ASTContext.cpp revision 97fbaa2a38804268a024f1a104b43fcf8b4411b0
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTRecordLayout.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27using namespace clang;
28
29enum FloatingRank {
30  FloatRank, DoubleRank, LongDoubleRank
31};
32
33ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
34                       TargetInfo &t,
35                       IdentifierTable &idents, SelectorTable &sels,
36                       Builtin::Context &builtins,
37                       bool FreeMem, unsigned size_reserve) :
38  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
39  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0),
40  SourceMgr(SM), LangOpts(LOpts),
41  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
42  Idents(idents), Selectors(sels),
43  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
44  if (size_reserve > 0) Types.reserve(size_reserve);
45  TUDecl = TranslationUnitDecl::Create(*this);
46  InitBuiltinTypes();
47}
48
49ASTContext::~ASTContext() {
50  // Deallocate all the types.
51  while (!Types.empty()) {
52    Types.back()->Destroy(*this);
53    Types.pop_back();
54  }
55
56  {
57    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
58      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
59    while (I != E) {
60      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
61      delete R;
62    }
63  }
64
65  {
66    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
67      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
68    while (I != E) {
69      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
70      delete R;
71    }
72  }
73
74  // Destroy nested-name-specifiers.
75  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
76         NNS = NestedNameSpecifiers.begin(),
77         NNSEnd = NestedNameSpecifiers.end();
78       NNS != NNSEnd;
79       /* Increment in loop */)
80    (*NNS++).Destroy(*this);
81
82  if (GlobalNestedNameSpecifier)
83    GlobalNestedNameSpecifier->Destroy(*this);
84
85  TUDecl->Destroy(*this);
86}
87
88void
89ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
90  ExternalSource.reset(Source.take());
91}
92
93void ASTContext::PrintStats() const {
94  fprintf(stderr, "*** AST Context Stats:\n");
95  fprintf(stderr, "  %d types total.\n", (int)Types.size());
96
97  unsigned counts[] = {
98#define TYPE(Name, Parent) 0,
99#define ABSTRACT_TYPE(Name, Parent)
100#include "clang/AST/TypeNodes.def"
101    0 // Extra
102  };
103
104  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
105    Type *T = Types[i];
106    counts[(unsigned)T->getTypeClass()]++;
107  }
108
109  unsigned Idx = 0;
110  unsigned TotalBytes = 0;
111#define TYPE(Name, Parent)                                              \
112  if (counts[Idx])                                                      \
113    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
114  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
115  ++Idx;
116#define ABSTRACT_TYPE(Name, Parent)
117#include "clang/AST/TypeNodes.def"
118
119  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
120
121  if (ExternalSource.get()) {
122    fprintf(stderr, "\n");
123    ExternalSource->PrintStats();
124  }
125}
126
127
128void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
129  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
130}
131
132void ASTContext::InitBuiltinTypes() {
133  assert(VoidTy.isNull() && "Context reinitialized?");
134
135  // C99 6.2.5p19.
136  InitBuiltinType(VoidTy,              BuiltinType::Void);
137
138  // C99 6.2.5p2.
139  InitBuiltinType(BoolTy,              BuiltinType::Bool);
140  // C99 6.2.5p3.
141  if (LangOpts.CharIsSigned)
142    InitBuiltinType(CharTy,            BuiltinType::Char_S);
143  else
144    InitBuiltinType(CharTy,            BuiltinType::Char_U);
145  // C99 6.2.5p4.
146  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
147  InitBuiltinType(ShortTy,             BuiltinType::Short);
148  InitBuiltinType(IntTy,               BuiltinType::Int);
149  InitBuiltinType(LongTy,              BuiltinType::Long);
150  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
151
152  // C99 6.2.5p6.
153  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
154  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
155  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
156  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
157  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
158
159  // C99 6.2.5p10.
160  InitBuiltinType(FloatTy,             BuiltinType::Float);
161  InitBuiltinType(DoubleTy,            BuiltinType::Double);
162  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
163
164  // GNU extension, 128-bit integers.
165  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
166  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
167
168  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
169    InitBuiltinType(WCharTy,           BuiltinType::WChar);
170  else // C99
171    WCharTy = getFromTargetType(Target.getWCharType());
172
173  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
174    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
175  else // C99
176    Char16Ty = getFromTargetType(Target.getChar16Type());
177
178  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
179    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
180  else // C99
181    Char32Ty = getFromTargetType(Target.getChar32Type());
182
183  // Placeholder type for functions.
184  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
185
186  // Placeholder type for type-dependent expressions whose type is
187  // completely unknown. No code should ever check a type against
188  // DependentTy and users should never see it; however, it is here to
189  // help diagnose failures to properly check for type-dependent
190  // expressions.
191  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
192
193  // Placeholder type for C++0x auto declarations whose real type has
194  // not yet been deduced.
195  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
196
197  // C99 6.2.5p11.
198  FloatComplexTy      = getComplexType(FloatTy);
199  DoubleComplexTy     = getComplexType(DoubleTy);
200  LongDoubleComplexTy = getComplexType(LongDoubleTy);
201
202  BuiltinVaListType = QualType();
203
204  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
205  ObjCIdTypedefType = QualType();
206  ObjCClassTypedefType = QualType();
207
208  // Builtin types for 'id' and 'Class'.
209  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
210  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
211
212  ObjCConstantStringType = QualType();
213
214  // void * type
215  VoidPtrTy = getPointerType(VoidTy);
216
217  // nullptr type (C++0x 2.14.7)
218  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
219}
220
221namespace {
222  class BeforeInTranslationUnit
223    : std::binary_function<SourceRange, SourceRange, bool> {
224    SourceManager *SourceMgr;
225
226  public:
227    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
228
229    bool operator()(SourceRange X, SourceRange Y) {
230      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
231    }
232  };
233}
234
235/// \brief Determine whether the given comment is a Doxygen-style comment.
236///
237/// \param Start the start of the comment text.
238///
239/// \param End the end of the comment text.
240///
241/// \param Member whether we want to check whether this is a member comment
242/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
243/// we only return true when we find a non-member comment.
244static bool
245isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
246                 bool Member = false) {
247  const char *BufferStart
248    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
249  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
250  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
251
252  if (End - Start < 4)
253    return false;
254
255  assert(Start[0] == '/' && "Not a comment?");
256  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
257    return false;
258  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
259    return false;
260
261  return (Start[3] == '<') == Member;
262}
263
264/// \brief Retrieve the comment associated with the given declaration, if
265/// it has one.
266const char *ASTContext::getCommentForDecl(const Decl *D) {
267  if (!D)
268    return 0;
269
270  // Check whether we have cached a comment string for this declaration
271  // already.
272  llvm::DenseMap<const Decl *, std::string>::iterator Pos
273    = DeclComments.find(D);
274  if (Pos != DeclComments.end())
275    return Pos->second.c_str();
276
277  // If we have an external AST source and have not yet loaded comments from
278  // that source, do so now.
279  if (ExternalSource && !LoadedExternalComments) {
280    std::vector<SourceRange> LoadedComments;
281    ExternalSource->ReadComments(LoadedComments);
282
283    if (!LoadedComments.empty())
284      Comments.insert(Comments.begin(), LoadedComments.begin(),
285                      LoadedComments.end());
286
287    LoadedExternalComments = true;
288  }
289
290  // If there are no comments anywhere, we won't find anything.
291  if (Comments.empty())
292    return 0;
293
294  // If the declaration doesn't map directly to a location in a file, we
295  // can't find the comment.
296  SourceLocation DeclStartLoc = D->getLocStart();
297  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
298    return 0;
299
300  // Find the comment that occurs just before this declaration.
301  std::vector<SourceRange>::iterator LastComment
302    = std::lower_bound(Comments.begin(), Comments.end(),
303                       SourceRange(DeclStartLoc),
304                       BeforeInTranslationUnit(&SourceMgr));
305
306  // Decompose the location for the start of the declaration and find the
307  // beginning of the file buffer.
308  std::pair<FileID, unsigned> DeclStartDecomp
309    = SourceMgr.getDecomposedLoc(DeclStartLoc);
310  const char *FileBufferStart
311    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
312
313  // First check whether we have a comment for a member.
314  if (LastComment != Comments.end() &&
315      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
316      isDoxygenComment(SourceMgr, *LastComment, true)) {
317    std::pair<FileID, unsigned> LastCommentEndDecomp
318      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
319    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
320        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
321          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
322                                     LastCommentEndDecomp.second)) {
323      // The Doxygen member comment comes after the declaration starts and
324      // is on the same line and in the same file as the declaration. This
325      // is the comment we want.
326      std::string &Result = DeclComments[D];
327      Result.append(FileBufferStart +
328                      SourceMgr.getFileOffset(LastComment->getBegin()),
329                    FileBufferStart + LastCommentEndDecomp.second + 1);
330      return Result.c_str();
331    }
332  }
333
334  if (LastComment == Comments.begin())
335    return 0;
336  --LastComment;
337
338  // Decompose the end of the comment.
339  std::pair<FileID, unsigned> LastCommentEndDecomp
340    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
341
342  // If the comment and the declaration aren't in the same file, then they
343  // aren't related.
344  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
345    return 0;
346
347  // Check that we actually have a Doxygen comment.
348  if (!isDoxygenComment(SourceMgr, *LastComment))
349    return 0;
350
351  // Compute the starting line for the declaration and for the end of the
352  // comment (this is expensive).
353  unsigned DeclStartLine
354    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
355  unsigned CommentEndLine
356    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
357                              LastCommentEndDecomp.second);
358
359  // If the comment does not end on the line prior to the declaration, then
360  // the comment is not associated with the declaration at all.
361  if (CommentEndLine + 1 != DeclStartLine)
362    return 0;
363
364  // We have a comment, but there may be more comments on the previous lines.
365  // Keep looking so long as the comments are still Doxygen comments and are
366  // still adjacent.
367  unsigned ExpectedLine
368    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
369  std::vector<SourceRange>::iterator FirstComment = LastComment;
370  while (FirstComment != Comments.begin()) {
371    // Look at the previous comment
372    --FirstComment;
373    std::pair<FileID, unsigned> Decomp
374      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
375
376    // If this previous comment is in a different file, we're done.
377    if (Decomp.first != DeclStartDecomp.first) {
378      ++FirstComment;
379      break;
380    }
381
382    // If this comment is not a Doxygen comment, we're done.
383    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
384      ++FirstComment;
385      break;
386    }
387
388    // If the line number is not what we expected, we're done.
389    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
390    if (Line != ExpectedLine) {
391      ++FirstComment;
392      break;
393    }
394
395    // Set the next expected line number.
396    ExpectedLine
397      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
398  }
399
400  // The iterator range [FirstComment, LastComment] contains all of the
401  // BCPL comments that, together, are associated with this declaration.
402  // Form a single comment block string for this declaration that concatenates
403  // all of these comments.
404  std::string &Result = DeclComments[D];
405  while (FirstComment != LastComment) {
406    std::pair<FileID, unsigned> DecompStart
407      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
408    std::pair<FileID, unsigned> DecompEnd
409      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
410    Result.append(FileBufferStart + DecompStart.second,
411                  FileBufferStart + DecompEnd.second + 1);
412    ++FirstComment;
413  }
414
415  // Append the last comment line.
416  Result.append(FileBufferStart +
417                  SourceMgr.getFileOffset(LastComment->getBegin()),
418                FileBufferStart + LastCommentEndDecomp.second + 1);
419  return Result.c_str();
420}
421
422//===----------------------------------------------------------------------===//
423//                         Type Sizing and Analysis
424//===----------------------------------------------------------------------===//
425
426/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
427/// scalar floating point type.
428const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
429  const BuiltinType *BT = T->getAsBuiltinType();
430  assert(BT && "Not a floating point type!");
431  switch (BT->getKind()) {
432  default: assert(0 && "Not a floating point type!");
433  case BuiltinType::Float:      return Target.getFloatFormat();
434  case BuiltinType::Double:     return Target.getDoubleFormat();
435  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
436  }
437}
438
439/// getDeclAlign - Return a conservative estimate of the alignment of the
440/// specified decl.  Note that bitfields do not have a valid alignment, so
441/// this method will assert on them.
442unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
443  unsigned Align = Target.getCharWidth();
444
445  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
446    Align = std::max(Align, AA->getAlignment());
447
448  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
449    QualType T = VD->getType();
450    if (const ReferenceType* RT = T->getAsReferenceType()) {
451      unsigned AS = RT->getPointeeType().getAddressSpace();
452      Align = Target.getPointerAlign(AS);
453    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
454      // Incomplete or function types default to 1.
455      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
456        T = cast<ArrayType>(T)->getElementType();
457
458      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
459    }
460  }
461
462  return Align / Target.getCharWidth();
463}
464
465/// getTypeSize - Return the size of the specified type, in bits.  This method
466/// does not work on incomplete types.
467std::pair<uint64_t, unsigned>
468ASTContext::getTypeInfo(const Type *T) {
469  uint64_t Width=0;
470  unsigned Align=8;
471  switch (T->getTypeClass()) {
472#define TYPE(Class, Base)
473#define ABSTRACT_TYPE(Class, Base)
474#define NON_CANONICAL_TYPE(Class, Base)
475#define DEPENDENT_TYPE(Class, Base) case Type::Class:
476#include "clang/AST/TypeNodes.def"
477    assert(false && "Should not see dependent types");
478    break;
479
480  case Type::FunctionNoProto:
481  case Type::FunctionProto:
482    // GCC extension: alignof(function) = 32 bits
483    Width = 0;
484    Align = 32;
485    break;
486
487  case Type::IncompleteArray:
488  case Type::VariableArray:
489    Width = 0;
490    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
491    break;
492
493  case Type::ConstantArrayWithExpr:
494  case Type::ConstantArrayWithoutExpr:
495  case Type::ConstantArray: {
496    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
497
498    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
499    Width = EltInfo.first*CAT->getSize().getZExtValue();
500    Align = EltInfo.second;
501    break;
502  }
503  case Type::ExtVector:
504  case Type::Vector: {
505    std::pair<uint64_t, unsigned> EltInfo =
506      getTypeInfo(cast<VectorType>(T)->getElementType());
507    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
508    Align = Width;
509    // If the alignment is not a power of 2, round up to the next power of 2.
510    // This happens for non-power-of-2 length vectors.
511    // FIXME: this should probably be a target property.
512    Align = 1 << llvm::Log2_32_Ceil(Align);
513    break;
514  }
515
516  case Type::Builtin:
517    switch (cast<BuiltinType>(T)->getKind()) {
518    default: assert(0 && "Unknown builtin type!");
519    case BuiltinType::Void:
520      // GCC extension: alignof(void) = 8 bits.
521      Width = 0;
522      Align = 8;
523      break;
524
525    case BuiltinType::Bool:
526      Width = Target.getBoolWidth();
527      Align = Target.getBoolAlign();
528      break;
529    case BuiltinType::Char_S:
530    case BuiltinType::Char_U:
531    case BuiltinType::UChar:
532    case BuiltinType::SChar:
533      Width = Target.getCharWidth();
534      Align = Target.getCharAlign();
535      break;
536    case BuiltinType::WChar:
537      Width = Target.getWCharWidth();
538      Align = Target.getWCharAlign();
539      break;
540    case BuiltinType::Char16:
541      Width = Target.getChar16Width();
542      Align = Target.getChar16Align();
543      break;
544    case BuiltinType::Char32:
545      Width = Target.getChar32Width();
546      Align = Target.getChar32Align();
547      break;
548    case BuiltinType::UShort:
549    case BuiltinType::Short:
550      Width = Target.getShortWidth();
551      Align = Target.getShortAlign();
552      break;
553    case BuiltinType::UInt:
554    case BuiltinType::Int:
555      Width = Target.getIntWidth();
556      Align = Target.getIntAlign();
557      break;
558    case BuiltinType::ULong:
559    case BuiltinType::Long:
560      Width = Target.getLongWidth();
561      Align = Target.getLongAlign();
562      break;
563    case BuiltinType::ULongLong:
564    case BuiltinType::LongLong:
565      Width = Target.getLongLongWidth();
566      Align = Target.getLongLongAlign();
567      break;
568    case BuiltinType::Int128:
569    case BuiltinType::UInt128:
570      Width = 128;
571      Align = 128; // int128_t is 128-bit aligned on all targets.
572      break;
573    case BuiltinType::Float:
574      Width = Target.getFloatWidth();
575      Align = Target.getFloatAlign();
576      break;
577    case BuiltinType::Double:
578      Width = Target.getDoubleWidth();
579      Align = Target.getDoubleAlign();
580      break;
581    case BuiltinType::LongDouble:
582      Width = Target.getLongDoubleWidth();
583      Align = Target.getLongDoubleAlign();
584      break;
585    case BuiltinType::NullPtr:
586      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
587      Align = Target.getPointerAlign(0); //   == sizeof(void*)
588      break;
589    }
590    break;
591  case Type::FixedWidthInt:
592    // FIXME: This isn't precisely correct; the width/alignment should depend
593    // on the available types for the target
594    Width = cast<FixedWidthIntType>(T)->getWidth();
595    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
596    Align = Width;
597    break;
598  case Type::ExtQual:
599    // FIXME: Pointers into different addr spaces could have different sizes and
600    // alignment requirements: getPointerInfo should take an AddrSpace.
601    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
602  case Type::ObjCObjectPointer:
603  case Type::ObjCQualifiedInterface:
604    Width = Target.getPointerWidth(0);
605    Align = Target.getPointerAlign(0);
606    break;
607  case Type::BlockPointer: {
608    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
609    Width = Target.getPointerWidth(AS);
610    Align = Target.getPointerAlign(AS);
611    break;
612  }
613  case Type::Pointer: {
614    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
615    Width = Target.getPointerWidth(AS);
616    Align = Target.getPointerAlign(AS);
617    break;
618  }
619  case Type::LValueReference:
620  case Type::RValueReference:
621    // "When applied to a reference or a reference type, the result is the size
622    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
623    // FIXME: This is wrong for struct layout: a reference in a struct has
624    // pointer size.
625    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
626  case Type::MemberPointer: {
627    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
628    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
629    // If we ever want to support other ABIs this needs to be abstracted.
630
631    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
632    std::pair<uint64_t, unsigned> PtrDiffInfo =
633      getTypeInfo(getPointerDiffType());
634    Width = PtrDiffInfo.first;
635    if (Pointee->isFunctionType())
636      Width *= 2;
637    Align = PtrDiffInfo.second;
638    break;
639  }
640  case Type::Complex: {
641    // Complex types have the same alignment as their elements, but twice the
642    // size.
643    std::pair<uint64_t, unsigned> EltInfo =
644      getTypeInfo(cast<ComplexType>(T)->getElementType());
645    Width = EltInfo.first*2;
646    Align = EltInfo.second;
647    break;
648  }
649  case Type::ObjCInterface: {
650    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
651    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
652    Width = Layout.getSize();
653    Align = Layout.getAlignment();
654    break;
655  }
656  case Type::Record:
657  case Type::Enum: {
658    const TagType *TT = cast<TagType>(T);
659
660    if (TT->getDecl()->isInvalidDecl()) {
661      Width = 1;
662      Align = 1;
663      break;
664    }
665
666    if (const EnumType *ET = dyn_cast<EnumType>(TT))
667      return getTypeInfo(ET->getDecl()->getIntegerType());
668
669    const RecordType *RT = cast<RecordType>(TT);
670    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
671    Width = Layout.getSize();
672    Align = Layout.getAlignment();
673    break;
674  }
675
676  case Type::Typedef: {
677    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
678    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
679      Align = Aligned->getAlignment();
680      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
681    } else
682      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
683    break;
684  }
685
686  case Type::TypeOfExpr:
687    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
688                         .getTypePtr());
689
690  case Type::TypeOf:
691    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
692
693  case Type::Decltype:
694    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
695                        .getTypePtr());
696
697  case Type::QualifiedName:
698    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
699
700  case Type::TemplateSpecialization:
701    assert(getCanonicalType(T) != T &&
702           "Cannot request the size of a dependent type");
703    // FIXME: this is likely to be wrong once we support template
704    // aliases, since a template alias could refer to a typedef that
705    // has an __aligned__ attribute on it.
706    return getTypeInfo(getCanonicalType(T));
707  }
708
709  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
710  return std::make_pair(Width, Align);
711}
712
713/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
714/// type for the current target in bits.  This can be different than the ABI
715/// alignment in cases where it is beneficial for performance to overalign
716/// a data type.
717unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
718  unsigned ABIAlign = getTypeAlign(T);
719
720  // Double and long long should be naturally aligned if possible.
721  if (const ComplexType* CT = T->getAsComplexType())
722    T = CT->getElementType().getTypePtr();
723  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
724      T->isSpecificBuiltinType(BuiltinType::LongLong))
725    return std::max(ABIAlign, (unsigned)getTypeSize(T));
726
727  return ABIAlign;
728}
729
730
731/// LayoutField - Field layout.
732void ASTRecordLayout::LayoutField(const FieldDecl *FD, unsigned FieldNo,
733                                  bool IsUnion, unsigned StructPacking,
734                                  ASTContext &Context) {
735  unsigned FieldPacking = StructPacking;
736  uint64_t FieldOffset = IsUnion ? 0 : Size;
737  uint64_t FieldSize;
738  unsigned FieldAlign;
739
740  // FIXME: Should this override struct packing? Probably we want to
741  // take the minimum?
742  if (const PackedAttr *PA = FD->getAttr<PackedAttr>())
743    FieldPacking = PA->getAlignment();
744
745  if (const Expr *BitWidthExpr = FD->getBitWidth()) {
746    // TODO: Need to check this algorithm on other targets!
747    //       (tested on Linux-X86)
748    FieldSize = BitWidthExpr->EvaluateAsInt(Context).getZExtValue();
749
750    std::pair<uint64_t, unsigned> FieldInfo =
751      Context.getTypeInfo(FD->getType());
752    uint64_t TypeSize = FieldInfo.first;
753
754    // Determine the alignment of this bitfield. The packing
755    // attributes define a maximum and the alignment attribute defines
756    // a minimum.
757    // FIXME: What is the right behavior when the specified alignment
758    // is smaller than the specified packing?
759    FieldAlign = FieldInfo.second;
760    if (FieldPacking)
761      FieldAlign = std::min(FieldAlign, FieldPacking);
762    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
763      FieldAlign = std::max(FieldAlign, AA->getAlignment());
764
765    // Check if we need to add padding to give the field the correct
766    // alignment.
767    if (FieldSize == 0 || (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)
768      FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
769
770    // Padding members don't affect overall alignment
771    if (!FD->getIdentifier())
772      FieldAlign = 1;
773  } else {
774    if (FD->getType()->isIncompleteArrayType()) {
775      // This is a flexible array member; we can't directly
776      // query getTypeInfo about these, so we figure it out here.
777      // Flexible array members don't have any size, but they
778      // have to be aligned appropriately for their element type.
779      FieldSize = 0;
780      const ArrayType* ATy = Context.getAsArrayType(FD->getType());
781      FieldAlign = Context.getTypeAlign(ATy->getElementType());
782    } else if (const ReferenceType *RT = FD->getType()->getAsReferenceType()) {
783      unsigned AS = RT->getPointeeType().getAddressSpace();
784      FieldSize = Context.Target.getPointerWidth(AS);
785      FieldAlign = Context.Target.getPointerAlign(AS);
786    } else {
787      std::pair<uint64_t, unsigned> FieldInfo =
788        Context.getTypeInfo(FD->getType());
789      FieldSize = FieldInfo.first;
790      FieldAlign = FieldInfo.second;
791    }
792
793    // Determine the alignment of this bitfield. The packing
794    // attributes define a maximum and the alignment attribute defines
795    // a minimum. Additionally, the packing alignment must be at least
796    // a byte for non-bitfields.
797    //
798    // FIXME: What is the right behavior when the specified alignment
799    // is smaller than the specified packing?
800    if (FieldPacking)
801      FieldAlign = std::min(FieldAlign, std::max(8U, FieldPacking));
802    if (const AlignedAttr *AA = FD->getAttr<AlignedAttr>())
803      FieldAlign = std::max(FieldAlign, AA->getAlignment());
804
805    // Round up the current record size to the field's alignment boundary.
806    FieldOffset = (FieldOffset + (FieldAlign-1)) & ~(FieldAlign-1);
807  }
808
809  // Place this field at the current location.
810  FieldOffsets[FieldNo] = FieldOffset;
811
812  // Reserve space for this field.
813  if (IsUnion) {
814    Size = std::max(Size, FieldSize);
815  } else {
816    Size = FieldOffset + FieldSize;
817  }
818
819  // Remember the next available offset.
820  NextOffset = Size;
821
822  // Remember max struct/class alignment.
823  Alignment = std::max(Alignment, FieldAlign);
824}
825
826static void CollectLocalObjCIvars(ASTContext *Ctx,
827                                  const ObjCInterfaceDecl *OI,
828                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
829  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
830       E = OI->ivar_end(); I != E; ++I) {
831    ObjCIvarDecl *IVDecl = *I;
832    if (!IVDecl->isInvalidDecl())
833      Fields.push_back(cast<FieldDecl>(IVDecl));
834  }
835}
836
837void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
838                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
839  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
840    CollectObjCIvars(SuperClass, Fields);
841  CollectLocalObjCIvars(this, OI, Fields);
842}
843
844/// ShallowCollectObjCIvars -
845/// Collect all ivars, including those synthesized, in the current class.
846///
847void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
848                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
849                                 bool CollectSynthesized) {
850  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
851         E = OI->ivar_end(); I != E; ++I) {
852     Ivars.push_back(*I);
853  }
854  if (CollectSynthesized)
855    CollectSynthesizedIvars(OI, Ivars);
856}
857
858void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
859                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
860  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
861       E = PD->prop_end(); I != E; ++I)
862    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
863      Ivars.push_back(Ivar);
864
865  // Also look into nested protocols.
866  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
867       E = PD->protocol_end(); P != E; ++P)
868    CollectProtocolSynthesizedIvars(*P, Ivars);
869}
870
871/// CollectSynthesizedIvars -
872/// This routine collect synthesized ivars for the designated class.
873///
874void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
875                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
876  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
877       E = OI->prop_end(); I != E; ++I) {
878    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
879      Ivars.push_back(Ivar);
880  }
881  // Also look into interface's protocol list for properties declared
882  // in the protocol and whose ivars are synthesized.
883  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
884       PE = OI->protocol_end(); P != PE; ++P) {
885    ObjCProtocolDecl *PD = (*P);
886    CollectProtocolSynthesizedIvars(PD, Ivars);
887  }
888}
889
890unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
891  unsigned count = 0;
892  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
893       E = PD->prop_end(); I != E; ++I)
894    if ((*I)->getPropertyIvarDecl())
895      ++count;
896
897  // Also look into nested protocols.
898  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
899       E = PD->protocol_end(); P != E; ++P)
900    count += CountProtocolSynthesizedIvars(*P);
901  return count;
902}
903
904unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI)
905{
906  unsigned count = 0;
907  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
908       E = OI->prop_end(); I != E; ++I) {
909    if ((*I)->getPropertyIvarDecl())
910      ++count;
911  }
912  // Also look into interface's protocol list for properties declared
913  // in the protocol and whose ivars are synthesized.
914  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
915       PE = OI->protocol_end(); P != PE; ++P) {
916    ObjCProtocolDecl *PD = (*P);
917    count += CountProtocolSynthesizedIvars(PD);
918  }
919  return count;
920}
921
922/// getInterfaceLayoutImpl - Get or compute information about the
923/// layout of the given interface.
924///
925/// \param Impl - If given, also include the layout of the interface's
926/// implementation. This may differ by including synthesized ivars.
927const ASTRecordLayout &
928ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
929                          const ObjCImplementationDecl *Impl) {
930  assert(!D->isForwardDecl() && "Invalid interface decl!");
931
932  // Look up this layout, if already laid out, return what we have.
933  ObjCContainerDecl *Key =
934    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
935  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
936    return *Entry;
937
938  unsigned FieldCount = D->ivar_size();
939  // Add in synthesized ivar count if laying out an implementation.
940  if (Impl) {
941    unsigned SynthCount = CountSynthesizedIvars(D);
942    FieldCount += SynthCount;
943    // If there aren't any sythesized ivars then reuse the interface
944    // entry. Note we can't cache this because we simply free all
945    // entries later; however we shouldn't look up implementations
946    // frequently.
947    if (SynthCount == 0)
948      return getObjCLayout(D, 0);
949  }
950
951  ASTRecordLayout *NewEntry = NULL;
952  if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
953    const ASTRecordLayout &SL = getASTObjCInterfaceLayout(SD);
954    unsigned Alignment = SL.getAlignment();
955
956    // We start laying out ivars not at the end of the superclass
957    // structure, but at the next byte following the last field.
958    uint64_t Size = llvm::RoundUpToAlignment(SL.NextOffset, 8);
959
960    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout(Size, Alignment);
961    NewEntry->InitializeLayout(FieldCount);
962  } else {
963    ObjCLayouts[Key] = NewEntry = new ASTRecordLayout();
964    NewEntry->InitializeLayout(FieldCount);
965  }
966
967  unsigned StructPacking = 0;
968  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
969    StructPacking = PA->getAlignment();
970
971  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
972    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
973                                    AA->getAlignment()));
974
975  // Layout each ivar sequentially.
976  unsigned i = 0;
977  llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
978  ShallowCollectObjCIvars(D, Ivars, Impl);
979  for (unsigned k = 0, e = Ivars.size(); k != e; ++k)
980       NewEntry->LayoutField(Ivars[k], i++, false, StructPacking, *this);
981
982  // Finally, round the size of the total struct up to the alignment of the
983  // struct itself.
984  NewEntry->FinalizeLayout();
985  return *NewEntry;
986}
987
988const ASTRecordLayout &
989ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
990  return getObjCLayout(D, 0);
991}
992
993const ASTRecordLayout &
994ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
995  return getObjCLayout(D->getClassInterface(), D);
996}
997
998/// getASTRecordLayout - Get or compute information about the layout of the
999/// specified record (struct/union/class), which indicates its size and field
1000/// position information.
1001const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1002  D = D->getDefinition(*this);
1003  assert(D && "Cannot get layout of forward declarations!");
1004
1005  // Look up this layout, if already laid out, return what we have.
1006  const ASTRecordLayout *&Entry = ASTRecordLayouts[D];
1007  if (Entry) return *Entry;
1008
1009  // Allocate and assign into ASTRecordLayouts here.  The "Entry" reference can
1010  // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into.
1011  ASTRecordLayout *NewEntry = new ASTRecordLayout();
1012  Entry = NewEntry;
1013
1014  // FIXME: Avoid linear walk through the fields, if possible.
1015  NewEntry->InitializeLayout(std::distance(D->field_begin(), D->field_end()));
1016  bool IsUnion = D->isUnion();
1017
1018  unsigned StructPacking = 0;
1019  if (const PackedAttr *PA = D->getAttr<PackedAttr>())
1020    StructPacking = PA->getAlignment();
1021
1022  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
1023    NewEntry->SetAlignment(std::max(NewEntry->getAlignment(),
1024                                    AA->getAlignment()));
1025
1026  // Layout each field, for now, just sequentially, respecting alignment.  In
1027  // the future, this will need to be tweakable by targets.
1028  unsigned FieldIdx = 0;
1029  for (RecordDecl::field_iterator Field = D->field_begin(),
1030                               FieldEnd = D->field_end();
1031       Field != FieldEnd; (void)++Field, ++FieldIdx)
1032    NewEntry->LayoutField(*Field, FieldIdx, IsUnion, StructPacking, *this);
1033
1034  // Finally, round the size of the total struct up to the alignment of the
1035  // struct itself.
1036  NewEntry->FinalizeLayout(getLangOptions().CPlusPlus);
1037  return *NewEntry;
1038}
1039
1040//===----------------------------------------------------------------------===//
1041//                   Type creation/memoization methods
1042//===----------------------------------------------------------------------===//
1043
1044QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1045  QualType CanT = getCanonicalType(T);
1046  if (CanT.getAddressSpace() == AddressSpace)
1047    return T;
1048
1049  // If we are composing extended qualifiers together, merge together into one
1050  // ExtQualType node.
1051  unsigned CVRQuals = T.getCVRQualifiers();
1052  QualType::GCAttrTypes GCAttr = QualType::GCNone;
1053  Type *TypeNode = T.getTypePtr();
1054
1055  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
1056    // If this type already has an address space specified, it cannot get
1057    // another one.
1058    assert(EQT->getAddressSpace() == 0 &&
1059           "Type cannot be in multiple addr spaces!");
1060    GCAttr = EQT->getObjCGCAttr();
1061    TypeNode = EQT->getBaseType();
1062  }
1063
1064  // Check if we've already instantiated this type.
1065  llvm::FoldingSetNodeID ID;
1066  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
1067  void *InsertPos = 0;
1068  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
1069    return QualType(EXTQy, CVRQuals);
1070
1071  // If the base type isn't canonical, this won't be a canonical type either,
1072  // so fill in the canonical type field.
1073  QualType Canonical;
1074  if (!TypeNode->isCanonical()) {
1075    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
1076
1077    // Update InsertPos, the previous call could have invalidated it.
1078    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1079    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1080  }
1081  ExtQualType *New =
1082    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1083  ExtQualTypes.InsertNode(New, InsertPos);
1084  Types.push_back(New);
1085  return QualType(New, CVRQuals);
1086}
1087
1088QualType ASTContext::getObjCGCQualType(QualType T,
1089                                       QualType::GCAttrTypes GCAttr) {
1090  QualType CanT = getCanonicalType(T);
1091  if (CanT.getObjCGCAttr() == GCAttr)
1092    return T;
1093
1094  if (T->isPointerType()) {
1095    QualType Pointee = T->getAsPointerType()->getPointeeType();
1096    if (Pointee->isAnyPointerType()) {
1097      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1098      return getPointerType(ResultType);
1099    }
1100  }
1101  // If we are composing extended qualifiers together, merge together into one
1102  // ExtQualType node.
1103  unsigned CVRQuals = T.getCVRQualifiers();
1104  Type *TypeNode = T.getTypePtr();
1105  unsigned AddressSpace = 0;
1106
1107  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
1108    // If this type already has an address space specified, it cannot get
1109    // another one.
1110    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
1111           "Type cannot be in multiple addr spaces!");
1112    AddressSpace = EQT->getAddressSpace();
1113    TypeNode = EQT->getBaseType();
1114  }
1115
1116  // Check if we've already instantiated an gc qual'd type of this type.
1117  llvm::FoldingSetNodeID ID;
1118  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
1119  void *InsertPos = 0;
1120  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
1121    return QualType(EXTQy, CVRQuals);
1122
1123  // If the base type isn't canonical, this won't be a canonical type either,
1124  // so fill in the canonical type field.
1125  // FIXME: Isn't this also not canonical if the base type is a array
1126  // or pointer type?  I can't find any documentation for objc_gc, though...
1127  QualType Canonical;
1128  if (!T->isCanonical()) {
1129    Canonical = getObjCGCQualType(CanT, GCAttr);
1130
1131    // Update InsertPos, the previous call could have invalidated it.
1132    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1133    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1134  }
1135  ExtQualType *New =
1136    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1137  ExtQualTypes.InsertNode(New, InsertPos);
1138  Types.push_back(New);
1139  return QualType(New, CVRQuals);
1140}
1141
1142/// getComplexType - Return the uniqued reference to the type for a complex
1143/// number with the specified element type.
1144QualType ASTContext::getComplexType(QualType T) {
1145  // Unique pointers, to guarantee there is only one pointer of a particular
1146  // structure.
1147  llvm::FoldingSetNodeID ID;
1148  ComplexType::Profile(ID, T);
1149
1150  void *InsertPos = 0;
1151  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1152    return QualType(CT, 0);
1153
1154  // If the pointee type isn't canonical, this won't be a canonical type either,
1155  // so fill in the canonical type field.
1156  QualType Canonical;
1157  if (!T->isCanonical()) {
1158    Canonical = getComplexType(getCanonicalType(T));
1159
1160    // Get the new insert position for the node we care about.
1161    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1162    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1163  }
1164  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
1165  Types.push_back(New);
1166  ComplexTypes.InsertNode(New, InsertPos);
1167  return QualType(New, 0);
1168}
1169
1170QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1171  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1172     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1173  FixedWidthIntType *&Entry = Map[Width];
1174  if (!Entry)
1175    Entry = new FixedWidthIntType(Width, Signed);
1176  return QualType(Entry, 0);
1177}
1178
1179/// getPointerType - Return the uniqued reference to the type for a pointer to
1180/// the specified type.
1181QualType ASTContext::getPointerType(QualType T) {
1182  // Unique pointers, to guarantee there is only one pointer of a particular
1183  // structure.
1184  llvm::FoldingSetNodeID ID;
1185  PointerType::Profile(ID, T);
1186
1187  void *InsertPos = 0;
1188  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1189    return QualType(PT, 0);
1190
1191  // If the pointee type isn't canonical, this won't be a canonical type either,
1192  // so fill in the canonical type field.
1193  QualType Canonical;
1194  if (!T->isCanonical()) {
1195    Canonical = getPointerType(getCanonicalType(T));
1196
1197    // Get the new insert position for the node we care about.
1198    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1199    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1200  }
1201  PointerType *New = new (*this,8) PointerType(T, Canonical);
1202  Types.push_back(New);
1203  PointerTypes.InsertNode(New, InsertPos);
1204  return QualType(New, 0);
1205}
1206
1207/// getBlockPointerType - Return the uniqued reference to the type for
1208/// a pointer to the specified block.
1209QualType ASTContext::getBlockPointerType(QualType T) {
1210  assert(T->isFunctionType() && "block of function types only");
1211  // Unique pointers, to guarantee there is only one block of a particular
1212  // structure.
1213  llvm::FoldingSetNodeID ID;
1214  BlockPointerType::Profile(ID, T);
1215
1216  void *InsertPos = 0;
1217  if (BlockPointerType *PT =
1218        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1219    return QualType(PT, 0);
1220
1221  // If the block pointee type isn't canonical, this won't be a canonical
1222  // type either so fill in the canonical type field.
1223  QualType Canonical;
1224  if (!T->isCanonical()) {
1225    Canonical = getBlockPointerType(getCanonicalType(T));
1226
1227    // Get the new insert position for the node we care about.
1228    BlockPointerType *NewIP =
1229      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1230    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1231  }
1232  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1233  Types.push_back(New);
1234  BlockPointerTypes.InsertNode(New, InsertPos);
1235  return QualType(New, 0);
1236}
1237
1238/// getLValueReferenceType - Return the uniqued reference to the type for an
1239/// lvalue reference to the specified type.
1240QualType ASTContext::getLValueReferenceType(QualType T) {
1241  // Unique pointers, to guarantee there is only one pointer of a particular
1242  // structure.
1243  llvm::FoldingSetNodeID ID;
1244  ReferenceType::Profile(ID, T);
1245
1246  void *InsertPos = 0;
1247  if (LValueReferenceType *RT =
1248        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1249    return QualType(RT, 0);
1250
1251  // If the referencee type isn't canonical, this won't be a canonical type
1252  // either, so fill in the canonical type field.
1253  QualType Canonical;
1254  if (!T->isCanonical()) {
1255    Canonical = getLValueReferenceType(getCanonicalType(T));
1256
1257    // Get the new insert position for the node we care about.
1258    LValueReferenceType *NewIP =
1259      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1260    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1261  }
1262
1263  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1264  Types.push_back(New);
1265  LValueReferenceTypes.InsertNode(New, InsertPos);
1266  return QualType(New, 0);
1267}
1268
1269/// getRValueReferenceType - Return the uniqued reference to the type for an
1270/// rvalue reference to the specified type.
1271QualType ASTContext::getRValueReferenceType(QualType T) {
1272  // Unique pointers, to guarantee there is only one pointer of a particular
1273  // structure.
1274  llvm::FoldingSetNodeID ID;
1275  ReferenceType::Profile(ID, T);
1276
1277  void *InsertPos = 0;
1278  if (RValueReferenceType *RT =
1279        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1280    return QualType(RT, 0);
1281
1282  // If the referencee type isn't canonical, this won't be a canonical type
1283  // either, so fill in the canonical type field.
1284  QualType Canonical;
1285  if (!T->isCanonical()) {
1286    Canonical = getRValueReferenceType(getCanonicalType(T));
1287
1288    // Get the new insert position for the node we care about.
1289    RValueReferenceType *NewIP =
1290      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1291    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1292  }
1293
1294  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1295  Types.push_back(New);
1296  RValueReferenceTypes.InsertNode(New, InsertPos);
1297  return QualType(New, 0);
1298}
1299
1300/// getMemberPointerType - Return the uniqued reference to the type for a
1301/// member pointer to the specified type, in the specified class.
1302QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1303{
1304  // Unique pointers, to guarantee there is only one pointer of a particular
1305  // structure.
1306  llvm::FoldingSetNodeID ID;
1307  MemberPointerType::Profile(ID, T, Cls);
1308
1309  void *InsertPos = 0;
1310  if (MemberPointerType *PT =
1311      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1312    return QualType(PT, 0);
1313
1314  // If the pointee or class type isn't canonical, this won't be a canonical
1315  // type either, so fill in the canonical type field.
1316  QualType Canonical;
1317  if (!T->isCanonical()) {
1318    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1319
1320    // Get the new insert position for the node we care about.
1321    MemberPointerType *NewIP =
1322      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1323    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1324  }
1325  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1326  Types.push_back(New);
1327  MemberPointerTypes.InsertNode(New, InsertPos);
1328  return QualType(New, 0);
1329}
1330
1331/// getConstantArrayType - Return the unique reference to the type for an
1332/// array of the specified element type.
1333QualType ASTContext::getConstantArrayType(QualType EltTy,
1334                                          const llvm::APInt &ArySizeIn,
1335                                          ArrayType::ArraySizeModifier ASM,
1336                                          unsigned EltTypeQuals) {
1337  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1338         "Constant array of VLAs is illegal!");
1339
1340  // Convert the array size into a canonical width matching the pointer size for
1341  // the target.
1342  llvm::APInt ArySize(ArySizeIn);
1343  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1344
1345  llvm::FoldingSetNodeID ID;
1346  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1347
1348  void *InsertPos = 0;
1349  if (ConstantArrayType *ATP =
1350      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1351    return QualType(ATP, 0);
1352
1353  // If the element type isn't canonical, this won't be a canonical type either,
1354  // so fill in the canonical type field.
1355  QualType Canonical;
1356  if (!EltTy->isCanonical()) {
1357    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1358                                     ASM, EltTypeQuals);
1359    // Get the new insert position for the node we care about.
1360    ConstantArrayType *NewIP =
1361      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1362    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1363  }
1364
1365  ConstantArrayType *New =
1366    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1367  ConstantArrayTypes.InsertNode(New, InsertPos);
1368  Types.push_back(New);
1369  return QualType(New, 0);
1370}
1371
1372/// getConstantArrayWithExprType - Return a reference to the type for
1373/// an array of the specified element type.
1374QualType
1375ASTContext::getConstantArrayWithExprType(QualType EltTy,
1376                                         const llvm::APInt &ArySizeIn,
1377                                         Expr *ArySizeExpr,
1378                                         ArrayType::ArraySizeModifier ASM,
1379                                         unsigned EltTypeQuals,
1380                                         SourceRange Brackets) {
1381  // Convert the array size into a canonical width matching the pointer
1382  // size for the target.
1383  llvm::APInt ArySize(ArySizeIn);
1384  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1385
1386  // Compute the canonical ConstantArrayType.
1387  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1388                                            ArySize, ASM, EltTypeQuals);
1389  // Since we don't unique expressions, it isn't possible to unique VLA's
1390  // that have an expression provided for their size.
1391  ConstantArrayWithExprType *New =
1392    new(*this,8)ConstantArrayWithExprType(EltTy, Canonical,
1393                                          ArySize, ArySizeExpr,
1394                                          ASM, EltTypeQuals, Brackets);
1395  Types.push_back(New);
1396  return QualType(New, 0);
1397}
1398
1399/// getConstantArrayWithoutExprType - Return a reference to the type for
1400/// an array of the specified element type.
1401QualType
1402ASTContext::getConstantArrayWithoutExprType(QualType EltTy,
1403                                            const llvm::APInt &ArySizeIn,
1404                                            ArrayType::ArraySizeModifier ASM,
1405                                            unsigned EltTypeQuals) {
1406  // Convert the array size into a canonical width matching the pointer
1407  // size for the target.
1408  llvm::APInt ArySize(ArySizeIn);
1409  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1410
1411  // Compute the canonical ConstantArrayType.
1412  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1413                                            ArySize, ASM, EltTypeQuals);
1414  ConstantArrayWithoutExprType *New =
1415    new(*this,8)ConstantArrayWithoutExprType(EltTy, Canonical,
1416                                             ArySize, ASM, EltTypeQuals);
1417  Types.push_back(New);
1418  return QualType(New, 0);
1419}
1420
1421/// getVariableArrayType - Returns a non-unique reference to the type for a
1422/// variable array of the specified element type.
1423QualType ASTContext::getVariableArrayType(QualType EltTy,
1424                                          Expr *NumElts,
1425                                          ArrayType::ArraySizeModifier ASM,
1426                                          unsigned EltTypeQuals,
1427                                          SourceRange Brackets) {
1428  // Since we don't unique expressions, it isn't possible to unique VLA's
1429  // that have an expression provided for their size.
1430
1431  VariableArrayType *New =
1432    new(*this,8)VariableArrayType(EltTy, QualType(),
1433                                  NumElts, ASM, EltTypeQuals, Brackets);
1434
1435  VariableArrayTypes.push_back(New);
1436  Types.push_back(New);
1437  return QualType(New, 0);
1438}
1439
1440/// getDependentSizedArrayType - Returns a non-unique reference to
1441/// the type for a dependently-sized array of the specified element
1442/// type. FIXME: We will need these to be uniqued, or at least
1443/// comparable, at some point.
1444QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1445                                                Expr *NumElts,
1446                                                ArrayType::ArraySizeModifier ASM,
1447                                                unsigned EltTypeQuals,
1448                                                SourceRange Brackets) {
1449  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1450         "Size must be type- or value-dependent!");
1451
1452  // Since we don't unique expressions, it isn't possible to unique
1453  // dependently-sized array types.
1454
1455  DependentSizedArrayType *New =
1456    new (*this,8) DependentSizedArrayType(EltTy, QualType(),
1457                                          NumElts, ASM, EltTypeQuals,
1458                                          Brackets);
1459
1460  DependentSizedArrayTypes.push_back(New);
1461  Types.push_back(New);
1462  return QualType(New, 0);
1463}
1464
1465QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1466                                            ArrayType::ArraySizeModifier ASM,
1467                                            unsigned EltTypeQuals) {
1468  llvm::FoldingSetNodeID ID;
1469  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1470
1471  void *InsertPos = 0;
1472  if (IncompleteArrayType *ATP =
1473       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1474    return QualType(ATP, 0);
1475
1476  // If the element type isn't canonical, this won't be a canonical type
1477  // either, so fill in the canonical type field.
1478  QualType Canonical;
1479
1480  if (!EltTy->isCanonical()) {
1481    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1482                                       ASM, EltTypeQuals);
1483
1484    // Get the new insert position for the node we care about.
1485    IncompleteArrayType *NewIP =
1486      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1487    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1488  }
1489
1490  IncompleteArrayType *New
1491    = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1492                                        ASM, EltTypeQuals);
1493
1494  IncompleteArrayTypes.InsertNode(New, InsertPos);
1495  Types.push_back(New);
1496  return QualType(New, 0);
1497}
1498
1499/// getVectorType - Return the unique reference to a vector type of
1500/// the specified element type and size. VectorType must be a built-in type.
1501QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1502  BuiltinType *baseType;
1503
1504  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1505  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1506
1507  // Check if we've already instantiated a vector of this type.
1508  llvm::FoldingSetNodeID ID;
1509  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1510  void *InsertPos = 0;
1511  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1512    return QualType(VTP, 0);
1513
1514  // If the element type isn't canonical, this won't be a canonical type either,
1515  // so fill in the canonical type field.
1516  QualType Canonical;
1517  if (!vecType->isCanonical()) {
1518    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1519
1520    // Get the new insert position for the node we care about.
1521    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1522    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1523  }
1524  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1525  VectorTypes.InsertNode(New, InsertPos);
1526  Types.push_back(New);
1527  return QualType(New, 0);
1528}
1529
1530/// getExtVectorType - Return the unique reference to an extended vector type of
1531/// the specified element type and size. VectorType must be a built-in type.
1532QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1533  BuiltinType *baseType;
1534
1535  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1536  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1537
1538  // Check if we've already instantiated a vector of this type.
1539  llvm::FoldingSetNodeID ID;
1540  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1541  void *InsertPos = 0;
1542  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1543    return QualType(VTP, 0);
1544
1545  // If the element type isn't canonical, this won't be a canonical type either,
1546  // so fill in the canonical type field.
1547  QualType Canonical;
1548  if (!vecType->isCanonical()) {
1549    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1550
1551    // Get the new insert position for the node we care about.
1552    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1553    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1554  }
1555  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1556  VectorTypes.InsertNode(New, InsertPos);
1557  Types.push_back(New);
1558  return QualType(New, 0);
1559}
1560
1561QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1562                                                    Expr *SizeExpr,
1563                                                    SourceLocation AttrLoc) {
1564  DependentSizedExtVectorType *New =
1565      new (*this,8) DependentSizedExtVectorType(vecType, QualType(),
1566                                                SizeExpr, AttrLoc);
1567
1568  DependentSizedExtVectorTypes.push_back(New);
1569  Types.push_back(New);
1570  return QualType(New, 0);
1571}
1572
1573/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1574///
1575QualType ASTContext::getFunctionNoProtoType(QualType ResultTy) {
1576  // Unique functions, to guarantee there is only one function of a particular
1577  // structure.
1578  llvm::FoldingSetNodeID ID;
1579  FunctionNoProtoType::Profile(ID, ResultTy);
1580
1581  void *InsertPos = 0;
1582  if (FunctionNoProtoType *FT =
1583        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1584    return QualType(FT, 0);
1585
1586  QualType Canonical;
1587  if (!ResultTy->isCanonical()) {
1588    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy));
1589
1590    // Get the new insert position for the node we care about.
1591    FunctionNoProtoType *NewIP =
1592      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1593    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1594  }
1595
1596  FunctionNoProtoType *New =new(*this,8)FunctionNoProtoType(ResultTy,Canonical);
1597  Types.push_back(New);
1598  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1599  return QualType(New, 0);
1600}
1601
1602/// getFunctionType - Return a normal function type with a typed argument
1603/// list.  isVariadic indicates whether the argument list includes '...'.
1604QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1605                                     unsigned NumArgs, bool isVariadic,
1606                                     unsigned TypeQuals, bool hasExceptionSpec,
1607                                     bool hasAnyExceptionSpec, unsigned NumExs,
1608                                     const QualType *ExArray) {
1609  // Unique functions, to guarantee there is only one function of a particular
1610  // structure.
1611  llvm::FoldingSetNodeID ID;
1612  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1613                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1614                             NumExs, ExArray);
1615
1616  void *InsertPos = 0;
1617  if (FunctionProtoType *FTP =
1618        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1619    return QualType(FTP, 0);
1620
1621  // Determine whether the type being created is already canonical or not.
1622  bool isCanonical = ResultTy->isCanonical();
1623  if (hasExceptionSpec)
1624    isCanonical = false;
1625  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1626    if (!ArgArray[i]->isCanonical())
1627      isCanonical = false;
1628
1629  // If this type isn't canonical, get the canonical version of it.
1630  // The exception spec is not part of the canonical type.
1631  QualType Canonical;
1632  if (!isCanonical) {
1633    llvm::SmallVector<QualType, 16> CanonicalArgs;
1634    CanonicalArgs.reserve(NumArgs);
1635    for (unsigned i = 0; i != NumArgs; ++i)
1636      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1637
1638    Canonical = getFunctionType(getCanonicalType(ResultTy),
1639                                CanonicalArgs.data(), NumArgs,
1640                                isVariadic, TypeQuals);
1641
1642    // Get the new insert position for the node we care about.
1643    FunctionProtoType *NewIP =
1644      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1645    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1646  }
1647
1648  // FunctionProtoType objects are allocated with extra bytes after them
1649  // for two variable size arrays (for parameter and exception types) at the
1650  // end of them.
1651  FunctionProtoType *FTP =
1652    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1653                                 NumArgs*sizeof(QualType) +
1654                                 NumExs*sizeof(QualType), 8);
1655  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1656                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1657                              ExArray, NumExs, Canonical);
1658  Types.push_back(FTP);
1659  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1660  return QualType(FTP, 0);
1661}
1662
1663/// getTypeDeclType - Return the unique reference to the type for the
1664/// specified type declaration.
1665QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1666  assert(Decl && "Passed null for Decl param");
1667  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1668
1669  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1670    return getTypedefType(Typedef);
1671  else if (isa<TemplateTypeParmDecl>(Decl)) {
1672    assert(false && "Template type parameter types are always available.");
1673  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1674    return getObjCInterfaceType(ObjCInterface);
1675
1676  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1677    if (PrevDecl)
1678      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1679    else
1680      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1681  }
1682  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1683    if (PrevDecl)
1684      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1685    else
1686      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1687  }
1688  else
1689    assert(false && "TypeDecl without a type?");
1690
1691  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1692  return QualType(Decl->TypeForDecl, 0);
1693}
1694
1695/// getTypedefType - Return the unique reference to the type for the
1696/// specified typename decl.
1697QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1698  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1699
1700  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1701  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1702  Types.push_back(Decl->TypeForDecl);
1703  return QualType(Decl->TypeForDecl, 0);
1704}
1705
1706/// getObjCInterfaceType - Return the unique reference to the type for the
1707/// specified ObjC interface decl.
1708QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
1709  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1710
1711  ObjCInterfaceDecl *OID = const_cast<ObjCInterfaceDecl*>(Decl);
1712  Decl->TypeForDecl = new(*this,8) ObjCInterfaceType(Type::ObjCInterface, OID);
1713  Types.push_back(Decl->TypeForDecl);
1714  return QualType(Decl->TypeForDecl, 0);
1715}
1716
1717/// \brief Retrieve the template type parameter type for a template
1718/// parameter or parameter pack with the given depth, index, and (optionally)
1719/// name.
1720QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1721                                             bool ParameterPack,
1722                                             IdentifierInfo *Name) {
1723  llvm::FoldingSetNodeID ID;
1724  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1725  void *InsertPos = 0;
1726  TemplateTypeParmType *TypeParm
1727    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1728
1729  if (TypeParm)
1730    return QualType(TypeParm, 0);
1731
1732  if (Name) {
1733    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1734    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack,
1735                                                   Name, Canon);
1736  } else
1737    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack);
1738
1739  Types.push_back(TypeParm);
1740  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1741
1742  return QualType(TypeParm, 0);
1743}
1744
1745QualType
1746ASTContext::getTemplateSpecializationType(TemplateName Template,
1747                                          const TemplateArgument *Args,
1748                                          unsigned NumArgs,
1749                                          QualType Canon) {
1750  if (!Canon.isNull())
1751    Canon = getCanonicalType(Canon);
1752
1753  llvm::FoldingSetNodeID ID;
1754  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1755
1756  void *InsertPos = 0;
1757  TemplateSpecializationType *Spec
1758    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1759
1760  if (Spec)
1761    return QualType(Spec, 0);
1762
1763  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1764                        sizeof(TemplateArgument) * NumArgs),
1765                       8);
1766  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1767  Types.push_back(Spec);
1768  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1769
1770  return QualType(Spec, 0);
1771}
1772
1773QualType
1774ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1775                                 QualType NamedType) {
1776  llvm::FoldingSetNodeID ID;
1777  QualifiedNameType::Profile(ID, NNS, NamedType);
1778
1779  void *InsertPos = 0;
1780  QualifiedNameType *T
1781    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1782  if (T)
1783    return QualType(T, 0);
1784
1785  T = new (*this) QualifiedNameType(NNS, NamedType,
1786                                    getCanonicalType(NamedType));
1787  Types.push_back(T);
1788  QualifiedNameTypes.InsertNode(T, InsertPos);
1789  return QualType(T, 0);
1790}
1791
1792QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1793                                     const IdentifierInfo *Name,
1794                                     QualType Canon) {
1795  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1796
1797  if (Canon.isNull()) {
1798    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1799    if (CanonNNS != NNS)
1800      Canon = getTypenameType(CanonNNS, Name);
1801  }
1802
1803  llvm::FoldingSetNodeID ID;
1804  TypenameType::Profile(ID, NNS, Name);
1805
1806  void *InsertPos = 0;
1807  TypenameType *T
1808    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1809  if (T)
1810    return QualType(T, 0);
1811
1812  T = new (*this) TypenameType(NNS, Name, Canon);
1813  Types.push_back(T);
1814  TypenameTypes.InsertNode(T, InsertPos);
1815  return QualType(T, 0);
1816}
1817
1818QualType
1819ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1820                            const TemplateSpecializationType *TemplateId,
1821                            QualType Canon) {
1822  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1823
1824  if (Canon.isNull()) {
1825    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1826    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1827    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1828      const TemplateSpecializationType *CanonTemplateId
1829        = CanonType->getAsTemplateSpecializationType();
1830      assert(CanonTemplateId &&
1831             "Canonical type must also be a template specialization type");
1832      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1833    }
1834  }
1835
1836  llvm::FoldingSetNodeID ID;
1837  TypenameType::Profile(ID, NNS, TemplateId);
1838
1839  void *InsertPos = 0;
1840  TypenameType *T
1841    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1842  if (T)
1843    return QualType(T, 0);
1844
1845  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1846  Types.push_back(T);
1847  TypenameTypes.InsertNode(T, InsertPos);
1848  return QualType(T, 0);
1849}
1850
1851/// CmpProtocolNames - Comparison predicate for sorting protocols
1852/// alphabetically.
1853static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1854                            const ObjCProtocolDecl *RHS) {
1855  return LHS->getDeclName() < RHS->getDeclName();
1856}
1857
1858static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1859                                   unsigned &NumProtocols) {
1860  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1861
1862  // Sort protocols, keyed by name.
1863  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1864
1865  // Remove duplicates.
1866  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1867  NumProtocols = ProtocolsEnd-Protocols;
1868}
1869
1870/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1871/// the given interface decl and the conforming protocol list.
1872QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
1873                                              ObjCProtocolDecl **Protocols,
1874                                              unsigned NumProtocols) {
1875  if (InterfaceT.isNull())
1876    InterfaceT = ObjCBuiltinIdTy;
1877
1878  // Sort the protocol list alphabetically to canonicalize it.
1879  if (NumProtocols)
1880    SortAndUniqueProtocols(Protocols, NumProtocols);
1881
1882  llvm::FoldingSetNodeID ID;
1883  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
1884
1885  void *InsertPos = 0;
1886  if (ObjCObjectPointerType *QT =
1887              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1888    return QualType(QT, 0);
1889
1890  // No Match;
1891  ObjCObjectPointerType *QType =
1892    new (*this,8) ObjCObjectPointerType(InterfaceT, Protocols, NumProtocols);
1893
1894  Types.push_back(QType);
1895  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1896  return QualType(QType, 0);
1897}
1898
1899/// getObjCQualifiedInterfaceType - Return a ObjCQualifiedInterfaceType type for
1900/// the given interface decl and the conforming protocol list.
1901QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
1902                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1903  // Sort the protocol list alphabetically to canonicalize it.
1904  SortAndUniqueProtocols(Protocols, NumProtocols);
1905
1906  llvm::FoldingSetNodeID ID;
1907  ObjCQualifiedInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1908
1909  void *InsertPos = 0;
1910  if (ObjCQualifiedInterfaceType *QT =
1911      ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1912    return QualType(QT, 0);
1913
1914  // No Match;
1915  ObjCQualifiedInterfaceType *QType =
1916    new (*this,8) ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols);
1917
1918  Types.push_back(QType);
1919  ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos);
1920  return QualType(QType, 0);
1921}
1922
1923/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1924/// TypeOfExprType AST's (since expression's are never shared). For example,
1925/// multiple declarations that refer to "typeof(x)" all contain different
1926/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1927/// on canonical type's (which are always unique).
1928QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1929  TypeOfExprType *toe;
1930  if (tofExpr->isTypeDependent())
1931    toe = new (*this, 8) TypeOfExprType(tofExpr);
1932  else {
1933    QualType Canonical = getCanonicalType(tofExpr->getType());
1934    toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1935  }
1936  Types.push_back(toe);
1937  return QualType(toe, 0);
1938}
1939
1940/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1941/// TypeOfType AST's. The only motivation to unique these nodes would be
1942/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1943/// an issue. This doesn't effect the type checker, since it operates
1944/// on canonical type's (which are always unique).
1945QualType ASTContext::getTypeOfType(QualType tofType) {
1946  QualType Canonical = getCanonicalType(tofType);
1947  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1948  Types.push_back(tot);
1949  return QualType(tot, 0);
1950}
1951
1952/// getDecltypeForExpr - Given an expr, will return the decltype for that
1953/// expression, according to the rules in C++0x [dcl.type.simple]p4
1954static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
1955  if (e->isTypeDependent())
1956    return Context.DependentTy;
1957
1958  // If e is an id expression or a class member access, decltype(e) is defined
1959  // as the type of the entity named by e.
1960  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
1961    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
1962      return VD->getType();
1963  }
1964  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
1965    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1966      return FD->getType();
1967  }
1968  // If e is a function call or an invocation of an overloaded operator,
1969  // (parentheses around e are ignored), decltype(e) is defined as the
1970  // return type of that function.
1971  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
1972    return CE->getCallReturnType();
1973
1974  QualType T = e->getType();
1975
1976  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
1977  // defined as T&, otherwise decltype(e) is defined as T.
1978  if (e->isLvalue(Context) == Expr::LV_Valid)
1979    T = Context.getLValueReferenceType(T);
1980
1981  return T;
1982}
1983
1984/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
1985/// DecltypeType AST's. The only motivation to unique these nodes would be
1986/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
1987/// an issue. This doesn't effect the type checker, since it operates
1988/// on canonical type's (which are always unique).
1989QualType ASTContext::getDecltypeType(Expr *e) {
1990  DecltypeType *dt;
1991  if (e->isTypeDependent()) // FIXME: canonicalize the expression
1992    dt = new (*this, 8) DecltypeType(e, DependentTy);
1993  else {
1994    QualType T = getDecltypeForExpr(e, *this);
1995    dt = new (*this, 8) DecltypeType(e, T, getCanonicalType(T));
1996  }
1997  Types.push_back(dt);
1998  return QualType(dt, 0);
1999}
2000
2001/// getTagDeclType - Return the unique reference to the type for the
2002/// specified TagDecl (struct/union/class/enum) decl.
2003QualType ASTContext::getTagDeclType(TagDecl *Decl) {
2004  assert (Decl);
2005  return getTypeDeclType(Decl);
2006}
2007
2008/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2009/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2010/// needs to agree with the definition in <stddef.h>.
2011QualType ASTContext::getSizeType() const {
2012  return getFromTargetType(Target.getSizeType());
2013}
2014
2015/// getSignedWCharType - Return the type of "signed wchar_t".
2016/// Used when in C++, as a GCC extension.
2017QualType ASTContext::getSignedWCharType() const {
2018  // FIXME: derive from "Target" ?
2019  return WCharTy;
2020}
2021
2022/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2023/// Used when in C++, as a GCC extension.
2024QualType ASTContext::getUnsignedWCharType() const {
2025  // FIXME: derive from "Target" ?
2026  return UnsignedIntTy;
2027}
2028
2029/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2030/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2031QualType ASTContext::getPointerDiffType() const {
2032  return getFromTargetType(Target.getPtrDiffType(0));
2033}
2034
2035//===----------------------------------------------------------------------===//
2036//                              Type Operators
2037//===----------------------------------------------------------------------===//
2038
2039/// getCanonicalType - Return the canonical (structural) type corresponding to
2040/// the specified potentially non-canonical type.  The non-canonical version
2041/// of a type may have many "decorated" versions of types.  Decorators can
2042/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2043/// to be free of any of these, allowing two canonical types to be compared
2044/// for exact equality with a simple pointer comparison.
2045QualType ASTContext::getCanonicalType(QualType T) {
2046  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
2047
2048  // If the result has type qualifiers, make sure to canonicalize them as well.
2049  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
2050  if (TypeQuals == 0) return CanType;
2051
2052  // If the type qualifiers are on an array type, get the canonical type of the
2053  // array with the qualifiers applied to the element type.
2054  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2055  if (!AT)
2056    return CanType.getQualifiedType(TypeQuals);
2057
2058  // Get the canonical version of the element with the extra qualifiers on it.
2059  // This can recursively sink qualifiers through multiple levels of arrays.
2060  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
2061  NewEltTy = getCanonicalType(NewEltTy);
2062
2063  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2064    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
2065                                CAT->getIndexTypeQualifier());
2066  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2067    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2068                                  IAT->getIndexTypeQualifier());
2069
2070  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2071    return getDependentSizedArrayType(NewEltTy,
2072                                      DSAT->getSizeExpr(),
2073                                      DSAT->getSizeModifier(),
2074                                      DSAT->getIndexTypeQualifier(),
2075                                      DSAT->getBracketsRange());
2076
2077  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2078  return getVariableArrayType(NewEltTy,
2079                              VAT->getSizeExpr(),
2080                              VAT->getSizeModifier(),
2081                              VAT->getIndexTypeQualifier(),
2082                              VAT->getBracketsRange());
2083}
2084
2085TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2086  // If this template name refers to a template, the canonical
2087  // template name merely stores the template itself.
2088  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2089    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2090
2091  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2092  assert(DTN && "Non-dependent template names must refer to template decls.");
2093  return DTN->CanonicalTemplateName;
2094}
2095
2096NestedNameSpecifier *
2097ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2098  if (!NNS)
2099    return 0;
2100
2101  switch (NNS->getKind()) {
2102  case NestedNameSpecifier::Identifier:
2103    // Canonicalize the prefix but keep the identifier the same.
2104    return NestedNameSpecifier::Create(*this,
2105                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2106                                       NNS->getAsIdentifier());
2107
2108  case NestedNameSpecifier::Namespace:
2109    // A namespace is canonical; build a nested-name-specifier with
2110    // this namespace and no prefix.
2111    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2112
2113  case NestedNameSpecifier::TypeSpec:
2114  case NestedNameSpecifier::TypeSpecWithTemplate: {
2115    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2116    NestedNameSpecifier *Prefix = 0;
2117
2118    // FIXME: This isn't the right check!
2119    if (T->isDependentType())
2120      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
2121
2122    return NestedNameSpecifier::Create(*this, Prefix,
2123                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2124                                       T.getTypePtr());
2125  }
2126
2127  case NestedNameSpecifier::Global:
2128    // The global specifier is canonical and unique.
2129    return NNS;
2130  }
2131
2132  // Required to silence a GCC warning
2133  return 0;
2134}
2135
2136
2137const ArrayType *ASTContext::getAsArrayType(QualType T) {
2138  // Handle the non-qualified case efficiently.
2139  if (T.getCVRQualifiers() == 0) {
2140    // Handle the common positive case fast.
2141    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2142      return AT;
2143  }
2144
2145  // Handle the common negative case fast, ignoring CVR qualifiers.
2146  QualType CType = T->getCanonicalTypeInternal();
2147
2148  // Make sure to look through type qualifiers (like ExtQuals) for the negative
2149  // test.
2150  if (!isa<ArrayType>(CType) &&
2151      !isa<ArrayType>(CType.getUnqualifiedType()))
2152    return 0;
2153
2154  // Apply any CVR qualifiers from the array type to the element type.  This
2155  // implements C99 6.7.3p8: "If the specification of an array type includes
2156  // any type qualifiers, the element type is so qualified, not the array type."
2157
2158  // If we get here, we either have type qualifiers on the type, or we have
2159  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2160  // we must propagate them down into the elemeng type.
2161  unsigned CVRQuals = T.getCVRQualifiers();
2162  unsigned AddrSpace = 0;
2163  Type *Ty = T.getTypePtr();
2164
2165  // Rip through ExtQualType's and typedefs to get to a concrete type.
2166  while (1) {
2167    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
2168      AddrSpace = EXTQT->getAddressSpace();
2169      Ty = EXTQT->getBaseType();
2170    } else {
2171      T = Ty->getDesugaredType();
2172      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
2173        break;
2174      CVRQuals |= T.getCVRQualifiers();
2175      Ty = T.getTypePtr();
2176    }
2177  }
2178
2179  // If we have a simple case, just return now.
2180  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2181  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
2182    return ATy;
2183
2184  // Otherwise, we have an array and we have qualifiers on it.  Push the
2185  // qualifiers into the array element type and return a new array type.
2186  // Get the canonical version of the element with the extra qualifiers on it.
2187  // This can recursively sink qualifiers through multiple levels of arrays.
2188  QualType NewEltTy = ATy->getElementType();
2189  if (AddrSpace)
2190    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
2191  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
2192
2193  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2194    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2195                                                CAT->getSizeModifier(),
2196                                                CAT->getIndexTypeQualifier()));
2197  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2198    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2199                                                  IAT->getSizeModifier(),
2200                                                  IAT->getIndexTypeQualifier()));
2201
2202  if (const DependentSizedArrayType *DSAT
2203        = dyn_cast<DependentSizedArrayType>(ATy))
2204    return cast<ArrayType>(
2205                     getDependentSizedArrayType(NewEltTy,
2206                                                DSAT->getSizeExpr(),
2207                                                DSAT->getSizeModifier(),
2208                                                DSAT->getIndexTypeQualifier(),
2209                                                DSAT->getBracketsRange()));
2210
2211  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2212  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2213                                              VAT->getSizeExpr(),
2214                                              VAT->getSizeModifier(),
2215                                              VAT->getIndexTypeQualifier(),
2216                                              VAT->getBracketsRange()));
2217}
2218
2219
2220/// getArrayDecayedType - Return the properly qualified result of decaying the
2221/// specified array type to a pointer.  This operation is non-trivial when
2222/// handling typedefs etc.  The canonical type of "T" must be an array type,
2223/// this returns a pointer to a properly qualified element of the array.
2224///
2225/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2226QualType ASTContext::getArrayDecayedType(QualType Ty) {
2227  // Get the element type with 'getAsArrayType' so that we don't lose any
2228  // typedefs in the element type of the array.  This also handles propagation
2229  // of type qualifiers from the array type into the element type if present
2230  // (C99 6.7.3p8).
2231  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2232  assert(PrettyArrayType && "Not an array type!");
2233
2234  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2235
2236  // int x[restrict 4] ->  int *restrict
2237  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
2238}
2239
2240QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
2241  QualType ElemTy = VAT->getElementType();
2242
2243  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
2244    return getBaseElementType(VAT);
2245
2246  return ElemTy;
2247}
2248
2249/// getFloatingRank - Return a relative rank for floating point types.
2250/// This routine will assert if passed a built-in type that isn't a float.
2251static FloatingRank getFloatingRank(QualType T) {
2252  if (const ComplexType *CT = T->getAsComplexType())
2253    return getFloatingRank(CT->getElementType());
2254
2255  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
2256  switch (T->getAsBuiltinType()->getKind()) {
2257  default: assert(0 && "getFloatingRank(): not a floating type");
2258  case BuiltinType::Float:      return FloatRank;
2259  case BuiltinType::Double:     return DoubleRank;
2260  case BuiltinType::LongDouble: return LongDoubleRank;
2261  }
2262}
2263
2264/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2265/// point or a complex type (based on typeDomain/typeSize).
2266/// 'typeDomain' is a real floating point or complex type.
2267/// 'typeSize' is a real floating point or complex type.
2268QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2269                                                       QualType Domain) const {
2270  FloatingRank EltRank = getFloatingRank(Size);
2271  if (Domain->isComplexType()) {
2272    switch (EltRank) {
2273    default: assert(0 && "getFloatingRank(): illegal value for rank");
2274    case FloatRank:      return FloatComplexTy;
2275    case DoubleRank:     return DoubleComplexTy;
2276    case LongDoubleRank: return LongDoubleComplexTy;
2277    }
2278  }
2279
2280  assert(Domain->isRealFloatingType() && "Unknown domain!");
2281  switch (EltRank) {
2282  default: assert(0 && "getFloatingRank(): illegal value for rank");
2283  case FloatRank:      return FloatTy;
2284  case DoubleRank:     return DoubleTy;
2285  case LongDoubleRank: return LongDoubleTy;
2286  }
2287}
2288
2289/// getFloatingTypeOrder - Compare the rank of the two specified floating
2290/// point types, ignoring the domain of the type (i.e. 'double' ==
2291/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2292/// LHS < RHS, return -1.
2293int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2294  FloatingRank LHSR = getFloatingRank(LHS);
2295  FloatingRank RHSR = getFloatingRank(RHS);
2296
2297  if (LHSR == RHSR)
2298    return 0;
2299  if (LHSR > RHSR)
2300    return 1;
2301  return -1;
2302}
2303
2304/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2305/// routine will assert if passed a built-in type that isn't an integer or enum,
2306/// or if it is not canonicalized.
2307unsigned ASTContext::getIntegerRank(Type *T) {
2308  assert(T->isCanonical() && "T should be canonicalized");
2309  if (EnumType* ET = dyn_cast<EnumType>(T))
2310    T = ET->getDecl()->getIntegerType().getTypePtr();
2311
2312  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2313    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2314
2315  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2316    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2317
2318  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2319    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2320
2321  // There are two things which impact the integer rank: the width, and
2322  // the ordering of builtins.  The builtin ordering is encoded in the
2323  // bottom three bits; the width is encoded in the bits above that.
2324  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2325    return FWIT->getWidth() << 3;
2326
2327  switch (cast<BuiltinType>(T)->getKind()) {
2328  default: assert(0 && "getIntegerRank(): not a built-in integer");
2329  case BuiltinType::Bool:
2330    return 1 + (getIntWidth(BoolTy) << 3);
2331  case BuiltinType::Char_S:
2332  case BuiltinType::Char_U:
2333  case BuiltinType::SChar:
2334  case BuiltinType::UChar:
2335    return 2 + (getIntWidth(CharTy) << 3);
2336  case BuiltinType::Short:
2337  case BuiltinType::UShort:
2338    return 3 + (getIntWidth(ShortTy) << 3);
2339  case BuiltinType::Int:
2340  case BuiltinType::UInt:
2341    return 4 + (getIntWidth(IntTy) << 3);
2342  case BuiltinType::Long:
2343  case BuiltinType::ULong:
2344    return 5 + (getIntWidth(LongTy) << 3);
2345  case BuiltinType::LongLong:
2346  case BuiltinType::ULongLong:
2347    return 6 + (getIntWidth(LongLongTy) << 3);
2348  case BuiltinType::Int128:
2349  case BuiltinType::UInt128:
2350    return 7 + (getIntWidth(Int128Ty) << 3);
2351  }
2352}
2353
2354/// getIntegerTypeOrder - Returns the highest ranked integer type:
2355/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2356/// LHS < RHS, return -1.
2357int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2358  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2359  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2360  if (LHSC == RHSC) return 0;
2361
2362  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2363  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2364
2365  unsigned LHSRank = getIntegerRank(LHSC);
2366  unsigned RHSRank = getIntegerRank(RHSC);
2367
2368  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2369    if (LHSRank == RHSRank) return 0;
2370    return LHSRank > RHSRank ? 1 : -1;
2371  }
2372
2373  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2374  if (LHSUnsigned) {
2375    // If the unsigned [LHS] type is larger, return it.
2376    if (LHSRank >= RHSRank)
2377      return 1;
2378
2379    // If the signed type can represent all values of the unsigned type, it
2380    // wins.  Because we are dealing with 2's complement and types that are
2381    // powers of two larger than each other, this is always safe.
2382    return -1;
2383  }
2384
2385  // If the unsigned [RHS] type is larger, return it.
2386  if (RHSRank >= LHSRank)
2387    return -1;
2388
2389  // If the signed type can represent all values of the unsigned type, it
2390  // wins.  Because we are dealing with 2's complement and types that are
2391  // powers of two larger than each other, this is always safe.
2392  return 1;
2393}
2394
2395// getCFConstantStringType - Return the type used for constant CFStrings.
2396QualType ASTContext::getCFConstantStringType() {
2397  if (!CFConstantStringTypeDecl) {
2398    CFConstantStringTypeDecl =
2399      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2400                         &Idents.get("NSConstantString"));
2401    QualType FieldTypes[4];
2402
2403    // const int *isa;
2404    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2405    // int flags;
2406    FieldTypes[1] = IntTy;
2407    // const char *str;
2408    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2409    // long length;
2410    FieldTypes[3] = LongTy;
2411
2412    // Create fields
2413    for (unsigned i = 0; i < 4; ++i) {
2414      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2415                                           SourceLocation(), 0,
2416                                           FieldTypes[i], /*BitWidth=*/0,
2417                                           /*Mutable=*/false);
2418      CFConstantStringTypeDecl->addDecl(Field);
2419    }
2420
2421    CFConstantStringTypeDecl->completeDefinition(*this);
2422  }
2423
2424  return getTagDeclType(CFConstantStringTypeDecl);
2425}
2426
2427void ASTContext::setCFConstantStringType(QualType T) {
2428  const RecordType *Rec = T->getAsRecordType();
2429  assert(Rec && "Invalid CFConstantStringType");
2430  CFConstantStringTypeDecl = Rec->getDecl();
2431}
2432
2433QualType ASTContext::getObjCFastEnumerationStateType()
2434{
2435  if (!ObjCFastEnumerationStateTypeDecl) {
2436    ObjCFastEnumerationStateTypeDecl =
2437      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2438                         &Idents.get("__objcFastEnumerationState"));
2439
2440    QualType FieldTypes[] = {
2441      UnsignedLongTy,
2442      getPointerType(ObjCIdTypedefType),
2443      getPointerType(UnsignedLongTy),
2444      getConstantArrayType(UnsignedLongTy,
2445                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2446    };
2447
2448    for (size_t i = 0; i < 4; ++i) {
2449      FieldDecl *Field = FieldDecl::Create(*this,
2450                                           ObjCFastEnumerationStateTypeDecl,
2451                                           SourceLocation(), 0,
2452                                           FieldTypes[i], /*BitWidth=*/0,
2453                                           /*Mutable=*/false);
2454      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2455    }
2456
2457    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2458  }
2459
2460  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2461}
2462
2463void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2464  const RecordType *Rec = T->getAsRecordType();
2465  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2466  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2467}
2468
2469// This returns true if a type has been typedefed to BOOL:
2470// typedef <type> BOOL;
2471static bool isTypeTypedefedAsBOOL(QualType T) {
2472  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2473    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2474      return II->isStr("BOOL");
2475
2476  return false;
2477}
2478
2479/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2480/// purpose.
2481int ASTContext::getObjCEncodingTypeSize(QualType type) {
2482  uint64_t sz = getTypeSize(type);
2483
2484  // Make all integer and enum types at least as large as an int
2485  if (sz > 0 && type->isIntegralType())
2486    sz = std::max(sz, getTypeSize(IntTy));
2487  // Treat arrays as pointers, since that's how they're passed in.
2488  else if (type->isArrayType())
2489    sz = getTypeSize(VoidPtrTy);
2490  return sz / getTypeSize(CharTy);
2491}
2492
2493/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2494/// declaration.
2495void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2496                                              std::string& S) {
2497  // FIXME: This is not very efficient.
2498  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2499  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2500  // Encode result type.
2501  getObjCEncodingForType(Decl->getResultType(), S);
2502  // Compute size of all parameters.
2503  // Start with computing size of a pointer in number of bytes.
2504  // FIXME: There might(should) be a better way of doing this computation!
2505  SourceLocation Loc;
2506  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2507  // The first two arguments (self and _cmd) are pointers; account for
2508  // their size.
2509  int ParmOffset = 2 * PtrSize;
2510  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2511       E = Decl->param_end(); PI != E; ++PI) {
2512    QualType PType = (*PI)->getType();
2513    int sz = getObjCEncodingTypeSize(PType);
2514    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2515    ParmOffset += sz;
2516  }
2517  S += llvm::utostr(ParmOffset);
2518  S += "@0:";
2519  S += llvm::utostr(PtrSize);
2520
2521  // Argument types.
2522  ParmOffset = 2 * PtrSize;
2523  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2524       E = Decl->param_end(); PI != E; ++PI) {
2525    ParmVarDecl *PVDecl = *PI;
2526    QualType PType = PVDecl->getOriginalType();
2527    if (const ArrayType *AT =
2528          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2529      // Use array's original type only if it has known number of
2530      // elements.
2531      if (!isa<ConstantArrayType>(AT))
2532        PType = PVDecl->getType();
2533    } else if (PType->isFunctionType())
2534      PType = PVDecl->getType();
2535    // Process argument qualifiers for user supplied arguments; such as,
2536    // 'in', 'inout', etc.
2537    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2538    getObjCEncodingForType(PType, S);
2539    S += llvm::utostr(ParmOffset);
2540    ParmOffset += getObjCEncodingTypeSize(PType);
2541  }
2542}
2543
2544/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2545/// property declaration. If non-NULL, Container must be either an
2546/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2547/// NULL when getting encodings for protocol properties.
2548/// Property attributes are stored as a comma-delimited C string. The simple
2549/// attributes readonly and bycopy are encoded as single characters. The
2550/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2551/// encoded as single characters, followed by an identifier. Property types
2552/// are also encoded as a parametrized attribute. The characters used to encode
2553/// these attributes are defined by the following enumeration:
2554/// @code
2555/// enum PropertyAttributes {
2556/// kPropertyReadOnly = 'R',   // property is read-only.
2557/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2558/// kPropertyByref = '&',  // property is a reference to the value last assigned
2559/// kPropertyDynamic = 'D',    // property is dynamic
2560/// kPropertyGetter = 'G',     // followed by getter selector name
2561/// kPropertySetter = 'S',     // followed by setter selector name
2562/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2563/// kPropertyType = 't'              // followed by old-style type encoding.
2564/// kPropertyWeak = 'W'              // 'weak' property
2565/// kPropertyStrong = 'P'            // property GC'able
2566/// kPropertyNonAtomic = 'N'         // property non-atomic
2567/// };
2568/// @endcode
2569void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2570                                                const Decl *Container,
2571                                                std::string& S) {
2572  // Collect information from the property implementation decl(s).
2573  bool Dynamic = false;
2574  ObjCPropertyImplDecl *SynthesizePID = 0;
2575
2576  // FIXME: Duplicated code due to poor abstraction.
2577  if (Container) {
2578    if (const ObjCCategoryImplDecl *CID =
2579        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2580      for (ObjCCategoryImplDecl::propimpl_iterator
2581             i = CID->propimpl_begin(), e = CID->propimpl_end();
2582           i != e; ++i) {
2583        ObjCPropertyImplDecl *PID = *i;
2584        if (PID->getPropertyDecl() == PD) {
2585          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2586            Dynamic = true;
2587          } else {
2588            SynthesizePID = PID;
2589          }
2590        }
2591      }
2592    } else {
2593      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2594      for (ObjCCategoryImplDecl::propimpl_iterator
2595             i = OID->propimpl_begin(), e = OID->propimpl_end();
2596           i != e; ++i) {
2597        ObjCPropertyImplDecl *PID = *i;
2598        if (PID->getPropertyDecl() == PD) {
2599          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2600            Dynamic = true;
2601          } else {
2602            SynthesizePID = PID;
2603          }
2604        }
2605      }
2606    }
2607  }
2608
2609  // FIXME: This is not very efficient.
2610  S = "T";
2611
2612  // Encode result type.
2613  // GCC has some special rules regarding encoding of properties which
2614  // closely resembles encoding of ivars.
2615  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2616                             true /* outermost type */,
2617                             true /* encoding for property */);
2618
2619  if (PD->isReadOnly()) {
2620    S += ",R";
2621  } else {
2622    switch (PD->getSetterKind()) {
2623    case ObjCPropertyDecl::Assign: break;
2624    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2625    case ObjCPropertyDecl::Retain: S += ",&"; break;
2626    }
2627  }
2628
2629  // It really isn't clear at all what this means, since properties
2630  // are "dynamic by default".
2631  if (Dynamic)
2632    S += ",D";
2633
2634  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2635    S += ",N";
2636
2637  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2638    S += ",G";
2639    S += PD->getGetterName().getAsString();
2640  }
2641
2642  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2643    S += ",S";
2644    S += PD->getSetterName().getAsString();
2645  }
2646
2647  if (SynthesizePID) {
2648    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2649    S += ",V";
2650    S += OID->getNameAsString();
2651  }
2652
2653  // FIXME: OBJCGC: weak & strong
2654}
2655
2656/// getLegacyIntegralTypeEncoding -
2657/// Another legacy compatibility encoding: 32-bit longs are encoded as
2658/// 'l' or 'L' , but not always.  For typedefs, we need to use
2659/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2660///
2661void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2662  if (dyn_cast<TypedefType>(PointeeTy.getTypePtr())) {
2663    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2664      if (BT->getKind() == BuiltinType::ULong &&
2665          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2666        PointeeTy = UnsignedIntTy;
2667      else
2668        if (BT->getKind() == BuiltinType::Long &&
2669            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2670          PointeeTy = IntTy;
2671    }
2672  }
2673}
2674
2675void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2676                                        const FieldDecl *Field) {
2677  // We follow the behavior of gcc, expanding structures which are
2678  // directly pointed to, and expanding embedded structures. Note that
2679  // these rules are sufficient to prevent recursive encoding of the
2680  // same type.
2681  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2682                             true /* outermost type */);
2683}
2684
2685static void EncodeBitField(const ASTContext *Context, std::string& S,
2686                           const FieldDecl *FD) {
2687  const Expr *E = FD->getBitWidth();
2688  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2689  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2690  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2691  S += 'b';
2692  S += llvm::utostr(N);
2693}
2694
2695void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2696                                            bool ExpandPointedToStructures,
2697                                            bool ExpandStructures,
2698                                            const FieldDecl *FD,
2699                                            bool OutermostType,
2700                                            bool EncodingProperty) {
2701  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2702    if (FD && FD->isBitField())
2703      return EncodeBitField(this, S, FD);
2704    char encoding;
2705    switch (BT->getKind()) {
2706    default: assert(0 && "Unhandled builtin type kind");
2707    case BuiltinType::Void:       encoding = 'v'; break;
2708    case BuiltinType::Bool:       encoding = 'B'; break;
2709    case BuiltinType::Char_U:
2710    case BuiltinType::UChar:      encoding = 'C'; break;
2711    case BuiltinType::UShort:     encoding = 'S'; break;
2712    case BuiltinType::UInt:       encoding = 'I'; break;
2713    case BuiltinType::ULong:
2714        encoding =
2715          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2716        break;
2717    case BuiltinType::UInt128:    encoding = 'T'; break;
2718    case BuiltinType::ULongLong:  encoding = 'Q'; break;
2719    case BuiltinType::Char_S:
2720    case BuiltinType::SChar:      encoding = 'c'; break;
2721    case BuiltinType::Short:      encoding = 's'; break;
2722    case BuiltinType::Int:        encoding = 'i'; break;
2723    case BuiltinType::Long:
2724      encoding =
2725        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2726      break;
2727    case BuiltinType::LongLong:   encoding = 'q'; break;
2728    case BuiltinType::Int128:     encoding = 't'; break;
2729    case BuiltinType::Float:      encoding = 'f'; break;
2730    case BuiltinType::Double:     encoding = 'd'; break;
2731    case BuiltinType::LongDouble: encoding = 'd'; break;
2732    }
2733
2734    S += encoding;
2735    return;
2736  }
2737
2738  if (const ComplexType *CT = T->getAsComplexType()) {
2739    S += 'j';
2740    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2741                               false);
2742    return;
2743  }
2744
2745  if (const PointerType *PT = T->getAsPointerType()) {
2746    QualType PointeeTy = PT->getPointeeType();
2747    bool isReadOnly = false;
2748    // For historical/compatibility reasons, the read-only qualifier of the
2749    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2750    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2751    // Also, do not emit the 'r' for anything but the outermost type!
2752    if (dyn_cast<TypedefType>(T.getTypePtr())) {
2753      if (OutermostType && T.isConstQualified()) {
2754        isReadOnly = true;
2755        S += 'r';
2756      }
2757    }
2758    else if (OutermostType) {
2759      QualType P = PointeeTy;
2760      while (P->getAsPointerType())
2761        P = P->getAsPointerType()->getPointeeType();
2762      if (P.isConstQualified()) {
2763        isReadOnly = true;
2764        S += 'r';
2765      }
2766    }
2767    if (isReadOnly) {
2768      // Another legacy compatibility encoding. Some ObjC qualifier and type
2769      // combinations need to be rearranged.
2770      // Rewrite "in const" from "nr" to "rn"
2771      const char * s = S.c_str();
2772      int len = S.length();
2773      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2774        std::string replace = "rn";
2775        S.replace(S.end()-2, S.end(), replace);
2776      }
2777    }
2778    if (isObjCSelType(PointeeTy)) {
2779      S += ':';
2780      return;
2781    }
2782
2783    if (PointeeTy->isCharType()) {
2784      // char pointer types should be encoded as '*' unless it is a
2785      // type that has been typedef'd to 'BOOL'.
2786      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2787        S += '*';
2788        return;
2789      }
2790    }
2791
2792    S += '^';
2793    getLegacyIntegralTypeEncoding(PointeeTy);
2794
2795    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
2796                               NULL);
2797    return;
2798  }
2799
2800  if (const ArrayType *AT =
2801      // Ignore type qualifiers etc.
2802        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2803    if (isa<IncompleteArrayType>(AT)) {
2804      // Incomplete arrays are encoded as a pointer to the array element.
2805      S += '^';
2806
2807      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2808                                 false, ExpandStructures, FD);
2809    } else {
2810      S += '[';
2811
2812      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2813        S += llvm::utostr(CAT->getSize().getZExtValue());
2814      else {
2815        //Variable length arrays are encoded as a regular array with 0 elements.
2816        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2817        S += '0';
2818      }
2819
2820      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2821                                 false, ExpandStructures, FD);
2822      S += ']';
2823    }
2824    return;
2825  }
2826
2827  if (T->getAsFunctionType()) {
2828    S += '?';
2829    return;
2830  }
2831
2832  if (const RecordType *RTy = T->getAsRecordType()) {
2833    RecordDecl *RDecl = RTy->getDecl();
2834    S += RDecl->isUnion() ? '(' : '{';
2835    // Anonymous structures print as '?'
2836    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2837      S += II->getName();
2838    } else {
2839      S += '?';
2840    }
2841    if (ExpandStructures) {
2842      S += '=';
2843      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
2844                                   FieldEnd = RDecl->field_end();
2845           Field != FieldEnd; ++Field) {
2846        if (FD) {
2847          S += '"';
2848          S += Field->getNameAsString();
2849          S += '"';
2850        }
2851
2852        // Special case bit-fields.
2853        if (Field->isBitField()) {
2854          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2855                                     (*Field));
2856        } else {
2857          QualType qt = Field->getType();
2858          getLegacyIntegralTypeEncoding(qt);
2859          getObjCEncodingForTypeImpl(qt, S, false, true,
2860                                     FD);
2861        }
2862      }
2863    }
2864    S += RDecl->isUnion() ? ')' : '}';
2865    return;
2866  }
2867
2868  if (T->isEnumeralType()) {
2869    if (FD && FD->isBitField())
2870      EncodeBitField(this, S, FD);
2871    else
2872      S += 'i';
2873    return;
2874  }
2875
2876  if (T->isBlockPointerType()) {
2877    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2878    return;
2879  }
2880
2881  if (T->isObjCInterfaceType()) {
2882    // @encode(class_name)
2883    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2884    S += '{';
2885    const IdentifierInfo *II = OI->getIdentifier();
2886    S += II->getName();
2887    S += '=';
2888    llvm::SmallVector<FieldDecl*, 32> RecFields;
2889    CollectObjCIvars(OI, RecFields);
2890    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2891      if (RecFields[i]->isBitField())
2892        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2893                                   RecFields[i]);
2894      else
2895        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2896                                   FD);
2897    }
2898    S += '}';
2899    return;
2900  }
2901
2902  if (const ObjCObjectPointerType *OPT = T->getAsObjCObjectPointerType()) {
2903    if (OPT->isObjCIdType()) {
2904      S += '@';
2905      return;
2906    }
2907
2908    if (OPT->isObjCClassType()) {
2909      S += '#';
2910      return;
2911    }
2912
2913    if (OPT->isObjCQualifiedIdType()) {
2914      getObjCEncodingForTypeImpl(getObjCIdType(), S,
2915                                 ExpandPointedToStructures,
2916                                 ExpandStructures, FD);
2917      if (FD || EncodingProperty) {
2918        // Note that we do extended encoding of protocol qualifer list
2919        // Only when doing ivar or property encoding.
2920        const ObjCObjectPointerType *QIDT = T->getAsObjCQualifiedIdType();
2921        S += '"';
2922        for (ObjCObjectPointerType::qual_iterator I = QIDT->qual_begin(),
2923             E = QIDT->qual_end(); I != E; ++I) {
2924          S += '<';
2925          S += (*I)->getNameAsString();
2926          S += '>';
2927        }
2928        S += '"';
2929      }
2930      return;
2931    }
2932
2933    QualType PointeeTy = OPT->getPointeeType();
2934    if (!EncodingProperty &&
2935        isa<TypedefType>(PointeeTy.getTypePtr())) {
2936      // Another historical/compatibility reason.
2937      // We encode the underlying type which comes out as
2938      // {...};
2939      S += '^';
2940      getObjCEncodingForTypeImpl(PointeeTy, S,
2941                                 false, ExpandPointedToStructures,
2942                                 NULL);
2943      return;
2944    }
2945
2946    S += '@';
2947    if (FD || EncodingProperty) {
2948      const ObjCInterfaceType *OIT = OPT->getInterfaceType();
2949      ObjCInterfaceDecl *OI = OIT->getDecl();
2950      S += '"';
2951      S += OI->getNameAsCString();
2952      for (ObjCInterfaceType::qual_iterator I = OIT->qual_begin(),
2953           E = OIT->qual_end(); I != E; ++I) {
2954        S += '<';
2955        S += (*I)->getNameAsString();
2956        S += '>';
2957      }
2958      S += '"';
2959    }
2960    return;
2961  }
2962
2963  assert(0 && "@encode for type not implemented!");
2964}
2965
2966void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2967                                                 std::string& S) const {
2968  if (QT & Decl::OBJC_TQ_In)
2969    S += 'n';
2970  if (QT & Decl::OBJC_TQ_Inout)
2971    S += 'N';
2972  if (QT & Decl::OBJC_TQ_Out)
2973    S += 'o';
2974  if (QT & Decl::OBJC_TQ_Bycopy)
2975    S += 'O';
2976  if (QT & Decl::OBJC_TQ_Byref)
2977    S += 'R';
2978  if (QT & Decl::OBJC_TQ_Oneway)
2979    S += 'V';
2980}
2981
2982void ASTContext::setBuiltinVaListType(QualType T) {
2983  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2984
2985  BuiltinVaListType = T;
2986}
2987
2988void ASTContext::setObjCIdType(QualType T) {
2989  ObjCIdTypedefType = T;
2990}
2991
2992void ASTContext::setObjCSelType(QualType T) {
2993  ObjCSelType = T;
2994
2995  const TypedefType *TT = T->getAsTypedefType();
2996  if (!TT)
2997    return;
2998  TypedefDecl *TD = TT->getDecl();
2999
3000  // typedef struct objc_selector *SEL;
3001  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
3002  if (!ptr)
3003    return;
3004  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
3005  if (!rec)
3006    return;
3007  SelStructType = rec;
3008}
3009
3010void ASTContext::setObjCProtoType(QualType QT) {
3011  ObjCProtoType = QT;
3012}
3013
3014void ASTContext::setObjCClassType(QualType T) {
3015  ObjCClassTypedefType = T;
3016}
3017
3018void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3019  assert(ObjCConstantStringType.isNull() &&
3020         "'NSConstantString' type already set!");
3021
3022  ObjCConstantStringType = getObjCInterfaceType(Decl);
3023}
3024
3025/// \brief Retrieve the template name that represents a qualified
3026/// template name such as \c std::vector.
3027TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3028                                                  bool TemplateKeyword,
3029                                                  TemplateDecl *Template) {
3030  llvm::FoldingSetNodeID ID;
3031  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3032
3033  void *InsertPos = 0;
3034  QualifiedTemplateName *QTN =
3035    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3036  if (!QTN) {
3037    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3038    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3039  }
3040
3041  return TemplateName(QTN);
3042}
3043
3044/// \brief Retrieve the template name that represents a dependent
3045/// template name such as \c MetaFun::template apply.
3046TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3047                                                  const IdentifierInfo *Name) {
3048  assert(NNS->isDependent() && "Nested name specifier must be dependent");
3049
3050  llvm::FoldingSetNodeID ID;
3051  DependentTemplateName::Profile(ID, NNS, Name);
3052
3053  void *InsertPos = 0;
3054  DependentTemplateName *QTN =
3055    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3056
3057  if (QTN)
3058    return TemplateName(QTN);
3059
3060  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3061  if (CanonNNS == NNS) {
3062    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3063  } else {
3064    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3065    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3066  }
3067
3068  DependentTemplateNames.InsertNode(QTN, InsertPos);
3069  return TemplateName(QTN);
3070}
3071
3072/// getFromTargetType - Given one of the integer types provided by
3073/// TargetInfo, produce the corresponding type. The unsigned @p Type
3074/// is actually a value of type @c TargetInfo::IntType.
3075QualType ASTContext::getFromTargetType(unsigned Type) const {
3076  switch (Type) {
3077  case TargetInfo::NoInt: return QualType();
3078  case TargetInfo::SignedShort: return ShortTy;
3079  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3080  case TargetInfo::SignedInt: return IntTy;
3081  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3082  case TargetInfo::SignedLong: return LongTy;
3083  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3084  case TargetInfo::SignedLongLong: return LongLongTy;
3085  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3086  }
3087
3088  assert(false && "Unhandled TargetInfo::IntType value");
3089  return QualType();
3090}
3091
3092//===----------------------------------------------------------------------===//
3093//                        Type Predicates.
3094//===----------------------------------------------------------------------===//
3095
3096/// isObjCNSObjectType - Return true if this is an NSObject object using
3097/// NSObject attribute on a c-style pointer type.
3098/// FIXME - Make it work directly on types.
3099/// FIXME: Move to Type.
3100///
3101bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3102  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3103    if (TypedefDecl *TD = TDT->getDecl())
3104      if (TD->getAttr<ObjCNSObjectAttr>())
3105        return true;
3106  }
3107  return false;
3108}
3109
3110/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3111/// garbage collection attribute.
3112///
3113QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3114  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
3115  if (getLangOptions().ObjC1 &&
3116      getLangOptions().getGCMode() != LangOptions::NonGC) {
3117    GCAttrs = Ty.getObjCGCAttr();
3118    // Default behavious under objective-c's gc is for objective-c pointers
3119    // (or pointers to them) be treated as though they were declared
3120    // as __strong.
3121    if (GCAttrs == QualType::GCNone) {
3122      if (Ty->isObjCObjectPointerType())
3123        GCAttrs = QualType::Strong;
3124      else if (Ty->isPointerType())
3125        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
3126    }
3127    // Non-pointers have none gc'able attribute regardless of the attribute
3128    // set on them.
3129    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3130      return QualType::GCNone;
3131  }
3132  return GCAttrs;
3133}
3134
3135//===----------------------------------------------------------------------===//
3136//                        Type Compatibility Testing
3137//===----------------------------------------------------------------------===//
3138
3139/// areCompatVectorTypes - Return true if the two specified vector types are
3140/// compatible.
3141static bool areCompatVectorTypes(const VectorType *LHS,
3142                                 const VectorType *RHS) {
3143  assert(LHS->isCanonical() && RHS->isCanonical());
3144  return LHS->getElementType() == RHS->getElementType() &&
3145         LHS->getNumElements() == RHS->getNumElements();
3146}
3147
3148/// canAssignObjCInterfaces - Return true if the two interface types are
3149/// compatible for assignment from RHS to LHS.  This handles validation of any
3150/// protocol qualifiers on the LHS or RHS.
3151///
3152/// FIXME: Move the following to ObjCObjectPointerType/ObjCInterfaceType.
3153bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3154                                         const ObjCObjectPointerType *RHSOPT) {
3155  // If either type represents the built-in 'id' or 'Class' types, return true.
3156  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3157    return true;
3158
3159  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3160  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3161  if (!LHS || !RHS) {
3162    // We have qualified builtin types.
3163    // Both the right and left sides have qualifiers.
3164    for (ObjCObjectPointerType::qual_iterator I = LHSOPT->qual_begin(),
3165         E = LHSOPT->qual_end(); I != E; ++I) {
3166      bool RHSImplementsProtocol = false;
3167
3168      // when comparing an id<P> on lhs with a static type on rhs,
3169      // see if static class implements all of id's protocols, directly or
3170      // through its super class and categories.
3171      for (ObjCObjectPointerType::qual_iterator J = RHSOPT->qual_begin(),
3172           E = RHSOPT->qual_end(); J != E; ++J) {
3173        if ((*J)->lookupProtocolNamed((*I)->getIdentifier())) {
3174          RHSImplementsProtocol = true;
3175          break;
3176        }
3177      }
3178      if (!RHSImplementsProtocol)
3179        return false;
3180    }
3181    // The RHS implements all protocols listed on the LHS.
3182    return true;
3183  }
3184  return canAssignObjCInterfaces(LHS, RHS);
3185}
3186
3187bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
3188                                         const ObjCInterfaceType *RHS) {
3189  // Verify that the base decls are compatible: the RHS must be a subclass of
3190  // the LHS.
3191  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
3192    return false;
3193
3194  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
3195  // protocol qualified at all, then we are good.
3196  if (!isa<ObjCQualifiedInterfaceType>(LHS))
3197    return true;
3198
3199  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
3200  // isn't a superset.
3201  if (!isa<ObjCQualifiedInterfaceType>(RHS))
3202    return true;  // FIXME: should return false!
3203
3204  // Finally, we must have two protocol-qualified interfaces.
3205  const ObjCQualifiedInterfaceType *LHSP =cast<ObjCQualifiedInterfaceType>(LHS);
3206  const ObjCQualifiedInterfaceType *RHSP =cast<ObjCQualifiedInterfaceType>(RHS);
3207
3208  // All LHS protocols must have a presence on the RHS.
3209  assert(LHSP->qual_begin() != LHSP->qual_end() && "Empty LHS protocol list?");
3210
3211  for (ObjCQualifiedInterfaceType::qual_iterator LHSPI = LHSP->qual_begin(),
3212                                                 LHSPE = LHSP->qual_end();
3213       LHSPI != LHSPE; LHSPI++) {
3214    bool RHSImplementsProtocol = false;
3215
3216    // If the RHS doesn't implement the protocol on the left, the types
3217    // are incompatible.
3218    for (ObjCQualifiedInterfaceType::qual_iterator RHSPI = RHSP->qual_begin(),
3219                                                   RHSPE = RHSP->qual_end();
3220         RHSPI != RHSPE; RHSPI++) {
3221      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
3222        RHSImplementsProtocol = true;
3223        break;
3224      }
3225    }
3226    // FIXME: For better diagnostics, consider passing back the protocol name.
3227    if (!RHSImplementsProtocol)
3228      return false;
3229  }
3230  // The RHS implements all protocols listed on the LHS.
3231  return true;
3232}
3233
3234bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
3235  // get the "pointed to" types
3236  const ObjCObjectPointerType *LHSOPT = LHS->getAsObjCObjectPointerType();
3237  const ObjCObjectPointerType *RHSOPT = RHS->getAsObjCObjectPointerType();
3238
3239  if (!LHSOPT || !RHSOPT)
3240    return false;
3241
3242  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
3243         canAssignObjCInterfaces(RHSOPT, LHSOPT);
3244}
3245
3246/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
3247/// both shall have the identically qualified version of a compatible type.
3248/// C99 6.2.7p1: Two types have compatible types if their types are the
3249/// same. See 6.7.[2,3,5] for additional rules.
3250bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
3251  return !mergeTypes(LHS, RHS).isNull();
3252}
3253
3254QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
3255  const FunctionType *lbase = lhs->getAsFunctionType();
3256  const FunctionType *rbase = rhs->getAsFunctionType();
3257  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
3258  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
3259  bool allLTypes = true;
3260  bool allRTypes = true;
3261
3262  // Check return type
3263  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
3264  if (retType.isNull()) return QualType();
3265  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
3266    allLTypes = false;
3267  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
3268    allRTypes = false;
3269
3270  if (lproto && rproto) { // two C99 style function prototypes
3271    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
3272           "C++ shouldn't be here");
3273    unsigned lproto_nargs = lproto->getNumArgs();
3274    unsigned rproto_nargs = rproto->getNumArgs();
3275
3276    // Compatible functions must have the same number of arguments
3277    if (lproto_nargs != rproto_nargs)
3278      return QualType();
3279
3280    // Variadic and non-variadic functions aren't compatible
3281    if (lproto->isVariadic() != rproto->isVariadic())
3282      return QualType();
3283
3284    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3285      return QualType();
3286
3287    // Check argument compatibility
3288    llvm::SmallVector<QualType, 10> types;
3289    for (unsigned i = 0; i < lproto_nargs; i++) {
3290      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3291      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3292      QualType argtype = mergeTypes(largtype, rargtype);
3293      if (argtype.isNull()) return QualType();
3294      types.push_back(argtype);
3295      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3296        allLTypes = false;
3297      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3298        allRTypes = false;
3299    }
3300    if (allLTypes) return lhs;
3301    if (allRTypes) return rhs;
3302    return getFunctionType(retType, types.begin(), types.size(),
3303                           lproto->isVariadic(), lproto->getTypeQuals());
3304  }
3305
3306  if (lproto) allRTypes = false;
3307  if (rproto) allLTypes = false;
3308
3309  const FunctionProtoType *proto = lproto ? lproto : rproto;
3310  if (proto) {
3311    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3312    if (proto->isVariadic()) return QualType();
3313    // Check that the types are compatible with the types that
3314    // would result from default argument promotions (C99 6.7.5.3p15).
3315    // The only types actually affected are promotable integer
3316    // types and floats, which would be passed as a different
3317    // type depending on whether the prototype is visible.
3318    unsigned proto_nargs = proto->getNumArgs();
3319    for (unsigned i = 0; i < proto_nargs; ++i) {
3320      QualType argTy = proto->getArgType(i);
3321      if (argTy->isPromotableIntegerType() ||
3322          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3323        return QualType();
3324    }
3325
3326    if (allLTypes) return lhs;
3327    if (allRTypes) return rhs;
3328    return getFunctionType(retType, proto->arg_type_begin(),
3329                           proto->getNumArgs(), lproto->isVariadic(),
3330                           lproto->getTypeQuals());
3331  }
3332
3333  if (allLTypes) return lhs;
3334  if (allRTypes) return rhs;
3335  return getFunctionNoProtoType(retType);
3336}
3337
3338QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3339  // C++ [expr]: If an expression initially has the type "reference to T", the
3340  // type is adjusted to "T" prior to any further analysis, the expression
3341  // designates the object or function denoted by the reference, and the
3342  // expression is an lvalue unless the reference is an rvalue reference and
3343  // the expression is a function call (possibly inside parentheses).
3344  // FIXME: C++ shouldn't be going through here!  The rules are different
3345  // enough that they should be handled separately.
3346  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3347  // shouldn't be going through here!
3348  if (const ReferenceType *RT = LHS->getAsReferenceType())
3349    LHS = RT->getPointeeType();
3350  if (const ReferenceType *RT = RHS->getAsReferenceType())
3351    RHS = RT->getPointeeType();
3352
3353  QualType LHSCan = getCanonicalType(LHS),
3354           RHSCan = getCanonicalType(RHS);
3355
3356  // If two types are identical, they are compatible.
3357  if (LHSCan == RHSCan)
3358    return LHS;
3359
3360  // If the qualifiers are different, the types aren't compatible
3361  // Note that we handle extended qualifiers later, in the
3362  // case for ExtQualType.
3363  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3364    return QualType();
3365
3366  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3367  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3368
3369  // We want to consider the two function types to be the same for these
3370  // comparisons, just force one to the other.
3371  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3372  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3373
3374  // Strip off objc_gc attributes off the top level so they can be merged.
3375  // This is a complete mess, but the attribute itself doesn't make much sense.
3376  if (RHSClass == Type::ExtQual) {
3377    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3378    if (GCAttr != QualType::GCNone) {
3379      QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3380      // __weak attribute must appear on both declarations.
3381      // __strong attribue is redundant if other decl is an objective-c
3382      // object pointer (or decorated with __strong attribute); otherwise
3383      // issue error.
3384      if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3385          (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3386           !LHSCan->isObjCObjectPointerType()))
3387        return QualType();
3388
3389      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3390                     RHS.getCVRQualifiers());
3391      QualType Result = mergeTypes(LHS, RHS);
3392      if (!Result.isNull()) {
3393        if (Result.getObjCGCAttr() == QualType::GCNone)
3394          Result = getObjCGCQualType(Result, GCAttr);
3395        else if (Result.getObjCGCAttr() != GCAttr)
3396          Result = QualType();
3397      }
3398      return Result;
3399    }
3400  }
3401  if (LHSClass == Type::ExtQual) {
3402    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3403    if (GCAttr != QualType::GCNone) {
3404      QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3405      // __weak attribute must appear on both declarations. __strong
3406      // __strong attribue is redundant if other decl is an objective-c
3407      // object pointer (or decorated with __strong attribute); otherwise
3408      // issue error.
3409      if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3410          (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3411           !RHSCan->isObjCObjectPointerType()))
3412        return QualType();
3413
3414      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3415                     LHS.getCVRQualifiers());
3416      QualType Result = mergeTypes(LHS, RHS);
3417      if (!Result.isNull()) {
3418        if (Result.getObjCGCAttr() == QualType::GCNone)
3419          Result = getObjCGCQualType(Result, GCAttr);
3420        else if (Result.getObjCGCAttr() != GCAttr)
3421          Result = QualType();
3422      }
3423      return Result;
3424    }
3425  }
3426
3427  // Same as above for arrays
3428  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3429    LHSClass = Type::ConstantArray;
3430  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3431    RHSClass = Type::ConstantArray;
3432
3433  // Canonicalize ExtVector -> Vector.
3434  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3435  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3436
3437  // Consider qualified interfaces and interfaces the same.
3438  // FIXME: Remove (ObjCObjectPointerType should obsolete this funny business).
3439  if (LHSClass == Type::ObjCQualifiedInterface) LHSClass = Type::ObjCInterface;
3440  if (RHSClass == Type::ObjCQualifiedInterface) RHSClass = Type::ObjCInterface;
3441
3442  // If the canonical type classes don't match.
3443  if (LHSClass != RHSClass) {
3444    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3445    // a signed integer type, or an unsigned integer type.
3446    if (const EnumType* ETy = LHS->getAsEnumType()) {
3447      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3448        return RHS;
3449    }
3450    if (const EnumType* ETy = RHS->getAsEnumType()) {
3451      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3452        return LHS;
3453    }
3454
3455    return QualType();
3456  }
3457
3458  // The canonical type classes match.
3459  switch (LHSClass) {
3460#define TYPE(Class, Base)
3461#define ABSTRACT_TYPE(Class, Base)
3462#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3463#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3464#include "clang/AST/TypeNodes.def"
3465    assert(false && "Non-canonical and dependent types shouldn't get here");
3466    return QualType();
3467
3468  case Type::LValueReference:
3469  case Type::RValueReference:
3470  case Type::MemberPointer:
3471    assert(false && "C++ should never be in mergeTypes");
3472    return QualType();
3473
3474  case Type::IncompleteArray:
3475  case Type::VariableArray:
3476  case Type::FunctionProto:
3477  case Type::ExtVector:
3478  case Type::ObjCQualifiedInterface:
3479    assert(false && "Types are eliminated above");
3480    return QualType();
3481
3482  case Type::Pointer:
3483  {
3484    // Merge two pointer types, while trying to preserve typedef info
3485    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3486    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3487    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3488    if (ResultType.isNull()) return QualType();
3489    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3490      return LHS;
3491    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3492      return RHS;
3493    return getPointerType(ResultType);
3494  }
3495  case Type::BlockPointer:
3496  {
3497    // Merge two block pointer types, while trying to preserve typedef info
3498    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3499    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3500    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3501    if (ResultType.isNull()) return QualType();
3502    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3503      return LHS;
3504    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3505      return RHS;
3506    return getBlockPointerType(ResultType);
3507  }
3508  case Type::ConstantArray:
3509  {
3510    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3511    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3512    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3513      return QualType();
3514
3515    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3516    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3517    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3518    if (ResultType.isNull()) return QualType();
3519    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3520      return LHS;
3521    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3522      return RHS;
3523    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3524                                          ArrayType::ArraySizeModifier(), 0);
3525    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3526                                          ArrayType::ArraySizeModifier(), 0);
3527    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3528    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3529    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3530      return LHS;
3531    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3532      return RHS;
3533    if (LVAT) {
3534      // FIXME: This isn't correct! But tricky to implement because
3535      // the array's size has to be the size of LHS, but the type
3536      // has to be different.
3537      return LHS;
3538    }
3539    if (RVAT) {
3540      // FIXME: This isn't correct! But tricky to implement because
3541      // the array's size has to be the size of RHS, but the type
3542      // has to be different.
3543      return RHS;
3544    }
3545    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3546    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3547    return getIncompleteArrayType(ResultType,
3548                                  ArrayType::ArraySizeModifier(), 0);
3549  }
3550  case Type::FunctionNoProto:
3551    return mergeFunctionTypes(LHS, RHS);
3552  case Type::Record:
3553  case Type::Enum:
3554    return QualType();
3555  case Type::Builtin:
3556    // Only exactly equal builtin types are compatible, which is tested above.
3557    return QualType();
3558  case Type::Complex:
3559    // Distinct complex types are incompatible.
3560    return QualType();
3561  case Type::Vector:
3562    // FIXME: The merged type should be an ExtVector!
3563    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3564      return LHS;
3565    return QualType();
3566  case Type::ObjCInterface: {
3567    // Check if the interfaces are assignment compatible.
3568    // FIXME: This should be type compatibility, e.g. whether
3569    // "LHS x; RHS x;" at global scope is legal.
3570    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3571    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3572    if (LHSIface && RHSIface &&
3573        canAssignObjCInterfaces(LHSIface, RHSIface))
3574      return LHS;
3575
3576    return QualType();
3577  }
3578  case Type::ObjCObjectPointer: {
3579    // FIXME: Incorporate tests from Sema::ObjCQualifiedIdTypesAreCompatible().
3580    if (LHS->isObjCQualifiedIdType() && RHS->isObjCQualifiedIdType())
3581      return QualType();
3582
3583    if (canAssignObjCInterfaces(LHS->getAsObjCObjectPointerType(),
3584                                RHS->getAsObjCObjectPointerType()))
3585      return LHS;
3586
3587    return QualType();
3588  }
3589  case Type::FixedWidthInt:
3590    // Distinct fixed-width integers are not compatible.
3591    return QualType();
3592  case Type::ExtQual:
3593    // FIXME: ExtQual types can be compatible even if they're not
3594    // identical!
3595    return QualType();
3596    // First attempt at an implementation, but I'm not really sure it's
3597    // right...
3598#if 0
3599    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3600    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3601    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3602        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3603      return QualType();
3604    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3605    LHSBase = QualType(LQual->getBaseType(), 0);
3606    RHSBase = QualType(RQual->getBaseType(), 0);
3607    ResultType = mergeTypes(LHSBase, RHSBase);
3608    if (ResultType.isNull()) return QualType();
3609    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3610    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3611      return LHS;
3612    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3613      return RHS;
3614    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3615    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3616    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3617    return ResultType;
3618#endif
3619
3620  case Type::TemplateSpecialization:
3621    assert(false && "Dependent types have no size");
3622    break;
3623  }
3624
3625  return QualType();
3626}
3627
3628//===----------------------------------------------------------------------===//
3629//                         Integer Predicates
3630//===----------------------------------------------------------------------===//
3631
3632unsigned ASTContext::getIntWidth(QualType T) {
3633  if (T == BoolTy)
3634    return 1;
3635  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3636    return FWIT->getWidth();
3637  }
3638  // For builtin types, just use the standard type sizing method
3639  return (unsigned)getTypeSize(T);
3640}
3641
3642QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3643  assert(T->isSignedIntegerType() && "Unexpected type");
3644  if (const EnumType* ETy = T->getAsEnumType())
3645    T = ETy->getDecl()->getIntegerType();
3646  const BuiltinType* BTy = T->getAsBuiltinType();
3647  assert (BTy && "Unexpected signed integer type");
3648  switch (BTy->getKind()) {
3649  case BuiltinType::Char_S:
3650  case BuiltinType::SChar:
3651    return UnsignedCharTy;
3652  case BuiltinType::Short:
3653    return UnsignedShortTy;
3654  case BuiltinType::Int:
3655    return UnsignedIntTy;
3656  case BuiltinType::Long:
3657    return UnsignedLongTy;
3658  case BuiltinType::LongLong:
3659    return UnsignedLongLongTy;
3660  case BuiltinType::Int128:
3661    return UnsignedInt128Ty;
3662  default:
3663    assert(0 && "Unexpected signed integer type");
3664    return QualType();
3665  }
3666}
3667
3668ExternalASTSource::~ExternalASTSource() { }
3669
3670void ExternalASTSource::PrintStats() { }
3671
3672
3673//===----------------------------------------------------------------------===//
3674//                          Builtin Type Computation
3675//===----------------------------------------------------------------------===//
3676
3677/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
3678/// pointer over the consumed characters.  This returns the resultant type.
3679static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
3680                                  ASTContext::GetBuiltinTypeError &Error,
3681                                  bool AllowTypeModifiers = true) {
3682  // Modifiers.
3683  int HowLong = 0;
3684  bool Signed = false, Unsigned = false;
3685
3686  // Read the modifiers first.
3687  bool Done = false;
3688  while (!Done) {
3689    switch (*Str++) {
3690    default: Done = true; --Str; break;
3691    case 'S':
3692      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
3693      assert(!Signed && "Can't use 'S' modifier multiple times!");
3694      Signed = true;
3695      break;
3696    case 'U':
3697      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
3698      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
3699      Unsigned = true;
3700      break;
3701    case 'L':
3702      assert(HowLong <= 2 && "Can't have LLLL modifier");
3703      ++HowLong;
3704      break;
3705    }
3706  }
3707
3708  QualType Type;
3709
3710  // Read the base type.
3711  switch (*Str++) {
3712  default: assert(0 && "Unknown builtin type letter!");
3713  case 'v':
3714    assert(HowLong == 0 && !Signed && !Unsigned &&
3715           "Bad modifiers used with 'v'!");
3716    Type = Context.VoidTy;
3717    break;
3718  case 'f':
3719    assert(HowLong == 0 && !Signed && !Unsigned &&
3720           "Bad modifiers used with 'f'!");
3721    Type = Context.FloatTy;
3722    break;
3723  case 'd':
3724    assert(HowLong < 2 && !Signed && !Unsigned &&
3725           "Bad modifiers used with 'd'!");
3726    if (HowLong)
3727      Type = Context.LongDoubleTy;
3728    else
3729      Type = Context.DoubleTy;
3730    break;
3731  case 's':
3732    assert(HowLong == 0 && "Bad modifiers used with 's'!");
3733    if (Unsigned)
3734      Type = Context.UnsignedShortTy;
3735    else
3736      Type = Context.ShortTy;
3737    break;
3738  case 'i':
3739    if (HowLong == 3)
3740      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
3741    else if (HowLong == 2)
3742      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
3743    else if (HowLong == 1)
3744      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
3745    else
3746      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
3747    break;
3748  case 'c':
3749    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
3750    if (Signed)
3751      Type = Context.SignedCharTy;
3752    else if (Unsigned)
3753      Type = Context.UnsignedCharTy;
3754    else
3755      Type = Context.CharTy;
3756    break;
3757  case 'b': // boolean
3758    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
3759    Type = Context.BoolTy;
3760    break;
3761  case 'z':  // size_t.
3762    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
3763    Type = Context.getSizeType();
3764    break;
3765  case 'F':
3766    Type = Context.getCFConstantStringType();
3767    break;
3768  case 'a':
3769    Type = Context.getBuiltinVaListType();
3770    assert(!Type.isNull() && "builtin va list type not initialized!");
3771    break;
3772  case 'A':
3773    // This is a "reference" to a va_list; however, what exactly
3774    // this means depends on how va_list is defined. There are two
3775    // different kinds of va_list: ones passed by value, and ones
3776    // passed by reference.  An example of a by-value va_list is
3777    // x86, where va_list is a char*. An example of by-ref va_list
3778    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
3779    // we want this argument to be a char*&; for x86-64, we want
3780    // it to be a __va_list_tag*.
3781    Type = Context.getBuiltinVaListType();
3782    assert(!Type.isNull() && "builtin va list type not initialized!");
3783    if (Type->isArrayType()) {
3784      Type = Context.getArrayDecayedType(Type);
3785    } else {
3786      Type = Context.getLValueReferenceType(Type);
3787    }
3788    break;
3789  case 'V': {
3790    char *End;
3791
3792    unsigned NumElements = strtoul(Str, &End, 10);
3793    assert(End != Str && "Missing vector size");
3794
3795    Str = End;
3796
3797    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
3798    Type = Context.getVectorType(ElementType, NumElements);
3799    break;
3800  }
3801  case 'P': {
3802    Type = Context.getFILEType();
3803    if (Type.isNull()) {
3804      Error = ASTContext::GE_Missing_FILE;
3805      return QualType();
3806    } else {
3807      break;
3808    }
3809  }
3810  }
3811
3812  if (!AllowTypeModifiers)
3813    return Type;
3814
3815  Done = false;
3816  while (!Done) {
3817    switch (*Str++) {
3818      default: Done = true; --Str; break;
3819      case '*':
3820        Type = Context.getPointerType(Type);
3821        break;
3822      case '&':
3823        Type = Context.getLValueReferenceType(Type);
3824        break;
3825      // FIXME: There's no way to have a built-in with an rvalue ref arg.
3826      case 'C':
3827        Type = Type.getQualifiedType(QualType::Const);
3828        break;
3829    }
3830  }
3831
3832  return Type;
3833}
3834
3835/// GetBuiltinType - Return the type for the specified builtin.
3836QualType ASTContext::GetBuiltinType(unsigned id,
3837                                    GetBuiltinTypeError &Error) {
3838  const char *TypeStr = BuiltinInfo.GetTypeString(id);
3839
3840  llvm::SmallVector<QualType, 8> ArgTypes;
3841
3842  Error = GE_None;
3843  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
3844  if (Error != GE_None)
3845    return QualType();
3846  while (TypeStr[0] && TypeStr[0] != '.') {
3847    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
3848    if (Error != GE_None)
3849      return QualType();
3850
3851    // Do array -> pointer decay.  The builtin should use the decayed type.
3852    if (Ty->isArrayType())
3853      Ty = getArrayDecayedType(Ty);
3854
3855    ArgTypes.push_back(Ty);
3856  }
3857
3858  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
3859         "'.' should only occur at end of builtin type list!");
3860
3861  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
3862  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
3863    return getFunctionNoProtoType(ResType);
3864  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
3865                         TypeStr[0] == '.', 0);
3866}
3867