ASTContext.cpp revision 910f17e331221cd0833d0b5b49013cbbc7ef122a
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const ClassTemplateSpecializationDecl *CTSD =
89          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
90    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
91    if (TSK == TSK_ImplicitInstantiation ||
92        TSK == TSK_Undeclared)
93      return NULL;
94  }
95
96  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
97    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
98      return NULL;
99  }
100  if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
101    // When tag declaration (but not definition!) is part of the
102    // decl-specifier-seq of some other declaration, it doesn't get comment
103    if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
104      return NULL;
105  }
106  // TODO: handle comments for function parameters properly.
107  if (isa<ParmVarDecl>(D))
108    return NULL;
109
110  // TODO: we could look up template parameter documentation in the template
111  // documentation.
112  if (isa<TemplateTypeParmDecl>(D) ||
113      isa<NonTypeTemplateParmDecl>(D) ||
114      isa<TemplateTemplateParmDecl>(D))
115    return NULL;
116
117  ArrayRef<RawComment *> RawComments = Comments.getComments();
118
119  // If there are no comments anywhere, we won't find anything.
120  if (RawComments.empty())
121    return NULL;
122
123  // Find declaration location.
124  // For Objective-C declarations we generally don't expect to have multiple
125  // declarators, thus use declaration starting location as the "declaration
126  // location".
127  // For all other declarations multiple declarators are used quite frequently,
128  // so we use the location of the identifier as the "declaration location".
129  SourceLocation DeclLoc;
130  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
131      isa<ObjCPropertyDecl>(D) ||
132      isa<RedeclarableTemplateDecl>(D) ||
133      isa<ClassTemplateSpecializationDecl>(D))
134    DeclLoc = D->getLocStart();
135  else
136    DeclLoc = D->getLocation();
137
138  // If the declaration doesn't map directly to a location in a file, we
139  // can't find the comment.
140  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
141    return NULL;
142
143  // Find the comment that occurs just after this declaration.
144  ArrayRef<RawComment *>::iterator Comment;
145  {
146    // When searching for comments during parsing, the comment we are looking
147    // for is usually among the last two comments we parsed -- check them
148    // first.
149    RawComment CommentAtDeclLoc(
150        SourceMgr, SourceRange(DeclLoc), false,
151        LangOpts.CommentOpts.ParseAllComments);
152    BeforeThanCompare<RawComment> Compare(SourceMgr);
153    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
154    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
155    if (!Found && RawComments.size() >= 2) {
156      MaybeBeforeDecl--;
157      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
158    }
159
160    if (Found) {
161      Comment = MaybeBeforeDecl + 1;
162      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
163                                         &CommentAtDeclLoc, Compare));
164    } else {
165      // Slow path.
166      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
167                                 &CommentAtDeclLoc, Compare);
168    }
169  }
170
171  // Decompose the location for the declaration and find the beginning of the
172  // file buffer.
173  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
174
175  // First check whether we have a trailing comment.
176  if (Comment != RawComments.end() &&
177      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
178      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
179    std::pair<FileID, unsigned> CommentBeginDecomp
180      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
181    // Check that Doxygen trailing comment comes after the declaration, starts
182    // on the same line and in the same file as the declaration.
183    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
184        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
185          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
186                                     CommentBeginDecomp.second)) {
187      return *Comment;
188    }
189  }
190
191  // The comment just after the declaration was not a trailing comment.
192  // Let's look at the previous comment.
193  if (Comment == RawComments.begin())
194    return NULL;
195  --Comment;
196
197  // Check that we actually have a non-member Doxygen comment.
198  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
199    return NULL;
200
201  // Decompose the end of the comment.
202  std::pair<FileID, unsigned> CommentEndDecomp
203    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
204
205  // If the comment and the declaration aren't in the same file, then they
206  // aren't related.
207  if (DeclLocDecomp.first != CommentEndDecomp.first)
208    return NULL;
209
210  // Get the corresponding buffer.
211  bool Invalid = false;
212  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
213                                               &Invalid).data();
214  if (Invalid)
215    return NULL;
216
217  // Extract text between the comment and declaration.
218  StringRef Text(Buffer + CommentEndDecomp.second,
219                 DeclLocDecomp.second - CommentEndDecomp.second);
220
221  // There should be no other declarations or preprocessor directives between
222  // comment and declaration.
223  if (Text.find_first_of(",;{}#@") != StringRef::npos)
224    return NULL;
225
226  return *Comment;
227}
228
229namespace {
230/// If we have a 'templated' declaration for a template, adjust 'D' to
231/// refer to the actual template.
232/// If we have an implicit instantiation, adjust 'D' to refer to template.
233const Decl *adjustDeclToTemplate(const Decl *D) {
234  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
235    // Is this function declaration part of a function template?
236    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
237      return FTD;
238
239    // Nothing to do if function is not an implicit instantiation.
240    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
241      return D;
242
243    // Function is an implicit instantiation of a function template?
244    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
245      return FTD;
246
247    // Function is instantiated from a member definition of a class template?
248    if (const FunctionDecl *MemberDecl =
249            FD->getInstantiatedFromMemberFunction())
250      return MemberDecl;
251
252    return D;
253  }
254  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
255    // Static data member is instantiated from a member definition of a class
256    // template?
257    if (VD->isStaticDataMember())
258      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
259        return MemberDecl;
260
261    return D;
262  }
263  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
264    // Is this class declaration part of a class template?
265    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
266      return CTD;
267
268    // Class is an implicit instantiation of a class template or partial
269    // specialization?
270    if (const ClassTemplateSpecializationDecl *CTSD =
271            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
272      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
273        return D;
274      llvm::PointerUnion<ClassTemplateDecl *,
275                         ClassTemplatePartialSpecializationDecl *>
276          PU = CTSD->getSpecializedTemplateOrPartial();
277      return PU.is<ClassTemplateDecl*>() ?
278          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
279          static_cast<const Decl*>(
280              PU.get<ClassTemplatePartialSpecializationDecl *>());
281    }
282
283    // Class is instantiated from a member definition of a class template?
284    if (const MemberSpecializationInfo *Info =
285                   CRD->getMemberSpecializationInfo())
286      return Info->getInstantiatedFrom();
287
288    return D;
289  }
290  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
291    // Enum is instantiated from a member definition of a class template?
292    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
293      return MemberDecl;
294
295    return D;
296  }
297  // FIXME: Adjust alias templates?
298  return D;
299}
300} // unnamed namespace
301
302const RawComment *ASTContext::getRawCommentForAnyRedecl(
303                                                const Decl *D,
304                                                const Decl **OriginalDecl) const {
305  D = adjustDeclToTemplate(D);
306
307  // Check whether we have cached a comment for this declaration already.
308  {
309    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
310        RedeclComments.find(D);
311    if (Pos != RedeclComments.end()) {
312      const RawCommentAndCacheFlags &Raw = Pos->second;
313      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
314        if (OriginalDecl)
315          *OriginalDecl = Raw.getOriginalDecl();
316        return Raw.getRaw();
317      }
318    }
319  }
320
321  // Search for comments attached to declarations in the redeclaration chain.
322  const RawComment *RC = NULL;
323  const Decl *OriginalDeclForRC = NULL;
324  for (Decl::redecl_iterator I = D->redecls_begin(),
325                             E = D->redecls_end();
326       I != E; ++I) {
327    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
328        RedeclComments.find(*I);
329    if (Pos != RedeclComments.end()) {
330      const RawCommentAndCacheFlags &Raw = Pos->second;
331      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
332        RC = Raw.getRaw();
333        OriginalDeclForRC = Raw.getOriginalDecl();
334        break;
335      }
336    } else {
337      RC = getRawCommentForDeclNoCache(*I);
338      OriginalDeclForRC = *I;
339      RawCommentAndCacheFlags Raw;
340      if (RC) {
341        Raw.setRaw(RC);
342        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
343      } else
344        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
345      Raw.setOriginalDecl(*I);
346      RedeclComments[*I] = Raw;
347      if (RC)
348        break;
349    }
350  }
351
352  // If we found a comment, it should be a documentation comment.
353  assert(!RC || RC->isDocumentation());
354
355  if (OriginalDecl)
356    *OriginalDecl = OriginalDeclForRC;
357
358  // Update cache for every declaration in the redeclaration chain.
359  RawCommentAndCacheFlags Raw;
360  Raw.setRaw(RC);
361  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
362  Raw.setOriginalDecl(OriginalDeclForRC);
363
364  for (Decl::redecl_iterator I = D->redecls_begin(),
365                             E = D->redecls_end();
366       I != E; ++I) {
367    RawCommentAndCacheFlags &R = RedeclComments[*I];
368    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
369      R = Raw;
370  }
371
372  return RC;
373}
374
375static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
376                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
377  const DeclContext *DC = ObjCMethod->getDeclContext();
378  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
379    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
380    if (!ID)
381      return;
382    // Add redeclared method here.
383    for (ObjCInterfaceDecl::known_extensions_iterator
384           Ext = ID->known_extensions_begin(),
385           ExtEnd = ID->known_extensions_end();
386         Ext != ExtEnd; ++Ext) {
387      if (ObjCMethodDecl *RedeclaredMethod =
388            Ext->getMethod(ObjCMethod->getSelector(),
389                                  ObjCMethod->isInstanceMethod()))
390        Redeclared.push_back(RedeclaredMethod);
391    }
392  }
393}
394
395comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
396                                                    const Decl *D) const {
397  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
398  ThisDeclInfo->CommentDecl = D;
399  ThisDeclInfo->IsFilled = false;
400  ThisDeclInfo->fill();
401  ThisDeclInfo->CommentDecl = FC->getDecl();
402  comments::FullComment *CFC =
403    new (*this) comments::FullComment(FC->getBlocks(),
404                                      ThisDeclInfo);
405  return CFC;
406
407}
408
409comments::FullComment *ASTContext::getCommentForDecl(
410                                              const Decl *D,
411                                              const Preprocessor *PP) const {
412  if (D->isInvalidDecl())
413    return NULL;
414  D = adjustDeclToTemplate(D);
415
416  const Decl *Canonical = D->getCanonicalDecl();
417  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
418      ParsedComments.find(Canonical);
419
420  if (Pos != ParsedComments.end()) {
421    if (Canonical != D) {
422      comments::FullComment *FC = Pos->second;
423      comments::FullComment *CFC = cloneFullComment(FC, D);
424      return CFC;
425    }
426    return Pos->second;
427  }
428
429  const Decl *OriginalDecl;
430
431  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
432  if (!RC) {
433    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
434      SmallVector<const NamedDecl*, 8> Overridden;
435      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
436      if (OMD && OMD->isPropertyAccessor())
437        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
438          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
439            return cloneFullComment(FC, D);
440      if (OMD)
441        addRedeclaredMethods(OMD, Overridden);
442      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
443      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
444        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
445          return cloneFullComment(FC, D);
446    }
447    else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
448      // Attach any tag type's documentation to its typedef if latter
449      // does not have one of its own.
450      QualType QT = TD->getUnderlyingType();
451      if (const TagType *TT = QT->getAs<TagType>())
452        if (const Decl *TD = TT->getDecl())
453          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
454            return cloneFullComment(FC, D);
455    }
456    else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
457      while (IC->getSuperClass()) {
458        IC = IC->getSuperClass();
459        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
460          return cloneFullComment(FC, D);
461      }
462    }
463    else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
464      if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
465        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
466          return cloneFullComment(FC, D);
467    }
468    else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
469      if (!(RD = RD->getDefinition()))
470        return NULL;
471      // Check non-virtual bases.
472      for (CXXRecordDecl::base_class_const_iterator I =
473           RD->bases_begin(), E = RD->bases_end(); I != E; ++I) {
474        if (I->isVirtual() || (I->getAccessSpecifier() != AS_public))
475          continue;
476        QualType Ty = I->getType();
477        if (Ty.isNull())
478          continue;
479        if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
480          if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
481            continue;
482
483          if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
484            return cloneFullComment(FC, D);
485        }
486      }
487      // Check virtual bases.
488      for (CXXRecordDecl::base_class_const_iterator I =
489           RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) {
490        if (I->getAccessSpecifier() != AS_public)
491          continue;
492        QualType Ty = I->getType();
493        if (Ty.isNull())
494          continue;
495        if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
496          if (!(VirtualBase= VirtualBase->getDefinition()))
497            continue;
498          if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
499            return cloneFullComment(FC, D);
500        }
501      }
502    }
503    return NULL;
504  }
505
506  // If the RawComment was attached to other redeclaration of this Decl, we
507  // should parse the comment in context of that other Decl.  This is important
508  // because comments can contain references to parameter names which can be
509  // different across redeclarations.
510  if (D != OriginalDecl)
511    return getCommentForDecl(OriginalDecl, PP);
512
513  comments::FullComment *FC = RC->parse(*this, PP, D);
514  ParsedComments[Canonical] = FC;
515  return FC;
516}
517
518void
519ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
520                                               TemplateTemplateParmDecl *Parm) {
521  ID.AddInteger(Parm->getDepth());
522  ID.AddInteger(Parm->getPosition());
523  ID.AddBoolean(Parm->isParameterPack());
524
525  TemplateParameterList *Params = Parm->getTemplateParameters();
526  ID.AddInteger(Params->size());
527  for (TemplateParameterList::const_iterator P = Params->begin(),
528                                          PEnd = Params->end();
529       P != PEnd; ++P) {
530    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
531      ID.AddInteger(0);
532      ID.AddBoolean(TTP->isParameterPack());
533      continue;
534    }
535
536    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
537      ID.AddInteger(1);
538      ID.AddBoolean(NTTP->isParameterPack());
539      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
540      if (NTTP->isExpandedParameterPack()) {
541        ID.AddBoolean(true);
542        ID.AddInteger(NTTP->getNumExpansionTypes());
543        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
544          QualType T = NTTP->getExpansionType(I);
545          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
546        }
547      } else
548        ID.AddBoolean(false);
549      continue;
550    }
551
552    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
553    ID.AddInteger(2);
554    Profile(ID, TTP);
555  }
556}
557
558TemplateTemplateParmDecl *
559ASTContext::getCanonicalTemplateTemplateParmDecl(
560                                          TemplateTemplateParmDecl *TTP) const {
561  // Check if we already have a canonical template template parameter.
562  llvm::FoldingSetNodeID ID;
563  CanonicalTemplateTemplateParm::Profile(ID, TTP);
564  void *InsertPos = 0;
565  CanonicalTemplateTemplateParm *Canonical
566    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
567  if (Canonical)
568    return Canonical->getParam();
569
570  // Build a canonical template parameter list.
571  TemplateParameterList *Params = TTP->getTemplateParameters();
572  SmallVector<NamedDecl *, 4> CanonParams;
573  CanonParams.reserve(Params->size());
574  for (TemplateParameterList::const_iterator P = Params->begin(),
575                                          PEnd = Params->end();
576       P != PEnd; ++P) {
577    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
578      CanonParams.push_back(
579                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
580                                               SourceLocation(),
581                                               SourceLocation(),
582                                               TTP->getDepth(),
583                                               TTP->getIndex(), 0, false,
584                                               TTP->isParameterPack()));
585    else if (NonTypeTemplateParmDecl *NTTP
586             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
587      QualType T = getCanonicalType(NTTP->getType());
588      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
589      NonTypeTemplateParmDecl *Param;
590      if (NTTP->isExpandedParameterPack()) {
591        SmallVector<QualType, 2> ExpandedTypes;
592        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
593        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
594          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
595          ExpandedTInfos.push_back(
596                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
597        }
598
599        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
600                                                SourceLocation(),
601                                                SourceLocation(),
602                                                NTTP->getDepth(),
603                                                NTTP->getPosition(), 0,
604                                                T,
605                                                TInfo,
606                                                ExpandedTypes.data(),
607                                                ExpandedTypes.size(),
608                                                ExpandedTInfos.data());
609      } else {
610        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
611                                                SourceLocation(),
612                                                SourceLocation(),
613                                                NTTP->getDepth(),
614                                                NTTP->getPosition(), 0,
615                                                T,
616                                                NTTP->isParameterPack(),
617                                                TInfo);
618      }
619      CanonParams.push_back(Param);
620
621    } else
622      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
623                                           cast<TemplateTemplateParmDecl>(*P)));
624  }
625
626  TemplateTemplateParmDecl *CanonTTP
627    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
628                                       SourceLocation(), TTP->getDepth(),
629                                       TTP->getPosition(),
630                                       TTP->isParameterPack(),
631                                       0,
632                         TemplateParameterList::Create(*this, SourceLocation(),
633                                                       SourceLocation(),
634                                                       CanonParams.data(),
635                                                       CanonParams.size(),
636                                                       SourceLocation()));
637
638  // Get the new insert position for the node we care about.
639  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
640  assert(Canonical == 0 && "Shouldn't be in the map!");
641  (void)Canonical;
642
643  // Create the canonical template template parameter entry.
644  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
645  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
646  return CanonTTP;
647}
648
649CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
650  if (!LangOpts.CPlusPlus) return 0;
651
652  switch (T.getCXXABI().getKind()) {
653  case TargetCXXABI::GenericARM:
654  case TargetCXXABI::iOS:
655    return CreateARMCXXABI(*this);
656  case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
657  case TargetCXXABI::GenericItanium:
658    return CreateItaniumCXXABI(*this);
659  case TargetCXXABI::Microsoft:
660    return CreateMicrosoftCXXABI(*this);
661  }
662  llvm_unreachable("Invalid CXXABI type!");
663}
664
665static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
666                                             const LangOptions &LOpts) {
667  if (LOpts.FakeAddressSpaceMap) {
668    // The fake address space map must have a distinct entry for each
669    // language-specific address space.
670    static const unsigned FakeAddrSpaceMap[] = {
671      1, // opencl_global
672      2, // opencl_local
673      3, // opencl_constant
674      4, // cuda_device
675      5, // cuda_constant
676      6  // cuda_shared
677    };
678    return &FakeAddrSpaceMap;
679  } else {
680    return &T.getAddressSpaceMap();
681  }
682}
683
684ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
685                       const TargetInfo *t,
686                       IdentifierTable &idents, SelectorTable &sels,
687                       Builtin::Context &builtins,
688                       unsigned size_reserve,
689                       bool DelayInitialization)
690  : FunctionProtoTypes(this_()),
691    TemplateSpecializationTypes(this_()),
692    DependentTemplateSpecializationTypes(this_()),
693    SubstTemplateTemplateParmPacks(this_()),
694    GlobalNestedNameSpecifier(0),
695    Int128Decl(0), UInt128Decl(0),
696    BuiltinVaListDecl(0),
697    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
698    BOOLDecl(0),
699    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
700    FILEDecl(0),
701    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
702    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
703    cudaConfigureCallDecl(0),
704    NullTypeSourceInfo(QualType()),
705    FirstLocalImport(), LastLocalImport(),
706    SourceMgr(SM), LangOpts(LOpts),
707    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
708    Idents(idents), Selectors(sels),
709    BuiltinInfo(builtins),
710    DeclarationNames(*this),
711    ExternalSource(0), Listener(0),
712    Comments(SM), CommentsLoaded(false),
713    CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
714    LastSDM(0, 0),
715    UniqueBlockByRefTypeID(0)
716{
717  if (size_reserve > 0) Types.reserve(size_reserve);
718  TUDecl = TranslationUnitDecl::Create(*this);
719
720  if (!DelayInitialization) {
721    assert(t && "No target supplied for ASTContext initialization");
722    InitBuiltinTypes(*t);
723  }
724}
725
726ASTContext::~ASTContext() {
727  // Release the DenseMaps associated with DeclContext objects.
728  // FIXME: Is this the ideal solution?
729  ReleaseDeclContextMaps();
730
731  // Call all of the deallocation functions.
732  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
733    Deallocations[I].first(Deallocations[I].second);
734
735  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
736  // because they can contain DenseMaps.
737  for (llvm::DenseMap<const ObjCContainerDecl*,
738       const ASTRecordLayout*>::iterator
739       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
740    // Increment in loop to prevent using deallocated memory.
741    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
742      R->Destroy(*this);
743
744  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
745       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
746    // Increment in loop to prevent using deallocated memory.
747    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
748      R->Destroy(*this);
749  }
750
751  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
752                                                    AEnd = DeclAttrs.end();
753       A != AEnd; ++A)
754    A->second->~AttrVec();
755}
756
757void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
758  Deallocations.push_back(std::make_pair(Callback, Data));
759}
760
761void
762ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
763  ExternalSource.reset(Source.take());
764}
765
766void ASTContext::PrintStats() const {
767  llvm::errs() << "\n*** AST Context Stats:\n";
768  llvm::errs() << "  " << Types.size() << " types total.\n";
769
770  unsigned counts[] = {
771#define TYPE(Name, Parent) 0,
772#define ABSTRACT_TYPE(Name, Parent)
773#include "clang/AST/TypeNodes.def"
774    0 // Extra
775  };
776
777  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
778    Type *T = Types[i];
779    counts[(unsigned)T->getTypeClass()]++;
780  }
781
782  unsigned Idx = 0;
783  unsigned TotalBytes = 0;
784#define TYPE(Name, Parent)                                              \
785  if (counts[Idx])                                                      \
786    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
787                 << " types\n";                                         \
788  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
789  ++Idx;
790#define ABSTRACT_TYPE(Name, Parent)
791#include "clang/AST/TypeNodes.def"
792
793  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
794
795  // Implicit special member functions.
796  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
797               << NumImplicitDefaultConstructors
798               << " implicit default constructors created\n";
799  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
800               << NumImplicitCopyConstructors
801               << " implicit copy constructors created\n";
802  if (getLangOpts().CPlusPlus)
803    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
804                 << NumImplicitMoveConstructors
805                 << " implicit move constructors created\n";
806  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
807               << NumImplicitCopyAssignmentOperators
808               << " implicit copy assignment operators created\n";
809  if (getLangOpts().CPlusPlus)
810    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
811                 << NumImplicitMoveAssignmentOperators
812                 << " implicit move assignment operators created\n";
813  llvm::errs() << NumImplicitDestructorsDeclared << "/"
814               << NumImplicitDestructors
815               << " implicit destructors created\n";
816
817  if (ExternalSource.get()) {
818    llvm::errs() << "\n";
819    ExternalSource->PrintStats();
820  }
821
822  BumpAlloc.PrintStats();
823}
824
825TypedefDecl *ASTContext::getInt128Decl() const {
826  if (!Int128Decl) {
827    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
828    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
829                                     getTranslationUnitDecl(),
830                                     SourceLocation(),
831                                     SourceLocation(),
832                                     &Idents.get("__int128_t"),
833                                     TInfo);
834  }
835
836  return Int128Decl;
837}
838
839TypedefDecl *ASTContext::getUInt128Decl() const {
840  if (!UInt128Decl) {
841    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
842    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
843                                     getTranslationUnitDecl(),
844                                     SourceLocation(),
845                                     SourceLocation(),
846                                     &Idents.get("__uint128_t"),
847                                     TInfo);
848  }
849
850  return UInt128Decl;
851}
852
853void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
854  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
855  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
856  Types.push_back(Ty);
857}
858
859void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
860  assert((!this->Target || this->Target == &Target) &&
861         "Incorrect target reinitialization");
862  assert(VoidTy.isNull() && "Context reinitialized?");
863
864  this->Target = &Target;
865
866  ABI.reset(createCXXABI(Target));
867  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
868
869  // C99 6.2.5p19.
870  InitBuiltinType(VoidTy,              BuiltinType::Void);
871
872  // C99 6.2.5p2.
873  InitBuiltinType(BoolTy,              BuiltinType::Bool);
874  // C99 6.2.5p3.
875  if (LangOpts.CharIsSigned)
876    InitBuiltinType(CharTy,            BuiltinType::Char_S);
877  else
878    InitBuiltinType(CharTy,            BuiltinType::Char_U);
879  // C99 6.2.5p4.
880  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
881  InitBuiltinType(ShortTy,             BuiltinType::Short);
882  InitBuiltinType(IntTy,               BuiltinType::Int);
883  InitBuiltinType(LongTy,              BuiltinType::Long);
884  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
885
886  // C99 6.2.5p6.
887  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
888  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
889  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
890  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
891  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
892
893  // C99 6.2.5p10.
894  InitBuiltinType(FloatTy,             BuiltinType::Float);
895  InitBuiltinType(DoubleTy,            BuiltinType::Double);
896  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
897
898  // GNU extension, 128-bit integers.
899  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
900  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
901
902  // C++ 3.9.1p5
903  if (TargetInfo::isTypeSigned(Target.getWCharType()))
904    InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
905  else  // -fshort-wchar makes wchar_t be unsigned.
906    InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
907  if (LangOpts.CPlusPlus && LangOpts.WChar)
908    WideCharTy = WCharTy;
909  else {
910    // C99 (or C++ using -fno-wchar).
911    WideCharTy = getFromTargetType(Target.getWCharType());
912  }
913
914  WIntTy = getFromTargetType(Target.getWIntType());
915
916  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
917    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
918  else // C99
919    Char16Ty = getFromTargetType(Target.getChar16Type());
920
921  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
922    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
923  else // C99
924    Char32Ty = getFromTargetType(Target.getChar32Type());
925
926  // Placeholder type for type-dependent expressions whose type is
927  // completely unknown. No code should ever check a type against
928  // DependentTy and users should never see it; however, it is here to
929  // help diagnose failures to properly check for type-dependent
930  // expressions.
931  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
932
933  // Placeholder type for functions.
934  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
935
936  // Placeholder type for bound members.
937  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
938
939  // Placeholder type for pseudo-objects.
940  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
941
942  // "any" type; useful for debugger-like clients.
943  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
944
945  // Placeholder type for unbridged ARC casts.
946  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
947
948  // Placeholder type for builtin functions.
949  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
950
951  // C99 6.2.5p11.
952  FloatComplexTy      = getComplexType(FloatTy);
953  DoubleComplexTy     = getComplexType(DoubleTy);
954  LongDoubleComplexTy = getComplexType(LongDoubleTy);
955
956  // Builtin types for 'id', 'Class', and 'SEL'.
957  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
958  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
959  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
960
961  if (LangOpts.OpenCL) {
962    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
963    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
964    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
965    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
966    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
967    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
968
969    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
970    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
971  }
972
973  // Builtin type for __objc_yes and __objc_no
974  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
975                       SignedCharTy : BoolTy);
976
977  ObjCConstantStringType = QualType();
978
979  ObjCSuperType = QualType();
980
981  // void * type
982  VoidPtrTy = getPointerType(VoidTy);
983
984  // nullptr type (C++0x 2.14.7)
985  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
986
987  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
988  InitBuiltinType(HalfTy, BuiltinType::Half);
989
990  // Builtin type used to help define __builtin_va_list.
991  VaListTagTy = QualType();
992}
993
994DiagnosticsEngine &ASTContext::getDiagnostics() const {
995  return SourceMgr.getDiagnostics();
996}
997
998AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
999  AttrVec *&Result = DeclAttrs[D];
1000  if (!Result) {
1001    void *Mem = Allocate(sizeof(AttrVec));
1002    Result = new (Mem) AttrVec;
1003  }
1004
1005  return *Result;
1006}
1007
1008/// \brief Erase the attributes corresponding to the given declaration.
1009void ASTContext::eraseDeclAttrs(const Decl *D) {
1010  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1011  if (Pos != DeclAttrs.end()) {
1012    Pos->second->~AttrVec();
1013    DeclAttrs.erase(Pos);
1014  }
1015}
1016
1017MemberSpecializationInfo *
1018ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1019  assert(Var->isStaticDataMember() && "Not a static data member");
1020  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
1021    = InstantiatedFromStaticDataMember.find(Var);
1022  if (Pos == InstantiatedFromStaticDataMember.end())
1023    return 0;
1024
1025  return Pos->second;
1026}
1027
1028void
1029ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1030                                                TemplateSpecializationKind TSK,
1031                                          SourceLocation PointOfInstantiation) {
1032  assert(Inst->isStaticDataMember() && "Not a static data member");
1033  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1034  assert(!InstantiatedFromStaticDataMember[Inst] &&
1035         "Already noted what static data member was instantiated from");
1036  InstantiatedFromStaticDataMember[Inst]
1037    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
1038}
1039
1040FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1041                                                     const FunctionDecl *FD){
1042  assert(FD && "Specialization is 0");
1043  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1044    = ClassScopeSpecializationPattern.find(FD);
1045  if (Pos == ClassScopeSpecializationPattern.end())
1046    return 0;
1047
1048  return Pos->second;
1049}
1050
1051void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1052                                        FunctionDecl *Pattern) {
1053  assert(FD && "Specialization is 0");
1054  assert(Pattern && "Class scope specialization pattern is 0");
1055  ClassScopeSpecializationPattern[FD] = Pattern;
1056}
1057
1058NamedDecl *
1059ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1060  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1061    = InstantiatedFromUsingDecl.find(UUD);
1062  if (Pos == InstantiatedFromUsingDecl.end())
1063    return 0;
1064
1065  return Pos->second;
1066}
1067
1068void
1069ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1070  assert((isa<UsingDecl>(Pattern) ||
1071          isa<UnresolvedUsingValueDecl>(Pattern) ||
1072          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1073         "pattern decl is not a using decl");
1074  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1075  InstantiatedFromUsingDecl[Inst] = Pattern;
1076}
1077
1078UsingShadowDecl *
1079ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1080  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1081    = InstantiatedFromUsingShadowDecl.find(Inst);
1082  if (Pos == InstantiatedFromUsingShadowDecl.end())
1083    return 0;
1084
1085  return Pos->second;
1086}
1087
1088void
1089ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1090                                               UsingShadowDecl *Pattern) {
1091  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1092  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1093}
1094
1095FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1096  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1097    = InstantiatedFromUnnamedFieldDecl.find(Field);
1098  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1099    return 0;
1100
1101  return Pos->second;
1102}
1103
1104void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1105                                                     FieldDecl *Tmpl) {
1106  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1107  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1108  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1109         "Already noted what unnamed field was instantiated from");
1110
1111  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1112}
1113
1114bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1115                                    const FieldDecl *LastFD) const {
1116  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1117          FD->getBitWidthValue(*this) == 0);
1118}
1119
1120bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1121                                             const FieldDecl *LastFD) const {
1122  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1123          FD->getBitWidthValue(*this) == 0 &&
1124          LastFD->getBitWidthValue(*this) != 0);
1125}
1126
1127bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1128                                         const FieldDecl *LastFD) const {
1129  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1130          FD->getBitWidthValue(*this) &&
1131          LastFD->getBitWidthValue(*this));
1132}
1133
1134bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1135                                         const FieldDecl *LastFD) const {
1136  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1137          LastFD->getBitWidthValue(*this));
1138}
1139
1140bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1141                                             const FieldDecl *LastFD) const {
1142  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1143          FD->getBitWidthValue(*this));
1144}
1145
1146ASTContext::overridden_cxx_method_iterator
1147ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1148  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1149    = OverriddenMethods.find(Method->getCanonicalDecl());
1150  if (Pos == OverriddenMethods.end())
1151    return 0;
1152
1153  return Pos->second.begin();
1154}
1155
1156ASTContext::overridden_cxx_method_iterator
1157ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1158  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1159    = OverriddenMethods.find(Method->getCanonicalDecl());
1160  if (Pos == OverriddenMethods.end())
1161    return 0;
1162
1163  return Pos->second.end();
1164}
1165
1166unsigned
1167ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1168  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1169    = OverriddenMethods.find(Method->getCanonicalDecl());
1170  if (Pos == OverriddenMethods.end())
1171    return 0;
1172
1173  return Pos->second.size();
1174}
1175
1176void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1177                                     const CXXMethodDecl *Overridden) {
1178  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1179  OverriddenMethods[Method].push_back(Overridden);
1180}
1181
1182void ASTContext::getOverriddenMethods(
1183                      const NamedDecl *D,
1184                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1185  assert(D);
1186
1187  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1188    Overridden.append(overridden_methods_begin(CXXMethod),
1189                      overridden_methods_end(CXXMethod));
1190    return;
1191  }
1192
1193  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1194  if (!Method)
1195    return;
1196
1197  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1198  Method->getOverriddenMethods(OverDecls);
1199  Overridden.append(OverDecls.begin(), OverDecls.end());
1200}
1201
1202void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1203  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1204  assert(!Import->isFromASTFile() && "Non-local import declaration");
1205  if (!FirstLocalImport) {
1206    FirstLocalImport = Import;
1207    LastLocalImport = Import;
1208    return;
1209  }
1210
1211  LastLocalImport->NextLocalImport = Import;
1212  LastLocalImport = Import;
1213}
1214
1215//===----------------------------------------------------------------------===//
1216//                         Type Sizing and Analysis
1217//===----------------------------------------------------------------------===//
1218
1219/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1220/// scalar floating point type.
1221const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1222  const BuiltinType *BT = T->getAs<BuiltinType>();
1223  assert(BT && "Not a floating point type!");
1224  switch (BT->getKind()) {
1225  default: llvm_unreachable("Not a floating point type!");
1226  case BuiltinType::Half:       return Target->getHalfFormat();
1227  case BuiltinType::Float:      return Target->getFloatFormat();
1228  case BuiltinType::Double:     return Target->getDoubleFormat();
1229  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1230  }
1231}
1232
1233/// getDeclAlign - Return a conservative estimate of the alignment of the
1234/// specified decl.  Note that bitfields do not have a valid alignment, so
1235/// this method will assert on them.
1236/// If @p RefAsPointee, references are treated like their underlying type
1237/// (for alignof), else they're treated like pointers (for CodeGen).
1238CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1239  unsigned Align = Target->getCharWidth();
1240
1241  bool UseAlignAttrOnly = false;
1242  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1243    Align = AlignFromAttr;
1244
1245    // __attribute__((aligned)) can increase or decrease alignment
1246    // *except* on a struct or struct member, where it only increases
1247    // alignment unless 'packed' is also specified.
1248    //
1249    // It is an error for alignas to decrease alignment, so we can
1250    // ignore that possibility;  Sema should diagnose it.
1251    if (isa<FieldDecl>(D)) {
1252      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1253        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1254    } else {
1255      UseAlignAttrOnly = true;
1256    }
1257  }
1258  else if (isa<FieldDecl>(D))
1259      UseAlignAttrOnly =
1260        D->hasAttr<PackedAttr>() ||
1261        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1262
1263  // If we're using the align attribute only, just ignore everything
1264  // else about the declaration and its type.
1265  if (UseAlignAttrOnly) {
1266    // do nothing
1267
1268  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1269    QualType T = VD->getType();
1270    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1271      if (RefAsPointee)
1272        T = RT->getPointeeType();
1273      else
1274        T = getPointerType(RT->getPointeeType());
1275    }
1276    if (!T->isIncompleteType() && !T->isFunctionType()) {
1277      // Adjust alignments of declarations with array type by the
1278      // large-array alignment on the target.
1279      unsigned MinWidth = Target->getLargeArrayMinWidth();
1280      const ArrayType *arrayType;
1281      if (MinWidth && (arrayType = getAsArrayType(T))) {
1282        if (isa<VariableArrayType>(arrayType))
1283          Align = std::max(Align, Target->getLargeArrayAlign());
1284        else if (isa<ConstantArrayType>(arrayType) &&
1285                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1286          Align = std::max(Align, Target->getLargeArrayAlign());
1287
1288        // Walk through any array types while we're at it.
1289        T = getBaseElementType(arrayType);
1290      }
1291      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1292      if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1293        if (VD->hasGlobalStorage())
1294          Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1295      }
1296    }
1297
1298    // Fields can be subject to extra alignment constraints, like if
1299    // the field is packed, the struct is packed, or the struct has a
1300    // a max-field-alignment constraint (#pragma pack).  So calculate
1301    // the actual alignment of the field within the struct, and then
1302    // (as we're expected to) constrain that by the alignment of the type.
1303    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1304      // So calculate the alignment of the field.
1305      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1306
1307      // Start with the record's overall alignment.
1308      unsigned fieldAlign = toBits(layout.getAlignment());
1309
1310      // Use the GCD of that and the offset within the record.
1311      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1312      if (offset > 0) {
1313        // Alignment is always a power of 2, so the GCD will be a power of 2,
1314        // which means we get to do this crazy thing instead of Euclid's.
1315        uint64_t lowBitOfOffset = offset & (~offset + 1);
1316        if (lowBitOfOffset < fieldAlign)
1317          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1318      }
1319
1320      Align = std::min(Align, fieldAlign);
1321    }
1322  }
1323
1324  return toCharUnitsFromBits(Align);
1325}
1326
1327// getTypeInfoDataSizeInChars - Return the size of a type, in
1328// chars. If the type is a record, its data size is returned.  This is
1329// the size of the memcpy that's performed when assigning this type
1330// using a trivial copy/move assignment operator.
1331std::pair<CharUnits, CharUnits>
1332ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1333  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1334
1335  // In C++, objects can sometimes be allocated into the tail padding
1336  // of a base-class subobject.  We decide whether that's possible
1337  // during class layout, so here we can just trust the layout results.
1338  if (getLangOpts().CPlusPlus) {
1339    if (const RecordType *RT = T->getAs<RecordType>()) {
1340      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1341      sizeAndAlign.first = layout.getDataSize();
1342    }
1343  }
1344
1345  return sizeAndAlign;
1346}
1347
1348/// getConstantArrayInfoInChars - Performing the computation in CharUnits
1349/// instead of in bits prevents overflowing the uint64_t for some large arrays.
1350std::pair<CharUnits, CharUnits>
1351static getConstantArrayInfoInChars(const ASTContext &Context,
1352                                   const ConstantArrayType *CAT) {
1353  std::pair<CharUnits, CharUnits> EltInfo =
1354      Context.getTypeInfoInChars(CAT->getElementType());
1355  uint64_t Size = CAT->getSize().getZExtValue();
1356  assert((Size == 0 || EltInfo.first.getQuantity() <= (uint64_t)(-1)/Size) &&
1357         "Overflow in array type char size evaluation");
1358  uint64_t Width = EltInfo.first.getQuantity() * Size;
1359  unsigned Align = EltInfo.second.getQuantity();
1360  Width = llvm::RoundUpToAlignment(Width, Align);
1361  return std::make_pair(CharUnits::fromQuantity(Width),
1362                        CharUnits::fromQuantity(Align));
1363}
1364
1365std::pair<CharUnits, CharUnits>
1366ASTContext::getTypeInfoInChars(const Type *T) const {
1367  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
1368    return getConstantArrayInfoInChars(*this, CAT);
1369  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1370  return std::make_pair(toCharUnitsFromBits(Info.first),
1371                        toCharUnitsFromBits(Info.second));
1372}
1373
1374std::pair<CharUnits, CharUnits>
1375ASTContext::getTypeInfoInChars(QualType T) const {
1376  return getTypeInfoInChars(T.getTypePtr());
1377}
1378
1379std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1380  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1381  if (it != MemoizedTypeInfo.end())
1382    return it->second;
1383
1384  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1385  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1386  return Info;
1387}
1388
1389/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1390/// method does not work on incomplete types.
1391///
1392/// FIXME: Pointers into different addr spaces could have different sizes and
1393/// alignment requirements: getPointerInfo should take an AddrSpace, this
1394/// should take a QualType, &c.
1395std::pair<uint64_t, unsigned>
1396ASTContext::getTypeInfoImpl(const Type *T) const {
1397  uint64_t Width=0;
1398  unsigned Align=8;
1399  switch (T->getTypeClass()) {
1400#define TYPE(Class, Base)
1401#define ABSTRACT_TYPE(Class, Base)
1402#define NON_CANONICAL_TYPE(Class, Base)
1403#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1404#include "clang/AST/TypeNodes.def"
1405    llvm_unreachable("Should not see dependent types");
1406
1407  case Type::FunctionNoProto:
1408  case Type::FunctionProto:
1409    // GCC extension: alignof(function) = 32 bits
1410    Width = 0;
1411    Align = 32;
1412    break;
1413
1414  case Type::IncompleteArray:
1415  case Type::VariableArray:
1416    Width = 0;
1417    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1418    break;
1419
1420  case Type::ConstantArray: {
1421    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1422
1423    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1424    uint64_t Size = CAT->getSize().getZExtValue();
1425    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1426           "Overflow in array type bit size evaluation");
1427    Width = EltInfo.first*Size;
1428    Align = EltInfo.second;
1429    Width = llvm::RoundUpToAlignment(Width, Align);
1430    break;
1431  }
1432  case Type::ExtVector:
1433  case Type::Vector: {
1434    const VectorType *VT = cast<VectorType>(T);
1435    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1436    Width = EltInfo.first*VT->getNumElements();
1437    Align = Width;
1438    // If the alignment is not a power of 2, round up to the next power of 2.
1439    // This happens for non-power-of-2 length vectors.
1440    if (Align & (Align-1)) {
1441      Align = llvm::NextPowerOf2(Align);
1442      Width = llvm::RoundUpToAlignment(Width, Align);
1443    }
1444    // Adjust the alignment based on the target max.
1445    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1446    if (TargetVectorAlign && TargetVectorAlign < Align)
1447      Align = TargetVectorAlign;
1448    break;
1449  }
1450
1451  case Type::Builtin:
1452    switch (cast<BuiltinType>(T)->getKind()) {
1453    default: llvm_unreachable("Unknown builtin type!");
1454    case BuiltinType::Void:
1455      // GCC extension: alignof(void) = 8 bits.
1456      Width = 0;
1457      Align = 8;
1458      break;
1459
1460    case BuiltinType::Bool:
1461      Width = Target->getBoolWidth();
1462      Align = Target->getBoolAlign();
1463      break;
1464    case BuiltinType::Char_S:
1465    case BuiltinType::Char_U:
1466    case BuiltinType::UChar:
1467    case BuiltinType::SChar:
1468      Width = Target->getCharWidth();
1469      Align = Target->getCharAlign();
1470      break;
1471    case BuiltinType::WChar_S:
1472    case BuiltinType::WChar_U:
1473      Width = Target->getWCharWidth();
1474      Align = Target->getWCharAlign();
1475      break;
1476    case BuiltinType::Char16:
1477      Width = Target->getChar16Width();
1478      Align = Target->getChar16Align();
1479      break;
1480    case BuiltinType::Char32:
1481      Width = Target->getChar32Width();
1482      Align = Target->getChar32Align();
1483      break;
1484    case BuiltinType::UShort:
1485    case BuiltinType::Short:
1486      Width = Target->getShortWidth();
1487      Align = Target->getShortAlign();
1488      break;
1489    case BuiltinType::UInt:
1490    case BuiltinType::Int:
1491      Width = Target->getIntWidth();
1492      Align = Target->getIntAlign();
1493      break;
1494    case BuiltinType::ULong:
1495    case BuiltinType::Long:
1496      Width = Target->getLongWidth();
1497      Align = Target->getLongAlign();
1498      break;
1499    case BuiltinType::ULongLong:
1500    case BuiltinType::LongLong:
1501      Width = Target->getLongLongWidth();
1502      Align = Target->getLongLongAlign();
1503      break;
1504    case BuiltinType::Int128:
1505    case BuiltinType::UInt128:
1506      Width = 128;
1507      Align = 128; // int128_t is 128-bit aligned on all targets.
1508      break;
1509    case BuiltinType::Half:
1510      Width = Target->getHalfWidth();
1511      Align = Target->getHalfAlign();
1512      break;
1513    case BuiltinType::Float:
1514      Width = Target->getFloatWidth();
1515      Align = Target->getFloatAlign();
1516      break;
1517    case BuiltinType::Double:
1518      Width = Target->getDoubleWidth();
1519      Align = Target->getDoubleAlign();
1520      break;
1521    case BuiltinType::LongDouble:
1522      Width = Target->getLongDoubleWidth();
1523      Align = Target->getLongDoubleAlign();
1524      break;
1525    case BuiltinType::NullPtr:
1526      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1527      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1528      break;
1529    case BuiltinType::ObjCId:
1530    case BuiltinType::ObjCClass:
1531    case BuiltinType::ObjCSel:
1532      Width = Target->getPointerWidth(0);
1533      Align = Target->getPointerAlign(0);
1534      break;
1535    case BuiltinType::OCLSampler:
1536      // Samplers are modeled as integers.
1537      Width = Target->getIntWidth();
1538      Align = Target->getIntAlign();
1539      break;
1540    case BuiltinType::OCLEvent:
1541    case BuiltinType::OCLImage1d:
1542    case BuiltinType::OCLImage1dArray:
1543    case BuiltinType::OCLImage1dBuffer:
1544    case BuiltinType::OCLImage2d:
1545    case BuiltinType::OCLImage2dArray:
1546    case BuiltinType::OCLImage3d:
1547      // Currently these types are pointers to opaque types.
1548      Width = Target->getPointerWidth(0);
1549      Align = Target->getPointerAlign(0);
1550      break;
1551    }
1552    break;
1553  case Type::ObjCObjectPointer:
1554    Width = Target->getPointerWidth(0);
1555    Align = Target->getPointerAlign(0);
1556    break;
1557  case Type::BlockPointer: {
1558    unsigned AS = getTargetAddressSpace(
1559        cast<BlockPointerType>(T)->getPointeeType());
1560    Width = Target->getPointerWidth(AS);
1561    Align = Target->getPointerAlign(AS);
1562    break;
1563  }
1564  case Type::LValueReference:
1565  case Type::RValueReference: {
1566    // alignof and sizeof should never enter this code path here, so we go
1567    // the pointer route.
1568    unsigned AS = getTargetAddressSpace(
1569        cast<ReferenceType>(T)->getPointeeType());
1570    Width = Target->getPointerWidth(AS);
1571    Align = Target->getPointerAlign(AS);
1572    break;
1573  }
1574  case Type::Pointer: {
1575    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1576    Width = Target->getPointerWidth(AS);
1577    Align = Target->getPointerAlign(AS);
1578    break;
1579  }
1580  case Type::MemberPointer: {
1581    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1582    llvm::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1583    break;
1584  }
1585  case Type::Complex: {
1586    // Complex types have the same alignment as their elements, but twice the
1587    // size.
1588    std::pair<uint64_t, unsigned> EltInfo =
1589      getTypeInfo(cast<ComplexType>(T)->getElementType());
1590    Width = EltInfo.first*2;
1591    Align = EltInfo.second;
1592    break;
1593  }
1594  case Type::ObjCObject:
1595    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1596  case Type::ObjCInterface: {
1597    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1598    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1599    Width = toBits(Layout.getSize());
1600    Align = toBits(Layout.getAlignment());
1601    break;
1602  }
1603  case Type::Record:
1604  case Type::Enum: {
1605    const TagType *TT = cast<TagType>(T);
1606
1607    if (TT->getDecl()->isInvalidDecl()) {
1608      Width = 8;
1609      Align = 8;
1610      break;
1611    }
1612
1613    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1614      return getTypeInfo(ET->getDecl()->getIntegerType());
1615
1616    const RecordType *RT = cast<RecordType>(TT);
1617    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1618    Width = toBits(Layout.getSize());
1619    Align = toBits(Layout.getAlignment());
1620    break;
1621  }
1622
1623  case Type::SubstTemplateTypeParm:
1624    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1625                       getReplacementType().getTypePtr());
1626
1627  case Type::Auto: {
1628    const AutoType *A = cast<AutoType>(T);
1629    assert(!A->getDeducedType().isNull() &&
1630           "cannot request the size of an undeduced or dependent auto type");
1631    return getTypeInfo(A->getDeducedType().getTypePtr());
1632  }
1633
1634  case Type::Paren:
1635    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1636
1637  case Type::Typedef: {
1638    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1639    std::pair<uint64_t, unsigned> Info
1640      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1641    // If the typedef has an aligned attribute on it, it overrides any computed
1642    // alignment we have.  This violates the GCC documentation (which says that
1643    // attribute(aligned) can only round up) but matches its implementation.
1644    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1645      Align = AttrAlign;
1646    else
1647      Align = Info.second;
1648    Width = Info.first;
1649    break;
1650  }
1651
1652  case Type::TypeOfExpr:
1653    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1654                         .getTypePtr());
1655
1656  case Type::TypeOf:
1657    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1658
1659  case Type::Decltype:
1660    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1661                        .getTypePtr());
1662
1663  case Type::UnaryTransform:
1664    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1665
1666  case Type::Elaborated:
1667    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1668
1669  case Type::Attributed:
1670    return getTypeInfo(
1671                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1672
1673  case Type::TemplateSpecialization: {
1674    assert(getCanonicalType(T) != T &&
1675           "Cannot request the size of a dependent type");
1676    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1677    // A type alias template specialization may refer to a typedef with the
1678    // aligned attribute on it.
1679    if (TST->isTypeAlias())
1680      return getTypeInfo(TST->getAliasedType().getTypePtr());
1681    else
1682      return getTypeInfo(getCanonicalType(T));
1683  }
1684
1685  case Type::Atomic: {
1686    // Start with the base type information.
1687    std::pair<uint64_t, unsigned> Info
1688      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1689    Width = Info.first;
1690    Align = Info.second;
1691
1692    // If the size of the type doesn't exceed the platform's max
1693    // atomic promotion width, make the size and alignment more
1694    // favorable to atomic operations:
1695    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1696      // Round the size up to a power of 2.
1697      if (!llvm::isPowerOf2_64(Width))
1698        Width = llvm::NextPowerOf2(Width);
1699
1700      // Set the alignment equal to the size.
1701      Align = static_cast<unsigned>(Width);
1702    }
1703  }
1704
1705  }
1706
1707  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1708  return std::make_pair(Width, Align);
1709}
1710
1711/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1712CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1713  return CharUnits::fromQuantity(BitSize / getCharWidth());
1714}
1715
1716/// toBits - Convert a size in characters to a size in characters.
1717int64_t ASTContext::toBits(CharUnits CharSize) const {
1718  return CharSize.getQuantity() * getCharWidth();
1719}
1720
1721/// getTypeSizeInChars - Return the size of the specified type, in characters.
1722/// This method does not work on incomplete types.
1723CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1724  return getTypeInfoInChars(T).first;
1725}
1726CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1727  return getTypeInfoInChars(T).first;
1728}
1729
1730/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1731/// characters. This method does not work on incomplete types.
1732CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1733  return toCharUnitsFromBits(getTypeAlign(T));
1734}
1735CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1736  return toCharUnitsFromBits(getTypeAlign(T));
1737}
1738
1739/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1740/// type for the current target in bits.  This can be different than the ABI
1741/// alignment in cases where it is beneficial for performance to overalign
1742/// a data type.
1743unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1744  unsigned ABIAlign = getTypeAlign(T);
1745
1746  // Double and long long should be naturally aligned if possible.
1747  if (const ComplexType* CT = T->getAs<ComplexType>())
1748    T = CT->getElementType().getTypePtr();
1749  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1750      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1751      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1752    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1753
1754  return ABIAlign;
1755}
1756
1757/// getAlignOfGlobalVar - Return the alignment in bits that should be given
1758/// to a global variable of the specified type.
1759unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1760  return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1761}
1762
1763/// getAlignOfGlobalVarInChars - Return the alignment in characters that
1764/// should be given to a global variable of the specified type.
1765CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1766  return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1767}
1768
1769/// DeepCollectObjCIvars -
1770/// This routine first collects all declared, but not synthesized, ivars in
1771/// super class and then collects all ivars, including those synthesized for
1772/// current class. This routine is used for implementation of current class
1773/// when all ivars, declared and synthesized are known.
1774///
1775void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1776                                      bool leafClass,
1777                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1778  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1779    DeepCollectObjCIvars(SuperClass, false, Ivars);
1780  if (!leafClass) {
1781    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1782         E = OI->ivar_end(); I != E; ++I)
1783      Ivars.push_back(*I);
1784  } else {
1785    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1786    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1787         Iv= Iv->getNextIvar())
1788      Ivars.push_back(Iv);
1789  }
1790}
1791
1792/// CollectInheritedProtocols - Collect all protocols in current class and
1793/// those inherited by it.
1794void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1795                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1796  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1797    // We can use protocol_iterator here instead of
1798    // all_referenced_protocol_iterator since we are walking all categories.
1799    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1800         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1801      ObjCProtocolDecl *Proto = (*P);
1802      Protocols.insert(Proto->getCanonicalDecl());
1803      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1804           PE = Proto->protocol_end(); P != PE; ++P) {
1805        Protocols.insert((*P)->getCanonicalDecl());
1806        CollectInheritedProtocols(*P, Protocols);
1807      }
1808    }
1809
1810    // Categories of this Interface.
1811    for (ObjCInterfaceDecl::visible_categories_iterator
1812           Cat = OI->visible_categories_begin(),
1813           CatEnd = OI->visible_categories_end();
1814         Cat != CatEnd; ++Cat) {
1815      CollectInheritedProtocols(*Cat, Protocols);
1816    }
1817
1818    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1819      while (SD) {
1820        CollectInheritedProtocols(SD, Protocols);
1821        SD = SD->getSuperClass();
1822      }
1823  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1824    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1825         PE = OC->protocol_end(); P != PE; ++P) {
1826      ObjCProtocolDecl *Proto = (*P);
1827      Protocols.insert(Proto->getCanonicalDecl());
1828      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1829           PE = Proto->protocol_end(); P != PE; ++P)
1830        CollectInheritedProtocols(*P, Protocols);
1831    }
1832  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1833    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1834         PE = OP->protocol_end(); P != PE; ++P) {
1835      ObjCProtocolDecl *Proto = (*P);
1836      Protocols.insert(Proto->getCanonicalDecl());
1837      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1838           PE = Proto->protocol_end(); P != PE; ++P)
1839        CollectInheritedProtocols(*P, Protocols);
1840    }
1841  }
1842}
1843
1844unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1845  unsigned count = 0;
1846  // Count ivars declared in class extension.
1847  for (ObjCInterfaceDecl::known_extensions_iterator
1848         Ext = OI->known_extensions_begin(),
1849         ExtEnd = OI->known_extensions_end();
1850       Ext != ExtEnd; ++Ext) {
1851    count += Ext->ivar_size();
1852  }
1853
1854  // Count ivar defined in this class's implementation.  This
1855  // includes synthesized ivars.
1856  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1857    count += ImplDecl->ivar_size();
1858
1859  return count;
1860}
1861
1862bool ASTContext::isSentinelNullExpr(const Expr *E) {
1863  if (!E)
1864    return false;
1865
1866  // nullptr_t is always treated as null.
1867  if (E->getType()->isNullPtrType()) return true;
1868
1869  if (E->getType()->isAnyPointerType() &&
1870      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1871                                                Expr::NPC_ValueDependentIsNull))
1872    return true;
1873
1874  // Unfortunately, __null has type 'int'.
1875  if (isa<GNUNullExpr>(E)) return true;
1876
1877  return false;
1878}
1879
1880/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1881ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1882  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1883    I = ObjCImpls.find(D);
1884  if (I != ObjCImpls.end())
1885    return cast<ObjCImplementationDecl>(I->second);
1886  return 0;
1887}
1888/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1889ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1890  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1891    I = ObjCImpls.find(D);
1892  if (I != ObjCImpls.end())
1893    return cast<ObjCCategoryImplDecl>(I->second);
1894  return 0;
1895}
1896
1897/// \brief Set the implementation of ObjCInterfaceDecl.
1898void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1899                           ObjCImplementationDecl *ImplD) {
1900  assert(IFaceD && ImplD && "Passed null params");
1901  ObjCImpls[IFaceD] = ImplD;
1902}
1903/// \brief Set the implementation of ObjCCategoryDecl.
1904void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1905                           ObjCCategoryImplDecl *ImplD) {
1906  assert(CatD && ImplD && "Passed null params");
1907  ObjCImpls[CatD] = ImplD;
1908}
1909
1910const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1911                                              const NamedDecl *ND) const {
1912  if (const ObjCInterfaceDecl *ID =
1913          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1914    return ID;
1915  if (const ObjCCategoryDecl *CD =
1916          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1917    return CD->getClassInterface();
1918  if (const ObjCImplDecl *IMD =
1919          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1920    return IMD->getClassInterface();
1921
1922  return 0;
1923}
1924
1925/// \brief Get the copy initialization expression of VarDecl,or NULL if
1926/// none exists.
1927Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1928  assert(VD && "Passed null params");
1929  assert(VD->hasAttr<BlocksAttr>() &&
1930         "getBlockVarCopyInits - not __block var");
1931  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1932    I = BlockVarCopyInits.find(VD);
1933  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1934}
1935
1936/// \brief Set the copy inialization expression of a block var decl.
1937void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1938  assert(VD && Init && "Passed null params");
1939  assert(VD->hasAttr<BlocksAttr>() &&
1940         "setBlockVarCopyInits - not __block var");
1941  BlockVarCopyInits[VD] = Init;
1942}
1943
1944TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1945                                                 unsigned DataSize) const {
1946  if (!DataSize)
1947    DataSize = TypeLoc::getFullDataSizeForType(T);
1948  else
1949    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1950           "incorrect data size provided to CreateTypeSourceInfo!");
1951
1952  TypeSourceInfo *TInfo =
1953    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1954  new (TInfo) TypeSourceInfo(T);
1955  return TInfo;
1956}
1957
1958TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1959                                                     SourceLocation L) const {
1960  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1961  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1962  return DI;
1963}
1964
1965const ASTRecordLayout &
1966ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1967  return getObjCLayout(D, 0);
1968}
1969
1970const ASTRecordLayout &
1971ASTContext::getASTObjCImplementationLayout(
1972                                        const ObjCImplementationDecl *D) const {
1973  return getObjCLayout(D->getClassInterface(), D);
1974}
1975
1976//===----------------------------------------------------------------------===//
1977//                   Type creation/memoization methods
1978//===----------------------------------------------------------------------===//
1979
1980QualType
1981ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1982  unsigned fastQuals = quals.getFastQualifiers();
1983  quals.removeFastQualifiers();
1984
1985  // Check if we've already instantiated this type.
1986  llvm::FoldingSetNodeID ID;
1987  ExtQuals::Profile(ID, baseType, quals);
1988  void *insertPos = 0;
1989  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1990    assert(eq->getQualifiers() == quals);
1991    return QualType(eq, fastQuals);
1992  }
1993
1994  // If the base type is not canonical, make the appropriate canonical type.
1995  QualType canon;
1996  if (!baseType->isCanonicalUnqualified()) {
1997    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1998    canonSplit.Quals.addConsistentQualifiers(quals);
1999    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2000
2001    // Re-find the insert position.
2002    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2003  }
2004
2005  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2006  ExtQualNodes.InsertNode(eq, insertPos);
2007  return QualType(eq, fastQuals);
2008}
2009
2010QualType
2011ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
2012  QualType CanT = getCanonicalType(T);
2013  if (CanT.getAddressSpace() == AddressSpace)
2014    return T;
2015
2016  // If we are composing extended qualifiers together, merge together
2017  // into one ExtQuals node.
2018  QualifierCollector Quals;
2019  const Type *TypeNode = Quals.strip(T);
2020
2021  // If this type already has an address space specified, it cannot get
2022  // another one.
2023  assert(!Quals.hasAddressSpace() &&
2024         "Type cannot be in multiple addr spaces!");
2025  Quals.addAddressSpace(AddressSpace);
2026
2027  return getExtQualType(TypeNode, Quals);
2028}
2029
2030QualType ASTContext::getObjCGCQualType(QualType T,
2031                                       Qualifiers::GC GCAttr) const {
2032  QualType CanT = getCanonicalType(T);
2033  if (CanT.getObjCGCAttr() == GCAttr)
2034    return T;
2035
2036  if (const PointerType *ptr = T->getAs<PointerType>()) {
2037    QualType Pointee = ptr->getPointeeType();
2038    if (Pointee->isAnyPointerType()) {
2039      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2040      return getPointerType(ResultType);
2041    }
2042  }
2043
2044  // If we are composing extended qualifiers together, merge together
2045  // into one ExtQuals node.
2046  QualifierCollector Quals;
2047  const Type *TypeNode = Quals.strip(T);
2048
2049  // If this type already has an ObjCGC specified, it cannot get
2050  // another one.
2051  assert(!Quals.hasObjCGCAttr() &&
2052         "Type cannot have multiple ObjCGCs!");
2053  Quals.addObjCGCAttr(GCAttr);
2054
2055  return getExtQualType(TypeNode, Quals);
2056}
2057
2058const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2059                                                   FunctionType::ExtInfo Info) {
2060  if (T->getExtInfo() == Info)
2061    return T;
2062
2063  QualType Result;
2064  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2065    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
2066  } else {
2067    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2068    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2069    EPI.ExtInfo = Info;
2070    Result = getFunctionType(FPT->getResultType(),
2071                             ArrayRef<QualType>(FPT->arg_type_begin(),
2072                                                FPT->getNumArgs()),
2073                             EPI);
2074  }
2075
2076  return cast<FunctionType>(Result.getTypePtr());
2077}
2078
2079void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2080                                                 QualType ResultType) {
2081  FD = FD->getMostRecentDecl();
2082  while (true) {
2083    const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2084    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2085    FD->setType(getFunctionType(ResultType, FPT->getArgTypes(), EPI));
2086    if (FunctionDecl *Next = FD->getPreviousDecl())
2087      FD = Next;
2088    else
2089      break;
2090  }
2091  if (ASTMutationListener *L = getASTMutationListener())
2092    L->DeducedReturnType(FD, ResultType);
2093}
2094
2095/// getComplexType - Return the uniqued reference to the type for a complex
2096/// number with the specified element type.
2097QualType ASTContext::getComplexType(QualType T) const {
2098  // Unique pointers, to guarantee there is only one pointer of a particular
2099  // structure.
2100  llvm::FoldingSetNodeID ID;
2101  ComplexType::Profile(ID, T);
2102
2103  void *InsertPos = 0;
2104  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2105    return QualType(CT, 0);
2106
2107  // If the pointee type isn't canonical, this won't be a canonical type either,
2108  // so fill in the canonical type field.
2109  QualType Canonical;
2110  if (!T.isCanonical()) {
2111    Canonical = getComplexType(getCanonicalType(T));
2112
2113    // Get the new insert position for the node we care about.
2114    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2115    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2116  }
2117  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2118  Types.push_back(New);
2119  ComplexTypes.InsertNode(New, InsertPos);
2120  return QualType(New, 0);
2121}
2122
2123/// getPointerType - Return the uniqued reference to the type for a pointer to
2124/// the specified type.
2125QualType ASTContext::getPointerType(QualType T) const {
2126  // Unique pointers, to guarantee there is only one pointer of a particular
2127  // structure.
2128  llvm::FoldingSetNodeID ID;
2129  PointerType::Profile(ID, T);
2130
2131  void *InsertPos = 0;
2132  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2133    return QualType(PT, 0);
2134
2135  // If the pointee type isn't canonical, this won't be a canonical type either,
2136  // so fill in the canonical type field.
2137  QualType Canonical;
2138  if (!T.isCanonical()) {
2139    Canonical = getPointerType(getCanonicalType(T));
2140
2141    // Get the new insert position for the node we care about.
2142    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2143    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2144  }
2145  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2146  Types.push_back(New);
2147  PointerTypes.InsertNode(New, InsertPos);
2148  return QualType(New, 0);
2149}
2150
2151/// getBlockPointerType - Return the uniqued reference to the type for
2152/// a pointer to the specified block.
2153QualType ASTContext::getBlockPointerType(QualType T) const {
2154  assert(T->isFunctionType() && "block of function types only");
2155  // Unique pointers, to guarantee there is only one block of a particular
2156  // structure.
2157  llvm::FoldingSetNodeID ID;
2158  BlockPointerType::Profile(ID, T);
2159
2160  void *InsertPos = 0;
2161  if (BlockPointerType *PT =
2162        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2163    return QualType(PT, 0);
2164
2165  // If the block pointee type isn't canonical, this won't be a canonical
2166  // type either so fill in the canonical type field.
2167  QualType Canonical;
2168  if (!T.isCanonical()) {
2169    Canonical = getBlockPointerType(getCanonicalType(T));
2170
2171    // Get the new insert position for the node we care about.
2172    BlockPointerType *NewIP =
2173      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2174    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2175  }
2176  BlockPointerType *New
2177    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2178  Types.push_back(New);
2179  BlockPointerTypes.InsertNode(New, InsertPos);
2180  return QualType(New, 0);
2181}
2182
2183/// getLValueReferenceType - Return the uniqued reference to the type for an
2184/// lvalue reference to the specified type.
2185QualType
2186ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2187  assert(getCanonicalType(T) != OverloadTy &&
2188         "Unresolved overloaded function type");
2189
2190  // Unique pointers, to guarantee there is only one pointer of a particular
2191  // structure.
2192  llvm::FoldingSetNodeID ID;
2193  ReferenceType::Profile(ID, T, SpelledAsLValue);
2194
2195  void *InsertPos = 0;
2196  if (LValueReferenceType *RT =
2197        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2198    return QualType(RT, 0);
2199
2200  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2201
2202  // If the referencee type isn't canonical, this won't be a canonical type
2203  // either, so fill in the canonical type field.
2204  QualType Canonical;
2205  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2206    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2207    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2208
2209    // Get the new insert position for the node we care about.
2210    LValueReferenceType *NewIP =
2211      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2212    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2213  }
2214
2215  LValueReferenceType *New
2216    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2217                                                     SpelledAsLValue);
2218  Types.push_back(New);
2219  LValueReferenceTypes.InsertNode(New, InsertPos);
2220
2221  return QualType(New, 0);
2222}
2223
2224/// getRValueReferenceType - Return the uniqued reference to the type for an
2225/// rvalue reference to the specified type.
2226QualType ASTContext::getRValueReferenceType(QualType T) const {
2227  // Unique pointers, to guarantee there is only one pointer of a particular
2228  // structure.
2229  llvm::FoldingSetNodeID ID;
2230  ReferenceType::Profile(ID, T, false);
2231
2232  void *InsertPos = 0;
2233  if (RValueReferenceType *RT =
2234        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2235    return QualType(RT, 0);
2236
2237  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2238
2239  // If the referencee type isn't canonical, this won't be a canonical type
2240  // either, so fill in the canonical type field.
2241  QualType Canonical;
2242  if (InnerRef || !T.isCanonical()) {
2243    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2244    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2245
2246    // Get the new insert position for the node we care about.
2247    RValueReferenceType *NewIP =
2248      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2249    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2250  }
2251
2252  RValueReferenceType *New
2253    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2254  Types.push_back(New);
2255  RValueReferenceTypes.InsertNode(New, InsertPos);
2256  return QualType(New, 0);
2257}
2258
2259/// getMemberPointerType - Return the uniqued reference to the type for a
2260/// member pointer to the specified type, in the specified class.
2261QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2262  // Unique pointers, to guarantee there is only one pointer of a particular
2263  // structure.
2264  llvm::FoldingSetNodeID ID;
2265  MemberPointerType::Profile(ID, T, Cls);
2266
2267  void *InsertPos = 0;
2268  if (MemberPointerType *PT =
2269      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2270    return QualType(PT, 0);
2271
2272  // If the pointee or class type isn't canonical, this won't be a canonical
2273  // type either, so fill in the canonical type field.
2274  QualType Canonical;
2275  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2276    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2277
2278    // Get the new insert position for the node we care about.
2279    MemberPointerType *NewIP =
2280      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2281    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2282  }
2283  MemberPointerType *New
2284    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2285  Types.push_back(New);
2286  MemberPointerTypes.InsertNode(New, InsertPos);
2287  return QualType(New, 0);
2288}
2289
2290/// getConstantArrayType - Return the unique reference to the type for an
2291/// array of the specified element type.
2292QualType ASTContext::getConstantArrayType(QualType EltTy,
2293                                          const llvm::APInt &ArySizeIn,
2294                                          ArrayType::ArraySizeModifier ASM,
2295                                          unsigned IndexTypeQuals) const {
2296  assert((EltTy->isDependentType() ||
2297          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2298         "Constant array of VLAs is illegal!");
2299
2300  // Convert the array size into a canonical width matching the pointer size for
2301  // the target.
2302  llvm::APInt ArySize(ArySizeIn);
2303  ArySize =
2304    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2305
2306  llvm::FoldingSetNodeID ID;
2307  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2308
2309  void *InsertPos = 0;
2310  if (ConstantArrayType *ATP =
2311      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2312    return QualType(ATP, 0);
2313
2314  // If the element type isn't canonical or has qualifiers, this won't
2315  // be a canonical type either, so fill in the canonical type field.
2316  QualType Canon;
2317  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2318    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2319    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2320                                 ASM, IndexTypeQuals);
2321    Canon = getQualifiedType(Canon, canonSplit.Quals);
2322
2323    // Get the new insert position for the node we care about.
2324    ConstantArrayType *NewIP =
2325      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2326    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2327  }
2328
2329  ConstantArrayType *New = new(*this,TypeAlignment)
2330    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2331  ConstantArrayTypes.InsertNode(New, InsertPos);
2332  Types.push_back(New);
2333  return QualType(New, 0);
2334}
2335
2336/// getVariableArrayDecayedType - Turns the given type, which may be
2337/// variably-modified, into the corresponding type with all the known
2338/// sizes replaced with [*].
2339QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2340  // Vastly most common case.
2341  if (!type->isVariablyModifiedType()) return type;
2342
2343  QualType result;
2344
2345  SplitQualType split = type.getSplitDesugaredType();
2346  const Type *ty = split.Ty;
2347  switch (ty->getTypeClass()) {
2348#define TYPE(Class, Base)
2349#define ABSTRACT_TYPE(Class, Base)
2350#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2351#include "clang/AST/TypeNodes.def"
2352    llvm_unreachable("didn't desugar past all non-canonical types?");
2353
2354  // These types should never be variably-modified.
2355  case Type::Builtin:
2356  case Type::Complex:
2357  case Type::Vector:
2358  case Type::ExtVector:
2359  case Type::DependentSizedExtVector:
2360  case Type::ObjCObject:
2361  case Type::ObjCInterface:
2362  case Type::ObjCObjectPointer:
2363  case Type::Record:
2364  case Type::Enum:
2365  case Type::UnresolvedUsing:
2366  case Type::TypeOfExpr:
2367  case Type::TypeOf:
2368  case Type::Decltype:
2369  case Type::UnaryTransform:
2370  case Type::DependentName:
2371  case Type::InjectedClassName:
2372  case Type::TemplateSpecialization:
2373  case Type::DependentTemplateSpecialization:
2374  case Type::TemplateTypeParm:
2375  case Type::SubstTemplateTypeParmPack:
2376  case Type::Auto:
2377  case Type::PackExpansion:
2378    llvm_unreachable("type should never be variably-modified");
2379
2380  // These types can be variably-modified but should never need to
2381  // further decay.
2382  case Type::FunctionNoProto:
2383  case Type::FunctionProto:
2384  case Type::BlockPointer:
2385  case Type::MemberPointer:
2386    return type;
2387
2388  // These types can be variably-modified.  All these modifications
2389  // preserve structure except as noted by comments.
2390  // TODO: if we ever care about optimizing VLAs, there are no-op
2391  // optimizations available here.
2392  case Type::Pointer:
2393    result = getPointerType(getVariableArrayDecayedType(
2394                              cast<PointerType>(ty)->getPointeeType()));
2395    break;
2396
2397  case Type::LValueReference: {
2398    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2399    result = getLValueReferenceType(
2400                 getVariableArrayDecayedType(lv->getPointeeType()),
2401                                    lv->isSpelledAsLValue());
2402    break;
2403  }
2404
2405  case Type::RValueReference: {
2406    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2407    result = getRValueReferenceType(
2408                 getVariableArrayDecayedType(lv->getPointeeType()));
2409    break;
2410  }
2411
2412  case Type::Atomic: {
2413    const AtomicType *at = cast<AtomicType>(ty);
2414    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2415    break;
2416  }
2417
2418  case Type::ConstantArray: {
2419    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2420    result = getConstantArrayType(
2421                 getVariableArrayDecayedType(cat->getElementType()),
2422                                  cat->getSize(),
2423                                  cat->getSizeModifier(),
2424                                  cat->getIndexTypeCVRQualifiers());
2425    break;
2426  }
2427
2428  case Type::DependentSizedArray: {
2429    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2430    result = getDependentSizedArrayType(
2431                 getVariableArrayDecayedType(dat->getElementType()),
2432                                        dat->getSizeExpr(),
2433                                        dat->getSizeModifier(),
2434                                        dat->getIndexTypeCVRQualifiers(),
2435                                        dat->getBracketsRange());
2436    break;
2437  }
2438
2439  // Turn incomplete types into [*] types.
2440  case Type::IncompleteArray: {
2441    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2442    result = getVariableArrayType(
2443                 getVariableArrayDecayedType(iat->getElementType()),
2444                                  /*size*/ 0,
2445                                  ArrayType::Normal,
2446                                  iat->getIndexTypeCVRQualifiers(),
2447                                  SourceRange());
2448    break;
2449  }
2450
2451  // Turn VLA types into [*] types.
2452  case Type::VariableArray: {
2453    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2454    result = getVariableArrayType(
2455                 getVariableArrayDecayedType(vat->getElementType()),
2456                                  /*size*/ 0,
2457                                  ArrayType::Star,
2458                                  vat->getIndexTypeCVRQualifiers(),
2459                                  vat->getBracketsRange());
2460    break;
2461  }
2462  }
2463
2464  // Apply the top-level qualifiers from the original.
2465  return getQualifiedType(result, split.Quals);
2466}
2467
2468/// getVariableArrayType - Returns a non-unique reference to the type for a
2469/// variable array of the specified element type.
2470QualType ASTContext::getVariableArrayType(QualType EltTy,
2471                                          Expr *NumElts,
2472                                          ArrayType::ArraySizeModifier ASM,
2473                                          unsigned IndexTypeQuals,
2474                                          SourceRange Brackets) const {
2475  // Since we don't unique expressions, it isn't possible to unique VLA's
2476  // that have an expression provided for their size.
2477  QualType Canon;
2478
2479  // Be sure to pull qualifiers off the element type.
2480  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2481    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2482    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2483                                 IndexTypeQuals, Brackets);
2484    Canon = getQualifiedType(Canon, canonSplit.Quals);
2485  }
2486
2487  VariableArrayType *New = new(*this, TypeAlignment)
2488    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2489
2490  VariableArrayTypes.push_back(New);
2491  Types.push_back(New);
2492  return QualType(New, 0);
2493}
2494
2495/// getDependentSizedArrayType - Returns a non-unique reference to
2496/// the type for a dependently-sized array of the specified element
2497/// type.
2498QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2499                                                Expr *numElements,
2500                                                ArrayType::ArraySizeModifier ASM,
2501                                                unsigned elementTypeQuals,
2502                                                SourceRange brackets) const {
2503  assert((!numElements || numElements->isTypeDependent() ||
2504          numElements->isValueDependent()) &&
2505         "Size must be type- or value-dependent!");
2506
2507  // Dependently-sized array types that do not have a specified number
2508  // of elements will have their sizes deduced from a dependent
2509  // initializer.  We do no canonicalization here at all, which is okay
2510  // because they can't be used in most locations.
2511  if (!numElements) {
2512    DependentSizedArrayType *newType
2513      = new (*this, TypeAlignment)
2514          DependentSizedArrayType(*this, elementType, QualType(),
2515                                  numElements, ASM, elementTypeQuals,
2516                                  brackets);
2517    Types.push_back(newType);
2518    return QualType(newType, 0);
2519  }
2520
2521  // Otherwise, we actually build a new type every time, but we
2522  // also build a canonical type.
2523
2524  SplitQualType canonElementType = getCanonicalType(elementType).split();
2525
2526  void *insertPos = 0;
2527  llvm::FoldingSetNodeID ID;
2528  DependentSizedArrayType::Profile(ID, *this,
2529                                   QualType(canonElementType.Ty, 0),
2530                                   ASM, elementTypeQuals, numElements);
2531
2532  // Look for an existing type with these properties.
2533  DependentSizedArrayType *canonTy =
2534    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2535
2536  // If we don't have one, build one.
2537  if (!canonTy) {
2538    canonTy = new (*this, TypeAlignment)
2539      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2540                              QualType(), numElements, ASM, elementTypeQuals,
2541                              brackets);
2542    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2543    Types.push_back(canonTy);
2544  }
2545
2546  // Apply qualifiers from the element type to the array.
2547  QualType canon = getQualifiedType(QualType(canonTy,0),
2548                                    canonElementType.Quals);
2549
2550  // If we didn't need extra canonicalization for the element type,
2551  // then just use that as our result.
2552  if (QualType(canonElementType.Ty, 0) == elementType)
2553    return canon;
2554
2555  // Otherwise, we need to build a type which follows the spelling
2556  // of the element type.
2557  DependentSizedArrayType *sugaredType
2558    = new (*this, TypeAlignment)
2559        DependentSizedArrayType(*this, elementType, canon, numElements,
2560                                ASM, elementTypeQuals, brackets);
2561  Types.push_back(sugaredType);
2562  return QualType(sugaredType, 0);
2563}
2564
2565QualType ASTContext::getIncompleteArrayType(QualType elementType,
2566                                            ArrayType::ArraySizeModifier ASM,
2567                                            unsigned elementTypeQuals) const {
2568  llvm::FoldingSetNodeID ID;
2569  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2570
2571  void *insertPos = 0;
2572  if (IncompleteArrayType *iat =
2573       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2574    return QualType(iat, 0);
2575
2576  // If the element type isn't canonical, this won't be a canonical type
2577  // either, so fill in the canonical type field.  We also have to pull
2578  // qualifiers off the element type.
2579  QualType canon;
2580
2581  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2582    SplitQualType canonSplit = getCanonicalType(elementType).split();
2583    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2584                                   ASM, elementTypeQuals);
2585    canon = getQualifiedType(canon, canonSplit.Quals);
2586
2587    // Get the new insert position for the node we care about.
2588    IncompleteArrayType *existing =
2589      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2590    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2591  }
2592
2593  IncompleteArrayType *newType = new (*this, TypeAlignment)
2594    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2595
2596  IncompleteArrayTypes.InsertNode(newType, insertPos);
2597  Types.push_back(newType);
2598  return QualType(newType, 0);
2599}
2600
2601/// getVectorType - Return the unique reference to a vector type of
2602/// the specified element type and size. VectorType must be a built-in type.
2603QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2604                                   VectorType::VectorKind VecKind) const {
2605  assert(vecType->isBuiltinType());
2606
2607  // Check if we've already instantiated a vector of this type.
2608  llvm::FoldingSetNodeID ID;
2609  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2610
2611  void *InsertPos = 0;
2612  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2613    return QualType(VTP, 0);
2614
2615  // If the element type isn't canonical, this won't be a canonical type either,
2616  // so fill in the canonical type field.
2617  QualType Canonical;
2618  if (!vecType.isCanonical()) {
2619    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2620
2621    // Get the new insert position for the node we care about.
2622    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2623    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2624  }
2625  VectorType *New = new (*this, TypeAlignment)
2626    VectorType(vecType, NumElts, Canonical, VecKind);
2627  VectorTypes.InsertNode(New, InsertPos);
2628  Types.push_back(New);
2629  return QualType(New, 0);
2630}
2631
2632/// getExtVectorType - Return the unique reference to an extended vector type of
2633/// the specified element type and size. VectorType must be a built-in type.
2634QualType
2635ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2636  assert(vecType->isBuiltinType() || vecType->isDependentType());
2637
2638  // Check if we've already instantiated a vector of this type.
2639  llvm::FoldingSetNodeID ID;
2640  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2641                      VectorType::GenericVector);
2642  void *InsertPos = 0;
2643  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2644    return QualType(VTP, 0);
2645
2646  // If the element type isn't canonical, this won't be a canonical type either,
2647  // so fill in the canonical type field.
2648  QualType Canonical;
2649  if (!vecType.isCanonical()) {
2650    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2651
2652    // Get the new insert position for the node we care about.
2653    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2654    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2655  }
2656  ExtVectorType *New = new (*this, TypeAlignment)
2657    ExtVectorType(vecType, NumElts, Canonical);
2658  VectorTypes.InsertNode(New, InsertPos);
2659  Types.push_back(New);
2660  return QualType(New, 0);
2661}
2662
2663QualType
2664ASTContext::getDependentSizedExtVectorType(QualType vecType,
2665                                           Expr *SizeExpr,
2666                                           SourceLocation AttrLoc) const {
2667  llvm::FoldingSetNodeID ID;
2668  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2669                                       SizeExpr);
2670
2671  void *InsertPos = 0;
2672  DependentSizedExtVectorType *Canon
2673    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2674  DependentSizedExtVectorType *New;
2675  if (Canon) {
2676    // We already have a canonical version of this array type; use it as
2677    // the canonical type for a newly-built type.
2678    New = new (*this, TypeAlignment)
2679      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2680                                  SizeExpr, AttrLoc);
2681  } else {
2682    QualType CanonVecTy = getCanonicalType(vecType);
2683    if (CanonVecTy == vecType) {
2684      New = new (*this, TypeAlignment)
2685        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2686                                    AttrLoc);
2687
2688      DependentSizedExtVectorType *CanonCheck
2689        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2690      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2691      (void)CanonCheck;
2692      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2693    } else {
2694      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2695                                                      SourceLocation());
2696      New = new (*this, TypeAlignment)
2697        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2698    }
2699  }
2700
2701  Types.push_back(New);
2702  return QualType(New, 0);
2703}
2704
2705/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2706///
2707QualType
2708ASTContext::getFunctionNoProtoType(QualType ResultTy,
2709                                   const FunctionType::ExtInfo &Info) const {
2710  const CallingConv DefaultCC = Info.getCC();
2711  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2712                               CC_X86StdCall : DefaultCC;
2713  // Unique functions, to guarantee there is only one function of a particular
2714  // structure.
2715  llvm::FoldingSetNodeID ID;
2716  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2717
2718  void *InsertPos = 0;
2719  if (FunctionNoProtoType *FT =
2720        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2721    return QualType(FT, 0);
2722
2723  QualType Canonical;
2724  if (!ResultTy.isCanonical() ||
2725      getCanonicalCallConv(CallConv) != CallConv) {
2726    Canonical =
2727      getFunctionNoProtoType(getCanonicalType(ResultTy),
2728                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2729
2730    // Get the new insert position for the node we care about.
2731    FunctionNoProtoType *NewIP =
2732      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2733    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2734  }
2735
2736  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2737  FunctionNoProtoType *New = new (*this, TypeAlignment)
2738    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2739  Types.push_back(New);
2740  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2741  return QualType(New, 0);
2742}
2743
2744/// \brief Determine whether \p T is canonical as the result type of a function.
2745static bool isCanonicalResultType(QualType T) {
2746  return T.isCanonical() &&
2747         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2748          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2749}
2750
2751/// getFunctionType - Return a normal function type with a typed argument
2752/// list.  isVariadic indicates whether the argument list includes '...'.
2753QualType
2754ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2755                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2756  size_t NumArgs = ArgArray.size();
2757
2758  // Unique functions, to guarantee there is only one function of a particular
2759  // structure.
2760  llvm::FoldingSetNodeID ID;
2761  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2762                             *this);
2763
2764  void *InsertPos = 0;
2765  if (FunctionProtoType *FTP =
2766        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2767    return QualType(FTP, 0);
2768
2769  // Determine whether the type being created is already canonical or not.
2770  bool isCanonical =
2771    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2772    !EPI.HasTrailingReturn;
2773  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2774    if (!ArgArray[i].isCanonicalAsParam())
2775      isCanonical = false;
2776
2777  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2778  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2779                               CC_X86StdCall : DefaultCC;
2780
2781  // If this type isn't canonical, get the canonical version of it.
2782  // The exception spec is not part of the canonical type.
2783  QualType Canonical;
2784  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2785    SmallVector<QualType, 16> CanonicalArgs;
2786    CanonicalArgs.reserve(NumArgs);
2787    for (unsigned i = 0; i != NumArgs; ++i)
2788      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2789
2790    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2791    CanonicalEPI.HasTrailingReturn = false;
2792    CanonicalEPI.ExceptionSpecType = EST_None;
2793    CanonicalEPI.NumExceptions = 0;
2794    CanonicalEPI.ExtInfo
2795      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2796
2797    // Result types do not have ARC lifetime qualifiers.
2798    QualType CanResultTy = getCanonicalType(ResultTy);
2799    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2800      Qualifiers Qs = CanResultTy.getQualifiers();
2801      Qs.removeObjCLifetime();
2802      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2803    }
2804
2805    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2806
2807    // Get the new insert position for the node we care about.
2808    FunctionProtoType *NewIP =
2809      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2810    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2811  }
2812
2813  // FunctionProtoType objects are allocated with extra bytes after
2814  // them for three variable size arrays at the end:
2815  //  - parameter types
2816  //  - exception types
2817  //  - consumed-arguments flags
2818  // Instead of the exception types, there could be a noexcept
2819  // expression, or information used to resolve the exception
2820  // specification.
2821  size_t Size = sizeof(FunctionProtoType) +
2822                NumArgs * sizeof(QualType);
2823  if (EPI.ExceptionSpecType == EST_Dynamic) {
2824    Size += EPI.NumExceptions * sizeof(QualType);
2825  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2826    Size += sizeof(Expr*);
2827  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2828    Size += 2 * sizeof(FunctionDecl*);
2829  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2830    Size += sizeof(FunctionDecl*);
2831  }
2832  if (EPI.ConsumedArguments)
2833    Size += NumArgs * sizeof(bool);
2834
2835  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2836  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2837  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2838  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2839  Types.push_back(FTP);
2840  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2841  return QualType(FTP, 0);
2842}
2843
2844#ifndef NDEBUG
2845static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2846  if (!isa<CXXRecordDecl>(D)) return false;
2847  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2848  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2849    return true;
2850  if (RD->getDescribedClassTemplate() &&
2851      !isa<ClassTemplateSpecializationDecl>(RD))
2852    return true;
2853  return false;
2854}
2855#endif
2856
2857/// getInjectedClassNameType - Return the unique reference to the
2858/// injected class name type for the specified templated declaration.
2859QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2860                                              QualType TST) const {
2861  assert(NeedsInjectedClassNameType(Decl));
2862  if (Decl->TypeForDecl) {
2863    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2864  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2865    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2866    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2867    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2868  } else {
2869    Type *newType =
2870      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2871    Decl->TypeForDecl = newType;
2872    Types.push_back(newType);
2873  }
2874  return QualType(Decl->TypeForDecl, 0);
2875}
2876
2877/// getTypeDeclType - Return the unique reference to the type for the
2878/// specified type declaration.
2879QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2880  assert(Decl && "Passed null for Decl param");
2881  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2882
2883  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2884    return getTypedefType(Typedef);
2885
2886  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2887         "Template type parameter types are always available.");
2888
2889  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2890    assert(!Record->getPreviousDecl() &&
2891           "struct/union has previous declaration");
2892    assert(!NeedsInjectedClassNameType(Record));
2893    return getRecordType(Record);
2894  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2895    assert(!Enum->getPreviousDecl() &&
2896           "enum has previous declaration");
2897    return getEnumType(Enum);
2898  } else if (const UnresolvedUsingTypenameDecl *Using =
2899               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2900    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2901    Decl->TypeForDecl = newType;
2902    Types.push_back(newType);
2903  } else
2904    llvm_unreachable("TypeDecl without a type?");
2905
2906  return QualType(Decl->TypeForDecl, 0);
2907}
2908
2909/// getTypedefType - Return the unique reference to the type for the
2910/// specified typedef name decl.
2911QualType
2912ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2913                           QualType Canonical) const {
2914  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2915
2916  if (Canonical.isNull())
2917    Canonical = getCanonicalType(Decl->getUnderlyingType());
2918  TypedefType *newType = new(*this, TypeAlignment)
2919    TypedefType(Type::Typedef, Decl, Canonical);
2920  Decl->TypeForDecl = newType;
2921  Types.push_back(newType);
2922  return QualType(newType, 0);
2923}
2924
2925QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2926  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2927
2928  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2929    if (PrevDecl->TypeForDecl)
2930      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2931
2932  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2933  Decl->TypeForDecl = newType;
2934  Types.push_back(newType);
2935  return QualType(newType, 0);
2936}
2937
2938QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2939  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2940
2941  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2942    if (PrevDecl->TypeForDecl)
2943      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2944
2945  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2946  Decl->TypeForDecl = newType;
2947  Types.push_back(newType);
2948  return QualType(newType, 0);
2949}
2950
2951QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2952                                       QualType modifiedType,
2953                                       QualType equivalentType) {
2954  llvm::FoldingSetNodeID id;
2955  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2956
2957  void *insertPos = 0;
2958  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2959  if (type) return QualType(type, 0);
2960
2961  QualType canon = getCanonicalType(equivalentType);
2962  type = new (*this, TypeAlignment)
2963           AttributedType(canon, attrKind, modifiedType, equivalentType);
2964
2965  Types.push_back(type);
2966  AttributedTypes.InsertNode(type, insertPos);
2967
2968  return QualType(type, 0);
2969}
2970
2971
2972/// \brief Retrieve a substitution-result type.
2973QualType
2974ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2975                                         QualType Replacement) const {
2976  assert(Replacement.isCanonical()
2977         && "replacement types must always be canonical");
2978
2979  llvm::FoldingSetNodeID ID;
2980  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2981  void *InsertPos = 0;
2982  SubstTemplateTypeParmType *SubstParm
2983    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2984
2985  if (!SubstParm) {
2986    SubstParm = new (*this, TypeAlignment)
2987      SubstTemplateTypeParmType(Parm, Replacement);
2988    Types.push_back(SubstParm);
2989    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2990  }
2991
2992  return QualType(SubstParm, 0);
2993}
2994
2995/// \brief Retrieve a
2996QualType ASTContext::getSubstTemplateTypeParmPackType(
2997                                          const TemplateTypeParmType *Parm,
2998                                              const TemplateArgument &ArgPack) {
2999#ifndef NDEBUG
3000  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
3001                                    PEnd = ArgPack.pack_end();
3002       P != PEnd; ++P) {
3003    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
3004    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
3005  }
3006#endif
3007
3008  llvm::FoldingSetNodeID ID;
3009  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
3010  void *InsertPos = 0;
3011  if (SubstTemplateTypeParmPackType *SubstParm
3012        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
3013    return QualType(SubstParm, 0);
3014
3015  QualType Canon;
3016  if (!Parm->isCanonicalUnqualified()) {
3017    Canon = getCanonicalType(QualType(Parm, 0));
3018    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
3019                                             ArgPack);
3020    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3021  }
3022
3023  SubstTemplateTypeParmPackType *SubstParm
3024    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3025                                                               ArgPack);
3026  Types.push_back(SubstParm);
3027  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3028  return QualType(SubstParm, 0);
3029}
3030
3031/// \brief Retrieve the template type parameter type for a template
3032/// parameter or parameter pack with the given depth, index, and (optionally)
3033/// name.
3034QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3035                                             bool ParameterPack,
3036                                             TemplateTypeParmDecl *TTPDecl) const {
3037  llvm::FoldingSetNodeID ID;
3038  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3039  void *InsertPos = 0;
3040  TemplateTypeParmType *TypeParm
3041    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3042
3043  if (TypeParm)
3044    return QualType(TypeParm, 0);
3045
3046  if (TTPDecl) {
3047    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3048    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3049
3050    TemplateTypeParmType *TypeCheck
3051      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3052    assert(!TypeCheck && "Template type parameter canonical type broken");
3053    (void)TypeCheck;
3054  } else
3055    TypeParm = new (*this, TypeAlignment)
3056      TemplateTypeParmType(Depth, Index, ParameterPack);
3057
3058  Types.push_back(TypeParm);
3059  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3060
3061  return QualType(TypeParm, 0);
3062}
3063
3064TypeSourceInfo *
3065ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3066                                              SourceLocation NameLoc,
3067                                        const TemplateArgumentListInfo &Args,
3068                                              QualType Underlying) const {
3069  assert(!Name.getAsDependentTemplateName() &&
3070         "No dependent template names here!");
3071  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3072
3073  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3074  TemplateSpecializationTypeLoc TL =
3075      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3076  TL.setTemplateKeywordLoc(SourceLocation());
3077  TL.setTemplateNameLoc(NameLoc);
3078  TL.setLAngleLoc(Args.getLAngleLoc());
3079  TL.setRAngleLoc(Args.getRAngleLoc());
3080  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3081    TL.setArgLocInfo(i, Args[i].getLocInfo());
3082  return DI;
3083}
3084
3085QualType
3086ASTContext::getTemplateSpecializationType(TemplateName Template,
3087                                          const TemplateArgumentListInfo &Args,
3088                                          QualType Underlying) const {
3089  assert(!Template.getAsDependentTemplateName() &&
3090         "No dependent template names here!");
3091
3092  unsigned NumArgs = Args.size();
3093
3094  SmallVector<TemplateArgument, 4> ArgVec;
3095  ArgVec.reserve(NumArgs);
3096  for (unsigned i = 0; i != NumArgs; ++i)
3097    ArgVec.push_back(Args[i].getArgument());
3098
3099  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3100                                       Underlying);
3101}
3102
3103#ifndef NDEBUG
3104static bool hasAnyPackExpansions(const TemplateArgument *Args,
3105                                 unsigned NumArgs) {
3106  for (unsigned I = 0; I != NumArgs; ++I)
3107    if (Args[I].isPackExpansion())
3108      return true;
3109
3110  return true;
3111}
3112#endif
3113
3114QualType
3115ASTContext::getTemplateSpecializationType(TemplateName Template,
3116                                          const TemplateArgument *Args,
3117                                          unsigned NumArgs,
3118                                          QualType Underlying) const {
3119  assert(!Template.getAsDependentTemplateName() &&
3120         "No dependent template names here!");
3121  // Look through qualified template names.
3122  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3123    Template = TemplateName(QTN->getTemplateDecl());
3124
3125  bool IsTypeAlias =
3126    Template.getAsTemplateDecl() &&
3127    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3128  QualType CanonType;
3129  if (!Underlying.isNull())
3130    CanonType = getCanonicalType(Underlying);
3131  else {
3132    // We can get here with an alias template when the specialization contains
3133    // a pack expansion that does not match up with a parameter pack.
3134    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3135           "Caller must compute aliased type");
3136    IsTypeAlias = false;
3137    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3138                                                       NumArgs);
3139  }
3140
3141  // Allocate the (non-canonical) template specialization type, but don't
3142  // try to unique it: these types typically have location information that
3143  // we don't unique and don't want to lose.
3144  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3145                       sizeof(TemplateArgument) * NumArgs +
3146                       (IsTypeAlias? sizeof(QualType) : 0),
3147                       TypeAlignment);
3148  TemplateSpecializationType *Spec
3149    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3150                                         IsTypeAlias ? Underlying : QualType());
3151
3152  Types.push_back(Spec);
3153  return QualType(Spec, 0);
3154}
3155
3156QualType
3157ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3158                                                   const TemplateArgument *Args,
3159                                                   unsigned NumArgs) const {
3160  assert(!Template.getAsDependentTemplateName() &&
3161         "No dependent template names here!");
3162
3163  // Look through qualified template names.
3164  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3165    Template = TemplateName(QTN->getTemplateDecl());
3166
3167  // Build the canonical template specialization type.
3168  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3169  SmallVector<TemplateArgument, 4> CanonArgs;
3170  CanonArgs.reserve(NumArgs);
3171  for (unsigned I = 0; I != NumArgs; ++I)
3172    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3173
3174  // Determine whether this canonical template specialization type already
3175  // exists.
3176  llvm::FoldingSetNodeID ID;
3177  TemplateSpecializationType::Profile(ID, CanonTemplate,
3178                                      CanonArgs.data(), NumArgs, *this);
3179
3180  void *InsertPos = 0;
3181  TemplateSpecializationType *Spec
3182    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3183
3184  if (!Spec) {
3185    // Allocate a new canonical template specialization type.
3186    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3187                          sizeof(TemplateArgument) * NumArgs),
3188                         TypeAlignment);
3189    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3190                                                CanonArgs.data(), NumArgs,
3191                                                QualType(), QualType());
3192    Types.push_back(Spec);
3193    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3194  }
3195
3196  assert(Spec->isDependentType() &&
3197         "Non-dependent template-id type must have a canonical type");
3198  return QualType(Spec, 0);
3199}
3200
3201QualType
3202ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3203                              NestedNameSpecifier *NNS,
3204                              QualType NamedType) const {
3205  llvm::FoldingSetNodeID ID;
3206  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3207
3208  void *InsertPos = 0;
3209  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3210  if (T)
3211    return QualType(T, 0);
3212
3213  QualType Canon = NamedType;
3214  if (!Canon.isCanonical()) {
3215    Canon = getCanonicalType(NamedType);
3216    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3217    assert(!CheckT && "Elaborated canonical type broken");
3218    (void)CheckT;
3219  }
3220
3221  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3222  Types.push_back(T);
3223  ElaboratedTypes.InsertNode(T, InsertPos);
3224  return QualType(T, 0);
3225}
3226
3227QualType
3228ASTContext::getParenType(QualType InnerType) const {
3229  llvm::FoldingSetNodeID ID;
3230  ParenType::Profile(ID, InnerType);
3231
3232  void *InsertPos = 0;
3233  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3234  if (T)
3235    return QualType(T, 0);
3236
3237  QualType Canon = InnerType;
3238  if (!Canon.isCanonical()) {
3239    Canon = getCanonicalType(InnerType);
3240    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3241    assert(!CheckT && "Paren canonical type broken");
3242    (void)CheckT;
3243  }
3244
3245  T = new (*this) ParenType(InnerType, Canon);
3246  Types.push_back(T);
3247  ParenTypes.InsertNode(T, InsertPos);
3248  return QualType(T, 0);
3249}
3250
3251QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3252                                          NestedNameSpecifier *NNS,
3253                                          const IdentifierInfo *Name,
3254                                          QualType Canon) const {
3255  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3256
3257  if (Canon.isNull()) {
3258    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3259    ElaboratedTypeKeyword CanonKeyword = Keyword;
3260    if (Keyword == ETK_None)
3261      CanonKeyword = ETK_Typename;
3262
3263    if (CanonNNS != NNS || CanonKeyword != Keyword)
3264      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3265  }
3266
3267  llvm::FoldingSetNodeID ID;
3268  DependentNameType::Profile(ID, Keyword, NNS, Name);
3269
3270  void *InsertPos = 0;
3271  DependentNameType *T
3272    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3273  if (T)
3274    return QualType(T, 0);
3275
3276  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3277  Types.push_back(T);
3278  DependentNameTypes.InsertNode(T, InsertPos);
3279  return QualType(T, 0);
3280}
3281
3282QualType
3283ASTContext::getDependentTemplateSpecializationType(
3284                                 ElaboratedTypeKeyword Keyword,
3285                                 NestedNameSpecifier *NNS,
3286                                 const IdentifierInfo *Name,
3287                                 const TemplateArgumentListInfo &Args) const {
3288  // TODO: avoid this copy
3289  SmallVector<TemplateArgument, 16> ArgCopy;
3290  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3291    ArgCopy.push_back(Args[I].getArgument());
3292  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3293                                                ArgCopy.size(),
3294                                                ArgCopy.data());
3295}
3296
3297QualType
3298ASTContext::getDependentTemplateSpecializationType(
3299                                 ElaboratedTypeKeyword Keyword,
3300                                 NestedNameSpecifier *NNS,
3301                                 const IdentifierInfo *Name,
3302                                 unsigned NumArgs,
3303                                 const TemplateArgument *Args) const {
3304  assert((!NNS || NNS->isDependent()) &&
3305         "nested-name-specifier must be dependent");
3306
3307  llvm::FoldingSetNodeID ID;
3308  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3309                                               Name, NumArgs, Args);
3310
3311  void *InsertPos = 0;
3312  DependentTemplateSpecializationType *T
3313    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3314  if (T)
3315    return QualType(T, 0);
3316
3317  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3318
3319  ElaboratedTypeKeyword CanonKeyword = Keyword;
3320  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3321
3322  bool AnyNonCanonArgs = false;
3323  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3324  for (unsigned I = 0; I != NumArgs; ++I) {
3325    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3326    if (!CanonArgs[I].structurallyEquals(Args[I]))
3327      AnyNonCanonArgs = true;
3328  }
3329
3330  QualType Canon;
3331  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3332    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3333                                                   Name, NumArgs,
3334                                                   CanonArgs.data());
3335
3336    // Find the insert position again.
3337    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3338  }
3339
3340  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3341                        sizeof(TemplateArgument) * NumArgs),
3342                       TypeAlignment);
3343  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3344                                                    Name, NumArgs, Args, Canon);
3345  Types.push_back(T);
3346  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3347  return QualType(T, 0);
3348}
3349
3350QualType ASTContext::getPackExpansionType(QualType Pattern,
3351                                          Optional<unsigned> NumExpansions) {
3352  llvm::FoldingSetNodeID ID;
3353  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3354
3355  assert(Pattern->containsUnexpandedParameterPack() &&
3356         "Pack expansions must expand one or more parameter packs");
3357  void *InsertPos = 0;
3358  PackExpansionType *T
3359    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3360  if (T)
3361    return QualType(T, 0);
3362
3363  QualType Canon;
3364  if (!Pattern.isCanonical()) {
3365    Canon = getCanonicalType(Pattern);
3366    // The canonical type might not contain an unexpanded parameter pack, if it
3367    // contains an alias template specialization which ignores one of its
3368    // parameters.
3369    if (Canon->containsUnexpandedParameterPack()) {
3370      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3371
3372      // Find the insert position again, in case we inserted an element into
3373      // PackExpansionTypes and invalidated our insert position.
3374      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3375    }
3376  }
3377
3378  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3379  Types.push_back(T);
3380  PackExpansionTypes.InsertNode(T, InsertPos);
3381  return QualType(T, 0);
3382}
3383
3384/// CmpProtocolNames - Comparison predicate for sorting protocols
3385/// alphabetically.
3386static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3387                            const ObjCProtocolDecl *RHS) {
3388  return LHS->getDeclName() < RHS->getDeclName();
3389}
3390
3391static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3392                                unsigned NumProtocols) {
3393  if (NumProtocols == 0) return true;
3394
3395  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3396    return false;
3397
3398  for (unsigned i = 1; i != NumProtocols; ++i)
3399    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3400        Protocols[i]->getCanonicalDecl() != Protocols[i])
3401      return false;
3402  return true;
3403}
3404
3405static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3406                                   unsigned &NumProtocols) {
3407  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3408
3409  // Sort protocols, keyed by name.
3410  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3411
3412  // Canonicalize.
3413  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3414    Protocols[I] = Protocols[I]->getCanonicalDecl();
3415
3416  // Remove duplicates.
3417  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3418  NumProtocols = ProtocolsEnd-Protocols;
3419}
3420
3421QualType ASTContext::getObjCObjectType(QualType BaseType,
3422                                       ObjCProtocolDecl * const *Protocols,
3423                                       unsigned NumProtocols) const {
3424  // If the base type is an interface and there aren't any protocols
3425  // to add, then the interface type will do just fine.
3426  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3427    return BaseType;
3428
3429  // Look in the folding set for an existing type.
3430  llvm::FoldingSetNodeID ID;
3431  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3432  void *InsertPos = 0;
3433  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3434    return QualType(QT, 0);
3435
3436  // Build the canonical type, which has the canonical base type and
3437  // a sorted-and-uniqued list of protocols.
3438  QualType Canonical;
3439  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3440  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3441    if (!ProtocolsSorted) {
3442      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3443                                                     Protocols + NumProtocols);
3444      unsigned UniqueCount = NumProtocols;
3445
3446      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3447      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3448                                    &Sorted[0], UniqueCount);
3449    } else {
3450      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3451                                    Protocols, NumProtocols);
3452    }
3453
3454    // Regenerate InsertPos.
3455    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3456  }
3457
3458  unsigned Size = sizeof(ObjCObjectTypeImpl);
3459  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3460  void *Mem = Allocate(Size, TypeAlignment);
3461  ObjCObjectTypeImpl *T =
3462    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3463
3464  Types.push_back(T);
3465  ObjCObjectTypes.InsertNode(T, InsertPos);
3466  return QualType(T, 0);
3467}
3468
3469/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3470/// the given object type.
3471QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3472  llvm::FoldingSetNodeID ID;
3473  ObjCObjectPointerType::Profile(ID, ObjectT);
3474
3475  void *InsertPos = 0;
3476  if (ObjCObjectPointerType *QT =
3477              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3478    return QualType(QT, 0);
3479
3480  // Find the canonical object type.
3481  QualType Canonical;
3482  if (!ObjectT.isCanonical()) {
3483    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3484
3485    // Regenerate InsertPos.
3486    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3487  }
3488
3489  // No match.
3490  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3491  ObjCObjectPointerType *QType =
3492    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3493
3494  Types.push_back(QType);
3495  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3496  return QualType(QType, 0);
3497}
3498
3499/// getObjCInterfaceType - Return the unique reference to the type for the
3500/// specified ObjC interface decl. The list of protocols is optional.
3501QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3502                                          ObjCInterfaceDecl *PrevDecl) const {
3503  if (Decl->TypeForDecl)
3504    return QualType(Decl->TypeForDecl, 0);
3505
3506  if (PrevDecl) {
3507    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3508    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3509    return QualType(PrevDecl->TypeForDecl, 0);
3510  }
3511
3512  // Prefer the definition, if there is one.
3513  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3514    Decl = Def;
3515
3516  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3517  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3518  Decl->TypeForDecl = T;
3519  Types.push_back(T);
3520  return QualType(T, 0);
3521}
3522
3523/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3524/// TypeOfExprType AST's (since expression's are never shared). For example,
3525/// multiple declarations that refer to "typeof(x)" all contain different
3526/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3527/// on canonical type's (which are always unique).
3528QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3529  TypeOfExprType *toe;
3530  if (tofExpr->isTypeDependent()) {
3531    llvm::FoldingSetNodeID ID;
3532    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3533
3534    void *InsertPos = 0;
3535    DependentTypeOfExprType *Canon
3536      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3537    if (Canon) {
3538      // We already have a "canonical" version of an identical, dependent
3539      // typeof(expr) type. Use that as our canonical type.
3540      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3541                                          QualType((TypeOfExprType*)Canon, 0));
3542    } else {
3543      // Build a new, canonical typeof(expr) type.
3544      Canon
3545        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3546      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3547      toe = Canon;
3548    }
3549  } else {
3550    QualType Canonical = getCanonicalType(tofExpr->getType());
3551    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3552  }
3553  Types.push_back(toe);
3554  return QualType(toe, 0);
3555}
3556
3557/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3558/// TypeOfType AST's. The only motivation to unique these nodes would be
3559/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3560/// an issue. This doesn't effect the type checker, since it operates
3561/// on canonical type's (which are always unique).
3562QualType ASTContext::getTypeOfType(QualType tofType) const {
3563  QualType Canonical = getCanonicalType(tofType);
3564  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3565  Types.push_back(tot);
3566  return QualType(tot, 0);
3567}
3568
3569
3570/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3571/// DecltypeType AST's. The only motivation to unique these nodes would be
3572/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3573/// an issue. This doesn't effect the type checker, since it operates
3574/// on canonical types (which are always unique).
3575QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3576  DecltypeType *dt;
3577
3578  // C++0x [temp.type]p2:
3579  //   If an expression e involves a template parameter, decltype(e) denotes a
3580  //   unique dependent type. Two such decltype-specifiers refer to the same
3581  //   type only if their expressions are equivalent (14.5.6.1).
3582  if (e->isInstantiationDependent()) {
3583    llvm::FoldingSetNodeID ID;
3584    DependentDecltypeType::Profile(ID, *this, e);
3585
3586    void *InsertPos = 0;
3587    DependentDecltypeType *Canon
3588      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3589    if (Canon) {
3590      // We already have a "canonical" version of an equivalent, dependent
3591      // decltype type. Use that as our canonical type.
3592      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3593                                       QualType((DecltypeType*)Canon, 0));
3594    } else {
3595      // Build a new, canonical typeof(expr) type.
3596      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3597      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3598      dt = Canon;
3599    }
3600  } else {
3601    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3602                                      getCanonicalType(UnderlyingType));
3603  }
3604  Types.push_back(dt);
3605  return QualType(dt, 0);
3606}
3607
3608/// getUnaryTransformationType - We don't unique these, since the memory
3609/// savings are minimal and these are rare.
3610QualType ASTContext::getUnaryTransformType(QualType BaseType,
3611                                           QualType UnderlyingType,
3612                                           UnaryTransformType::UTTKind Kind)
3613    const {
3614  UnaryTransformType *Ty =
3615    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3616                                                   Kind,
3617                                 UnderlyingType->isDependentType() ?
3618                                 QualType() : getCanonicalType(UnderlyingType));
3619  Types.push_back(Ty);
3620  return QualType(Ty, 0);
3621}
3622
3623/// getAutoType - Return the uniqued reference to the 'auto' type which has been
3624/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3625/// canonical deduced-but-dependent 'auto' type.
3626QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3627                                 bool IsDependent) const {
3628  if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3629    return getAutoDeductType();
3630
3631  // Look in the folding set for an existing type.
3632  void *InsertPos = 0;
3633  llvm::FoldingSetNodeID ID;
3634  AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3635  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3636    return QualType(AT, 0);
3637
3638  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3639                                                     IsDecltypeAuto,
3640                                                     IsDependent);
3641  Types.push_back(AT);
3642  if (InsertPos)
3643    AutoTypes.InsertNode(AT, InsertPos);
3644  return QualType(AT, 0);
3645}
3646
3647/// getAtomicType - Return the uniqued reference to the atomic type for
3648/// the given value type.
3649QualType ASTContext::getAtomicType(QualType T) const {
3650  // Unique pointers, to guarantee there is only one pointer of a particular
3651  // structure.
3652  llvm::FoldingSetNodeID ID;
3653  AtomicType::Profile(ID, T);
3654
3655  void *InsertPos = 0;
3656  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3657    return QualType(AT, 0);
3658
3659  // If the atomic value type isn't canonical, this won't be a canonical type
3660  // either, so fill in the canonical type field.
3661  QualType Canonical;
3662  if (!T.isCanonical()) {
3663    Canonical = getAtomicType(getCanonicalType(T));
3664
3665    // Get the new insert position for the node we care about.
3666    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3667    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3668  }
3669  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3670  Types.push_back(New);
3671  AtomicTypes.InsertNode(New, InsertPos);
3672  return QualType(New, 0);
3673}
3674
3675/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3676QualType ASTContext::getAutoDeductType() const {
3677  if (AutoDeductTy.isNull())
3678    AutoDeductTy = QualType(
3679      new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3680                                          /*dependent*/false),
3681      0);
3682  return AutoDeductTy;
3683}
3684
3685/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3686QualType ASTContext::getAutoRRefDeductType() const {
3687  if (AutoRRefDeductTy.isNull())
3688    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3689  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3690  return AutoRRefDeductTy;
3691}
3692
3693/// getTagDeclType - Return the unique reference to the type for the
3694/// specified TagDecl (struct/union/class/enum) decl.
3695QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3696  assert (Decl);
3697  // FIXME: What is the design on getTagDeclType when it requires casting
3698  // away const?  mutable?
3699  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3700}
3701
3702/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3703/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3704/// needs to agree with the definition in <stddef.h>.
3705CanQualType ASTContext::getSizeType() const {
3706  return getFromTargetType(Target->getSizeType());
3707}
3708
3709/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3710CanQualType ASTContext::getIntMaxType() const {
3711  return getFromTargetType(Target->getIntMaxType());
3712}
3713
3714/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3715CanQualType ASTContext::getUIntMaxType() const {
3716  return getFromTargetType(Target->getUIntMaxType());
3717}
3718
3719/// getSignedWCharType - Return the type of "signed wchar_t".
3720/// Used when in C++, as a GCC extension.
3721QualType ASTContext::getSignedWCharType() const {
3722  // FIXME: derive from "Target" ?
3723  return WCharTy;
3724}
3725
3726/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3727/// Used when in C++, as a GCC extension.
3728QualType ASTContext::getUnsignedWCharType() const {
3729  // FIXME: derive from "Target" ?
3730  return UnsignedIntTy;
3731}
3732
3733QualType ASTContext::getIntPtrType() const {
3734  return getFromTargetType(Target->getIntPtrType());
3735}
3736
3737QualType ASTContext::getUIntPtrType() const {
3738  return getCorrespondingUnsignedType(getIntPtrType());
3739}
3740
3741/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3742/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3743QualType ASTContext::getPointerDiffType() const {
3744  return getFromTargetType(Target->getPtrDiffType(0));
3745}
3746
3747/// \brief Return the unique type for "pid_t" defined in
3748/// <sys/types.h>. We need this to compute the correct type for vfork().
3749QualType ASTContext::getProcessIDType() const {
3750  return getFromTargetType(Target->getProcessIDType());
3751}
3752
3753//===----------------------------------------------------------------------===//
3754//                              Type Operators
3755//===----------------------------------------------------------------------===//
3756
3757CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3758  // Push qualifiers into arrays, and then discard any remaining
3759  // qualifiers.
3760  T = getCanonicalType(T);
3761  T = getVariableArrayDecayedType(T);
3762  const Type *Ty = T.getTypePtr();
3763  QualType Result;
3764  if (isa<ArrayType>(Ty)) {
3765    Result = getArrayDecayedType(QualType(Ty,0));
3766  } else if (isa<FunctionType>(Ty)) {
3767    Result = getPointerType(QualType(Ty, 0));
3768  } else {
3769    Result = QualType(Ty, 0);
3770  }
3771
3772  return CanQualType::CreateUnsafe(Result);
3773}
3774
3775QualType ASTContext::getUnqualifiedArrayType(QualType type,
3776                                             Qualifiers &quals) {
3777  SplitQualType splitType = type.getSplitUnqualifiedType();
3778
3779  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3780  // the unqualified desugared type and then drops it on the floor.
3781  // We then have to strip that sugar back off with
3782  // getUnqualifiedDesugaredType(), which is silly.
3783  const ArrayType *AT =
3784    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3785
3786  // If we don't have an array, just use the results in splitType.
3787  if (!AT) {
3788    quals = splitType.Quals;
3789    return QualType(splitType.Ty, 0);
3790  }
3791
3792  // Otherwise, recurse on the array's element type.
3793  QualType elementType = AT->getElementType();
3794  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3795
3796  // If that didn't change the element type, AT has no qualifiers, so we
3797  // can just use the results in splitType.
3798  if (elementType == unqualElementType) {
3799    assert(quals.empty()); // from the recursive call
3800    quals = splitType.Quals;
3801    return QualType(splitType.Ty, 0);
3802  }
3803
3804  // Otherwise, add in the qualifiers from the outermost type, then
3805  // build the type back up.
3806  quals.addConsistentQualifiers(splitType.Quals);
3807
3808  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3809    return getConstantArrayType(unqualElementType, CAT->getSize(),
3810                                CAT->getSizeModifier(), 0);
3811  }
3812
3813  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3814    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3815  }
3816
3817  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3818    return getVariableArrayType(unqualElementType,
3819                                VAT->getSizeExpr(),
3820                                VAT->getSizeModifier(),
3821                                VAT->getIndexTypeCVRQualifiers(),
3822                                VAT->getBracketsRange());
3823  }
3824
3825  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3826  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3827                                    DSAT->getSizeModifier(), 0,
3828                                    SourceRange());
3829}
3830
3831/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3832/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3833/// they point to and return true. If T1 and T2 aren't pointer types
3834/// or pointer-to-member types, or if they are not similar at this
3835/// level, returns false and leaves T1 and T2 unchanged. Top-level
3836/// qualifiers on T1 and T2 are ignored. This function will typically
3837/// be called in a loop that successively "unwraps" pointer and
3838/// pointer-to-member types to compare them at each level.
3839bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3840  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3841                    *T2PtrType = T2->getAs<PointerType>();
3842  if (T1PtrType && T2PtrType) {
3843    T1 = T1PtrType->getPointeeType();
3844    T2 = T2PtrType->getPointeeType();
3845    return true;
3846  }
3847
3848  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3849                          *T2MPType = T2->getAs<MemberPointerType>();
3850  if (T1MPType && T2MPType &&
3851      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3852                             QualType(T2MPType->getClass(), 0))) {
3853    T1 = T1MPType->getPointeeType();
3854    T2 = T2MPType->getPointeeType();
3855    return true;
3856  }
3857
3858  if (getLangOpts().ObjC1) {
3859    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3860                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3861    if (T1OPType && T2OPType) {
3862      T1 = T1OPType->getPointeeType();
3863      T2 = T2OPType->getPointeeType();
3864      return true;
3865    }
3866  }
3867
3868  // FIXME: Block pointers, too?
3869
3870  return false;
3871}
3872
3873DeclarationNameInfo
3874ASTContext::getNameForTemplate(TemplateName Name,
3875                               SourceLocation NameLoc) const {
3876  switch (Name.getKind()) {
3877  case TemplateName::QualifiedTemplate:
3878  case TemplateName::Template:
3879    // DNInfo work in progress: CHECKME: what about DNLoc?
3880    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3881                               NameLoc);
3882
3883  case TemplateName::OverloadedTemplate: {
3884    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3885    // DNInfo work in progress: CHECKME: what about DNLoc?
3886    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3887  }
3888
3889  case TemplateName::DependentTemplate: {
3890    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3891    DeclarationName DName;
3892    if (DTN->isIdentifier()) {
3893      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3894      return DeclarationNameInfo(DName, NameLoc);
3895    } else {
3896      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3897      // DNInfo work in progress: FIXME: source locations?
3898      DeclarationNameLoc DNLoc;
3899      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3900      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3901      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3902    }
3903  }
3904
3905  case TemplateName::SubstTemplateTemplateParm: {
3906    SubstTemplateTemplateParmStorage *subst
3907      = Name.getAsSubstTemplateTemplateParm();
3908    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3909                               NameLoc);
3910  }
3911
3912  case TemplateName::SubstTemplateTemplateParmPack: {
3913    SubstTemplateTemplateParmPackStorage *subst
3914      = Name.getAsSubstTemplateTemplateParmPack();
3915    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3916                               NameLoc);
3917  }
3918  }
3919
3920  llvm_unreachable("bad template name kind!");
3921}
3922
3923TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3924  switch (Name.getKind()) {
3925  case TemplateName::QualifiedTemplate:
3926  case TemplateName::Template: {
3927    TemplateDecl *Template = Name.getAsTemplateDecl();
3928    if (TemplateTemplateParmDecl *TTP
3929          = dyn_cast<TemplateTemplateParmDecl>(Template))
3930      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3931
3932    // The canonical template name is the canonical template declaration.
3933    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3934  }
3935
3936  case TemplateName::OverloadedTemplate:
3937    llvm_unreachable("cannot canonicalize overloaded template");
3938
3939  case TemplateName::DependentTemplate: {
3940    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3941    assert(DTN && "Non-dependent template names must refer to template decls.");
3942    return DTN->CanonicalTemplateName;
3943  }
3944
3945  case TemplateName::SubstTemplateTemplateParm: {
3946    SubstTemplateTemplateParmStorage *subst
3947      = Name.getAsSubstTemplateTemplateParm();
3948    return getCanonicalTemplateName(subst->getReplacement());
3949  }
3950
3951  case TemplateName::SubstTemplateTemplateParmPack: {
3952    SubstTemplateTemplateParmPackStorage *subst
3953                                  = Name.getAsSubstTemplateTemplateParmPack();
3954    TemplateTemplateParmDecl *canonParameter
3955      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3956    TemplateArgument canonArgPack
3957      = getCanonicalTemplateArgument(subst->getArgumentPack());
3958    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3959  }
3960  }
3961
3962  llvm_unreachable("bad template name!");
3963}
3964
3965bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3966  X = getCanonicalTemplateName(X);
3967  Y = getCanonicalTemplateName(Y);
3968  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3969}
3970
3971TemplateArgument
3972ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3973  switch (Arg.getKind()) {
3974    case TemplateArgument::Null:
3975      return Arg;
3976
3977    case TemplateArgument::Expression:
3978      return Arg;
3979
3980    case TemplateArgument::Declaration: {
3981      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3982      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3983    }
3984
3985    case TemplateArgument::NullPtr:
3986      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3987                              /*isNullPtr*/true);
3988
3989    case TemplateArgument::Template:
3990      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3991
3992    case TemplateArgument::TemplateExpansion:
3993      return TemplateArgument(getCanonicalTemplateName(
3994                                         Arg.getAsTemplateOrTemplatePattern()),
3995                              Arg.getNumTemplateExpansions());
3996
3997    case TemplateArgument::Integral:
3998      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3999
4000    case TemplateArgument::Type:
4001      return TemplateArgument(getCanonicalType(Arg.getAsType()));
4002
4003    case TemplateArgument::Pack: {
4004      if (Arg.pack_size() == 0)
4005        return Arg;
4006
4007      TemplateArgument *CanonArgs
4008        = new (*this) TemplateArgument[Arg.pack_size()];
4009      unsigned Idx = 0;
4010      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
4011                                        AEnd = Arg.pack_end();
4012           A != AEnd; (void)++A, ++Idx)
4013        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
4014
4015      return TemplateArgument(CanonArgs, Arg.pack_size());
4016    }
4017  }
4018
4019  // Silence GCC warning
4020  llvm_unreachable("Unhandled template argument kind");
4021}
4022
4023NestedNameSpecifier *
4024ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4025  if (!NNS)
4026    return 0;
4027
4028  switch (NNS->getKind()) {
4029  case NestedNameSpecifier::Identifier:
4030    // Canonicalize the prefix but keep the identifier the same.
4031    return NestedNameSpecifier::Create(*this,
4032                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4033                                       NNS->getAsIdentifier());
4034
4035  case NestedNameSpecifier::Namespace:
4036    // A namespace is canonical; build a nested-name-specifier with
4037    // this namespace and no prefix.
4038    return NestedNameSpecifier::Create(*this, 0,
4039                                 NNS->getAsNamespace()->getOriginalNamespace());
4040
4041  case NestedNameSpecifier::NamespaceAlias:
4042    // A namespace is canonical; build a nested-name-specifier with
4043    // this namespace and no prefix.
4044    return NestedNameSpecifier::Create(*this, 0,
4045                                    NNS->getAsNamespaceAlias()->getNamespace()
4046                                                      ->getOriginalNamespace());
4047
4048  case NestedNameSpecifier::TypeSpec:
4049  case NestedNameSpecifier::TypeSpecWithTemplate: {
4050    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4051
4052    // If we have some kind of dependent-named type (e.g., "typename T::type"),
4053    // break it apart into its prefix and identifier, then reconsititute those
4054    // as the canonical nested-name-specifier. This is required to canonicalize
4055    // a dependent nested-name-specifier involving typedefs of dependent-name
4056    // types, e.g.,
4057    //   typedef typename T::type T1;
4058    //   typedef typename T1::type T2;
4059    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4060      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4061                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4062
4063    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4064    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4065    // first place?
4066    return NestedNameSpecifier::Create(*this, 0, false,
4067                                       const_cast<Type*>(T.getTypePtr()));
4068  }
4069
4070  case NestedNameSpecifier::Global:
4071    // The global specifier is canonical and unique.
4072    return NNS;
4073  }
4074
4075  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4076}
4077
4078
4079const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4080  // Handle the non-qualified case efficiently.
4081  if (!T.hasLocalQualifiers()) {
4082    // Handle the common positive case fast.
4083    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4084      return AT;
4085  }
4086
4087  // Handle the common negative case fast.
4088  if (!isa<ArrayType>(T.getCanonicalType()))
4089    return 0;
4090
4091  // Apply any qualifiers from the array type to the element type.  This
4092  // implements C99 6.7.3p8: "If the specification of an array type includes
4093  // any type qualifiers, the element type is so qualified, not the array type."
4094
4095  // If we get here, we either have type qualifiers on the type, or we have
4096  // sugar such as a typedef in the way.  If we have type qualifiers on the type
4097  // we must propagate them down into the element type.
4098
4099  SplitQualType split = T.getSplitDesugaredType();
4100  Qualifiers qs = split.Quals;
4101
4102  // If we have a simple case, just return now.
4103  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4104  if (ATy == 0 || qs.empty())
4105    return ATy;
4106
4107  // Otherwise, we have an array and we have qualifiers on it.  Push the
4108  // qualifiers into the array element type and return a new array type.
4109  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4110
4111  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4112    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4113                                                CAT->getSizeModifier(),
4114                                           CAT->getIndexTypeCVRQualifiers()));
4115  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4116    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4117                                                  IAT->getSizeModifier(),
4118                                           IAT->getIndexTypeCVRQualifiers()));
4119
4120  if (const DependentSizedArrayType *DSAT
4121        = dyn_cast<DependentSizedArrayType>(ATy))
4122    return cast<ArrayType>(
4123                     getDependentSizedArrayType(NewEltTy,
4124                                                DSAT->getSizeExpr(),
4125                                                DSAT->getSizeModifier(),
4126                                              DSAT->getIndexTypeCVRQualifiers(),
4127                                                DSAT->getBracketsRange()));
4128
4129  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4130  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4131                                              VAT->getSizeExpr(),
4132                                              VAT->getSizeModifier(),
4133                                              VAT->getIndexTypeCVRQualifiers(),
4134                                              VAT->getBracketsRange()));
4135}
4136
4137QualType ASTContext::getAdjustedParameterType(QualType T) const {
4138  // C99 6.7.5.3p7:
4139  //   A declaration of a parameter as "array of type" shall be
4140  //   adjusted to "qualified pointer to type", where the type
4141  //   qualifiers (if any) are those specified within the [ and ] of
4142  //   the array type derivation.
4143  if (T->isArrayType())
4144    return getArrayDecayedType(T);
4145
4146  // C99 6.7.5.3p8:
4147  //   A declaration of a parameter as "function returning type"
4148  //   shall be adjusted to "pointer to function returning type", as
4149  //   in 6.3.2.1.
4150  if (T->isFunctionType())
4151    return getPointerType(T);
4152
4153  return T;
4154}
4155
4156QualType ASTContext::getSignatureParameterType(QualType T) const {
4157  T = getVariableArrayDecayedType(T);
4158  T = getAdjustedParameterType(T);
4159  return T.getUnqualifiedType();
4160}
4161
4162/// getArrayDecayedType - Return the properly qualified result of decaying the
4163/// specified array type to a pointer.  This operation is non-trivial when
4164/// handling typedefs etc.  The canonical type of "T" must be an array type,
4165/// this returns a pointer to a properly qualified element of the array.
4166///
4167/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4168QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4169  // Get the element type with 'getAsArrayType' so that we don't lose any
4170  // typedefs in the element type of the array.  This also handles propagation
4171  // of type qualifiers from the array type into the element type if present
4172  // (C99 6.7.3p8).
4173  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4174  assert(PrettyArrayType && "Not an array type!");
4175
4176  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4177
4178  // int x[restrict 4] ->  int *restrict
4179  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4180}
4181
4182QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4183  return getBaseElementType(array->getElementType());
4184}
4185
4186QualType ASTContext::getBaseElementType(QualType type) const {
4187  Qualifiers qs;
4188  while (true) {
4189    SplitQualType split = type.getSplitDesugaredType();
4190    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4191    if (!array) break;
4192
4193    type = array->getElementType();
4194    qs.addConsistentQualifiers(split.Quals);
4195  }
4196
4197  return getQualifiedType(type, qs);
4198}
4199
4200/// getConstantArrayElementCount - Returns number of constant array elements.
4201uint64_t
4202ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4203  uint64_t ElementCount = 1;
4204  do {
4205    ElementCount *= CA->getSize().getZExtValue();
4206    CA = dyn_cast_or_null<ConstantArrayType>(
4207      CA->getElementType()->getAsArrayTypeUnsafe());
4208  } while (CA);
4209  return ElementCount;
4210}
4211
4212/// getFloatingRank - Return a relative rank for floating point types.
4213/// This routine will assert if passed a built-in type that isn't a float.
4214static FloatingRank getFloatingRank(QualType T) {
4215  if (const ComplexType *CT = T->getAs<ComplexType>())
4216    return getFloatingRank(CT->getElementType());
4217
4218  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4219  switch (T->getAs<BuiltinType>()->getKind()) {
4220  default: llvm_unreachable("getFloatingRank(): not a floating type");
4221  case BuiltinType::Half:       return HalfRank;
4222  case BuiltinType::Float:      return FloatRank;
4223  case BuiltinType::Double:     return DoubleRank;
4224  case BuiltinType::LongDouble: return LongDoubleRank;
4225  }
4226}
4227
4228/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4229/// point or a complex type (based on typeDomain/typeSize).
4230/// 'typeDomain' is a real floating point or complex type.
4231/// 'typeSize' is a real floating point or complex type.
4232QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4233                                                       QualType Domain) const {
4234  FloatingRank EltRank = getFloatingRank(Size);
4235  if (Domain->isComplexType()) {
4236    switch (EltRank) {
4237    case HalfRank: llvm_unreachable("Complex half is not supported");
4238    case FloatRank:      return FloatComplexTy;
4239    case DoubleRank:     return DoubleComplexTy;
4240    case LongDoubleRank: return LongDoubleComplexTy;
4241    }
4242  }
4243
4244  assert(Domain->isRealFloatingType() && "Unknown domain!");
4245  switch (EltRank) {
4246  case HalfRank:       return HalfTy;
4247  case FloatRank:      return FloatTy;
4248  case DoubleRank:     return DoubleTy;
4249  case LongDoubleRank: return LongDoubleTy;
4250  }
4251  llvm_unreachable("getFloatingRank(): illegal value for rank");
4252}
4253
4254/// getFloatingTypeOrder - Compare the rank of the two specified floating
4255/// point types, ignoring the domain of the type (i.e. 'double' ==
4256/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4257/// LHS < RHS, return -1.
4258int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4259  FloatingRank LHSR = getFloatingRank(LHS);
4260  FloatingRank RHSR = getFloatingRank(RHS);
4261
4262  if (LHSR == RHSR)
4263    return 0;
4264  if (LHSR > RHSR)
4265    return 1;
4266  return -1;
4267}
4268
4269/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4270/// routine will assert if passed a built-in type that isn't an integer or enum,
4271/// or if it is not canonicalized.
4272unsigned ASTContext::getIntegerRank(const Type *T) const {
4273  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4274
4275  switch (cast<BuiltinType>(T)->getKind()) {
4276  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4277  case BuiltinType::Bool:
4278    return 1 + (getIntWidth(BoolTy) << 3);
4279  case BuiltinType::Char_S:
4280  case BuiltinType::Char_U:
4281  case BuiltinType::SChar:
4282  case BuiltinType::UChar:
4283    return 2 + (getIntWidth(CharTy) << 3);
4284  case BuiltinType::Short:
4285  case BuiltinType::UShort:
4286    return 3 + (getIntWidth(ShortTy) << 3);
4287  case BuiltinType::Int:
4288  case BuiltinType::UInt:
4289    return 4 + (getIntWidth(IntTy) << 3);
4290  case BuiltinType::Long:
4291  case BuiltinType::ULong:
4292    return 5 + (getIntWidth(LongTy) << 3);
4293  case BuiltinType::LongLong:
4294  case BuiltinType::ULongLong:
4295    return 6 + (getIntWidth(LongLongTy) << 3);
4296  case BuiltinType::Int128:
4297  case BuiltinType::UInt128:
4298    return 7 + (getIntWidth(Int128Ty) << 3);
4299  }
4300}
4301
4302/// \brief Whether this is a promotable bitfield reference according
4303/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4304///
4305/// \returns the type this bit-field will promote to, or NULL if no
4306/// promotion occurs.
4307QualType ASTContext::isPromotableBitField(Expr *E) const {
4308  if (E->isTypeDependent() || E->isValueDependent())
4309    return QualType();
4310
4311  FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4312  if (!Field)
4313    return QualType();
4314
4315  QualType FT = Field->getType();
4316
4317  uint64_t BitWidth = Field->getBitWidthValue(*this);
4318  uint64_t IntSize = getTypeSize(IntTy);
4319  // GCC extension compatibility: if the bit-field size is less than or equal
4320  // to the size of int, it gets promoted no matter what its type is.
4321  // For instance, unsigned long bf : 4 gets promoted to signed int.
4322  if (BitWidth < IntSize)
4323    return IntTy;
4324
4325  if (BitWidth == IntSize)
4326    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4327
4328  // Types bigger than int are not subject to promotions, and therefore act
4329  // like the base type.
4330  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4331  // is ridiculous.
4332  return QualType();
4333}
4334
4335/// getPromotedIntegerType - Returns the type that Promotable will
4336/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4337/// integer type.
4338QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4339  assert(!Promotable.isNull());
4340  assert(Promotable->isPromotableIntegerType());
4341  if (const EnumType *ET = Promotable->getAs<EnumType>())
4342    return ET->getDecl()->getPromotionType();
4343
4344  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4345    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4346    // (3.9.1) can be converted to a prvalue of the first of the following
4347    // types that can represent all the values of its underlying type:
4348    // int, unsigned int, long int, unsigned long int, long long int, or
4349    // unsigned long long int [...]
4350    // FIXME: Is there some better way to compute this?
4351    if (BT->getKind() == BuiltinType::WChar_S ||
4352        BT->getKind() == BuiltinType::WChar_U ||
4353        BT->getKind() == BuiltinType::Char16 ||
4354        BT->getKind() == BuiltinType::Char32) {
4355      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4356      uint64_t FromSize = getTypeSize(BT);
4357      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4358                                  LongLongTy, UnsignedLongLongTy };
4359      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4360        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4361        if (FromSize < ToSize ||
4362            (FromSize == ToSize &&
4363             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4364          return PromoteTypes[Idx];
4365      }
4366      llvm_unreachable("char type should fit into long long");
4367    }
4368  }
4369
4370  // At this point, we should have a signed or unsigned integer type.
4371  if (Promotable->isSignedIntegerType())
4372    return IntTy;
4373  uint64_t PromotableSize = getIntWidth(Promotable);
4374  uint64_t IntSize = getIntWidth(IntTy);
4375  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4376  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4377}
4378
4379/// \brief Recurses in pointer/array types until it finds an objc retainable
4380/// type and returns its ownership.
4381Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4382  while (!T.isNull()) {
4383    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4384      return T.getObjCLifetime();
4385    if (T->isArrayType())
4386      T = getBaseElementType(T);
4387    else if (const PointerType *PT = T->getAs<PointerType>())
4388      T = PT->getPointeeType();
4389    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4390      T = RT->getPointeeType();
4391    else
4392      break;
4393  }
4394
4395  return Qualifiers::OCL_None;
4396}
4397
4398/// getIntegerTypeOrder - Returns the highest ranked integer type:
4399/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4400/// LHS < RHS, return -1.
4401int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4402  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4403  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4404  if (LHSC == RHSC) return 0;
4405
4406  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4407  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4408
4409  unsigned LHSRank = getIntegerRank(LHSC);
4410  unsigned RHSRank = getIntegerRank(RHSC);
4411
4412  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4413    if (LHSRank == RHSRank) return 0;
4414    return LHSRank > RHSRank ? 1 : -1;
4415  }
4416
4417  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4418  if (LHSUnsigned) {
4419    // If the unsigned [LHS] type is larger, return it.
4420    if (LHSRank >= RHSRank)
4421      return 1;
4422
4423    // If the signed type can represent all values of the unsigned type, it
4424    // wins.  Because we are dealing with 2's complement and types that are
4425    // powers of two larger than each other, this is always safe.
4426    return -1;
4427  }
4428
4429  // If the unsigned [RHS] type is larger, return it.
4430  if (RHSRank >= LHSRank)
4431    return -1;
4432
4433  // If the signed type can represent all values of the unsigned type, it
4434  // wins.  Because we are dealing with 2's complement and types that are
4435  // powers of two larger than each other, this is always safe.
4436  return 1;
4437}
4438
4439static RecordDecl *
4440CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4441                 DeclContext *DC, IdentifierInfo *Id) {
4442  SourceLocation Loc;
4443  if (Ctx.getLangOpts().CPlusPlus)
4444    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4445  else
4446    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4447}
4448
4449// getCFConstantStringType - Return the type used for constant CFStrings.
4450QualType ASTContext::getCFConstantStringType() const {
4451  if (!CFConstantStringTypeDecl) {
4452    CFConstantStringTypeDecl =
4453      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4454                       &Idents.get("NSConstantString"));
4455    CFConstantStringTypeDecl->startDefinition();
4456
4457    QualType FieldTypes[4];
4458
4459    // const int *isa;
4460    FieldTypes[0] = getPointerType(IntTy.withConst());
4461    // int flags;
4462    FieldTypes[1] = IntTy;
4463    // const char *str;
4464    FieldTypes[2] = getPointerType(CharTy.withConst());
4465    // long length;
4466    FieldTypes[3] = LongTy;
4467
4468    // Create fields
4469    for (unsigned i = 0; i < 4; ++i) {
4470      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4471                                           SourceLocation(),
4472                                           SourceLocation(), 0,
4473                                           FieldTypes[i], /*TInfo=*/0,
4474                                           /*BitWidth=*/0,
4475                                           /*Mutable=*/false,
4476                                           ICIS_NoInit);
4477      Field->setAccess(AS_public);
4478      CFConstantStringTypeDecl->addDecl(Field);
4479    }
4480
4481    CFConstantStringTypeDecl->completeDefinition();
4482  }
4483
4484  return getTagDeclType(CFConstantStringTypeDecl);
4485}
4486
4487QualType ASTContext::getObjCSuperType() const {
4488  if (ObjCSuperType.isNull()) {
4489    RecordDecl *ObjCSuperTypeDecl  =
4490      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4491    TUDecl->addDecl(ObjCSuperTypeDecl);
4492    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4493  }
4494  return ObjCSuperType;
4495}
4496
4497void ASTContext::setCFConstantStringType(QualType T) {
4498  const RecordType *Rec = T->getAs<RecordType>();
4499  assert(Rec && "Invalid CFConstantStringType");
4500  CFConstantStringTypeDecl = Rec->getDecl();
4501}
4502
4503QualType ASTContext::getBlockDescriptorType() const {
4504  if (BlockDescriptorType)
4505    return getTagDeclType(BlockDescriptorType);
4506
4507  RecordDecl *T;
4508  // FIXME: Needs the FlagAppleBlock bit.
4509  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4510                       &Idents.get("__block_descriptor"));
4511  T->startDefinition();
4512
4513  QualType FieldTypes[] = {
4514    UnsignedLongTy,
4515    UnsignedLongTy,
4516  };
4517
4518  const char *FieldNames[] = {
4519    "reserved",
4520    "Size"
4521  };
4522
4523  for (size_t i = 0; i < 2; ++i) {
4524    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4525                                         SourceLocation(),
4526                                         &Idents.get(FieldNames[i]),
4527                                         FieldTypes[i], /*TInfo=*/0,
4528                                         /*BitWidth=*/0,
4529                                         /*Mutable=*/false,
4530                                         ICIS_NoInit);
4531    Field->setAccess(AS_public);
4532    T->addDecl(Field);
4533  }
4534
4535  T->completeDefinition();
4536
4537  BlockDescriptorType = T;
4538
4539  return getTagDeclType(BlockDescriptorType);
4540}
4541
4542QualType ASTContext::getBlockDescriptorExtendedType() const {
4543  if (BlockDescriptorExtendedType)
4544    return getTagDeclType(BlockDescriptorExtendedType);
4545
4546  RecordDecl *T;
4547  // FIXME: Needs the FlagAppleBlock bit.
4548  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4549                       &Idents.get("__block_descriptor_withcopydispose"));
4550  T->startDefinition();
4551
4552  QualType FieldTypes[] = {
4553    UnsignedLongTy,
4554    UnsignedLongTy,
4555    getPointerType(VoidPtrTy),
4556    getPointerType(VoidPtrTy)
4557  };
4558
4559  const char *FieldNames[] = {
4560    "reserved",
4561    "Size",
4562    "CopyFuncPtr",
4563    "DestroyFuncPtr"
4564  };
4565
4566  for (size_t i = 0; i < 4; ++i) {
4567    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4568                                         SourceLocation(),
4569                                         &Idents.get(FieldNames[i]),
4570                                         FieldTypes[i], /*TInfo=*/0,
4571                                         /*BitWidth=*/0,
4572                                         /*Mutable=*/false,
4573                                         ICIS_NoInit);
4574    Field->setAccess(AS_public);
4575    T->addDecl(Field);
4576  }
4577
4578  T->completeDefinition();
4579
4580  BlockDescriptorExtendedType = T;
4581
4582  return getTagDeclType(BlockDescriptorExtendedType);
4583}
4584
4585/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4586/// requires copy/dispose. Note that this must match the logic
4587/// in buildByrefHelpers.
4588bool ASTContext::BlockRequiresCopying(QualType Ty,
4589                                      const VarDecl *D) {
4590  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4591    const Expr *copyExpr = getBlockVarCopyInits(D);
4592    if (!copyExpr && record->hasTrivialDestructor()) return false;
4593
4594    return true;
4595  }
4596
4597  if (!Ty->isObjCRetainableType()) return false;
4598
4599  Qualifiers qs = Ty.getQualifiers();
4600
4601  // If we have lifetime, that dominates.
4602  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4603    assert(getLangOpts().ObjCAutoRefCount);
4604
4605    switch (lifetime) {
4606      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4607
4608      // These are just bits as far as the runtime is concerned.
4609      case Qualifiers::OCL_ExplicitNone:
4610      case Qualifiers::OCL_Autoreleasing:
4611        return false;
4612
4613      // Tell the runtime that this is ARC __weak, called by the
4614      // byref routines.
4615      case Qualifiers::OCL_Weak:
4616      // ARC __strong __block variables need to be retained.
4617      case Qualifiers::OCL_Strong:
4618        return true;
4619    }
4620    llvm_unreachable("fell out of lifetime switch!");
4621  }
4622  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4623          Ty->isObjCObjectPointerType());
4624}
4625
4626bool ASTContext::getByrefLifetime(QualType Ty,
4627                              Qualifiers::ObjCLifetime &LifeTime,
4628                              bool &HasByrefExtendedLayout) const {
4629
4630  if (!getLangOpts().ObjC1 ||
4631      getLangOpts().getGC() != LangOptions::NonGC)
4632    return false;
4633
4634  HasByrefExtendedLayout = false;
4635  if (Ty->isRecordType()) {
4636    HasByrefExtendedLayout = true;
4637    LifeTime = Qualifiers::OCL_None;
4638  }
4639  else if (getLangOpts().ObjCAutoRefCount)
4640    LifeTime = Ty.getObjCLifetime();
4641  // MRR.
4642  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4643    LifeTime = Qualifiers::OCL_ExplicitNone;
4644  else
4645    LifeTime = Qualifiers::OCL_None;
4646  return true;
4647}
4648
4649TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4650  if (!ObjCInstanceTypeDecl)
4651    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4652                                               getTranslationUnitDecl(),
4653                                               SourceLocation(),
4654                                               SourceLocation(),
4655                                               &Idents.get("instancetype"),
4656                                     getTrivialTypeSourceInfo(getObjCIdType()));
4657  return ObjCInstanceTypeDecl;
4658}
4659
4660// This returns true if a type has been typedefed to BOOL:
4661// typedef <type> BOOL;
4662static bool isTypeTypedefedAsBOOL(QualType T) {
4663  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4664    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4665      return II->isStr("BOOL");
4666
4667  return false;
4668}
4669
4670/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4671/// purpose.
4672CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4673  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4674    return CharUnits::Zero();
4675
4676  CharUnits sz = getTypeSizeInChars(type);
4677
4678  // Make all integer and enum types at least as large as an int
4679  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4680    sz = std::max(sz, getTypeSizeInChars(IntTy));
4681  // Treat arrays as pointers, since that's how they're passed in.
4682  else if (type->isArrayType())
4683    sz = getTypeSizeInChars(VoidPtrTy);
4684  return sz;
4685}
4686
4687static inline
4688std::string charUnitsToString(const CharUnits &CU) {
4689  return llvm::itostr(CU.getQuantity());
4690}
4691
4692/// getObjCEncodingForBlock - Return the encoded type for this block
4693/// declaration.
4694std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4695  std::string S;
4696
4697  const BlockDecl *Decl = Expr->getBlockDecl();
4698  QualType BlockTy =
4699      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4700  // Encode result type.
4701  if (getLangOpts().EncodeExtendedBlockSig)
4702    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4703                            BlockTy->getAs<FunctionType>()->getResultType(),
4704                            S, true /*Extended*/);
4705  else
4706    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4707                           S);
4708  // Compute size of all parameters.
4709  // Start with computing size of a pointer in number of bytes.
4710  // FIXME: There might(should) be a better way of doing this computation!
4711  SourceLocation Loc;
4712  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4713  CharUnits ParmOffset = PtrSize;
4714  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4715       E = Decl->param_end(); PI != E; ++PI) {
4716    QualType PType = (*PI)->getType();
4717    CharUnits sz = getObjCEncodingTypeSize(PType);
4718    if (sz.isZero())
4719      continue;
4720    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4721    ParmOffset += sz;
4722  }
4723  // Size of the argument frame
4724  S += charUnitsToString(ParmOffset);
4725  // Block pointer and offset.
4726  S += "@?0";
4727
4728  // Argument types.
4729  ParmOffset = PtrSize;
4730  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4731       Decl->param_end(); PI != E; ++PI) {
4732    ParmVarDecl *PVDecl = *PI;
4733    QualType PType = PVDecl->getOriginalType();
4734    if (const ArrayType *AT =
4735          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4736      // Use array's original type only if it has known number of
4737      // elements.
4738      if (!isa<ConstantArrayType>(AT))
4739        PType = PVDecl->getType();
4740    } else if (PType->isFunctionType())
4741      PType = PVDecl->getType();
4742    if (getLangOpts().EncodeExtendedBlockSig)
4743      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4744                                      S, true /*Extended*/);
4745    else
4746      getObjCEncodingForType(PType, S);
4747    S += charUnitsToString(ParmOffset);
4748    ParmOffset += getObjCEncodingTypeSize(PType);
4749  }
4750
4751  return S;
4752}
4753
4754bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4755                                                std::string& S) {
4756  // Encode result type.
4757  getObjCEncodingForType(Decl->getResultType(), S);
4758  CharUnits ParmOffset;
4759  // Compute size of all parameters.
4760  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4761       E = Decl->param_end(); PI != E; ++PI) {
4762    QualType PType = (*PI)->getType();
4763    CharUnits sz = getObjCEncodingTypeSize(PType);
4764    if (sz.isZero())
4765      continue;
4766
4767    assert (sz.isPositive() &&
4768        "getObjCEncodingForFunctionDecl - Incomplete param type");
4769    ParmOffset += sz;
4770  }
4771  S += charUnitsToString(ParmOffset);
4772  ParmOffset = CharUnits::Zero();
4773
4774  // Argument types.
4775  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4776       E = Decl->param_end(); PI != E; ++PI) {
4777    ParmVarDecl *PVDecl = *PI;
4778    QualType PType = PVDecl->getOriginalType();
4779    if (const ArrayType *AT =
4780          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4781      // Use array's original type only if it has known number of
4782      // elements.
4783      if (!isa<ConstantArrayType>(AT))
4784        PType = PVDecl->getType();
4785    } else if (PType->isFunctionType())
4786      PType = PVDecl->getType();
4787    getObjCEncodingForType(PType, S);
4788    S += charUnitsToString(ParmOffset);
4789    ParmOffset += getObjCEncodingTypeSize(PType);
4790  }
4791
4792  return false;
4793}
4794
4795/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4796/// method parameter or return type. If Extended, include class names and
4797/// block object types.
4798void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4799                                                   QualType T, std::string& S,
4800                                                   bool Extended) const {
4801  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4802  getObjCEncodingForTypeQualifier(QT, S);
4803  // Encode parameter type.
4804  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4805                             true     /*OutermostType*/,
4806                             false    /*EncodingProperty*/,
4807                             false    /*StructField*/,
4808                             Extended /*EncodeBlockParameters*/,
4809                             Extended /*EncodeClassNames*/);
4810}
4811
4812/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4813/// declaration.
4814bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4815                                              std::string& S,
4816                                              bool Extended) const {
4817  // FIXME: This is not very efficient.
4818  // Encode return type.
4819  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4820                                    Decl->getResultType(), S, Extended);
4821  // Compute size of all parameters.
4822  // Start with computing size of a pointer in number of bytes.
4823  // FIXME: There might(should) be a better way of doing this computation!
4824  SourceLocation Loc;
4825  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4826  // The first two arguments (self and _cmd) are pointers; account for
4827  // their size.
4828  CharUnits ParmOffset = 2 * PtrSize;
4829  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4830       E = Decl->sel_param_end(); PI != E; ++PI) {
4831    QualType PType = (*PI)->getType();
4832    CharUnits sz = getObjCEncodingTypeSize(PType);
4833    if (sz.isZero())
4834      continue;
4835
4836    assert (sz.isPositive() &&
4837        "getObjCEncodingForMethodDecl - Incomplete param type");
4838    ParmOffset += sz;
4839  }
4840  S += charUnitsToString(ParmOffset);
4841  S += "@0:";
4842  S += charUnitsToString(PtrSize);
4843
4844  // Argument types.
4845  ParmOffset = 2 * PtrSize;
4846  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4847       E = Decl->sel_param_end(); PI != E; ++PI) {
4848    const ParmVarDecl *PVDecl = *PI;
4849    QualType PType = PVDecl->getOriginalType();
4850    if (const ArrayType *AT =
4851          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4852      // Use array's original type only if it has known number of
4853      // elements.
4854      if (!isa<ConstantArrayType>(AT))
4855        PType = PVDecl->getType();
4856    } else if (PType->isFunctionType())
4857      PType = PVDecl->getType();
4858    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4859                                      PType, S, Extended);
4860    S += charUnitsToString(ParmOffset);
4861    ParmOffset += getObjCEncodingTypeSize(PType);
4862  }
4863
4864  return false;
4865}
4866
4867/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4868/// property declaration. If non-NULL, Container must be either an
4869/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4870/// NULL when getting encodings for protocol properties.
4871/// Property attributes are stored as a comma-delimited C string. The simple
4872/// attributes readonly and bycopy are encoded as single characters. The
4873/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4874/// encoded as single characters, followed by an identifier. Property types
4875/// are also encoded as a parametrized attribute. The characters used to encode
4876/// these attributes are defined by the following enumeration:
4877/// @code
4878/// enum PropertyAttributes {
4879/// kPropertyReadOnly = 'R',   // property is read-only.
4880/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4881/// kPropertyByref = '&',  // property is a reference to the value last assigned
4882/// kPropertyDynamic = 'D',    // property is dynamic
4883/// kPropertyGetter = 'G',     // followed by getter selector name
4884/// kPropertySetter = 'S',     // followed by setter selector name
4885/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4886/// kPropertyType = 'T'              // followed by old-style type encoding.
4887/// kPropertyWeak = 'W'              // 'weak' property
4888/// kPropertyStrong = 'P'            // property GC'able
4889/// kPropertyNonAtomic = 'N'         // property non-atomic
4890/// };
4891/// @endcode
4892void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4893                                                const Decl *Container,
4894                                                std::string& S) const {
4895  // Collect information from the property implementation decl(s).
4896  bool Dynamic = false;
4897  ObjCPropertyImplDecl *SynthesizePID = 0;
4898
4899  // FIXME: Duplicated code due to poor abstraction.
4900  if (Container) {
4901    if (const ObjCCategoryImplDecl *CID =
4902        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4903      for (ObjCCategoryImplDecl::propimpl_iterator
4904             i = CID->propimpl_begin(), e = CID->propimpl_end();
4905           i != e; ++i) {
4906        ObjCPropertyImplDecl *PID = *i;
4907        if (PID->getPropertyDecl() == PD) {
4908          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4909            Dynamic = true;
4910          } else {
4911            SynthesizePID = PID;
4912          }
4913        }
4914      }
4915    } else {
4916      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4917      for (ObjCCategoryImplDecl::propimpl_iterator
4918             i = OID->propimpl_begin(), e = OID->propimpl_end();
4919           i != e; ++i) {
4920        ObjCPropertyImplDecl *PID = *i;
4921        if (PID->getPropertyDecl() == PD) {
4922          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4923            Dynamic = true;
4924          } else {
4925            SynthesizePID = PID;
4926          }
4927        }
4928      }
4929    }
4930  }
4931
4932  // FIXME: This is not very efficient.
4933  S = "T";
4934
4935  // Encode result type.
4936  // GCC has some special rules regarding encoding of properties which
4937  // closely resembles encoding of ivars.
4938  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4939                             true /* outermost type */,
4940                             true /* encoding for property */);
4941
4942  if (PD->isReadOnly()) {
4943    S += ",R";
4944    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
4945      S += ",C";
4946    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
4947      S += ",&";
4948  } else {
4949    switch (PD->getSetterKind()) {
4950    case ObjCPropertyDecl::Assign: break;
4951    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4952    case ObjCPropertyDecl::Retain: S += ",&"; break;
4953    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4954    }
4955  }
4956
4957  // It really isn't clear at all what this means, since properties
4958  // are "dynamic by default".
4959  if (Dynamic)
4960    S += ",D";
4961
4962  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4963    S += ",N";
4964
4965  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4966    S += ",G";
4967    S += PD->getGetterName().getAsString();
4968  }
4969
4970  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4971    S += ",S";
4972    S += PD->getSetterName().getAsString();
4973  }
4974
4975  if (SynthesizePID) {
4976    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4977    S += ",V";
4978    S += OID->getNameAsString();
4979  }
4980
4981  // FIXME: OBJCGC: weak & strong
4982}
4983
4984/// getLegacyIntegralTypeEncoding -
4985/// Another legacy compatibility encoding: 32-bit longs are encoded as
4986/// 'l' or 'L' , but not always.  For typedefs, we need to use
4987/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4988///
4989void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4990  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4991    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4992      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4993        PointeeTy = UnsignedIntTy;
4994      else
4995        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4996          PointeeTy = IntTy;
4997    }
4998  }
4999}
5000
5001void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
5002                                        const FieldDecl *Field) const {
5003  // We follow the behavior of gcc, expanding structures which are
5004  // directly pointed to, and expanding embedded structures. Note that
5005  // these rules are sufficient to prevent recursive encoding of the
5006  // same type.
5007  getObjCEncodingForTypeImpl(T, S, true, true, Field,
5008                             true /* outermost type */);
5009}
5010
5011static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
5012                                            BuiltinType::Kind kind) {
5013    switch (kind) {
5014    case BuiltinType::Void:       return 'v';
5015    case BuiltinType::Bool:       return 'B';
5016    case BuiltinType::Char_U:
5017    case BuiltinType::UChar:      return 'C';
5018    case BuiltinType::Char16:
5019    case BuiltinType::UShort:     return 'S';
5020    case BuiltinType::Char32:
5021    case BuiltinType::UInt:       return 'I';
5022    case BuiltinType::ULong:
5023        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5024    case BuiltinType::UInt128:    return 'T';
5025    case BuiltinType::ULongLong:  return 'Q';
5026    case BuiltinType::Char_S:
5027    case BuiltinType::SChar:      return 'c';
5028    case BuiltinType::Short:      return 's';
5029    case BuiltinType::WChar_S:
5030    case BuiltinType::WChar_U:
5031    case BuiltinType::Int:        return 'i';
5032    case BuiltinType::Long:
5033      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5034    case BuiltinType::LongLong:   return 'q';
5035    case BuiltinType::Int128:     return 't';
5036    case BuiltinType::Float:      return 'f';
5037    case BuiltinType::Double:     return 'd';
5038    case BuiltinType::LongDouble: return 'D';
5039    case BuiltinType::NullPtr:    return '*'; // like char*
5040
5041    case BuiltinType::Half:
5042      // FIXME: potentially need @encodes for these!
5043      return ' ';
5044
5045    case BuiltinType::ObjCId:
5046    case BuiltinType::ObjCClass:
5047    case BuiltinType::ObjCSel:
5048      llvm_unreachable("@encoding ObjC primitive type");
5049
5050    // OpenCL and placeholder types don't need @encodings.
5051    case BuiltinType::OCLImage1d:
5052    case BuiltinType::OCLImage1dArray:
5053    case BuiltinType::OCLImage1dBuffer:
5054    case BuiltinType::OCLImage2d:
5055    case BuiltinType::OCLImage2dArray:
5056    case BuiltinType::OCLImage3d:
5057    case BuiltinType::OCLEvent:
5058    case BuiltinType::OCLSampler:
5059    case BuiltinType::Dependent:
5060#define BUILTIN_TYPE(KIND, ID)
5061#define PLACEHOLDER_TYPE(KIND, ID) \
5062    case BuiltinType::KIND:
5063#include "clang/AST/BuiltinTypes.def"
5064      llvm_unreachable("invalid builtin type for @encode");
5065    }
5066    llvm_unreachable("invalid BuiltinType::Kind value");
5067}
5068
5069static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5070  EnumDecl *Enum = ET->getDecl();
5071
5072  // The encoding of an non-fixed enum type is always 'i', regardless of size.
5073  if (!Enum->isFixed())
5074    return 'i';
5075
5076  // The encoding of a fixed enum type matches its fixed underlying type.
5077  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5078  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5079}
5080
5081static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5082                           QualType T, const FieldDecl *FD) {
5083  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5084  S += 'b';
5085  // The NeXT runtime encodes bit fields as b followed by the number of bits.
5086  // The GNU runtime requires more information; bitfields are encoded as b,
5087  // then the offset (in bits) of the first element, then the type of the
5088  // bitfield, then the size in bits.  For example, in this structure:
5089  //
5090  // struct
5091  // {
5092  //    int integer;
5093  //    int flags:2;
5094  // };
5095  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5096  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5097  // information is not especially sensible, but we're stuck with it for
5098  // compatibility with GCC, although providing it breaks anything that
5099  // actually uses runtime introspection and wants to work on both runtimes...
5100  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5101    const RecordDecl *RD = FD->getParent();
5102    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5103    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5104    if (const EnumType *ET = T->getAs<EnumType>())
5105      S += ObjCEncodingForEnumType(Ctx, ET);
5106    else {
5107      const BuiltinType *BT = T->castAs<BuiltinType>();
5108      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5109    }
5110  }
5111  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5112}
5113
5114// FIXME: Use SmallString for accumulating string.
5115void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5116                                            bool ExpandPointedToStructures,
5117                                            bool ExpandStructures,
5118                                            const FieldDecl *FD,
5119                                            bool OutermostType,
5120                                            bool EncodingProperty,
5121                                            bool StructField,
5122                                            bool EncodeBlockParameters,
5123                                            bool EncodeClassNames,
5124                                            bool EncodePointerToObjCTypedef) const {
5125  CanQualType CT = getCanonicalType(T);
5126  switch (CT->getTypeClass()) {
5127  case Type::Builtin:
5128  case Type::Enum:
5129    if (FD && FD->isBitField())
5130      return EncodeBitField(this, S, T, FD);
5131    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5132      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5133    else
5134      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5135    return;
5136
5137  case Type::Complex: {
5138    const ComplexType *CT = T->castAs<ComplexType>();
5139    S += 'j';
5140    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5141                               false);
5142    return;
5143  }
5144
5145  case Type::Atomic: {
5146    const AtomicType *AT = T->castAs<AtomicType>();
5147    S += 'A';
5148    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5149                               false, false);
5150    return;
5151  }
5152
5153  // encoding for pointer or reference types.
5154  case Type::Pointer:
5155  case Type::LValueReference:
5156  case Type::RValueReference: {
5157    QualType PointeeTy;
5158    if (isa<PointerType>(CT)) {
5159      const PointerType *PT = T->castAs<PointerType>();
5160      if (PT->isObjCSelType()) {
5161        S += ':';
5162        return;
5163      }
5164      PointeeTy = PT->getPointeeType();
5165    } else {
5166      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5167    }
5168
5169    bool isReadOnly = false;
5170    // For historical/compatibility reasons, the read-only qualifier of the
5171    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5172    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5173    // Also, do not emit the 'r' for anything but the outermost type!
5174    if (isa<TypedefType>(T.getTypePtr())) {
5175      if (OutermostType && T.isConstQualified()) {
5176        isReadOnly = true;
5177        S += 'r';
5178      }
5179    } else if (OutermostType) {
5180      QualType P = PointeeTy;
5181      while (P->getAs<PointerType>())
5182        P = P->getAs<PointerType>()->getPointeeType();
5183      if (P.isConstQualified()) {
5184        isReadOnly = true;
5185        S += 'r';
5186      }
5187    }
5188    if (isReadOnly) {
5189      // Another legacy compatibility encoding. Some ObjC qualifier and type
5190      // combinations need to be rearranged.
5191      // Rewrite "in const" from "nr" to "rn"
5192      if (StringRef(S).endswith("nr"))
5193        S.replace(S.end()-2, S.end(), "rn");
5194    }
5195
5196    if (PointeeTy->isCharType()) {
5197      // char pointer types should be encoded as '*' unless it is a
5198      // type that has been typedef'd to 'BOOL'.
5199      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5200        S += '*';
5201        return;
5202      }
5203    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5204      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5205      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5206        S += '#';
5207        return;
5208      }
5209      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5210      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5211        S += '@';
5212        return;
5213      }
5214      // fall through...
5215    }
5216    S += '^';
5217    getLegacyIntegralTypeEncoding(PointeeTy);
5218
5219    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5220                               NULL);
5221    return;
5222  }
5223
5224  case Type::ConstantArray:
5225  case Type::IncompleteArray:
5226  case Type::VariableArray: {
5227    const ArrayType *AT = cast<ArrayType>(CT);
5228
5229    if (isa<IncompleteArrayType>(AT) && !StructField) {
5230      // Incomplete arrays are encoded as a pointer to the array element.
5231      S += '^';
5232
5233      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5234                                 false, ExpandStructures, FD);
5235    } else {
5236      S += '[';
5237
5238      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5239        if (getTypeSize(CAT->getElementType()) == 0)
5240          S += '0';
5241        else
5242          S += llvm::utostr(CAT->getSize().getZExtValue());
5243      } else {
5244        //Variable length arrays are encoded as a regular array with 0 elements.
5245        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5246               "Unknown array type!");
5247        S += '0';
5248      }
5249
5250      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5251                                 false, ExpandStructures, FD);
5252      S += ']';
5253    }
5254    return;
5255  }
5256
5257  case Type::FunctionNoProto:
5258  case Type::FunctionProto:
5259    S += '?';
5260    return;
5261
5262  case Type::Record: {
5263    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5264    S += RDecl->isUnion() ? '(' : '{';
5265    // Anonymous structures print as '?'
5266    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5267      S += II->getName();
5268      if (ClassTemplateSpecializationDecl *Spec
5269          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5270        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5271        llvm::raw_string_ostream OS(S);
5272        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5273                                            TemplateArgs.data(),
5274                                            TemplateArgs.size(),
5275                                            (*this).getPrintingPolicy());
5276      }
5277    } else {
5278      S += '?';
5279    }
5280    if (ExpandStructures) {
5281      S += '=';
5282      if (!RDecl->isUnion()) {
5283        getObjCEncodingForStructureImpl(RDecl, S, FD);
5284      } else {
5285        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5286                                     FieldEnd = RDecl->field_end();
5287             Field != FieldEnd; ++Field) {
5288          if (FD) {
5289            S += '"';
5290            S += Field->getNameAsString();
5291            S += '"';
5292          }
5293
5294          // Special case bit-fields.
5295          if (Field->isBitField()) {
5296            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5297                                       *Field);
5298          } else {
5299            QualType qt = Field->getType();
5300            getLegacyIntegralTypeEncoding(qt);
5301            getObjCEncodingForTypeImpl(qt, S, false, true,
5302                                       FD, /*OutermostType*/false,
5303                                       /*EncodingProperty*/false,
5304                                       /*StructField*/true);
5305          }
5306        }
5307      }
5308    }
5309    S += RDecl->isUnion() ? ')' : '}';
5310    return;
5311  }
5312
5313  case Type::BlockPointer: {
5314    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5315    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5316    if (EncodeBlockParameters) {
5317      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5318
5319      S += '<';
5320      // Block return type
5321      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5322                                 ExpandPointedToStructures, ExpandStructures,
5323                                 FD,
5324                                 false /* OutermostType */,
5325                                 EncodingProperty,
5326                                 false /* StructField */,
5327                                 EncodeBlockParameters,
5328                                 EncodeClassNames);
5329      // Block self
5330      S += "@?";
5331      // Block parameters
5332      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5333        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5334               E = FPT->arg_type_end(); I && (I != E); ++I) {
5335          getObjCEncodingForTypeImpl(*I, S,
5336                                     ExpandPointedToStructures,
5337                                     ExpandStructures,
5338                                     FD,
5339                                     false /* OutermostType */,
5340                                     EncodingProperty,
5341                                     false /* StructField */,
5342                                     EncodeBlockParameters,
5343                                     EncodeClassNames);
5344        }
5345      }
5346      S += '>';
5347    }
5348    return;
5349  }
5350
5351  case Type::ObjCObject:
5352  case Type::ObjCInterface: {
5353    // Ignore protocol qualifiers when mangling at this level.
5354    T = T->castAs<ObjCObjectType>()->getBaseType();
5355
5356    // The assumption seems to be that this assert will succeed
5357    // because nested levels will have filtered out 'id' and 'Class'.
5358    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5359    // @encode(class_name)
5360    ObjCInterfaceDecl *OI = OIT->getDecl();
5361    S += '{';
5362    const IdentifierInfo *II = OI->getIdentifier();
5363    S += II->getName();
5364    S += '=';
5365    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5366    DeepCollectObjCIvars(OI, true, Ivars);
5367    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5368      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5369      if (Field->isBitField())
5370        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5371      else
5372        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5373                                   false, false, false, false, false,
5374                                   EncodePointerToObjCTypedef);
5375    }
5376    S += '}';
5377    return;
5378  }
5379
5380  case Type::ObjCObjectPointer: {
5381    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5382    if (OPT->isObjCIdType()) {
5383      S += '@';
5384      return;
5385    }
5386
5387    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5388      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5389      // Since this is a binary compatibility issue, need to consult with runtime
5390      // folks. Fortunately, this is a *very* obsure construct.
5391      S += '#';
5392      return;
5393    }
5394
5395    if (OPT->isObjCQualifiedIdType()) {
5396      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5397                                 ExpandPointedToStructures,
5398                                 ExpandStructures, FD);
5399      if (FD || EncodingProperty || EncodeClassNames) {
5400        // Note that we do extended encoding of protocol qualifer list
5401        // Only when doing ivar or property encoding.
5402        S += '"';
5403        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5404             E = OPT->qual_end(); I != E; ++I) {
5405          S += '<';
5406          S += (*I)->getNameAsString();
5407          S += '>';
5408        }
5409        S += '"';
5410      }
5411      return;
5412    }
5413
5414    QualType PointeeTy = OPT->getPointeeType();
5415    if (!EncodingProperty &&
5416        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5417        !EncodePointerToObjCTypedef) {
5418      // Another historical/compatibility reason.
5419      // We encode the underlying type which comes out as
5420      // {...};
5421      S += '^';
5422      getObjCEncodingForTypeImpl(PointeeTy, S,
5423                                 false, ExpandPointedToStructures,
5424                                 NULL,
5425                                 false, false, false, false, false,
5426                                 /*EncodePointerToObjCTypedef*/true);
5427      return;
5428    }
5429
5430    S += '@';
5431    if (OPT->getInterfaceDecl() &&
5432        (FD || EncodingProperty || EncodeClassNames)) {
5433      S += '"';
5434      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5435      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5436           E = OPT->qual_end(); I != E; ++I) {
5437        S += '<';
5438        S += (*I)->getNameAsString();
5439        S += '>';
5440      }
5441      S += '"';
5442    }
5443    return;
5444  }
5445
5446  // gcc just blithely ignores member pointers.
5447  // FIXME: we shoul do better than that.  'M' is available.
5448  case Type::MemberPointer:
5449    return;
5450
5451  case Type::Vector:
5452  case Type::ExtVector:
5453    // This matches gcc's encoding, even though technically it is
5454    // insufficient.
5455    // FIXME. We should do a better job than gcc.
5456    return;
5457
5458  case Type::Auto:
5459    // We could see an undeduced auto type here during error recovery.
5460    // Just ignore it.
5461    return;
5462
5463#define ABSTRACT_TYPE(KIND, BASE)
5464#define TYPE(KIND, BASE)
5465#define DEPENDENT_TYPE(KIND, BASE) \
5466  case Type::KIND:
5467#define NON_CANONICAL_TYPE(KIND, BASE) \
5468  case Type::KIND:
5469#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5470  case Type::KIND:
5471#include "clang/AST/TypeNodes.def"
5472    llvm_unreachable("@encode for dependent type!");
5473  }
5474  llvm_unreachable("bad type kind!");
5475}
5476
5477void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5478                                                 std::string &S,
5479                                                 const FieldDecl *FD,
5480                                                 bool includeVBases) const {
5481  assert(RDecl && "Expected non-null RecordDecl");
5482  assert(!RDecl->isUnion() && "Should not be called for unions");
5483  if (!RDecl->getDefinition())
5484    return;
5485
5486  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5487  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5488  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5489
5490  if (CXXRec) {
5491    for (CXXRecordDecl::base_class_iterator
5492           BI = CXXRec->bases_begin(),
5493           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5494      if (!BI->isVirtual()) {
5495        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5496        if (base->isEmpty())
5497          continue;
5498        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5499        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5500                                  std::make_pair(offs, base));
5501      }
5502    }
5503  }
5504
5505  unsigned i = 0;
5506  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5507                               FieldEnd = RDecl->field_end();
5508       Field != FieldEnd; ++Field, ++i) {
5509    uint64_t offs = layout.getFieldOffset(i);
5510    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5511                              std::make_pair(offs, *Field));
5512  }
5513
5514  if (CXXRec && includeVBases) {
5515    for (CXXRecordDecl::base_class_iterator
5516           BI = CXXRec->vbases_begin(),
5517           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5518      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5519      if (base->isEmpty())
5520        continue;
5521      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5522      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5523        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5524                                  std::make_pair(offs, base));
5525    }
5526  }
5527
5528  CharUnits size;
5529  if (CXXRec) {
5530    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5531  } else {
5532    size = layout.getSize();
5533  }
5534
5535  uint64_t CurOffs = 0;
5536  std::multimap<uint64_t, NamedDecl *>::iterator
5537    CurLayObj = FieldOrBaseOffsets.begin();
5538
5539  if (CXXRec && CXXRec->isDynamicClass() &&
5540      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5541    if (FD) {
5542      S += "\"_vptr$";
5543      std::string recname = CXXRec->getNameAsString();
5544      if (recname.empty()) recname = "?";
5545      S += recname;
5546      S += '"';
5547    }
5548    S += "^^?";
5549    CurOffs += getTypeSize(VoidPtrTy);
5550  }
5551
5552  if (!RDecl->hasFlexibleArrayMember()) {
5553    // Mark the end of the structure.
5554    uint64_t offs = toBits(size);
5555    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5556                              std::make_pair(offs, (NamedDecl*)0));
5557  }
5558
5559  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5560    assert(CurOffs <= CurLayObj->first);
5561
5562    if (CurOffs < CurLayObj->first) {
5563      uint64_t padding = CurLayObj->first - CurOffs;
5564      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5565      // packing/alignment of members is different that normal, in which case
5566      // the encoding will be out-of-sync with the real layout.
5567      // If the runtime switches to just consider the size of types without
5568      // taking into account alignment, we could make padding explicit in the
5569      // encoding (e.g. using arrays of chars). The encoding strings would be
5570      // longer then though.
5571      CurOffs += padding;
5572    }
5573
5574    NamedDecl *dcl = CurLayObj->second;
5575    if (dcl == 0)
5576      break; // reached end of structure.
5577
5578    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5579      // We expand the bases without their virtual bases since those are going
5580      // in the initial structure. Note that this differs from gcc which
5581      // expands virtual bases each time one is encountered in the hierarchy,
5582      // making the encoding type bigger than it really is.
5583      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5584      assert(!base->isEmpty());
5585      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5586    } else {
5587      FieldDecl *field = cast<FieldDecl>(dcl);
5588      if (FD) {
5589        S += '"';
5590        S += field->getNameAsString();
5591        S += '"';
5592      }
5593
5594      if (field->isBitField()) {
5595        EncodeBitField(this, S, field->getType(), field);
5596        CurOffs += field->getBitWidthValue(*this);
5597      } else {
5598        QualType qt = field->getType();
5599        getLegacyIntegralTypeEncoding(qt);
5600        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5601                                   /*OutermostType*/false,
5602                                   /*EncodingProperty*/false,
5603                                   /*StructField*/true);
5604        CurOffs += getTypeSize(field->getType());
5605      }
5606    }
5607  }
5608}
5609
5610void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5611                                                 std::string& S) const {
5612  if (QT & Decl::OBJC_TQ_In)
5613    S += 'n';
5614  if (QT & Decl::OBJC_TQ_Inout)
5615    S += 'N';
5616  if (QT & Decl::OBJC_TQ_Out)
5617    S += 'o';
5618  if (QT & Decl::OBJC_TQ_Bycopy)
5619    S += 'O';
5620  if (QT & Decl::OBJC_TQ_Byref)
5621    S += 'R';
5622  if (QT & Decl::OBJC_TQ_Oneway)
5623    S += 'V';
5624}
5625
5626TypedefDecl *ASTContext::getObjCIdDecl() const {
5627  if (!ObjCIdDecl) {
5628    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5629    T = getObjCObjectPointerType(T);
5630    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5631    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5632                                     getTranslationUnitDecl(),
5633                                     SourceLocation(), SourceLocation(),
5634                                     &Idents.get("id"), IdInfo);
5635  }
5636
5637  return ObjCIdDecl;
5638}
5639
5640TypedefDecl *ASTContext::getObjCSelDecl() const {
5641  if (!ObjCSelDecl) {
5642    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5643    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5644    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5645                                      getTranslationUnitDecl(),
5646                                      SourceLocation(), SourceLocation(),
5647                                      &Idents.get("SEL"), SelInfo);
5648  }
5649  return ObjCSelDecl;
5650}
5651
5652TypedefDecl *ASTContext::getObjCClassDecl() const {
5653  if (!ObjCClassDecl) {
5654    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5655    T = getObjCObjectPointerType(T);
5656    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5657    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5658                                        getTranslationUnitDecl(),
5659                                        SourceLocation(), SourceLocation(),
5660                                        &Idents.get("Class"), ClassInfo);
5661  }
5662
5663  return ObjCClassDecl;
5664}
5665
5666ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5667  if (!ObjCProtocolClassDecl) {
5668    ObjCProtocolClassDecl
5669      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5670                                  SourceLocation(),
5671                                  &Idents.get("Protocol"),
5672                                  /*PrevDecl=*/0,
5673                                  SourceLocation(), true);
5674  }
5675
5676  return ObjCProtocolClassDecl;
5677}
5678
5679//===----------------------------------------------------------------------===//
5680// __builtin_va_list Construction Functions
5681//===----------------------------------------------------------------------===//
5682
5683static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5684  // typedef char* __builtin_va_list;
5685  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5686  TypeSourceInfo *TInfo
5687    = Context->getTrivialTypeSourceInfo(CharPtrType);
5688
5689  TypedefDecl *VaListTypeDecl
5690    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5691                          Context->getTranslationUnitDecl(),
5692                          SourceLocation(), SourceLocation(),
5693                          &Context->Idents.get("__builtin_va_list"),
5694                          TInfo);
5695  return VaListTypeDecl;
5696}
5697
5698static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5699  // typedef void* __builtin_va_list;
5700  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5701  TypeSourceInfo *TInfo
5702    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5703
5704  TypedefDecl *VaListTypeDecl
5705    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5706                          Context->getTranslationUnitDecl(),
5707                          SourceLocation(), SourceLocation(),
5708                          &Context->Idents.get("__builtin_va_list"),
5709                          TInfo);
5710  return VaListTypeDecl;
5711}
5712
5713static TypedefDecl *
5714CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5715  RecordDecl *VaListTagDecl;
5716  if (Context->getLangOpts().CPlusPlus) {
5717    // namespace std { struct __va_list {
5718    NamespaceDecl *NS;
5719    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5720                               Context->getTranslationUnitDecl(),
5721                               /*Inline*/false, SourceLocation(),
5722                               SourceLocation(), &Context->Idents.get("std"),
5723                               /*PrevDecl*/0);
5724
5725    VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5726                                          Context->getTranslationUnitDecl(),
5727                                          SourceLocation(), SourceLocation(),
5728                                          &Context->Idents.get("__va_list"));
5729    VaListTagDecl->setDeclContext(NS);
5730  } else {
5731    // struct __va_list
5732    VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5733                                   Context->getTranslationUnitDecl(),
5734                                   &Context->Idents.get("__va_list"));
5735  }
5736
5737  VaListTagDecl->startDefinition();
5738
5739  const size_t NumFields = 5;
5740  QualType FieldTypes[NumFields];
5741  const char *FieldNames[NumFields];
5742
5743  // void *__stack;
5744  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5745  FieldNames[0] = "__stack";
5746
5747  // void *__gr_top;
5748  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5749  FieldNames[1] = "__gr_top";
5750
5751  // void *__vr_top;
5752  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5753  FieldNames[2] = "__vr_top";
5754
5755  // int __gr_offs;
5756  FieldTypes[3] = Context->IntTy;
5757  FieldNames[3] = "__gr_offs";
5758
5759  // int __vr_offs;
5760  FieldTypes[4] = Context->IntTy;
5761  FieldNames[4] = "__vr_offs";
5762
5763  // Create fields
5764  for (unsigned i = 0; i < NumFields; ++i) {
5765    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5766                                         VaListTagDecl,
5767                                         SourceLocation(),
5768                                         SourceLocation(),
5769                                         &Context->Idents.get(FieldNames[i]),
5770                                         FieldTypes[i], /*TInfo=*/0,
5771                                         /*BitWidth=*/0,
5772                                         /*Mutable=*/false,
5773                                         ICIS_NoInit);
5774    Field->setAccess(AS_public);
5775    VaListTagDecl->addDecl(Field);
5776  }
5777  VaListTagDecl->completeDefinition();
5778  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5779  Context->VaListTagTy = VaListTagType;
5780
5781  // } __builtin_va_list;
5782  TypedefDecl *VaListTypedefDecl
5783    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5784                          Context->getTranslationUnitDecl(),
5785                          SourceLocation(), SourceLocation(),
5786                          &Context->Idents.get("__builtin_va_list"),
5787                          Context->getTrivialTypeSourceInfo(VaListTagType));
5788
5789  return VaListTypedefDecl;
5790}
5791
5792static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5793  // typedef struct __va_list_tag {
5794  RecordDecl *VaListTagDecl;
5795
5796  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5797                                   Context->getTranslationUnitDecl(),
5798                                   &Context->Idents.get("__va_list_tag"));
5799  VaListTagDecl->startDefinition();
5800
5801  const size_t NumFields = 5;
5802  QualType FieldTypes[NumFields];
5803  const char *FieldNames[NumFields];
5804
5805  //   unsigned char gpr;
5806  FieldTypes[0] = Context->UnsignedCharTy;
5807  FieldNames[0] = "gpr";
5808
5809  //   unsigned char fpr;
5810  FieldTypes[1] = Context->UnsignedCharTy;
5811  FieldNames[1] = "fpr";
5812
5813  //   unsigned short reserved;
5814  FieldTypes[2] = Context->UnsignedShortTy;
5815  FieldNames[2] = "reserved";
5816
5817  //   void* overflow_arg_area;
5818  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5819  FieldNames[3] = "overflow_arg_area";
5820
5821  //   void* reg_save_area;
5822  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5823  FieldNames[4] = "reg_save_area";
5824
5825  // Create fields
5826  for (unsigned i = 0; i < NumFields; ++i) {
5827    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5828                                         SourceLocation(),
5829                                         SourceLocation(),
5830                                         &Context->Idents.get(FieldNames[i]),
5831                                         FieldTypes[i], /*TInfo=*/0,
5832                                         /*BitWidth=*/0,
5833                                         /*Mutable=*/false,
5834                                         ICIS_NoInit);
5835    Field->setAccess(AS_public);
5836    VaListTagDecl->addDecl(Field);
5837  }
5838  VaListTagDecl->completeDefinition();
5839  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5840  Context->VaListTagTy = VaListTagType;
5841
5842  // } __va_list_tag;
5843  TypedefDecl *VaListTagTypedefDecl
5844    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5845                          Context->getTranslationUnitDecl(),
5846                          SourceLocation(), SourceLocation(),
5847                          &Context->Idents.get("__va_list_tag"),
5848                          Context->getTrivialTypeSourceInfo(VaListTagType));
5849  QualType VaListTagTypedefType =
5850    Context->getTypedefType(VaListTagTypedefDecl);
5851
5852  // typedef __va_list_tag __builtin_va_list[1];
5853  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5854  QualType VaListTagArrayType
5855    = Context->getConstantArrayType(VaListTagTypedefType,
5856                                    Size, ArrayType::Normal, 0);
5857  TypeSourceInfo *TInfo
5858    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5859  TypedefDecl *VaListTypedefDecl
5860    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5861                          Context->getTranslationUnitDecl(),
5862                          SourceLocation(), SourceLocation(),
5863                          &Context->Idents.get("__builtin_va_list"),
5864                          TInfo);
5865
5866  return VaListTypedefDecl;
5867}
5868
5869static TypedefDecl *
5870CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5871  // typedef struct __va_list_tag {
5872  RecordDecl *VaListTagDecl;
5873  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5874                                   Context->getTranslationUnitDecl(),
5875                                   &Context->Idents.get("__va_list_tag"));
5876  VaListTagDecl->startDefinition();
5877
5878  const size_t NumFields = 4;
5879  QualType FieldTypes[NumFields];
5880  const char *FieldNames[NumFields];
5881
5882  //   unsigned gp_offset;
5883  FieldTypes[0] = Context->UnsignedIntTy;
5884  FieldNames[0] = "gp_offset";
5885
5886  //   unsigned fp_offset;
5887  FieldTypes[1] = Context->UnsignedIntTy;
5888  FieldNames[1] = "fp_offset";
5889
5890  //   void* overflow_arg_area;
5891  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5892  FieldNames[2] = "overflow_arg_area";
5893
5894  //   void* reg_save_area;
5895  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5896  FieldNames[3] = "reg_save_area";
5897
5898  // Create fields
5899  for (unsigned i = 0; i < NumFields; ++i) {
5900    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5901                                         VaListTagDecl,
5902                                         SourceLocation(),
5903                                         SourceLocation(),
5904                                         &Context->Idents.get(FieldNames[i]),
5905                                         FieldTypes[i], /*TInfo=*/0,
5906                                         /*BitWidth=*/0,
5907                                         /*Mutable=*/false,
5908                                         ICIS_NoInit);
5909    Field->setAccess(AS_public);
5910    VaListTagDecl->addDecl(Field);
5911  }
5912  VaListTagDecl->completeDefinition();
5913  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5914  Context->VaListTagTy = VaListTagType;
5915
5916  // } __va_list_tag;
5917  TypedefDecl *VaListTagTypedefDecl
5918    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5919                          Context->getTranslationUnitDecl(),
5920                          SourceLocation(), SourceLocation(),
5921                          &Context->Idents.get("__va_list_tag"),
5922                          Context->getTrivialTypeSourceInfo(VaListTagType));
5923  QualType VaListTagTypedefType =
5924    Context->getTypedefType(VaListTagTypedefDecl);
5925
5926  // typedef __va_list_tag __builtin_va_list[1];
5927  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5928  QualType VaListTagArrayType
5929    = Context->getConstantArrayType(VaListTagTypedefType,
5930                                      Size, ArrayType::Normal,0);
5931  TypeSourceInfo *TInfo
5932    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5933  TypedefDecl *VaListTypedefDecl
5934    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5935                          Context->getTranslationUnitDecl(),
5936                          SourceLocation(), SourceLocation(),
5937                          &Context->Idents.get("__builtin_va_list"),
5938                          TInfo);
5939
5940  return VaListTypedefDecl;
5941}
5942
5943static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5944  // typedef int __builtin_va_list[4];
5945  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5946  QualType IntArrayType
5947    = Context->getConstantArrayType(Context->IntTy,
5948				    Size, ArrayType::Normal, 0);
5949  TypedefDecl *VaListTypedefDecl
5950    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5951                          Context->getTranslationUnitDecl(),
5952                          SourceLocation(), SourceLocation(),
5953                          &Context->Idents.get("__builtin_va_list"),
5954                          Context->getTrivialTypeSourceInfo(IntArrayType));
5955
5956  return VaListTypedefDecl;
5957}
5958
5959static TypedefDecl *
5960CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5961  RecordDecl *VaListDecl;
5962  if (Context->getLangOpts().CPlusPlus) {
5963    // namespace std { struct __va_list {
5964    NamespaceDecl *NS;
5965    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5966                               Context->getTranslationUnitDecl(),
5967                               /*Inline*/false, SourceLocation(),
5968                               SourceLocation(), &Context->Idents.get("std"),
5969                               /*PrevDecl*/0);
5970
5971    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5972                                       Context->getTranslationUnitDecl(),
5973                                       SourceLocation(), SourceLocation(),
5974                                       &Context->Idents.get("__va_list"));
5975
5976    VaListDecl->setDeclContext(NS);
5977
5978  } else {
5979    // struct __va_list {
5980    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5981                                  Context->getTranslationUnitDecl(),
5982                                  &Context->Idents.get("__va_list"));
5983  }
5984
5985  VaListDecl->startDefinition();
5986
5987  // void * __ap;
5988  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5989                                       VaListDecl,
5990                                       SourceLocation(),
5991                                       SourceLocation(),
5992                                       &Context->Idents.get("__ap"),
5993                                       Context->getPointerType(Context->VoidTy),
5994                                       /*TInfo=*/0,
5995                                       /*BitWidth=*/0,
5996                                       /*Mutable=*/false,
5997                                       ICIS_NoInit);
5998  Field->setAccess(AS_public);
5999  VaListDecl->addDecl(Field);
6000
6001  // };
6002  VaListDecl->completeDefinition();
6003
6004  // typedef struct __va_list __builtin_va_list;
6005  TypeSourceInfo *TInfo
6006    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
6007
6008  TypedefDecl *VaListTypeDecl
6009    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6010                          Context->getTranslationUnitDecl(),
6011                          SourceLocation(), SourceLocation(),
6012                          &Context->Idents.get("__builtin_va_list"),
6013                          TInfo);
6014
6015  return VaListTypeDecl;
6016}
6017
6018static TypedefDecl *
6019CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
6020  // typedef struct __va_list_tag {
6021  RecordDecl *VaListTagDecl;
6022  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
6023                                   Context->getTranslationUnitDecl(),
6024                                   &Context->Idents.get("__va_list_tag"));
6025  VaListTagDecl->startDefinition();
6026
6027  const size_t NumFields = 4;
6028  QualType FieldTypes[NumFields];
6029  const char *FieldNames[NumFields];
6030
6031  //   long __gpr;
6032  FieldTypes[0] = Context->LongTy;
6033  FieldNames[0] = "__gpr";
6034
6035  //   long __fpr;
6036  FieldTypes[1] = Context->LongTy;
6037  FieldNames[1] = "__fpr";
6038
6039  //   void *__overflow_arg_area;
6040  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6041  FieldNames[2] = "__overflow_arg_area";
6042
6043  //   void *__reg_save_area;
6044  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6045  FieldNames[3] = "__reg_save_area";
6046
6047  // Create fields
6048  for (unsigned i = 0; i < NumFields; ++i) {
6049    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6050                                         VaListTagDecl,
6051                                         SourceLocation(),
6052                                         SourceLocation(),
6053                                         &Context->Idents.get(FieldNames[i]),
6054                                         FieldTypes[i], /*TInfo=*/0,
6055                                         /*BitWidth=*/0,
6056                                         /*Mutable=*/false,
6057                                         ICIS_NoInit);
6058    Field->setAccess(AS_public);
6059    VaListTagDecl->addDecl(Field);
6060  }
6061  VaListTagDecl->completeDefinition();
6062  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6063  Context->VaListTagTy = VaListTagType;
6064
6065  // } __va_list_tag;
6066  TypedefDecl *VaListTagTypedefDecl
6067    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6068                          Context->getTranslationUnitDecl(),
6069                          SourceLocation(), SourceLocation(),
6070                          &Context->Idents.get("__va_list_tag"),
6071                          Context->getTrivialTypeSourceInfo(VaListTagType));
6072  QualType VaListTagTypedefType =
6073    Context->getTypedefType(VaListTagTypedefDecl);
6074
6075  // typedef __va_list_tag __builtin_va_list[1];
6076  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6077  QualType VaListTagArrayType
6078    = Context->getConstantArrayType(VaListTagTypedefType,
6079                                      Size, ArrayType::Normal,0);
6080  TypeSourceInfo *TInfo
6081    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
6082  TypedefDecl *VaListTypedefDecl
6083    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6084                          Context->getTranslationUnitDecl(),
6085                          SourceLocation(), SourceLocation(),
6086                          &Context->Idents.get("__builtin_va_list"),
6087                          TInfo);
6088
6089  return VaListTypedefDecl;
6090}
6091
6092static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6093                                     TargetInfo::BuiltinVaListKind Kind) {
6094  switch (Kind) {
6095  case TargetInfo::CharPtrBuiltinVaList:
6096    return CreateCharPtrBuiltinVaListDecl(Context);
6097  case TargetInfo::VoidPtrBuiltinVaList:
6098    return CreateVoidPtrBuiltinVaListDecl(Context);
6099  case TargetInfo::AArch64ABIBuiltinVaList:
6100    return CreateAArch64ABIBuiltinVaListDecl(Context);
6101  case TargetInfo::PowerABIBuiltinVaList:
6102    return CreatePowerABIBuiltinVaListDecl(Context);
6103  case TargetInfo::X86_64ABIBuiltinVaList:
6104    return CreateX86_64ABIBuiltinVaListDecl(Context);
6105  case TargetInfo::PNaClABIBuiltinVaList:
6106    return CreatePNaClABIBuiltinVaListDecl(Context);
6107  case TargetInfo::AAPCSABIBuiltinVaList:
6108    return CreateAAPCSABIBuiltinVaListDecl(Context);
6109  case TargetInfo::SystemZBuiltinVaList:
6110    return CreateSystemZBuiltinVaListDecl(Context);
6111  }
6112
6113  llvm_unreachable("Unhandled __builtin_va_list type kind");
6114}
6115
6116TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6117  if (!BuiltinVaListDecl)
6118    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6119
6120  return BuiltinVaListDecl;
6121}
6122
6123QualType ASTContext::getVaListTagType() const {
6124  // Force the creation of VaListTagTy by building the __builtin_va_list
6125  // declaration.
6126  if (VaListTagTy.isNull())
6127    (void) getBuiltinVaListDecl();
6128
6129  return VaListTagTy;
6130}
6131
6132void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6133  assert(ObjCConstantStringType.isNull() &&
6134         "'NSConstantString' type already set!");
6135
6136  ObjCConstantStringType = getObjCInterfaceType(Decl);
6137}
6138
6139/// \brief Retrieve the template name that corresponds to a non-empty
6140/// lookup.
6141TemplateName
6142ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6143                                      UnresolvedSetIterator End) const {
6144  unsigned size = End - Begin;
6145  assert(size > 1 && "set is not overloaded!");
6146
6147  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6148                          size * sizeof(FunctionTemplateDecl*));
6149  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6150
6151  NamedDecl **Storage = OT->getStorage();
6152  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6153    NamedDecl *D = *I;
6154    assert(isa<FunctionTemplateDecl>(D) ||
6155           (isa<UsingShadowDecl>(D) &&
6156            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6157    *Storage++ = D;
6158  }
6159
6160  return TemplateName(OT);
6161}
6162
6163/// \brief Retrieve the template name that represents a qualified
6164/// template name such as \c std::vector.
6165TemplateName
6166ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6167                                     bool TemplateKeyword,
6168                                     TemplateDecl *Template) const {
6169  assert(NNS && "Missing nested-name-specifier in qualified template name");
6170
6171  // FIXME: Canonicalization?
6172  llvm::FoldingSetNodeID ID;
6173  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6174
6175  void *InsertPos = 0;
6176  QualifiedTemplateName *QTN =
6177    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6178  if (!QTN) {
6179    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6180        QualifiedTemplateName(NNS, TemplateKeyword, Template);
6181    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6182  }
6183
6184  return TemplateName(QTN);
6185}
6186
6187/// \brief Retrieve the template name that represents a dependent
6188/// template name such as \c MetaFun::template apply.
6189TemplateName
6190ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6191                                     const IdentifierInfo *Name) const {
6192  assert((!NNS || NNS->isDependent()) &&
6193         "Nested name specifier must be dependent");
6194
6195  llvm::FoldingSetNodeID ID;
6196  DependentTemplateName::Profile(ID, NNS, Name);
6197
6198  void *InsertPos = 0;
6199  DependentTemplateName *QTN =
6200    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6201
6202  if (QTN)
6203    return TemplateName(QTN);
6204
6205  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6206  if (CanonNNS == NNS) {
6207    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6208        DependentTemplateName(NNS, Name);
6209  } else {
6210    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6211    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6212        DependentTemplateName(NNS, Name, Canon);
6213    DependentTemplateName *CheckQTN =
6214      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6215    assert(!CheckQTN && "Dependent type name canonicalization broken");
6216    (void)CheckQTN;
6217  }
6218
6219  DependentTemplateNames.InsertNode(QTN, InsertPos);
6220  return TemplateName(QTN);
6221}
6222
6223/// \brief Retrieve the template name that represents a dependent
6224/// template name such as \c MetaFun::template operator+.
6225TemplateName
6226ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6227                                     OverloadedOperatorKind Operator) const {
6228  assert((!NNS || NNS->isDependent()) &&
6229         "Nested name specifier must be dependent");
6230
6231  llvm::FoldingSetNodeID ID;
6232  DependentTemplateName::Profile(ID, NNS, Operator);
6233
6234  void *InsertPos = 0;
6235  DependentTemplateName *QTN
6236    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6237
6238  if (QTN)
6239    return TemplateName(QTN);
6240
6241  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6242  if (CanonNNS == NNS) {
6243    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6244        DependentTemplateName(NNS, Operator);
6245  } else {
6246    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6247    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6248        DependentTemplateName(NNS, Operator, Canon);
6249
6250    DependentTemplateName *CheckQTN
6251      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6252    assert(!CheckQTN && "Dependent template name canonicalization broken");
6253    (void)CheckQTN;
6254  }
6255
6256  DependentTemplateNames.InsertNode(QTN, InsertPos);
6257  return TemplateName(QTN);
6258}
6259
6260TemplateName
6261ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6262                                         TemplateName replacement) const {
6263  llvm::FoldingSetNodeID ID;
6264  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6265
6266  void *insertPos = 0;
6267  SubstTemplateTemplateParmStorage *subst
6268    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6269
6270  if (!subst) {
6271    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6272    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6273  }
6274
6275  return TemplateName(subst);
6276}
6277
6278TemplateName
6279ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6280                                       const TemplateArgument &ArgPack) const {
6281  ASTContext &Self = const_cast<ASTContext &>(*this);
6282  llvm::FoldingSetNodeID ID;
6283  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6284
6285  void *InsertPos = 0;
6286  SubstTemplateTemplateParmPackStorage *Subst
6287    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6288
6289  if (!Subst) {
6290    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6291                                                           ArgPack.pack_size(),
6292                                                         ArgPack.pack_begin());
6293    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6294  }
6295
6296  return TemplateName(Subst);
6297}
6298
6299/// getFromTargetType - Given one of the integer types provided by
6300/// TargetInfo, produce the corresponding type. The unsigned @p Type
6301/// is actually a value of type @c TargetInfo::IntType.
6302CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6303  switch (Type) {
6304  case TargetInfo::NoInt: return CanQualType();
6305  case TargetInfo::SignedShort: return ShortTy;
6306  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6307  case TargetInfo::SignedInt: return IntTy;
6308  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6309  case TargetInfo::SignedLong: return LongTy;
6310  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6311  case TargetInfo::SignedLongLong: return LongLongTy;
6312  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6313  }
6314
6315  llvm_unreachable("Unhandled TargetInfo::IntType value");
6316}
6317
6318//===----------------------------------------------------------------------===//
6319//                        Type Predicates.
6320//===----------------------------------------------------------------------===//
6321
6322/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6323/// garbage collection attribute.
6324///
6325Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6326  if (getLangOpts().getGC() == LangOptions::NonGC)
6327    return Qualifiers::GCNone;
6328
6329  assert(getLangOpts().ObjC1);
6330  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6331
6332  // Default behaviour under objective-C's gc is for ObjC pointers
6333  // (or pointers to them) be treated as though they were declared
6334  // as __strong.
6335  if (GCAttrs == Qualifiers::GCNone) {
6336    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6337      return Qualifiers::Strong;
6338    else if (Ty->isPointerType())
6339      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6340  } else {
6341    // It's not valid to set GC attributes on anything that isn't a
6342    // pointer.
6343#ifndef NDEBUG
6344    QualType CT = Ty->getCanonicalTypeInternal();
6345    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6346      CT = AT->getElementType();
6347    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6348#endif
6349  }
6350  return GCAttrs;
6351}
6352
6353//===----------------------------------------------------------------------===//
6354//                        Type Compatibility Testing
6355//===----------------------------------------------------------------------===//
6356
6357/// areCompatVectorTypes - Return true if the two specified vector types are
6358/// compatible.
6359static bool areCompatVectorTypes(const VectorType *LHS,
6360                                 const VectorType *RHS) {
6361  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6362  return LHS->getElementType() == RHS->getElementType() &&
6363         LHS->getNumElements() == RHS->getNumElements();
6364}
6365
6366bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6367                                          QualType SecondVec) {
6368  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6369  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6370
6371  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6372    return true;
6373
6374  // Treat Neon vector types and most AltiVec vector types as if they are the
6375  // equivalent GCC vector types.
6376  const VectorType *First = FirstVec->getAs<VectorType>();
6377  const VectorType *Second = SecondVec->getAs<VectorType>();
6378  if (First->getNumElements() == Second->getNumElements() &&
6379      hasSameType(First->getElementType(), Second->getElementType()) &&
6380      First->getVectorKind() != VectorType::AltiVecPixel &&
6381      First->getVectorKind() != VectorType::AltiVecBool &&
6382      Second->getVectorKind() != VectorType::AltiVecPixel &&
6383      Second->getVectorKind() != VectorType::AltiVecBool)
6384    return true;
6385
6386  return false;
6387}
6388
6389//===----------------------------------------------------------------------===//
6390// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6391//===----------------------------------------------------------------------===//
6392
6393/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6394/// inheritance hierarchy of 'rProto'.
6395bool
6396ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6397                                           ObjCProtocolDecl *rProto) const {
6398  if (declaresSameEntity(lProto, rProto))
6399    return true;
6400  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6401       E = rProto->protocol_end(); PI != E; ++PI)
6402    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6403      return true;
6404  return false;
6405}
6406
6407/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6408/// return true if lhs's protocols conform to rhs's protocol; false
6409/// otherwise.
6410bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6411  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6412    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6413  return false;
6414}
6415
6416/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6417/// Class<pr1, ...>.
6418bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6419                                                      QualType rhs) {
6420  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6421  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6422  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6423
6424  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6425       E = lhsQID->qual_end(); I != E; ++I) {
6426    bool match = false;
6427    ObjCProtocolDecl *lhsProto = *I;
6428    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6429         E = rhsOPT->qual_end(); J != E; ++J) {
6430      ObjCProtocolDecl *rhsProto = *J;
6431      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6432        match = true;
6433        break;
6434      }
6435    }
6436    if (!match)
6437      return false;
6438  }
6439  return true;
6440}
6441
6442/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6443/// ObjCQualifiedIDType.
6444bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6445                                                   bool compare) {
6446  // Allow id<P..> and an 'id' or void* type in all cases.
6447  if (lhs->isVoidPointerType() ||
6448      lhs->isObjCIdType() || lhs->isObjCClassType())
6449    return true;
6450  else if (rhs->isVoidPointerType() ||
6451           rhs->isObjCIdType() || rhs->isObjCClassType())
6452    return true;
6453
6454  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6455    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6456
6457    if (!rhsOPT) return false;
6458
6459    if (rhsOPT->qual_empty()) {
6460      // If the RHS is a unqualified interface pointer "NSString*",
6461      // make sure we check the class hierarchy.
6462      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6463        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6464             E = lhsQID->qual_end(); I != E; ++I) {
6465          // when comparing an id<P> on lhs with a static type on rhs,
6466          // see if static class implements all of id's protocols, directly or
6467          // through its super class and categories.
6468          if (!rhsID->ClassImplementsProtocol(*I, true))
6469            return false;
6470        }
6471      }
6472      // If there are no qualifiers and no interface, we have an 'id'.
6473      return true;
6474    }
6475    // Both the right and left sides have qualifiers.
6476    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6477         E = lhsQID->qual_end(); I != E; ++I) {
6478      ObjCProtocolDecl *lhsProto = *I;
6479      bool match = false;
6480
6481      // when comparing an id<P> on lhs with a static type on rhs,
6482      // see if static class implements all of id's protocols, directly or
6483      // through its super class and categories.
6484      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6485           E = rhsOPT->qual_end(); J != E; ++J) {
6486        ObjCProtocolDecl *rhsProto = *J;
6487        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6488            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6489          match = true;
6490          break;
6491        }
6492      }
6493      // If the RHS is a qualified interface pointer "NSString<P>*",
6494      // make sure we check the class hierarchy.
6495      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6496        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6497             E = lhsQID->qual_end(); I != E; ++I) {
6498          // when comparing an id<P> on lhs with a static type on rhs,
6499          // see if static class implements all of id's protocols, directly or
6500          // through its super class and categories.
6501          if (rhsID->ClassImplementsProtocol(*I, true)) {
6502            match = true;
6503            break;
6504          }
6505        }
6506      }
6507      if (!match)
6508        return false;
6509    }
6510
6511    return true;
6512  }
6513
6514  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6515  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6516
6517  if (const ObjCObjectPointerType *lhsOPT =
6518        lhs->getAsObjCInterfacePointerType()) {
6519    // If both the right and left sides have qualifiers.
6520    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6521         E = lhsOPT->qual_end(); I != E; ++I) {
6522      ObjCProtocolDecl *lhsProto = *I;
6523      bool match = false;
6524
6525      // when comparing an id<P> on rhs with a static type on lhs,
6526      // see if static class implements all of id's protocols, directly or
6527      // through its super class and categories.
6528      // First, lhs protocols in the qualifier list must be found, direct
6529      // or indirect in rhs's qualifier list or it is a mismatch.
6530      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6531           E = rhsQID->qual_end(); J != E; ++J) {
6532        ObjCProtocolDecl *rhsProto = *J;
6533        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6534            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6535          match = true;
6536          break;
6537        }
6538      }
6539      if (!match)
6540        return false;
6541    }
6542
6543    // Static class's protocols, or its super class or category protocols
6544    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6545    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6546      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6547      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6548      // This is rather dubious but matches gcc's behavior. If lhs has
6549      // no type qualifier and its class has no static protocol(s)
6550      // assume that it is mismatch.
6551      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6552        return false;
6553      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6554           LHSInheritedProtocols.begin(),
6555           E = LHSInheritedProtocols.end(); I != E; ++I) {
6556        bool match = false;
6557        ObjCProtocolDecl *lhsProto = (*I);
6558        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6559             E = rhsQID->qual_end(); J != E; ++J) {
6560          ObjCProtocolDecl *rhsProto = *J;
6561          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6562              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6563            match = true;
6564            break;
6565          }
6566        }
6567        if (!match)
6568          return false;
6569      }
6570    }
6571    return true;
6572  }
6573  return false;
6574}
6575
6576/// canAssignObjCInterfaces - Return true if the two interface types are
6577/// compatible for assignment from RHS to LHS.  This handles validation of any
6578/// protocol qualifiers on the LHS or RHS.
6579///
6580bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6581                                         const ObjCObjectPointerType *RHSOPT) {
6582  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6583  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6584
6585  // If either type represents the built-in 'id' or 'Class' types, return true.
6586  if (LHS->isObjCUnqualifiedIdOrClass() ||
6587      RHS->isObjCUnqualifiedIdOrClass())
6588    return true;
6589
6590  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6591    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6592                                             QualType(RHSOPT,0),
6593                                             false);
6594
6595  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6596    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6597                                                QualType(RHSOPT,0));
6598
6599  // If we have 2 user-defined types, fall into that path.
6600  if (LHS->getInterface() && RHS->getInterface())
6601    return canAssignObjCInterfaces(LHS, RHS);
6602
6603  return false;
6604}
6605
6606/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6607/// for providing type-safety for objective-c pointers used to pass/return
6608/// arguments in block literals. When passed as arguments, passing 'A*' where
6609/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6610/// not OK. For the return type, the opposite is not OK.
6611bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6612                                         const ObjCObjectPointerType *LHSOPT,
6613                                         const ObjCObjectPointerType *RHSOPT,
6614                                         bool BlockReturnType) {
6615  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6616    return true;
6617
6618  if (LHSOPT->isObjCBuiltinType()) {
6619    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6620  }
6621
6622  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6623    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6624                                             QualType(RHSOPT,0),
6625                                             false);
6626
6627  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6628  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6629  if (LHS && RHS)  { // We have 2 user-defined types.
6630    if (LHS != RHS) {
6631      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6632        return BlockReturnType;
6633      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6634        return !BlockReturnType;
6635    }
6636    else
6637      return true;
6638  }
6639  return false;
6640}
6641
6642/// getIntersectionOfProtocols - This routine finds the intersection of set
6643/// of protocols inherited from two distinct objective-c pointer objects.
6644/// It is used to build composite qualifier list of the composite type of
6645/// the conditional expression involving two objective-c pointer objects.
6646static
6647void getIntersectionOfProtocols(ASTContext &Context,
6648                                const ObjCObjectPointerType *LHSOPT,
6649                                const ObjCObjectPointerType *RHSOPT,
6650      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6651
6652  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6653  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6654  assert(LHS->getInterface() && "LHS must have an interface base");
6655  assert(RHS->getInterface() && "RHS must have an interface base");
6656
6657  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6658  unsigned LHSNumProtocols = LHS->getNumProtocols();
6659  if (LHSNumProtocols > 0)
6660    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6661  else {
6662    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6663    Context.CollectInheritedProtocols(LHS->getInterface(),
6664                                      LHSInheritedProtocols);
6665    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6666                                LHSInheritedProtocols.end());
6667  }
6668
6669  unsigned RHSNumProtocols = RHS->getNumProtocols();
6670  if (RHSNumProtocols > 0) {
6671    ObjCProtocolDecl **RHSProtocols =
6672      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6673    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6674      if (InheritedProtocolSet.count(RHSProtocols[i]))
6675        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6676  } else {
6677    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6678    Context.CollectInheritedProtocols(RHS->getInterface(),
6679                                      RHSInheritedProtocols);
6680    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6681         RHSInheritedProtocols.begin(),
6682         E = RHSInheritedProtocols.end(); I != E; ++I)
6683      if (InheritedProtocolSet.count((*I)))
6684        IntersectionOfProtocols.push_back((*I));
6685  }
6686}
6687
6688/// areCommonBaseCompatible - Returns common base class of the two classes if
6689/// one found. Note that this is O'2 algorithm. But it will be called as the
6690/// last type comparison in a ?-exp of ObjC pointer types before a
6691/// warning is issued. So, its invokation is extremely rare.
6692QualType ASTContext::areCommonBaseCompatible(
6693                                          const ObjCObjectPointerType *Lptr,
6694                                          const ObjCObjectPointerType *Rptr) {
6695  const ObjCObjectType *LHS = Lptr->getObjectType();
6696  const ObjCObjectType *RHS = Rptr->getObjectType();
6697  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6698  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6699  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6700    return QualType();
6701
6702  do {
6703    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6704    if (canAssignObjCInterfaces(LHS, RHS)) {
6705      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6706      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6707
6708      QualType Result = QualType(LHS, 0);
6709      if (!Protocols.empty())
6710        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6711      Result = getObjCObjectPointerType(Result);
6712      return Result;
6713    }
6714  } while ((LDecl = LDecl->getSuperClass()));
6715
6716  return QualType();
6717}
6718
6719bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6720                                         const ObjCObjectType *RHS) {
6721  assert(LHS->getInterface() && "LHS is not an interface type");
6722  assert(RHS->getInterface() && "RHS is not an interface type");
6723
6724  // Verify that the base decls are compatible: the RHS must be a subclass of
6725  // the LHS.
6726  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6727    return false;
6728
6729  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6730  // protocol qualified at all, then we are good.
6731  if (LHS->getNumProtocols() == 0)
6732    return true;
6733
6734  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6735  // more detailed analysis is required.
6736  if (RHS->getNumProtocols() == 0) {
6737    // OK, if LHS is a superclass of RHS *and*
6738    // this superclass is assignment compatible with LHS.
6739    // false otherwise.
6740    bool IsSuperClass =
6741      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6742    if (IsSuperClass) {
6743      // OK if conversion of LHS to SuperClass results in narrowing of types
6744      // ; i.e., SuperClass may implement at least one of the protocols
6745      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6746      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6747      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6748      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6749      // If super class has no protocols, it is not a match.
6750      if (SuperClassInheritedProtocols.empty())
6751        return false;
6752
6753      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6754           LHSPE = LHS->qual_end();
6755           LHSPI != LHSPE; LHSPI++) {
6756        bool SuperImplementsProtocol = false;
6757        ObjCProtocolDecl *LHSProto = (*LHSPI);
6758
6759        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6760             SuperClassInheritedProtocols.begin(),
6761             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6762          ObjCProtocolDecl *SuperClassProto = (*I);
6763          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6764            SuperImplementsProtocol = true;
6765            break;
6766          }
6767        }
6768        if (!SuperImplementsProtocol)
6769          return false;
6770      }
6771      return true;
6772    }
6773    return false;
6774  }
6775
6776  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6777                                     LHSPE = LHS->qual_end();
6778       LHSPI != LHSPE; LHSPI++) {
6779    bool RHSImplementsProtocol = false;
6780
6781    // If the RHS doesn't implement the protocol on the left, the types
6782    // are incompatible.
6783    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6784                                       RHSPE = RHS->qual_end();
6785         RHSPI != RHSPE; RHSPI++) {
6786      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6787        RHSImplementsProtocol = true;
6788        break;
6789      }
6790    }
6791    // FIXME: For better diagnostics, consider passing back the protocol name.
6792    if (!RHSImplementsProtocol)
6793      return false;
6794  }
6795  // The RHS implements all protocols listed on the LHS.
6796  return true;
6797}
6798
6799bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6800  // get the "pointed to" types
6801  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6802  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6803
6804  if (!LHSOPT || !RHSOPT)
6805    return false;
6806
6807  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6808         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6809}
6810
6811bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6812  return canAssignObjCInterfaces(
6813                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6814                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6815}
6816
6817/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6818/// both shall have the identically qualified version of a compatible type.
6819/// C99 6.2.7p1: Two types have compatible types if their types are the
6820/// same. See 6.7.[2,3,5] for additional rules.
6821bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6822                                    bool CompareUnqualified) {
6823  if (getLangOpts().CPlusPlus)
6824    return hasSameType(LHS, RHS);
6825
6826  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6827}
6828
6829bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6830  return typesAreCompatible(LHS, RHS);
6831}
6832
6833bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6834  return !mergeTypes(LHS, RHS, true).isNull();
6835}
6836
6837/// mergeTransparentUnionType - if T is a transparent union type and a member
6838/// of T is compatible with SubType, return the merged type, else return
6839/// QualType()
6840QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6841                                               bool OfBlockPointer,
6842                                               bool Unqualified) {
6843  if (const RecordType *UT = T->getAsUnionType()) {
6844    RecordDecl *UD = UT->getDecl();
6845    if (UD->hasAttr<TransparentUnionAttr>()) {
6846      for (RecordDecl::field_iterator it = UD->field_begin(),
6847           itend = UD->field_end(); it != itend; ++it) {
6848        QualType ET = it->getType().getUnqualifiedType();
6849        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6850        if (!MT.isNull())
6851          return MT;
6852      }
6853    }
6854  }
6855
6856  return QualType();
6857}
6858
6859/// mergeFunctionArgumentTypes - merge two types which appear as function
6860/// argument types
6861QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6862                                                bool OfBlockPointer,
6863                                                bool Unqualified) {
6864  // GNU extension: two types are compatible if they appear as a function
6865  // argument, one of the types is a transparent union type and the other
6866  // type is compatible with a union member
6867  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6868                                              Unqualified);
6869  if (!lmerge.isNull())
6870    return lmerge;
6871
6872  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6873                                              Unqualified);
6874  if (!rmerge.isNull())
6875    return rmerge;
6876
6877  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6878}
6879
6880QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6881                                        bool OfBlockPointer,
6882                                        bool Unqualified) {
6883  const FunctionType *lbase = lhs->getAs<FunctionType>();
6884  const FunctionType *rbase = rhs->getAs<FunctionType>();
6885  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6886  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6887  bool allLTypes = true;
6888  bool allRTypes = true;
6889
6890  // Check return type
6891  QualType retType;
6892  if (OfBlockPointer) {
6893    QualType RHS = rbase->getResultType();
6894    QualType LHS = lbase->getResultType();
6895    bool UnqualifiedResult = Unqualified;
6896    if (!UnqualifiedResult)
6897      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6898    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6899  }
6900  else
6901    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6902                         Unqualified);
6903  if (retType.isNull()) return QualType();
6904
6905  if (Unqualified)
6906    retType = retType.getUnqualifiedType();
6907
6908  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6909  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6910  if (Unqualified) {
6911    LRetType = LRetType.getUnqualifiedType();
6912    RRetType = RRetType.getUnqualifiedType();
6913  }
6914
6915  if (getCanonicalType(retType) != LRetType)
6916    allLTypes = false;
6917  if (getCanonicalType(retType) != RRetType)
6918    allRTypes = false;
6919
6920  // FIXME: double check this
6921  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6922  //                           rbase->getRegParmAttr() != 0 &&
6923  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6924  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6925  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6926
6927  // Compatible functions must have compatible calling conventions
6928  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6929    return QualType();
6930
6931  // Regparm is part of the calling convention.
6932  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6933    return QualType();
6934  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6935    return QualType();
6936
6937  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6938    return QualType();
6939
6940  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6941  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6942
6943  if (lbaseInfo.getNoReturn() != NoReturn)
6944    allLTypes = false;
6945  if (rbaseInfo.getNoReturn() != NoReturn)
6946    allRTypes = false;
6947
6948  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6949
6950  if (lproto && rproto) { // two C99 style function prototypes
6951    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6952           "C++ shouldn't be here");
6953    unsigned lproto_nargs = lproto->getNumArgs();
6954    unsigned rproto_nargs = rproto->getNumArgs();
6955
6956    // Compatible functions must have the same number of arguments
6957    if (lproto_nargs != rproto_nargs)
6958      return QualType();
6959
6960    // Variadic and non-variadic functions aren't compatible
6961    if (lproto->isVariadic() != rproto->isVariadic())
6962      return QualType();
6963
6964    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6965      return QualType();
6966
6967    if (LangOpts.ObjCAutoRefCount &&
6968        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6969      return QualType();
6970
6971    // Check argument compatibility
6972    SmallVector<QualType, 10> types;
6973    for (unsigned i = 0; i < lproto_nargs; i++) {
6974      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6975      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6976      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6977                                                    OfBlockPointer,
6978                                                    Unqualified);
6979      if (argtype.isNull()) return QualType();
6980
6981      if (Unqualified)
6982        argtype = argtype.getUnqualifiedType();
6983
6984      types.push_back(argtype);
6985      if (Unqualified) {
6986        largtype = largtype.getUnqualifiedType();
6987        rargtype = rargtype.getUnqualifiedType();
6988      }
6989
6990      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6991        allLTypes = false;
6992      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6993        allRTypes = false;
6994    }
6995
6996    if (allLTypes) return lhs;
6997    if (allRTypes) return rhs;
6998
6999    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
7000    EPI.ExtInfo = einfo;
7001    return getFunctionType(retType, types, EPI);
7002  }
7003
7004  if (lproto) allRTypes = false;
7005  if (rproto) allLTypes = false;
7006
7007  const FunctionProtoType *proto = lproto ? lproto : rproto;
7008  if (proto) {
7009    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
7010    if (proto->isVariadic()) return QualType();
7011    // Check that the types are compatible with the types that
7012    // would result from default argument promotions (C99 6.7.5.3p15).
7013    // The only types actually affected are promotable integer
7014    // types and floats, which would be passed as a different
7015    // type depending on whether the prototype is visible.
7016    unsigned proto_nargs = proto->getNumArgs();
7017    for (unsigned i = 0; i < proto_nargs; ++i) {
7018      QualType argTy = proto->getArgType(i);
7019
7020      // Look at the converted type of enum types, since that is the type used
7021      // to pass enum values.
7022      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
7023        argTy = Enum->getDecl()->getIntegerType();
7024        if (argTy.isNull())
7025          return QualType();
7026      }
7027
7028      if (argTy->isPromotableIntegerType() ||
7029          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
7030        return QualType();
7031    }
7032
7033    if (allLTypes) return lhs;
7034    if (allRTypes) return rhs;
7035
7036    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7037    EPI.ExtInfo = einfo;
7038    return getFunctionType(retType,
7039                           ArrayRef<QualType>(proto->arg_type_begin(),
7040                                              proto->getNumArgs()),
7041                           EPI);
7042  }
7043
7044  if (allLTypes) return lhs;
7045  if (allRTypes) return rhs;
7046  return getFunctionNoProtoType(retType, einfo);
7047}
7048
7049/// Given that we have an enum type and a non-enum type, try to merge them.
7050static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7051                                     QualType other, bool isBlockReturnType) {
7052  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7053  // a signed integer type, or an unsigned integer type.
7054  // Compatibility is based on the underlying type, not the promotion
7055  // type.
7056  QualType underlyingType = ET->getDecl()->getIntegerType();
7057  if (underlyingType.isNull()) return QualType();
7058  if (Context.hasSameType(underlyingType, other))
7059    return other;
7060
7061  // In block return types, we're more permissive and accept any
7062  // integral type of the same size.
7063  if (isBlockReturnType && other->isIntegerType() &&
7064      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7065    return other;
7066
7067  return QualType();
7068}
7069
7070QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7071                                bool OfBlockPointer,
7072                                bool Unqualified, bool BlockReturnType) {
7073  // C++ [expr]: If an expression initially has the type "reference to T", the
7074  // type is adjusted to "T" prior to any further analysis, the expression
7075  // designates the object or function denoted by the reference, and the
7076  // expression is an lvalue unless the reference is an rvalue reference and
7077  // the expression is a function call (possibly inside parentheses).
7078  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7079  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7080
7081  if (Unqualified) {
7082    LHS = LHS.getUnqualifiedType();
7083    RHS = RHS.getUnqualifiedType();
7084  }
7085
7086  QualType LHSCan = getCanonicalType(LHS),
7087           RHSCan = getCanonicalType(RHS);
7088
7089  // If two types are identical, they are compatible.
7090  if (LHSCan == RHSCan)
7091    return LHS;
7092
7093  // If the qualifiers are different, the types aren't compatible... mostly.
7094  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7095  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7096  if (LQuals != RQuals) {
7097    // If any of these qualifiers are different, we have a type
7098    // mismatch.
7099    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7100        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7101        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7102      return QualType();
7103
7104    // Exactly one GC qualifier difference is allowed: __strong is
7105    // okay if the other type has no GC qualifier but is an Objective
7106    // C object pointer (i.e. implicitly strong by default).  We fix
7107    // this by pretending that the unqualified type was actually
7108    // qualified __strong.
7109    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7110    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7111    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7112
7113    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7114      return QualType();
7115
7116    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7117      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7118    }
7119    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7120      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7121    }
7122    return QualType();
7123  }
7124
7125  // Okay, qualifiers are equal.
7126
7127  Type::TypeClass LHSClass = LHSCan->getTypeClass();
7128  Type::TypeClass RHSClass = RHSCan->getTypeClass();
7129
7130  // We want to consider the two function types to be the same for these
7131  // comparisons, just force one to the other.
7132  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7133  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7134
7135  // Same as above for arrays
7136  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7137    LHSClass = Type::ConstantArray;
7138  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7139    RHSClass = Type::ConstantArray;
7140
7141  // ObjCInterfaces are just specialized ObjCObjects.
7142  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7143  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7144
7145  // Canonicalize ExtVector -> Vector.
7146  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7147  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7148
7149  // If the canonical type classes don't match.
7150  if (LHSClass != RHSClass) {
7151    // Note that we only have special rules for turning block enum
7152    // returns into block int returns, not vice-versa.
7153    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7154      return mergeEnumWithInteger(*this, ETy, RHS, false);
7155    }
7156    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7157      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7158    }
7159    // allow block pointer type to match an 'id' type.
7160    if (OfBlockPointer && !BlockReturnType) {
7161       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7162         return LHS;
7163      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7164        return RHS;
7165    }
7166
7167    return QualType();
7168  }
7169
7170  // The canonical type classes match.
7171  switch (LHSClass) {
7172#define TYPE(Class, Base)
7173#define ABSTRACT_TYPE(Class, Base)
7174#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7175#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7176#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7177#include "clang/AST/TypeNodes.def"
7178    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7179
7180  case Type::Auto:
7181  case Type::LValueReference:
7182  case Type::RValueReference:
7183  case Type::MemberPointer:
7184    llvm_unreachable("C++ should never be in mergeTypes");
7185
7186  case Type::ObjCInterface:
7187  case Type::IncompleteArray:
7188  case Type::VariableArray:
7189  case Type::FunctionProto:
7190  case Type::ExtVector:
7191    llvm_unreachable("Types are eliminated above");
7192
7193  case Type::Pointer:
7194  {
7195    // Merge two pointer types, while trying to preserve typedef info
7196    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7197    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7198    if (Unqualified) {
7199      LHSPointee = LHSPointee.getUnqualifiedType();
7200      RHSPointee = RHSPointee.getUnqualifiedType();
7201    }
7202    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7203                                     Unqualified);
7204    if (ResultType.isNull()) return QualType();
7205    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7206      return LHS;
7207    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7208      return RHS;
7209    return getPointerType(ResultType);
7210  }
7211  case Type::BlockPointer:
7212  {
7213    // Merge two block pointer types, while trying to preserve typedef info
7214    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7215    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7216    if (Unqualified) {
7217      LHSPointee = LHSPointee.getUnqualifiedType();
7218      RHSPointee = RHSPointee.getUnqualifiedType();
7219    }
7220    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7221                                     Unqualified);
7222    if (ResultType.isNull()) return QualType();
7223    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7224      return LHS;
7225    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7226      return RHS;
7227    return getBlockPointerType(ResultType);
7228  }
7229  case Type::Atomic:
7230  {
7231    // Merge two pointer types, while trying to preserve typedef info
7232    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7233    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7234    if (Unqualified) {
7235      LHSValue = LHSValue.getUnqualifiedType();
7236      RHSValue = RHSValue.getUnqualifiedType();
7237    }
7238    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7239                                     Unqualified);
7240    if (ResultType.isNull()) return QualType();
7241    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7242      return LHS;
7243    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7244      return RHS;
7245    return getAtomicType(ResultType);
7246  }
7247  case Type::ConstantArray:
7248  {
7249    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7250    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7251    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7252      return QualType();
7253
7254    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7255    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7256    if (Unqualified) {
7257      LHSElem = LHSElem.getUnqualifiedType();
7258      RHSElem = RHSElem.getUnqualifiedType();
7259    }
7260
7261    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7262    if (ResultType.isNull()) return QualType();
7263    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7264      return LHS;
7265    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7266      return RHS;
7267    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7268                                          ArrayType::ArraySizeModifier(), 0);
7269    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7270                                          ArrayType::ArraySizeModifier(), 0);
7271    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7272    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7273    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7274      return LHS;
7275    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7276      return RHS;
7277    if (LVAT) {
7278      // FIXME: This isn't correct! But tricky to implement because
7279      // the array's size has to be the size of LHS, but the type
7280      // has to be different.
7281      return LHS;
7282    }
7283    if (RVAT) {
7284      // FIXME: This isn't correct! But tricky to implement because
7285      // the array's size has to be the size of RHS, but the type
7286      // has to be different.
7287      return RHS;
7288    }
7289    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7290    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7291    return getIncompleteArrayType(ResultType,
7292                                  ArrayType::ArraySizeModifier(), 0);
7293  }
7294  case Type::FunctionNoProto:
7295    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7296  case Type::Record:
7297  case Type::Enum:
7298    return QualType();
7299  case Type::Builtin:
7300    // Only exactly equal builtin types are compatible, which is tested above.
7301    return QualType();
7302  case Type::Complex:
7303    // Distinct complex types are incompatible.
7304    return QualType();
7305  case Type::Vector:
7306    // FIXME: The merged type should be an ExtVector!
7307    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7308                             RHSCan->getAs<VectorType>()))
7309      return LHS;
7310    return QualType();
7311  case Type::ObjCObject: {
7312    // Check if the types are assignment compatible.
7313    // FIXME: This should be type compatibility, e.g. whether
7314    // "LHS x; RHS x;" at global scope is legal.
7315    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7316    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7317    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7318      return LHS;
7319
7320    return QualType();
7321  }
7322  case Type::ObjCObjectPointer: {
7323    if (OfBlockPointer) {
7324      if (canAssignObjCInterfacesInBlockPointer(
7325                                          LHS->getAs<ObjCObjectPointerType>(),
7326                                          RHS->getAs<ObjCObjectPointerType>(),
7327                                          BlockReturnType))
7328        return LHS;
7329      return QualType();
7330    }
7331    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7332                                RHS->getAs<ObjCObjectPointerType>()))
7333      return LHS;
7334
7335    return QualType();
7336  }
7337  }
7338
7339  llvm_unreachable("Invalid Type::Class!");
7340}
7341
7342bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7343                   const FunctionProtoType *FromFunctionType,
7344                   const FunctionProtoType *ToFunctionType) {
7345  if (FromFunctionType->hasAnyConsumedArgs() !=
7346      ToFunctionType->hasAnyConsumedArgs())
7347    return false;
7348  FunctionProtoType::ExtProtoInfo FromEPI =
7349    FromFunctionType->getExtProtoInfo();
7350  FunctionProtoType::ExtProtoInfo ToEPI =
7351    ToFunctionType->getExtProtoInfo();
7352  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7353    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7354         ArgIdx != NumArgs; ++ArgIdx)  {
7355      if (FromEPI.ConsumedArguments[ArgIdx] !=
7356          ToEPI.ConsumedArguments[ArgIdx])
7357        return false;
7358    }
7359  return true;
7360}
7361
7362/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7363/// 'RHS' attributes and returns the merged version; including for function
7364/// return types.
7365QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7366  QualType LHSCan = getCanonicalType(LHS),
7367  RHSCan = getCanonicalType(RHS);
7368  // If two types are identical, they are compatible.
7369  if (LHSCan == RHSCan)
7370    return LHS;
7371  if (RHSCan->isFunctionType()) {
7372    if (!LHSCan->isFunctionType())
7373      return QualType();
7374    QualType OldReturnType =
7375      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7376    QualType NewReturnType =
7377      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7378    QualType ResReturnType =
7379      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7380    if (ResReturnType.isNull())
7381      return QualType();
7382    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7383      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7384      // In either case, use OldReturnType to build the new function type.
7385      const FunctionType *F = LHS->getAs<FunctionType>();
7386      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7387        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7388        EPI.ExtInfo = getFunctionExtInfo(LHS);
7389        QualType ResultType
7390          = getFunctionType(OldReturnType,
7391                            ArrayRef<QualType>(FPT->arg_type_begin(),
7392                                               FPT->getNumArgs()),
7393                            EPI);
7394        return ResultType;
7395      }
7396    }
7397    return QualType();
7398  }
7399
7400  // If the qualifiers are different, the types can still be merged.
7401  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7402  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7403  if (LQuals != RQuals) {
7404    // If any of these qualifiers are different, we have a type mismatch.
7405    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7406        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7407      return QualType();
7408
7409    // Exactly one GC qualifier difference is allowed: __strong is
7410    // okay if the other type has no GC qualifier but is an Objective
7411    // C object pointer (i.e. implicitly strong by default).  We fix
7412    // this by pretending that the unqualified type was actually
7413    // qualified __strong.
7414    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7415    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7416    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7417
7418    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7419      return QualType();
7420
7421    if (GC_L == Qualifiers::Strong)
7422      return LHS;
7423    if (GC_R == Qualifiers::Strong)
7424      return RHS;
7425    return QualType();
7426  }
7427
7428  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7429    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7430    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7431    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7432    if (ResQT == LHSBaseQT)
7433      return LHS;
7434    if (ResQT == RHSBaseQT)
7435      return RHS;
7436  }
7437  return QualType();
7438}
7439
7440//===----------------------------------------------------------------------===//
7441//                         Integer Predicates
7442//===----------------------------------------------------------------------===//
7443
7444unsigned ASTContext::getIntWidth(QualType T) const {
7445  if (const EnumType *ET = dyn_cast<EnumType>(T))
7446    T = ET->getDecl()->getIntegerType();
7447  if (T->isBooleanType())
7448    return 1;
7449  // For builtin types, just use the standard type sizing method
7450  return (unsigned)getTypeSize(T);
7451}
7452
7453QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7454  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7455
7456  // Turn <4 x signed int> -> <4 x unsigned int>
7457  if (const VectorType *VTy = T->getAs<VectorType>())
7458    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7459                         VTy->getNumElements(), VTy->getVectorKind());
7460
7461  // For enums, we return the unsigned version of the base type.
7462  if (const EnumType *ETy = T->getAs<EnumType>())
7463    T = ETy->getDecl()->getIntegerType();
7464
7465  const BuiltinType *BTy = T->getAs<BuiltinType>();
7466  assert(BTy && "Unexpected signed integer type");
7467  switch (BTy->getKind()) {
7468  case BuiltinType::Char_S:
7469  case BuiltinType::SChar:
7470    return UnsignedCharTy;
7471  case BuiltinType::Short:
7472    return UnsignedShortTy;
7473  case BuiltinType::Int:
7474    return UnsignedIntTy;
7475  case BuiltinType::Long:
7476    return UnsignedLongTy;
7477  case BuiltinType::LongLong:
7478    return UnsignedLongLongTy;
7479  case BuiltinType::Int128:
7480    return UnsignedInt128Ty;
7481  default:
7482    llvm_unreachable("Unexpected signed integer type");
7483  }
7484}
7485
7486ASTMutationListener::~ASTMutationListener() { }
7487
7488void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7489                                            QualType ReturnType) {}
7490
7491//===----------------------------------------------------------------------===//
7492//                          Builtin Type Computation
7493//===----------------------------------------------------------------------===//
7494
7495/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7496/// pointer over the consumed characters.  This returns the resultant type.  If
7497/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7498/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7499/// a vector of "i*".
7500///
7501/// RequiresICE is filled in on return to indicate whether the value is required
7502/// to be an Integer Constant Expression.
7503static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7504                                  ASTContext::GetBuiltinTypeError &Error,
7505                                  bool &RequiresICE,
7506                                  bool AllowTypeModifiers) {
7507  // Modifiers.
7508  int HowLong = 0;
7509  bool Signed = false, Unsigned = false;
7510  RequiresICE = false;
7511
7512  // Read the prefixed modifiers first.
7513  bool Done = false;
7514  while (!Done) {
7515    switch (*Str++) {
7516    default: Done = true; --Str; break;
7517    case 'I':
7518      RequiresICE = true;
7519      break;
7520    case 'S':
7521      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7522      assert(!Signed && "Can't use 'S' modifier multiple times!");
7523      Signed = true;
7524      break;
7525    case 'U':
7526      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7527      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7528      Unsigned = true;
7529      break;
7530    case 'L':
7531      assert(HowLong <= 2 && "Can't have LLLL modifier");
7532      ++HowLong;
7533      break;
7534    }
7535  }
7536
7537  QualType Type;
7538
7539  // Read the base type.
7540  switch (*Str++) {
7541  default: llvm_unreachable("Unknown builtin type letter!");
7542  case 'v':
7543    assert(HowLong == 0 && !Signed && !Unsigned &&
7544           "Bad modifiers used with 'v'!");
7545    Type = Context.VoidTy;
7546    break;
7547  case 'f':
7548    assert(HowLong == 0 && !Signed && !Unsigned &&
7549           "Bad modifiers used with 'f'!");
7550    Type = Context.FloatTy;
7551    break;
7552  case 'd':
7553    assert(HowLong < 2 && !Signed && !Unsigned &&
7554           "Bad modifiers used with 'd'!");
7555    if (HowLong)
7556      Type = Context.LongDoubleTy;
7557    else
7558      Type = Context.DoubleTy;
7559    break;
7560  case 's':
7561    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7562    if (Unsigned)
7563      Type = Context.UnsignedShortTy;
7564    else
7565      Type = Context.ShortTy;
7566    break;
7567  case 'i':
7568    if (HowLong == 3)
7569      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7570    else if (HowLong == 2)
7571      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7572    else if (HowLong == 1)
7573      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7574    else
7575      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7576    break;
7577  case 'c':
7578    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7579    if (Signed)
7580      Type = Context.SignedCharTy;
7581    else if (Unsigned)
7582      Type = Context.UnsignedCharTy;
7583    else
7584      Type = Context.CharTy;
7585    break;
7586  case 'b': // boolean
7587    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7588    Type = Context.BoolTy;
7589    break;
7590  case 'z':  // size_t.
7591    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7592    Type = Context.getSizeType();
7593    break;
7594  case 'F':
7595    Type = Context.getCFConstantStringType();
7596    break;
7597  case 'G':
7598    Type = Context.getObjCIdType();
7599    break;
7600  case 'H':
7601    Type = Context.getObjCSelType();
7602    break;
7603  case 'M':
7604    Type = Context.getObjCSuperType();
7605    break;
7606  case 'a':
7607    Type = Context.getBuiltinVaListType();
7608    assert(!Type.isNull() && "builtin va list type not initialized!");
7609    break;
7610  case 'A':
7611    // This is a "reference" to a va_list; however, what exactly
7612    // this means depends on how va_list is defined. There are two
7613    // different kinds of va_list: ones passed by value, and ones
7614    // passed by reference.  An example of a by-value va_list is
7615    // x86, where va_list is a char*. An example of by-ref va_list
7616    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7617    // we want this argument to be a char*&; for x86-64, we want
7618    // it to be a __va_list_tag*.
7619    Type = Context.getBuiltinVaListType();
7620    assert(!Type.isNull() && "builtin va list type not initialized!");
7621    if (Type->isArrayType())
7622      Type = Context.getArrayDecayedType(Type);
7623    else
7624      Type = Context.getLValueReferenceType(Type);
7625    break;
7626  case 'V': {
7627    char *End;
7628    unsigned NumElements = strtoul(Str, &End, 10);
7629    assert(End != Str && "Missing vector size");
7630    Str = End;
7631
7632    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7633                                             RequiresICE, false);
7634    assert(!RequiresICE && "Can't require vector ICE");
7635
7636    // TODO: No way to make AltiVec vectors in builtins yet.
7637    Type = Context.getVectorType(ElementType, NumElements,
7638                                 VectorType::GenericVector);
7639    break;
7640  }
7641  case 'E': {
7642    char *End;
7643
7644    unsigned NumElements = strtoul(Str, &End, 10);
7645    assert(End != Str && "Missing vector size");
7646
7647    Str = End;
7648
7649    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7650                                             false);
7651    Type = Context.getExtVectorType(ElementType, NumElements);
7652    break;
7653  }
7654  case 'X': {
7655    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7656                                             false);
7657    assert(!RequiresICE && "Can't require complex ICE");
7658    Type = Context.getComplexType(ElementType);
7659    break;
7660  }
7661  case 'Y' : {
7662    Type = Context.getPointerDiffType();
7663    break;
7664  }
7665  case 'P':
7666    Type = Context.getFILEType();
7667    if (Type.isNull()) {
7668      Error = ASTContext::GE_Missing_stdio;
7669      return QualType();
7670    }
7671    break;
7672  case 'J':
7673    if (Signed)
7674      Type = Context.getsigjmp_bufType();
7675    else
7676      Type = Context.getjmp_bufType();
7677
7678    if (Type.isNull()) {
7679      Error = ASTContext::GE_Missing_setjmp;
7680      return QualType();
7681    }
7682    break;
7683  case 'K':
7684    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7685    Type = Context.getucontext_tType();
7686
7687    if (Type.isNull()) {
7688      Error = ASTContext::GE_Missing_ucontext;
7689      return QualType();
7690    }
7691    break;
7692  case 'p':
7693    Type = Context.getProcessIDType();
7694    break;
7695  }
7696
7697  // If there are modifiers and if we're allowed to parse them, go for it.
7698  Done = !AllowTypeModifiers;
7699  while (!Done) {
7700    switch (char c = *Str++) {
7701    default: Done = true; --Str; break;
7702    case '*':
7703    case '&': {
7704      // Both pointers and references can have their pointee types
7705      // qualified with an address space.
7706      char *End;
7707      unsigned AddrSpace = strtoul(Str, &End, 10);
7708      if (End != Str && AddrSpace != 0) {
7709        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7710        Str = End;
7711      }
7712      if (c == '*')
7713        Type = Context.getPointerType(Type);
7714      else
7715        Type = Context.getLValueReferenceType(Type);
7716      break;
7717    }
7718    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7719    case 'C':
7720      Type = Type.withConst();
7721      break;
7722    case 'D':
7723      Type = Context.getVolatileType(Type);
7724      break;
7725    case 'R':
7726      Type = Type.withRestrict();
7727      break;
7728    }
7729  }
7730
7731  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7732         "Integer constant 'I' type must be an integer");
7733
7734  return Type;
7735}
7736
7737/// GetBuiltinType - Return the type for the specified builtin.
7738QualType ASTContext::GetBuiltinType(unsigned Id,
7739                                    GetBuiltinTypeError &Error,
7740                                    unsigned *IntegerConstantArgs) const {
7741  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7742
7743  SmallVector<QualType, 8> ArgTypes;
7744
7745  bool RequiresICE = false;
7746  Error = GE_None;
7747  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7748                                       RequiresICE, true);
7749  if (Error != GE_None)
7750    return QualType();
7751
7752  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7753
7754  while (TypeStr[0] && TypeStr[0] != '.') {
7755    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7756    if (Error != GE_None)
7757      return QualType();
7758
7759    // If this argument is required to be an IntegerConstantExpression and the
7760    // caller cares, fill in the bitmask we return.
7761    if (RequiresICE && IntegerConstantArgs)
7762      *IntegerConstantArgs |= 1 << ArgTypes.size();
7763
7764    // Do array -> pointer decay.  The builtin should use the decayed type.
7765    if (Ty->isArrayType())
7766      Ty = getArrayDecayedType(Ty);
7767
7768    ArgTypes.push_back(Ty);
7769  }
7770
7771  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7772         "'.' should only occur at end of builtin type list!");
7773
7774  FunctionType::ExtInfo EI;
7775  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7776
7777  bool Variadic = (TypeStr[0] == '.');
7778
7779  // We really shouldn't be making a no-proto type here, especially in C++.
7780  if (ArgTypes.empty() && Variadic)
7781    return getFunctionNoProtoType(ResType, EI);
7782
7783  FunctionProtoType::ExtProtoInfo EPI;
7784  EPI.ExtInfo = EI;
7785  EPI.Variadic = Variadic;
7786
7787  return getFunctionType(ResType, ArgTypes, EPI);
7788}
7789
7790GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7791  if (!FD->isExternallyVisible())
7792    return GVA_Internal;
7793
7794  GVALinkage External = GVA_StrongExternal;
7795  switch (FD->getTemplateSpecializationKind()) {
7796  case TSK_Undeclared:
7797  case TSK_ExplicitSpecialization:
7798    External = GVA_StrongExternal;
7799    break;
7800
7801  case TSK_ExplicitInstantiationDefinition:
7802    return GVA_ExplicitTemplateInstantiation;
7803
7804  case TSK_ExplicitInstantiationDeclaration:
7805  case TSK_ImplicitInstantiation:
7806    External = GVA_TemplateInstantiation;
7807    break;
7808  }
7809
7810  if (!FD->isInlined())
7811    return External;
7812
7813  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7814    // GNU or C99 inline semantics. Determine whether this symbol should be
7815    // externally visible.
7816    if (FD->isInlineDefinitionExternallyVisible())
7817      return External;
7818
7819    // C99 inline semantics, where the symbol is not externally visible.
7820    return GVA_C99Inline;
7821  }
7822
7823  // C++0x [temp.explicit]p9:
7824  //   [ Note: The intent is that an inline function that is the subject of
7825  //   an explicit instantiation declaration will still be implicitly
7826  //   instantiated when used so that the body can be considered for
7827  //   inlining, but that no out-of-line copy of the inline function would be
7828  //   generated in the translation unit. -- end note ]
7829  if (FD->getTemplateSpecializationKind()
7830                                       == TSK_ExplicitInstantiationDeclaration)
7831    return GVA_C99Inline;
7832
7833  return GVA_CXXInline;
7834}
7835
7836GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7837  if (!VD->isExternallyVisible())
7838    return GVA_Internal;
7839
7840  // If this is a static data member, compute the kind of template
7841  // specialization. Otherwise, this variable is not part of a
7842  // template.
7843  TemplateSpecializationKind TSK = TSK_Undeclared;
7844  if (VD->isStaticDataMember())
7845    TSK = VD->getTemplateSpecializationKind();
7846
7847  switch (TSK) {
7848  case TSK_Undeclared:
7849  case TSK_ExplicitSpecialization:
7850    return GVA_StrongExternal;
7851
7852  case TSK_ExplicitInstantiationDeclaration:
7853    llvm_unreachable("Variable should not be instantiated");
7854  // Fall through to treat this like any other instantiation.
7855
7856  case TSK_ExplicitInstantiationDefinition:
7857    return GVA_ExplicitTemplateInstantiation;
7858
7859  case TSK_ImplicitInstantiation:
7860    return GVA_TemplateInstantiation;
7861  }
7862
7863  llvm_unreachable("Invalid Linkage!");
7864}
7865
7866bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7867  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7868    if (!VD->isFileVarDecl())
7869      return false;
7870  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7871    // We never need to emit an uninstantiated function template.
7872    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7873      return false;
7874  } else
7875    return false;
7876
7877  // If this is a member of a class template, we do not need to emit it.
7878  if (D->getDeclContext()->isDependentContext())
7879    return false;
7880
7881  // Weak references don't produce any output by themselves.
7882  if (D->hasAttr<WeakRefAttr>())
7883    return false;
7884
7885  // Aliases and used decls are required.
7886  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7887    return true;
7888
7889  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7890    // Forward declarations aren't required.
7891    if (!FD->doesThisDeclarationHaveABody())
7892      return FD->doesDeclarationForceExternallyVisibleDefinition();
7893
7894    // Constructors and destructors are required.
7895    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7896      return true;
7897
7898    // The key function for a class is required.  This rule only comes
7899    // into play when inline functions can be key functions, though.
7900    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7901      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7902        const CXXRecordDecl *RD = MD->getParent();
7903        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7904          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7905          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7906            return true;
7907        }
7908      }
7909    }
7910
7911    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7912
7913    // static, static inline, always_inline, and extern inline functions can
7914    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7915    // Implicit template instantiations can also be deferred in C++.
7916    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7917        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7918      return false;
7919    return true;
7920  }
7921
7922  const VarDecl *VD = cast<VarDecl>(D);
7923  assert(VD->isFileVarDecl() && "Expected file scoped var");
7924
7925  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7926    return false;
7927
7928  // Variables that can be needed in other TUs are required.
7929  GVALinkage L = GetGVALinkageForVariable(VD);
7930  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7931    return true;
7932
7933  // Variables that have destruction with side-effects are required.
7934  if (VD->getType().isDestructedType())
7935    return true;
7936
7937  // Variables that have initialization with side-effects are required.
7938  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7939    return true;
7940
7941  return false;
7942}
7943
7944CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7945  // Pass through to the C++ ABI object
7946  return ABI->getDefaultMethodCallConv(isVariadic);
7947}
7948
7949CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7950  if (CC == CC_C && !LangOpts.MRTD &&
7951      getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7952    return CC_Default;
7953  return CC;
7954}
7955
7956bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7957  // Pass through to the C++ ABI object
7958  return ABI->isNearlyEmpty(RD);
7959}
7960
7961MangleContext *ASTContext::createMangleContext() {
7962  switch (Target->getCXXABI().getKind()) {
7963  case TargetCXXABI::GenericAArch64:
7964  case TargetCXXABI::GenericItanium:
7965  case TargetCXXABI::GenericARM:
7966  case TargetCXXABI::iOS:
7967    return createItaniumMangleContext(*this, getDiagnostics());
7968  case TargetCXXABI::Microsoft:
7969    return createMicrosoftMangleContext(*this, getDiagnostics());
7970  }
7971  llvm_unreachable("Unsupported ABI");
7972}
7973
7974CXXABI::~CXXABI() {}
7975
7976size_t ASTContext::getSideTableAllocatedMemory() const {
7977  return ASTRecordLayouts.getMemorySize()
7978    + llvm::capacity_in_bytes(ObjCLayouts)
7979    + llvm::capacity_in_bytes(KeyFunctions)
7980    + llvm::capacity_in_bytes(ObjCImpls)
7981    + llvm::capacity_in_bytes(BlockVarCopyInits)
7982    + llvm::capacity_in_bytes(DeclAttrs)
7983    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7984    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7985    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7986    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7987    + llvm::capacity_in_bytes(OverriddenMethods)
7988    + llvm::capacity_in_bytes(Types)
7989    + llvm::capacity_in_bytes(VariableArrayTypes)
7990    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7991}
7992
7993void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7994  // FIXME: This mangling should be applied to function local classes too
7995  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7996      !isa<CXXRecordDecl>(Tag->getParent()) ||
7997      !Tag->isExternallyVisible())
7998    return;
7999
8000  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
8001    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
8002  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
8003}
8004
8005int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
8006  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
8007    UnnamedMangleNumbers.find(Tag);
8008  return I != UnnamedMangleNumbers.end() ? I->second : -1;
8009}
8010
8011unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
8012  CXXRecordDecl *Lambda = CallOperator->getParent();
8013  return LambdaMangleContexts[Lambda->getDeclContext()]
8014           .getManglingNumber(CallOperator);
8015}
8016
8017
8018void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8019  ParamIndices[D] = index;
8020}
8021
8022unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8023  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8024  assert(I != ParamIndices.end() &&
8025         "ParmIndices lacks entry set by ParmVarDecl");
8026  return I->second;
8027}
8028