/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3881/// LHS < RHS, return -1.
3882int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3883  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3884  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3885  if (LHSC == RHSC) return 0;
3886
3887  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3888  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3889
3890  unsigned LHSRank = getIntegerRank(LHSC);
3891  unsigned RHSRank = getIntegerRank(RHSC);
3892
3893  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3894    if (LHSRank == RHSRank) return 0;
3895    return LHSRank > RHSRank ? 1 : -1;
3896  }
3897
3898  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3899  if (LHSUnsigned) {
3900    // If the unsigned [LHS] type is larger, return it.
3901    if (LHSRank >= RHSRank)
3902      return 1;
3903
3904    // If the signed type can represent all values of the unsigned type, it
3905    // wins.  Because we are dealing with 2's complement and types that are
3906    // powers of two larger than each other, this is always safe.
3907    return -1;
3908  }
3909
3910  // If the unsigned [RHS] type is larger, return it.
3911  if (RHSRank >= LHSRank)
3912    return -1;
3913
3914  // If the signed type can represent all values of the unsigned type, it
3915  // wins.  Because we are dealing with 2's complement and types that are
3916  // powers of two larger than each other, this is always safe.
3917  return 1;
3918}
3919
3920static RecordDecl *
3921CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3922                 DeclContext *DC, IdentifierInfo *Id) {
3923  SourceLocation Loc;
3924  if (Ctx.getLangOpts().CPlusPlus)
3925    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3926  else
3927    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3928}
3929
3930// getCFConstantStringType - Return the type used for constant CFStrings.
3931QualType ASTContext::getCFConstantStringType() const {
3932  if (!CFConstantStringTypeDecl) {
3933    CFConstantStringTypeDecl =
3934      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3935                       &Idents.get("NSConstantString"));
3936    CFConstantStringTypeDecl->startDefinition();
3937
3938    QualType FieldTypes[4];
3939
3940    // const int *isa;
3941    FieldTypes[0] = getPointerType(IntTy.withConst());
3942    // int flags;
3943    FieldTypes[1] = IntTy;
3944    // const char *str;
3945    FieldTypes[2] = getPointerType(CharTy.withConst());
3946    // long length;
3947    FieldTypes[3] = LongTy;
3948
3949    // Create fields
3950    for (unsigned i = 0; i < 4; ++i) {
3951      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3952                                           SourceLocation(),
3953                                           SourceLocation(), 0,
3954                                           FieldTypes[i], /*TInfo=*/0,
3955                                           /*BitWidth=*/0,
3956                                           /*Mutable=*/false,
3957                                           ICIS_NoInit);
3958      Field->setAccess(AS_public);
3959      CFConstantStringTypeDecl->addDecl(Field);
3960    }
3961
3962    CFConstantStringTypeDecl->completeDefinition();
3963  }
3964
3965  return getTagDeclType(CFConstantStringTypeDecl);
3966}
3967
3968void ASTContext::setCFConstantStringType(QualType T) {
3969  const RecordType *Rec = T->getAs<RecordType>();
3970  assert(Rec && "Invalid CFConstantStringType");
3971  CFConstantStringTypeDecl = Rec->getDecl();
3972}
3973
3974QualType ASTContext::getBlockDescriptorType() const {
3975  if (BlockDescriptorType)
3976    return getTagDeclType(BlockDescriptorType);
3977
3978  RecordDecl *T;
3979  // FIXME: Needs the FlagAppleBlock bit.
3980  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3981                       &Idents.get("__block_descriptor"));
3982  T->startDefinition();
3983
3984  QualType FieldTypes[] = {
3985    UnsignedLongTy,
3986    UnsignedLongTy,
3987  };
3988
3989  const char *FieldNames[] = {
3990    "reserved",
3991    "Size"
3992  };
3993
3994  for (size_t i = 0; i < 2; ++i) {
3995    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3996                                         SourceLocation(),
3997                                         &Idents.get(FieldNames[i]),
3998                                         FieldTypes[i], /*TInfo=*/0,
3999                                         /*BitWidth=*/0,
4000                                         /*Mutable=*/false,
4001                                         ICIS_NoInit);
4002    Field->setAccess(AS_public);
4003    T->addDecl(Field);
4004  }
4005
4006  T->completeDefinition();
4007
4008  BlockDescriptorType = T;
4009
4010  return getTagDeclType(BlockDescriptorType);
4011}
4012
4013QualType ASTContext::getBlockDescriptorExtendedType() const {
4014  if (BlockDescriptorExtendedType)
4015    return getTagDeclType(BlockDescriptorExtendedType);
4016
4017  RecordDecl *T;
4018  // FIXME: Needs the FlagAppleBlock bit.
4019  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4020                       &Idents.get("__block_descriptor_withcopydispose"));
4021  T->startDefinition();
4022
4023  QualType FieldTypes[] = {
4024    UnsignedLongTy,
4025    UnsignedLongTy,
4026    getPointerType(VoidPtrTy),
4027    getPointerType(VoidPtrTy)
4028  };
4029
4030  const char *FieldNames[] = {
4031    "reserved",
4032    "Size",
4033    "CopyFuncPtr",
4034    "DestroyFuncPtr"
4035  };
4036
4037  for (size_t i = 0; i < 4; ++i) {
4038    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4039                                         SourceLocation(),
4040                                         &Idents.get(FieldNames[i]),
4041                                         FieldTypes[i], /*TInfo=*/0,
4042                                         /*BitWidth=*/0,
4043                                         /*Mutable=*/false,
4044                                         ICIS_NoInit);
4045    Field->setAccess(AS_public);
4046    T->addDecl(Field);
4047  }
4048
4049  T->completeDefinition();
4050
4051  BlockDescriptorExtendedType = T;
4052
4053  return getTagDeclType(BlockDescriptorExtendedType);
4054}
4055
4056bool ASTContext::BlockRequiresCopying(QualType Ty) const {
4057  if (Ty->isObjCRetainableType())
4058    return true;
4059  if (getLangOpts().CPlusPlus) {
4060    if (const RecordType *RT = Ty->getAs<RecordType>()) {
4061      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4062      return RD->hasConstCopyConstructor();
4063
4064    }
4065  }
4066  return false;
4067}
4068
4069QualType
4070ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
4071  //  type = struct __Block_byref_1_X {
4072  //    void *__isa;
4073  //    struct __Block_byref_1_X *__forwarding;
4074  //    unsigned int __flags;
4075  //    unsigned int __size;
4076  //    void *__copy_helper;            // as needed
4077  //    void *__destroy_help            // as needed
4078  //    int X;
4079  //  } *
4080
4081  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
4082
4083  // FIXME: Move up
4084  SmallString<36> Name;
4085  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
4086                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
4087  RecordDecl *T;
4088  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
4089  T->startDefinition();
4090  QualType Int32Ty = IntTy;
4091  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
4092  QualType FieldTypes[] = {
4093    getPointerType(VoidPtrTy),
4094    getPointerType(getTagDeclType(T)),
4095    Int32Ty,
4096    Int32Ty,
4097    getPointerType(VoidPtrTy),
4098    getPointerType(VoidPtrTy),
4099    Ty
4100  };
4101
4102  StringRef FieldNames[] = {
4103    "__isa",
4104    "__forwarding",
4105    "__flags",
4106    "__size",
4107    "__copy_helper",
4108    "__destroy_helper",
4109    DeclName,
4110  };
4111
4112  for (size_t i = 0; i < 7; ++i) {
4113    if (!HasCopyAndDispose && i >=4 && i <= 5)
4114      continue;
4115    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4116                                         SourceLocation(),
4117                                         &Idents.get(FieldNames[i]),
4118                                         FieldTypes[i], /*TInfo=*/0,
4119                                         /*BitWidth=*/0, /*Mutable=*/false,
4120                                         ICIS_NoInit);
4121    Field->setAccess(AS_public);
4122    T->addDecl(Field);
4123  }
4124
4125  T->completeDefinition();
4126
4127  return getPointerType(getTagDeclType(T));
4128}
4129
4130TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4131  if (!ObjCInstanceTypeDecl)
4132    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4133                                               getTranslationUnitDecl(),
4134                                               SourceLocation(),
4135                                               SourceLocation(),
4136                                               &Idents.get("instancetype"),
4137                                     getTrivialTypeSourceInfo(getObjCIdType()));
4138  return ObjCInstanceTypeDecl;
4139}
4140
4141// This returns true if a type has been typedefed to BOOL:
4142// typedef <type> BOOL;
4143static bool isTypeTypedefedAsBOOL(QualType T) {
4144  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4145    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4146      return II->isStr("BOOL");
4147
4148  return false;
4149}
4150
4151/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4152/// purpose.
4153CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4154  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4155    return CharUnits::Zero();
4156
4157  CharUnits sz = getTypeSizeInChars(type);
4158
4159  // Make all integer and enum types at least as large as an int
4160  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4161    sz = std::max(sz, getTypeSizeInChars(IntTy));
4162  // Treat arrays as pointers, since that's how they're passed in.
4163  else if (type->isArrayType())
4164    sz = getTypeSizeInChars(VoidPtrTy);
4165  return sz;
4166}
4167
4168static inline
4169std::string charUnitsToString(const CharUnits &CU) {
4170  return llvm::itostr(CU.getQuantity());
4171}
4172
4173/// getObjCEncodingForBlock - Return the encoded type for this block
4174/// declaration.
4175std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4176  std::string S;
4177
4178  const BlockDecl *Decl = Expr->getBlockDecl();
4179  QualType BlockTy =
4180      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4181  // Encode result type.
4182  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4183  // Compute size of all parameters.
4184  // Start with computing size of a pointer in number of bytes.
4185  // FIXME: There might(should) be a better way of doing this computation!
4186  SourceLocation Loc;
4187  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4188  CharUnits ParmOffset = PtrSize;
4189  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4190       E = Decl->param_end(); PI != E; ++PI) {
4191    QualType PType = (*PI)->getType();
4192    CharUnits sz = getObjCEncodingTypeSize(PType);
4193    if (sz.isZero())
4194      continue;
4195    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4196    ParmOffset += sz;
4197  }
4198  // Size of the argument frame
4199  S += charUnitsToString(ParmOffset);
4200  // Block pointer and offset.
4201  S += "@?0";
4202
4203  // Argument types.
4204  ParmOffset = PtrSize;
4205  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4206       Decl->param_end(); PI != E; ++PI) {
4207    ParmVarDecl *PVDecl = *PI;
4208    QualType PType = PVDecl->getOriginalType();
4209    if (const ArrayType *AT =
4210          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4211      // Use array's original type only if it has known number of
4212      // elements.
4213      if (!isa<ConstantArrayType>(AT))
4214        PType = PVDecl->getType();
4215    } else if (PType->isFunctionType())
4216      PType = PVDecl->getType();
4217    getObjCEncodingForType(PType, S);
4218    S += charUnitsToString(ParmOffset);
4219    ParmOffset += getObjCEncodingTypeSize(PType);
4220  }
4221
4222  return S;
4223}
4224
4225bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4226                                                std::string& S) {
4227  // Encode result type.
4228  getObjCEncodingForType(Decl->getResultType(), S);
4229  CharUnits ParmOffset;
4230  // Compute size of all parameters.
4231  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4232       E = Decl->param_end(); PI != E; ++PI) {
4233    QualType PType = (*PI)->getType();
4234    CharUnits sz = getObjCEncodingTypeSize(PType);
4235    if (sz.isZero())
4236      continue;
4237
4238    assert (sz.isPositive() &&
4239        "getObjCEncodingForFunctionDecl - Incomplete param type");
4240    ParmOffset += sz;
4241  }
4242  S += charUnitsToString(ParmOffset);
4243  ParmOffset = CharUnits::Zero();
4244
4245  // Argument types.
4246  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4247       E = Decl->param_end(); PI != E; ++PI) {
4248    ParmVarDecl *PVDecl = *PI;
4249    QualType PType = PVDecl->getOriginalType();
4250    if (const ArrayType *AT =
4251          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4252      // Use array's original type only if it has known number of
4253      // elements.
4254      if (!isa<ConstantArrayType>(AT))
4255        PType = PVDecl->getType();
4256    } else if (PType->isFunctionType())
4257      PType = PVDecl->getType();
4258    getObjCEncodingForType(PType, S);
4259    S += charUnitsToString(ParmOffset);
4260    ParmOffset += getObjCEncodingTypeSize(PType);
4261  }
4262
4263  return false;
4264}
4265
4266/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4267/// method parameter or return type. If Extended, include class names and
4268/// block object types.
4269void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4270                                                   QualType T, std::string& S,
4271                                                   bool Extended) const {
4272  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4273  getObjCEncodingForTypeQualifier(QT, S);
4274  // Encode parameter type.
4275  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4276                             true     /*OutermostType*/,
4277                             false    /*EncodingProperty*/,
4278                             false    /*StructField*/,
4279                             Extended /*EncodeBlockParameters*/,
4280                             Extended /*EncodeClassNames*/);
4281}
4282
4283/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4284/// declaration.
4285bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4286                                              std::string& S,
4287                                              bool Extended) const {
4288  // FIXME: This is not very efficient.
4289  // Encode return type.
4290  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4291                                    Decl->getResultType(), S, Extended);
4292  // Compute size of all parameters.
4293  // Start with computing size of a pointer in number of bytes.
4294  // FIXME: There might(should) be a better way of doing this computation!
4295  SourceLocation Loc;
4296  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4297  // The first two arguments (self and _cmd) are pointers; account for
4298  // their size.
4299  CharUnits ParmOffset = 2 * PtrSize;
4300  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4301       E = Decl->sel_param_end(); PI != E; ++PI) {
4302    QualType PType = (*PI)->getType();
4303    CharUnits sz = getObjCEncodingTypeSize(PType);
4304    if (sz.isZero())
4305      continue;
4306
4307    assert (sz.isPositive() &&
4308        "getObjCEncodingForMethodDecl - Incomplete param type");
4309    ParmOffset += sz;
4310  }
4311  S += charUnitsToString(ParmOffset);
4312  S += "@0:";
4313  S += charUnitsToString(PtrSize);
4314
4315  // Argument types.
4316  ParmOffset = 2 * PtrSize;
4317  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4318       E = Decl->sel_param_end(); PI != E; ++PI) {
4319    const ParmVarDecl *PVDecl = *PI;
4320    QualType PType = PVDecl->getOriginalType();
4321    if (const ArrayType *AT =
4322          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4323      // Use array's original type only if it has known number of
4324      // elements.
4325      if (!isa<ConstantArrayType>(AT))
4326        PType = PVDecl->getType();
4327    } else if (PType->isFunctionType())
4328      PType = PVDecl->getType();
4329    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4330                                      PType, S, Extended);
4331    S += charUnitsToString(ParmOffset);
4332    ParmOffset += getObjCEncodingTypeSize(PType);
4333  }
4334
4335  return false;
4336}
4337
4338/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4339/// property declaration. If non-NULL, Container must be either an
4340/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4341/// NULL when getting encodings for protocol properties.
4342/// Property attributes are stored as a comma-delimited C string. The simple
4343/// attributes readonly and bycopy are encoded as single characters. The
4344/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4345/// encoded as single characters, followed by an identifier. Property types
4346/// are also encoded as a parametrized attribute. The characters used to encode
4347/// these attributes are defined by the following enumeration:
4348/// @code
4349/// enum PropertyAttributes {
4350/// kPropertyReadOnly = 'R',   // property is read-only.
4351/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4352/// kPropertyByref = '&',  // property is a reference to the value last assigned
4353/// kPropertyDynamic = 'D',    // property is dynamic
4354/// kPropertyGetter = 'G',     // followed by getter selector name
4355/// kPropertySetter = 'S',     // followed by setter selector name
4356/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4357/// kPropertyType = 'T'              // followed by old-style type encoding.
4358/// kPropertyWeak = 'W'              // 'weak' property
4359/// kPropertyStrong = 'P'            // property GC'able
4360/// kPropertyNonAtomic = 'N'         // property non-atomic
4361/// };
4362/// @endcode
4363void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4364                                                const Decl *Container,
4365                                                std::string& S) const {
4366  // Collect information from the property implementation decl(s).
4367  bool Dynamic = false;
4368  ObjCPropertyImplDecl *SynthesizePID = 0;
4369
4370  // FIXME: Duplicated code due to poor abstraction.
4371  if (Container) {
4372    if (const ObjCCategoryImplDecl *CID =
4373        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4374      for (ObjCCategoryImplDecl::propimpl_iterator
4375             i = CID->propimpl_begin(), e = CID->propimpl_end();
4376           i != e; ++i) {
4377        ObjCPropertyImplDecl *PID = *i;
4378        if (PID->getPropertyDecl() == PD) {
4379          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4380            Dynamic = true;
4381          } else {
4382            SynthesizePID = PID;
4383          }
4384        }
4385      }
4386    } else {
4387      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4388      for (ObjCCategoryImplDecl::propimpl_iterator
4389             i = OID->propimpl_begin(), e = OID->propimpl_end();
4390           i != e; ++i) {
4391        ObjCPropertyImplDecl *PID = *i;
4392        if (PID->getPropertyDecl() == PD) {
4393          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4394            Dynamic = true;
4395          } else {
4396            SynthesizePID = PID;
4397          }
4398        }
4399      }
4400    }
4401  }
4402
4403  // FIXME: This is not very efficient.
4404  S = "T";
4405
4406  // Encode result type.
4407  // GCC has some special rules regarding encoding of properties which
4408  // closely resembles encoding of ivars.
4409  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4410                             true /* outermost type */,
4411                             true /* encoding for property */);
4412
4413  if (PD->isReadOnly()) {
4414    S += ",R";
4415  } else {
4416    switch (PD->getSetterKind()) {
4417    case ObjCPropertyDecl::Assign: break;
4418    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4419    case ObjCPropertyDecl::Retain: S += ",&"; break;
4420    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4421    }
4422  }
4423
4424  // It really isn't clear at all what this means, since properties
4425  // are "dynamic by default".
4426  if (Dynamic)
4427    S += ",D";
4428
4429  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4430    S += ",N";
4431
4432  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4433    S += ",G";
4434    S += PD->getGetterName().getAsString();
4435  }
4436
4437  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4438    S += ",S";
4439    S += PD->getSetterName().getAsString();
4440  }
4441
4442  if (SynthesizePID) {
4443    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4444    S += ",V";
4445    S += OID->getNameAsString();
4446  }
4447
4448  // FIXME: OBJCGC: weak & strong
4449}
4450
4451/// getLegacyIntegralTypeEncoding -
4452/// Another legacy compatibility encoding: 32-bit longs are encoded as
4453/// 'l' or 'L' , but not always.  For typedefs, we need to use
4454/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4455///
4456void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4457  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4458    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4459      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4460        PointeeTy = UnsignedIntTy;
4461      else
4462        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4463          PointeeTy = IntTy;
4464    }
4465  }
4466}
4467
4468void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4469                                        const FieldDecl *Field) const {
4470  // We follow the behavior of gcc, expanding structures which are
4471  // directly pointed to, and expanding embedded structures. Note that
4472  // these rules are sufficient to prevent recursive encoding of the
4473  // same type.
4474  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4475                             true /* outermost type */);
4476}
4477
4478static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4479    switch (T->getAs<BuiltinType>()->getKind()) {
4480    default: llvm_unreachable("Unhandled builtin type kind");
4481    case BuiltinType::Void:       return 'v';
4482    case BuiltinType::Bool:       return 'B';
4483    case BuiltinType::Char_U:
4484    case BuiltinType::UChar:      return 'C';
4485    case BuiltinType::UShort:     return 'S';
4486    case BuiltinType::UInt:       return 'I';
4487    case BuiltinType::ULong:
4488        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4489    case BuiltinType::UInt128:    return 'T';
4490    case BuiltinType::ULongLong:  return 'Q';
4491    case BuiltinType::Char_S:
4492    case BuiltinType::SChar:      return 'c';
4493    case BuiltinType::Short:      return 's';
4494    case BuiltinType::WChar_S:
4495    case BuiltinType::WChar_U:
4496    case BuiltinType::Int:        return 'i';
4497    case BuiltinType::Long:
4498      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4499    case BuiltinType::LongLong:   return 'q';
4500    case BuiltinType::Int128:     return 't';
4501    case BuiltinType::Float:      return 'f';
4502    case BuiltinType::Double:     return 'd';
4503    case BuiltinType::LongDouble: return 'D';
4504    }
4505}
4506
4507static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4508  EnumDecl *Enum = ET->getDecl();
4509
4510  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4511  if (!Enum->isFixed())
4512    return 'i';
4513
4514  // The encoding of a fixed enum type matches its fixed underlying type.
4515  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4516}
4517
4518static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4519                           QualType T, const FieldDecl *FD) {
4520  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4521  S += 'b';
4522  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4523  // The GNU runtime requires more information; bitfields are encoded as b,
4524  // then the offset (in bits) of the first element, then the type of the
4525  // bitfield, then the size in bits.  For example, in this structure:
4526  //
4527  // struct
4528  // {
4529  //    int integer;
4530  //    int flags:2;
4531  // };
4532  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4533  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4534  // information is not especially sensible, but we're stuck with it for
4535  // compatibility with GCC, although providing it breaks anything that
4536  // actually uses runtime introspection and wants to work on both runtimes...
4537  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4538    const RecordDecl *RD = FD->getParent();
4539    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4540    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4541    if (const EnumType *ET = T->getAs<EnumType>())
4542      S += ObjCEncodingForEnumType(Ctx, ET);
4543    else
4544      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4545  }
4546  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4547}
4548
4549// FIXME: Use SmallString for accumulating string.
4550void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4551                                            bool ExpandPointedToStructures,
4552                                            bool ExpandStructures,
4553                                            const FieldDecl *FD,
4554                                            bool OutermostType,
4555                                            bool EncodingProperty,
4556                                            bool StructField,
4557                                            bool EncodeBlockParameters,
4558                                            bool EncodeClassNames) const {
4559  if (T->getAs<BuiltinType>()) {
4560    if (FD && FD->isBitField())
4561      return EncodeBitField(this, S, T, FD);
4562    S += ObjCEncodingForPrimitiveKind(this, T);
4563    return;
4564  }
4565
4566  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4567    S += 'j';
4568    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4569                               false);
4570    return;
4571  }
4572
4573  // encoding for pointer or r3eference types.
4574  QualType PointeeTy;
4575  if (const PointerType *PT = T->getAs<PointerType>()) {
4576    if (PT->isObjCSelType()) {
4577      S += ':';
4578      return;
4579    }
4580    PointeeTy = PT->getPointeeType();
4581  }
4582  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4583    PointeeTy = RT->getPointeeType();
4584  if (!PointeeTy.isNull()) {
4585    bool isReadOnly = false;
4586    // For historical/compatibility reasons, the read-only qualifier of the
4587    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4588    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4589    // Also, do not emit the 'r' for anything but the outermost type!
4590    if (isa<TypedefType>(T.getTypePtr())) {
4591      if (OutermostType && T.isConstQualified()) {
4592        isReadOnly = true;
4593        S += 'r';
4594      }
4595    } else if (OutermostType) {
4596      QualType P = PointeeTy;
4597      while (P->getAs<PointerType>())
4598        P = P->getAs<PointerType>()->getPointeeType();
4599      if (P.isConstQualified()) {
4600        isReadOnly = true;
4601        S += 'r';
4602      }
4603    }
4604    if (isReadOnly) {
4605      // Another legacy compatibility encoding. Some ObjC qualifier and type
4606      // combinations need to be rearranged.
4607      // Rewrite "in const" from "nr" to "rn"
4608      if (StringRef(S).endswith("nr"))
4609        S.replace(S.end()-2, S.end(), "rn");
4610    }
4611
4612    if (PointeeTy->isCharType()) {
4613      // char pointer types should be encoded as '*' unless it is a
4614      // type that has been typedef'd to 'BOOL'.
4615      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4616        S += '*';
4617        return;
4618      }
4619    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4620      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4621      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4622        S += '#';
4623        return;
4624      }
4625      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4626      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4627        S += '@';
4628        return;
4629      }
4630      // fall through...
4631    }
4632    S += '^';
4633    getLegacyIntegralTypeEncoding(PointeeTy);
4634
4635    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4636                               NULL);
4637    return;
4638  }
4639
4640  if (const ArrayType *AT =
4641      // Ignore type qualifiers etc.
4642        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4643    if (isa<IncompleteArrayType>(AT) && !StructField) {
4644      // Incomplete arrays are encoded as a pointer to the array element.
4645      S += '^';
4646
4647      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4648                                 false, ExpandStructures, FD);
4649    } else {
4650      S += '[';
4651
4652      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4653        if (getTypeSize(CAT->getElementType()) == 0)
4654          S += '0';
4655        else
4656          S += llvm::utostr(CAT->getSize().getZExtValue());
4657      } else {
4658        //Variable length arrays are encoded as a regular array with 0 elements.
4659        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4660               "Unknown array type!");
4661        S += '0';
4662      }
4663
4664      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4665                                 false, ExpandStructures, FD);
4666      S += ']';
4667    }
4668    return;
4669  }
4670
4671  if (T->getAs<FunctionType>()) {
4672    S += '?';
4673    return;
4674  }
4675
4676  if (const RecordType *RTy = T->getAs<RecordType>()) {
4677    RecordDecl *RDecl = RTy->getDecl();
4678    S += RDecl->isUnion() ? '(' : '{';
4679    // Anonymous structures print as '?'
4680    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4681      S += II->getName();
4682      if (ClassTemplateSpecializationDecl *Spec
4683          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4684        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4685        std::string TemplateArgsStr
4686          = TemplateSpecializationType::PrintTemplateArgumentList(
4687                                            TemplateArgs.data(),
4688                                            TemplateArgs.size(),
4689                                            (*this).getPrintingPolicy());
4690
4691        S += TemplateArgsStr;
4692      }
4693    } else {
4694      S += '?';
4695    }
4696    if (ExpandStructures) {
4697      S += '=';
4698      if (!RDecl->isUnion()) {
4699        getObjCEncodingForStructureImpl(RDecl, S, FD);
4700      } else {
4701        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4702                                     FieldEnd = RDecl->field_end();
4703             Field != FieldEnd; ++Field) {
4704          if (FD) {
4705            S += '"';
4706            S += Field->getNameAsString();
4707            S += '"';
4708          }
4709
4710          // Special case bit-fields.
4711          if (Field->isBitField()) {
4712            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4713                                       *Field);
4714          } else {
4715            QualType qt = Field->getType();
4716            getLegacyIntegralTypeEncoding(qt);
4717            getObjCEncodingForTypeImpl(qt, S, false, true,
4718                                       FD, /*OutermostType*/false,
4719                                       /*EncodingProperty*/false,
4720                                       /*StructField*/true);
4721          }
4722        }
4723      }
4724    }
4725    S += RDecl->isUnion() ? ')' : '}';
4726    return;
4727  }
4728
4729  if (const EnumType *ET = T->getAs<EnumType>()) {
4730    if (FD && FD->isBitField())
4731      EncodeBitField(this, S, T, FD);
4732    else
4733      S += ObjCEncodingForEnumType(this, ET);
4734    return;
4735  }
4736
4737  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4738    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4739    if (EncodeBlockParameters) {
4740      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4741
4742      S += '<';
4743      // Block return type
4744      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4745                                 ExpandPointedToStructures, ExpandStructures,
4746                                 FD,
4747                                 false /* OutermostType */,
4748                                 EncodingProperty,
4749                                 false /* StructField */,
4750                                 EncodeBlockParameters,
4751                                 EncodeClassNames);
4752      // Block self
4753      S += "@?";
4754      // Block parameters
4755      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4756        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4757               E = FPT->arg_type_end(); I && (I != E); ++I) {
4758          getObjCEncodingForTypeImpl(*I, S,
4759                                     ExpandPointedToStructures,
4760                                     ExpandStructures,
4761                                     FD,
4762                                     false /* OutermostType */,
4763                                     EncodingProperty,
4764                                     false /* StructField */,
4765                                     EncodeBlockParameters,
4766                                     EncodeClassNames);
4767        }
4768      }
4769      S += '>';
4770    }
4771    return;
4772  }
4773
4774  // Ignore protocol qualifiers when mangling at this level.
4775  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4776    T = OT->getBaseType();
4777
4778  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4779    // @encode(class_name)
4780    ObjCInterfaceDecl *OI = OIT->getDecl();
4781    S += '{';
4782    const IdentifierInfo *II = OI->getIdentifier();
4783    S += II->getName();
4784    S += '=';
4785    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4786    DeepCollectObjCIvars(OI, true, Ivars);
4787    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4788      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4789      if (Field->isBitField())
4790        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4791      else
4792        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4793    }
4794    S += '}';
4795    return;
4796  }
4797
4798  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4799    if (OPT->isObjCIdType()) {
4800      S += '@';
4801      return;
4802    }
4803
4804    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4805      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4806      // Since this is a binary compatibility issue, need to consult with runtime
4807      // folks. Fortunately, this is a *very* obsure construct.
4808      S += '#';
4809      return;
4810    }
4811
4812    if (OPT->isObjCQualifiedIdType()) {
4813      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4814                                 ExpandPointedToStructures,
4815                                 ExpandStructures, FD);
4816      if (FD || EncodingProperty || EncodeClassNames) {
4817        // Note that we do extended encoding of protocol qualifer list
4818        // Only when doing ivar or property encoding.
4819        S += '"';
4820        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4821             E = OPT->qual_end(); I != E; ++I) {
4822          S += '<';
4823          S += (*I)->getNameAsString();
4824          S += '>';
4825        }
4826        S += '"';
4827      }
4828      return;
4829    }
4830
4831    QualType PointeeTy = OPT->getPointeeType();
4832    if (!EncodingProperty &&
4833        isa<TypedefType>(PointeeTy.getTypePtr())) {
4834      // Another historical/compatibility reason.
4835      // We encode the underlying type which comes out as
4836      // {...};
4837      S += '^';
4838      getObjCEncodingForTypeImpl(PointeeTy, S,
4839                                 false, ExpandPointedToStructures,
4840                                 NULL);
4841      return;
4842    }
4843
4844    S += '@';
4845    if (OPT->getInterfaceDecl() &&
4846        (FD || EncodingProperty || EncodeClassNames)) {
4847      S += '"';
4848      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4849      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4850           E = OPT->qual_end(); I != E; ++I) {
4851        S += '<';
4852        S += (*I)->getNameAsString();
4853        S += '>';
4854      }
4855      S += '"';
4856    }
4857    return;
4858  }
4859
4860  // gcc just blithely ignores member pointers.
4861  // TODO: maybe there should be a mangling for these
4862  if (T->getAs<MemberPointerType>())
4863    return;
4864
4865  if (T->isVectorType()) {
4866    // This matches gcc's encoding, even though technically it is
4867    // insufficient.
4868    // FIXME. We should do a better job than gcc.
4869    return;
4870  }
4871
4872  llvm_unreachable("@encode for type not implemented!");
4873}
4874
4875void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4876                                                 std::string &S,
4877                                                 const FieldDecl *FD,
4878                                                 bool includeVBases) const {
4879  assert(RDecl && "Expected non-null RecordDecl");
4880  assert(!RDecl->isUnion() && "Should not be called for unions");
4881  if (!RDecl->getDefinition())
4882    return;
4883
4884  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4885  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4886  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4887
4888  if (CXXRec) {
4889    for (CXXRecordDecl::base_class_iterator
4890           BI = CXXRec->bases_begin(),
4891           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4892      if (!BI->isVirtual()) {
4893        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4894        if (base->isEmpty())
4895          continue;
4896        uint64_t offs = toBits(layout.getBaseClassOffset(base));
4897        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4898                                  std::make_pair(offs, base));
4899      }
4900    }
4901  }
4902
4903  unsigned i = 0;
4904  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4905                               FieldEnd = RDecl->field_end();
4906       Field != FieldEnd; ++Field, ++i) {
4907    uint64_t offs = layout.getFieldOffset(i);
4908    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4909                              std::make_pair(offs, *Field));
4910  }
4911
4912  if (CXXRec && includeVBases) {
4913    for (CXXRecordDecl::base_class_iterator
4914           BI = CXXRec->vbases_begin(),
4915           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4916      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4917      if (base->isEmpty())
4918        continue;
4919      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
4920      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4921        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4922                                  std::make_pair(offs, base));
4923    }
4924  }
4925
4926  CharUnits size;
4927  if (CXXRec) {
4928    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4929  } else {
4930    size = layout.getSize();
4931  }
4932
4933  uint64_t CurOffs = 0;
4934  std::multimap<uint64_t, NamedDecl *>::iterator
4935    CurLayObj = FieldOrBaseOffsets.begin();
4936
4937  if (CXXRec && CXXRec->isDynamicClass() &&
4938      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
4939    if (FD) {
4940      S += "\"_vptr$";
4941      std::string recname = CXXRec->getNameAsString();
4942      if (recname.empty()) recname = "?";
4943      S += recname;
4944      S += '"';
4945    }
4946    S += "^^?";
4947    CurOffs += getTypeSize(VoidPtrTy);
4948  }
4949
4950  if (!RDecl->hasFlexibleArrayMember()) {
4951    // Mark the end of the structure.
4952    uint64_t offs = toBits(size);
4953    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4954                              std::make_pair(offs, (NamedDecl*)0));
4955  }
4956
4957  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4958    assert(CurOffs <= CurLayObj->first);
4959
4960    if (CurOffs < CurLayObj->first) {
4961      uint64_t padding = CurLayObj->first - CurOffs;
4962      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4963      // packing/alignment of members is different that normal, in which case
4964      // the encoding will be out-of-sync with the real layout.
4965      // If the runtime switches to just consider the size of types without
4966      // taking into account alignment, we could make padding explicit in the
4967      // encoding (e.g. using arrays of chars). The encoding strings would be
4968      // longer then though.
4969      CurOffs += padding;
4970    }
4971
4972    NamedDecl *dcl = CurLayObj->second;
4973    if (dcl == 0)
4974      break; // reached end of structure.
4975
4976    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4977      // We expand the bases without their virtual bases since those are going
4978      // in the initial structure. Note that this differs from gcc which
4979      // expands virtual bases each time one is encountered in the hierarchy,
4980      // making the encoding type bigger than it really is.
4981      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4982      assert(!base->isEmpty());
4983      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4984    } else {
4985      FieldDecl *field = cast<FieldDecl>(dcl);
4986      if (FD) {
4987        S += '"';
4988        S += field->getNameAsString();
4989        S += '"';
4990      }
4991
4992      if (field->isBitField()) {
4993        EncodeBitField(this, S, field->getType(), field);
4994        CurOffs += field->getBitWidthValue(*this);
4995      } else {
4996        QualType qt = field->getType();
4997        getLegacyIntegralTypeEncoding(qt);
4998        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4999                                   /*OutermostType*/false,
5000                                   /*EncodingProperty*/false,
5001                                   /*StructField*/true);
5002        CurOffs += getTypeSize(field->getType());
5003      }
5004    }
5005  }
5006}
5007
5008void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5009                                                 std::string& S) const {
5010  if (QT & Decl::OBJC_TQ_In)
5011    S += 'n';
5012  if (QT & Decl::OBJC_TQ_Inout)
5013    S += 'N';
5014  if (QT & Decl::OBJC_TQ_Out)
5015    S += 'o';
5016  if (QT & Decl::OBJC_TQ_Bycopy)
5017    S += 'O';
5018  if (QT & Decl::OBJC_TQ_Byref)
5019    S += 'R';
5020  if (QT & Decl::OBJC_TQ_Oneway)
5021    S += 'V';
5022}
5023
5024TypedefDecl *ASTContext::getObjCIdDecl() const {
5025  if (!ObjCIdDecl) {
5026    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5027    T = getObjCObjectPointerType(T);
5028    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5029    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5030                                     getTranslationUnitDecl(),
5031                                     SourceLocation(), SourceLocation(),
5032                                     &Idents.get("id"), IdInfo);
5033  }
5034
5035  return ObjCIdDecl;
5036}
5037
5038TypedefDecl *ASTContext::getObjCSelDecl() const {
5039  if (!ObjCSelDecl) {
5040    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5041    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5042    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5043                                      getTranslationUnitDecl(),
5044                                      SourceLocation(), SourceLocation(),
5045                                      &Idents.get("SEL"), SelInfo);
5046  }
5047  return ObjCSelDecl;
5048}
5049
5050TypedefDecl *ASTContext::getObjCClassDecl() const {
5051  if (!ObjCClassDecl) {
5052    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5053    T = getObjCObjectPointerType(T);
5054    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5055    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5056                                        getTranslationUnitDecl(),
5057                                        SourceLocation(), SourceLocation(),
5058                                        &Idents.get("Class"), ClassInfo);
5059  }
5060
5061  return ObjCClassDecl;
5062}
5063
5064ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5065  if (!ObjCProtocolClassDecl) {
5066    ObjCProtocolClassDecl
5067      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5068                                  SourceLocation(),
5069                                  &Idents.get("Protocol"),
5070                                  /*PrevDecl=*/0,
5071                                  SourceLocation(), true);
5072  }
5073
5074  return ObjCProtocolClassDecl;
5075}
5076
5077//===----------------------------------------------------------------------===//
5078// __builtin_va_list Construction Functions
5079//===----------------------------------------------------------------------===//
5080
5081static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5082  // typedef char* __builtin_va_list;
5083  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5084  TypeSourceInfo *TInfo
5085    = Context->getTrivialTypeSourceInfo(CharPtrType);
5086
5087  TypedefDecl *VaListTypeDecl
5088    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5089                          Context->getTranslationUnitDecl(),
5090                          SourceLocation(), SourceLocation(),
5091                          &Context->Idents.get("__builtin_va_list"),
5092                          TInfo);
5093  return VaListTypeDecl;
5094}
5095
5096static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5097  // typedef void* __builtin_va_list;
5098  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5099  TypeSourceInfo *TInfo
5100    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5101
5102  TypedefDecl *VaListTypeDecl
5103    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5104                          Context->getTranslationUnitDecl(),
5105                          SourceLocation(), SourceLocation(),
5106                          &Context->Idents.get("__builtin_va_list"),
5107                          TInfo);
5108  return VaListTypeDecl;
5109}
5110
5111static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5112  // typedef struct __va_list_tag {
5113  RecordDecl *VaListTagDecl;
5114
5115  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5116                                   Context->getTranslationUnitDecl(),
5117                                   &Context->Idents.get("__va_list_tag"));
5118  VaListTagDecl->startDefinition();
5119
5120  const size_t NumFields = 5;
5121  QualType FieldTypes[NumFields];
5122  const char *FieldNames[NumFields];
5123
5124  //   unsigned char gpr;
5125  FieldTypes[0] = Context->UnsignedCharTy;
5126  FieldNames[0] = "gpr";
5127
5128  //   unsigned char fpr;
5129  FieldTypes[1] = Context->UnsignedCharTy;
5130  FieldNames[1] = "fpr";
5131
5132  //   unsigned short reserved;
5133  FieldTypes[2] = Context->UnsignedShortTy;
5134  FieldNames[2] = "reserved";
5135
5136  //   void* overflow_arg_area;
5137  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5138  FieldNames[3] = "overflow_arg_area";
5139
5140  //   void* reg_save_area;
5141  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5142  FieldNames[4] = "reg_save_area";
5143
5144  // Create fields
5145  for (unsigned i = 0; i < NumFields; ++i) {
5146    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5147                                         SourceLocation(),
5148                                         SourceLocation(),
5149                                         &Context->Idents.get(FieldNames[i]),
5150                                         FieldTypes[i], /*TInfo=*/0,
5151                                         /*BitWidth=*/0,
5152                                         /*Mutable=*/false,
5153                                         ICIS_NoInit);
5154    Field->setAccess(AS_public);
5155    VaListTagDecl->addDecl(Field);
5156  }
5157  VaListTagDecl->completeDefinition();
5158  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5159  Context->VaListTagTy = VaListTagType;
5160
5161  // } __va_list_tag;
5162  TypedefDecl *VaListTagTypedefDecl
5163    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5164                          Context->getTranslationUnitDecl(),
5165                          SourceLocation(), SourceLocation(),
5166                          &Context->Idents.get("__va_list_tag"),
5167                          Context->getTrivialTypeSourceInfo(VaListTagType));
5168  QualType VaListTagTypedefType =
5169    Context->getTypedefType(VaListTagTypedefDecl);
5170
5171  // typedef __va_list_tag __builtin_va_list[1];
5172  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5173  QualType VaListTagArrayType
5174    = Context->getConstantArrayType(VaListTagTypedefType,
5175                                    Size, ArrayType::Normal, 0);
5176  TypeSourceInfo *TInfo
5177    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5178  TypedefDecl *VaListTypedefDecl
5179    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5180                          Context->getTranslationUnitDecl(),
5181                          SourceLocation(), SourceLocation(),
5182                          &Context->Idents.get("__builtin_va_list"),
5183                          TInfo);
5184
5185  return VaListTypedefDecl;
5186}
5187
5188static TypedefDecl *
5189CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5190  // typedef struct __va_list_tag {
5191  RecordDecl *VaListTagDecl;
5192  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5193                                   Context->getTranslationUnitDecl(),
5194                                   &Context->Idents.get("__va_list_tag"));
5195  VaListTagDecl->startDefinition();
5196
5197  const size_t NumFields = 4;
5198  QualType FieldTypes[NumFields];
5199  const char *FieldNames[NumFields];
5200
5201  //   unsigned gp_offset;
5202  FieldTypes[0] = Context->UnsignedIntTy;
5203  FieldNames[0] = "gp_offset";
5204
5205  //   unsigned fp_offset;
5206  FieldTypes[1] = Context->UnsignedIntTy;
5207  FieldNames[1] = "fp_offset";
5208
5209  //   void* overflow_arg_area;
5210  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5211  FieldNames[2] = "overflow_arg_area";
5212
5213  //   void* reg_save_area;
5214  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5215  FieldNames[3] = "reg_save_area";
5216
5217  // Create fields
5218  for (unsigned i = 0; i < NumFields; ++i) {
5219    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5220                                         VaListTagDecl,
5221                                         SourceLocation(),
5222                                         SourceLocation(),
5223                                         &Context->Idents.get(FieldNames[i]),
5224                                         FieldTypes[i], /*TInfo=*/0,
5225                                         /*BitWidth=*/0,
5226                                         /*Mutable=*/false,
5227                                         ICIS_NoInit);
5228    Field->setAccess(AS_public);
5229    VaListTagDecl->addDecl(Field);
5230  }
5231  VaListTagDecl->completeDefinition();
5232  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5233  Context->VaListTagTy = VaListTagType;
5234
5235  // } __va_list_tag;
5236  TypedefDecl *VaListTagTypedefDecl
5237    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5238                          Context->getTranslationUnitDecl(),
5239                          SourceLocation(), SourceLocation(),
5240                          &Context->Idents.get("__va_list_tag"),
5241                          Context->getTrivialTypeSourceInfo(VaListTagType));
5242  QualType VaListTagTypedefType =
5243    Context->getTypedefType(VaListTagTypedefDecl);
5244
5245  // typedef __va_list_tag __builtin_va_list[1];
5246  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5247  QualType VaListTagArrayType
5248    = Context->getConstantArrayType(VaListTagTypedefType,
5249                                      Size, ArrayType::Normal,0);
5250  TypeSourceInfo *TInfo
5251    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5252  TypedefDecl *VaListTypedefDecl
5253    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5254                          Context->getTranslationUnitDecl(),
5255                          SourceLocation(), SourceLocation(),
5256                          &Context->Idents.get("__builtin_va_list"),
5257                          TInfo);
5258
5259  return VaListTypedefDecl;
5260}
5261
5262static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5263  // typedef int __builtin_va_list[4];
5264  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5265  QualType IntArrayType
5266    = Context->getConstantArrayType(Context->IntTy,
5267				    Size, ArrayType::Normal, 0);
5268  TypedefDecl *VaListTypedefDecl
5269    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5270                          Context->getTranslationUnitDecl(),
5271                          SourceLocation(), SourceLocation(),
5272                          &Context->Idents.get("__builtin_va_list"),
5273                          Context->getTrivialTypeSourceInfo(IntArrayType));
5274
5275  return VaListTypedefDecl;
5276}
5277
5278static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5279                                     TargetInfo::BuiltinVaListKind Kind) {
5280  switch (Kind) {
5281  case TargetInfo::CharPtrBuiltinVaList:
5282    return CreateCharPtrBuiltinVaListDecl(Context);
5283  case TargetInfo::VoidPtrBuiltinVaList:
5284    return CreateVoidPtrBuiltinVaListDecl(Context);
5285  case TargetInfo::PowerABIBuiltinVaList:
5286    return CreatePowerABIBuiltinVaListDecl(Context);
5287  case TargetInfo::X86_64ABIBuiltinVaList:
5288    return CreateX86_64ABIBuiltinVaListDecl(Context);
5289  case TargetInfo::PNaClABIBuiltinVaList:
5290    return CreatePNaClABIBuiltinVaListDecl(Context);
5291  }
5292
5293  llvm_unreachable("Unhandled __builtin_va_list type kind");
5294}
5295
5296TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5297  if (!BuiltinVaListDecl)
5298    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5299
5300  return BuiltinVaListDecl;
5301}
5302
5303QualType ASTContext::getVaListTagType() const {
5304  // Force the creation of VaListTagTy by building the __builtin_va_list
5305  // declaration.
5306  if (VaListTagTy.isNull())
5307    (void) getBuiltinVaListDecl();
5308
5309  return VaListTagTy;
5310}
5311
5312void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5313  assert(ObjCConstantStringType.isNull() &&
5314         "'NSConstantString' type already set!");
5315
5316  ObjCConstantStringType = getObjCInterfaceType(Decl);
5317}
5318
5319/// \brief Retrieve the template name that corresponds to a non-empty
5320/// lookup.
5321TemplateName
5322ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5323                                      UnresolvedSetIterator End) const {
5324  unsigned size = End - Begin;
5325  assert(size > 1 && "set is not overloaded!");
5326
5327  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5328                          size * sizeof(FunctionTemplateDecl*));
5329  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5330
5331  NamedDecl **Storage = OT->getStorage();
5332  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5333    NamedDecl *D = *I;
5334    assert(isa<FunctionTemplateDecl>(D) ||
5335           (isa<UsingShadowDecl>(D) &&
5336            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5337    *Storage++ = D;
5338  }
5339
5340  return TemplateName(OT);
5341}
5342
5343/// \brief Retrieve the template name that represents a qualified
5344/// template name such as \c std::vector.
5345TemplateName
5346ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5347                                     bool TemplateKeyword,
5348                                     TemplateDecl *Template) const {
5349  assert(NNS && "Missing nested-name-specifier in qualified template name");
5350
5351  // FIXME: Canonicalization?
5352  llvm::FoldingSetNodeID ID;
5353  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5354
5355  void *InsertPos = 0;
5356  QualifiedTemplateName *QTN =
5357    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5358  if (!QTN) {
5359    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
5360    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5361  }
5362
5363  return TemplateName(QTN);
5364}
5365
5366/// \brief Retrieve the template name that represents a dependent
5367/// template name such as \c MetaFun::template apply.
5368TemplateName
5369ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5370                                     const IdentifierInfo *Name) const {
5371  assert((!NNS || NNS->isDependent()) &&
5372         "Nested name specifier must be dependent");
5373
5374  llvm::FoldingSetNodeID ID;
5375  DependentTemplateName::Profile(ID, NNS, Name);
5376
5377  void *InsertPos = 0;
5378  DependentTemplateName *QTN =
5379    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5380
5381  if (QTN)
5382    return TemplateName(QTN);
5383
5384  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5385  if (CanonNNS == NNS) {
5386    QTN = new (*this,4) DependentTemplateName(NNS, Name);
5387  } else {
5388    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5389    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
5390    DependentTemplateName *CheckQTN =
5391      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5392    assert(!CheckQTN && "Dependent type name canonicalization broken");
5393    (void)CheckQTN;
5394  }
5395
5396  DependentTemplateNames.InsertNode(QTN, InsertPos);
5397  return TemplateName(QTN);
5398}
5399
5400/// \brief Retrieve the template name that represents a dependent
5401/// template name such as \c MetaFun::template operator+.
5402TemplateName
5403ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5404                                     OverloadedOperatorKind Operator) const {
5405  assert((!NNS || NNS->isDependent()) &&
5406         "Nested name specifier must be dependent");
5407
5408  llvm::FoldingSetNodeID ID;
5409  DependentTemplateName::Profile(ID, NNS, Operator);
5410
5411  void *InsertPos = 0;
5412  DependentTemplateName *QTN
5413    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5414
5415  if (QTN)
5416    return TemplateName(QTN);
5417
5418  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5419  if (CanonNNS == NNS) {
5420    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
5421  } else {
5422    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5423    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
5424
5425    DependentTemplateName *CheckQTN
5426      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5427    assert(!CheckQTN && "Dependent template name canonicalization broken");
5428    (void)CheckQTN;
5429  }
5430
5431  DependentTemplateNames.InsertNode(QTN, InsertPos);
5432  return TemplateName(QTN);
5433}
5434
5435TemplateName
5436ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5437                                         TemplateName replacement) const {
5438  llvm::FoldingSetNodeID ID;
5439  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5440
5441  void *insertPos = 0;
5442  SubstTemplateTemplateParmStorage *subst
5443    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5444
5445  if (!subst) {
5446    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5447    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5448  }
5449
5450  return TemplateName(subst);
5451}
5452
5453TemplateName
5454ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5455                                       const TemplateArgument &ArgPack) const {
5456  ASTContext &Self = const_cast<ASTContext &>(*this);
5457  llvm::FoldingSetNodeID ID;
5458  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5459
5460  void *InsertPos = 0;
5461  SubstTemplateTemplateParmPackStorage *Subst
5462    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5463
5464  if (!Subst) {
5465    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5466                                                           ArgPack.pack_size(),
5467                                                         ArgPack.pack_begin());
5468    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5469  }
5470
5471  return TemplateName(Subst);
5472}
5473
5474/// getFromTargetType - Given one of the integer types provided by
5475/// TargetInfo, produce the corresponding type. The unsigned @p Type
5476/// is actually a value of type @c TargetInfo::IntType.
5477CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5478  switch (Type) {
5479  case TargetInfo::NoInt: return CanQualType();
5480  case TargetInfo::SignedShort: return ShortTy;
5481  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5482  case TargetInfo::SignedInt: return IntTy;
5483  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5484  case TargetInfo::SignedLong: return LongTy;
5485  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5486  case TargetInfo::SignedLongLong: return LongLongTy;
5487  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5488  }
5489
5490  llvm_unreachable("Unhandled TargetInfo::IntType value");
5491}
5492
5493//===----------------------------------------------------------------------===//
5494//                        Type Predicates.
5495//===----------------------------------------------------------------------===//
5496
5497/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5498/// garbage collection attribute.
5499///
5500Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5501  if (getLangOpts().getGC() == LangOptions::NonGC)
5502    return Qualifiers::GCNone;
5503
5504  assert(getLangOpts().ObjC1);
5505  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5506
5507  // Default behaviour under objective-C's gc is for ObjC pointers
5508  // (or pointers to them) be treated as though they were declared
5509  // as __strong.
5510  if (GCAttrs == Qualifiers::GCNone) {
5511    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5512      return Qualifiers::Strong;
5513    else if (Ty->isPointerType())
5514      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5515  } else {
5516    // It's not valid to set GC attributes on anything that isn't a
5517    // pointer.
5518#ifndef NDEBUG
5519    QualType CT = Ty->getCanonicalTypeInternal();
5520    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5521      CT = AT->getElementType();
5522    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5523#endif
5524  }
5525  return GCAttrs;
5526}
5527
5528//===----------------------------------------------------------------------===//
5529//                        Type Compatibility Testing
5530//===----------------------------------------------------------------------===//
5531
5532/// areCompatVectorTypes - Return true if the two specified vector types are
5533/// compatible.
5534static bool areCompatVectorTypes(const VectorType *LHS,
5535                                 const VectorType *RHS) {
5536  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5537  return LHS->getElementType() == RHS->getElementType() &&
5538         LHS->getNumElements() == RHS->getNumElements();
5539}
5540
5541bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5542                                          QualType SecondVec) {
5543  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5544  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5545
5546  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5547    return true;
5548
5549  // Treat Neon vector types and most AltiVec vector types as if they are the
5550  // equivalent GCC vector types.
5551  const VectorType *First = FirstVec->getAs<VectorType>();
5552  const VectorType *Second = SecondVec->getAs<VectorType>();
5553  if (First->getNumElements() == Second->getNumElements() &&
5554      hasSameType(First->getElementType(), Second->getElementType()) &&
5555      First->getVectorKind() != VectorType::AltiVecPixel &&
5556      First->getVectorKind() != VectorType::AltiVecBool &&
5557      Second->getVectorKind() != VectorType::AltiVecPixel &&
5558      Second->getVectorKind() != VectorType::AltiVecBool)
5559    return true;
5560
5561  return false;
5562}
5563
5564//===----------------------------------------------------------------------===//
5565// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5566//===----------------------------------------------------------------------===//
5567
5568/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5569/// inheritance hierarchy of 'rProto'.
5570bool
5571ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5572                                           ObjCProtocolDecl *rProto) const {
5573  if (declaresSameEntity(lProto, rProto))
5574    return true;
5575  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5576       E = rProto->protocol_end(); PI != E; ++PI)
5577    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5578      return true;
5579  return false;
5580}
5581
5582/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5583/// return true if lhs's protocols conform to rhs's protocol; false
5584/// otherwise.
5585bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5586  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5587    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5588  return false;
5589}
5590
5591/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5592/// Class<p1, ...>.
5593bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5594                                                      QualType rhs) {
5595  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5596  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5597  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5598
5599  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5600       E = lhsQID->qual_end(); I != E; ++I) {
5601    bool match = false;
5602    ObjCProtocolDecl *lhsProto = *I;
5603    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5604         E = rhsOPT->qual_end(); J != E; ++J) {
5605      ObjCProtocolDecl *rhsProto = *J;
5606      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5607        match = true;
5608        break;
5609      }
5610    }
5611    if (!match)
5612      return false;
5613  }
5614  return true;
5615}
5616
5617/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5618/// ObjCQualifiedIDType.
5619bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5620                                                   bool compare) {
5621  // Allow id<P..> and an 'id' or void* type in all cases.
5622  if (lhs->isVoidPointerType() ||
5623      lhs->isObjCIdType() || lhs->isObjCClassType())
5624    return true;
5625  else if (rhs->isVoidPointerType() ||
5626           rhs->isObjCIdType() || rhs->isObjCClassType())
5627    return true;
5628
5629  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5630    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5631
5632    if (!rhsOPT) return false;
5633
5634    if (rhsOPT->qual_empty()) {
5635      // If the RHS is a unqualified interface pointer "NSString*",
5636      // make sure we check the class hierarchy.
5637      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5638        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5639             E = lhsQID->qual_end(); I != E; ++I) {
5640          // when comparing an id<P> on lhs with a static type on rhs,
5641          // see if static class implements all of id's protocols, directly or
5642          // through its super class and categories.
5643          if (!rhsID->ClassImplementsProtocol(*I, true))
5644            return false;
5645        }
5646      }
5647      // If there are no qualifiers and no interface, we have an 'id'.
5648      return true;
5649    }
5650    // Both the right and left sides have qualifiers.
5651    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5652         E = lhsQID->qual_end(); I != E; ++I) {
5653      ObjCProtocolDecl *lhsProto = *I;
5654      bool match = false;
5655
5656      // when comparing an id<P> on lhs with a static type on rhs,
5657      // see if static class implements all of id's protocols, directly or
5658      // through its super class and categories.
5659      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5660           E = rhsOPT->qual_end(); J != E; ++J) {
5661        ObjCProtocolDecl *rhsProto = *J;
5662        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5663            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5664          match = true;
5665          break;
5666        }
5667      }
5668      // If the RHS is a qualified interface pointer "NSString<P>*",
5669      // make sure we check the class hierarchy.
5670      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5671        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5672             E = lhsQID->qual_end(); I != E; ++I) {
5673          // when comparing an id<P> on lhs with a static type on rhs,
5674          // see if static class implements all of id's protocols, directly or
5675          // through its super class and categories.
5676          if (rhsID->ClassImplementsProtocol(*I, true)) {
5677            match = true;
5678            break;
5679          }
5680        }
5681      }
5682      if (!match)
5683        return false;
5684    }
5685
5686    return true;
5687  }
5688
5689  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5690  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5691
5692  if (const ObjCObjectPointerType *lhsOPT =
5693        lhs->getAsObjCInterfacePointerType()) {
5694    // If both the right and left sides have qualifiers.
5695    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5696         E = lhsOPT->qual_end(); I != E; ++I) {
5697      ObjCProtocolDecl *lhsProto = *I;
5698      bool match = false;
5699
5700      // when comparing an id<P> on rhs with a static type on lhs,
5701      // see if static class implements all of id's protocols, directly or
5702      // through its super class and categories.
5703      // First, lhs protocols in the qualifier list must be found, direct
5704      // or indirect in rhs's qualifier list or it is a mismatch.
5705      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5706           E = rhsQID->qual_end(); J != E; ++J) {
5707        ObjCProtocolDecl *rhsProto = *J;
5708        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5709            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5710          match = true;
5711          break;
5712        }
5713      }
5714      if (!match)
5715        return false;
5716    }
5717
5718    // Static class's protocols, or its super class or category protocols
5719    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5720    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5721      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5722      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5723      // This is rather dubious but matches gcc's behavior. If lhs has
5724      // no type qualifier and its class has no static protocol(s)
5725      // assume that it is mismatch.
5726      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5727        return false;
5728      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5729           LHSInheritedProtocols.begin(),
5730           E = LHSInheritedProtocols.end(); I != E; ++I) {
5731        bool match = false;
5732        ObjCProtocolDecl *lhsProto = (*I);
5733        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5734             E = rhsQID->qual_end(); J != E; ++J) {
5735          ObjCProtocolDecl *rhsProto = *J;
5736          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5737              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5738            match = true;
5739            break;
5740          }
5741        }
5742        if (!match)
5743          return false;
5744      }
5745    }
5746    return true;
5747  }
5748  return false;
5749}
5750
5751/// canAssignObjCInterfaces - Return true if the two interface types are
5752/// compatible for assignment from RHS to LHS.  This handles validation of any
5753/// protocol qualifiers on the LHS or RHS.
5754///
5755bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5756                                         const ObjCObjectPointerType *RHSOPT) {
5757  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5758  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5759
5760  // If either type represents the built-in 'id' or 'Class' types, return true.
5761  if (LHS->isObjCUnqualifiedIdOrClass() ||
5762      RHS->isObjCUnqualifiedIdOrClass())
5763    return true;
5764
5765  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5766    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5767                                             QualType(RHSOPT,0),
5768                                             false);
5769
5770  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5771    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5772                                                QualType(RHSOPT,0));
5773
5774  // If we have 2 user-defined types, fall into that path.
5775  if (LHS->getInterface() && RHS->getInterface())
5776    return canAssignObjCInterfaces(LHS, RHS);
5777
5778  return false;
5779}
5780
5781/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5782/// for providing type-safety for objective-c pointers used to pass/return
5783/// arguments in block literals. When passed as arguments, passing 'A*' where
5784/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5785/// not OK. For the return type, the opposite is not OK.
5786bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5787                                         const ObjCObjectPointerType *LHSOPT,
5788                                         const ObjCObjectPointerType *RHSOPT,
5789                                         bool BlockReturnType) {
5790  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5791    return true;
5792
5793  if (LHSOPT->isObjCBuiltinType()) {
5794    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5795  }
5796
5797  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5798    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5799                                             QualType(RHSOPT,0),
5800                                             false);
5801
5802  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5803  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5804  if (LHS && RHS)  { // We have 2 user-defined types.
5805    if (LHS != RHS) {
5806      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5807        return BlockReturnType;
5808      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5809        return !BlockReturnType;
5810    }
5811    else
5812      return true;
5813  }
5814  return false;
5815}
5816
5817/// getIntersectionOfProtocols - This routine finds the intersection of set
5818/// of protocols inherited from two distinct objective-c pointer objects.
5819/// It is used to build composite qualifier list of the composite type of
5820/// the conditional expression involving two objective-c pointer objects.
5821static
5822void getIntersectionOfProtocols(ASTContext &Context,
5823                                const ObjCObjectPointerType *LHSOPT,
5824                                const ObjCObjectPointerType *RHSOPT,
5825      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5826
5827  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5828  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5829  assert(LHS->getInterface() && "LHS must have an interface base");
5830  assert(RHS->getInterface() && "RHS must have an interface base");
5831
5832  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5833  unsigned LHSNumProtocols = LHS->getNumProtocols();
5834  if (LHSNumProtocols > 0)
5835    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5836  else {
5837    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5838    Context.CollectInheritedProtocols(LHS->getInterface(),
5839                                      LHSInheritedProtocols);
5840    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5841                                LHSInheritedProtocols.end());
5842  }
5843
5844  unsigned RHSNumProtocols = RHS->getNumProtocols();
5845  if (RHSNumProtocols > 0) {
5846    ObjCProtocolDecl **RHSProtocols =
5847      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5848    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5849      if (InheritedProtocolSet.count(RHSProtocols[i]))
5850        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5851  } else {
5852    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5853    Context.CollectInheritedProtocols(RHS->getInterface(),
5854                                      RHSInheritedProtocols);
5855    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5856         RHSInheritedProtocols.begin(),
5857         E = RHSInheritedProtocols.end(); I != E; ++I)
5858      if (InheritedProtocolSet.count((*I)))
5859        IntersectionOfProtocols.push_back((*I));
5860  }
5861}
5862
5863/// areCommonBaseCompatible - Returns common base class of the two classes if
5864/// one found. Note that this is O'2 algorithm. But it will be called as the
5865/// last type comparison in a ?-exp of ObjC pointer types before a
5866/// warning is issued. So, its invokation is extremely rare.
5867QualType ASTContext::areCommonBaseCompatible(
5868                                          const ObjCObjectPointerType *Lptr,
5869                                          const ObjCObjectPointerType *Rptr) {
5870  const ObjCObjectType *LHS = Lptr->getObjectType();
5871  const ObjCObjectType *RHS = Rptr->getObjectType();
5872  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5873  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5874  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
5875    return QualType();
5876
5877  do {
5878    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5879    if (canAssignObjCInterfaces(LHS, RHS)) {
5880      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5881      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5882
5883      QualType Result = QualType(LHS, 0);
5884      if (!Protocols.empty())
5885        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5886      Result = getObjCObjectPointerType(Result);
5887      return Result;
5888    }
5889  } while ((LDecl = LDecl->getSuperClass()));
5890
5891  return QualType();
5892}
5893
5894bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5895                                         const ObjCObjectType *RHS) {
5896  assert(LHS->getInterface() && "LHS is not an interface type");
5897  assert(RHS->getInterface() && "RHS is not an interface type");
5898
5899  // Verify that the base decls are compatible: the RHS must be a subclass of
5900  // the LHS.
5901  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5902    return false;
5903
5904  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5905  // protocol qualified at all, then we are good.
5906  if (LHS->getNumProtocols() == 0)
5907    return true;
5908
5909  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5910  // more detailed analysis is required.
5911  if (RHS->getNumProtocols() == 0) {
5912    // OK, if LHS is a superclass of RHS *and*
5913    // this superclass is assignment compatible with LHS.
5914    // false otherwise.
5915    bool IsSuperClass =
5916      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5917    if (IsSuperClass) {
5918      // OK if conversion of LHS to SuperClass results in narrowing of types
5919      // ; i.e., SuperClass may implement at least one of the protocols
5920      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5921      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5922      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5923      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5924      // If super class has no protocols, it is not a match.
5925      if (SuperClassInheritedProtocols.empty())
5926        return false;
5927
5928      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5929           LHSPE = LHS->qual_end();
5930           LHSPI != LHSPE; LHSPI++) {
5931        bool SuperImplementsProtocol = false;
5932        ObjCProtocolDecl *LHSProto = (*LHSPI);
5933
5934        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5935             SuperClassInheritedProtocols.begin(),
5936             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5937          ObjCProtocolDecl *SuperClassProto = (*I);
5938          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5939            SuperImplementsProtocol = true;
5940            break;
5941          }
5942        }
5943        if (!SuperImplementsProtocol)
5944          return false;
5945      }
5946      return true;
5947    }
5948    return false;
5949  }
5950
5951  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5952                                     LHSPE = LHS->qual_end();
5953       LHSPI != LHSPE; LHSPI++) {
5954    bool RHSImplementsProtocol = false;
5955
5956    // If the RHS doesn't implement the protocol on the left, the types
5957    // are incompatible.
5958    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5959                                       RHSPE = RHS->qual_end();
5960         RHSPI != RHSPE; RHSPI++) {
5961      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5962        RHSImplementsProtocol = true;
5963        break;
5964      }
5965    }
5966    // FIXME: For better diagnostics, consider passing back the protocol name.
5967    if (!RHSImplementsProtocol)
5968      return false;
5969  }
5970  // The RHS implements all protocols listed on the LHS.
5971  return true;
5972}
5973
5974bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5975  // get the "pointed to" types
5976  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5977  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5978
5979  if (!LHSOPT || !RHSOPT)
5980    return false;
5981
5982  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5983         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5984}
5985
5986bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5987  return canAssignObjCInterfaces(
5988                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5989                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5990}
5991
5992/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5993/// both shall have the identically qualified version of a compatible type.
5994/// C99 6.2.7p1: Two types have compatible types if their types are the
5995/// same. See 6.7.[2,3,5] for additional rules.
5996bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5997                                    bool CompareUnqualified) {
5998  if (getLangOpts().CPlusPlus)
5999    return hasSameType(LHS, RHS);
6000
6001  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6002}
6003
6004bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6005  return typesAreCompatible(LHS, RHS);
6006}
6007
6008bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6009  return !mergeTypes(LHS, RHS, true).isNull();
6010}
6011
6012/// mergeTransparentUnionType - if T is a transparent union type and a member
6013/// of T is compatible with SubType, return the merged type, else return
6014/// QualType()
6015QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6016                                               bool OfBlockPointer,
6017                                               bool Unqualified) {
6018  if (const RecordType *UT = T->getAsUnionType()) {
6019    RecordDecl *UD = UT->getDecl();
6020    if (UD->hasAttr<TransparentUnionAttr>()) {
6021      for (RecordDecl::field_iterator it = UD->field_begin(),
6022           itend = UD->field_end(); it != itend; ++it) {
6023        QualType ET = it->getType().getUnqualifiedType();
6024        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6025        if (!MT.isNull())
6026          return MT;
6027      }
6028    }
6029  }
6030
6031  return QualType();
6032}
6033
6034/// mergeFunctionArgumentTypes - merge two types which appear as function
6035/// argument types
6036QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6037                                                bool OfBlockPointer,
6038                                                bool Unqualified) {
6039  // GNU extension: two types are compatible if they appear as a function
6040  // argument, one of the types is a transparent union type and the other
6041  // type is compatible with a union member
6042  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6043                                              Unqualified);
6044  if (!lmerge.isNull())
6045    return lmerge;
6046
6047  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6048                                              Unqualified);
6049  if (!rmerge.isNull())
6050    return rmerge;
6051
6052  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6053}
6054
6055QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6056                                        bool OfBlockPointer,
6057                                        bool Unqualified) {
6058  const FunctionType *lbase = lhs->getAs<FunctionType>();
6059  const FunctionType *rbase = rhs->getAs<FunctionType>();
6060  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6061  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6062  bool allLTypes = true;
6063  bool allRTypes = true;
6064
6065  // Check return type
6066  QualType retType;
6067  if (OfBlockPointer) {
6068    QualType RHS = rbase->getResultType();
6069    QualType LHS = lbase->getResultType();
6070    bool UnqualifiedResult = Unqualified;
6071    if (!UnqualifiedResult)
6072      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6073    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6074  }
6075  else
6076    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6077                         Unqualified);
6078  if (retType.isNull()) return QualType();
6079
6080  if (Unqualified)
6081    retType = retType.getUnqualifiedType();
6082
6083  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6084  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6085  if (Unqualified) {
6086    LRetType = LRetType.getUnqualifiedType();
6087    RRetType = RRetType.getUnqualifiedType();
6088  }
6089
6090  if (getCanonicalType(retType) != LRetType)
6091    allLTypes = false;
6092  if (getCanonicalType(retType) != RRetType)
6093    allRTypes = false;
6094
6095  // FIXME: double check this
6096  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6097  //                           rbase->getRegParmAttr() != 0 &&
6098  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6099  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6100  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6101
6102  // Compatible functions must have compatible calling conventions
6103  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6104    return QualType();
6105
6106  // Regparm is part of the calling convention.
6107  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6108    return QualType();
6109  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6110    return QualType();
6111
6112  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6113    return QualType();
6114
6115  // functypes which return are preferred over those that do not.
6116  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
6117    allLTypes = false;
6118  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
6119    allRTypes = false;
6120  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6121  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6122
6123  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6124
6125  if (lproto && rproto) { // two C99 style function prototypes
6126    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6127           "C++ shouldn't be here");
6128    unsigned lproto_nargs = lproto->getNumArgs();
6129    unsigned rproto_nargs = rproto->getNumArgs();
6130
6131    // Compatible functions must have the same number of arguments
6132    if (lproto_nargs != rproto_nargs)
6133      return QualType();
6134
6135    // Variadic and non-variadic functions aren't compatible
6136    if (lproto->isVariadic() != rproto->isVariadic())
6137      return QualType();
6138
6139    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6140      return QualType();
6141
6142    if (LangOpts.ObjCAutoRefCount &&
6143        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6144      return QualType();
6145
6146    // Check argument compatibility
6147    SmallVector<QualType, 10> types;
6148    for (unsigned i = 0; i < lproto_nargs; i++) {
6149      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6150      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6151      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6152                                                    OfBlockPointer,
6153                                                    Unqualified);
6154      if (argtype.isNull()) return QualType();
6155
6156      if (Unqualified)
6157        argtype = argtype.getUnqualifiedType();
6158
6159      types.push_back(argtype);
6160      if (Unqualified) {
6161        largtype = largtype.getUnqualifiedType();
6162        rargtype = rargtype.getUnqualifiedType();
6163      }
6164
6165      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6166        allLTypes = false;
6167      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6168        allRTypes = false;
6169    }
6170
6171    if (allLTypes) return lhs;
6172    if (allRTypes) return rhs;
6173
6174    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6175    EPI.ExtInfo = einfo;
6176    return getFunctionType(retType, types.begin(), types.size(), EPI);
6177  }
6178
6179  if (lproto) allRTypes = false;
6180  if (rproto) allLTypes = false;
6181
6182  const FunctionProtoType *proto = lproto ? lproto : rproto;
6183  if (proto) {
6184    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6185    if (proto->isVariadic()) return QualType();
6186    // Check that the types are compatible with the types that
6187    // would result from default argument promotions (C99 6.7.5.3p15).
6188    // The only types actually affected are promotable integer
6189    // types and floats, which would be passed as a different
6190    // type depending on whether the prototype is visible.
6191    unsigned proto_nargs = proto->getNumArgs();
6192    for (unsigned i = 0; i < proto_nargs; ++i) {
6193      QualType argTy = proto->getArgType(i);
6194
6195      // Look at the promotion type of enum types, since that is the type used
6196      // to pass enum values.
6197      if (const EnumType *Enum = argTy->getAs<EnumType>())
6198        argTy = Enum->getDecl()->getPromotionType();
6199
6200      if (argTy->isPromotableIntegerType() ||
6201          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6202        return QualType();
6203    }
6204
6205    if (allLTypes) return lhs;
6206    if (allRTypes) return rhs;
6207
6208    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6209    EPI.ExtInfo = einfo;
6210    return getFunctionType(retType, proto->arg_type_begin(),
6211                           proto->getNumArgs(), EPI);
6212  }
6213
6214  if (allLTypes) return lhs;
6215  if (allRTypes) return rhs;
6216  return getFunctionNoProtoType(retType, einfo);
6217}
6218
6219QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6220                                bool OfBlockPointer,
6221                                bool Unqualified, bool BlockReturnType) {
6222  // C++ [expr]: If an expression initially has the type "reference to T", the
6223  // type is adjusted to "T" prior to any further analysis, the expression
6224  // designates the object or function denoted by the reference, and the
6225  // expression is an lvalue unless the reference is an rvalue reference and
6226  // the expression is a function call (possibly inside parentheses).
6227  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6228  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6229
6230  if (Unqualified) {
6231    LHS = LHS.getUnqualifiedType();
6232    RHS = RHS.getUnqualifiedType();
6233  }
6234
6235  QualType LHSCan = getCanonicalType(LHS),
6236           RHSCan = getCanonicalType(RHS);
6237
6238  // If two types are identical, they are compatible.
6239  if (LHSCan == RHSCan)
6240    return LHS;
6241
6242  // If the qualifiers are different, the types aren't compatible... mostly.
6243  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6244  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6245  if (LQuals != RQuals) {
6246    // If any of these qualifiers are different, we have a type
6247    // mismatch.
6248    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6249        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6250        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6251      return QualType();
6252
6253    // Exactly one GC qualifier difference is allowed: __strong is
6254    // okay if the other type has no GC qualifier but is an Objective
6255    // C object pointer (i.e. implicitly strong by default).  We fix
6256    // this by pretending that the unqualified type was actually
6257    // qualified __strong.
6258    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6259    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6260    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6261
6262    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6263      return QualType();
6264
6265    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6266      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6267    }
6268    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6269      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6270    }
6271    return QualType();
6272  }
6273
6274  // Okay, qualifiers are equal.
6275
6276  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6277  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6278
6279  // We want to consider the two function types to be the same for these
6280  // comparisons, just force one to the other.
6281  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6282  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6283
6284  // Same as above for arrays
6285  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6286    LHSClass = Type::ConstantArray;
6287  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6288    RHSClass = Type::ConstantArray;
6289
6290  // ObjCInterfaces are just specialized ObjCObjects.
6291  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6292  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6293
6294  // Canonicalize ExtVector -> Vector.
6295  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6296  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6297
6298  // If the canonical type classes don't match.
6299  if (LHSClass != RHSClass) {
6300    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6301    // a signed integer type, or an unsigned integer type.
6302    // Compatibility is based on the underlying type, not the promotion
6303    // type.
6304    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6305      QualType TINT = ETy->getDecl()->getIntegerType();
6306      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6307        return RHS;
6308    }
6309    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6310      QualType TINT = ETy->getDecl()->getIntegerType();
6311      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6312        return LHS;
6313    }
6314    // allow block pointer type to match an 'id' type.
6315    if (OfBlockPointer && !BlockReturnType) {
6316       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6317         return LHS;
6318      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6319        return RHS;
6320    }
6321
6322    return QualType();
6323  }
6324
6325  // The canonical type classes match.
6326  switch (LHSClass) {
6327#define TYPE(Class, Base)
6328#define ABSTRACT_TYPE(Class, Base)
6329#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6330#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6331#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6332#include "clang/AST/TypeNodes.def"
6333    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6334
6335  case Type::LValueReference:
6336  case Type::RValueReference:
6337  case Type::MemberPointer:
6338    llvm_unreachable("C++ should never be in mergeTypes");
6339
6340  case Type::ObjCInterface:
6341  case Type::IncompleteArray:
6342  case Type::VariableArray:
6343  case Type::FunctionProto:
6344  case Type::ExtVector:
6345    llvm_unreachable("Types are eliminated above");
6346
6347  case Type::Pointer:
6348  {
6349    // Merge two pointer types, while trying to preserve typedef info
6350    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6351    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6352    if (Unqualified) {
6353      LHSPointee = LHSPointee.getUnqualifiedType();
6354      RHSPointee = RHSPointee.getUnqualifiedType();
6355    }
6356    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6357                                     Unqualified);
6358    if (ResultType.isNull()) return QualType();
6359    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6360      return LHS;
6361    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6362      return RHS;
6363    return getPointerType(ResultType);
6364  }
6365  case Type::BlockPointer:
6366  {
6367    // Merge two block pointer types, while trying to preserve typedef info
6368    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6369    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6370    if (Unqualified) {
6371      LHSPointee = LHSPointee.getUnqualifiedType();
6372      RHSPointee = RHSPointee.getUnqualifiedType();
6373    }
6374    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6375                                     Unqualified);
6376    if (ResultType.isNull()) return QualType();
6377    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6378      return LHS;
6379    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6380      return RHS;
6381    return getBlockPointerType(ResultType);
6382  }
6383  case Type::Atomic:
6384  {
6385    // Merge two pointer types, while trying to preserve typedef info
6386    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6387    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6388    if (Unqualified) {
6389      LHSValue = LHSValue.getUnqualifiedType();
6390      RHSValue = RHSValue.getUnqualifiedType();
6391    }
6392    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6393                                     Unqualified);
6394    if (ResultType.isNull()) return QualType();
6395    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6396      return LHS;
6397    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6398      return RHS;
6399    return getAtomicType(ResultType);
6400  }
6401  case Type::ConstantArray:
6402  {
6403    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6404    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6405    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6406      return QualType();
6407
6408    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6409    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6410    if (Unqualified) {
6411      LHSElem = LHSElem.getUnqualifiedType();
6412      RHSElem = RHSElem.getUnqualifiedType();
6413    }
6414
6415    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6416    if (ResultType.isNull()) return QualType();
6417    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6418      return LHS;
6419    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6420      return RHS;
6421    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6422                                          ArrayType::ArraySizeModifier(), 0);
6423    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6424                                          ArrayType::ArraySizeModifier(), 0);
6425    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6426    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6427    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6428      return LHS;
6429    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6430      return RHS;
6431    if (LVAT) {
6432      // FIXME: This isn't correct! But tricky to implement because
6433      // the array's size has to be the size of LHS, but the type
6434      // has to be different.
6435      return LHS;
6436    }
6437    if (RVAT) {
6438      // FIXME: This isn't correct! But tricky to implement because
6439      // the array's size has to be the size of RHS, but the type
6440      // has to be different.
6441      return RHS;
6442    }
6443    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6444    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6445    return getIncompleteArrayType(ResultType,
6446                                  ArrayType::ArraySizeModifier(), 0);
6447  }
6448  case Type::FunctionNoProto:
6449    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6450  case Type::Record:
6451  case Type::Enum:
6452    return QualType();
6453  case Type::Builtin:
6454    // Only exactly equal builtin types are compatible, which is tested above.
6455    return QualType();
6456  case Type::Complex:
6457    // Distinct complex types are incompatible.
6458    return QualType();
6459  case Type::Vector:
6460    // FIXME: The merged type should be an ExtVector!
6461    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6462                             RHSCan->getAs<VectorType>()))
6463      return LHS;
6464    return QualType();
6465  case Type::ObjCObject: {
6466    // Check if the types are assignment compatible.
6467    // FIXME: This should be type compatibility, e.g. whether
6468    // "LHS x; RHS x;" at global scope is legal.
6469    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6470    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6471    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6472      return LHS;
6473
6474    return QualType();
6475  }
6476  case Type::ObjCObjectPointer: {
6477    if (OfBlockPointer) {
6478      if (canAssignObjCInterfacesInBlockPointer(
6479                                          LHS->getAs<ObjCObjectPointerType>(),
6480                                          RHS->getAs<ObjCObjectPointerType>(),
6481                                          BlockReturnType))
6482        return LHS;
6483      return QualType();
6484    }
6485    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6486                                RHS->getAs<ObjCObjectPointerType>()))
6487      return LHS;
6488
6489    return QualType();
6490  }
6491  }
6492
6493  llvm_unreachable("Invalid Type::Class!");
6494}
6495
6496bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6497                   const FunctionProtoType *FromFunctionType,
6498                   const FunctionProtoType *ToFunctionType) {
6499  if (FromFunctionType->hasAnyConsumedArgs() !=
6500      ToFunctionType->hasAnyConsumedArgs())
6501    return false;
6502  FunctionProtoType::ExtProtoInfo FromEPI =
6503    FromFunctionType->getExtProtoInfo();
6504  FunctionProtoType::ExtProtoInfo ToEPI =
6505    ToFunctionType->getExtProtoInfo();
6506  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6507    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6508         ArgIdx != NumArgs; ++ArgIdx)  {
6509      if (FromEPI.ConsumedArguments[ArgIdx] !=
6510          ToEPI.ConsumedArguments[ArgIdx])
6511        return false;
6512    }
6513  return true;
6514}
6515
6516/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6517/// 'RHS' attributes and returns the merged version; including for function
6518/// return types.
6519QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6520  QualType LHSCan = getCanonicalType(LHS),
6521  RHSCan = getCanonicalType(RHS);
6522  // If two types are identical, they are compatible.
6523  if (LHSCan == RHSCan)
6524    return LHS;
6525  if (RHSCan->isFunctionType()) {
6526    if (!LHSCan->isFunctionType())
6527      return QualType();
6528    QualType OldReturnType =
6529      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6530    QualType NewReturnType =
6531      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6532    QualType ResReturnType =
6533      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6534    if (ResReturnType.isNull())
6535      return QualType();
6536    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6537      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6538      // In either case, use OldReturnType to build the new function type.
6539      const FunctionType *F = LHS->getAs<FunctionType>();
6540      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6541        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6542        EPI.ExtInfo = getFunctionExtInfo(LHS);
6543        QualType ResultType
6544          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6545                            FPT->getNumArgs(), EPI);
6546        return ResultType;
6547      }
6548    }
6549    return QualType();
6550  }
6551
6552  // If the qualifiers are different, the types can still be merged.
6553  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6554  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6555  if (LQuals != RQuals) {
6556    // If any of these qualifiers are different, we have a type mismatch.
6557    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6558        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6559      return QualType();
6560
6561    // Exactly one GC qualifier difference is allowed: __strong is
6562    // okay if the other type has no GC qualifier but is an Objective
6563    // C object pointer (i.e. implicitly strong by default).  We fix
6564    // this by pretending that the unqualified type was actually
6565    // qualified __strong.
6566    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6567    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6568    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6569
6570    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6571      return QualType();
6572
6573    if (GC_L == Qualifiers::Strong)
6574      return LHS;
6575    if (GC_R == Qualifiers::Strong)
6576      return RHS;
6577    return QualType();
6578  }
6579
6580  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6581    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6582    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6583    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6584    if (ResQT == LHSBaseQT)
6585      return LHS;
6586    if (ResQT == RHSBaseQT)
6587      return RHS;
6588  }
6589  return QualType();
6590}
6591
6592//===----------------------------------------------------------------------===//
6593//                         Integer Predicates
6594//===----------------------------------------------------------------------===//
6595
6596unsigned ASTContext::getIntWidth(QualType T) const {
6597  if (const EnumType *ET = dyn_cast<EnumType>(T))
6598    T = ET->getDecl()->getIntegerType();
6599  if (T->isBooleanType())
6600    return 1;
6601  // For builtin types, just use the standard type sizing method
6602  return (unsigned)getTypeSize(T);
6603}
6604
6605QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6606  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6607
6608  // Turn <4 x signed int> -> <4 x unsigned int>
6609  if (const VectorType *VTy = T->getAs<VectorType>())
6610    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6611                         VTy->getNumElements(), VTy->getVectorKind());
6612
6613  // For enums, we return the unsigned version of the base type.
6614  if (const EnumType *ETy = T->getAs<EnumType>())
6615    T = ETy->getDecl()->getIntegerType();
6616
6617  const BuiltinType *BTy = T->getAs<BuiltinType>();
6618  assert(BTy && "Unexpected signed integer type");
6619  switch (BTy->getKind()) {
6620  case BuiltinType::Char_S:
6621  case BuiltinType::SChar:
6622    return UnsignedCharTy;
6623  case BuiltinType::Short:
6624    return UnsignedShortTy;
6625  case BuiltinType::Int:
6626    return UnsignedIntTy;
6627  case BuiltinType::Long:
6628    return UnsignedLongTy;
6629  case BuiltinType::LongLong:
6630    return UnsignedLongLongTy;
6631  case BuiltinType::Int128:
6632    return UnsignedInt128Ty;
6633  default:
6634    llvm_unreachable("Unexpected signed integer type");
6635  }
6636}
6637
6638ASTMutationListener::~ASTMutationListener() { }
6639
6640
6641//===----------------------------------------------------------------------===//
6642//                          Builtin Type Computation
6643//===----------------------------------------------------------------------===//
6644
6645/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6646/// pointer over the consumed characters.  This returns the resultant type.  If
6647/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6648/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6649/// a vector of "i*".
6650///
6651/// RequiresICE is filled in on return to indicate whether the value is required
6652/// to be an Integer Constant Expression.
6653static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6654                                  ASTContext::GetBuiltinTypeError &Error,
6655                                  bool &RequiresICE,
6656                                  bool AllowTypeModifiers) {
6657  // Modifiers.
6658  int HowLong = 0;
6659  bool Signed = false, Unsigned = false;
6660  RequiresICE = false;
6661
6662  // Read the prefixed modifiers first.
6663  bool Done = false;
6664  while (!Done) {
6665    switch (*Str++) {
6666    default: Done = true; --Str; break;
6667    case 'I':
6668      RequiresICE = true;
6669      break;
6670    case 'S':
6671      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6672      assert(!Signed && "Can't use 'S' modifier multiple times!");
6673      Signed = true;
6674      break;
6675    case 'U':
6676      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6677      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6678      Unsigned = true;
6679      break;
6680    case 'L':
6681      assert(HowLong <= 2 && "Can't have LLLL modifier");
6682      ++HowLong;
6683      break;
6684    }
6685  }
6686
6687  QualType Type;
6688
6689  // Read the base type.
6690  switch (*Str++) {
6691  default: llvm_unreachable("Unknown builtin type letter!");
6692  case 'v':
6693    assert(HowLong == 0 && !Signed && !Unsigned &&
6694           "Bad modifiers used with 'v'!");
6695    Type = Context.VoidTy;
6696    break;
6697  case 'f':
6698    assert(HowLong == 0 && !Signed && !Unsigned &&
6699           "Bad modifiers used with 'f'!");
6700    Type = Context.FloatTy;
6701    break;
6702  case 'd':
6703    assert(HowLong < 2 && !Signed && !Unsigned &&
6704           "Bad modifiers used with 'd'!");
6705    if (HowLong)
6706      Type = Context.LongDoubleTy;
6707    else
6708      Type = Context.DoubleTy;
6709    break;
6710  case 's':
6711    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6712    if (Unsigned)
6713      Type = Context.UnsignedShortTy;
6714    else
6715      Type = Context.ShortTy;
6716    break;
6717  case 'i':
6718    if (HowLong == 3)
6719      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6720    else if (HowLong == 2)
6721      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6722    else if (HowLong == 1)
6723      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6724    else
6725      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6726    break;
6727  case 'c':
6728    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6729    if (Signed)
6730      Type = Context.SignedCharTy;
6731    else if (Unsigned)
6732      Type = Context.UnsignedCharTy;
6733    else
6734      Type = Context.CharTy;
6735    break;
6736  case 'b': // boolean
6737    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6738    Type = Context.BoolTy;
6739    break;
6740  case 'z':  // size_t.
6741    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6742    Type = Context.getSizeType();
6743    break;
6744  case 'F':
6745    Type = Context.getCFConstantStringType();
6746    break;
6747  case 'G':
6748    Type = Context.getObjCIdType();
6749    break;
6750  case 'H':
6751    Type = Context.getObjCSelType();
6752    break;
6753  case 'a':
6754    Type = Context.getBuiltinVaListType();
6755    assert(!Type.isNull() && "builtin va list type not initialized!");
6756    break;
6757  case 'A':
6758    // This is a "reference" to a va_list; however, what exactly
6759    // this means depends on how va_list is defined. There are two
6760    // different kinds of va_list: ones passed by value, and ones
6761    // passed by reference.  An example of a by-value va_list is
6762    // x86, where va_list is a char*. An example of by-ref va_list
6763    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6764    // we want this argument to be a char*&; for x86-64, we want
6765    // it to be a __va_list_tag*.
6766    Type = Context.getBuiltinVaListType();
6767    assert(!Type.isNull() && "builtin va list type not initialized!");
6768    if (Type->isArrayType())
6769      Type = Context.getArrayDecayedType(Type);
6770    else
6771      Type = Context.getLValueReferenceType(Type);
6772    break;
6773  case 'V': {
6774    char *End;
6775    unsigned NumElements = strtoul(Str, &End, 10);
6776    assert(End != Str && "Missing vector size");
6777    Str = End;
6778
6779    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6780                                             RequiresICE, false);
6781    assert(!RequiresICE && "Can't require vector ICE");
6782
6783    // TODO: No way to make AltiVec vectors in builtins yet.
6784    Type = Context.getVectorType(ElementType, NumElements,
6785                                 VectorType::GenericVector);
6786    break;
6787  }
6788  case 'E': {
6789    char *End;
6790
6791    unsigned NumElements = strtoul(Str, &End, 10);
6792    assert(End != Str && "Missing vector size");
6793
6794    Str = End;
6795
6796    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6797                                             false);
6798    Type = Context.getExtVectorType(ElementType, NumElements);
6799    break;
6800  }
6801  case 'X': {
6802    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6803                                             false);
6804    assert(!RequiresICE && "Can't require complex ICE");
6805    Type = Context.getComplexType(ElementType);
6806    break;
6807  }
6808  case 'Y' : {
6809    Type = Context.getPointerDiffType();
6810    break;
6811  }
6812  case 'P':
6813    Type = Context.getFILEType();
6814    if (Type.isNull()) {
6815      Error = ASTContext::GE_Missing_stdio;
6816      return QualType();
6817    }
6818    break;
6819  case 'J':
6820    if (Signed)
6821      Type = Context.getsigjmp_bufType();
6822    else
6823      Type = Context.getjmp_bufType();
6824
6825    if (Type.isNull()) {
6826      Error = ASTContext::GE_Missing_setjmp;
6827      return QualType();
6828    }
6829    break;
6830  case 'K':
6831    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6832    Type = Context.getucontext_tType();
6833
6834    if (Type.isNull()) {
6835      Error = ASTContext::GE_Missing_ucontext;
6836      return QualType();
6837    }
6838    break;
6839  }
6840
6841  // If there are modifiers and if we're allowed to parse them, go for it.
6842  Done = !AllowTypeModifiers;
6843  while (!Done) {
6844    switch (char c = *Str++) {
6845    default: Done = true; --Str; break;
6846    case '*':
6847    case '&': {
6848      // Both pointers and references can have their pointee types
6849      // qualified with an address space.
6850      char *End;
6851      unsigned AddrSpace = strtoul(Str, &End, 10);
6852      if (End != Str && AddrSpace != 0) {
6853        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6854        Str = End;
6855      }
6856      if (c == '*')
6857        Type = Context.getPointerType(Type);
6858      else
6859        Type = Context.getLValueReferenceType(Type);
6860      break;
6861    }
6862    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6863    case 'C':
6864      Type = Type.withConst();
6865      break;
6866    case 'D':
6867      Type = Context.getVolatileType(Type);
6868      break;
6869    case 'R':
6870      Type = Type.withRestrict();
6871      break;
6872    }
6873  }
6874
6875  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6876         "Integer constant 'I' type must be an integer");
6877
6878  return Type;
6879}
6880
6881/// GetBuiltinType - Return the type for the specified builtin.
6882QualType ASTContext::GetBuiltinType(unsigned Id,
6883                                    GetBuiltinTypeError &Error,
6884                                    unsigned *IntegerConstantArgs) const {
6885  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6886
6887  SmallVector<QualType, 8> ArgTypes;
6888
6889  bool RequiresICE = false;
6890  Error = GE_None;
6891  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6892                                       RequiresICE, true);
6893  if (Error != GE_None)
6894    return QualType();
6895
6896  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6897
6898  while (TypeStr[0] && TypeStr[0] != '.') {
6899    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6900    if (Error != GE_None)
6901      return QualType();
6902
6903    // If this argument is required to be an IntegerConstantExpression and the
6904    // caller cares, fill in the bitmask we return.
6905    if (RequiresICE && IntegerConstantArgs)
6906      *IntegerConstantArgs |= 1 << ArgTypes.size();
6907
6908    // Do array -> pointer decay.  The builtin should use the decayed type.
6909    if (Ty->isArrayType())
6910      Ty = getArrayDecayedType(Ty);
6911
6912    ArgTypes.push_back(Ty);
6913  }
6914
6915  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6916         "'.' should only occur at end of builtin type list!");
6917
6918  FunctionType::ExtInfo EI;
6919  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6920
6921  bool Variadic = (TypeStr[0] == '.');
6922
6923  // We really shouldn't be making a no-proto type here, especially in C++.
6924  if (ArgTypes.empty() && Variadic)
6925    return getFunctionNoProtoType(ResType, EI);
6926
6927  FunctionProtoType::ExtProtoInfo EPI;
6928  EPI.ExtInfo = EI;
6929  EPI.Variadic = Variadic;
6930
6931  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6932}
6933
6934GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6935  GVALinkage External = GVA_StrongExternal;
6936
6937  Linkage L = FD->getLinkage();
6938  switch (L) {
6939  case NoLinkage:
6940  case InternalLinkage:
6941  case UniqueExternalLinkage:
6942    return GVA_Internal;
6943
6944  case ExternalLinkage:
6945    switch (FD->getTemplateSpecializationKind()) {
6946    case TSK_Undeclared:
6947    case TSK_ExplicitSpecialization:
6948      External = GVA_StrongExternal;
6949      break;
6950
6951    case TSK_ExplicitInstantiationDefinition:
6952      return GVA_ExplicitTemplateInstantiation;
6953
6954    case TSK_ExplicitInstantiationDeclaration:
6955    case TSK_ImplicitInstantiation:
6956      External = GVA_TemplateInstantiation;
6957      break;
6958    }
6959  }
6960
6961  if (!FD->isInlined())
6962    return External;
6963
6964  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6965    // GNU or C99 inline semantics. Determine whether this symbol should be
6966    // externally visible.
6967    if (FD->isInlineDefinitionExternallyVisible())
6968      return External;
6969
6970    // C99 inline semantics, where the symbol is not externally visible.
6971    return GVA_C99Inline;
6972  }
6973
6974  // C++0x [temp.explicit]p9:
6975  //   [ Note: The intent is that an inline function that is the subject of
6976  //   an explicit instantiation declaration will still be implicitly
6977  //   instantiated when used so that the body can be considered for
6978  //   inlining, but that no out-of-line copy of the inline function would be
6979  //   generated in the translation unit. -- end note ]
6980  if (FD->getTemplateSpecializationKind()
6981                                       == TSK_ExplicitInstantiationDeclaration)
6982    return GVA_C99Inline;
6983
6984  return GVA_CXXInline;
6985}
6986
6987GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6988  // If this is a static data member, compute the kind of template
6989  // specialization. Otherwise, this variable is not part of a
6990  // template.
6991  TemplateSpecializationKind TSK = TSK_Undeclared;
6992  if (VD->isStaticDataMember())
6993    TSK = VD->getTemplateSpecializationKind();
6994
6995  Linkage L = VD->getLinkage();
6996  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
6997      VD->getType()->getLinkage() == UniqueExternalLinkage)
6998    L = UniqueExternalLinkage;
6999
7000  switch (L) {
7001  case NoLinkage:
7002  case InternalLinkage:
7003  case UniqueExternalLinkage:
7004    return GVA_Internal;
7005
7006  case ExternalLinkage:
7007    switch (TSK) {
7008    case TSK_Undeclared:
7009    case TSK_ExplicitSpecialization:
7010      return GVA_StrongExternal;
7011
7012    case TSK_ExplicitInstantiationDeclaration:
7013      llvm_unreachable("Variable should not be instantiated");
7014      // Fall through to treat this like any other instantiation.
7015
7016    case TSK_ExplicitInstantiationDefinition:
7017      return GVA_ExplicitTemplateInstantiation;
7018
7019    case TSK_ImplicitInstantiation:
7020      return GVA_TemplateInstantiation;
7021    }
7022  }
7023
7024  llvm_unreachable("Invalid Linkage!");
7025}
7026
7027bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7028  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7029    if (!VD->isFileVarDecl())
7030      return false;
7031  } else if (!isa<FunctionDecl>(D))
7032    return false;
7033
7034  // Weak references don't produce any output by themselves.
7035  if (D->hasAttr<WeakRefAttr>())
7036    return false;
7037
7038  // Aliases and used decls are required.
7039  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7040    return true;
7041
7042  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7043    // Forward declarations aren't required.
7044    if (!FD->doesThisDeclarationHaveABody())
7045      return FD->doesDeclarationForceExternallyVisibleDefinition();
7046
7047    // Constructors and destructors are required.
7048    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7049      return true;
7050
7051    // The key function for a class is required.
7052    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7053      const CXXRecordDecl *RD = MD->getParent();
7054      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7055        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7056        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7057          return true;
7058      }
7059    }
7060
7061    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7062
7063    // static, static inline, always_inline, and extern inline functions can
7064    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7065    // Implicit template instantiations can also be deferred in C++.
7066    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7067        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7068      return false;
7069    return true;
7070  }
7071
7072  const VarDecl *VD = cast<VarDecl>(D);
7073  assert(VD->isFileVarDecl() && "Expected file scoped var");
7074
7075  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7076    return false;
7077
7078  // Structs that have non-trivial constructors or destructors are required.
7079
7080  // FIXME: Handle references.
7081  // FIXME: Be more selective about which constructors we care about.
7082  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
7083    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
7084      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
7085                                   RD->hasTrivialCopyConstructor() &&
7086                                   RD->hasTrivialMoveConstructor() &&
7087                                   RD->hasTrivialDestructor()))
7088        return true;
7089    }
7090  }
7091
7092  GVALinkage L = GetGVALinkageForVariable(VD);
7093  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
7094    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
7095      return false;
7096  }
7097
7098  return true;
7099}
7100
7101CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7102  // Pass through to the C++ ABI object
7103  return ABI->getDefaultMethodCallConv(isVariadic);
7104}
7105
7106CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7107  if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
7108    return CC_Default;
7109  return CC;
7110}
7111
7112bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7113  // Pass through to the C++ ABI object
7114  return ABI->isNearlyEmpty(RD);
7115}
7116
7117MangleContext *ASTContext::createMangleContext() {
7118  switch (Target->getCXXABI()) {
7119  case CXXABI_ARM:
7120  case CXXABI_Itanium:
7121    return createItaniumMangleContext(*this, getDiagnostics());
7122  case CXXABI_Microsoft:
7123    return createMicrosoftMangleContext(*this, getDiagnostics());
7124  }
7125  llvm_unreachable("Unsupported ABI");
7126}
7127
7128CXXABI::~CXXABI() {}
7129
7130size_t ASTContext::getSideTableAllocatedMemory() const {
7131  return ASTRecordLayouts.getMemorySize()
7132    + llvm::capacity_in_bytes(ObjCLayouts)
7133    + llvm::capacity_in_bytes(KeyFunctions)
7134    + llvm::capacity_in_bytes(ObjCImpls)
7135    + llvm::capacity_in_bytes(BlockVarCopyInits)
7136    + llvm::capacity_in_bytes(DeclAttrs)
7137    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7138    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7139    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7140    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7141    + llvm::capacity_in_bytes(OverriddenMethods)
7142    + llvm::capacity_in_bytes(Types)
7143    + llvm::capacity_in_bytes(VariableArrayTypes)
7144    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7145}
7146
7147unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7148  CXXRecordDecl *Lambda = CallOperator->getParent();
7149  return LambdaMangleContexts[Lambda->getDeclContext()]
7150           .getManglingNumber(CallOperator);
7151}
7152
7153
7154void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7155  ParamIndices[D] = index;
7156}
7157
7158unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7159  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7160  assert(I != ParamIndices.end() &&
7161         "ParmIndices lacks entry set by ParmVarDecl");
7162  return I->second;
7163}
7164