ASTContext.cpp revision 9d156a7b1b2771e191f2f5a45a7b7a694129463b
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Support/raw_ostream.h"
32#include "CXXABI.h"
33
34using namespace clang;
35
36unsigned ASTContext::NumImplicitDefaultConstructors;
37unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
38unsigned ASTContext::NumImplicitCopyConstructors;
39unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
40unsigned ASTContext::NumImplicitCopyAssignmentOperators;
41unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
42unsigned ASTContext::NumImplicitDestructors;
43unsigned ASTContext::NumImplicitDestructorsDeclared;
44
45enum FloatingRank {
46  FloatRank, DoubleRank, LongDoubleRank
47};
48
49void
50ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
51                                               TemplateTemplateParmDecl *Parm) {
52  ID.AddInteger(Parm->getDepth());
53  ID.AddInteger(Parm->getPosition());
54  ID.AddBoolean(Parm->isParameterPack());
55
56  TemplateParameterList *Params = Parm->getTemplateParameters();
57  ID.AddInteger(Params->size());
58  for (TemplateParameterList::const_iterator P = Params->begin(),
59                                          PEnd = Params->end();
60       P != PEnd; ++P) {
61    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
62      ID.AddInteger(0);
63      ID.AddBoolean(TTP->isParameterPack());
64      continue;
65    }
66
67    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
68      ID.AddInteger(1);
69      ID.AddBoolean(NTTP->isParameterPack());
70      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
71      continue;
72    }
73
74    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
75    ID.AddInteger(2);
76    Profile(ID, TTP);
77  }
78}
79
80TemplateTemplateParmDecl *
81ASTContext::getCanonicalTemplateTemplateParmDecl(
82                                                 TemplateTemplateParmDecl *TTP) {
83  // Check if we already have a canonical template template parameter.
84  llvm::FoldingSetNodeID ID;
85  CanonicalTemplateTemplateParm::Profile(ID, TTP);
86  void *InsertPos = 0;
87  CanonicalTemplateTemplateParm *Canonical
88    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
89  if (Canonical)
90    return Canonical->getParam();
91
92  // Build a canonical template parameter list.
93  TemplateParameterList *Params = TTP->getTemplateParameters();
94  llvm::SmallVector<NamedDecl *, 4> CanonParams;
95  CanonParams.reserve(Params->size());
96  for (TemplateParameterList::const_iterator P = Params->begin(),
97                                          PEnd = Params->end();
98       P != PEnd; ++P) {
99    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
100      CanonParams.push_back(
101                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
102                                               SourceLocation(), TTP->getDepth(),
103                                               TTP->getIndex(), 0, false,
104                                               TTP->isParameterPack()));
105    else if (NonTypeTemplateParmDecl *NTTP
106             = dyn_cast<NonTypeTemplateParmDecl>(*P))
107      CanonParams.push_back(
108            NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
109                                            SourceLocation(), NTTP->getDepth(),
110                                            NTTP->getPosition(), 0,
111                                            getCanonicalType(NTTP->getType()),
112                                            NTTP->isParameterPack(),
113                                            0));
114    else
115      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
116                                           cast<TemplateTemplateParmDecl>(*P)));
117  }
118
119  TemplateTemplateParmDecl *CanonTTP
120    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
121                                       SourceLocation(), TTP->getDepth(),
122                                       TTP->getPosition(),
123                                       TTP->isParameterPack(),
124                                       0,
125                         TemplateParameterList::Create(*this, SourceLocation(),
126                                                       SourceLocation(),
127                                                       CanonParams.data(),
128                                                       CanonParams.size(),
129                                                       SourceLocation()));
130
131  // Get the new insert position for the node we care about.
132  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
133  assert(Canonical == 0 && "Shouldn't be in the map!");
134  (void)Canonical;
135
136  // Create the canonical template template parameter entry.
137  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
138  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
139  return CanonTTP;
140}
141
142CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
143  if (!LangOpts.CPlusPlus) return 0;
144
145  switch (T.getCXXABI()) {
146  case CXXABI_ARM:
147    return CreateARMCXXABI(*this);
148  case CXXABI_Itanium:
149    return CreateItaniumCXXABI(*this);
150  case CXXABI_Microsoft:
151    return CreateMicrosoftCXXABI(*this);
152  }
153  return 0;
154}
155
156ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
157                       const TargetInfo &t,
158                       IdentifierTable &idents, SelectorTable &sels,
159                       Builtin::Context &builtins,
160                       unsigned size_reserve) :
161  TemplateSpecializationTypes(this_()),
162  DependentTemplateSpecializationTypes(this_()),
163  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
164  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
165  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
166  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
167  NullTypeSourceInfo(QualType()),
168  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)), Target(t),
169  Idents(idents), Selectors(sels),
170  BuiltinInfo(builtins),
171  DeclarationNames(*this),
172  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
173  LastSDM(0, 0),
174  UniqueBlockByRefTypeID(0), UniqueBlockParmTypeID(0) {
175  ObjCIdRedefinitionType = QualType();
176  ObjCClassRedefinitionType = QualType();
177  ObjCSelRedefinitionType = QualType();
178  if (size_reserve > 0) Types.reserve(size_reserve);
179  TUDecl = TranslationUnitDecl::Create(*this);
180  InitBuiltinTypes();
181}
182
183ASTContext::~ASTContext() {
184  // Release the DenseMaps associated with DeclContext objects.
185  // FIXME: Is this the ideal solution?
186  ReleaseDeclContextMaps();
187
188  // Call all of the deallocation functions.
189  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
190    Deallocations[I].first(Deallocations[I].second);
191
192  // Release all of the memory associated with overridden C++ methods.
193  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
194         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
195       OM != OMEnd; ++OM)
196    OM->second.Destroy();
197
198  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
199  // because they can contain DenseMaps.
200  for (llvm::DenseMap<const ObjCContainerDecl*,
201       const ASTRecordLayout*>::iterator
202       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
203    // Increment in loop to prevent using deallocated memory.
204    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
205      R->Destroy(*this);
206
207  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
208       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
209    // Increment in loop to prevent using deallocated memory.
210    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
211      R->Destroy(*this);
212  }
213
214  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
215                                                    AEnd = DeclAttrs.end();
216       A != AEnd; ++A)
217    A->second->~AttrVec();
218}
219
220void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
221  Deallocations.push_back(std::make_pair(Callback, Data));
222}
223
224void
225ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
226  ExternalSource.reset(Source.take());
227}
228
229void ASTContext::PrintStats() const {
230  fprintf(stderr, "*** AST Context Stats:\n");
231  fprintf(stderr, "  %d types total.\n", (int)Types.size());
232
233  unsigned counts[] = {
234#define TYPE(Name, Parent) 0,
235#define ABSTRACT_TYPE(Name, Parent)
236#include "clang/AST/TypeNodes.def"
237    0 // Extra
238  };
239
240  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
241    Type *T = Types[i];
242    counts[(unsigned)T->getTypeClass()]++;
243  }
244
245  unsigned Idx = 0;
246  unsigned TotalBytes = 0;
247#define TYPE(Name, Parent)                                              \
248  if (counts[Idx])                                                      \
249    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
250  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
251  ++Idx;
252#define ABSTRACT_TYPE(Name, Parent)
253#include "clang/AST/TypeNodes.def"
254
255  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
256
257  // Implicit special member functions.
258  fprintf(stderr, "  %u/%u implicit default constructors created\n",
259          NumImplicitDefaultConstructorsDeclared,
260          NumImplicitDefaultConstructors);
261  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
262          NumImplicitCopyConstructorsDeclared,
263          NumImplicitCopyConstructors);
264  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
265          NumImplicitCopyAssignmentOperatorsDeclared,
266          NumImplicitCopyAssignmentOperators);
267  fprintf(stderr, "  %u/%u implicit destructors created\n",
268          NumImplicitDestructorsDeclared, NumImplicitDestructors);
269
270  if (ExternalSource.get()) {
271    fprintf(stderr, "\n");
272    ExternalSource->PrintStats();
273  }
274
275  BumpAlloc.PrintStats();
276}
277
278
279void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
280  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
281  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
282  Types.push_back(Ty);
283}
284
285void ASTContext::InitBuiltinTypes() {
286  assert(VoidTy.isNull() && "Context reinitialized?");
287
288  // C99 6.2.5p19.
289  InitBuiltinType(VoidTy,              BuiltinType::Void);
290
291  // C99 6.2.5p2.
292  InitBuiltinType(BoolTy,              BuiltinType::Bool);
293  // C99 6.2.5p3.
294  if (LangOpts.CharIsSigned)
295    InitBuiltinType(CharTy,            BuiltinType::Char_S);
296  else
297    InitBuiltinType(CharTy,            BuiltinType::Char_U);
298  // C99 6.2.5p4.
299  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
300  InitBuiltinType(ShortTy,             BuiltinType::Short);
301  InitBuiltinType(IntTy,               BuiltinType::Int);
302  InitBuiltinType(LongTy,              BuiltinType::Long);
303  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
304
305  // C99 6.2.5p6.
306  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
307  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
308  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
309  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
310  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
311
312  // C99 6.2.5p10.
313  InitBuiltinType(FloatTy,             BuiltinType::Float);
314  InitBuiltinType(DoubleTy,            BuiltinType::Double);
315  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
316
317  // GNU extension, 128-bit integers.
318  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
319  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
320
321  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
322    if (!LangOpts.ShortWChar)
323      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
324    else  // -fshort-wchar makes wchar_t be unsigned.
325      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
326  } else // C99
327    WCharTy = getFromTargetType(Target.getWCharType());
328
329  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
330    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
331  else // C99
332    Char16Ty = getFromTargetType(Target.getChar16Type());
333
334  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
335    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
336  else // C99
337    Char32Ty = getFromTargetType(Target.getChar32Type());
338
339  // Placeholder type for type-dependent expressions whose type is
340  // completely unknown. No code should ever check a type against
341  // DependentTy and users should never see it; however, it is here to
342  // help diagnose failures to properly check for type-dependent
343  // expressions.
344  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
345
346  // Placeholder type for functions.
347  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
348
349  // Placeholder type for C++0x auto declarations whose real type has
350  // not yet been deduced.
351  InitBuiltinType(UndeducedAutoTy,     BuiltinType::UndeducedAuto);
352
353  // C99 6.2.5p11.
354  FloatComplexTy      = getComplexType(FloatTy);
355  DoubleComplexTy     = getComplexType(DoubleTy);
356  LongDoubleComplexTy = getComplexType(LongDoubleTy);
357
358  BuiltinVaListType = QualType();
359
360  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
361  ObjCIdTypedefType = QualType();
362  ObjCClassTypedefType = QualType();
363  ObjCSelTypedefType = QualType();
364
365  // Builtin types for 'id', 'Class', and 'SEL'.
366  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
367  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
368  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
369
370  ObjCConstantStringType = QualType();
371
372  // void * type
373  VoidPtrTy = getPointerType(VoidTy);
374
375  // nullptr type (C++0x 2.14.7)
376  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
377}
378
379Diagnostic &ASTContext::getDiagnostics() const {
380  return SourceMgr.getDiagnostics();
381}
382
383AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
384  AttrVec *&Result = DeclAttrs[D];
385  if (!Result) {
386    void *Mem = Allocate(sizeof(AttrVec));
387    Result = new (Mem) AttrVec;
388  }
389
390  return *Result;
391}
392
393/// \brief Erase the attributes corresponding to the given declaration.
394void ASTContext::eraseDeclAttrs(const Decl *D) {
395  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
396  if (Pos != DeclAttrs.end()) {
397    Pos->second->~AttrVec();
398    DeclAttrs.erase(Pos);
399  }
400}
401
402
403MemberSpecializationInfo *
404ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
405  assert(Var->isStaticDataMember() && "Not a static data member");
406  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
407    = InstantiatedFromStaticDataMember.find(Var);
408  if (Pos == InstantiatedFromStaticDataMember.end())
409    return 0;
410
411  return Pos->second;
412}
413
414void
415ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
416                                                TemplateSpecializationKind TSK,
417                                          SourceLocation PointOfInstantiation) {
418  assert(Inst->isStaticDataMember() && "Not a static data member");
419  assert(Tmpl->isStaticDataMember() && "Not a static data member");
420  assert(!InstantiatedFromStaticDataMember[Inst] &&
421         "Already noted what static data member was instantiated from");
422  InstantiatedFromStaticDataMember[Inst]
423    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
424}
425
426NamedDecl *
427ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
428  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
429    = InstantiatedFromUsingDecl.find(UUD);
430  if (Pos == InstantiatedFromUsingDecl.end())
431    return 0;
432
433  return Pos->second;
434}
435
436void
437ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
438  assert((isa<UsingDecl>(Pattern) ||
439          isa<UnresolvedUsingValueDecl>(Pattern) ||
440          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
441         "pattern decl is not a using decl");
442  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
443  InstantiatedFromUsingDecl[Inst] = Pattern;
444}
445
446UsingShadowDecl *
447ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
448  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
449    = InstantiatedFromUsingShadowDecl.find(Inst);
450  if (Pos == InstantiatedFromUsingShadowDecl.end())
451    return 0;
452
453  return Pos->second;
454}
455
456void
457ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
458                                               UsingShadowDecl *Pattern) {
459  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
460  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
461}
462
463FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
464  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
465    = InstantiatedFromUnnamedFieldDecl.find(Field);
466  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
467    return 0;
468
469  return Pos->second;
470}
471
472void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
473                                                     FieldDecl *Tmpl) {
474  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
475  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
476  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
477         "Already noted what unnamed field was instantiated from");
478
479  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
480}
481
482ASTContext::overridden_cxx_method_iterator
483ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
484  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
485    = OverriddenMethods.find(Method);
486  if (Pos == OverriddenMethods.end())
487    return 0;
488
489  return Pos->second.begin();
490}
491
492ASTContext::overridden_cxx_method_iterator
493ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
494  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
495    = OverriddenMethods.find(Method);
496  if (Pos == OverriddenMethods.end())
497    return 0;
498
499  return Pos->second.end();
500}
501
502unsigned
503ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
504  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
505    = OverriddenMethods.find(Method);
506  if (Pos == OverriddenMethods.end())
507    return 0;
508
509  return Pos->second.size();
510}
511
512void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
513                                     const CXXMethodDecl *Overridden) {
514  OverriddenMethods[Method].push_back(Overridden);
515}
516
517//===----------------------------------------------------------------------===//
518//                         Type Sizing and Analysis
519//===----------------------------------------------------------------------===//
520
521/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
522/// scalar floating point type.
523const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
524  const BuiltinType *BT = T->getAs<BuiltinType>();
525  assert(BT && "Not a floating point type!");
526  switch (BT->getKind()) {
527  default: assert(0 && "Not a floating point type!");
528  case BuiltinType::Float:      return Target.getFloatFormat();
529  case BuiltinType::Double:     return Target.getDoubleFormat();
530  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
531  }
532}
533
534/// getDeclAlign - Return a conservative estimate of the alignment of the
535/// specified decl.  Note that bitfields do not have a valid alignment, so
536/// this method will assert on them.
537/// If @p RefAsPointee, references are treated like their underlying type
538/// (for alignof), else they're treated like pointers (for CodeGen).
539CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
540  unsigned Align = Target.getCharWidth();
541
542  bool UseAlignAttrOnly = false;
543  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
544    Align = AlignFromAttr;
545
546    // __attribute__((aligned)) can increase or decrease alignment
547    // *except* on a struct or struct member, where it only increases
548    // alignment unless 'packed' is also specified.
549    //
550    // It is an error for [[align]] to decrease alignment, so we can
551    // ignore that possibility;  Sema should diagnose it.
552    if (isa<FieldDecl>(D)) {
553      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
554        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
555    } else {
556      UseAlignAttrOnly = true;
557    }
558  }
559
560  if (UseAlignAttrOnly) {
561    // ignore type of value
562  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
563    QualType T = VD->getType();
564    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
565      if (RefAsPointee)
566        T = RT->getPointeeType();
567      else
568        T = getPointerType(RT->getPointeeType());
569    }
570    if (!T->isIncompleteType() && !T->isFunctionType()) {
571      unsigned MinWidth = Target.getLargeArrayMinWidth();
572      unsigned ArrayAlign = Target.getLargeArrayAlign();
573      if (isa<VariableArrayType>(T) && MinWidth != 0)
574        Align = std::max(Align, ArrayAlign);
575      if (ConstantArrayType *CT = dyn_cast<ConstantArrayType>(T)) {
576        unsigned Size = getTypeSize(CT);
577        if (MinWidth != 0 && MinWidth <= Size)
578          Align = std::max(Align, ArrayAlign);
579      }
580      // Incomplete or function types default to 1.
581      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
582        T = cast<ArrayType>(T)->getElementType();
583
584      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
585    }
586    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
587      // In the case of a field in a packed struct, we want the minimum
588      // of the alignment of the field and the alignment of the struct.
589      Align = std::min(Align,
590        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
591    }
592  }
593
594  return CharUnits::fromQuantity(Align / Target.getCharWidth());
595}
596
597std::pair<CharUnits, CharUnits>
598ASTContext::getTypeInfoInChars(const Type *T) {
599  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
600  return std::make_pair(CharUnits::fromQuantity(Info.first / getCharWidth()),
601                        CharUnits::fromQuantity(Info.second / getCharWidth()));
602}
603
604std::pair<CharUnits, CharUnits>
605ASTContext::getTypeInfoInChars(QualType T) {
606  return getTypeInfoInChars(T.getTypePtr());
607}
608
609/// getTypeSize - Return the size of the specified type, in bits.  This method
610/// does not work on incomplete types.
611///
612/// FIXME: Pointers into different addr spaces could have different sizes and
613/// alignment requirements: getPointerInfo should take an AddrSpace, this
614/// should take a QualType, &c.
615std::pair<uint64_t, unsigned>
616ASTContext::getTypeInfo(const Type *T) {
617  uint64_t Width=0;
618  unsigned Align=8;
619  switch (T->getTypeClass()) {
620#define TYPE(Class, Base)
621#define ABSTRACT_TYPE(Class, Base)
622#define NON_CANONICAL_TYPE(Class, Base)
623#define DEPENDENT_TYPE(Class, Base) case Type::Class:
624#include "clang/AST/TypeNodes.def"
625    assert(false && "Should not see dependent types");
626    break;
627
628  case Type::FunctionNoProto:
629  case Type::FunctionProto:
630    // GCC extension: alignof(function) = 32 bits
631    Width = 0;
632    Align = 32;
633    break;
634
635  case Type::IncompleteArray:
636  case Type::VariableArray:
637    Width = 0;
638    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
639    break;
640
641  case Type::ConstantArray: {
642    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
643
644    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
645    Width = EltInfo.first*CAT->getSize().getZExtValue();
646    Align = EltInfo.second;
647    break;
648  }
649  case Type::ExtVector:
650  case Type::Vector: {
651    const VectorType *VT = cast<VectorType>(T);
652    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
653    Width = EltInfo.first*VT->getNumElements();
654    Align = Width;
655    // If the alignment is not a power of 2, round up to the next power of 2.
656    // This happens for non-power-of-2 length vectors.
657    if (Align & (Align-1)) {
658      Align = llvm::NextPowerOf2(Align);
659      Width = llvm::RoundUpToAlignment(Width, Align);
660    }
661    break;
662  }
663
664  case Type::Builtin:
665    switch (cast<BuiltinType>(T)->getKind()) {
666    default: assert(0 && "Unknown builtin type!");
667    case BuiltinType::Void:
668      // GCC extension: alignof(void) = 8 bits.
669      Width = 0;
670      Align = 8;
671      break;
672
673    case BuiltinType::Bool:
674      Width = Target.getBoolWidth();
675      Align = Target.getBoolAlign();
676      break;
677    case BuiltinType::Char_S:
678    case BuiltinType::Char_U:
679    case BuiltinType::UChar:
680    case BuiltinType::SChar:
681      Width = Target.getCharWidth();
682      Align = Target.getCharAlign();
683      break;
684    case BuiltinType::WChar_S:
685    case BuiltinType::WChar_U:
686      Width = Target.getWCharWidth();
687      Align = Target.getWCharAlign();
688      break;
689    case BuiltinType::Char16:
690      Width = Target.getChar16Width();
691      Align = Target.getChar16Align();
692      break;
693    case BuiltinType::Char32:
694      Width = Target.getChar32Width();
695      Align = Target.getChar32Align();
696      break;
697    case BuiltinType::UShort:
698    case BuiltinType::Short:
699      Width = Target.getShortWidth();
700      Align = Target.getShortAlign();
701      break;
702    case BuiltinType::UInt:
703    case BuiltinType::Int:
704      Width = Target.getIntWidth();
705      Align = Target.getIntAlign();
706      break;
707    case BuiltinType::ULong:
708    case BuiltinType::Long:
709      Width = Target.getLongWidth();
710      Align = Target.getLongAlign();
711      break;
712    case BuiltinType::ULongLong:
713    case BuiltinType::LongLong:
714      Width = Target.getLongLongWidth();
715      Align = Target.getLongLongAlign();
716      break;
717    case BuiltinType::Int128:
718    case BuiltinType::UInt128:
719      Width = 128;
720      Align = 128; // int128_t is 128-bit aligned on all targets.
721      break;
722    case BuiltinType::Float:
723      Width = Target.getFloatWidth();
724      Align = Target.getFloatAlign();
725      break;
726    case BuiltinType::Double:
727      Width = Target.getDoubleWidth();
728      Align = Target.getDoubleAlign();
729      break;
730    case BuiltinType::LongDouble:
731      Width = Target.getLongDoubleWidth();
732      Align = Target.getLongDoubleAlign();
733      break;
734    case BuiltinType::NullPtr:
735      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
736      Align = Target.getPointerAlign(0); //   == sizeof(void*)
737      break;
738    case BuiltinType::ObjCId:
739    case BuiltinType::ObjCClass:
740    case BuiltinType::ObjCSel:
741      Width = Target.getPointerWidth(0);
742      Align = Target.getPointerAlign(0);
743      break;
744    }
745    break;
746  case Type::ObjCObjectPointer:
747    Width = Target.getPointerWidth(0);
748    Align = Target.getPointerAlign(0);
749    break;
750  case Type::BlockPointer: {
751    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
752    Width = Target.getPointerWidth(AS);
753    Align = Target.getPointerAlign(AS);
754    break;
755  }
756  case Type::LValueReference:
757  case Type::RValueReference: {
758    // alignof and sizeof should never enter this code path here, so we go
759    // the pointer route.
760    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
761    Width = Target.getPointerWidth(AS);
762    Align = Target.getPointerAlign(AS);
763    break;
764  }
765  case Type::Pointer: {
766    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
767    Width = Target.getPointerWidth(AS);
768    Align = Target.getPointerAlign(AS);
769    break;
770  }
771  case Type::MemberPointer: {
772    const MemberPointerType *MPT = cast<MemberPointerType>(T);
773    std::pair<uint64_t, unsigned> PtrDiffInfo =
774      getTypeInfo(getPointerDiffType());
775    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
776    Align = PtrDiffInfo.second;
777    break;
778  }
779  case Type::Complex: {
780    // Complex types have the same alignment as their elements, but twice the
781    // size.
782    std::pair<uint64_t, unsigned> EltInfo =
783      getTypeInfo(cast<ComplexType>(T)->getElementType());
784    Width = EltInfo.first*2;
785    Align = EltInfo.second;
786    break;
787  }
788  case Type::ObjCObject:
789    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
790  case Type::ObjCInterface: {
791    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
792    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
793    Width = Layout.getSize();
794    Align = Layout.getAlignment();
795    break;
796  }
797  case Type::Record:
798  case Type::Enum: {
799    const TagType *TT = cast<TagType>(T);
800
801    if (TT->getDecl()->isInvalidDecl()) {
802      Width = 1;
803      Align = 1;
804      break;
805    }
806
807    if (const EnumType *ET = dyn_cast<EnumType>(TT))
808      return getTypeInfo(ET->getDecl()->getIntegerType());
809
810    const RecordType *RT = cast<RecordType>(TT);
811    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
812    Width = Layout.getSize();
813    Align = Layout.getAlignment();
814    break;
815  }
816
817  case Type::SubstTemplateTypeParm:
818    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
819                       getReplacementType().getTypePtr());
820
821  case Type::Paren:
822    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
823
824  case Type::Typedef: {
825    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
826    std::pair<uint64_t, unsigned> Info
827      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
828    Align = std::max(Typedef->getMaxAlignment(), Info.second);
829    Width = Info.first;
830    break;
831  }
832
833  case Type::TypeOfExpr:
834    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
835                         .getTypePtr());
836
837  case Type::TypeOf:
838    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
839
840  case Type::Decltype:
841    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
842                        .getTypePtr());
843
844  case Type::Elaborated:
845    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
846
847  case Type::Attributed:
848    return getTypeInfo(
849                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
850
851  case Type::TemplateSpecialization:
852    assert(getCanonicalType(T) != T &&
853           "Cannot request the size of a dependent type");
854    // FIXME: this is likely to be wrong once we support template
855    // aliases, since a template alias could refer to a typedef that
856    // has an __aligned__ attribute on it.
857    return getTypeInfo(getCanonicalType(T));
858  }
859
860  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
861  return std::make_pair(Width, Align);
862}
863
864/// getTypeSizeInChars - Return the size of the specified type, in characters.
865/// This method does not work on incomplete types.
866CharUnits ASTContext::getTypeSizeInChars(QualType T) {
867  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
868}
869CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
870  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
871}
872
873/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
874/// characters. This method does not work on incomplete types.
875CharUnits ASTContext::getTypeAlignInChars(QualType T) {
876  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
877}
878CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
879  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
880}
881
882/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
883/// type for the current target in bits.  This can be different than the ABI
884/// alignment in cases where it is beneficial for performance to overalign
885/// a data type.
886unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
887  unsigned ABIAlign = getTypeAlign(T);
888
889  // Double and long long should be naturally aligned if possible.
890  if (const ComplexType* CT = T->getAs<ComplexType>())
891    T = CT->getElementType().getTypePtr();
892  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
893      T->isSpecificBuiltinType(BuiltinType::LongLong))
894    return std::max(ABIAlign, (unsigned)getTypeSize(T));
895
896  return ABIAlign;
897}
898
899/// ShallowCollectObjCIvars -
900/// Collect all ivars, including those synthesized, in the current class.
901///
902void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
903                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
904  // FIXME. This need be removed but there are two many places which
905  // assume const-ness of ObjCInterfaceDecl
906  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
907  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
908        Iv= Iv->getNextIvar())
909    Ivars.push_back(Iv);
910}
911
912/// DeepCollectObjCIvars -
913/// This routine first collects all declared, but not synthesized, ivars in
914/// super class and then collects all ivars, including those synthesized for
915/// current class. This routine is used for implementation of current class
916/// when all ivars, declared and synthesized are known.
917///
918void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
919                                      bool leafClass,
920                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
921  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
922    DeepCollectObjCIvars(SuperClass, false, Ivars);
923  if (!leafClass) {
924    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
925         E = OI->ivar_end(); I != E; ++I)
926      Ivars.push_back(*I);
927  }
928  else
929    ShallowCollectObjCIvars(OI, Ivars);
930}
931
932/// CollectInheritedProtocols - Collect all protocols in current class and
933/// those inherited by it.
934void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
935                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
936  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
937    // We can use protocol_iterator here instead of
938    // all_referenced_protocol_iterator since we are walking all categories.
939    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
940         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
941      ObjCProtocolDecl *Proto = (*P);
942      Protocols.insert(Proto);
943      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
944           PE = Proto->protocol_end(); P != PE; ++P) {
945        Protocols.insert(*P);
946        CollectInheritedProtocols(*P, Protocols);
947      }
948    }
949
950    // Categories of this Interface.
951    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
952         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
953      CollectInheritedProtocols(CDeclChain, Protocols);
954    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
955      while (SD) {
956        CollectInheritedProtocols(SD, Protocols);
957        SD = SD->getSuperClass();
958      }
959  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
960    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
961         PE = OC->protocol_end(); P != PE; ++P) {
962      ObjCProtocolDecl *Proto = (*P);
963      Protocols.insert(Proto);
964      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
965           PE = Proto->protocol_end(); P != PE; ++P)
966        CollectInheritedProtocols(*P, Protocols);
967    }
968  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
969    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
970         PE = OP->protocol_end(); P != PE; ++P) {
971      ObjCProtocolDecl *Proto = (*P);
972      Protocols.insert(Proto);
973      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
974           PE = Proto->protocol_end(); P != PE; ++P)
975        CollectInheritedProtocols(*P, Protocols);
976    }
977  }
978}
979
980unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
981  unsigned count = 0;
982  // Count ivars declared in class extension.
983  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
984       CDecl = CDecl->getNextClassExtension())
985    count += CDecl->ivar_size();
986
987  // Count ivar defined in this class's implementation.  This
988  // includes synthesized ivars.
989  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
990    count += ImplDecl->ivar_size();
991
992  return count;
993}
994
995/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
996ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
997  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
998    I = ObjCImpls.find(D);
999  if (I != ObjCImpls.end())
1000    return cast<ObjCImplementationDecl>(I->second);
1001  return 0;
1002}
1003/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1004ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1005  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1006    I = ObjCImpls.find(D);
1007  if (I != ObjCImpls.end())
1008    return cast<ObjCCategoryImplDecl>(I->second);
1009  return 0;
1010}
1011
1012/// \brief Set the implementation of ObjCInterfaceDecl.
1013void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1014                           ObjCImplementationDecl *ImplD) {
1015  assert(IFaceD && ImplD && "Passed null params");
1016  ObjCImpls[IFaceD] = ImplD;
1017}
1018/// \brief Set the implementation of ObjCCategoryDecl.
1019void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1020                           ObjCCategoryImplDecl *ImplD) {
1021  assert(CatD && ImplD && "Passed null params");
1022  ObjCImpls[CatD] = ImplD;
1023}
1024
1025/// \brief Get the copy initialization expression of VarDecl,or NULL if
1026/// none exists.
1027Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1028  assert(VD && "Passed null params");
1029  assert(VD->hasAttr<BlocksAttr>() &&
1030         "getBlockVarCopyInits - not __block var");
1031  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1032    I = BlockVarCopyInits.find(VD);
1033  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1034}
1035
1036/// \brief Set the copy inialization expression of a block var decl.
1037void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1038  assert(VD && Init && "Passed null params");
1039  assert(VD->hasAttr<BlocksAttr>() &&
1040         "setBlockVarCopyInits - not __block var");
1041  BlockVarCopyInits[VD] = Init;
1042}
1043
1044/// \brief Allocate an uninitialized TypeSourceInfo.
1045///
1046/// The caller should initialize the memory held by TypeSourceInfo using
1047/// the TypeLoc wrappers.
1048///
1049/// \param T the type that will be the basis for type source info. This type
1050/// should refer to how the declarator was written in source code, not to
1051/// what type semantic analysis resolved the declarator to.
1052TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1053                                                 unsigned DataSize) {
1054  if (!DataSize)
1055    DataSize = TypeLoc::getFullDataSizeForType(T);
1056  else
1057    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1058           "incorrect data size provided to CreateTypeSourceInfo!");
1059
1060  TypeSourceInfo *TInfo =
1061    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1062  new (TInfo) TypeSourceInfo(T);
1063  return TInfo;
1064}
1065
1066TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1067                                                     SourceLocation L) {
1068  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1069  DI->getTypeLoc().initialize(L);
1070  return DI;
1071}
1072
1073const ASTRecordLayout &
1074ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1075  return getObjCLayout(D, 0);
1076}
1077
1078const ASTRecordLayout &
1079ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1080  return getObjCLayout(D->getClassInterface(), D);
1081}
1082
1083//===----------------------------------------------------------------------===//
1084//                   Type creation/memoization methods
1085//===----------------------------------------------------------------------===//
1086
1087QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1088  unsigned Fast = Quals.getFastQualifiers();
1089  Quals.removeFastQualifiers();
1090
1091  // Check if we've already instantiated this type.
1092  llvm::FoldingSetNodeID ID;
1093  ExtQuals::Profile(ID, TypeNode, Quals);
1094  void *InsertPos = 0;
1095  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1096    assert(EQ->getQualifiers() == Quals);
1097    QualType T = QualType(EQ, Fast);
1098    return T;
1099  }
1100
1101  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(TypeNode, Quals);
1102  ExtQualNodes.InsertNode(New, InsertPos);
1103  QualType T = QualType(New, Fast);
1104  return T;
1105}
1106
1107QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1108  QualType CanT = getCanonicalType(T);
1109  if (CanT.getAddressSpace() == AddressSpace)
1110    return T;
1111
1112  // If we are composing extended qualifiers together, merge together
1113  // into one ExtQuals node.
1114  QualifierCollector Quals;
1115  const Type *TypeNode = Quals.strip(T);
1116
1117  // If this type already has an address space specified, it cannot get
1118  // another one.
1119  assert(!Quals.hasAddressSpace() &&
1120         "Type cannot be in multiple addr spaces!");
1121  Quals.addAddressSpace(AddressSpace);
1122
1123  return getExtQualType(TypeNode, Quals);
1124}
1125
1126QualType ASTContext::getObjCGCQualType(QualType T,
1127                                       Qualifiers::GC GCAttr) {
1128  QualType CanT = getCanonicalType(T);
1129  if (CanT.getObjCGCAttr() == GCAttr)
1130    return T;
1131
1132  if (const PointerType *ptr = T->getAs<PointerType>()) {
1133    QualType Pointee = ptr->getPointeeType();
1134    if (Pointee->isAnyPointerType()) {
1135      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1136      return getPointerType(ResultType);
1137    }
1138  }
1139
1140  // If we are composing extended qualifiers together, merge together
1141  // into one ExtQuals node.
1142  QualifierCollector Quals;
1143  const Type *TypeNode = Quals.strip(T);
1144
1145  // If this type already has an ObjCGC specified, it cannot get
1146  // another one.
1147  assert(!Quals.hasObjCGCAttr() &&
1148         "Type cannot have multiple ObjCGCs!");
1149  Quals.addObjCGCAttr(GCAttr);
1150
1151  return getExtQualType(TypeNode, Quals);
1152}
1153
1154const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1155                                                   FunctionType::ExtInfo Info) {
1156  if (T->getExtInfo() == Info)
1157    return T;
1158
1159  QualType Result;
1160  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1161    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1162  } else {
1163    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1164    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1165    EPI.ExtInfo = Info;
1166    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1167                             FPT->getNumArgs(), EPI);
1168  }
1169
1170  return cast<FunctionType>(Result.getTypePtr());
1171}
1172
1173/// getComplexType - Return the uniqued reference to the type for a complex
1174/// number with the specified element type.
1175QualType ASTContext::getComplexType(QualType T) {
1176  // Unique pointers, to guarantee there is only one pointer of a particular
1177  // structure.
1178  llvm::FoldingSetNodeID ID;
1179  ComplexType::Profile(ID, T);
1180
1181  void *InsertPos = 0;
1182  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1183    return QualType(CT, 0);
1184
1185  // If the pointee type isn't canonical, this won't be a canonical type either,
1186  // so fill in the canonical type field.
1187  QualType Canonical;
1188  if (!T.isCanonical()) {
1189    Canonical = getComplexType(getCanonicalType(T));
1190
1191    // Get the new insert position for the node we care about.
1192    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1193    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1194  }
1195  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1196  Types.push_back(New);
1197  ComplexTypes.InsertNode(New, InsertPos);
1198  return QualType(New, 0);
1199}
1200
1201/// getPointerType - Return the uniqued reference to the type for a pointer to
1202/// the specified type.
1203QualType ASTContext::getPointerType(QualType T) {
1204  // Unique pointers, to guarantee there is only one pointer of a particular
1205  // structure.
1206  llvm::FoldingSetNodeID ID;
1207  PointerType::Profile(ID, T);
1208
1209  void *InsertPos = 0;
1210  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1211    return QualType(PT, 0);
1212
1213  // If the pointee type isn't canonical, this won't be a canonical type either,
1214  // so fill in the canonical type field.
1215  QualType Canonical;
1216  if (!T.isCanonical()) {
1217    Canonical = getPointerType(getCanonicalType(T));
1218
1219    // Get the new insert position for the node we care about.
1220    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1221    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1222  }
1223  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1224  Types.push_back(New);
1225  PointerTypes.InsertNode(New, InsertPos);
1226  return QualType(New, 0);
1227}
1228
1229/// getBlockPointerType - Return the uniqued reference to the type for
1230/// a pointer to the specified block.
1231QualType ASTContext::getBlockPointerType(QualType T) {
1232  assert(T->isFunctionType() && "block of function types only");
1233  // Unique pointers, to guarantee there is only one block of a particular
1234  // structure.
1235  llvm::FoldingSetNodeID ID;
1236  BlockPointerType::Profile(ID, T);
1237
1238  void *InsertPos = 0;
1239  if (BlockPointerType *PT =
1240        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1241    return QualType(PT, 0);
1242
1243  // If the block pointee type isn't canonical, this won't be a canonical
1244  // type either so fill in the canonical type field.
1245  QualType Canonical;
1246  if (!T.isCanonical()) {
1247    Canonical = getBlockPointerType(getCanonicalType(T));
1248
1249    // Get the new insert position for the node we care about.
1250    BlockPointerType *NewIP =
1251      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1252    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1253  }
1254  BlockPointerType *New
1255    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1256  Types.push_back(New);
1257  BlockPointerTypes.InsertNode(New, InsertPos);
1258  return QualType(New, 0);
1259}
1260
1261/// getLValueReferenceType - Return the uniqued reference to the type for an
1262/// lvalue reference to the specified type.
1263QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1264  // Unique pointers, to guarantee there is only one pointer of a particular
1265  // structure.
1266  llvm::FoldingSetNodeID ID;
1267  ReferenceType::Profile(ID, T, SpelledAsLValue);
1268
1269  void *InsertPos = 0;
1270  if (LValueReferenceType *RT =
1271        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1272    return QualType(RT, 0);
1273
1274  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1275
1276  // If the referencee type isn't canonical, this won't be a canonical type
1277  // either, so fill in the canonical type field.
1278  QualType Canonical;
1279  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1280    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1281    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1282
1283    // Get the new insert position for the node we care about.
1284    LValueReferenceType *NewIP =
1285      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1286    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1287  }
1288
1289  LValueReferenceType *New
1290    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1291                                                     SpelledAsLValue);
1292  Types.push_back(New);
1293  LValueReferenceTypes.InsertNode(New, InsertPos);
1294
1295  return QualType(New, 0);
1296}
1297
1298/// getRValueReferenceType - Return the uniqued reference to the type for an
1299/// rvalue reference to the specified type.
1300QualType ASTContext::getRValueReferenceType(QualType T) {
1301  // Unique pointers, to guarantee there is only one pointer of a particular
1302  // structure.
1303  llvm::FoldingSetNodeID ID;
1304  ReferenceType::Profile(ID, T, false);
1305
1306  void *InsertPos = 0;
1307  if (RValueReferenceType *RT =
1308        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1309    return QualType(RT, 0);
1310
1311  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1312
1313  // If the referencee type isn't canonical, this won't be a canonical type
1314  // either, so fill in the canonical type field.
1315  QualType Canonical;
1316  if (InnerRef || !T.isCanonical()) {
1317    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1318    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1319
1320    // Get the new insert position for the node we care about.
1321    RValueReferenceType *NewIP =
1322      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1323    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1324  }
1325
1326  RValueReferenceType *New
1327    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1328  Types.push_back(New);
1329  RValueReferenceTypes.InsertNode(New, InsertPos);
1330  return QualType(New, 0);
1331}
1332
1333/// getMemberPointerType - Return the uniqued reference to the type for a
1334/// member pointer to the specified type, in the specified class.
1335QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1336  // Unique pointers, to guarantee there is only one pointer of a particular
1337  // structure.
1338  llvm::FoldingSetNodeID ID;
1339  MemberPointerType::Profile(ID, T, Cls);
1340
1341  void *InsertPos = 0;
1342  if (MemberPointerType *PT =
1343      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1344    return QualType(PT, 0);
1345
1346  // If the pointee or class type isn't canonical, this won't be a canonical
1347  // type either, so fill in the canonical type field.
1348  QualType Canonical;
1349  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1350    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1351
1352    // Get the new insert position for the node we care about.
1353    MemberPointerType *NewIP =
1354      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1355    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1356  }
1357  MemberPointerType *New
1358    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1359  Types.push_back(New);
1360  MemberPointerTypes.InsertNode(New, InsertPos);
1361  return QualType(New, 0);
1362}
1363
1364/// getConstantArrayType - Return the unique reference to the type for an
1365/// array of the specified element type.
1366QualType ASTContext::getConstantArrayType(QualType EltTy,
1367                                          const llvm::APInt &ArySizeIn,
1368                                          ArrayType::ArraySizeModifier ASM,
1369                                          unsigned EltTypeQuals) {
1370  assert((EltTy->isDependentType() ||
1371          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1372         "Constant array of VLAs is illegal!");
1373
1374  // Convert the array size into a canonical width matching the pointer size for
1375  // the target.
1376  llvm::APInt ArySize(ArySizeIn);
1377  ArySize =
1378    ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1379
1380  llvm::FoldingSetNodeID ID;
1381  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1382
1383  void *InsertPos = 0;
1384  if (ConstantArrayType *ATP =
1385      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1386    return QualType(ATP, 0);
1387
1388  // If the element type isn't canonical, this won't be a canonical type either,
1389  // so fill in the canonical type field.
1390  QualType Canonical;
1391  if (!EltTy.isCanonical()) {
1392    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1393                                     ASM, EltTypeQuals);
1394    // Get the new insert position for the node we care about.
1395    ConstantArrayType *NewIP =
1396      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1397    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1398  }
1399
1400  ConstantArrayType *New = new(*this,TypeAlignment)
1401    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1402  ConstantArrayTypes.InsertNode(New, InsertPos);
1403  Types.push_back(New);
1404  return QualType(New, 0);
1405}
1406
1407/// getIncompleteArrayType - Returns a unique reference to the type for a
1408/// incomplete array of the specified element type.
1409QualType ASTContext::getUnknownSizeVariableArrayType(QualType Ty) {
1410  QualType ElemTy = getBaseElementType(Ty);
1411  DeclarationName Name;
1412  llvm::SmallVector<QualType, 8> ATypes;
1413  QualType ATy = Ty;
1414  while (const ArrayType *AT = getAsArrayType(ATy)) {
1415    ATypes.push_back(ATy);
1416    ATy = AT->getElementType();
1417  }
1418  for (int i = ATypes.size() - 1; i >= 0; i--) {
1419    if (const VariableArrayType *VAT = getAsVariableArrayType(ATypes[i])) {
1420      ElemTy = getVariableArrayType(ElemTy, /*ArraySize*/0, ArrayType::Star,
1421                                    0, VAT->getBracketsRange());
1422    }
1423    else if (const ConstantArrayType *CAT = getAsConstantArrayType(ATypes[i])) {
1424      llvm::APSInt ConstVal(CAT->getSize());
1425      ElemTy = getConstantArrayType(ElemTy, ConstVal, ArrayType::Normal, 0);
1426    }
1427    else if (getAsIncompleteArrayType(ATypes[i])) {
1428      ElemTy = getVariableArrayType(ElemTy, /*ArraySize*/0, ArrayType::Normal,
1429                                    0, SourceRange());
1430    }
1431    else
1432      assert(false && "DependentArrayType is seen");
1433  }
1434  return ElemTy;
1435}
1436
1437/// getVariableArrayDecayedType - Returns a vla type where known sizes
1438/// are replaced with [*]
1439QualType ASTContext::getVariableArrayDecayedType(QualType Ty) {
1440  if (Ty->isPointerType()) {
1441    QualType BaseType = Ty->getAs<PointerType>()->getPointeeType();
1442    if (isa<VariableArrayType>(BaseType)) {
1443      ArrayType *AT = dyn_cast<ArrayType>(BaseType);
1444      VariableArrayType *VAT = cast<VariableArrayType>(AT);
1445      if (VAT->getSizeExpr()) {
1446        Ty = getUnknownSizeVariableArrayType(BaseType);
1447        Ty = getPointerType(Ty);
1448      }
1449    }
1450  }
1451  return Ty;
1452}
1453
1454
1455/// getVariableArrayType - Returns a non-unique reference to the type for a
1456/// variable array of the specified element type.
1457QualType ASTContext::getVariableArrayType(QualType EltTy,
1458                                          Expr *NumElts,
1459                                          ArrayType::ArraySizeModifier ASM,
1460                                          unsigned EltTypeQuals,
1461                                          SourceRange Brackets) {
1462  // Since we don't unique expressions, it isn't possible to unique VLA's
1463  // that have an expression provided for their size.
1464  QualType CanonType;
1465
1466  if (!EltTy.isCanonical()) {
1467    CanonType = getVariableArrayType(getCanonicalType(EltTy), NumElts, ASM,
1468                                     EltTypeQuals, Brackets);
1469  }
1470
1471  VariableArrayType *New = new(*this, TypeAlignment)
1472    VariableArrayType(EltTy, CanonType, NumElts, ASM, EltTypeQuals, Brackets);
1473
1474  VariableArrayTypes.push_back(New);
1475  Types.push_back(New);
1476  return QualType(New, 0);
1477}
1478
1479/// getDependentSizedArrayType - Returns a non-unique reference to
1480/// the type for a dependently-sized array of the specified element
1481/// type.
1482QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1483                                                Expr *NumElts,
1484                                                ArrayType::ArraySizeModifier ASM,
1485                                                unsigned EltTypeQuals,
1486                                                SourceRange Brackets) {
1487  assert((!NumElts || NumElts->isTypeDependent() ||
1488          NumElts->isValueDependent()) &&
1489         "Size must be type- or value-dependent!");
1490
1491  void *InsertPos = 0;
1492  DependentSizedArrayType *Canon = 0;
1493  llvm::FoldingSetNodeID ID;
1494
1495  QualType CanonicalEltTy = getCanonicalType(EltTy);
1496  if (NumElts) {
1497    // Dependently-sized array types that do not have a specified
1498    // number of elements will have their sizes deduced from an
1499    // initializer.
1500    DependentSizedArrayType::Profile(ID, *this, CanonicalEltTy, ASM,
1501                                     EltTypeQuals, NumElts);
1502
1503    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1504  }
1505
1506  DependentSizedArrayType *New;
1507  if (Canon) {
1508    // We already have a canonical version of this array type; use it as
1509    // the canonical type for a newly-built type.
1510    New = new (*this, TypeAlignment)
1511      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1512                              NumElts, ASM, EltTypeQuals, Brackets);
1513  } else if (CanonicalEltTy == EltTy) {
1514    // This is a canonical type. Record it.
1515    New = new (*this, TypeAlignment)
1516      DependentSizedArrayType(*this, EltTy, QualType(),
1517                              NumElts, ASM, EltTypeQuals, Brackets);
1518
1519    if (NumElts) {
1520#ifndef NDEBUG
1521      DependentSizedArrayType *CanonCheck
1522        = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1523      assert(!CanonCheck && "Dependent-sized canonical array type broken");
1524      (void)CanonCheck;
1525#endif
1526      DependentSizedArrayTypes.InsertNode(New, InsertPos);
1527    }
1528  } else {
1529    QualType Canon = getDependentSizedArrayType(CanonicalEltTy, NumElts,
1530                                                ASM, EltTypeQuals,
1531                                                SourceRange());
1532    New = new (*this, TypeAlignment)
1533      DependentSizedArrayType(*this, EltTy, Canon,
1534                              NumElts, ASM, EltTypeQuals, Brackets);
1535  }
1536
1537  Types.push_back(New);
1538  return QualType(New, 0);
1539}
1540
1541QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1542                                            ArrayType::ArraySizeModifier ASM,
1543                                            unsigned EltTypeQuals) {
1544  llvm::FoldingSetNodeID ID;
1545  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1546
1547  void *InsertPos = 0;
1548  if (IncompleteArrayType *ATP =
1549       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1550    return QualType(ATP, 0);
1551
1552  // If the element type isn't canonical, this won't be a canonical type
1553  // either, so fill in the canonical type field.
1554  QualType Canonical;
1555
1556  if (!EltTy.isCanonical()) {
1557    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1558                                       ASM, EltTypeQuals);
1559
1560    // Get the new insert position for the node we care about.
1561    IncompleteArrayType *NewIP =
1562      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1563    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1564  }
1565
1566  IncompleteArrayType *New = new (*this, TypeAlignment)
1567    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1568
1569  IncompleteArrayTypes.InsertNode(New, InsertPos);
1570  Types.push_back(New);
1571  return QualType(New, 0);
1572}
1573
1574/// getVectorType - Return the unique reference to a vector type of
1575/// the specified element type and size. VectorType must be a built-in type.
1576QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1577                                   VectorType::VectorKind VecKind) {
1578  BuiltinType *BaseType;
1579
1580  BaseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1581  assert(BaseType != 0 && "getVectorType(): Expecting a built-in type");
1582
1583  // Check if we've already instantiated a vector of this type.
1584  llvm::FoldingSetNodeID ID;
1585  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1586
1587  void *InsertPos = 0;
1588  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1589    return QualType(VTP, 0);
1590
1591  // If the element type isn't canonical, this won't be a canonical type either,
1592  // so fill in the canonical type field.
1593  QualType Canonical;
1594  if (!vecType.isCanonical()) {
1595    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1596
1597    // Get the new insert position for the node we care about.
1598    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1599    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1600  }
1601  VectorType *New = new (*this, TypeAlignment)
1602    VectorType(vecType, NumElts, Canonical, VecKind);
1603  VectorTypes.InsertNode(New, InsertPos);
1604  Types.push_back(New);
1605  return QualType(New, 0);
1606}
1607
1608/// getExtVectorType - Return the unique reference to an extended vector type of
1609/// the specified element type and size. VectorType must be a built-in type.
1610QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1611  BuiltinType *baseType;
1612
1613  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1614  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1615
1616  // Check if we've already instantiated a vector of this type.
1617  llvm::FoldingSetNodeID ID;
1618  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1619                      VectorType::GenericVector);
1620  void *InsertPos = 0;
1621  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1622    return QualType(VTP, 0);
1623
1624  // If the element type isn't canonical, this won't be a canonical type either,
1625  // so fill in the canonical type field.
1626  QualType Canonical;
1627  if (!vecType.isCanonical()) {
1628    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1629
1630    // Get the new insert position for the node we care about.
1631    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1632    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1633  }
1634  ExtVectorType *New = new (*this, TypeAlignment)
1635    ExtVectorType(vecType, NumElts, Canonical);
1636  VectorTypes.InsertNode(New, InsertPos);
1637  Types.push_back(New);
1638  return QualType(New, 0);
1639}
1640
1641QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1642                                                    Expr *SizeExpr,
1643                                                    SourceLocation AttrLoc) {
1644  llvm::FoldingSetNodeID ID;
1645  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1646                                       SizeExpr);
1647
1648  void *InsertPos = 0;
1649  DependentSizedExtVectorType *Canon
1650    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1651  DependentSizedExtVectorType *New;
1652  if (Canon) {
1653    // We already have a canonical version of this array type; use it as
1654    // the canonical type for a newly-built type.
1655    New = new (*this, TypeAlignment)
1656      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1657                                  SizeExpr, AttrLoc);
1658  } else {
1659    QualType CanonVecTy = getCanonicalType(vecType);
1660    if (CanonVecTy == vecType) {
1661      New = new (*this, TypeAlignment)
1662        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1663                                    AttrLoc);
1664
1665      DependentSizedExtVectorType *CanonCheck
1666        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1667      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1668      (void)CanonCheck;
1669      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1670    } else {
1671      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1672                                                      SourceLocation());
1673      New = new (*this, TypeAlignment)
1674        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1675    }
1676  }
1677
1678  Types.push_back(New);
1679  return QualType(New, 0);
1680}
1681
1682/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1683///
1684QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
1685                                            const FunctionType::ExtInfo &Info) {
1686  const CallingConv CallConv = Info.getCC();
1687  // Unique functions, to guarantee there is only one function of a particular
1688  // structure.
1689  llvm::FoldingSetNodeID ID;
1690  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1691
1692  void *InsertPos = 0;
1693  if (FunctionNoProtoType *FT =
1694        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1695    return QualType(FT, 0);
1696
1697  QualType Canonical;
1698  if (!ResultTy.isCanonical() ||
1699      getCanonicalCallConv(CallConv) != CallConv) {
1700    Canonical =
1701      getFunctionNoProtoType(getCanonicalType(ResultTy),
1702                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1703
1704    // Get the new insert position for the node we care about.
1705    FunctionNoProtoType *NewIP =
1706      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1707    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1708  }
1709
1710  FunctionNoProtoType *New = new (*this, TypeAlignment)
1711    FunctionNoProtoType(ResultTy, Canonical, Info);
1712  Types.push_back(New);
1713  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1714  return QualType(New, 0);
1715}
1716
1717/// getFunctionType - Return a normal function type with a typed argument
1718/// list.  isVariadic indicates whether the argument list includes '...'.
1719QualType ASTContext::getFunctionType(QualType ResultTy,
1720                                     const QualType *ArgArray, unsigned NumArgs,
1721                                   const FunctionProtoType::ExtProtoInfo &EPI) {
1722  // Unique functions, to guarantee there is only one function of a particular
1723  // structure.
1724  llvm::FoldingSetNodeID ID;
1725  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI);
1726
1727  void *InsertPos = 0;
1728  if (FunctionProtoType *FTP =
1729        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1730    return QualType(FTP, 0);
1731
1732  // Determine whether the type being created is already canonical or not.
1733  bool isCanonical = !EPI.HasExceptionSpec && ResultTy.isCanonical();
1734  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1735    if (!ArgArray[i].isCanonicalAsParam())
1736      isCanonical = false;
1737
1738  const CallingConv CallConv = EPI.ExtInfo.getCC();
1739
1740  // If this type isn't canonical, get the canonical version of it.
1741  // The exception spec is not part of the canonical type.
1742  QualType Canonical;
1743  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1744    llvm::SmallVector<QualType, 16> CanonicalArgs;
1745    CanonicalArgs.reserve(NumArgs);
1746    for (unsigned i = 0; i != NumArgs; ++i)
1747      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1748
1749    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
1750    if (CanonicalEPI.HasExceptionSpec) {
1751      CanonicalEPI.HasExceptionSpec = false;
1752      CanonicalEPI.HasAnyExceptionSpec = false;
1753      CanonicalEPI.NumExceptions = 0;
1754    }
1755    CanonicalEPI.ExtInfo
1756      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
1757
1758    Canonical = getFunctionType(getCanonicalType(ResultTy),
1759                                CanonicalArgs.data(), NumArgs,
1760                                CanonicalEPI);
1761
1762    // Get the new insert position for the node we care about.
1763    FunctionProtoType *NewIP =
1764      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1765    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1766  }
1767
1768  // FunctionProtoType objects are allocated with extra bytes after them
1769  // for two variable size arrays (for parameter and exception types) at the
1770  // end of them.
1771  size_t Size = sizeof(FunctionProtoType) +
1772                NumArgs * sizeof(QualType) +
1773                EPI.NumExceptions * sizeof(QualType);
1774  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
1775  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, EPI);
1776  Types.push_back(FTP);
1777  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1778  return QualType(FTP, 0);
1779}
1780
1781#ifndef NDEBUG
1782static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1783  if (!isa<CXXRecordDecl>(D)) return false;
1784  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1785  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1786    return true;
1787  if (RD->getDescribedClassTemplate() &&
1788      !isa<ClassTemplateSpecializationDecl>(RD))
1789    return true;
1790  return false;
1791}
1792#endif
1793
1794/// getInjectedClassNameType - Return the unique reference to the
1795/// injected class name type for the specified templated declaration.
1796QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1797                                              QualType TST) {
1798  assert(NeedsInjectedClassNameType(Decl));
1799  if (Decl->TypeForDecl) {
1800    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1801  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
1802    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1803    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1804    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1805  } else {
1806    Decl->TypeForDecl =
1807      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1808    Types.push_back(Decl->TypeForDecl);
1809  }
1810  return QualType(Decl->TypeForDecl, 0);
1811}
1812
1813/// getTypeDeclType - Return the unique reference to the type for the
1814/// specified type declaration.
1815QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1816  assert(Decl && "Passed null for Decl param");
1817  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1818
1819  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1820    return getTypedefType(Typedef);
1821
1822  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1823         "Template type parameter types are always available.");
1824
1825  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1826    assert(!Record->getPreviousDeclaration() &&
1827           "struct/union has previous declaration");
1828    assert(!NeedsInjectedClassNameType(Record));
1829    return getRecordType(Record);
1830  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1831    assert(!Enum->getPreviousDeclaration() &&
1832           "enum has previous declaration");
1833    return getEnumType(Enum);
1834  } else if (const UnresolvedUsingTypenameDecl *Using =
1835               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1836    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1837  } else
1838    llvm_unreachable("TypeDecl without a type?");
1839
1840  Types.push_back(Decl->TypeForDecl);
1841  return QualType(Decl->TypeForDecl, 0);
1842}
1843
1844/// getTypedefType - Return the unique reference to the type for the
1845/// specified typename decl.
1846QualType
1847ASTContext::getTypedefType(const TypedefDecl *Decl, QualType Canonical) {
1848  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1849
1850  if (Canonical.isNull())
1851    Canonical = getCanonicalType(Decl->getUnderlyingType());
1852  Decl->TypeForDecl = new(*this, TypeAlignment)
1853    TypedefType(Type::Typedef, Decl, Canonical);
1854  Types.push_back(Decl->TypeForDecl);
1855  return QualType(Decl->TypeForDecl, 0);
1856}
1857
1858QualType ASTContext::getRecordType(const RecordDecl *Decl) {
1859  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1860
1861  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
1862    if (PrevDecl->TypeForDecl)
1863      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
1864
1865  Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Decl);
1866  Types.push_back(Decl->TypeForDecl);
1867  return QualType(Decl->TypeForDecl, 0);
1868}
1869
1870QualType ASTContext::getEnumType(const EnumDecl *Decl) {
1871  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1872
1873  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
1874    if (PrevDecl->TypeForDecl)
1875      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
1876
1877  Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Decl);
1878  Types.push_back(Decl->TypeForDecl);
1879  return QualType(Decl->TypeForDecl, 0);
1880}
1881
1882QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
1883                                       QualType modifiedType,
1884                                       QualType equivalentType) {
1885  llvm::FoldingSetNodeID id;
1886  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
1887
1888  void *insertPos = 0;
1889  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
1890  if (type) return QualType(type, 0);
1891
1892  QualType canon = getCanonicalType(equivalentType);
1893  type = new (*this, TypeAlignment)
1894           AttributedType(canon, attrKind, modifiedType, equivalentType);
1895
1896  Types.push_back(type);
1897  AttributedTypes.InsertNode(type, insertPos);
1898
1899  return QualType(type, 0);
1900}
1901
1902
1903/// \brief Retrieve a substitution-result type.
1904QualType
1905ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1906                                         QualType Replacement) {
1907  assert(Replacement.isCanonical()
1908         && "replacement types must always be canonical");
1909
1910  llvm::FoldingSetNodeID ID;
1911  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1912  void *InsertPos = 0;
1913  SubstTemplateTypeParmType *SubstParm
1914    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1915
1916  if (!SubstParm) {
1917    SubstParm = new (*this, TypeAlignment)
1918      SubstTemplateTypeParmType(Parm, Replacement);
1919    Types.push_back(SubstParm);
1920    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1921  }
1922
1923  return QualType(SubstParm, 0);
1924}
1925
1926/// \brief Retrieve the template type parameter type for a template
1927/// parameter or parameter pack with the given depth, index, and (optionally)
1928/// name.
1929QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1930                                             bool ParameterPack,
1931                                             IdentifierInfo *Name) {
1932  llvm::FoldingSetNodeID ID;
1933  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1934  void *InsertPos = 0;
1935  TemplateTypeParmType *TypeParm
1936    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1937
1938  if (TypeParm)
1939    return QualType(TypeParm, 0);
1940
1941  if (Name) {
1942    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1943    TypeParm = new (*this, TypeAlignment)
1944      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1945
1946    TemplateTypeParmType *TypeCheck
1947      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1948    assert(!TypeCheck && "Template type parameter canonical type broken");
1949    (void)TypeCheck;
1950  } else
1951    TypeParm = new (*this, TypeAlignment)
1952      TemplateTypeParmType(Depth, Index, ParameterPack);
1953
1954  Types.push_back(TypeParm);
1955  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1956
1957  return QualType(TypeParm, 0);
1958}
1959
1960TypeSourceInfo *
1961ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
1962                                              SourceLocation NameLoc,
1963                                        const TemplateArgumentListInfo &Args,
1964                                              QualType CanonType) {
1965  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
1966
1967  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
1968  TemplateSpecializationTypeLoc TL
1969    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1970  TL.setTemplateNameLoc(NameLoc);
1971  TL.setLAngleLoc(Args.getLAngleLoc());
1972  TL.setRAngleLoc(Args.getRAngleLoc());
1973  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1974    TL.setArgLocInfo(i, Args[i].getLocInfo());
1975  return DI;
1976}
1977
1978QualType
1979ASTContext::getTemplateSpecializationType(TemplateName Template,
1980                                          const TemplateArgumentListInfo &Args,
1981                                          QualType Canon) {
1982  unsigned NumArgs = Args.size();
1983
1984  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1985  ArgVec.reserve(NumArgs);
1986  for (unsigned i = 0; i != NumArgs; ++i)
1987    ArgVec.push_back(Args[i].getArgument());
1988
1989  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
1990                                       Canon);
1991}
1992
1993QualType
1994ASTContext::getTemplateSpecializationType(TemplateName Template,
1995                                          const TemplateArgument *Args,
1996                                          unsigned NumArgs,
1997                                          QualType Canon) {
1998  if (!Canon.isNull())
1999    Canon = getCanonicalType(Canon);
2000  else
2001    Canon = getCanonicalTemplateSpecializationType(Template, Args, NumArgs);
2002
2003  // Allocate the (non-canonical) template specialization type, but don't
2004  // try to unique it: these types typically have location information that
2005  // we don't unique and don't want to lose.
2006  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2007                        sizeof(TemplateArgument) * NumArgs),
2008                       TypeAlignment);
2009  TemplateSpecializationType *Spec
2010    = new (Mem) TemplateSpecializationType(Template,
2011                                           Args, NumArgs,
2012                                           Canon);
2013
2014  Types.push_back(Spec);
2015  return QualType(Spec, 0);
2016}
2017
2018QualType
2019ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2020                                                   const TemplateArgument *Args,
2021                                                   unsigned NumArgs) {
2022  // Build the canonical template specialization type.
2023  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2024  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2025  CanonArgs.reserve(NumArgs);
2026  for (unsigned I = 0; I != NumArgs; ++I)
2027    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2028
2029  // Determine whether this canonical template specialization type already
2030  // exists.
2031  llvm::FoldingSetNodeID ID;
2032  TemplateSpecializationType::Profile(ID, CanonTemplate,
2033                                      CanonArgs.data(), NumArgs, *this);
2034
2035  void *InsertPos = 0;
2036  TemplateSpecializationType *Spec
2037    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2038
2039  if (!Spec) {
2040    // Allocate a new canonical template specialization type.
2041    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2042                          sizeof(TemplateArgument) * NumArgs),
2043                         TypeAlignment);
2044    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2045                                                CanonArgs.data(), NumArgs,
2046                                                QualType());
2047    Types.push_back(Spec);
2048    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2049  }
2050
2051  assert(Spec->isDependentType() &&
2052         "Non-dependent template-id type must have a canonical type");
2053  return QualType(Spec, 0);
2054}
2055
2056QualType
2057ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2058                              NestedNameSpecifier *NNS,
2059                              QualType NamedType) {
2060  llvm::FoldingSetNodeID ID;
2061  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2062
2063  void *InsertPos = 0;
2064  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2065  if (T)
2066    return QualType(T, 0);
2067
2068  QualType Canon = NamedType;
2069  if (!Canon.isCanonical()) {
2070    Canon = getCanonicalType(NamedType);
2071    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2072    assert(!CheckT && "Elaborated canonical type broken");
2073    (void)CheckT;
2074  }
2075
2076  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2077  Types.push_back(T);
2078  ElaboratedTypes.InsertNode(T, InsertPos);
2079  return QualType(T, 0);
2080}
2081
2082QualType
2083ASTContext::getParenType(QualType InnerType) {
2084  llvm::FoldingSetNodeID ID;
2085  ParenType::Profile(ID, InnerType);
2086
2087  void *InsertPos = 0;
2088  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2089  if (T)
2090    return QualType(T, 0);
2091
2092  QualType Canon = InnerType;
2093  if (!Canon.isCanonical()) {
2094    Canon = getCanonicalType(InnerType);
2095    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2096    assert(!CheckT && "Paren canonical type broken");
2097    (void)CheckT;
2098  }
2099
2100  T = new (*this) ParenType(InnerType, Canon);
2101  Types.push_back(T);
2102  ParenTypes.InsertNode(T, InsertPos);
2103  return QualType(T, 0);
2104}
2105
2106QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2107                                          NestedNameSpecifier *NNS,
2108                                          const IdentifierInfo *Name,
2109                                          QualType Canon) {
2110  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2111
2112  if (Canon.isNull()) {
2113    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2114    ElaboratedTypeKeyword CanonKeyword = Keyword;
2115    if (Keyword == ETK_None)
2116      CanonKeyword = ETK_Typename;
2117
2118    if (CanonNNS != NNS || CanonKeyword != Keyword)
2119      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2120  }
2121
2122  llvm::FoldingSetNodeID ID;
2123  DependentNameType::Profile(ID, Keyword, NNS, Name);
2124
2125  void *InsertPos = 0;
2126  DependentNameType *T
2127    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2128  if (T)
2129    return QualType(T, 0);
2130
2131  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2132  Types.push_back(T);
2133  DependentNameTypes.InsertNode(T, InsertPos);
2134  return QualType(T, 0);
2135}
2136
2137QualType
2138ASTContext::getDependentTemplateSpecializationType(
2139                                 ElaboratedTypeKeyword Keyword,
2140                                 NestedNameSpecifier *NNS,
2141                                 const IdentifierInfo *Name,
2142                                 const TemplateArgumentListInfo &Args) {
2143  // TODO: avoid this copy
2144  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2145  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2146    ArgCopy.push_back(Args[I].getArgument());
2147  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2148                                                ArgCopy.size(),
2149                                                ArgCopy.data());
2150}
2151
2152QualType
2153ASTContext::getDependentTemplateSpecializationType(
2154                                 ElaboratedTypeKeyword Keyword,
2155                                 NestedNameSpecifier *NNS,
2156                                 const IdentifierInfo *Name,
2157                                 unsigned NumArgs,
2158                                 const TemplateArgument *Args) {
2159  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2160
2161  llvm::FoldingSetNodeID ID;
2162  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2163                                               Name, NumArgs, Args);
2164
2165  void *InsertPos = 0;
2166  DependentTemplateSpecializationType *T
2167    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2168  if (T)
2169    return QualType(T, 0);
2170
2171  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2172
2173  ElaboratedTypeKeyword CanonKeyword = Keyword;
2174  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2175
2176  bool AnyNonCanonArgs = false;
2177  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2178  for (unsigned I = 0; I != NumArgs; ++I) {
2179    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2180    if (!CanonArgs[I].structurallyEquals(Args[I]))
2181      AnyNonCanonArgs = true;
2182  }
2183
2184  QualType Canon;
2185  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2186    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2187                                                   Name, NumArgs,
2188                                                   CanonArgs.data());
2189
2190    // Find the insert position again.
2191    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2192  }
2193
2194  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2195                        sizeof(TemplateArgument) * NumArgs),
2196                       TypeAlignment);
2197  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2198                                                    Name, NumArgs, Args, Canon);
2199  Types.push_back(T);
2200  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2201  return QualType(T, 0);
2202}
2203
2204QualType ASTContext::getPackExpansionType(QualType Pattern) {
2205  llvm::FoldingSetNodeID ID;
2206  PackExpansionType::Profile(ID, Pattern);
2207
2208  assert(Pattern->containsUnexpandedParameterPack() &&
2209         "Pack expansions must expand one or more parameter packs");
2210  void *InsertPos = 0;
2211  PackExpansionType *T
2212    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2213  if (T)
2214    return QualType(T, 0);
2215
2216  QualType Canon;
2217  if (!Pattern.isCanonical()) {
2218    Canon = getPackExpansionType(getCanonicalType(Pattern));
2219
2220    // Find the insert position again.
2221    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2222  }
2223
2224  T = new (*this) PackExpansionType(Pattern, Canon);
2225  Types.push_back(T);
2226  PackExpansionTypes.InsertNode(T, InsertPos);
2227  return QualType(T, 0);
2228}
2229
2230/// CmpProtocolNames - Comparison predicate for sorting protocols
2231/// alphabetically.
2232static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2233                            const ObjCProtocolDecl *RHS) {
2234  return LHS->getDeclName() < RHS->getDeclName();
2235}
2236
2237static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2238                                unsigned NumProtocols) {
2239  if (NumProtocols == 0) return true;
2240
2241  for (unsigned i = 1; i != NumProtocols; ++i)
2242    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2243      return false;
2244  return true;
2245}
2246
2247static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2248                                   unsigned &NumProtocols) {
2249  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2250
2251  // Sort protocols, keyed by name.
2252  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2253
2254  // Remove duplicates.
2255  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2256  NumProtocols = ProtocolsEnd-Protocols;
2257}
2258
2259QualType ASTContext::getObjCObjectType(QualType BaseType,
2260                                       ObjCProtocolDecl * const *Protocols,
2261                                       unsigned NumProtocols) {
2262  // If the base type is an interface and there aren't any protocols
2263  // to add, then the interface type will do just fine.
2264  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2265    return BaseType;
2266
2267  // Look in the folding set for an existing type.
2268  llvm::FoldingSetNodeID ID;
2269  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2270  void *InsertPos = 0;
2271  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2272    return QualType(QT, 0);
2273
2274  // Build the canonical type, which has the canonical base type and
2275  // a sorted-and-uniqued list of protocols.
2276  QualType Canonical;
2277  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2278  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2279    if (!ProtocolsSorted) {
2280      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2281                                                     Protocols + NumProtocols);
2282      unsigned UniqueCount = NumProtocols;
2283
2284      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2285      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2286                                    &Sorted[0], UniqueCount);
2287    } else {
2288      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2289                                    Protocols, NumProtocols);
2290    }
2291
2292    // Regenerate InsertPos.
2293    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2294  }
2295
2296  unsigned Size = sizeof(ObjCObjectTypeImpl);
2297  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2298  void *Mem = Allocate(Size, TypeAlignment);
2299  ObjCObjectTypeImpl *T =
2300    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2301
2302  Types.push_back(T);
2303  ObjCObjectTypes.InsertNode(T, InsertPos);
2304  return QualType(T, 0);
2305}
2306
2307/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2308/// the given object type.
2309QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) {
2310  llvm::FoldingSetNodeID ID;
2311  ObjCObjectPointerType::Profile(ID, ObjectT);
2312
2313  void *InsertPos = 0;
2314  if (ObjCObjectPointerType *QT =
2315              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2316    return QualType(QT, 0);
2317
2318  // Find the canonical object type.
2319  QualType Canonical;
2320  if (!ObjectT.isCanonical()) {
2321    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2322
2323    // Regenerate InsertPos.
2324    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2325  }
2326
2327  // No match.
2328  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2329  ObjCObjectPointerType *QType =
2330    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2331
2332  Types.push_back(QType);
2333  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2334  return QualType(QType, 0);
2335}
2336
2337/// getObjCInterfaceType - Return the unique reference to the type for the
2338/// specified ObjC interface decl. The list of protocols is optional.
2339QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
2340  if (Decl->TypeForDecl)
2341    return QualType(Decl->TypeForDecl, 0);
2342
2343  // FIXME: redeclarations?
2344  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2345  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2346  Decl->TypeForDecl = T;
2347  Types.push_back(T);
2348  return QualType(T, 0);
2349}
2350
2351/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2352/// TypeOfExprType AST's (since expression's are never shared). For example,
2353/// multiple declarations that refer to "typeof(x)" all contain different
2354/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2355/// on canonical type's (which are always unique).
2356QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2357  TypeOfExprType *toe;
2358  if (tofExpr->isTypeDependent()) {
2359    llvm::FoldingSetNodeID ID;
2360    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2361
2362    void *InsertPos = 0;
2363    DependentTypeOfExprType *Canon
2364      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2365    if (Canon) {
2366      // We already have a "canonical" version of an identical, dependent
2367      // typeof(expr) type. Use that as our canonical type.
2368      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2369                                          QualType((TypeOfExprType*)Canon, 0));
2370    }
2371    else {
2372      // Build a new, canonical typeof(expr) type.
2373      Canon
2374        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2375      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2376      toe = Canon;
2377    }
2378  } else {
2379    QualType Canonical = getCanonicalType(tofExpr->getType());
2380    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2381  }
2382  Types.push_back(toe);
2383  return QualType(toe, 0);
2384}
2385
2386/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2387/// TypeOfType AST's. The only motivation to unique these nodes would be
2388/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2389/// an issue. This doesn't effect the type checker, since it operates
2390/// on canonical type's (which are always unique).
2391QualType ASTContext::getTypeOfType(QualType tofType) {
2392  QualType Canonical = getCanonicalType(tofType);
2393  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2394  Types.push_back(tot);
2395  return QualType(tot, 0);
2396}
2397
2398/// getDecltypeForExpr - Given an expr, will return the decltype for that
2399/// expression, according to the rules in C++0x [dcl.type.simple]p4
2400static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2401  if (e->isTypeDependent())
2402    return Context.DependentTy;
2403
2404  // If e is an id expression or a class member access, decltype(e) is defined
2405  // as the type of the entity named by e.
2406  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2407    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2408      return VD->getType();
2409  }
2410  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2411    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2412      return FD->getType();
2413  }
2414  // If e is a function call or an invocation of an overloaded operator,
2415  // (parentheses around e are ignored), decltype(e) is defined as the
2416  // return type of that function.
2417  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2418    return CE->getCallReturnType();
2419
2420  QualType T = e->getType();
2421
2422  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2423  // defined as T&, otherwise decltype(e) is defined as T.
2424  if (e->isLValue())
2425    T = Context.getLValueReferenceType(T);
2426
2427  return T;
2428}
2429
2430/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2431/// DecltypeType AST's. The only motivation to unique these nodes would be
2432/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2433/// an issue. This doesn't effect the type checker, since it operates
2434/// on canonical type's (which are always unique).
2435QualType ASTContext::getDecltypeType(Expr *e) {
2436  DecltypeType *dt;
2437  if (e->isTypeDependent()) {
2438    llvm::FoldingSetNodeID ID;
2439    DependentDecltypeType::Profile(ID, *this, e);
2440
2441    void *InsertPos = 0;
2442    DependentDecltypeType *Canon
2443      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2444    if (Canon) {
2445      // We already have a "canonical" version of an equivalent, dependent
2446      // decltype type. Use that as our canonical type.
2447      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2448                                       QualType((DecltypeType*)Canon, 0));
2449    }
2450    else {
2451      // Build a new, canonical typeof(expr) type.
2452      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2453      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2454      dt = Canon;
2455    }
2456  } else {
2457    QualType T = getDecltypeForExpr(e, *this);
2458    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2459  }
2460  Types.push_back(dt);
2461  return QualType(dt, 0);
2462}
2463
2464/// getTagDeclType - Return the unique reference to the type for the
2465/// specified TagDecl (struct/union/class/enum) decl.
2466QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2467  assert (Decl);
2468  // FIXME: What is the design on getTagDeclType when it requires casting
2469  // away const?  mutable?
2470  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2471}
2472
2473/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2474/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2475/// needs to agree with the definition in <stddef.h>.
2476CanQualType ASTContext::getSizeType() const {
2477  return getFromTargetType(Target.getSizeType());
2478}
2479
2480/// getSignedWCharType - Return the type of "signed wchar_t".
2481/// Used when in C++, as a GCC extension.
2482QualType ASTContext::getSignedWCharType() const {
2483  // FIXME: derive from "Target" ?
2484  return WCharTy;
2485}
2486
2487/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2488/// Used when in C++, as a GCC extension.
2489QualType ASTContext::getUnsignedWCharType() const {
2490  // FIXME: derive from "Target" ?
2491  return UnsignedIntTy;
2492}
2493
2494/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2495/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2496QualType ASTContext::getPointerDiffType() const {
2497  return getFromTargetType(Target.getPtrDiffType(0));
2498}
2499
2500//===----------------------------------------------------------------------===//
2501//                              Type Operators
2502//===----------------------------------------------------------------------===//
2503
2504CanQualType ASTContext::getCanonicalParamType(QualType T) {
2505  // Push qualifiers into arrays, and then discard any remaining
2506  // qualifiers.
2507  T = getCanonicalType(T);
2508  T = getVariableArrayDecayedType(T);
2509  const Type *Ty = T.getTypePtr();
2510  QualType Result;
2511  if (isa<ArrayType>(Ty)) {
2512    Result = getArrayDecayedType(QualType(Ty,0));
2513  } else if (isa<FunctionType>(Ty)) {
2514    Result = getPointerType(QualType(Ty, 0));
2515  } else {
2516    Result = QualType(Ty, 0);
2517  }
2518
2519  return CanQualType::CreateUnsafe(Result);
2520}
2521
2522/// getCanonicalType - Return the canonical (structural) type corresponding to
2523/// the specified potentially non-canonical type.  The non-canonical version
2524/// of a type may have many "decorated" versions of types.  Decorators can
2525/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2526/// to be free of any of these, allowing two canonical types to be compared
2527/// for exact equality with a simple pointer comparison.
2528CanQualType ASTContext::getCanonicalType(QualType T) {
2529  QualifierCollector Quals;
2530  const Type *Ptr = Quals.strip(T);
2531  QualType CanType = Ptr->getCanonicalTypeInternal();
2532
2533  // The canonical internal type will be the canonical type *except*
2534  // that we push type qualifiers down through array types.
2535
2536  // If there are no new qualifiers to push down, stop here.
2537  if (!Quals.hasQualifiers())
2538    return CanQualType::CreateUnsafe(CanType);
2539
2540  // If the type qualifiers are on an array type, get the canonical
2541  // type of the array with the qualifiers applied to the element
2542  // type.
2543  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2544  if (!AT)
2545    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2546
2547  // Get the canonical version of the element with the extra qualifiers on it.
2548  // This can recursively sink qualifiers through multiple levels of arrays.
2549  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2550  NewEltTy = getCanonicalType(NewEltTy);
2551
2552  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2553    return CanQualType::CreateUnsafe(
2554             getConstantArrayType(NewEltTy, CAT->getSize(),
2555                                  CAT->getSizeModifier(),
2556                                  CAT->getIndexTypeCVRQualifiers()));
2557  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2558    return CanQualType::CreateUnsafe(
2559             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2560                                    IAT->getIndexTypeCVRQualifiers()));
2561
2562  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2563    return CanQualType::CreateUnsafe(
2564             getDependentSizedArrayType(NewEltTy,
2565                                        DSAT->getSizeExpr(),
2566                                        DSAT->getSizeModifier(),
2567                                        DSAT->getIndexTypeCVRQualifiers(),
2568                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2569
2570  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2571  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2572                                                        VAT->getSizeExpr(),
2573                                                        VAT->getSizeModifier(),
2574                                              VAT->getIndexTypeCVRQualifiers(),
2575                                                     VAT->getBracketsRange()));
2576}
2577
2578QualType ASTContext::getUnqualifiedArrayType(QualType T,
2579                                             Qualifiers &Quals) {
2580  Quals = T.getQualifiers();
2581  const ArrayType *AT = getAsArrayType(T);
2582  if (!AT) {
2583    return T.getUnqualifiedType();
2584  }
2585
2586  QualType Elt = AT->getElementType();
2587  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2588  if (Elt == UnqualElt)
2589    return T;
2590
2591  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2592    return getConstantArrayType(UnqualElt, CAT->getSize(),
2593                                CAT->getSizeModifier(), 0);
2594  }
2595
2596  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2597    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2598  }
2599
2600  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2601    return getVariableArrayType(UnqualElt,
2602                                VAT->getSizeExpr(),
2603                                VAT->getSizeModifier(),
2604                                VAT->getIndexTypeCVRQualifiers(),
2605                                VAT->getBracketsRange());
2606  }
2607
2608  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2609  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr(),
2610                                    DSAT->getSizeModifier(), 0,
2611                                    SourceRange());
2612}
2613
2614/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2615/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2616/// they point to and return true. If T1 and T2 aren't pointer types
2617/// or pointer-to-member types, or if they are not similar at this
2618/// level, returns false and leaves T1 and T2 unchanged. Top-level
2619/// qualifiers on T1 and T2 are ignored. This function will typically
2620/// be called in a loop that successively "unwraps" pointer and
2621/// pointer-to-member types to compare them at each level.
2622bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2623  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2624                    *T2PtrType = T2->getAs<PointerType>();
2625  if (T1PtrType && T2PtrType) {
2626    T1 = T1PtrType->getPointeeType();
2627    T2 = T2PtrType->getPointeeType();
2628    return true;
2629  }
2630
2631  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2632                          *T2MPType = T2->getAs<MemberPointerType>();
2633  if (T1MPType && T2MPType &&
2634      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2635                             QualType(T2MPType->getClass(), 0))) {
2636    T1 = T1MPType->getPointeeType();
2637    T2 = T2MPType->getPointeeType();
2638    return true;
2639  }
2640
2641  if (getLangOptions().ObjC1) {
2642    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2643                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2644    if (T1OPType && T2OPType) {
2645      T1 = T1OPType->getPointeeType();
2646      T2 = T2OPType->getPointeeType();
2647      return true;
2648    }
2649  }
2650
2651  // FIXME: Block pointers, too?
2652
2653  return false;
2654}
2655
2656DeclarationNameInfo ASTContext::getNameForTemplate(TemplateName Name,
2657                                                   SourceLocation NameLoc) {
2658  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2659    // DNInfo work in progress: CHECKME: what about DNLoc?
2660    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
2661
2662  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2663    DeclarationName DName;
2664    if (DTN->isIdentifier()) {
2665      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
2666      return DeclarationNameInfo(DName, NameLoc);
2667    } else {
2668      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
2669      // DNInfo work in progress: FIXME: source locations?
2670      DeclarationNameLoc DNLoc;
2671      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
2672      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
2673      return DeclarationNameInfo(DName, NameLoc, DNLoc);
2674    }
2675  }
2676
2677  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2678  assert(Storage);
2679  // DNInfo work in progress: CHECKME: what about DNLoc?
2680  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
2681}
2682
2683TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2684  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2685    if (TemplateTemplateParmDecl *TTP
2686                              = dyn_cast<TemplateTemplateParmDecl>(Template))
2687      Template = getCanonicalTemplateTemplateParmDecl(TTP);
2688
2689    // The canonical template name is the canonical template declaration.
2690    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2691  }
2692
2693  assert(!Name.getAsOverloadedTemplate());
2694
2695  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2696  assert(DTN && "Non-dependent template names must refer to template decls.");
2697  return DTN->CanonicalTemplateName;
2698}
2699
2700bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2701  X = getCanonicalTemplateName(X);
2702  Y = getCanonicalTemplateName(Y);
2703  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2704}
2705
2706TemplateArgument
2707ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2708  switch (Arg.getKind()) {
2709    case TemplateArgument::Null:
2710      return Arg;
2711
2712    case TemplateArgument::Expression:
2713      return Arg;
2714
2715    case TemplateArgument::Declaration:
2716      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2717
2718    case TemplateArgument::Template:
2719      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2720
2721    case TemplateArgument::TemplateExpansion:
2722      return TemplateArgument(getCanonicalTemplateName(
2723                                         Arg.getAsTemplateOrTemplatePattern()),
2724                              true);
2725
2726    case TemplateArgument::Integral:
2727      return TemplateArgument(*Arg.getAsIntegral(),
2728                              getCanonicalType(Arg.getIntegralType()));
2729
2730    case TemplateArgument::Type:
2731      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2732
2733    case TemplateArgument::Pack: {
2734      if (Arg.pack_size() == 0)
2735        return Arg;
2736
2737      TemplateArgument *CanonArgs
2738        = new (*this) TemplateArgument[Arg.pack_size()];
2739      unsigned Idx = 0;
2740      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2741                                        AEnd = Arg.pack_end();
2742           A != AEnd; (void)++A, ++Idx)
2743        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2744
2745      return TemplateArgument(CanonArgs, Arg.pack_size());
2746    }
2747  }
2748
2749  // Silence GCC warning
2750  assert(false && "Unhandled template argument kind");
2751  return TemplateArgument();
2752}
2753
2754NestedNameSpecifier *
2755ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2756  if (!NNS)
2757    return 0;
2758
2759  switch (NNS->getKind()) {
2760  case NestedNameSpecifier::Identifier:
2761    // Canonicalize the prefix but keep the identifier the same.
2762    return NestedNameSpecifier::Create(*this,
2763                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2764                                       NNS->getAsIdentifier());
2765
2766  case NestedNameSpecifier::Namespace:
2767    // A namespace is canonical; build a nested-name-specifier with
2768    // this namespace and no prefix.
2769    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2770
2771  case NestedNameSpecifier::TypeSpec:
2772  case NestedNameSpecifier::TypeSpecWithTemplate: {
2773    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2774
2775    // If we have some kind of dependent-named type (e.g., "typename T::type"),
2776    // break it apart into its prefix and identifier, then reconsititute those
2777    // as the canonical nested-name-specifier. This is required to canonicalize
2778    // a dependent nested-name-specifier involving typedefs of dependent-name
2779    // types, e.g.,
2780    //   typedef typename T::type T1;
2781    //   typedef typename T1::type T2;
2782    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
2783      NestedNameSpecifier *Prefix
2784        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
2785      return NestedNameSpecifier::Create(*this, Prefix,
2786                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
2787    }
2788
2789    // Do the same thing as above, but with dependent-named specializations.
2790    if (const DependentTemplateSpecializationType *DTST
2791          = T->getAs<DependentTemplateSpecializationType>()) {
2792      NestedNameSpecifier *Prefix
2793        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
2794      TemplateName Name
2795        = getDependentTemplateName(Prefix, DTST->getIdentifier());
2796      T = getTemplateSpecializationType(Name,
2797                                        DTST->getArgs(), DTST->getNumArgs());
2798      T = getCanonicalType(T);
2799    }
2800
2801    return NestedNameSpecifier::Create(*this, 0, false, T.getTypePtr());
2802  }
2803
2804  case NestedNameSpecifier::Global:
2805    // The global specifier is canonical and unique.
2806    return NNS;
2807  }
2808
2809  // Required to silence a GCC warning
2810  return 0;
2811}
2812
2813
2814const ArrayType *ASTContext::getAsArrayType(QualType T) {
2815  // Handle the non-qualified case efficiently.
2816  if (!T.hasLocalQualifiers()) {
2817    // Handle the common positive case fast.
2818    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2819      return AT;
2820  }
2821
2822  // Handle the common negative case fast.
2823  QualType CType = T->getCanonicalTypeInternal();
2824  if (!isa<ArrayType>(CType))
2825    return 0;
2826
2827  // Apply any qualifiers from the array type to the element type.  This
2828  // implements C99 6.7.3p8: "If the specification of an array type includes
2829  // any type qualifiers, the element type is so qualified, not the array type."
2830
2831  // If we get here, we either have type qualifiers on the type, or we have
2832  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2833  // we must propagate them down into the element type.
2834
2835  QualifierCollector Qs;
2836  const Type *Ty = Qs.strip(T.getDesugaredType(*this));
2837
2838  // If we have a simple case, just return now.
2839  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2840  if (ATy == 0 || Qs.empty())
2841    return ATy;
2842
2843  // Otherwise, we have an array and we have qualifiers on it.  Push the
2844  // qualifiers into the array element type and return a new array type.
2845  // Get the canonical version of the element with the extra qualifiers on it.
2846  // This can recursively sink qualifiers through multiple levels of arrays.
2847  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2848
2849  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2850    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2851                                                CAT->getSizeModifier(),
2852                                           CAT->getIndexTypeCVRQualifiers()));
2853  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2854    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2855                                                  IAT->getSizeModifier(),
2856                                           IAT->getIndexTypeCVRQualifiers()));
2857
2858  if (const DependentSizedArrayType *DSAT
2859        = dyn_cast<DependentSizedArrayType>(ATy))
2860    return cast<ArrayType>(
2861                     getDependentSizedArrayType(NewEltTy,
2862                                                DSAT->getSizeExpr(),
2863                                                DSAT->getSizeModifier(),
2864                                              DSAT->getIndexTypeCVRQualifiers(),
2865                                                DSAT->getBracketsRange()));
2866
2867  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2868  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2869                                              VAT->getSizeExpr(),
2870                                              VAT->getSizeModifier(),
2871                                              VAT->getIndexTypeCVRQualifiers(),
2872                                              VAT->getBracketsRange()));
2873}
2874
2875/// getArrayDecayedType - Return the properly qualified result of decaying the
2876/// specified array type to a pointer.  This operation is non-trivial when
2877/// handling typedefs etc.  The canonical type of "T" must be an array type,
2878/// this returns a pointer to a properly qualified element of the array.
2879///
2880/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2881QualType ASTContext::getArrayDecayedType(QualType Ty) {
2882  // Get the element type with 'getAsArrayType' so that we don't lose any
2883  // typedefs in the element type of the array.  This also handles propagation
2884  // of type qualifiers from the array type into the element type if present
2885  // (C99 6.7.3p8).
2886  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2887  assert(PrettyArrayType && "Not an array type!");
2888
2889  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2890
2891  // int x[restrict 4] ->  int *restrict
2892  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2893}
2894
2895QualType ASTContext::getBaseElementType(QualType QT) {
2896  QualifierCollector Qs;
2897  while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
2898    QT = AT->getElementType();
2899  return Qs.apply(*this, QT);
2900}
2901
2902QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2903  QualType ElemTy = AT->getElementType();
2904
2905  if (const ArrayType *AT = getAsArrayType(ElemTy))
2906    return getBaseElementType(AT);
2907
2908  return ElemTy;
2909}
2910
2911/// getConstantArrayElementCount - Returns number of constant array elements.
2912uint64_t
2913ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2914  uint64_t ElementCount = 1;
2915  do {
2916    ElementCount *= CA->getSize().getZExtValue();
2917    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2918  } while (CA);
2919  return ElementCount;
2920}
2921
2922/// getFloatingRank - Return a relative rank for floating point types.
2923/// This routine will assert if passed a built-in type that isn't a float.
2924static FloatingRank getFloatingRank(QualType T) {
2925  if (const ComplexType *CT = T->getAs<ComplexType>())
2926    return getFloatingRank(CT->getElementType());
2927
2928  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2929  switch (T->getAs<BuiltinType>()->getKind()) {
2930  default: assert(0 && "getFloatingRank(): not a floating type");
2931  case BuiltinType::Float:      return FloatRank;
2932  case BuiltinType::Double:     return DoubleRank;
2933  case BuiltinType::LongDouble: return LongDoubleRank;
2934  }
2935}
2936
2937/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2938/// point or a complex type (based on typeDomain/typeSize).
2939/// 'typeDomain' is a real floating point or complex type.
2940/// 'typeSize' is a real floating point or complex type.
2941QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2942                                                       QualType Domain) const {
2943  FloatingRank EltRank = getFloatingRank(Size);
2944  if (Domain->isComplexType()) {
2945    switch (EltRank) {
2946    default: assert(0 && "getFloatingRank(): illegal value for rank");
2947    case FloatRank:      return FloatComplexTy;
2948    case DoubleRank:     return DoubleComplexTy;
2949    case LongDoubleRank: return LongDoubleComplexTy;
2950    }
2951  }
2952
2953  assert(Domain->isRealFloatingType() && "Unknown domain!");
2954  switch (EltRank) {
2955  default: assert(0 && "getFloatingRank(): illegal value for rank");
2956  case FloatRank:      return FloatTy;
2957  case DoubleRank:     return DoubleTy;
2958  case LongDoubleRank: return LongDoubleTy;
2959  }
2960}
2961
2962/// getFloatingTypeOrder - Compare the rank of the two specified floating
2963/// point types, ignoring the domain of the type (i.e. 'double' ==
2964/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2965/// LHS < RHS, return -1.
2966int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2967  FloatingRank LHSR = getFloatingRank(LHS);
2968  FloatingRank RHSR = getFloatingRank(RHS);
2969
2970  if (LHSR == RHSR)
2971    return 0;
2972  if (LHSR > RHSR)
2973    return 1;
2974  return -1;
2975}
2976
2977/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2978/// routine will assert if passed a built-in type that isn't an integer or enum,
2979/// or if it is not canonicalized.
2980unsigned ASTContext::getIntegerRank(Type *T) {
2981  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2982  if (EnumType* ET = dyn_cast<EnumType>(T))
2983    T = ET->getDecl()->getPromotionType().getTypePtr();
2984
2985  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
2986      T->isSpecificBuiltinType(BuiltinType::WChar_U))
2987    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2988
2989  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2990    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2991
2992  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2993    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2994
2995  switch (cast<BuiltinType>(T)->getKind()) {
2996  default: assert(0 && "getIntegerRank(): not a built-in integer");
2997  case BuiltinType::Bool:
2998    return 1 + (getIntWidth(BoolTy) << 3);
2999  case BuiltinType::Char_S:
3000  case BuiltinType::Char_U:
3001  case BuiltinType::SChar:
3002  case BuiltinType::UChar:
3003    return 2 + (getIntWidth(CharTy) << 3);
3004  case BuiltinType::Short:
3005  case BuiltinType::UShort:
3006    return 3 + (getIntWidth(ShortTy) << 3);
3007  case BuiltinType::Int:
3008  case BuiltinType::UInt:
3009    return 4 + (getIntWidth(IntTy) << 3);
3010  case BuiltinType::Long:
3011  case BuiltinType::ULong:
3012    return 5 + (getIntWidth(LongTy) << 3);
3013  case BuiltinType::LongLong:
3014  case BuiltinType::ULongLong:
3015    return 6 + (getIntWidth(LongLongTy) << 3);
3016  case BuiltinType::Int128:
3017  case BuiltinType::UInt128:
3018    return 7 + (getIntWidth(Int128Ty) << 3);
3019  }
3020}
3021
3022/// \brief Whether this is a promotable bitfield reference according
3023/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3024///
3025/// \returns the type this bit-field will promote to, or NULL if no
3026/// promotion occurs.
3027QualType ASTContext::isPromotableBitField(Expr *E) {
3028  if (E->isTypeDependent() || E->isValueDependent())
3029    return QualType();
3030
3031  FieldDecl *Field = E->getBitField();
3032  if (!Field)
3033    return QualType();
3034
3035  QualType FT = Field->getType();
3036
3037  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3038  uint64_t BitWidth = BitWidthAP.getZExtValue();
3039  uint64_t IntSize = getTypeSize(IntTy);
3040  // GCC extension compatibility: if the bit-field size is less than or equal
3041  // to the size of int, it gets promoted no matter what its type is.
3042  // For instance, unsigned long bf : 4 gets promoted to signed int.
3043  if (BitWidth < IntSize)
3044    return IntTy;
3045
3046  if (BitWidth == IntSize)
3047    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3048
3049  // Types bigger than int are not subject to promotions, and therefore act
3050  // like the base type.
3051  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3052  // is ridiculous.
3053  return QualType();
3054}
3055
3056/// getPromotedIntegerType - Returns the type that Promotable will
3057/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3058/// integer type.
3059QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
3060  assert(!Promotable.isNull());
3061  assert(Promotable->isPromotableIntegerType());
3062  if (const EnumType *ET = Promotable->getAs<EnumType>())
3063    return ET->getDecl()->getPromotionType();
3064  if (Promotable->isSignedIntegerType())
3065    return IntTy;
3066  uint64_t PromotableSize = getTypeSize(Promotable);
3067  uint64_t IntSize = getTypeSize(IntTy);
3068  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3069  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3070}
3071
3072/// getIntegerTypeOrder - Returns the highest ranked integer type:
3073/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3074/// LHS < RHS, return -1.
3075int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
3076  Type *LHSC = getCanonicalType(LHS).getTypePtr();
3077  Type *RHSC = getCanonicalType(RHS).getTypePtr();
3078  if (LHSC == RHSC) return 0;
3079
3080  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3081  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3082
3083  unsigned LHSRank = getIntegerRank(LHSC);
3084  unsigned RHSRank = getIntegerRank(RHSC);
3085
3086  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3087    if (LHSRank == RHSRank) return 0;
3088    return LHSRank > RHSRank ? 1 : -1;
3089  }
3090
3091  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3092  if (LHSUnsigned) {
3093    // If the unsigned [LHS] type is larger, return it.
3094    if (LHSRank >= RHSRank)
3095      return 1;
3096
3097    // If the signed type can represent all values of the unsigned type, it
3098    // wins.  Because we are dealing with 2's complement and types that are
3099    // powers of two larger than each other, this is always safe.
3100    return -1;
3101  }
3102
3103  // If the unsigned [RHS] type is larger, return it.
3104  if (RHSRank >= LHSRank)
3105    return -1;
3106
3107  // If the signed type can represent all values of the unsigned type, it
3108  // wins.  Because we are dealing with 2's complement and types that are
3109  // powers of two larger than each other, this is always safe.
3110  return 1;
3111}
3112
3113static RecordDecl *
3114CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
3115                 SourceLocation L, IdentifierInfo *Id) {
3116  if (Ctx.getLangOptions().CPlusPlus)
3117    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
3118  else
3119    return RecordDecl::Create(Ctx, TK, DC, L, Id);
3120}
3121
3122// getCFConstantStringType - Return the type used for constant CFStrings.
3123QualType ASTContext::getCFConstantStringType() {
3124  if (!CFConstantStringTypeDecl) {
3125    CFConstantStringTypeDecl =
3126      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3127                       &Idents.get("NSConstantString"));
3128    CFConstantStringTypeDecl->startDefinition();
3129
3130    QualType FieldTypes[4];
3131
3132    // const int *isa;
3133    FieldTypes[0] = getPointerType(IntTy.withConst());
3134    // int flags;
3135    FieldTypes[1] = IntTy;
3136    // const char *str;
3137    FieldTypes[2] = getPointerType(CharTy.withConst());
3138    // long length;
3139    FieldTypes[3] = LongTy;
3140
3141    // Create fields
3142    for (unsigned i = 0; i < 4; ++i) {
3143      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3144                                           SourceLocation(), 0,
3145                                           FieldTypes[i], /*TInfo=*/0,
3146                                           /*BitWidth=*/0,
3147                                           /*Mutable=*/false);
3148      Field->setAccess(AS_public);
3149      CFConstantStringTypeDecl->addDecl(Field);
3150    }
3151
3152    CFConstantStringTypeDecl->completeDefinition();
3153  }
3154
3155  return getTagDeclType(CFConstantStringTypeDecl);
3156}
3157
3158void ASTContext::setCFConstantStringType(QualType T) {
3159  const RecordType *Rec = T->getAs<RecordType>();
3160  assert(Rec && "Invalid CFConstantStringType");
3161  CFConstantStringTypeDecl = Rec->getDecl();
3162}
3163
3164// getNSConstantStringType - Return the type used for constant NSStrings.
3165QualType ASTContext::getNSConstantStringType() {
3166  if (!NSConstantStringTypeDecl) {
3167    NSConstantStringTypeDecl =
3168    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3169                     &Idents.get("__builtin_NSString"));
3170    NSConstantStringTypeDecl->startDefinition();
3171
3172    QualType FieldTypes[3];
3173
3174    // const int *isa;
3175    FieldTypes[0] = getPointerType(IntTy.withConst());
3176    // const char *str;
3177    FieldTypes[1] = getPointerType(CharTy.withConst());
3178    // unsigned int length;
3179    FieldTypes[2] = UnsignedIntTy;
3180
3181    // Create fields
3182    for (unsigned i = 0; i < 3; ++i) {
3183      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3184                                           SourceLocation(), 0,
3185                                           FieldTypes[i], /*TInfo=*/0,
3186                                           /*BitWidth=*/0,
3187                                           /*Mutable=*/false);
3188      Field->setAccess(AS_public);
3189      NSConstantStringTypeDecl->addDecl(Field);
3190    }
3191
3192    NSConstantStringTypeDecl->completeDefinition();
3193  }
3194
3195  return getTagDeclType(NSConstantStringTypeDecl);
3196}
3197
3198void ASTContext::setNSConstantStringType(QualType T) {
3199  const RecordType *Rec = T->getAs<RecordType>();
3200  assert(Rec && "Invalid NSConstantStringType");
3201  NSConstantStringTypeDecl = Rec->getDecl();
3202}
3203
3204QualType ASTContext::getObjCFastEnumerationStateType() {
3205  if (!ObjCFastEnumerationStateTypeDecl) {
3206    ObjCFastEnumerationStateTypeDecl =
3207      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3208                       &Idents.get("__objcFastEnumerationState"));
3209    ObjCFastEnumerationStateTypeDecl->startDefinition();
3210
3211    QualType FieldTypes[] = {
3212      UnsignedLongTy,
3213      getPointerType(ObjCIdTypedefType),
3214      getPointerType(UnsignedLongTy),
3215      getConstantArrayType(UnsignedLongTy,
3216                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3217    };
3218
3219    for (size_t i = 0; i < 4; ++i) {
3220      FieldDecl *Field = FieldDecl::Create(*this,
3221                                           ObjCFastEnumerationStateTypeDecl,
3222                                           SourceLocation(), 0,
3223                                           FieldTypes[i], /*TInfo=*/0,
3224                                           /*BitWidth=*/0,
3225                                           /*Mutable=*/false);
3226      Field->setAccess(AS_public);
3227      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3228    }
3229
3230    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3231  }
3232
3233  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3234}
3235
3236QualType ASTContext::getBlockDescriptorType() {
3237  if (BlockDescriptorType)
3238    return getTagDeclType(BlockDescriptorType);
3239
3240  RecordDecl *T;
3241  // FIXME: Needs the FlagAppleBlock bit.
3242  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3243                       &Idents.get("__block_descriptor"));
3244  T->startDefinition();
3245
3246  QualType FieldTypes[] = {
3247    UnsignedLongTy,
3248    UnsignedLongTy,
3249  };
3250
3251  const char *FieldNames[] = {
3252    "reserved",
3253    "Size"
3254  };
3255
3256  for (size_t i = 0; i < 2; ++i) {
3257    FieldDecl *Field = FieldDecl::Create(*this,
3258                                         T,
3259                                         SourceLocation(),
3260                                         &Idents.get(FieldNames[i]),
3261                                         FieldTypes[i], /*TInfo=*/0,
3262                                         /*BitWidth=*/0,
3263                                         /*Mutable=*/false);
3264    Field->setAccess(AS_public);
3265    T->addDecl(Field);
3266  }
3267
3268  T->completeDefinition();
3269
3270  BlockDescriptorType = T;
3271
3272  return getTagDeclType(BlockDescriptorType);
3273}
3274
3275void ASTContext::setBlockDescriptorType(QualType T) {
3276  const RecordType *Rec = T->getAs<RecordType>();
3277  assert(Rec && "Invalid BlockDescriptorType");
3278  BlockDescriptorType = Rec->getDecl();
3279}
3280
3281QualType ASTContext::getBlockDescriptorExtendedType() {
3282  if (BlockDescriptorExtendedType)
3283    return getTagDeclType(BlockDescriptorExtendedType);
3284
3285  RecordDecl *T;
3286  // FIXME: Needs the FlagAppleBlock bit.
3287  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3288                       &Idents.get("__block_descriptor_withcopydispose"));
3289  T->startDefinition();
3290
3291  QualType FieldTypes[] = {
3292    UnsignedLongTy,
3293    UnsignedLongTy,
3294    getPointerType(VoidPtrTy),
3295    getPointerType(VoidPtrTy)
3296  };
3297
3298  const char *FieldNames[] = {
3299    "reserved",
3300    "Size",
3301    "CopyFuncPtr",
3302    "DestroyFuncPtr"
3303  };
3304
3305  for (size_t i = 0; i < 4; ++i) {
3306    FieldDecl *Field = FieldDecl::Create(*this,
3307                                         T,
3308                                         SourceLocation(),
3309                                         &Idents.get(FieldNames[i]),
3310                                         FieldTypes[i], /*TInfo=*/0,
3311                                         /*BitWidth=*/0,
3312                                         /*Mutable=*/false);
3313    Field->setAccess(AS_public);
3314    T->addDecl(Field);
3315  }
3316
3317  T->completeDefinition();
3318
3319  BlockDescriptorExtendedType = T;
3320
3321  return getTagDeclType(BlockDescriptorExtendedType);
3322}
3323
3324void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3325  const RecordType *Rec = T->getAs<RecordType>();
3326  assert(Rec && "Invalid BlockDescriptorType");
3327  BlockDescriptorExtendedType = Rec->getDecl();
3328}
3329
3330bool ASTContext::BlockRequiresCopying(QualType Ty) {
3331  if (Ty->isBlockPointerType())
3332    return true;
3333  if (isObjCNSObjectType(Ty))
3334    return true;
3335  if (Ty->isObjCObjectPointerType())
3336    return true;
3337  if (getLangOptions().CPlusPlus) {
3338    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3339      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3340      return RD->hasConstCopyConstructor(*this);
3341
3342    }
3343  }
3344  return false;
3345}
3346
3347QualType ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) {
3348  //  type = struct __Block_byref_1_X {
3349  //    void *__isa;
3350  //    struct __Block_byref_1_X *__forwarding;
3351  //    unsigned int __flags;
3352  //    unsigned int __size;
3353  //    void *__copy_helper;            // as needed
3354  //    void *__destroy_help            // as needed
3355  //    int X;
3356  //  } *
3357
3358  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3359
3360  // FIXME: Move up
3361  llvm::SmallString<36> Name;
3362  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3363                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3364  RecordDecl *T;
3365  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3366                       &Idents.get(Name.str()));
3367  T->startDefinition();
3368  QualType Int32Ty = IntTy;
3369  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3370  QualType FieldTypes[] = {
3371    getPointerType(VoidPtrTy),
3372    getPointerType(getTagDeclType(T)),
3373    Int32Ty,
3374    Int32Ty,
3375    getPointerType(VoidPtrTy),
3376    getPointerType(VoidPtrTy),
3377    Ty
3378  };
3379
3380  llvm::StringRef FieldNames[] = {
3381    "__isa",
3382    "__forwarding",
3383    "__flags",
3384    "__size",
3385    "__copy_helper",
3386    "__destroy_helper",
3387    DeclName,
3388  };
3389
3390  for (size_t i = 0; i < 7; ++i) {
3391    if (!HasCopyAndDispose && i >=4 && i <= 5)
3392      continue;
3393    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3394                                         &Idents.get(FieldNames[i]),
3395                                         FieldTypes[i], /*TInfo=*/0,
3396                                         /*BitWidth=*/0, /*Mutable=*/false);
3397    Field->setAccess(AS_public);
3398    T->addDecl(Field);
3399  }
3400
3401  T->completeDefinition();
3402
3403  return getPointerType(getTagDeclType(T));
3404}
3405
3406
3407QualType ASTContext::getBlockParmType(
3408  bool BlockHasCopyDispose,
3409  llvm::SmallVectorImpl<const Expr *> &Layout) {
3410
3411  // FIXME: Move up
3412  llvm::SmallString<36> Name;
3413  llvm::raw_svector_ostream(Name) << "__block_literal_"
3414                                  << ++UniqueBlockParmTypeID;
3415  RecordDecl *T;
3416  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3417                       &Idents.get(Name.str()));
3418  T->startDefinition();
3419  QualType FieldTypes[] = {
3420    getPointerType(VoidPtrTy),
3421    IntTy,
3422    IntTy,
3423    getPointerType(VoidPtrTy),
3424    (BlockHasCopyDispose ?
3425     getPointerType(getBlockDescriptorExtendedType()) :
3426     getPointerType(getBlockDescriptorType()))
3427  };
3428
3429  const char *FieldNames[] = {
3430    "__isa",
3431    "__flags",
3432    "__reserved",
3433    "__FuncPtr",
3434    "__descriptor"
3435  };
3436
3437  for (size_t i = 0; i < 5; ++i) {
3438    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3439                                         &Idents.get(FieldNames[i]),
3440                                         FieldTypes[i], /*TInfo=*/0,
3441                                         /*BitWidth=*/0, /*Mutable=*/false);
3442    Field->setAccess(AS_public);
3443    T->addDecl(Field);
3444  }
3445
3446  for (unsigned i = 0; i < Layout.size(); ++i) {
3447    const Expr *E = Layout[i];
3448
3449    QualType FieldType = E->getType();
3450    IdentifierInfo *FieldName = 0;
3451    if (isa<CXXThisExpr>(E)) {
3452      FieldName = &Idents.get("this");
3453    } else if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) {
3454      const ValueDecl *D = BDRE->getDecl();
3455      FieldName = D->getIdentifier();
3456      if (BDRE->isByRef())
3457        FieldType = BuildByRefType(D->getName(), FieldType);
3458    } else {
3459      // Padding.
3460      assert(isa<ConstantArrayType>(FieldType) &&
3461             isa<DeclRefExpr>(E) &&
3462             !cast<DeclRefExpr>(E)->getDecl()->getDeclName() &&
3463             "doesn't match characteristics of padding decl");
3464    }
3465
3466    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3467                                         FieldName, FieldType, /*TInfo=*/0,
3468                                         /*BitWidth=*/0, /*Mutable=*/false);
3469    Field->setAccess(AS_public);
3470    T->addDecl(Field);
3471  }
3472
3473  T->completeDefinition();
3474
3475  return getPointerType(getTagDeclType(T));
3476}
3477
3478void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3479  const RecordType *Rec = T->getAs<RecordType>();
3480  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3481  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3482}
3483
3484// This returns true if a type has been typedefed to BOOL:
3485// typedef <type> BOOL;
3486static bool isTypeTypedefedAsBOOL(QualType T) {
3487  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3488    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3489      return II->isStr("BOOL");
3490
3491  return false;
3492}
3493
3494/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3495/// purpose.
3496CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3497  CharUnits sz = getTypeSizeInChars(type);
3498
3499  // Make all integer and enum types at least as large as an int
3500  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3501    sz = std::max(sz, getTypeSizeInChars(IntTy));
3502  // Treat arrays as pointers, since that's how they're passed in.
3503  else if (type->isArrayType())
3504    sz = getTypeSizeInChars(VoidPtrTy);
3505  return sz;
3506}
3507
3508static inline
3509std::string charUnitsToString(const CharUnits &CU) {
3510  return llvm::itostr(CU.getQuantity());
3511}
3512
3513/// getObjCEncodingForBlockDecl - Return the encoded type for this block
3514/// declaration.
3515void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3516                                             std::string& S) {
3517  const BlockDecl *Decl = Expr->getBlockDecl();
3518  QualType BlockTy =
3519      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3520  // Encode result type.
3521  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3522  // Compute size of all parameters.
3523  // Start with computing size of a pointer in number of bytes.
3524  // FIXME: There might(should) be a better way of doing this computation!
3525  SourceLocation Loc;
3526  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3527  CharUnits ParmOffset = PtrSize;
3528  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3529       E = Decl->param_end(); PI != E; ++PI) {
3530    QualType PType = (*PI)->getType();
3531    CharUnits sz = getObjCEncodingTypeSize(PType);
3532    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3533    ParmOffset += sz;
3534  }
3535  // Size of the argument frame
3536  S += charUnitsToString(ParmOffset);
3537  // Block pointer and offset.
3538  S += "@?0";
3539  ParmOffset = PtrSize;
3540
3541  // Argument types.
3542  ParmOffset = PtrSize;
3543  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3544       Decl->param_end(); PI != E; ++PI) {
3545    ParmVarDecl *PVDecl = *PI;
3546    QualType PType = PVDecl->getOriginalType();
3547    if (const ArrayType *AT =
3548          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3549      // Use array's original type only if it has known number of
3550      // elements.
3551      if (!isa<ConstantArrayType>(AT))
3552        PType = PVDecl->getType();
3553    } else if (PType->isFunctionType())
3554      PType = PVDecl->getType();
3555    getObjCEncodingForType(PType, S);
3556    S += charUnitsToString(ParmOffset);
3557    ParmOffset += getObjCEncodingTypeSize(PType);
3558  }
3559}
3560
3561void ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3562                                                std::string& S) {
3563  // Encode result type.
3564  getObjCEncodingForType(Decl->getResultType(), S);
3565  CharUnits ParmOffset;
3566  // Compute size of all parameters.
3567  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3568       E = Decl->param_end(); PI != E; ++PI) {
3569    QualType PType = (*PI)->getType();
3570    CharUnits sz = getObjCEncodingTypeSize(PType);
3571    assert (sz.isPositive() &&
3572        "getObjCEncodingForMethodDecl - Incomplete param type");
3573    ParmOffset += sz;
3574  }
3575  S += charUnitsToString(ParmOffset);
3576  ParmOffset = CharUnits::Zero();
3577
3578  // Argument types.
3579  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3580       E = Decl->param_end(); PI != E; ++PI) {
3581    ParmVarDecl *PVDecl = *PI;
3582    QualType PType = PVDecl->getOriginalType();
3583    if (const ArrayType *AT =
3584          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3585      // Use array's original type only if it has known number of
3586      // elements.
3587      if (!isa<ConstantArrayType>(AT))
3588        PType = PVDecl->getType();
3589    } else if (PType->isFunctionType())
3590      PType = PVDecl->getType();
3591    getObjCEncodingForType(PType, S);
3592    S += charUnitsToString(ParmOffset);
3593    ParmOffset += getObjCEncodingTypeSize(PType);
3594  }
3595}
3596
3597/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3598/// declaration.
3599void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3600                                              std::string& S) {
3601  // FIXME: This is not very efficient.
3602  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3603  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3604  // Encode result type.
3605  getObjCEncodingForType(Decl->getResultType(), S);
3606  // Compute size of all parameters.
3607  // Start with computing size of a pointer in number of bytes.
3608  // FIXME: There might(should) be a better way of doing this computation!
3609  SourceLocation Loc;
3610  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3611  // The first two arguments (self and _cmd) are pointers; account for
3612  // their size.
3613  CharUnits ParmOffset = 2 * PtrSize;
3614  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3615       E = Decl->sel_param_end(); PI != E; ++PI) {
3616    QualType PType = (*PI)->getType();
3617    CharUnits sz = getObjCEncodingTypeSize(PType);
3618    assert (sz.isPositive() &&
3619        "getObjCEncodingForMethodDecl - Incomplete param type");
3620    ParmOffset += sz;
3621  }
3622  S += charUnitsToString(ParmOffset);
3623  S += "@0:";
3624  S += charUnitsToString(PtrSize);
3625
3626  // Argument types.
3627  ParmOffset = 2 * PtrSize;
3628  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3629       E = Decl->sel_param_end(); PI != E; ++PI) {
3630    ParmVarDecl *PVDecl = *PI;
3631    QualType PType = PVDecl->getOriginalType();
3632    if (const ArrayType *AT =
3633          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3634      // Use array's original type only if it has known number of
3635      // elements.
3636      if (!isa<ConstantArrayType>(AT))
3637        PType = PVDecl->getType();
3638    } else if (PType->isFunctionType())
3639      PType = PVDecl->getType();
3640    // Process argument qualifiers for user supplied arguments; such as,
3641    // 'in', 'inout', etc.
3642    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3643    getObjCEncodingForType(PType, S);
3644    S += charUnitsToString(ParmOffset);
3645    ParmOffset += getObjCEncodingTypeSize(PType);
3646  }
3647}
3648
3649/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3650/// property declaration. If non-NULL, Container must be either an
3651/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3652/// NULL when getting encodings for protocol properties.
3653/// Property attributes are stored as a comma-delimited C string. The simple
3654/// attributes readonly and bycopy are encoded as single characters. The
3655/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3656/// encoded as single characters, followed by an identifier. Property types
3657/// are also encoded as a parametrized attribute. The characters used to encode
3658/// these attributes are defined by the following enumeration:
3659/// @code
3660/// enum PropertyAttributes {
3661/// kPropertyReadOnly = 'R',   // property is read-only.
3662/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3663/// kPropertyByref = '&',  // property is a reference to the value last assigned
3664/// kPropertyDynamic = 'D',    // property is dynamic
3665/// kPropertyGetter = 'G',     // followed by getter selector name
3666/// kPropertySetter = 'S',     // followed by setter selector name
3667/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3668/// kPropertyType = 't'              // followed by old-style type encoding.
3669/// kPropertyWeak = 'W'              // 'weak' property
3670/// kPropertyStrong = 'P'            // property GC'able
3671/// kPropertyNonAtomic = 'N'         // property non-atomic
3672/// };
3673/// @endcode
3674void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3675                                                const Decl *Container,
3676                                                std::string& S) {
3677  // Collect information from the property implementation decl(s).
3678  bool Dynamic = false;
3679  ObjCPropertyImplDecl *SynthesizePID = 0;
3680
3681  // FIXME: Duplicated code due to poor abstraction.
3682  if (Container) {
3683    if (const ObjCCategoryImplDecl *CID =
3684        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3685      for (ObjCCategoryImplDecl::propimpl_iterator
3686             i = CID->propimpl_begin(), e = CID->propimpl_end();
3687           i != e; ++i) {
3688        ObjCPropertyImplDecl *PID = *i;
3689        if (PID->getPropertyDecl() == PD) {
3690          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3691            Dynamic = true;
3692          } else {
3693            SynthesizePID = PID;
3694          }
3695        }
3696      }
3697    } else {
3698      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3699      for (ObjCCategoryImplDecl::propimpl_iterator
3700             i = OID->propimpl_begin(), e = OID->propimpl_end();
3701           i != e; ++i) {
3702        ObjCPropertyImplDecl *PID = *i;
3703        if (PID->getPropertyDecl() == PD) {
3704          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3705            Dynamic = true;
3706          } else {
3707            SynthesizePID = PID;
3708          }
3709        }
3710      }
3711    }
3712  }
3713
3714  // FIXME: This is not very efficient.
3715  S = "T";
3716
3717  // Encode result type.
3718  // GCC has some special rules regarding encoding of properties which
3719  // closely resembles encoding of ivars.
3720  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3721                             true /* outermost type */,
3722                             true /* encoding for property */);
3723
3724  if (PD->isReadOnly()) {
3725    S += ",R";
3726  } else {
3727    switch (PD->getSetterKind()) {
3728    case ObjCPropertyDecl::Assign: break;
3729    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3730    case ObjCPropertyDecl::Retain: S += ",&"; break;
3731    }
3732  }
3733
3734  // It really isn't clear at all what this means, since properties
3735  // are "dynamic by default".
3736  if (Dynamic)
3737    S += ",D";
3738
3739  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3740    S += ",N";
3741
3742  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3743    S += ",G";
3744    S += PD->getGetterName().getAsString();
3745  }
3746
3747  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3748    S += ",S";
3749    S += PD->getSetterName().getAsString();
3750  }
3751
3752  if (SynthesizePID) {
3753    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3754    S += ",V";
3755    S += OID->getNameAsString();
3756  }
3757
3758  // FIXME: OBJCGC: weak & strong
3759}
3760
3761/// getLegacyIntegralTypeEncoding -
3762/// Another legacy compatibility encoding: 32-bit longs are encoded as
3763/// 'l' or 'L' , but not always.  For typedefs, we need to use
3764/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3765///
3766void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3767  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3768    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3769      if (BT->getKind() == BuiltinType::ULong &&
3770          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3771        PointeeTy = UnsignedIntTy;
3772      else
3773        if (BT->getKind() == BuiltinType::Long &&
3774            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3775          PointeeTy = IntTy;
3776    }
3777  }
3778}
3779
3780void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3781                                        const FieldDecl *Field) {
3782  // We follow the behavior of gcc, expanding structures which are
3783  // directly pointed to, and expanding embedded structures. Note that
3784  // these rules are sufficient to prevent recursive encoding of the
3785  // same type.
3786  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3787                             true /* outermost type */);
3788}
3789
3790static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3791    switch (T->getAs<BuiltinType>()->getKind()) {
3792    default: assert(0 && "Unhandled builtin type kind");
3793    case BuiltinType::Void:       return 'v';
3794    case BuiltinType::Bool:       return 'B';
3795    case BuiltinType::Char_U:
3796    case BuiltinType::UChar:      return 'C';
3797    case BuiltinType::UShort:     return 'S';
3798    case BuiltinType::UInt:       return 'I';
3799    case BuiltinType::ULong:
3800        return
3801          (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'L' : 'Q';
3802    case BuiltinType::UInt128:    return 'T';
3803    case BuiltinType::ULongLong:  return 'Q';
3804    case BuiltinType::Char_S:
3805    case BuiltinType::SChar:      return 'c';
3806    case BuiltinType::Short:      return 's';
3807    case BuiltinType::WChar_S:
3808    case BuiltinType::WChar_U:
3809    case BuiltinType::Int:        return 'i';
3810    case BuiltinType::Long:
3811      return
3812        (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'l' : 'q';
3813    case BuiltinType::LongLong:   return 'q';
3814    case BuiltinType::Int128:     return 't';
3815    case BuiltinType::Float:      return 'f';
3816    case BuiltinType::Double:     return 'd';
3817    case BuiltinType::LongDouble: return 'D';
3818    }
3819}
3820
3821static void EncodeBitField(const ASTContext *Context, std::string& S,
3822                           QualType T, const FieldDecl *FD) {
3823  const Expr *E = FD->getBitWidth();
3824  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3825  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3826  S += 'b';
3827  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3828  // The GNU runtime requires more information; bitfields are encoded as b,
3829  // then the offset (in bits) of the first element, then the type of the
3830  // bitfield, then the size in bits.  For example, in this structure:
3831  //
3832  // struct
3833  // {
3834  //    int integer;
3835  //    int flags:2;
3836  // };
3837  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
3838  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
3839  // information is not especially sensible, but we're stuck with it for
3840  // compatibility with GCC, although providing it breaks anything that
3841  // actually uses runtime introspection and wants to work on both runtimes...
3842  if (!Ctx->getLangOptions().NeXTRuntime) {
3843    const RecordDecl *RD = FD->getParent();
3844    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
3845    // FIXME: This same linear search is also used in ExprConstant - it might
3846    // be better if the FieldDecl stored its offset.  We'd be increasing the
3847    // size of the object slightly, but saving some time every time it is used.
3848    unsigned i = 0;
3849    for (RecordDecl::field_iterator Field = RD->field_begin(),
3850                                 FieldEnd = RD->field_end();
3851         Field != FieldEnd; (void)++Field, ++i) {
3852      if (*Field == FD)
3853        break;
3854    }
3855    S += llvm::utostr(RL.getFieldOffset(i));
3856    if (T->isEnumeralType())
3857      S += 'i';
3858    else
3859      S += ObjCEncodingForPrimitiveKind(Context, T);
3860  }
3861  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3862  S += llvm::utostr(N);
3863}
3864
3865// FIXME: Use SmallString for accumulating string.
3866void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3867                                            bool ExpandPointedToStructures,
3868                                            bool ExpandStructures,
3869                                            const FieldDecl *FD,
3870                                            bool OutermostType,
3871                                            bool EncodingProperty) {
3872  if (T->getAs<BuiltinType>()) {
3873    if (FD && FD->isBitField())
3874      return EncodeBitField(this, S, T, FD);
3875    S += ObjCEncodingForPrimitiveKind(this, T);
3876    return;
3877  }
3878
3879  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3880    S += 'j';
3881    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3882                               false);
3883    return;
3884  }
3885
3886  // encoding for pointer or r3eference types.
3887  QualType PointeeTy;
3888  if (const PointerType *PT = T->getAs<PointerType>()) {
3889    if (PT->isObjCSelType()) {
3890      S += ':';
3891      return;
3892    }
3893    PointeeTy = PT->getPointeeType();
3894  }
3895  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3896    PointeeTy = RT->getPointeeType();
3897  if (!PointeeTy.isNull()) {
3898    bool isReadOnly = false;
3899    // For historical/compatibility reasons, the read-only qualifier of the
3900    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3901    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3902    // Also, do not emit the 'r' for anything but the outermost type!
3903    if (isa<TypedefType>(T.getTypePtr())) {
3904      if (OutermostType && T.isConstQualified()) {
3905        isReadOnly = true;
3906        S += 'r';
3907      }
3908    } else if (OutermostType) {
3909      QualType P = PointeeTy;
3910      while (P->getAs<PointerType>())
3911        P = P->getAs<PointerType>()->getPointeeType();
3912      if (P.isConstQualified()) {
3913        isReadOnly = true;
3914        S += 'r';
3915      }
3916    }
3917    if (isReadOnly) {
3918      // Another legacy compatibility encoding. Some ObjC qualifier and type
3919      // combinations need to be rearranged.
3920      // Rewrite "in const" from "nr" to "rn"
3921      if (llvm::StringRef(S).endswith("nr"))
3922        S.replace(S.end()-2, S.end(), "rn");
3923    }
3924
3925    if (PointeeTy->isCharType()) {
3926      // char pointer types should be encoded as '*' unless it is a
3927      // type that has been typedef'd to 'BOOL'.
3928      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3929        S += '*';
3930        return;
3931      }
3932    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3933      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3934      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3935        S += '#';
3936        return;
3937      }
3938      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3939      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3940        S += '@';
3941        return;
3942      }
3943      // fall through...
3944    }
3945    S += '^';
3946    getLegacyIntegralTypeEncoding(PointeeTy);
3947
3948    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3949                               NULL);
3950    return;
3951  }
3952
3953  if (const ArrayType *AT =
3954      // Ignore type qualifiers etc.
3955        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3956    if (isa<IncompleteArrayType>(AT)) {
3957      // Incomplete arrays are encoded as a pointer to the array element.
3958      S += '^';
3959
3960      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3961                                 false, ExpandStructures, FD);
3962    } else {
3963      S += '[';
3964
3965      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3966        S += llvm::utostr(CAT->getSize().getZExtValue());
3967      else {
3968        //Variable length arrays are encoded as a regular array with 0 elements.
3969        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3970        S += '0';
3971      }
3972
3973      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3974                                 false, ExpandStructures, FD);
3975      S += ']';
3976    }
3977    return;
3978  }
3979
3980  if (T->getAs<FunctionType>()) {
3981    S += '?';
3982    return;
3983  }
3984
3985  if (const RecordType *RTy = T->getAs<RecordType>()) {
3986    RecordDecl *RDecl = RTy->getDecl();
3987    S += RDecl->isUnion() ? '(' : '{';
3988    // Anonymous structures print as '?'
3989    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3990      S += II->getName();
3991      if (ClassTemplateSpecializationDecl *Spec
3992          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
3993        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3994        std::string TemplateArgsStr
3995          = TemplateSpecializationType::PrintTemplateArgumentList(
3996                                            TemplateArgs.data(),
3997                                            TemplateArgs.size(),
3998                                            (*this).PrintingPolicy);
3999
4000        S += TemplateArgsStr;
4001      }
4002    } else {
4003      S += '?';
4004    }
4005    if (ExpandStructures) {
4006      S += '=';
4007      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4008                                   FieldEnd = RDecl->field_end();
4009           Field != FieldEnd; ++Field) {
4010        if (FD) {
4011          S += '"';
4012          S += Field->getNameAsString();
4013          S += '"';
4014        }
4015
4016        // Special case bit-fields.
4017        if (Field->isBitField()) {
4018          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4019                                     (*Field));
4020        } else {
4021          QualType qt = Field->getType();
4022          getLegacyIntegralTypeEncoding(qt);
4023          getObjCEncodingForTypeImpl(qt, S, false, true,
4024                                     FD);
4025        }
4026      }
4027    }
4028    S += RDecl->isUnion() ? ')' : '}';
4029    return;
4030  }
4031
4032  if (T->isEnumeralType()) {
4033    if (FD && FD->isBitField())
4034      EncodeBitField(this, S, T, FD);
4035    else
4036      S += 'i';
4037    return;
4038  }
4039
4040  if (T->isBlockPointerType()) {
4041    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4042    return;
4043  }
4044
4045  // Ignore protocol qualifiers when mangling at this level.
4046  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4047    T = OT->getBaseType();
4048
4049  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4050    // @encode(class_name)
4051    ObjCInterfaceDecl *OI = OIT->getDecl();
4052    S += '{';
4053    const IdentifierInfo *II = OI->getIdentifier();
4054    S += II->getName();
4055    S += '=';
4056    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
4057    DeepCollectObjCIvars(OI, true, Ivars);
4058    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4059      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4060      if (Field->isBitField())
4061        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4062      else
4063        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4064    }
4065    S += '}';
4066    return;
4067  }
4068
4069  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4070    if (OPT->isObjCIdType()) {
4071      S += '@';
4072      return;
4073    }
4074
4075    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4076      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4077      // Since this is a binary compatibility issue, need to consult with runtime
4078      // folks. Fortunately, this is a *very* obsure construct.
4079      S += '#';
4080      return;
4081    }
4082
4083    if (OPT->isObjCQualifiedIdType()) {
4084      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4085                                 ExpandPointedToStructures,
4086                                 ExpandStructures, FD);
4087      if (FD || EncodingProperty) {
4088        // Note that we do extended encoding of protocol qualifer list
4089        // Only when doing ivar or property encoding.
4090        S += '"';
4091        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4092             E = OPT->qual_end(); I != E; ++I) {
4093          S += '<';
4094          S += (*I)->getNameAsString();
4095          S += '>';
4096        }
4097        S += '"';
4098      }
4099      return;
4100    }
4101
4102    QualType PointeeTy = OPT->getPointeeType();
4103    if (!EncodingProperty &&
4104        isa<TypedefType>(PointeeTy.getTypePtr())) {
4105      // Another historical/compatibility reason.
4106      // We encode the underlying type which comes out as
4107      // {...};
4108      S += '^';
4109      getObjCEncodingForTypeImpl(PointeeTy, S,
4110                                 false, ExpandPointedToStructures,
4111                                 NULL);
4112      return;
4113    }
4114
4115    S += '@';
4116    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4117      S += '"';
4118      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4119      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4120           E = OPT->qual_end(); I != E; ++I) {
4121        S += '<';
4122        S += (*I)->getNameAsString();
4123        S += '>';
4124      }
4125      S += '"';
4126    }
4127    return;
4128  }
4129
4130  // gcc just blithely ignores member pointers.
4131  // TODO: maybe there should be a mangling for these
4132  if (T->getAs<MemberPointerType>())
4133    return;
4134
4135  if (T->isVectorType()) {
4136    // This matches gcc's encoding, even though technically it is
4137    // insufficient.
4138    // FIXME. We should do a better job than gcc.
4139    return;
4140  }
4141
4142  assert(0 && "@encode for type not implemented!");
4143}
4144
4145void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4146                                                 std::string& S) const {
4147  if (QT & Decl::OBJC_TQ_In)
4148    S += 'n';
4149  if (QT & Decl::OBJC_TQ_Inout)
4150    S += 'N';
4151  if (QT & Decl::OBJC_TQ_Out)
4152    S += 'o';
4153  if (QT & Decl::OBJC_TQ_Bycopy)
4154    S += 'O';
4155  if (QT & Decl::OBJC_TQ_Byref)
4156    S += 'R';
4157  if (QT & Decl::OBJC_TQ_Oneway)
4158    S += 'V';
4159}
4160
4161void ASTContext::setBuiltinVaListType(QualType T) {
4162  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4163
4164  BuiltinVaListType = T;
4165}
4166
4167void ASTContext::setObjCIdType(QualType T) {
4168  ObjCIdTypedefType = T;
4169}
4170
4171void ASTContext::setObjCSelType(QualType T) {
4172  ObjCSelTypedefType = T;
4173}
4174
4175void ASTContext::setObjCProtoType(QualType QT) {
4176  ObjCProtoType = QT;
4177}
4178
4179void ASTContext::setObjCClassType(QualType T) {
4180  ObjCClassTypedefType = T;
4181}
4182
4183void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4184  assert(ObjCConstantStringType.isNull() &&
4185         "'NSConstantString' type already set!");
4186
4187  ObjCConstantStringType = getObjCInterfaceType(Decl);
4188}
4189
4190/// \brief Retrieve the template name that corresponds to a non-empty
4191/// lookup.
4192TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4193                                                   UnresolvedSetIterator End) {
4194  unsigned size = End - Begin;
4195  assert(size > 1 && "set is not overloaded!");
4196
4197  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4198                          size * sizeof(FunctionTemplateDecl*));
4199  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4200
4201  NamedDecl **Storage = OT->getStorage();
4202  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4203    NamedDecl *D = *I;
4204    assert(isa<FunctionTemplateDecl>(D) ||
4205           (isa<UsingShadowDecl>(D) &&
4206            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4207    *Storage++ = D;
4208  }
4209
4210  return TemplateName(OT);
4211}
4212
4213/// \brief Retrieve the template name that represents a qualified
4214/// template name such as \c std::vector.
4215TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4216                                                  bool TemplateKeyword,
4217                                                  TemplateDecl *Template) {
4218  // FIXME: Canonicalization?
4219  llvm::FoldingSetNodeID ID;
4220  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4221
4222  void *InsertPos = 0;
4223  QualifiedTemplateName *QTN =
4224    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4225  if (!QTN) {
4226    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4227    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4228  }
4229
4230  return TemplateName(QTN);
4231}
4232
4233/// \brief Retrieve the template name that represents a dependent
4234/// template name such as \c MetaFun::template apply.
4235TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4236                                                  const IdentifierInfo *Name) {
4237  assert((!NNS || NNS->isDependent()) &&
4238         "Nested name specifier must be dependent");
4239
4240  llvm::FoldingSetNodeID ID;
4241  DependentTemplateName::Profile(ID, NNS, Name);
4242
4243  void *InsertPos = 0;
4244  DependentTemplateName *QTN =
4245    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4246
4247  if (QTN)
4248    return TemplateName(QTN);
4249
4250  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4251  if (CanonNNS == NNS) {
4252    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4253  } else {
4254    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4255    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4256    DependentTemplateName *CheckQTN =
4257      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4258    assert(!CheckQTN && "Dependent type name canonicalization broken");
4259    (void)CheckQTN;
4260  }
4261
4262  DependentTemplateNames.InsertNode(QTN, InsertPos);
4263  return TemplateName(QTN);
4264}
4265
4266/// \brief Retrieve the template name that represents a dependent
4267/// template name such as \c MetaFun::template operator+.
4268TemplateName
4269ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4270                                     OverloadedOperatorKind Operator) {
4271  assert((!NNS || NNS->isDependent()) &&
4272         "Nested name specifier must be dependent");
4273
4274  llvm::FoldingSetNodeID ID;
4275  DependentTemplateName::Profile(ID, NNS, Operator);
4276
4277  void *InsertPos = 0;
4278  DependentTemplateName *QTN
4279    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4280
4281  if (QTN)
4282    return TemplateName(QTN);
4283
4284  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4285  if (CanonNNS == NNS) {
4286    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4287  } else {
4288    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4289    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4290
4291    DependentTemplateName *CheckQTN
4292      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4293    assert(!CheckQTN && "Dependent template name canonicalization broken");
4294    (void)CheckQTN;
4295  }
4296
4297  DependentTemplateNames.InsertNode(QTN, InsertPos);
4298  return TemplateName(QTN);
4299}
4300
4301/// getFromTargetType - Given one of the integer types provided by
4302/// TargetInfo, produce the corresponding type. The unsigned @p Type
4303/// is actually a value of type @c TargetInfo::IntType.
4304CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4305  switch (Type) {
4306  case TargetInfo::NoInt: return CanQualType();
4307  case TargetInfo::SignedShort: return ShortTy;
4308  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4309  case TargetInfo::SignedInt: return IntTy;
4310  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4311  case TargetInfo::SignedLong: return LongTy;
4312  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4313  case TargetInfo::SignedLongLong: return LongLongTy;
4314  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4315  }
4316
4317  assert(false && "Unhandled TargetInfo::IntType value");
4318  return CanQualType();
4319}
4320
4321//===----------------------------------------------------------------------===//
4322//                        Type Predicates.
4323//===----------------------------------------------------------------------===//
4324
4325/// isObjCNSObjectType - Return true if this is an NSObject object using
4326/// NSObject attribute on a c-style pointer type.
4327/// FIXME - Make it work directly on types.
4328/// FIXME: Move to Type.
4329///
4330bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4331  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4332    if (TypedefDecl *TD = TDT->getDecl())
4333      if (TD->getAttr<ObjCNSObjectAttr>())
4334        return true;
4335  }
4336  return false;
4337}
4338
4339/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4340/// garbage collection attribute.
4341///
4342Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
4343  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
4344  if (getLangOptions().ObjC1 &&
4345      getLangOptions().getGCMode() != LangOptions::NonGC) {
4346    GCAttrs = Ty.getObjCGCAttr();
4347    // Default behavious under objective-c's gc is for objective-c pointers
4348    // (or pointers to them) be treated as though they were declared
4349    // as __strong.
4350    if (GCAttrs == Qualifiers::GCNone) {
4351      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4352        GCAttrs = Qualifiers::Strong;
4353      else if (Ty->isPointerType())
4354        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4355    }
4356    // Non-pointers have none gc'able attribute regardless of the attribute
4357    // set on them.
4358    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
4359      return Qualifiers::GCNone;
4360  }
4361  return GCAttrs;
4362}
4363
4364//===----------------------------------------------------------------------===//
4365//                        Type Compatibility Testing
4366//===----------------------------------------------------------------------===//
4367
4368/// areCompatVectorTypes - Return true if the two specified vector types are
4369/// compatible.
4370static bool areCompatVectorTypes(const VectorType *LHS,
4371                                 const VectorType *RHS) {
4372  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4373  return LHS->getElementType() == RHS->getElementType() &&
4374         LHS->getNumElements() == RHS->getNumElements();
4375}
4376
4377bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4378                                          QualType SecondVec) {
4379  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4380  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4381
4382  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4383    return true;
4384
4385  // Treat Neon vector types and most AltiVec vector types as if they are the
4386  // equivalent GCC vector types.
4387  const VectorType *First = FirstVec->getAs<VectorType>();
4388  const VectorType *Second = SecondVec->getAs<VectorType>();
4389  if (First->getNumElements() == Second->getNumElements() &&
4390      hasSameType(First->getElementType(), Second->getElementType()) &&
4391      First->getVectorKind() != VectorType::AltiVecPixel &&
4392      First->getVectorKind() != VectorType::AltiVecBool &&
4393      Second->getVectorKind() != VectorType::AltiVecPixel &&
4394      Second->getVectorKind() != VectorType::AltiVecBool)
4395    return true;
4396
4397  return false;
4398}
4399
4400//===----------------------------------------------------------------------===//
4401// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4402//===----------------------------------------------------------------------===//
4403
4404/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4405/// inheritance hierarchy of 'rProto'.
4406bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4407                                                ObjCProtocolDecl *rProto) {
4408  if (lProto == rProto)
4409    return true;
4410  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4411       E = rProto->protocol_end(); PI != E; ++PI)
4412    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4413      return true;
4414  return false;
4415}
4416
4417/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4418/// return true if lhs's protocols conform to rhs's protocol; false
4419/// otherwise.
4420bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4421  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4422    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4423  return false;
4424}
4425
4426/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4427/// Class<p1, ...>.
4428bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4429                                                      QualType rhs) {
4430  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4431  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4432  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4433
4434  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4435       E = lhsQID->qual_end(); I != E; ++I) {
4436    bool match = false;
4437    ObjCProtocolDecl *lhsProto = *I;
4438    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4439         E = rhsOPT->qual_end(); J != E; ++J) {
4440      ObjCProtocolDecl *rhsProto = *J;
4441      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4442        match = true;
4443        break;
4444      }
4445    }
4446    if (!match)
4447      return false;
4448  }
4449  return true;
4450}
4451
4452/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4453/// ObjCQualifiedIDType.
4454bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4455                                                   bool compare) {
4456  // Allow id<P..> and an 'id' or void* type in all cases.
4457  if (lhs->isVoidPointerType() ||
4458      lhs->isObjCIdType() || lhs->isObjCClassType())
4459    return true;
4460  else if (rhs->isVoidPointerType() ||
4461           rhs->isObjCIdType() || rhs->isObjCClassType())
4462    return true;
4463
4464  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4465    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4466
4467    if (!rhsOPT) return false;
4468
4469    if (rhsOPT->qual_empty()) {
4470      // If the RHS is a unqualified interface pointer "NSString*",
4471      // make sure we check the class hierarchy.
4472      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4473        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4474             E = lhsQID->qual_end(); I != E; ++I) {
4475          // when comparing an id<P> on lhs with a static type on rhs,
4476          // see if static class implements all of id's protocols, directly or
4477          // through its super class and categories.
4478          if (!rhsID->ClassImplementsProtocol(*I, true))
4479            return false;
4480        }
4481      }
4482      // If there are no qualifiers and no interface, we have an 'id'.
4483      return true;
4484    }
4485    // Both the right and left sides have qualifiers.
4486    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4487         E = lhsQID->qual_end(); I != E; ++I) {
4488      ObjCProtocolDecl *lhsProto = *I;
4489      bool match = false;
4490
4491      // when comparing an id<P> on lhs with a static type on rhs,
4492      // see if static class implements all of id's protocols, directly or
4493      // through its super class and categories.
4494      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4495           E = rhsOPT->qual_end(); J != E; ++J) {
4496        ObjCProtocolDecl *rhsProto = *J;
4497        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4498            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4499          match = true;
4500          break;
4501        }
4502      }
4503      // If the RHS is a qualified interface pointer "NSString<P>*",
4504      // make sure we check the class hierarchy.
4505      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4506        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4507             E = lhsQID->qual_end(); I != E; ++I) {
4508          // when comparing an id<P> on lhs with a static type on rhs,
4509          // see if static class implements all of id's protocols, directly or
4510          // through its super class and categories.
4511          if (rhsID->ClassImplementsProtocol(*I, true)) {
4512            match = true;
4513            break;
4514          }
4515        }
4516      }
4517      if (!match)
4518        return false;
4519    }
4520
4521    return true;
4522  }
4523
4524  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4525  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4526
4527  if (const ObjCObjectPointerType *lhsOPT =
4528        lhs->getAsObjCInterfacePointerType()) {
4529    // If both the right and left sides have qualifiers.
4530    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4531         E = lhsOPT->qual_end(); I != E; ++I) {
4532      ObjCProtocolDecl *lhsProto = *I;
4533      bool match = false;
4534
4535      // when comparing an id<P> on rhs with a static type on lhs,
4536      // see if static class implements all of id's protocols, directly or
4537      // through its super class and categories.
4538      // First, lhs protocols in the qualifier list must be found, direct
4539      // or indirect in rhs's qualifier list or it is a mismatch.
4540      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4541           E = rhsQID->qual_end(); J != E; ++J) {
4542        ObjCProtocolDecl *rhsProto = *J;
4543        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4544            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4545          match = true;
4546          break;
4547        }
4548      }
4549      if (!match)
4550        return false;
4551    }
4552
4553    // Static class's protocols, or its super class or category protocols
4554    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
4555    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4556      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4557      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
4558      // This is rather dubious but matches gcc's behavior. If lhs has
4559      // no type qualifier and its class has no static protocol(s)
4560      // assume that it is mismatch.
4561      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
4562        return false;
4563      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4564           LHSInheritedProtocols.begin(),
4565           E = LHSInheritedProtocols.end(); I != E; ++I) {
4566        bool match = false;
4567        ObjCProtocolDecl *lhsProto = (*I);
4568        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4569             E = rhsQID->qual_end(); J != E; ++J) {
4570          ObjCProtocolDecl *rhsProto = *J;
4571          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4572              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4573            match = true;
4574            break;
4575          }
4576        }
4577        if (!match)
4578          return false;
4579      }
4580    }
4581    return true;
4582  }
4583  return false;
4584}
4585
4586/// canAssignObjCInterfaces - Return true if the two interface types are
4587/// compatible for assignment from RHS to LHS.  This handles validation of any
4588/// protocol qualifiers on the LHS or RHS.
4589///
4590bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4591                                         const ObjCObjectPointerType *RHSOPT) {
4592  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4593  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4594
4595  // If either type represents the built-in 'id' or 'Class' types, return true.
4596  if (LHS->isObjCUnqualifiedIdOrClass() ||
4597      RHS->isObjCUnqualifiedIdOrClass())
4598    return true;
4599
4600  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4601    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4602                                             QualType(RHSOPT,0),
4603                                             false);
4604
4605  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
4606    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
4607                                                QualType(RHSOPT,0));
4608
4609  // If we have 2 user-defined types, fall into that path.
4610  if (LHS->getInterface() && RHS->getInterface())
4611    return canAssignObjCInterfaces(LHS, RHS);
4612
4613  return false;
4614}
4615
4616/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4617/// for providing type-safty for objective-c pointers used to pass/return
4618/// arguments in block literals. When passed as arguments, passing 'A*' where
4619/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4620/// not OK. For the return type, the opposite is not OK.
4621bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4622                                         const ObjCObjectPointerType *LHSOPT,
4623                                         const ObjCObjectPointerType *RHSOPT) {
4624  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4625    return true;
4626
4627  if (LHSOPT->isObjCBuiltinType()) {
4628    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4629  }
4630
4631  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4632    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4633                                             QualType(RHSOPT,0),
4634                                             false);
4635
4636  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4637  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4638  if (LHS && RHS)  { // We have 2 user-defined types.
4639    if (LHS != RHS) {
4640      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4641        return false;
4642      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4643        return true;
4644    }
4645    else
4646      return true;
4647  }
4648  return false;
4649}
4650
4651/// getIntersectionOfProtocols - This routine finds the intersection of set
4652/// of protocols inherited from two distinct objective-c pointer objects.
4653/// It is used to build composite qualifier list of the composite type of
4654/// the conditional expression involving two objective-c pointer objects.
4655static
4656void getIntersectionOfProtocols(ASTContext &Context,
4657                                const ObjCObjectPointerType *LHSOPT,
4658                                const ObjCObjectPointerType *RHSOPT,
4659      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4660
4661  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4662  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4663  assert(LHS->getInterface() && "LHS must have an interface base");
4664  assert(RHS->getInterface() && "RHS must have an interface base");
4665
4666  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4667  unsigned LHSNumProtocols = LHS->getNumProtocols();
4668  if (LHSNumProtocols > 0)
4669    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4670  else {
4671    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4672    Context.CollectInheritedProtocols(LHS->getInterface(),
4673                                      LHSInheritedProtocols);
4674    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4675                                LHSInheritedProtocols.end());
4676  }
4677
4678  unsigned RHSNumProtocols = RHS->getNumProtocols();
4679  if (RHSNumProtocols > 0) {
4680    ObjCProtocolDecl **RHSProtocols =
4681      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4682    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4683      if (InheritedProtocolSet.count(RHSProtocols[i]))
4684        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4685  }
4686  else {
4687    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4688    Context.CollectInheritedProtocols(RHS->getInterface(),
4689                                      RHSInheritedProtocols);
4690    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4691         RHSInheritedProtocols.begin(),
4692         E = RHSInheritedProtocols.end(); I != E; ++I)
4693      if (InheritedProtocolSet.count((*I)))
4694        IntersectionOfProtocols.push_back((*I));
4695  }
4696}
4697
4698/// areCommonBaseCompatible - Returns common base class of the two classes if
4699/// one found. Note that this is O'2 algorithm. But it will be called as the
4700/// last type comparison in a ?-exp of ObjC pointer types before a
4701/// warning is issued. So, its invokation is extremely rare.
4702QualType ASTContext::areCommonBaseCompatible(
4703                                          const ObjCObjectPointerType *Lptr,
4704                                          const ObjCObjectPointerType *Rptr) {
4705  const ObjCObjectType *LHS = Lptr->getObjectType();
4706  const ObjCObjectType *RHS = Rptr->getObjectType();
4707  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4708  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4709  if (!LDecl || !RDecl)
4710    return QualType();
4711
4712  while ((LDecl = LDecl->getSuperClass())) {
4713    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4714    if (canAssignObjCInterfaces(LHS, RHS)) {
4715      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4716      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4717
4718      QualType Result = QualType(LHS, 0);
4719      if (!Protocols.empty())
4720        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4721      Result = getObjCObjectPointerType(Result);
4722      return Result;
4723    }
4724  }
4725
4726  return QualType();
4727}
4728
4729bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4730                                         const ObjCObjectType *RHS) {
4731  assert(LHS->getInterface() && "LHS is not an interface type");
4732  assert(RHS->getInterface() && "RHS is not an interface type");
4733
4734  // Verify that the base decls are compatible: the RHS must be a subclass of
4735  // the LHS.
4736  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4737    return false;
4738
4739  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4740  // protocol qualified at all, then we are good.
4741  if (LHS->getNumProtocols() == 0)
4742    return true;
4743
4744  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4745  // isn't a superset.
4746  if (RHS->getNumProtocols() == 0)
4747    return true;  // FIXME: should return false!
4748
4749  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4750                                     LHSPE = LHS->qual_end();
4751       LHSPI != LHSPE; LHSPI++) {
4752    bool RHSImplementsProtocol = false;
4753
4754    // If the RHS doesn't implement the protocol on the left, the types
4755    // are incompatible.
4756    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4757                                       RHSPE = RHS->qual_end();
4758         RHSPI != RHSPE; RHSPI++) {
4759      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4760        RHSImplementsProtocol = true;
4761        break;
4762      }
4763    }
4764    // FIXME: For better diagnostics, consider passing back the protocol name.
4765    if (!RHSImplementsProtocol)
4766      return false;
4767  }
4768  // The RHS implements all protocols listed on the LHS.
4769  return true;
4770}
4771
4772bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4773  // get the "pointed to" types
4774  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4775  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4776
4777  if (!LHSOPT || !RHSOPT)
4778    return false;
4779
4780  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4781         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4782}
4783
4784bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
4785  return canAssignObjCInterfaces(
4786                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
4787                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
4788}
4789
4790/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4791/// both shall have the identically qualified version of a compatible type.
4792/// C99 6.2.7p1: Two types have compatible types if their types are the
4793/// same. See 6.7.[2,3,5] for additional rules.
4794bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
4795                                    bool CompareUnqualified) {
4796  if (getLangOptions().CPlusPlus)
4797    return hasSameType(LHS, RHS);
4798
4799  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
4800}
4801
4802bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4803  return !mergeTypes(LHS, RHS, true).isNull();
4804}
4805
4806/// mergeTransparentUnionType - if T is a transparent union type and a member
4807/// of T is compatible with SubType, return the merged type, else return
4808/// QualType()
4809QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
4810                                               bool OfBlockPointer,
4811                                               bool Unqualified) {
4812  if (const RecordType *UT = T->getAsUnionType()) {
4813    RecordDecl *UD = UT->getDecl();
4814    if (UD->hasAttr<TransparentUnionAttr>()) {
4815      for (RecordDecl::field_iterator it = UD->field_begin(),
4816           itend = UD->field_end(); it != itend; ++it) {
4817        QualType ET = it->getType().getUnqualifiedType();
4818        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
4819        if (!MT.isNull())
4820          return MT;
4821      }
4822    }
4823  }
4824
4825  return QualType();
4826}
4827
4828/// mergeFunctionArgumentTypes - merge two types which appear as function
4829/// argument types
4830QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
4831                                                bool OfBlockPointer,
4832                                                bool Unqualified) {
4833  // GNU extension: two types are compatible if they appear as a function
4834  // argument, one of the types is a transparent union type and the other
4835  // type is compatible with a union member
4836  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
4837                                              Unqualified);
4838  if (!lmerge.isNull())
4839    return lmerge;
4840
4841  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
4842                                              Unqualified);
4843  if (!rmerge.isNull())
4844    return rmerge;
4845
4846  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
4847}
4848
4849QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4850                                        bool OfBlockPointer,
4851                                        bool Unqualified) {
4852  const FunctionType *lbase = lhs->getAs<FunctionType>();
4853  const FunctionType *rbase = rhs->getAs<FunctionType>();
4854  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4855  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4856  bool allLTypes = true;
4857  bool allRTypes = true;
4858
4859  // Check return type
4860  QualType retType;
4861  if (OfBlockPointer)
4862    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true,
4863                         Unqualified);
4864  else
4865    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
4866                         Unqualified);
4867  if (retType.isNull()) return QualType();
4868
4869  if (Unqualified)
4870    retType = retType.getUnqualifiedType();
4871
4872  CanQualType LRetType = getCanonicalType(lbase->getResultType());
4873  CanQualType RRetType = getCanonicalType(rbase->getResultType());
4874  if (Unqualified) {
4875    LRetType = LRetType.getUnqualifiedType();
4876    RRetType = RRetType.getUnqualifiedType();
4877  }
4878
4879  if (getCanonicalType(retType) != LRetType)
4880    allLTypes = false;
4881  if (getCanonicalType(retType) != RRetType)
4882    allRTypes = false;
4883
4884  // FIXME: double check this
4885  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4886  //                           rbase->getRegParmAttr() != 0 &&
4887  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4888  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4889  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4890
4891  // Compatible functions must have compatible calling conventions
4892  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
4893    return QualType();
4894
4895  // Regparm is part of the calling convention.
4896  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
4897    return QualType();
4898
4899  // It's noreturn if either type is.
4900  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
4901  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4902  if (NoReturn != lbaseInfo.getNoReturn())
4903    allLTypes = false;
4904  if (NoReturn != rbaseInfo.getNoReturn())
4905    allRTypes = false;
4906
4907  FunctionType::ExtInfo einfo(NoReturn,
4908                              lbaseInfo.getRegParm(),
4909                              lbaseInfo.getCC());
4910
4911  if (lproto && rproto) { // two C99 style function prototypes
4912    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4913           "C++ shouldn't be here");
4914    unsigned lproto_nargs = lproto->getNumArgs();
4915    unsigned rproto_nargs = rproto->getNumArgs();
4916
4917    // Compatible functions must have the same number of arguments
4918    if (lproto_nargs != rproto_nargs)
4919      return QualType();
4920
4921    // Variadic and non-variadic functions aren't compatible
4922    if (lproto->isVariadic() != rproto->isVariadic())
4923      return QualType();
4924
4925    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4926      return QualType();
4927
4928    // Check argument compatibility
4929    llvm::SmallVector<QualType, 10> types;
4930    for (unsigned i = 0; i < lproto_nargs; i++) {
4931      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4932      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4933      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
4934                                                    OfBlockPointer,
4935                                                    Unqualified);
4936      if (argtype.isNull()) return QualType();
4937
4938      if (Unqualified)
4939        argtype = argtype.getUnqualifiedType();
4940
4941      types.push_back(argtype);
4942      if (Unqualified) {
4943        largtype = largtype.getUnqualifiedType();
4944        rargtype = rargtype.getUnqualifiedType();
4945      }
4946
4947      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4948        allLTypes = false;
4949      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4950        allRTypes = false;
4951    }
4952    if (allLTypes) return lhs;
4953    if (allRTypes) return rhs;
4954
4955    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
4956    EPI.ExtInfo = einfo;
4957    return getFunctionType(retType, types.begin(), types.size(), EPI);
4958  }
4959
4960  if (lproto) allRTypes = false;
4961  if (rproto) allLTypes = false;
4962
4963  const FunctionProtoType *proto = lproto ? lproto : rproto;
4964  if (proto) {
4965    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4966    if (proto->isVariadic()) return QualType();
4967    // Check that the types are compatible with the types that
4968    // would result from default argument promotions (C99 6.7.5.3p15).
4969    // The only types actually affected are promotable integer
4970    // types and floats, which would be passed as a different
4971    // type depending on whether the prototype is visible.
4972    unsigned proto_nargs = proto->getNumArgs();
4973    for (unsigned i = 0; i < proto_nargs; ++i) {
4974      QualType argTy = proto->getArgType(i);
4975
4976      // Look at the promotion type of enum types, since that is the type used
4977      // to pass enum values.
4978      if (const EnumType *Enum = argTy->getAs<EnumType>())
4979        argTy = Enum->getDecl()->getPromotionType();
4980
4981      if (argTy->isPromotableIntegerType() ||
4982          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4983        return QualType();
4984    }
4985
4986    if (allLTypes) return lhs;
4987    if (allRTypes) return rhs;
4988
4989    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
4990    EPI.ExtInfo = einfo;
4991    return getFunctionType(retType, proto->arg_type_begin(),
4992                           proto->getNumArgs(), EPI);
4993  }
4994
4995  if (allLTypes) return lhs;
4996  if (allRTypes) return rhs;
4997  return getFunctionNoProtoType(retType, einfo);
4998}
4999
5000QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5001                                bool OfBlockPointer,
5002                                bool Unqualified) {
5003  // C++ [expr]: If an expression initially has the type "reference to T", the
5004  // type is adjusted to "T" prior to any further analysis, the expression
5005  // designates the object or function denoted by the reference, and the
5006  // expression is an lvalue unless the reference is an rvalue reference and
5007  // the expression is a function call (possibly inside parentheses).
5008  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5009  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5010
5011  if (Unqualified) {
5012    LHS = LHS.getUnqualifiedType();
5013    RHS = RHS.getUnqualifiedType();
5014  }
5015
5016  QualType LHSCan = getCanonicalType(LHS),
5017           RHSCan = getCanonicalType(RHS);
5018
5019  // If two types are identical, they are compatible.
5020  if (LHSCan == RHSCan)
5021    return LHS;
5022
5023  // If the qualifiers are different, the types aren't compatible... mostly.
5024  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5025  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5026  if (LQuals != RQuals) {
5027    // If any of these qualifiers are different, we have a type
5028    // mismatch.
5029    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5030        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5031      return QualType();
5032
5033    // Exactly one GC qualifier difference is allowed: __strong is
5034    // okay if the other type has no GC qualifier but is an Objective
5035    // C object pointer (i.e. implicitly strong by default).  We fix
5036    // this by pretending that the unqualified type was actually
5037    // qualified __strong.
5038    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5039    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5040    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5041
5042    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5043      return QualType();
5044
5045    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5046      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5047    }
5048    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5049      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5050    }
5051    return QualType();
5052  }
5053
5054  // Okay, qualifiers are equal.
5055
5056  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5057  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5058
5059  // We want to consider the two function types to be the same for these
5060  // comparisons, just force one to the other.
5061  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5062  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5063
5064  // Same as above for arrays
5065  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5066    LHSClass = Type::ConstantArray;
5067  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5068    RHSClass = Type::ConstantArray;
5069
5070  // ObjCInterfaces are just specialized ObjCObjects.
5071  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5072  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5073
5074  // Canonicalize ExtVector -> Vector.
5075  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5076  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5077
5078  // If the canonical type classes don't match.
5079  if (LHSClass != RHSClass) {
5080    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5081    // a signed integer type, or an unsigned integer type.
5082    // Compatibility is based on the underlying type, not the promotion
5083    // type.
5084    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5085      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5086        return RHS;
5087    }
5088    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5089      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5090        return LHS;
5091    }
5092
5093    return QualType();
5094  }
5095
5096  // The canonical type classes match.
5097  switch (LHSClass) {
5098#define TYPE(Class, Base)
5099#define ABSTRACT_TYPE(Class, Base)
5100#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5101#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5102#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5103#include "clang/AST/TypeNodes.def"
5104    assert(false && "Non-canonical and dependent types shouldn't get here");
5105    return QualType();
5106
5107  case Type::LValueReference:
5108  case Type::RValueReference:
5109  case Type::MemberPointer:
5110    assert(false && "C++ should never be in mergeTypes");
5111    return QualType();
5112
5113  case Type::ObjCInterface:
5114  case Type::IncompleteArray:
5115  case Type::VariableArray:
5116  case Type::FunctionProto:
5117  case Type::ExtVector:
5118    assert(false && "Types are eliminated above");
5119    return QualType();
5120
5121  case Type::Pointer:
5122  {
5123    // Merge two pointer types, while trying to preserve typedef info
5124    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5125    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5126    if (Unqualified) {
5127      LHSPointee = LHSPointee.getUnqualifiedType();
5128      RHSPointee = RHSPointee.getUnqualifiedType();
5129    }
5130    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5131                                     Unqualified);
5132    if (ResultType.isNull()) return QualType();
5133    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5134      return LHS;
5135    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5136      return RHS;
5137    return getPointerType(ResultType);
5138  }
5139  case Type::BlockPointer:
5140  {
5141    // Merge two block pointer types, while trying to preserve typedef info
5142    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5143    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5144    if (Unqualified) {
5145      LHSPointee = LHSPointee.getUnqualifiedType();
5146      RHSPointee = RHSPointee.getUnqualifiedType();
5147    }
5148    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5149                                     Unqualified);
5150    if (ResultType.isNull()) return QualType();
5151    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5152      return LHS;
5153    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5154      return RHS;
5155    return getBlockPointerType(ResultType);
5156  }
5157  case Type::ConstantArray:
5158  {
5159    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5160    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5161    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5162      return QualType();
5163
5164    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5165    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5166    if (Unqualified) {
5167      LHSElem = LHSElem.getUnqualifiedType();
5168      RHSElem = RHSElem.getUnqualifiedType();
5169    }
5170
5171    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5172    if (ResultType.isNull()) return QualType();
5173    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5174      return LHS;
5175    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5176      return RHS;
5177    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5178                                          ArrayType::ArraySizeModifier(), 0);
5179    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5180                                          ArrayType::ArraySizeModifier(), 0);
5181    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5182    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5183    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5184      return LHS;
5185    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5186      return RHS;
5187    if (LVAT) {
5188      // FIXME: This isn't correct! But tricky to implement because
5189      // the array's size has to be the size of LHS, but the type
5190      // has to be different.
5191      return LHS;
5192    }
5193    if (RVAT) {
5194      // FIXME: This isn't correct! But tricky to implement because
5195      // the array's size has to be the size of RHS, but the type
5196      // has to be different.
5197      return RHS;
5198    }
5199    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5200    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5201    return getIncompleteArrayType(ResultType,
5202                                  ArrayType::ArraySizeModifier(), 0);
5203  }
5204  case Type::FunctionNoProto:
5205    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5206  case Type::Record:
5207  case Type::Enum:
5208    return QualType();
5209  case Type::Builtin:
5210    // Only exactly equal builtin types are compatible, which is tested above.
5211    return QualType();
5212  case Type::Complex:
5213    // Distinct complex types are incompatible.
5214    return QualType();
5215  case Type::Vector:
5216    // FIXME: The merged type should be an ExtVector!
5217    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5218                             RHSCan->getAs<VectorType>()))
5219      return LHS;
5220    return QualType();
5221  case Type::ObjCObject: {
5222    // Check if the types are assignment compatible.
5223    // FIXME: This should be type compatibility, e.g. whether
5224    // "LHS x; RHS x;" at global scope is legal.
5225    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5226    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5227    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5228      return LHS;
5229
5230    return QualType();
5231  }
5232  case Type::ObjCObjectPointer: {
5233    if (OfBlockPointer) {
5234      if (canAssignObjCInterfacesInBlockPointer(
5235                                          LHS->getAs<ObjCObjectPointerType>(),
5236                                          RHS->getAs<ObjCObjectPointerType>()))
5237      return LHS;
5238      return QualType();
5239    }
5240    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5241                                RHS->getAs<ObjCObjectPointerType>()))
5242      return LHS;
5243
5244    return QualType();
5245    }
5246  }
5247
5248  return QualType();
5249}
5250
5251/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5252/// 'RHS' attributes and returns the merged version; including for function
5253/// return types.
5254QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5255  QualType LHSCan = getCanonicalType(LHS),
5256  RHSCan = getCanonicalType(RHS);
5257  // If two types are identical, they are compatible.
5258  if (LHSCan == RHSCan)
5259    return LHS;
5260  if (RHSCan->isFunctionType()) {
5261    if (!LHSCan->isFunctionType())
5262      return QualType();
5263    QualType OldReturnType =
5264      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5265    QualType NewReturnType =
5266      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5267    QualType ResReturnType =
5268      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5269    if (ResReturnType.isNull())
5270      return QualType();
5271    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5272      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5273      // In either case, use OldReturnType to build the new function type.
5274      const FunctionType *F = LHS->getAs<FunctionType>();
5275      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5276        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5277        EPI.ExtInfo = getFunctionExtInfo(LHS);
5278        QualType ResultType
5279          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5280                            FPT->getNumArgs(), EPI);
5281        return ResultType;
5282      }
5283    }
5284    return QualType();
5285  }
5286
5287  // If the qualifiers are different, the types can still be merged.
5288  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5289  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5290  if (LQuals != RQuals) {
5291    // If any of these qualifiers are different, we have a type mismatch.
5292    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5293        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5294      return QualType();
5295
5296    // Exactly one GC qualifier difference is allowed: __strong is
5297    // okay if the other type has no GC qualifier but is an Objective
5298    // C object pointer (i.e. implicitly strong by default).  We fix
5299    // this by pretending that the unqualified type was actually
5300    // qualified __strong.
5301    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5302    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5303    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5304
5305    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5306      return QualType();
5307
5308    if (GC_L == Qualifiers::Strong)
5309      return LHS;
5310    if (GC_R == Qualifiers::Strong)
5311      return RHS;
5312    return QualType();
5313  }
5314
5315  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5316    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5317    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5318    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5319    if (ResQT == LHSBaseQT)
5320      return LHS;
5321    if (ResQT == RHSBaseQT)
5322      return RHS;
5323  }
5324  return QualType();
5325}
5326
5327//===----------------------------------------------------------------------===//
5328//                         Integer Predicates
5329//===----------------------------------------------------------------------===//
5330
5331unsigned ASTContext::getIntWidth(QualType T) {
5332  if (EnumType *ET = dyn_cast<EnumType>(T))
5333    T = ET->getDecl()->getIntegerType();
5334  if (T->isBooleanType())
5335    return 1;
5336  // For builtin types, just use the standard type sizing method
5337  return (unsigned)getTypeSize(T);
5338}
5339
5340QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5341  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5342
5343  // Turn <4 x signed int> -> <4 x unsigned int>
5344  if (const VectorType *VTy = T->getAs<VectorType>())
5345    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5346                         VTy->getNumElements(), VTy->getVectorKind());
5347
5348  // For enums, we return the unsigned version of the base type.
5349  if (const EnumType *ETy = T->getAs<EnumType>())
5350    T = ETy->getDecl()->getIntegerType();
5351
5352  const BuiltinType *BTy = T->getAs<BuiltinType>();
5353  assert(BTy && "Unexpected signed integer type");
5354  switch (BTy->getKind()) {
5355  case BuiltinType::Char_S:
5356  case BuiltinType::SChar:
5357    return UnsignedCharTy;
5358  case BuiltinType::Short:
5359    return UnsignedShortTy;
5360  case BuiltinType::Int:
5361    return UnsignedIntTy;
5362  case BuiltinType::Long:
5363    return UnsignedLongTy;
5364  case BuiltinType::LongLong:
5365    return UnsignedLongLongTy;
5366  case BuiltinType::Int128:
5367    return UnsignedInt128Ty;
5368  default:
5369    assert(0 && "Unexpected signed integer type");
5370    return QualType();
5371  }
5372}
5373
5374ExternalASTSource::~ExternalASTSource() { }
5375
5376void ExternalASTSource::PrintStats() { }
5377
5378ASTMutationListener::~ASTMutationListener() { }
5379
5380
5381//===----------------------------------------------------------------------===//
5382//                          Builtin Type Computation
5383//===----------------------------------------------------------------------===//
5384
5385/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5386/// pointer over the consumed characters.  This returns the resultant type.  If
5387/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
5388/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
5389/// a vector of "i*".
5390///
5391/// RequiresICE is filled in on return to indicate whether the value is required
5392/// to be an Integer Constant Expression.
5393static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
5394                                  ASTContext::GetBuiltinTypeError &Error,
5395                                  bool &RequiresICE,
5396                                  bool AllowTypeModifiers) {
5397  // Modifiers.
5398  int HowLong = 0;
5399  bool Signed = false, Unsigned = false;
5400  RequiresICE = false;
5401
5402  // Read the prefixed modifiers first.
5403  bool Done = false;
5404  while (!Done) {
5405    switch (*Str++) {
5406    default: Done = true; --Str; break;
5407    case 'I':
5408      RequiresICE = true;
5409      break;
5410    case 'S':
5411      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5412      assert(!Signed && "Can't use 'S' modifier multiple times!");
5413      Signed = true;
5414      break;
5415    case 'U':
5416      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5417      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5418      Unsigned = true;
5419      break;
5420    case 'L':
5421      assert(HowLong <= 2 && "Can't have LLLL modifier");
5422      ++HowLong;
5423      break;
5424    }
5425  }
5426
5427  QualType Type;
5428
5429  // Read the base type.
5430  switch (*Str++) {
5431  default: assert(0 && "Unknown builtin type letter!");
5432  case 'v':
5433    assert(HowLong == 0 && !Signed && !Unsigned &&
5434           "Bad modifiers used with 'v'!");
5435    Type = Context.VoidTy;
5436    break;
5437  case 'f':
5438    assert(HowLong == 0 && !Signed && !Unsigned &&
5439           "Bad modifiers used with 'f'!");
5440    Type = Context.FloatTy;
5441    break;
5442  case 'd':
5443    assert(HowLong < 2 && !Signed && !Unsigned &&
5444           "Bad modifiers used with 'd'!");
5445    if (HowLong)
5446      Type = Context.LongDoubleTy;
5447    else
5448      Type = Context.DoubleTy;
5449    break;
5450  case 's':
5451    assert(HowLong == 0 && "Bad modifiers used with 's'!");
5452    if (Unsigned)
5453      Type = Context.UnsignedShortTy;
5454    else
5455      Type = Context.ShortTy;
5456    break;
5457  case 'i':
5458    if (HowLong == 3)
5459      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
5460    else if (HowLong == 2)
5461      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
5462    else if (HowLong == 1)
5463      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
5464    else
5465      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
5466    break;
5467  case 'c':
5468    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
5469    if (Signed)
5470      Type = Context.SignedCharTy;
5471    else if (Unsigned)
5472      Type = Context.UnsignedCharTy;
5473    else
5474      Type = Context.CharTy;
5475    break;
5476  case 'b': // boolean
5477    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
5478    Type = Context.BoolTy;
5479    break;
5480  case 'z':  // size_t.
5481    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
5482    Type = Context.getSizeType();
5483    break;
5484  case 'F':
5485    Type = Context.getCFConstantStringType();
5486    break;
5487  case 'G':
5488    Type = Context.getObjCIdType();
5489    break;
5490  case 'H':
5491    Type = Context.getObjCSelType();
5492    break;
5493  case 'a':
5494    Type = Context.getBuiltinVaListType();
5495    assert(!Type.isNull() && "builtin va list type not initialized!");
5496    break;
5497  case 'A':
5498    // This is a "reference" to a va_list; however, what exactly
5499    // this means depends on how va_list is defined. There are two
5500    // different kinds of va_list: ones passed by value, and ones
5501    // passed by reference.  An example of a by-value va_list is
5502    // x86, where va_list is a char*. An example of by-ref va_list
5503    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
5504    // we want this argument to be a char*&; for x86-64, we want
5505    // it to be a __va_list_tag*.
5506    Type = Context.getBuiltinVaListType();
5507    assert(!Type.isNull() && "builtin va list type not initialized!");
5508    if (Type->isArrayType())
5509      Type = Context.getArrayDecayedType(Type);
5510    else
5511      Type = Context.getLValueReferenceType(Type);
5512    break;
5513  case 'V': {
5514    char *End;
5515    unsigned NumElements = strtoul(Str, &End, 10);
5516    assert(End != Str && "Missing vector size");
5517    Str = End;
5518
5519    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
5520                                             RequiresICE, false);
5521    assert(!RequiresICE && "Can't require vector ICE");
5522
5523    // TODO: No way to make AltiVec vectors in builtins yet.
5524    Type = Context.getVectorType(ElementType, NumElements,
5525                                 VectorType::GenericVector);
5526    break;
5527  }
5528  case 'X': {
5529    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
5530                                             false);
5531    assert(!RequiresICE && "Can't require complex ICE");
5532    Type = Context.getComplexType(ElementType);
5533    break;
5534  }
5535  case 'P':
5536    Type = Context.getFILEType();
5537    if (Type.isNull()) {
5538      Error = ASTContext::GE_Missing_stdio;
5539      return QualType();
5540    }
5541    break;
5542  case 'J':
5543    if (Signed)
5544      Type = Context.getsigjmp_bufType();
5545    else
5546      Type = Context.getjmp_bufType();
5547
5548    if (Type.isNull()) {
5549      Error = ASTContext::GE_Missing_setjmp;
5550      return QualType();
5551    }
5552    break;
5553  }
5554
5555  // If there are modifiers and if we're allowed to parse them, go for it.
5556  Done = !AllowTypeModifiers;
5557  while (!Done) {
5558    switch (char c = *Str++) {
5559    default: Done = true; --Str; break;
5560    case '*':
5561    case '&': {
5562      // Both pointers and references can have their pointee types
5563      // qualified with an address space.
5564      char *End;
5565      unsigned AddrSpace = strtoul(Str, &End, 10);
5566      if (End != Str && AddrSpace != 0) {
5567        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5568        Str = End;
5569      }
5570      if (c == '*')
5571        Type = Context.getPointerType(Type);
5572      else
5573        Type = Context.getLValueReferenceType(Type);
5574      break;
5575    }
5576    // FIXME: There's no way to have a built-in with an rvalue ref arg.
5577    case 'C':
5578      Type = Type.withConst();
5579      break;
5580    case 'D':
5581      Type = Context.getVolatileType(Type);
5582      break;
5583    }
5584  }
5585
5586  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
5587         "Integer constant 'I' type must be an integer");
5588
5589  return Type;
5590}
5591
5592/// GetBuiltinType - Return the type for the specified builtin.
5593QualType ASTContext::GetBuiltinType(unsigned Id,
5594                                    GetBuiltinTypeError &Error,
5595                                    unsigned *IntegerConstantArgs) {
5596  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
5597
5598  llvm::SmallVector<QualType, 8> ArgTypes;
5599
5600  bool RequiresICE = false;
5601  Error = GE_None;
5602  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
5603                                       RequiresICE, true);
5604  if (Error != GE_None)
5605    return QualType();
5606
5607  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
5608
5609  while (TypeStr[0] && TypeStr[0] != '.') {
5610    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
5611    if (Error != GE_None)
5612      return QualType();
5613
5614    // If this argument is required to be an IntegerConstantExpression and the
5615    // caller cares, fill in the bitmask we return.
5616    if (RequiresICE && IntegerConstantArgs)
5617      *IntegerConstantArgs |= 1 << ArgTypes.size();
5618
5619    // Do array -> pointer decay.  The builtin should use the decayed type.
5620    if (Ty->isArrayType())
5621      Ty = getArrayDecayedType(Ty);
5622
5623    ArgTypes.push_back(Ty);
5624  }
5625
5626  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5627         "'.' should only occur at end of builtin type list!");
5628
5629  FunctionType::ExtInfo EI;
5630  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
5631
5632  bool Variadic = (TypeStr[0] == '.');
5633
5634  // We really shouldn't be making a no-proto type here, especially in C++.
5635  if (ArgTypes.empty() && Variadic)
5636    return getFunctionNoProtoType(ResType, EI);
5637
5638  FunctionProtoType::ExtProtoInfo EPI;
5639  EPI.ExtInfo = EI;
5640  EPI.Variadic = Variadic;
5641
5642  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
5643}
5644
5645GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
5646  GVALinkage External = GVA_StrongExternal;
5647
5648  Linkage L = FD->getLinkage();
5649  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5650      FD->getType()->getLinkage() == UniqueExternalLinkage)
5651    L = UniqueExternalLinkage;
5652
5653  switch (L) {
5654  case NoLinkage:
5655  case InternalLinkage:
5656  case UniqueExternalLinkage:
5657    return GVA_Internal;
5658
5659  case ExternalLinkage:
5660    switch (FD->getTemplateSpecializationKind()) {
5661    case TSK_Undeclared:
5662    case TSK_ExplicitSpecialization:
5663      External = GVA_StrongExternal;
5664      break;
5665
5666    case TSK_ExplicitInstantiationDefinition:
5667      return GVA_ExplicitTemplateInstantiation;
5668
5669    case TSK_ExplicitInstantiationDeclaration:
5670    case TSK_ImplicitInstantiation:
5671      External = GVA_TemplateInstantiation;
5672      break;
5673    }
5674  }
5675
5676  if (!FD->isInlined())
5677    return External;
5678
5679  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
5680    // GNU or C99 inline semantics. Determine whether this symbol should be
5681    // externally visible.
5682    if (FD->isInlineDefinitionExternallyVisible())
5683      return External;
5684
5685    // C99 inline semantics, where the symbol is not externally visible.
5686    return GVA_C99Inline;
5687  }
5688
5689  // C++0x [temp.explicit]p9:
5690  //   [ Note: The intent is that an inline function that is the subject of
5691  //   an explicit instantiation declaration will still be implicitly
5692  //   instantiated when used so that the body can be considered for
5693  //   inlining, but that no out-of-line copy of the inline function would be
5694  //   generated in the translation unit. -- end note ]
5695  if (FD->getTemplateSpecializationKind()
5696                                       == TSK_ExplicitInstantiationDeclaration)
5697    return GVA_C99Inline;
5698
5699  return GVA_CXXInline;
5700}
5701
5702GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
5703  // If this is a static data member, compute the kind of template
5704  // specialization. Otherwise, this variable is not part of a
5705  // template.
5706  TemplateSpecializationKind TSK = TSK_Undeclared;
5707  if (VD->isStaticDataMember())
5708    TSK = VD->getTemplateSpecializationKind();
5709
5710  Linkage L = VD->getLinkage();
5711  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5712      VD->getType()->getLinkage() == UniqueExternalLinkage)
5713    L = UniqueExternalLinkage;
5714
5715  switch (L) {
5716  case NoLinkage:
5717  case InternalLinkage:
5718  case UniqueExternalLinkage:
5719    return GVA_Internal;
5720
5721  case ExternalLinkage:
5722    switch (TSK) {
5723    case TSK_Undeclared:
5724    case TSK_ExplicitSpecialization:
5725      return GVA_StrongExternal;
5726
5727    case TSK_ExplicitInstantiationDeclaration:
5728      llvm_unreachable("Variable should not be instantiated");
5729      // Fall through to treat this like any other instantiation.
5730
5731    case TSK_ExplicitInstantiationDefinition:
5732      return GVA_ExplicitTemplateInstantiation;
5733
5734    case TSK_ImplicitInstantiation:
5735      return GVA_TemplateInstantiation;
5736    }
5737  }
5738
5739  return GVA_StrongExternal;
5740}
5741
5742bool ASTContext::DeclMustBeEmitted(const Decl *D) {
5743  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
5744    if (!VD->isFileVarDecl())
5745      return false;
5746  } else if (!isa<FunctionDecl>(D))
5747    return false;
5748
5749  // Weak references don't produce any output by themselves.
5750  if (D->hasAttr<WeakRefAttr>())
5751    return false;
5752
5753  // Aliases and used decls are required.
5754  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
5755    return true;
5756
5757  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5758    // Forward declarations aren't required.
5759    if (!FD->isThisDeclarationADefinition())
5760      return false;
5761
5762    // Constructors and destructors are required.
5763    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
5764      return true;
5765
5766    // The key function for a class is required.
5767    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5768      const CXXRecordDecl *RD = MD->getParent();
5769      if (MD->isOutOfLine() && RD->isDynamicClass()) {
5770        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
5771        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
5772          return true;
5773      }
5774    }
5775
5776    GVALinkage Linkage = GetGVALinkageForFunction(FD);
5777
5778    // static, static inline, always_inline, and extern inline functions can
5779    // always be deferred.  Normal inline functions can be deferred in C99/C++.
5780    // Implicit template instantiations can also be deferred in C++.
5781    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
5782        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
5783      return false;
5784    return true;
5785  }
5786
5787  const VarDecl *VD = cast<VarDecl>(D);
5788  assert(VD->isFileVarDecl() && "Expected file scoped var");
5789
5790  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
5791    return false;
5792
5793  // Structs that have non-trivial constructors or destructors are required.
5794
5795  // FIXME: Handle references.
5796  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
5797    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5798      if (RD->hasDefinition() &&
5799          (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()))
5800        return true;
5801    }
5802  }
5803
5804  GVALinkage L = GetGVALinkageForVariable(VD);
5805  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
5806    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
5807      return false;
5808  }
5809
5810  return true;
5811}
5812
5813CallingConv ASTContext::getDefaultMethodCallConv() {
5814  // Pass through to the C++ ABI object
5815  return ABI->getDefaultMethodCallConv();
5816}
5817
5818bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) {
5819  // Pass through to the C++ ABI object
5820  return ABI->isNearlyEmpty(RD);
5821}
5822
5823CXXABI::~CXXABI() {}
5824