ASTContext.cpp revision 9dadfab2faebe40e7dbbfd0801c15174b69bd726
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const ClassTemplateSpecializationDecl *CTSD =
89          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
90    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
91    if (TSK == TSK_ImplicitInstantiation ||
92        TSK == TSK_Undeclared)
93      return NULL;
94  }
95
96  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
97    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
98      return NULL;
99  }
100  if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
101    // When tag declaration (but not definition!) is part of the
102    // decl-specifier-seq of some other declaration, it doesn't get comment
103    if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
104      return NULL;
105  }
106  // TODO: handle comments for function parameters properly.
107  if (isa<ParmVarDecl>(D))
108    return NULL;
109
110  // TODO: we could look up template parameter documentation in the template
111  // documentation.
112  if (isa<TemplateTypeParmDecl>(D) ||
113      isa<NonTypeTemplateParmDecl>(D) ||
114      isa<TemplateTemplateParmDecl>(D))
115    return NULL;
116
117  ArrayRef<RawComment *> RawComments = Comments.getComments();
118
119  // If there are no comments anywhere, we won't find anything.
120  if (RawComments.empty())
121    return NULL;
122
123  // Find declaration location.
124  // For Objective-C declarations we generally don't expect to have multiple
125  // declarators, thus use declaration starting location as the "declaration
126  // location".
127  // For all other declarations multiple declarators are used quite frequently,
128  // so we use the location of the identifier as the "declaration location".
129  SourceLocation DeclLoc;
130  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
131      isa<ObjCPropertyDecl>(D) ||
132      isa<RedeclarableTemplateDecl>(D) ||
133      isa<ClassTemplateSpecializationDecl>(D))
134    DeclLoc = D->getLocStart();
135  else
136    DeclLoc = D->getLocation();
137
138  // If the declaration doesn't map directly to a location in a file, we
139  // can't find the comment.
140  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
141    return NULL;
142
143  // Find the comment that occurs just after this declaration.
144  ArrayRef<RawComment *>::iterator Comment;
145  {
146    // When searching for comments during parsing, the comment we are looking
147    // for is usually among the last two comments we parsed -- check them
148    // first.
149    RawComment CommentAtDeclLoc(
150        SourceMgr, SourceRange(DeclLoc), false,
151        LangOpts.CommentOpts.ParseAllComments);
152    BeforeThanCompare<RawComment> Compare(SourceMgr);
153    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
154    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
155    if (!Found && RawComments.size() >= 2) {
156      MaybeBeforeDecl--;
157      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
158    }
159
160    if (Found) {
161      Comment = MaybeBeforeDecl + 1;
162      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
163                                         &CommentAtDeclLoc, Compare));
164    } else {
165      // Slow path.
166      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
167                                 &CommentAtDeclLoc, Compare);
168    }
169  }
170
171  // Decompose the location for the declaration and find the beginning of the
172  // file buffer.
173  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
174
175  // First check whether we have a trailing comment.
176  if (Comment != RawComments.end() &&
177      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
178      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
179    std::pair<FileID, unsigned> CommentBeginDecomp
180      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
181    // Check that Doxygen trailing comment comes after the declaration, starts
182    // on the same line and in the same file as the declaration.
183    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
184        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
185          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
186                                     CommentBeginDecomp.second)) {
187      return *Comment;
188    }
189  }
190
191  // The comment just after the declaration was not a trailing comment.
192  // Let's look at the previous comment.
193  if (Comment == RawComments.begin())
194    return NULL;
195  --Comment;
196
197  // Check that we actually have a non-member Doxygen comment.
198  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
199    return NULL;
200
201  // Decompose the end of the comment.
202  std::pair<FileID, unsigned> CommentEndDecomp
203    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
204
205  // If the comment and the declaration aren't in the same file, then they
206  // aren't related.
207  if (DeclLocDecomp.first != CommentEndDecomp.first)
208    return NULL;
209
210  // Get the corresponding buffer.
211  bool Invalid = false;
212  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
213                                               &Invalid).data();
214  if (Invalid)
215    return NULL;
216
217  // Extract text between the comment and declaration.
218  StringRef Text(Buffer + CommentEndDecomp.second,
219                 DeclLocDecomp.second - CommentEndDecomp.second);
220
221  // There should be no other declarations or preprocessor directives between
222  // comment and declaration.
223  if (Text.find_first_of(",;{}#@") != StringRef::npos)
224    return NULL;
225
226  return *Comment;
227}
228
229namespace {
230/// If we have a 'templated' declaration for a template, adjust 'D' to
231/// refer to the actual template.
232/// If we have an implicit instantiation, adjust 'D' to refer to template.
233const Decl *adjustDeclToTemplate(const Decl *D) {
234  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
235    // Is this function declaration part of a function template?
236    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
237      return FTD;
238
239    // Nothing to do if function is not an implicit instantiation.
240    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
241      return D;
242
243    // Function is an implicit instantiation of a function template?
244    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
245      return FTD;
246
247    // Function is instantiated from a member definition of a class template?
248    if (const FunctionDecl *MemberDecl =
249            FD->getInstantiatedFromMemberFunction())
250      return MemberDecl;
251
252    return D;
253  }
254  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
255    // Static data member is instantiated from a member definition of a class
256    // template?
257    if (VD->isStaticDataMember())
258      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
259        return MemberDecl;
260
261    return D;
262  }
263  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
264    // Is this class declaration part of a class template?
265    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
266      return CTD;
267
268    // Class is an implicit instantiation of a class template or partial
269    // specialization?
270    if (const ClassTemplateSpecializationDecl *CTSD =
271            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
272      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
273        return D;
274      llvm::PointerUnion<ClassTemplateDecl *,
275                         ClassTemplatePartialSpecializationDecl *>
276          PU = CTSD->getSpecializedTemplateOrPartial();
277      return PU.is<ClassTemplateDecl*>() ?
278          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
279          static_cast<const Decl*>(
280              PU.get<ClassTemplatePartialSpecializationDecl *>());
281    }
282
283    // Class is instantiated from a member definition of a class template?
284    if (const MemberSpecializationInfo *Info =
285                   CRD->getMemberSpecializationInfo())
286      return Info->getInstantiatedFrom();
287
288    return D;
289  }
290  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
291    // Enum is instantiated from a member definition of a class template?
292    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
293      return MemberDecl;
294
295    return D;
296  }
297  // FIXME: Adjust alias templates?
298  return D;
299}
300} // unnamed namespace
301
302const RawComment *ASTContext::getRawCommentForAnyRedecl(
303                                                const Decl *D,
304                                                const Decl **OriginalDecl) const {
305  D = adjustDeclToTemplate(D);
306
307  // Check whether we have cached a comment for this declaration already.
308  {
309    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
310        RedeclComments.find(D);
311    if (Pos != RedeclComments.end()) {
312      const RawCommentAndCacheFlags &Raw = Pos->second;
313      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
314        if (OriginalDecl)
315          *OriginalDecl = Raw.getOriginalDecl();
316        return Raw.getRaw();
317      }
318    }
319  }
320
321  // Search for comments attached to declarations in the redeclaration chain.
322  const RawComment *RC = NULL;
323  const Decl *OriginalDeclForRC = NULL;
324  for (Decl::redecl_iterator I = D->redecls_begin(),
325                             E = D->redecls_end();
326       I != E; ++I) {
327    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
328        RedeclComments.find(*I);
329    if (Pos != RedeclComments.end()) {
330      const RawCommentAndCacheFlags &Raw = Pos->second;
331      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
332        RC = Raw.getRaw();
333        OriginalDeclForRC = Raw.getOriginalDecl();
334        break;
335      }
336    } else {
337      RC = getRawCommentForDeclNoCache(*I);
338      OriginalDeclForRC = *I;
339      RawCommentAndCacheFlags Raw;
340      if (RC) {
341        Raw.setRaw(RC);
342        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
343      } else
344        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
345      Raw.setOriginalDecl(*I);
346      RedeclComments[*I] = Raw;
347      if (RC)
348        break;
349    }
350  }
351
352  // If we found a comment, it should be a documentation comment.
353  assert(!RC || RC->isDocumentation());
354
355  if (OriginalDecl)
356    *OriginalDecl = OriginalDeclForRC;
357
358  // Update cache for every declaration in the redeclaration chain.
359  RawCommentAndCacheFlags Raw;
360  Raw.setRaw(RC);
361  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
362  Raw.setOriginalDecl(OriginalDeclForRC);
363
364  for (Decl::redecl_iterator I = D->redecls_begin(),
365                             E = D->redecls_end();
366       I != E; ++I) {
367    RawCommentAndCacheFlags &R = RedeclComments[*I];
368    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
369      R = Raw;
370  }
371
372  return RC;
373}
374
375static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
376                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
377  const DeclContext *DC = ObjCMethod->getDeclContext();
378  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
379    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
380    if (!ID)
381      return;
382    // Add redeclared method here.
383    for (ObjCInterfaceDecl::known_extensions_iterator
384           Ext = ID->known_extensions_begin(),
385           ExtEnd = ID->known_extensions_end();
386         Ext != ExtEnd; ++Ext) {
387      if (ObjCMethodDecl *RedeclaredMethod =
388            Ext->getMethod(ObjCMethod->getSelector(),
389                                  ObjCMethod->isInstanceMethod()))
390        Redeclared.push_back(RedeclaredMethod);
391    }
392  }
393}
394
395comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
396                                                    const Decl *D) const {
397  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
398  ThisDeclInfo->CommentDecl = D;
399  ThisDeclInfo->IsFilled = false;
400  ThisDeclInfo->fill();
401  ThisDeclInfo->CommentDecl = FC->getDecl();
402  comments::FullComment *CFC =
403    new (*this) comments::FullComment(FC->getBlocks(),
404                                      ThisDeclInfo);
405  return CFC;
406
407}
408
409comments::FullComment *ASTContext::getCommentForDecl(
410                                              const Decl *D,
411                                              const Preprocessor *PP) const {
412  D = adjustDeclToTemplate(D);
413
414  const Decl *Canonical = D->getCanonicalDecl();
415  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
416      ParsedComments.find(Canonical);
417
418  if (Pos != ParsedComments.end()) {
419    if (Canonical != D) {
420      comments::FullComment *FC = Pos->second;
421      comments::FullComment *CFC = cloneFullComment(FC, D);
422      return CFC;
423    }
424    return Pos->second;
425  }
426
427  const Decl *OriginalDecl;
428
429  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
430  if (!RC) {
431    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
432      SmallVector<const NamedDecl*, 8> Overridden;
433      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
434      if (OMD && OMD->isPropertyAccessor())
435        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
436          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
437            return cloneFullComment(FC, D);
438      if (OMD)
439        addRedeclaredMethods(OMD, Overridden);
440      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
441      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
442        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
443          return cloneFullComment(FC, D);
444    }
445    else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
446      // Attach any tag type's documentation to its typedef if latter
447      // does not have one of its own.
448      QualType QT = TD->getUnderlyingType();
449      if (const TagType *TT = QT->getAs<TagType>())
450        if (const Decl *TD = TT->getDecl())
451          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
452            return cloneFullComment(FC, D);
453    }
454    else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
455      while (IC->getSuperClass()) {
456        IC = IC->getSuperClass();
457        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
458          return cloneFullComment(FC, D);
459      }
460    }
461    else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
462      if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
463        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
464          return cloneFullComment(FC, D);
465    }
466    else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
467      if (!(RD = RD->getDefinition()))
468        return NULL;
469      // Check non-virtual bases.
470      for (CXXRecordDecl::base_class_const_iterator I =
471           RD->bases_begin(), E = RD->bases_end(); I != E; ++I) {
472        if (I->isVirtual() || (I->getAccessSpecifier() != AS_public))
473          continue;
474        QualType Ty = I->getType();
475        if (Ty.isNull())
476          continue;
477        if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
478          if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
479            continue;
480
481          if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
482            return cloneFullComment(FC, D);
483        }
484      }
485      // Check virtual bases.
486      for (CXXRecordDecl::base_class_const_iterator I =
487           RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) {
488        if (I->getAccessSpecifier() != AS_public)
489          continue;
490        QualType Ty = I->getType();
491        if (Ty.isNull())
492          continue;
493        if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
494          if (!(VirtualBase= VirtualBase->getDefinition()))
495            continue;
496          if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
497            return cloneFullComment(FC, D);
498        }
499      }
500    }
501    return NULL;
502  }
503
504  // If the RawComment was attached to other redeclaration of this Decl, we
505  // should parse the comment in context of that other Decl.  This is important
506  // because comments can contain references to parameter names which can be
507  // different across redeclarations.
508  if (D != OriginalDecl)
509    return getCommentForDecl(OriginalDecl, PP);
510
511  comments::FullComment *FC = RC->parse(*this, PP, D);
512  ParsedComments[Canonical] = FC;
513  return FC;
514}
515
516void
517ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
518                                               TemplateTemplateParmDecl *Parm) {
519  ID.AddInteger(Parm->getDepth());
520  ID.AddInteger(Parm->getPosition());
521  ID.AddBoolean(Parm->isParameterPack());
522
523  TemplateParameterList *Params = Parm->getTemplateParameters();
524  ID.AddInteger(Params->size());
525  for (TemplateParameterList::const_iterator P = Params->begin(),
526                                          PEnd = Params->end();
527       P != PEnd; ++P) {
528    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
529      ID.AddInteger(0);
530      ID.AddBoolean(TTP->isParameterPack());
531      continue;
532    }
533
534    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
535      ID.AddInteger(1);
536      ID.AddBoolean(NTTP->isParameterPack());
537      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
538      if (NTTP->isExpandedParameterPack()) {
539        ID.AddBoolean(true);
540        ID.AddInteger(NTTP->getNumExpansionTypes());
541        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
542          QualType T = NTTP->getExpansionType(I);
543          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
544        }
545      } else
546        ID.AddBoolean(false);
547      continue;
548    }
549
550    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
551    ID.AddInteger(2);
552    Profile(ID, TTP);
553  }
554}
555
556TemplateTemplateParmDecl *
557ASTContext::getCanonicalTemplateTemplateParmDecl(
558                                          TemplateTemplateParmDecl *TTP) const {
559  // Check if we already have a canonical template template parameter.
560  llvm::FoldingSetNodeID ID;
561  CanonicalTemplateTemplateParm::Profile(ID, TTP);
562  void *InsertPos = 0;
563  CanonicalTemplateTemplateParm *Canonical
564    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
565  if (Canonical)
566    return Canonical->getParam();
567
568  // Build a canonical template parameter list.
569  TemplateParameterList *Params = TTP->getTemplateParameters();
570  SmallVector<NamedDecl *, 4> CanonParams;
571  CanonParams.reserve(Params->size());
572  for (TemplateParameterList::const_iterator P = Params->begin(),
573                                          PEnd = Params->end();
574       P != PEnd; ++P) {
575    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
576      CanonParams.push_back(
577                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
578                                               SourceLocation(),
579                                               SourceLocation(),
580                                               TTP->getDepth(),
581                                               TTP->getIndex(), 0, false,
582                                               TTP->isParameterPack()));
583    else if (NonTypeTemplateParmDecl *NTTP
584             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
585      QualType T = getCanonicalType(NTTP->getType());
586      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
587      NonTypeTemplateParmDecl *Param;
588      if (NTTP->isExpandedParameterPack()) {
589        SmallVector<QualType, 2> ExpandedTypes;
590        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
591        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
592          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
593          ExpandedTInfos.push_back(
594                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
595        }
596
597        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
598                                                SourceLocation(),
599                                                SourceLocation(),
600                                                NTTP->getDepth(),
601                                                NTTP->getPosition(), 0,
602                                                T,
603                                                TInfo,
604                                                ExpandedTypes.data(),
605                                                ExpandedTypes.size(),
606                                                ExpandedTInfos.data());
607      } else {
608        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
609                                                SourceLocation(),
610                                                SourceLocation(),
611                                                NTTP->getDepth(),
612                                                NTTP->getPosition(), 0,
613                                                T,
614                                                NTTP->isParameterPack(),
615                                                TInfo);
616      }
617      CanonParams.push_back(Param);
618
619    } else
620      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
621                                           cast<TemplateTemplateParmDecl>(*P)));
622  }
623
624  TemplateTemplateParmDecl *CanonTTP
625    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
626                                       SourceLocation(), TTP->getDepth(),
627                                       TTP->getPosition(),
628                                       TTP->isParameterPack(),
629                                       0,
630                         TemplateParameterList::Create(*this, SourceLocation(),
631                                                       SourceLocation(),
632                                                       CanonParams.data(),
633                                                       CanonParams.size(),
634                                                       SourceLocation()));
635
636  // Get the new insert position for the node we care about.
637  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
638  assert(Canonical == 0 && "Shouldn't be in the map!");
639  (void)Canonical;
640
641  // Create the canonical template template parameter entry.
642  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
643  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
644  return CanonTTP;
645}
646
647CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
648  if (!LangOpts.CPlusPlus) return 0;
649
650  switch (T.getCXXABI().getKind()) {
651  case TargetCXXABI::GenericARM:
652  case TargetCXXABI::iOS:
653    return CreateARMCXXABI(*this);
654  case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
655  case TargetCXXABI::GenericItanium:
656    return CreateItaniumCXXABI(*this);
657  case TargetCXXABI::Microsoft:
658    return CreateMicrosoftCXXABI(*this);
659  }
660  llvm_unreachable("Invalid CXXABI type!");
661}
662
663static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
664                                             const LangOptions &LOpts) {
665  if (LOpts.FakeAddressSpaceMap) {
666    // The fake address space map must have a distinct entry for each
667    // language-specific address space.
668    static const unsigned FakeAddrSpaceMap[] = {
669      1, // opencl_global
670      2, // opencl_local
671      3, // opencl_constant
672      4, // cuda_device
673      5, // cuda_constant
674      6  // cuda_shared
675    };
676    return &FakeAddrSpaceMap;
677  } else {
678    return &T.getAddressSpaceMap();
679  }
680}
681
682ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
683                       const TargetInfo *t,
684                       IdentifierTable &idents, SelectorTable &sels,
685                       Builtin::Context &builtins,
686                       unsigned size_reserve,
687                       bool DelayInitialization)
688  : FunctionProtoTypes(this_()),
689    TemplateSpecializationTypes(this_()),
690    DependentTemplateSpecializationTypes(this_()),
691    SubstTemplateTemplateParmPacks(this_()),
692    GlobalNestedNameSpecifier(0),
693    Int128Decl(0), UInt128Decl(0),
694    BuiltinVaListDecl(0),
695    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
696    BOOLDecl(0),
697    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
698    FILEDecl(0),
699    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
700    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
701    cudaConfigureCallDecl(0),
702    NullTypeSourceInfo(QualType()),
703    FirstLocalImport(), LastLocalImport(),
704    SourceMgr(SM), LangOpts(LOpts),
705    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
706    Idents(idents), Selectors(sels),
707    BuiltinInfo(builtins),
708    DeclarationNames(*this),
709    ExternalSource(0), Listener(0),
710    Comments(SM), CommentsLoaded(false),
711    CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
712    LastSDM(0, 0),
713    UniqueBlockByRefTypeID(0)
714{
715  if (size_reserve > 0) Types.reserve(size_reserve);
716  TUDecl = TranslationUnitDecl::Create(*this);
717
718  if (!DelayInitialization) {
719    assert(t && "No target supplied for ASTContext initialization");
720    InitBuiltinTypes(*t);
721  }
722}
723
724ASTContext::~ASTContext() {
725  // Release the DenseMaps associated with DeclContext objects.
726  // FIXME: Is this the ideal solution?
727  ReleaseDeclContextMaps();
728
729  // Call all of the deallocation functions.
730  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
731    Deallocations[I].first(Deallocations[I].second);
732
733  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
734  // because they can contain DenseMaps.
735  for (llvm::DenseMap<const ObjCContainerDecl*,
736       const ASTRecordLayout*>::iterator
737       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
738    // Increment in loop to prevent using deallocated memory.
739    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
740      R->Destroy(*this);
741
742  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
743       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
744    // Increment in loop to prevent using deallocated memory.
745    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
746      R->Destroy(*this);
747  }
748
749  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
750                                                    AEnd = DeclAttrs.end();
751       A != AEnd; ++A)
752    A->second->~AttrVec();
753}
754
755void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
756  Deallocations.push_back(std::make_pair(Callback, Data));
757}
758
759void
760ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
761  ExternalSource.reset(Source.take());
762}
763
764void ASTContext::PrintStats() const {
765  llvm::errs() << "\n*** AST Context Stats:\n";
766  llvm::errs() << "  " << Types.size() << " types total.\n";
767
768  unsigned counts[] = {
769#define TYPE(Name, Parent) 0,
770#define ABSTRACT_TYPE(Name, Parent)
771#include "clang/AST/TypeNodes.def"
772    0 // Extra
773  };
774
775  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
776    Type *T = Types[i];
777    counts[(unsigned)T->getTypeClass()]++;
778  }
779
780  unsigned Idx = 0;
781  unsigned TotalBytes = 0;
782#define TYPE(Name, Parent)                                              \
783  if (counts[Idx])                                                      \
784    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
785                 << " types\n";                                         \
786  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
787  ++Idx;
788#define ABSTRACT_TYPE(Name, Parent)
789#include "clang/AST/TypeNodes.def"
790
791  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
792
793  // Implicit special member functions.
794  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
795               << NumImplicitDefaultConstructors
796               << " implicit default constructors created\n";
797  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
798               << NumImplicitCopyConstructors
799               << " implicit copy constructors created\n";
800  if (getLangOpts().CPlusPlus)
801    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
802                 << NumImplicitMoveConstructors
803                 << " implicit move constructors created\n";
804  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
805               << NumImplicitCopyAssignmentOperators
806               << " implicit copy assignment operators created\n";
807  if (getLangOpts().CPlusPlus)
808    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
809                 << NumImplicitMoveAssignmentOperators
810                 << " implicit move assignment operators created\n";
811  llvm::errs() << NumImplicitDestructorsDeclared << "/"
812               << NumImplicitDestructors
813               << " implicit destructors created\n";
814
815  if (ExternalSource.get()) {
816    llvm::errs() << "\n";
817    ExternalSource->PrintStats();
818  }
819
820  BumpAlloc.PrintStats();
821}
822
823TypedefDecl *ASTContext::getInt128Decl() const {
824  if (!Int128Decl) {
825    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
826    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
827                                     getTranslationUnitDecl(),
828                                     SourceLocation(),
829                                     SourceLocation(),
830                                     &Idents.get("__int128_t"),
831                                     TInfo);
832  }
833
834  return Int128Decl;
835}
836
837TypedefDecl *ASTContext::getUInt128Decl() const {
838  if (!UInt128Decl) {
839    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
840    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
841                                     getTranslationUnitDecl(),
842                                     SourceLocation(),
843                                     SourceLocation(),
844                                     &Idents.get("__uint128_t"),
845                                     TInfo);
846  }
847
848  return UInt128Decl;
849}
850
851void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
852  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
853  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
854  Types.push_back(Ty);
855}
856
857void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
858  assert((!this->Target || this->Target == &Target) &&
859         "Incorrect target reinitialization");
860  assert(VoidTy.isNull() && "Context reinitialized?");
861
862  this->Target = &Target;
863
864  ABI.reset(createCXXABI(Target));
865  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
866
867  // C99 6.2.5p19.
868  InitBuiltinType(VoidTy,              BuiltinType::Void);
869
870  // C99 6.2.5p2.
871  InitBuiltinType(BoolTy,              BuiltinType::Bool);
872  // C99 6.2.5p3.
873  if (LangOpts.CharIsSigned)
874    InitBuiltinType(CharTy,            BuiltinType::Char_S);
875  else
876    InitBuiltinType(CharTy,            BuiltinType::Char_U);
877  // C99 6.2.5p4.
878  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
879  InitBuiltinType(ShortTy,             BuiltinType::Short);
880  InitBuiltinType(IntTy,               BuiltinType::Int);
881  InitBuiltinType(LongTy,              BuiltinType::Long);
882  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
883
884  // C99 6.2.5p6.
885  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
886  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
887  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
888  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
889  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
890
891  // C99 6.2.5p10.
892  InitBuiltinType(FloatTy,             BuiltinType::Float);
893  InitBuiltinType(DoubleTy,            BuiltinType::Double);
894  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
895
896  // GNU extension, 128-bit integers.
897  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
898  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
899
900  // C++ 3.9.1p5
901  if (TargetInfo::isTypeSigned(Target.getWCharType()))
902    InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
903  else  // -fshort-wchar makes wchar_t be unsigned.
904    InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
905  if (LangOpts.CPlusPlus && LangOpts.WChar)
906    WideCharTy = WCharTy;
907  else {
908    // C99 (or C++ using -fno-wchar).
909    WideCharTy = getFromTargetType(Target.getWCharType());
910  }
911
912  WIntTy = getFromTargetType(Target.getWIntType());
913
914  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
915    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
916  else // C99
917    Char16Ty = getFromTargetType(Target.getChar16Type());
918
919  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
920    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
921  else // C99
922    Char32Ty = getFromTargetType(Target.getChar32Type());
923
924  // Placeholder type for type-dependent expressions whose type is
925  // completely unknown. No code should ever check a type against
926  // DependentTy and users should never see it; however, it is here to
927  // help diagnose failures to properly check for type-dependent
928  // expressions.
929  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
930
931  // Placeholder type for functions.
932  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
933
934  // Placeholder type for bound members.
935  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
936
937  // Placeholder type for pseudo-objects.
938  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
939
940  // "any" type; useful for debugger-like clients.
941  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
942
943  // Placeholder type for unbridged ARC casts.
944  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
945
946  // Placeholder type for builtin functions.
947  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
948
949  // C99 6.2.5p11.
950  FloatComplexTy      = getComplexType(FloatTy);
951  DoubleComplexTy     = getComplexType(DoubleTy);
952  LongDoubleComplexTy = getComplexType(LongDoubleTy);
953
954  // Builtin types for 'id', 'Class', and 'SEL'.
955  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
956  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
957  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
958
959  if (LangOpts.OpenCL) {
960    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
961    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
962    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
963    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
964    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
965    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
966
967    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
968    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
969  }
970
971  // Builtin type for __objc_yes and __objc_no
972  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
973                       SignedCharTy : BoolTy);
974
975  ObjCConstantStringType = QualType();
976
977  ObjCSuperType = QualType();
978
979  // void * type
980  VoidPtrTy = getPointerType(VoidTy);
981
982  // nullptr type (C++0x 2.14.7)
983  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
984
985  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
986  InitBuiltinType(HalfTy, BuiltinType::Half);
987
988  // Builtin type used to help define __builtin_va_list.
989  VaListTagTy = QualType();
990}
991
992DiagnosticsEngine &ASTContext::getDiagnostics() const {
993  return SourceMgr.getDiagnostics();
994}
995
996AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
997  AttrVec *&Result = DeclAttrs[D];
998  if (!Result) {
999    void *Mem = Allocate(sizeof(AttrVec));
1000    Result = new (Mem) AttrVec;
1001  }
1002
1003  return *Result;
1004}
1005
1006/// \brief Erase the attributes corresponding to the given declaration.
1007void ASTContext::eraseDeclAttrs(const Decl *D) {
1008  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1009  if (Pos != DeclAttrs.end()) {
1010    Pos->second->~AttrVec();
1011    DeclAttrs.erase(Pos);
1012  }
1013}
1014
1015MemberSpecializationInfo *
1016ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1017  assert(Var->isStaticDataMember() && "Not a static data member");
1018  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
1019    = InstantiatedFromStaticDataMember.find(Var);
1020  if (Pos == InstantiatedFromStaticDataMember.end())
1021    return 0;
1022
1023  return Pos->second;
1024}
1025
1026void
1027ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1028                                                TemplateSpecializationKind TSK,
1029                                          SourceLocation PointOfInstantiation) {
1030  assert(Inst->isStaticDataMember() && "Not a static data member");
1031  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1032  assert(!InstantiatedFromStaticDataMember[Inst] &&
1033         "Already noted what static data member was instantiated from");
1034  InstantiatedFromStaticDataMember[Inst]
1035    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
1036}
1037
1038FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1039                                                     const FunctionDecl *FD){
1040  assert(FD && "Specialization is 0");
1041  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1042    = ClassScopeSpecializationPattern.find(FD);
1043  if (Pos == ClassScopeSpecializationPattern.end())
1044    return 0;
1045
1046  return Pos->second;
1047}
1048
1049void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1050                                        FunctionDecl *Pattern) {
1051  assert(FD && "Specialization is 0");
1052  assert(Pattern && "Class scope specialization pattern is 0");
1053  ClassScopeSpecializationPattern[FD] = Pattern;
1054}
1055
1056NamedDecl *
1057ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1058  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1059    = InstantiatedFromUsingDecl.find(UUD);
1060  if (Pos == InstantiatedFromUsingDecl.end())
1061    return 0;
1062
1063  return Pos->second;
1064}
1065
1066void
1067ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1068  assert((isa<UsingDecl>(Pattern) ||
1069          isa<UnresolvedUsingValueDecl>(Pattern) ||
1070          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1071         "pattern decl is not a using decl");
1072  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1073  InstantiatedFromUsingDecl[Inst] = Pattern;
1074}
1075
1076UsingShadowDecl *
1077ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1078  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1079    = InstantiatedFromUsingShadowDecl.find(Inst);
1080  if (Pos == InstantiatedFromUsingShadowDecl.end())
1081    return 0;
1082
1083  return Pos->second;
1084}
1085
1086void
1087ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1088                                               UsingShadowDecl *Pattern) {
1089  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1090  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1091}
1092
1093FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1094  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1095    = InstantiatedFromUnnamedFieldDecl.find(Field);
1096  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1097    return 0;
1098
1099  return Pos->second;
1100}
1101
1102void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1103                                                     FieldDecl *Tmpl) {
1104  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1105  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1106  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1107         "Already noted what unnamed field was instantiated from");
1108
1109  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1110}
1111
1112bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1113                                    const FieldDecl *LastFD) const {
1114  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1115          FD->getBitWidthValue(*this) == 0);
1116}
1117
1118bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1119                                             const FieldDecl *LastFD) const {
1120  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1121          FD->getBitWidthValue(*this) == 0 &&
1122          LastFD->getBitWidthValue(*this) != 0);
1123}
1124
1125bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1126                                         const FieldDecl *LastFD) const {
1127  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1128          FD->getBitWidthValue(*this) &&
1129          LastFD->getBitWidthValue(*this));
1130}
1131
1132bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1133                                         const FieldDecl *LastFD) const {
1134  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1135          LastFD->getBitWidthValue(*this));
1136}
1137
1138bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1139                                             const FieldDecl *LastFD) const {
1140  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1141          FD->getBitWidthValue(*this));
1142}
1143
1144ASTContext::overridden_cxx_method_iterator
1145ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1146  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1147    = OverriddenMethods.find(Method->getCanonicalDecl());
1148  if (Pos == OverriddenMethods.end())
1149    return 0;
1150
1151  return Pos->second.begin();
1152}
1153
1154ASTContext::overridden_cxx_method_iterator
1155ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1156  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1157    = OverriddenMethods.find(Method->getCanonicalDecl());
1158  if (Pos == OverriddenMethods.end())
1159    return 0;
1160
1161  return Pos->second.end();
1162}
1163
1164unsigned
1165ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1166  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1167    = OverriddenMethods.find(Method->getCanonicalDecl());
1168  if (Pos == OverriddenMethods.end())
1169    return 0;
1170
1171  return Pos->second.size();
1172}
1173
1174void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1175                                     const CXXMethodDecl *Overridden) {
1176  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1177  OverriddenMethods[Method].push_back(Overridden);
1178}
1179
1180void ASTContext::getOverriddenMethods(
1181                      const NamedDecl *D,
1182                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1183  assert(D);
1184
1185  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1186    Overridden.append(overridden_methods_begin(CXXMethod),
1187                      overridden_methods_end(CXXMethod));
1188    return;
1189  }
1190
1191  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1192  if (!Method)
1193    return;
1194
1195  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1196  Method->getOverriddenMethods(OverDecls);
1197  Overridden.append(OverDecls.begin(), OverDecls.end());
1198}
1199
1200void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1201  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1202  assert(!Import->isFromASTFile() && "Non-local import declaration");
1203  if (!FirstLocalImport) {
1204    FirstLocalImport = Import;
1205    LastLocalImport = Import;
1206    return;
1207  }
1208
1209  LastLocalImport->NextLocalImport = Import;
1210  LastLocalImport = Import;
1211}
1212
1213//===----------------------------------------------------------------------===//
1214//                         Type Sizing and Analysis
1215//===----------------------------------------------------------------------===//
1216
1217/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1218/// scalar floating point type.
1219const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1220  const BuiltinType *BT = T->getAs<BuiltinType>();
1221  assert(BT && "Not a floating point type!");
1222  switch (BT->getKind()) {
1223  default: llvm_unreachable("Not a floating point type!");
1224  case BuiltinType::Half:       return Target->getHalfFormat();
1225  case BuiltinType::Float:      return Target->getFloatFormat();
1226  case BuiltinType::Double:     return Target->getDoubleFormat();
1227  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1228  }
1229}
1230
1231/// getDeclAlign - Return a conservative estimate of the alignment of the
1232/// specified decl.  Note that bitfields do not have a valid alignment, so
1233/// this method will assert on them.
1234/// If @p RefAsPointee, references are treated like their underlying type
1235/// (for alignof), else they're treated like pointers (for CodeGen).
1236CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1237  unsigned Align = Target->getCharWidth();
1238
1239  bool UseAlignAttrOnly = false;
1240  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1241    Align = AlignFromAttr;
1242
1243    // __attribute__((aligned)) can increase or decrease alignment
1244    // *except* on a struct or struct member, where it only increases
1245    // alignment unless 'packed' is also specified.
1246    //
1247    // It is an error for alignas to decrease alignment, so we can
1248    // ignore that possibility;  Sema should diagnose it.
1249    if (isa<FieldDecl>(D)) {
1250      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1251        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1252    } else {
1253      UseAlignAttrOnly = true;
1254    }
1255  }
1256  else if (isa<FieldDecl>(D))
1257      UseAlignAttrOnly =
1258        D->hasAttr<PackedAttr>() ||
1259        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1260
1261  // If we're using the align attribute only, just ignore everything
1262  // else about the declaration and its type.
1263  if (UseAlignAttrOnly) {
1264    // do nothing
1265
1266  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1267    QualType T = VD->getType();
1268    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1269      if (RefAsPointee)
1270        T = RT->getPointeeType();
1271      else
1272        T = getPointerType(RT->getPointeeType());
1273    }
1274    if (!T->isIncompleteType() && !T->isFunctionType()) {
1275      // Adjust alignments of declarations with array type by the
1276      // large-array alignment on the target.
1277      unsigned MinWidth = Target->getLargeArrayMinWidth();
1278      const ArrayType *arrayType;
1279      if (MinWidth && (arrayType = getAsArrayType(T))) {
1280        if (isa<VariableArrayType>(arrayType))
1281          Align = std::max(Align, Target->getLargeArrayAlign());
1282        else if (isa<ConstantArrayType>(arrayType) &&
1283                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1284          Align = std::max(Align, Target->getLargeArrayAlign());
1285
1286        // Walk through any array types while we're at it.
1287        T = getBaseElementType(arrayType);
1288      }
1289      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1290      if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1291        if (VD->hasGlobalStorage())
1292          Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1293      }
1294    }
1295
1296    // Fields can be subject to extra alignment constraints, like if
1297    // the field is packed, the struct is packed, or the struct has a
1298    // a max-field-alignment constraint (#pragma pack).  So calculate
1299    // the actual alignment of the field within the struct, and then
1300    // (as we're expected to) constrain that by the alignment of the type.
1301    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1302      // So calculate the alignment of the field.
1303      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1304
1305      // Start with the record's overall alignment.
1306      unsigned fieldAlign = toBits(layout.getAlignment());
1307
1308      // Use the GCD of that and the offset within the record.
1309      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1310      if (offset > 0) {
1311        // Alignment is always a power of 2, so the GCD will be a power of 2,
1312        // which means we get to do this crazy thing instead of Euclid's.
1313        uint64_t lowBitOfOffset = offset & (~offset + 1);
1314        if (lowBitOfOffset < fieldAlign)
1315          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1316      }
1317
1318      Align = std::min(Align, fieldAlign);
1319    }
1320  }
1321
1322  return toCharUnitsFromBits(Align);
1323}
1324
1325// getTypeInfoDataSizeInChars - Return the size of a type, in
1326// chars. If the type is a record, its data size is returned.  This is
1327// the size of the memcpy that's performed when assigning this type
1328// using a trivial copy/move assignment operator.
1329std::pair<CharUnits, CharUnits>
1330ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1331  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1332
1333  // In C++, objects can sometimes be allocated into the tail padding
1334  // of a base-class subobject.  We decide whether that's possible
1335  // during class layout, so here we can just trust the layout results.
1336  if (getLangOpts().CPlusPlus) {
1337    if (const RecordType *RT = T->getAs<RecordType>()) {
1338      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1339      sizeAndAlign.first = layout.getDataSize();
1340    }
1341  }
1342
1343  return sizeAndAlign;
1344}
1345
1346std::pair<CharUnits, CharUnits>
1347ASTContext::getTypeInfoInChars(const Type *T) const {
1348  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1349  return std::make_pair(toCharUnitsFromBits(Info.first),
1350                        toCharUnitsFromBits(Info.second));
1351}
1352
1353std::pair<CharUnits, CharUnits>
1354ASTContext::getTypeInfoInChars(QualType T) const {
1355  return getTypeInfoInChars(T.getTypePtr());
1356}
1357
1358std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1359  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1360  if (it != MemoizedTypeInfo.end())
1361    return it->second;
1362
1363  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1364  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1365  return Info;
1366}
1367
1368/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1369/// method does not work on incomplete types.
1370///
1371/// FIXME: Pointers into different addr spaces could have different sizes and
1372/// alignment requirements: getPointerInfo should take an AddrSpace, this
1373/// should take a QualType, &c.
1374std::pair<uint64_t, unsigned>
1375ASTContext::getTypeInfoImpl(const Type *T) const {
1376  uint64_t Width=0;
1377  unsigned Align=8;
1378  switch (T->getTypeClass()) {
1379#define TYPE(Class, Base)
1380#define ABSTRACT_TYPE(Class, Base)
1381#define NON_CANONICAL_TYPE(Class, Base)
1382#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1383#include "clang/AST/TypeNodes.def"
1384    llvm_unreachable("Should not see dependent types");
1385
1386  case Type::FunctionNoProto:
1387  case Type::FunctionProto:
1388    // GCC extension: alignof(function) = 32 bits
1389    Width = 0;
1390    Align = 32;
1391    break;
1392
1393  case Type::IncompleteArray:
1394  case Type::VariableArray:
1395    Width = 0;
1396    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1397    break;
1398
1399  case Type::ConstantArray: {
1400    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1401
1402    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1403    uint64_t Size = CAT->getSize().getZExtValue();
1404    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1405           "Overflow in array type bit size evaluation");
1406    Width = EltInfo.first*Size;
1407    Align = EltInfo.second;
1408    Width = llvm::RoundUpToAlignment(Width, Align);
1409    break;
1410  }
1411  case Type::ExtVector:
1412  case Type::Vector: {
1413    const VectorType *VT = cast<VectorType>(T);
1414    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1415    Width = EltInfo.first*VT->getNumElements();
1416    Align = Width;
1417    // If the alignment is not a power of 2, round up to the next power of 2.
1418    // This happens for non-power-of-2 length vectors.
1419    if (Align & (Align-1)) {
1420      Align = llvm::NextPowerOf2(Align);
1421      Width = llvm::RoundUpToAlignment(Width, Align);
1422    }
1423    // Adjust the alignment based on the target max.
1424    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1425    if (TargetVectorAlign && TargetVectorAlign < Align)
1426      Align = TargetVectorAlign;
1427    break;
1428  }
1429
1430  case Type::Builtin:
1431    switch (cast<BuiltinType>(T)->getKind()) {
1432    default: llvm_unreachable("Unknown builtin type!");
1433    case BuiltinType::Void:
1434      // GCC extension: alignof(void) = 8 bits.
1435      Width = 0;
1436      Align = 8;
1437      break;
1438
1439    case BuiltinType::Bool:
1440      Width = Target->getBoolWidth();
1441      Align = Target->getBoolAlign();
1442      break;
1443    case BuiltinType::Char_S:
1444    case BuiltinType::Char_U:
1445    case BuiltinType::UChar:
1446    case BuiltinType::SChar:
1447      Width = Target->getCharWidth();
1448      Align = Target->getCharAlign();
1449      break;
1450    case BuiltinType::WChar_S:
1451    case BuiltinType::WChar_U:
1452      Width = Target->getWCharWidth();
1453      Align = Target->getWCharAlign();
1454      break;
1455    case BuiltinType::Char16:
1456      Width = Target->getChar16Width();
1457      Align = Target->getChar16Align();
1458      break;
1459    case BuiltinType::Char32:
1460      Width = Target->getChar32Width();
1461      Align = Target->getChar32Align();
1462      break;
1463    case BuiltinType::UShort:
1464    case BuiltinType::Short:
1465      Width = Target->getShortWidth();
1466      Align = Target->getShortAlign();
1467      break;
1468    case BuiltinType::UInt:
1469    case BuiltinType::Int:
1470      Width = Target->getIntWidth();
1471      Align = Target->getIntAlign();
1472      break;
1473    case BuiltinType::ULong:
1474    case BuiltinType::Long:
1475      Width = Target->getLongWidth();
1476      Align = Target->getLongAlign();
1477      break;
1478    case BuiltinType::ULongLong:
1479    case BuiltinType::LongLong:
1480      Width = Target->getLongLongWidth();
1481      Align = Target->getLongLongAlign();
1482      break;
1483    case BuiltinType::Int128:
1484    case BuiltinType::UInt128:
1485      Width = 128;
1486      Align = 128; // int128_t is 128-bit aligned on all targets.
1487      break;
1488    case BuiltinType::Half:
1489      Width = Target->getHalfWidth();
1490      Align = Target->getHalfAlign();
1491      break;
1492    case BuiltinType::Float:
1493      Width = Target->getFloatWidth();
1494      Align = Target->getFloatAlign();
1495      break;
1496    case BuiltinType::Double:
1497      Width = Target->getDoubleWidth();
1498      Align = Target->getDoubleAlign();
1499      break;
1500    case BuiltinType::LongDouble:
1501      Width = Target->getLongDoubleWidth();
1502      Align = Target->getLongDoubleAlign();
1503      break;
1504    case BuiltinType::NullPtr:
1505      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1506      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1507      break;
1508    case BuiltinType::ObjCId:
1509    case BuiltinType::ObjCClass:
1510    case BuiltinType::ObjCSel:
1511      Width = Target->getPointerWidth(0);
1512      Align = Target->getPointerAlign(0);
1513      break;
1514    case BuiltinType::OCLSampler:
1515      // Samplers are modeled as integers.
1516      Width = Target->getIntWidth();
1517      Align = Target->getIntAlign();
1518      break;
1519    case BuiltinType::OCLEvent:
1520    case BuiltinType::OCLImage1d:
1521    case BuiltinType::OCLImage1dArray:
1522    case BuiltinType::OCLImage1dBuffer:
1523    case BuiltinType::OCLImage2d:
1524    case BuiltinType::OCLImage2dArray:
1525    case BuiltinType::OCLImage3d:
1526      // Currently these types are pointers to opaque types.
1527      Width = Target->getPointerWidth(0);
1528      Align = Target->getPointerAlign(0);
1529      break;
1530    }
1531    break;
1532  case Type::ObjCObjectPointer:
1533    Width = Target->getPointerWidth(0);
1534    Align = Target->getPointerAlign(0);
1535    break;
1536  case Type::BlockPointer: {
1537    unsigned AS = getTargetAddressSpace(
1538        cast<BlockPointerType>(T)->getPointeeType());
1539    Width = Target->getPointerWidth(AS);
1540    Align = Target->getPointerAlign(AS);
1541    break;
1542  }
1543  case Type::LValueReference:
1544  case Type::RValueReference: {
1545    // alignof and sizeof should never enter this code path here, so we go
1546    // the pointer route.
1547    unsigned AS = getTargetAddressSpace(
1548        cast<ReferenceType>(T)->getPointeeType());
1549    Width = Target->getPointerWidth(AS);
1550    Align = Target->getPointerAlign(AS);
1551    break;
1552  }
1553  case Type::Pointer: {
1554    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1555    Width = Target->getPointerWidth(AS);
1556    Align = Target->getPointerAlign(AS);
1557    break;
1558  }
1559  case Type::MemberPointer: {
1560    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1561    llvm::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1562    break;
1563  }
1564  case Type::Complex: {
1565    // Complex types have the same alignment as their elements, but twice the
1566    // size.
1567    std::pair<uint64_t, unsigned> EltInfo =
1568      getTypeInfo(cast<ComplexType>(T)->getElementType());
1569    Width = EltInfo.first*2;
1570    Align = EltInfo.second;
1571    break;
1572  }
1573  case Type::ObjCObject:
1574    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1575  case Type::ObjCInterface: {
1576    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1577    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1578    Width = toBits(Layout.getSize());
1579    Align = toBits(Layout.getAlignment());
1580    break;
1581  }
1582  case Type::Record:
1583  case Type::Enum: {
1584    const TagType *TT = cast<TagType>(T);
1585
1586    if (TT->getDecl()->isInvalidDecl()) {
1587      Width = 8;
1588      Align = 8;
1589      break;
1590    }
1591
1592    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1593      return getTypeInfo(ET->getDecl()->getIntegerType());
1594
1595    const RecordType *RT = cast<RecordType>(TT);
1596    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1597    Width = toBits(Layout.getSize());
1598    Align = toBits(Layout.getAlignment());
1599    break;
1600  }
1601
1602  case Type::SubstTemplateTypeParm:
1603    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1604                       getReplacementType().getTypePtr());
1605
1606  case Type::Auto: {
1607    const AutoType *A = cast<AutoType>(T);
1608    assert(!A->getDeducedType().isNull() &&
1609           "cannot request the size of an undeduced or dependent auto type");
1610    return getTypeInfo(A->getDeducedType().getTypePtr());
1611  }
1612
1613  case Type::Paren:
1614    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1615
1616  case Type::Typedef: {
1617    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1618    std::pair<uint64_t, unsigned> Info
1619      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1620    // If the typedef has an aligned attribute on it, it overrides any computed
1621    // alignment we have.  This violates the GCC documentation (which says that
1622    // attribute(aligned) can only round up) but matches its implementation.
1623    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1624      Align = AttrAlign;
1625    else
1626      Align = Info.second;
1627    Width = Info.first;
1628    break;
1629  }
1630
1631  case Type::TypeOfExpr:
1632    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1633                         .getTypePtr());
1634
1635  case Type::TypeOf:
1636    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1637
1638  case Type::Decltype:
1639    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1640                        .getTypePtr());
1641
1642  case Type::UnaryTransform:
1643    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1644
1645  case Type::Elaborated:
1646    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1647
1648  case Type::Attributed:
1649    return getTypeInfo(
1650                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1651
1652  case Type::TemplateSpecialization: {
1653    assert(getCanonicalType(T) != T &&
1654           "Cannot request the size of a dependent type");
1655    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1656    // A type alias template specialization may refer to a typedef with the
1657    // aligned attribute on it.
1658    if (TST->isTypeAlias())
1659      return getTypeInfo(TST->getAliasedType().getTypePtr());
1660    else
1661      return getTypeInfo(getCanonicalType(T));
1662  }
1663
1664  case Type::Atomic: {
1665    // Start with the base type information.
1666    std::pair<uint64_t, unsigned> Info
1667      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1668    Width = Info.first;
1669    Align = Info.second;
1670
1671    // If the size of the type doesn't exceed the platform's max
1672    // atomic promotion width, make the size and alignment more
1673    // favorable to atomic operations:
1674    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1675      // Round the size up to a power of 2.
1676      if (!llvm::isPowerOf2_64(Width))
1677        Width = llvm::NextPowerOf2(Width);
1678
1679      // Set the alignment equal to the size.
1680      Align = static_cast<unsigned>(Width);
1681    }
1682  }
1683
1684  }
1685
1686  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1687  return std::make_pair(Width, Align);
1688}
1689
1690/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1691CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1692  return CharUnits::fromQuantity(BitSize / getCharWidth());
1693}
1694
1695/// toBits - Convert a size in characters to a size in characters.
1696int64_t ASTContext::toBits(CharUnits CharSize) const {
1697  return CharSize.getQuantity() * getCharWidth();
1698}
1699
1700/// getTypeSizeInChars - Return the size of the specified type, in characters.
1701/// This method does not work on incomplete types.
1702CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1703  return toCharUnitsFromBits(getTypeSize(T));
1704}
1705CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1706  return toCharUnitsFromBits(getTypeSize(T));
1707}
1708
1709/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1710/// characters. This method does not work on incomplete types.
1711CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1712  return toCharUnitsFromBits(getTypeAlign(T));
1713}
1714CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1715  return toCharUnitsFromBits(getTypeAlign(T));
1716}
1717
1718/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1719/// type for the current target in bits.  This can be different than the ABI
1720/// alignment in cases where it is beneficial for performance to overalign
1721/// a data type.
1722unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1723  unsigned ABIAlign = getTypeAlign(T);
1724
1725  // Double and long long should be naturally aligned if possible.
1726  if (const ComplexType* CT = T->getAs<ComplexType>())
1727    T = CT->getElementType().getTypePtr();
1728  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1729      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1730      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1731    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1732
1733  return ABIAlign;
1734}
1735
1736/// getAlignOfGlobalVar - Return the alignment in bits that should be given
1737/// to a global variable of the specified type.
1738unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1739  return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1740}
1741
1742/// getAlignOfGlobalVarInChars - Return the alignment in characters that
1743/// should be given to a global variable of the specified type.
1744CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1745  return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1746}
1747
1748/// DeepCollectObjCIvars -
1749/// This routine first collects all declared, but not synthesized, ivars in
1750/// super class and then collects all ivars, including those synthesized for
1751/// current class. This routine is used for implementation of current class
1752/// when all ivars, declared and synthesized are known.
1753///
1754void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1755                                      bool leafClass,
1756                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1757  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1758    DeepCollectObjCIvars(SuperClass, false, Ivars);
1759  if (!leafClass) {
1760    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1761         E = OI->ivar_end(); I != E; ++I)
1762      Ivars.push_back(*I);
1763  } else {
1764    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1765    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1766         Iv= Iv->getNextIvar())
1767      Ivars.push_back(Iv);
1768  }
1769}
1770
1771/// CollectInheritedProtocols - Collect all protocols in current class and
1772/// those inherited by it.
1773void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1774                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1775  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1776    // We can use protocol_iterator here instead of
1777    // all_referenced_protocol_iterator since we are walking all categories.
1778    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1779         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1780      ObjCProtocolDecl *Proto = (*P);
1781      Protocols.insert(Proto->getCanonicalDecl());
1782      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1783           PE = Proto->protocol_end(); P != PE; ++P) {
1784        Protocols.insert((*P)->getCanonicalDecl());
1785        CollectInheritedProtocols(*P, Protocols);
1786      }
1787    }
1788
1789    // Categories of this Interface.
1790    for (ObjCInterfaceDecl::visible_categories_iterator
1791           Cat = OI->visible_categories_begin(),
1792           CatEnd = OI->visible_categories_end();
1793         Cat != CatEnd; ++Cat) {
1794      CollectInheritedProtocols(*Cat, Protocols);
1795    }
1796
1797    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1798      while (SD) {
1799        CollectInheritedProtocols(SD, Protocols);
1800        SD = SD->getSuperClass();
1801      }
1802  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1803    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1804         PE = OC->protocol_end(); P != PE; ++P) {
1805      ObjCProtocolDecl *Proto = (*P);
1806      Protocols.insert(Proto->getCanonicalDecl());
1807      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1808           PE = Proto->protocol_end(); P != PE; ++P)
1809        CollectInheritedProtocols(*P, Protocols);
1810    }
1811  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1812    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1813         PE = OP->protocol_end(); P != PE; ++P) {
1814      ObjCProtocolDecl *Proto = (*P);
1815      Protocols.insert(Proto->getCanonicalDecl());
1816      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1817           PE = Proto->protocol_end(); P != PE; ++P)
1818        CollectInheritedProtocols(*P, Protocols);
1819    }
1820  }
1821}
1822
1823unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1824  unsigned count = 0;
1825  // Count ivars declared in class extension.
1826  for (ObjCInterfaceDecl::known_extensions_iterator
1827         Ext = OI->known_extensions_begin(),
1828         ExtEnd = OI->known_extensions_end();
1829       Ext != ExtEnd; ++Ext) {
1830    count += Ext->ivar_size();
1831  }
1832
1833  // Count ivar defined in this class's implementation.  This
1834  // includes synthesized ivars.
1835  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1836    count += ImplDecl->ivar_size();
1837
1838  return count;
1839}
1840
1841bool ASTContext::isSentinelNullExpr(const Expr *E) {
1842  if (!E)
1843    return false;
1844
1845  // nullptr_t is always treated as null.
1846  if (E->getType()->isNullPtrType()) return true;
1847
1848  if (E->getType()->isAnyPointerType() &&
1849      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1850                                                Expr::NPC_ValueDependentIsNull))
1851    return true;
1852
1853  // Unfortunately, __null has type 'int'.
1854  if (isa<GNUNullExpr>(E)) return true;
1855
1856  return false;
1857}
1858
1859/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1860ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1861  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1862    I = ObjCImpls.find(D);
1863  if (I != ObjCImpls.end())
1864    return cast<ObjCImplementationDecl>(I->second);
1865  return 0;
1866}
1867/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1868ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1869  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1870    I = ObjCImpls.find(D);
1871  if (I != ObjCImpls.end())
1872    return cast<ObjCCategoryImplDecl>(I->second);
1873  return 0;
1874}
1875
1876/// \brief Set the implementation of ObjCInterfaceDecl.
1877void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1878                           ObjCImplementationDecl *ImplD) {
1879  assert(IFaceD && ImplD && "Passed null params");
1880  ObjCImpls[IFaceD] = ImplD;
1881}
1882/// \brief Set the implementation of ObjCCategoryDecl.
1883void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1884                           ObjCCategoryImplDecl *ImplD) {
1885  assert(CatD && ImplD && "Passed null params");
1886  ObjCImpls[CatD] = ImplD;
1887}
1888
1889const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1890                                              const NamedDecl *ND) const {
1891  if (const ObjCInterfaceDecl *ID =
1892          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1893    return ID;
1894  if (const ObjCCategoryDecl *CD =
1895          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1896    return CD->getClassInterface();
1897  if (const ObjCImplDecl *IMD =
1898          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1899    return IMD->getClassInterface();
1900
1901  return 0;
1902}
1903
1904/// \brief Get the copy initialization expression of VarDecl,or NULL if
1905/// none exists.
1906Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1907  assert(VD && "Passed null params");
1908  assert(VD->hasAttr<BlocksAttr>() &&
1909         "getBlockVarCopyInits - not __block var");
1910  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1911    I = BlockVarCopyInits.find(VD);
1912  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1913}
1914
1915/// \brief Set the copy inialization expression of a block var decl.
1916void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1917  assert(VD && Init && "Passed null params");
1918  assert(VD->hasAttr<BlocksAttr>() &&
1919         "setBlockVarCopyInits - not __block var");
1920  BlockVarCopyInits[VD] = Init;
1921}
1922
1923TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1924                                                 unsigned DataSize) const {
1925  if (!DataSize)
1926    DataSize = TypeLoc::getFullDataSizeForType(T);
1927  else
1928    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1929           "incorrect data size provided to CreateTypeSourceInfo!");
1930
1931  TypeSourceInfo *TInfo =
1932    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1933  new (TInfo) TypeSourceInfo(T);
1934  return TInfo;
1935}
1936
1937TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1938                                                     SourceLocation L) const {
1939  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1940  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1941  return DI;
1942}
1943
1944const ASTRecordLayout &
1945ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1946  return getObjCLayout(D, 0);
1947}
1948
1949const ASTRecordLayout &
1950ASTContext::getASTObjCImplementationLayout(
1951                                        const ObjCImplementationDecl *D) const {
1952  return getObjCLayout(D->getClassInterface(), D);
1953}
1954
1955//===----------------------------------------------------------------------===//
1956//                   Type creation/memoization methods
1957//===----------------------------------------------------------------------===//
1958
1959QualType
1960ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1961  unsigned fastQuals = quals.getFastQualifiers();
1962  quals.removeFastQualifiers();
1963
1964  // Check if we've already instantiated this type.
1965  llvm::FoldingSetNodeID ID;
1966  ExtQuals::Profile(ID, baseType, quals);
1967  void *insertPos = 0;
1968  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1969    assert(eq->getQualifiers() == quals);
1970    return QualType(eq, fastQuals);
1971  }
1972
1973  // If the base type is not canonical, make the appropriate canonical type.
1974  QualType canon;
1975  if (!baseType->isCanonicalUnqualified()) {
1976    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1977    canonSplit.Quals.addConsistentQualifiers(quals);
1978    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1979
1980    // Re-find the insert position.
1981    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1982  }
1983
1984  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1985  ExtQualNodes.InsertNode(eq, insertPos);
1986  return QualType(eq, fastQuals);
1987}
1988
1989QualType
1990ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1991  QualType CanT = getCanonicalType(T);
1992  if (CanT.getAddressSpace() == AddressSpace)
1993    return T;
1994
1995  // If we are composing extended qualifiers together, merge together
1996  // into one ExtQuals node.
1997  QualifierCollector Quals;
1998  const Type *TypeNode = Quals.strip(T);
1999
2000  // If this type already has an address space specified, it cannot get
2001  // another one.
2002  assert(!Quals.hasAddressSpace() &&
2003         "Type cannot be in multiple addr spaces!");
2004  Quals.addAddressSpace(AddressSpace);
2005
2006  return getExtQualType(TypeNode, Quals);
2007}
2008
2009QualType ASTContext::getObjCGCQualType(QualType T,
2010                                       Qualifiers::GC GCAttr) const {
2011  QualType CanT = getCanonicalType(T);
2012  if (CanT.getObjCGCAttr() == GCAttr)
2013    return T;
2014
2015  if (const PointerType *ptr = T->getAs<PointerType>()) {
2016    QualType Pointee = ptr->getPointeeType();
2017    if (Pointee->isAnyPointerType()) {
2018      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2019      return getPointerType(ResultType);
2020    }
2021  }
2022
2023  // If we are composing extended qualifiers together, merge together
2024  // into one ExtQuals node.
2025  QualifierCollector Quals;
2026  const Type *TypeNode = Quals.strip(T);
2027
2028  // If this type already has an ObjCGC specified, it cannot get
2029  // another one.
2030  assert(!Quals.hasObjCGCAttr() &&
2031         "Type cannot have multiple ObjCGCs!");
2032  Quals.addObjCGCAttr(GCAttr);
2033
2034  return getExtQualType(TypeNode, Quals);
2035}
2036
2037const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2038                                                   FunctionType::ExtInfo Info) {
2039  if (T->getExtInfo() == Info)
2040    return T;
2041
2042  QualType Result;
2043  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2044    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
2045  } else {
2046    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2047    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2048    EPI.ExtInfo = Info;
2049    Result = getFunctionType(FPT->getResultType(),
2050                             ArrayRef<QualType>(FPT->arg_type_begin(),
2051                                                FPT->getNumArgs()),
2052                             EPI);
2053  }
2054
2055  return cast<FunctionType>(Result.getTypePtr());
2056}
2057
2058void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2059                                                 QualType ResultType) {
2060  FD = FD->getMostRecentDecl();
2061  while (true) {
2062    const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2063    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2064    FD->setType(getFunctionType(ResultType, FPT->getArgTypes(), EPI));
2065    if (FunctionDecl *Next = FD->getPreviousDecl())
2066      FD = Next;
2067    else
2068      break;
2069  }
2070  if (ASTMutationListener *L = getASTMutationListener())
2071    L->DeducedReturnType(FD, ResultType);
2072}
2073
2074/// getComplexType - Return the uniqued reference to the type for a complex
2075/// number with the specified element type.
2076QualType ASTContext::getComplexType(QualType T) const {
2077  // Unique pointers, to guarantee there is only one pointer of a particular
2078  // structure.
2079  llvm::FoldingSetNodeID ID;
2080  ComplexType::Profile(ID, T);
2081
2082  void *InsertPos = 0;
2083  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2084    return QualType(CT, 0);
2085
2086  // If the pointee type isn't canonical, this won't be a canonical type either,
2087  // so fill in the canonical type field.
2088  QualType Canonical;
2089  if (!T.isCanonical()) {
2090    Canonical = getComplexType(getCanonicalType(T));
2091
2092    // Get the new insert position for the node we care about.
2093    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2094    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2095  }
2096  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2097  Types.push_back(New);
2098  ComplexTypes.InsertNode(New, InsertPos);
2099  return QualType(New, 0);
2100}
2101
2102/// getPointerType - Return the uniqued reference to the type for a pointer to
2103/// the specified type.
2104QualType ASTContext::getPointerType(QualType T) const {
2105  // Unique pointers, to guarantee there is only one pointer of a particular
2106  // structure.
2107  llvm::FoldingSetNodeID ID;
2108  PointerType::Profile(ID, T);
2109
2110  void *InsertPos = 0;
2111  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2112    return QualType(PT, 0);
2113
2114  // If the pointee type isn't canonical, this won't be a canonical type either,
2115  // so fill in the canonical type field.
2116  QualType Canonical;
2117  if (!T.isCanonical()) {
2118    Canonical = getPointerType(getCanonicalType(T));
2119
2120    // Get the new insert position for the node we care about.
2121    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2122    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2123  }
2124  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2125  Types.push_back(New);
2126  PointerTypes.InsertNode(New, InsertPos);
2127  return QualType(New, 0);
2128}
2129
2130/// getBlockPointerType - Return the uniqued reference to the type for
2131/// a pointer to the specified block.
2132QualType ASTContext::getBlockPointerType(QualType T) const {
2133  assert(T->isFunctionType() && "block of function types only");
2134  // Unique pointers, to guarantee there is only one block of a particular
2135  // structure.
2136  llvm::FoldingSetNodeID ID;
2137  BlockPointerType::Profile(ID, T);
2138
2139  void *InsertPos = 0;
2140  if (BlockPointerType *PT =
2141        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2142    return QualType(PT, 0);
2143
2144  // If the block pointee type isn't canonical, this won't be a canonical
2145  // type either so fill in the canonical type field.
2146  QualType Canonical;
2147  if (!T.isCanonical()) {
2148    Canonical = getBlockPointerType(getCanonicalType(T));
2149
2150    // Get the new insert position for the node we care about.
2151    BlockPointerType *NewIP =
2152      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2153    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2154  }
2155  BlockPointerType *New
2156    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2157  Types.push_back(New);
2158  BlockPointerTypes.InsertNode(New, InsertPos);
2159  return QualType(New, 0);
2160}
2161
2162/// getLValueReferenceType - Return the uniqued reference to the type for an
2163/// lvalue reference to the specified type.
2164QualType
2165ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2166  assert(getCanonicalType(T) != OverloadTy &&
2167         "Unresolved overloaded function type");
2168
2169  // Unique pointers, to guarantee there is only one pointer of a particular
2170  // structure.
2171  llvm::FoldingSetNodeID ID;
2172  ReferenceType::Profile(ID, T, SpelledAsLValue);
2173
2174  void *InsertPos = 0;
2175  if (LValueReferenceType *RT =
2176        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2177    return QualType(RT, 0);
2178
2179  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2180
2181  // If the referencee type isn't canonical, this won't be a canonical type
2182  // either, so fill in the canonical type field.
2183  QualType Canonical;
2184  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2185    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2186    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2187
2188    // Get the new insert position for the node we care about.
2189    LValueReferenceType *NewIP =
2190      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2191    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2192  }
2193
2194  LValueReferenceType *New
2195    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2196                                                     SpelledAsLValue);
2197  Types.push_back(New);
2198  LValueReferenceTypes.InsertNode(New, InsertPos);
2199
2200  return QualType(New, 0);
2201}
2202
2203/// getRValueReferenceType - Return the uniqued reference to the type for an
2204/// rvalue reference to the specified type.
2205QualType ASTContext::getRValueReferenceType(QualType T) const {
2206  // Unique pointers, to guarantee there is only one pointer of a particular
2207  // structure.
2208  llvm::FoldingSetNodeID ID;
2209  ReferenceType::Profile(ID, T, false);
2210
2211  void *InsertPos = 0;
2212  if (RValueReferenceType *RT =
2213        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2214    return QualType(RT, 0);
2215
2216  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2217
2218  // If the referencee type isn't canonical, this won't be a canonical type
2219  // either, so fill in the canonical type field.
2220  QualType Canonical;
2221  if (InnerRef || !T.isCanonical()) {
2222    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2223    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2224
2225    // Get the new insert position for the node we care about.
2226    RValueReferenceType *NewIP =
2227      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2228    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2229  }
2230
2231  RValueReferenceType *New
2232    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2233  Types.push_back(New);
2234  RValueReferenceTypes.InsertNode(New, InsertPos);
2235  return QualType(New, 0);
2236}
2237
2238/// getMemberPointerType - Return the uniqued reference to the type for a
2239/// member pointer to the specified type, in the specified class.
2240QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2241  // Unique pointers, to guarantee there is only one pointer of a particular
2242  // structure.
2243  llvm::FoldingSetNodeID ID;
2244  MemberPointerType::Profile(ID, T, Cls);
2245
2246  void *InsertPos = 0;
2247  if (MemberPointerType *PT =
2248      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2249    return QualType(PT, 0);
2250
2251  // If the pointee or class type isn't canonical, this won't be a canonical
2252  // type either, so fill in the canonical type field.
2253  QualType Canonical;
2254  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2255    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2256
2257    // Get the new insert position for the node we care about.
2258    MemberPointerType *NewIP =
2259      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2260    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2261  }
2262  MemberPointerType *New
2263    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2264  Types.push_back(New);
2265  MemberPointerTypes.InsertNode(New, InsertPos);
2266  return QualType(New, 0);
2267}
2268
2269/// getConstantArrayType - Return the unique reference to the type for an
2270/// array of the specified element type.
2271QualType ASTContext::getConstantArrayType(QualType EltTy,
2272                                          const llvm::APInt &ArySizeIn,
2273                                          ArrayType::ArraySizeModifier ASM,
2274                                          unsigned IndexTypeQuals) const {
2275  assert((EltTy->isDependentType() ||
2276          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2277         "Constant array of VLAs is illegal!");
2278
2279  // Convert the array size into a canonical width matching the pointer size for
2280  // the target.
2281  llvm::APInt ArySize(ArySizeIn);
2282  ArySize =
2283    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2284
2285  llvm::FoldingSetNodeID ID;
2286  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2287
2288  void *InsertPos = 0;
2289  if (ConstantArrayType *ATP =
2290      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2291    return QualType(ATP, 0);
2292
2293  // If the element type isn't canonical or has qualifiers, this won't
2294  // be a canonical type either, so fill in the canonical type field.
2295  QualType Canon;
2296  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2297    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2298    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2299                                 ASM, IndexTypeQuals);
2300    Canon = getQualifiedType(Canon, canonSplit.Quals);
2301
2302    // Get the new insert position for the node we care about.
2303    ConstantArrayType *NewIP =
2304      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2305    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2306  }
2307
2308  ConstantArrayType *New = new(*this,TypeAlignment)
2309    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2310  ConstantArrayTypes.InsertNode(New, InsertPos);
2311  Types.push_back(New);
2312  return QualType(New, 0);
2313}
2314
2315/// getVariableArrayDecayedType - Turns the given type, which may be
2316/// variably-modified, into the corresponding type with all the known
2317/// sizes replaced with [*].
2318QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2319  // Vastly most common case.
2320  if (!type->isVariablyModifiedType()) return type;
2321
2322  QualType result;
2323
2324  SplitQualType split = type.getSplitDesugaredType();
2325  const Type *ty = split.Ty;
2326  switch (ty->getTypeClass()) {
2327#define TYPE(Class, Base)
2328#define ABSTRACT_TYPE(Class, Base)
2329#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2330#include "clang/AST/TypeNodes.def"
2331    llvm_unreachable("didn't desugar past all non-canonical types?");
2332
2333  // These types should never be variably-modified.
2334  case Type::Builtin:
2335  case Type::Complex:
2336  case Type::Vector:
2337  case Type::ExtVector:
2338  case Type::DependentSizedExtVector:
2339  case Type::ObjCObject:
2340  case Type::ObjCInterface:
2341  case Type::ObjCObjectPointer:
2342  case Type::Record:
2343  case Type::Enum:
2344  case Type::UnresolvedUsing:
2345  case Type::TypeOfExpr:
2346  case Type::TypeOf:
2347  case Type::Decltype:
2348  case Type::UnaryTransform:
2349  case Type::DependentName:
2350  case Type::InjectedClassName:
2351  case Type::TemplateSpecialization:
2352  case Type::DependentTemplateSpecialization:
2353  case Type::TemplateTypeParm:
2354  case Type::SubstTemplateTypeParmPack:
2355  case Type::Auto:
2356  case Type::PackExpansion:
2357    llvm_unreachable("type should never be variably-modified");
2358
2359  // These types can be variably-modified but should never need to
2360  // further decay.
2361  case Type::FunctionNoProto:
2362  case Type::FunctionProto:
2363  case Type::BlockPointer:
2364  case Type::MemberPointer:
2365    return type;
2366
2367  // These types can be variably-modified.  All these modifications
2368  // preserve structure except as noted by comments.
2369  // TODO: if we ever care about optimizing VLAs, there are no-op
2370  // optimizations available here.
2371  case Type::Pointer:
2372    result = getPointerType(getVariableArrayDecayedType(
2373                              cast<PointerType>(ty)->getPointeeType()));
2374    break;
2375
2376  case Type::LValueReference: {
2377    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2378    result = getLValueReferenceType(
2379                 getVariableArrayDecayedType(lv->getPointeeType()),
2380                                    lv->isSpelledAsLValue());
2381    break;
2382  }
2383
2384  case Type::RValueReference: {
2385    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2386    result = getRValueReferenceType(
2387                 getVariableArrayDecayedType(lv->getPointeeType()));
2388    break;
2389  }
2390
2391  case Type::Atomic: {
2392    const AtomicType *at = cast<AtomicType>(ty);
2393    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2394    break;
2395  }
2396
2397  case Type::ConstantArray: {
2398    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2399    result = getConstantArrayType(
2400                 getVariableArrayDecayedType(cat->getElementType()),
2401                                  cat->getSize(),
2402                                  cat->getSizeModifier(),
2403                                  cat->getIndexTypeCVRQualifiers());
2404    break;
2405  }
2406
2407  case Type::DependentSizedArray: {
2408    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2409    result = getDependentSizedArrayType(
2410                 getVariableArrayDecayedType(dat->getElementType()),
2411                                        dat->getSizeExpr(),
2412                                        dat->getSizeModifier(),
2413                                        dat->getIndexTypeCVRQualifiers(),
2414                                        dat->getBracketsRange());
2415    break;
2416  }
2417
2418  // Turn incomplete types into [*] types.
2419  case Type::IncompleteArray: {
2420    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2421    result = getVariableArrayType(
2422                 getVariableArrayDecayedType(iat->getElementType()),
2423                                  /*size*/ 0,
2424                                  ArrayType::Normal,
2425                                  iat->getIndexTypeCVRQualifiers(),
2426                                  SourceRange());
2427    break;
2428  }
2429
2430  // Turn VLA types into [*] types.
2431  case Type::VariableArray: {
2432    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2433    result = getVariableArrayType(
2434                 getVariableArrayDecayedType(vat->getElementType()),
2435                                  /*size*/ 0,
2436                                  ArrayType::Star,
2437                                  vat->getIndexTypeCVRQualifiers(),
2438                                  vat->getBracketsRange());
2439    break;
2440  }
2441  }
2442
2443  // Apply the top-level qualifiers from the original.
2444  return getQualifiedType(result, split.Quals);
2445}
2446
2447/// getVariableArrayType - Returns a non-unique reference to the type for a
2448/// variable array of the specified element type.
2449QualType ASTContext::getVariableArrayType(QualType EltTy,
2450                                          Expr *NumElts,
2451                                          ArrayType::ArraySizeModifier ASM,
2452                                          unsigned IndexTypeQuals,
2453                                          SourceRange Brackets) const {
2454  // Since we don't unique expressions, it isn't possible to unique VLA's
2455  // that have an expression provided for their size.
2456  QualType Canon;
2457
2458  // Be sure to pull qualifiers off the element type.
2459  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2460    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2461    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2462                                 IndexTypeQuals, Brackets);
2463    Canon = getQualifiedType(Canon, canonSplit.Quals);
2464  }
2465
2466  VariableArrayType *New = new(*this, TypeAlignment)
2467    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2468
2469  VariableArrayTypes.push_back(New);
2470  Types.push_back(New);
2471  return QualType(New, 0);
2472}
2473
2474/// getDependentSizedArrayType - Returns a non-unique reference to
2475/// the type for a dependently-sized array of the specified element
2476/// type.
2477QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2478                                                Expr *numElements,
2479                                                ArrayType::ArraySizeModifier ASM,
2480                                                unsigned elementTypeQuals,
2481                                                SourceRange brackets) const {
2482  assert((!numElements || numElements->isTypeDependent() ||
2483          numElements->isValueDependent()) &&
2484         "Size must be type- or value-dependent!");
2485
2486  // Dependently-sized array types that do not have a specified number
2487  // of elements will have their sizes deduced from a dependent
2488  // initializer.  We do no canonicalization here at all, which is okay
2489  // because they can't be used in most locations.
2490  if (!numElements) {
2491    DependentSizedArrayType *newType
2492      = new (*this, TypeAlignment)
2493          DependentSizedArrayType(*this, elementType, QualType(),
2494                                  numElements, ASM, elementTypeQuals,
2495                                  brackets);
2496    Types.push_back(newType);
2497    return QualType(newType, 0);
2498  }
2499
2500  // Otherwise, we actually build a new type every time, but we
2501  // also build a canonical type.
2502
2503  SplitQualType canonElementType = getCanonicalType(elementType).split();
2504
2505  void *insertPos = 0;
2506  llvm::FoldingSetNodeID ID;
2507  DependentSizedArrayType::Profile(ID, *this,
2508                                   QualType(canonElementType.Ty, 0),
2509                                   ASM, elementTypeQuals, numElements);
2510
2511  // Look for an existing type with these properties.
2512  DependentSizedArrayType *canonTy =
2513    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2514
2515  // If we don't have one, build one.
2516  if (!canonTy) {
2517    canonTy = new (*this, TypeAlignment)
2518      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2519                              QualType(), numElements, ASM, elementTypeQuals,
2520                              brackets);
2521    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2522    Types.push_back(canonTy);
2523  }
2524
2525  // Apply qualifiers from the element type to the array.
2526  QualType canon = getQualifiedType(QualType(canonTy,0),
2527                                    canonElementType.Quals);
2528
2529  // If we didn't need extra canonicalization for the element type,
2530  // then just use that as our result.
2531  if (QualType(canonElementType.Ty, 0) == elementType)
2532    return canon;
2533
2534  // Otherwise, we need to build a type which follows the spelling
2535  // of the element type.
2536  DependentSizedArrayType *sugaredType
2537    = new (*this, TypeAlignment)
2538        DependentSizedArrayType(*this, elementType, canon, numElements,
2539                                ASM, elementTypeQuals, brackets);
2540  Types.push_back(sugaredType);
2541  return QualType(sugaredType, 0);
2542}
2543
2544QualType ASTContext::getIncompleteArrayType(QualType elementType,
2545                                            ArrayType::ArraySizeModifier ASM,
2546                                            unsigned elementTypeQuals) const {
2547  llvm::FoldingSetNodeID ID;
2548  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2549
2550  void *insertPos = 0;
2551  if (IncompleteArrayType *iat =
2552       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2553    return QualType(iat, 0);
2554
2555  // If the element type isn't canonical, this won't be a canonical type
2556  // either, so fill in the canonical type field.  We also have to pull
2557  // qualifiers off the element type.
2558  QualType canon;
2559
2560  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2561    SplitQualType canonSplit = getCanonicalType(elementType).split();
2562    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2563                                   ASM, elementTypeQuals);
2564    canon = getQualifiedType(canon, canonSplit.Quals);
2565
2566    // Get the new insert position for the node we care about.
2567    IncompleteArrayType *existing =
2568      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2569    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2570  }
2571
2572  IncompleteArrayType *newType = new (*this, TypeAlignment)
2573    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2574
2575  IncompleteArrayTypes.InsertNode(newType, insertPos);
2576  Types.push_back(newType);
2577  return QualType(newType, 0);
2578}
2579
2580/// getVectorType - Return the unique reference to a vector type of
2581/// the specified element type and size. VectorType must be a built-in type.
2582QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2583                                   VectorType::VectorKind VecKind) const {
2584  assert(vecType->isBuiltinType());
2585
2586  // Check if we've already instantiated a vector of this type.
2587  llvm::FoldingSetNodeID ID;
2588  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2589
2590  void *InsertPos = 0;
2591  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2592    return QualType(VTP, 0);
2593
2594  // If the element type isn't canonical, this won't be a canonical type either,
2595  // so fill in the canonical type field.
2596  QualType Canonical;
2597  if (!vecType.isCanonical()) {
2598    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2599
2600    // Get the new insert position for the node we care about.
2601    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2602    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2603  }
2604  VectorType *New = new (*this, TypeAlignment)
2605    VectorType(vecType, NumElts, Canonical, VecKind);
2606  VectorTypes.InsertNode(New, InsertPos);
2607  Types.push_back(New);
2608  return QualType(New, 0);
2609}
2610
2611/// getExtVectorType - Return the unique reference to an extended vector type of
2612/// the specified element type and size. VectorType must be a built-in type.
2613QualType
2614ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2615  assert(vecType->isBuiltinType() || vecType->isDependentType());
2616
2617  // Check if we've already instantiated a vector of this type.
2618  llvm::FoldingSetNodeID ID;
2619  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2620                      VectorType::GenericVector);
2621  void *InsertPos = 0;
2622  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2623    return QualType(VTP, 0);
2624
2625  // If the element type isn't canonical, this won't be a canonical type either,
2626  // so fill in the canonical type field.
2627  QualType Canonical;
2628  if (!vecType.isCanonical()) {
2629    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2630
2631    // Get the new insert position for the node we care about.
2632    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2633    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2634  }
2635  ExtVectorType *New = new (*this, TypeAlignment)
2636    ExtVectorType(vecType, NumElts, Canonical);
2637  VectorTypes.InsertNode(New, InsertPos);
2638  Types.push_back(New);
2639  return QualType(New, 0);
2640}
2641
2642QualType
2643ASTContext::getDependentSizedExtVectorType(QualType vecType,
2644                                           Expr *SizeExpr,
2645                                           SourceLocation AttrLoc) const {
2646  llvm::FoldingSetNodeID ID;
2647  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2648                                       SizeExpr);
2649
2650  void *InsertPos = 0;
2651  DependentSizedExtVectorType *Canon
2652    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2653  DependentSizedExtVectorType *New;
2654  if (Canon) {
2655    // We already have a canonical version of this array type; use it as
2656    // the canonical type for a newly-built type.
2657    New = new (*this, TypeAlignment)
2658      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2659                                  SizeExpr, AttrLoc);
2660  } else {
2661    QualType CanonVecTy = getCanonicalType(vecType);
2662    if (CanonVecTy == vecType) {
2663      New = new (*this, TypeAlignment)
2664        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2665                                    AttrLoc);
2666
2667      DependentSizedExtVectorType *CanonCheck
2668        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2669      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2670      (void)CanonCheck;
2671      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2672    } else {
2673      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2674                                                      SourceLocation());
2675      New = new (*this, TypeAlignment)
2676        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2677    }
2678  }
2679
2680  Types.push_back(New);
2681  return QualType(New, 0);
2682}
2683
2684/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2685///
2686QualType
2687ASTContext::getFunctionNoProtoType(QualType ResultTy,
2688                                   const FunctionType::ExtInfo &Info) const {
2689  const CallingConv DefaultCC = Info.getCC();
2690  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2691                               CC_X86StdCall : DefaultCC;
2692  // Unique functions, to guarantee there is only one function of a particular
2693  // structure.
2694  llvm::FoldingSetNodeID ID;
2695  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2696
2697  void *InsertPos = 0;
2698  if (FunctionNoProtoType *FT =
2699        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2700    return QualType(FT, 0);
2701
2702  QualType Canonical;
2703  if (!ResultTy.isCanonical() ||
2704      getCanonicalCallConv(CallConv) != CallConv) {
2705    Canonical =
2706      getFunctionNoProtoType(getCanonicalType(ResultTy),
2707                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2708
2709    // Get the new insert position for the node we care about.
2710    FunctionNoProtoType *NewIP =
2711      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2712    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2713  }
2714
2715  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2716  FunctionNoProtoType *New = new (*this, TypeAlignment)
2717    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2718  Types.push_back(New);
2719  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2720  return QualType(New, 0);
2721}
2722
2723/// \brief Determine whether \p T is canonical as the result type of a function.
2724static bool isCanonicalResultType(QualType T) {
2725  return T.isCanonical() &&
2726         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2727          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2728}
2729
2730/// getFunctionType - Return a normal function type with a typed argument
2731/// list.  isVariadic indicates whether the argument list includes '...'.
2732QualType
2733ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2734                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2735  size_t NumArgs = ArgArray.size();
2736
2737  // Unique functions, to guarantee there is only one function of a particular
2738  // structure.
2739  llvm::FoldingSetNodeID ID;
2740  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2741                             *this);
2742
2743  void *InsertPos = 0;
2744  if (FunctionProtoType *FTP =
2745        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2746    return QualType(FTP, 0);
2747
2748  // Determine whether the type being created is already canonical or not.
2749  bool isCanonical =
2750    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2751    !EPI.HasTrailingReturn;
2752  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2753    if (!ArgArray[i].isCanonicalAsParam())
2754      isCanonical = false;
2755
2756  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2757  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2758                               CC_X86StdCall : DefaultCC;
2759
2760  // If this type isn't canonical, get the canonical version of it.
2761  // The exception spec is not part of the canonical type.
2762  QualType Canonical;
2763  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2764    SmallVector<QualType, 16> CanonicalArgs;
2765    CanonicalArgs.reserve(NumArgs);
2766    for (unsigned i = 0; i != NumArgs; ++i)
2767      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2768
2769    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2770    CanonicalEPI.HasTrailingReturn = false;
2771    CanonicalEPI.ExceptionSpecType = EST_None;
2772    CanonicalEPI.NumExceptions = 0;
2773    CanonicalEPI.ExtInfo
2774      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2775
2776    // Result types do not have ARC lifetime qualifiers.
2777    QualType CanResultTy = getCanonicalType(ResultTy);
2778    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2779      Qualifiers Qs = CanResultTy.getQualifiers();
2780      Qs.removeObjCLifetime();
2781      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2782    }
2783
2784    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2785
2786    // Get the new insert position for the node we care about.
2787    FunctionProtoType *NewIP =
2788      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2789    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2790  }
2791
2792  // FunctionProtoType objects are allocated with extra bytes after
2793  // them for three variable size arrays at the end:
2794  //  - parameter types
2795  //  - exception types
2796  //  - consumed-arguments flags
2797  // Instead of the exception types, there could be a noexcept
2798  // expression, or information used to resolve the exception
2799  // specification.
2800  size_t Size = sizeof(FunctionProtoType) +
2801                NumArgs * sizeof(QualType);
2802  if (EPI.ExceptionSpecType == EST_Dynamic) {
2803    Size += EPI.NumExceptions * sizeof(QualType);
2804  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2805    Size += sizeof(Expr*);
2806  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2807    Size += 2 * sizeof(FunctionDecl*);
2808  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2809    Size += sizeof(FunctionDecl*);
2810  }
2811  if (EPI.ConsumedArguments)
2812    Size += NumArgs * sizeof(bool);
2813
2814  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2815  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2816  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2817  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2818  Types.push_back(FTP);
2819  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2820  return QualType(FTP, 0);
2821}
2822
2823#ifndef NDEBUG
2824static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2825  if (!isa<CXXRecordDecl>(D)) return false;
2826  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2827  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2828    return true;
2829  if (RD->getDescribedClassTemplate() &&
2830      !isa<ClassTemplateSpecializationDecl>(RD))
2831    return true;
2832  return false;
2833}
2834#endif
2835
2836/// getInjectedClassNameType - Return the unique reference to the
2837/// injected class name type for the specified templated declaration.
2838QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2839                                              QualType TST) const {
2840  assert(NeedsInjectedClassNameType(Decl));
2841  if (Decl->TypeForDecl) {
2842    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2843  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2844    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2845    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2846    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2847  } else {
2848    Type *newType =
2849      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2850    Decl->TypeForDecl = newType;
2851    Types.push_back(newType);
2852  }
2853  return QualType(Decl->TypeForDecl, 0);
2854}
2855
2856/// getTypeDeclType - Return the unique reference to the type for the
2857/// specified type declaration.
2858QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2859  assert(Decl && "Passed null for Decl param");
2860  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2861
2862  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2863    return getTypedefType(Typedef);
2864
2865  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2866         "Template type parameter types are always available.");
2867
2868  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2869    assert(!Record->getPreviousDecl() &&
2870           "struct/union has previous declaration");
2871    assert(!NeedsInjectedClassNameType(Record));
2872    return getRecordType(Record);
2873  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2874    assert(!Enum->getPreviousDecl() &&
2875           "enum has previous declaration");
2876    return getEnumType(Enum);
2877  } else if (const UnresolvedUsingTypenameDecl *Using =
2878               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2879    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2880    Decl->TypeForDecl = newType;
2881    Types.push_back(newType);
2882  } else
2883    llvm_unreachable("TypeDecl without a type?");
2884
2885  return QualType(Decl->TypeForDecl, 0);
2886}
2887
2888/// getTypedefType - Return the unique reference to the type for the
2889/// specified typedef name decl.
2890QualType
2891ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2892                           QualType Canonical) const {
2893  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2894
2895  if (Canonical.isNull())
2896    Canonical = getCanonicalType(Decl->getUnderlyingType());
2897  TypedefType *newType = new(*this, TypeAlignment)
2898    TypedefType(Type::Typedef, Decl, Canonical);
2899  Decl->TypeForDecl = newType;
2900  Types.push_back(newType);
2901  return QualType(newType, 0);
2902}
2903
2904QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2905  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2906
2907  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2908    if (PrevDecl->TypeForDecl)
2909      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2910
2911  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2912  Decl->TypeForDecl = newType;
2913  Types.push_back(newType);
2914  return QualType(newType, 0);
2915}
2916
2917QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2918  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2919
2920  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2921    if (PrevDecl->TypeForDecl)
2922      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2923
2924  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2925  Decl->TypeForDecl = newType;
2926  Types.push_back(newType);
2927  return QualType(newType, 0);
2928}
2929
2930QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2931                                       QualType modifiedType,
2932                                       QualType equivalentType) {
2933  llvm::FoldingSetNodeID id;
2934  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2935
2936  void *insertPos = 0;
2937  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2938  if (type) return QualType(type, 0);
2939
2940  QualType canon = getCanonicalType(equivalentType);
2941  type = new (*this, TypeAlignment)
2942           AttributedType(canon, attrKind, modifiedType, equivalentType);
2943
2944  Types.push_back(type);
2945  AttributedTypes.InsertNode(type, insertPos);
2946
2947  return QualType(type, 0);
2948}
2949
2950
2951/// \brief Retrieve a substitution-result type.
2952QualType
2953ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2954                                         QualType Replacement) const {
2955  assert(Replacement.isCanonical()
2956         && "replacement types must always be canonical");
2957
2958  llvm::FoldingSetNodeID ID;
2959  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2960  void *InsertPos = 0;
2961  SubstTemplateTypeParmType *SubstParm
2962    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2963
2964  if (!SubstParm) {
2965    SubstParm = new (*this, TypeAlignment)
2966      SubstTemplateTypeParmType(Parm, Replacement);
2967    Types.push_back(SubstParm);
2968    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2969  }
2970
2971  return QualType(SubstParm, 0);
2972}
2973
2974/// \brief Retrieve a
2975QualType ASTContext::getSubstTemplateTypeParmPackType(
2976                                          const TemplateTypeParmType *Parm,
2977                                              const TemplateArgument &ArgPack) {
2978#ifndef NDEBUG
2979  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2980                                    PEnd = ArgPack.pack_end();
2981       P != PEnd; ++P) {
2982    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2983    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2984  }
2985#endif
2986
2987  llvm::FoldingSetNodeID ID;
2988  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2989  void *InsertPos = 0;
2990  if (SubstTemplateTypeParmPackType *SubstParm
2991        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2992    return QualType(SubstParm, 0);
2993
2994  QualType Canon;
2995  if (!Parm->isCanonicalUnqualified()) {
2996    Canon = getCanonicalType(QualType(Parm, 0));
2997    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2998                                             ArgPack);
2999    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
3000  }
3001
3002  SubstTemplateTypeParmPackType *SubstParm
3003    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
3004                                                               ArgPack);
3005  Types.push_back(SubstParm);
3006  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
3007  return QualType(SubstParm, 0);
3008}
3009
3010/// \brief Retrieve the template type parameter type for a template
3011/// parameter or parameter pack with the given depth, index, and (optionally)
3012/// name.
3013QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3014                                             bool ParameterPack,
3015                                             TemplateTypeParmDecl *TTPDecl) const {
3016  llvm::FoldingSetNodeID ID;
3017  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3018  void *InsertPos = 0;
3019  TemplateTypeParmType *TypeParm
3020    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3021
3022  if (TypeParm)
3023    return QualType(TypeParm, 0);
3024
3025  if (TTPDecl) {
3026    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3027    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3028
3029    TemplateTypeParmType *TypeCheck
3030      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3031    assert(!TypeCheck && "Template type parameter canonical type broken");
3032    (void)TypeCheck;
3033  } else
3034    TypeParm = new (*this, TypeAlignment)
3035      TemplateTypeParmType(Depth, Index, ParameterPack);
3036
3037  Types.push_back(TypeParm);
3038  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3039
3040  return QualType(TypeParm, 0);
3041}
3042
3043TypeSourceInfo *
3044ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3045                                              SourceLocation NameLoc,
3046                                        const TemplateArgumentListInfo &Args,
3047                                              QualType Underlying) const {
3048  assert(!Name.getAsDependentTemplateName() &&
3049         "No dependent template names here!");
3050  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3051
3052  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3053  TemplateSpecializationTypeLoc TL =
3054      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3055  TL.setTemplateKeywordLoc(SourceLocation());
3056  TL.setTemplateNameLoc(NameLoc);
3057  TL.setLAngleLoc(Args.getLAngleLoc());
3058  TL.setRAngleLoc(Args.getRAngleLoc());
3059  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3060    TL.setArgLocInfo(i, Args[i].getLocInfo());
3061  return DI;
3062}
3063
3064QualType
3065ASTContext::getTemplateSpecializationType(TemplateName Template,
3066                                          const TemplateArgumentListInfo &Args,
3067                                          QualType Underlying) const {
3068  assert(!Template.getAsDependentTemplateName() &&
3069         "No dependent template names here!");
3070
3071  unsigned NumArgs = Args.size();
3072
3073  SmallVector<TemplateArgument, 4> ArgVec;
3074  ArgVec.reserve(NumArgs);
3075  for (unsigned i = 0; i != NumArgs; ++i)
3076    ArgVec.push_back(Args[i].getArgument());
3077
3078  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3079                                       Underlying);
3080}
3081
3082#ifndef NDEBUG
3083static bool hasAnyPackExpansions(const TemplateArgument *Args,
3084                                 unsigned NumArgs) {
3085  for (unsigned I = 0; I != NumArgs; ++I)
3086    if (Args[I].isPackExpansion())
3087      return true;
3088
3089  return true;
3090}
3091#endif
3092
3093QualType
3094ASTContext::getTemplateSpecializationType(TemplateName Template,
3095                                          const TemplateArgument *Args,
3096                                          unsigned NumArgs,
3097                                          QualType Underlying) const {
3098  assert(!Template.getAsDependentTemplateName() &&
3099         "No dependent template names here!");
3100  // Look through qualified template names.
3101  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3102    Template = TemplateName(QTN->getTemplateDecl());
3103
3104  bool IsTypeAlias =
3105    Template.getAsTemplateDecl() &&
3106    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3107  QualType CanonType;
3108  if (!Underlying.isNull())
3109    CanonType = getCanonicalType(Underlying);
3110  else {
3111    // We can get here with an alias template when the specialization contains
3112    // a pack expansion that does not match up with a parameter pack.
3113    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3114           "Caller must compute aliased type");
3115    IsTypeAlias = false;
3116    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3117                                                       NumArgs);
3118  }
3119
3120  // Allocate the (non-canonical) template specialization type, but don't
3121  // try to unique it: these types typically have location information that
3122  // we don't unique and don't want to lose.
3123  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3124                       sizeof(TemplateArgument) * NumArgs +
3125                       (IsTypeAlias? sizeof(QualType) : 0),
3126                       TypeAlignment);
3127  TemplateSpecializationType *Spec
3128    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3129                                         IsTypeAlias ? Underlying : QualType());
3130
3131  Types.push_back(Spec);
3132  return QualType(Spec, 0);
3133}
3134
3135QualType
3136ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3137                                                   const TemplateArgument *Args,
3138                                                   unsigned NumArgs) const {
3139  assert(!Template.getAsDependentTemplateName() &&
3140         "No dependent template names here!");
3141
3142  // Look through qualified template names.
3143  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3144    Template = TemplateName(QTN->getTemplateDecl());
3145
3146  // Build the canonical template specialization type.
3147  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3148  SmallVector<TemplateArgument, 4> CanonArgs;
3149  CanonArgs.reserve(NumArgs);
3150  for (unsigned I = 0; I != NumArgs; ++I)
3151    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3152
3153  // Determine whether this canonical template specialization type already
3154  // exists.
3155  llvm::FoldingSetNodeID ID;
3156  TemplateSpecializationType::Profile(ID, CanonTemplate,
3157                                      CanonArgs.data(), NumArgs, *this);
3158
3159  void *InsertPos = 0;
3160  TemplateSpecializationType *Spec
3161    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3162
3163  if (!Spec) {
3164    // Allocate a new canonical template specialization type.
3165    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3166                          sizeof(TemplateArgument) * NumArgs),
3167                         TypeAlignment);
3168    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3169                                                CanonArgs.data(), NumArgs,
3170                                                QualType(), QualType());
3171    Types.push_back(Spec);
3172    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3173  }
3174
3175  assert(Spec->isDependentType() &&
3176         "Non-dependent template-id type must have a canonical type");
3177  return QualType(Spec, 0);
3178}
3179
3180QualType
3181ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3182                              NestedNameSpecifier *NNS,
3183                              QualType NamedType) const {
3184  llvm::FoldingSetNodeID ID;
3185  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3186
3187  void *InsertPos = 0;
3188  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3189  if (T)
3190    return QualType(T, 0);
3191
3192  QualType Canon = NamedType;
3193  if (!Canon.isCanonical()) {
3194    Canon = getCanonicalType(NamedType);
3195    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3196    assert(!CheckT && "Elaborated canonical type broken");
3197    (void)CheckT;
3198  }
3199
3200  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3201  Types.push_back(T);
3202  ElaboratedTypes.InsertNode(T, InsertPos);
3203  return QualType(T, 0);
3204}
3205
3206QualType
3207ASTContext::getParenType(QualType InnerType) const {
3208  llvm::FoldingSetNodeID ID;
3209  ParenType::Profile(ID, InnerType);
3210
3211  void *InsertPos = 0;
3212  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3213  if (T)
3214    return QualType(T, 0);
3215
3216  QualType Canon = InnerType;
3217  if (!Canon.isCanonical()) {
3218    Canon = getCanonicalType(InnerType);
3219    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3220    assert(!CheckT && "Paren canonical type broken");
3221    (void)CheckT;
3222  }
3223
3224  T = new (*this) ParenType(InnerType, Canon);
3225  Types.push_back(T);
3226  ParenTypes.InsertNode(T, InsertPos);
3227  return QualType(T, 0);
3228}
3229
3230QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3231                                          NestedNameSpecifier *NNS,
3232                                          const IdentifierInfo *Name,
3233                                          QualType Canon) const {
3234  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3235
3236  if (Canon.isNull()) {
3237    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3238    ElaboratedTypeKeyword CanonKeyword = Keyword;
3239    if (Keyword == ETK_None)
3240      CanonKeyword = ETK_Typename;
3241
3242    if (CanonNNS != NNS || CanonKeyword != Keyword)
3243      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3244  }
3245
3246  llvm::FoldingSetNodeID ID;
3247  DependentNameType::Profile(ID, Keyword, NNS, Name);
3248
3249  void *InsertPos = 0;
3250  DependentNameType *T
3251    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3252  if (T)
3253    return QualType(T, 0);
3254
3255  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3256  Types.push_back(T);
3257  DependentNameTypes.InsertNode(T, InsertPos);
3258  return QualType(T, 0);
3259}
3260
3261QualType
3262ASTContext::getDependentTemplateSpecializationType(
3263                                 ElaboratedTypeKeyword Keyword,
3264                                 NestedNameSpecifier *NNS,
3265                                 const IdentifierInfo *Name,
3266                                 const TemplateArgumentListInfo &Args) const {
3267  // TODO: avoid this copy
3268  SmallVector<TemplateArgument, 16> ArgCopy;
3269  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3270    ArgCopy.push_back(Args[I].getArgument());
3271  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3272                                                ArgCopy.size(),
3273                                                ArgCopy.data());
3274}
3275
3276QualType
3277ASTContext::getDependentTemplateSpecializationType(
3278                                 ElaboratedTypeKeyword Keyword,
3279                                 NestedNameSpecifier *NNS,
3280                                 const IdentifierInfo *Name,
3281                                 unsigned NumArgs,
3282                                 const TemplateArgument *Args) const {
3283  assert((!NNS || NNS->isDependent()) &&
3284         "nested-name-specifier must be dependent");
3285
3286  llvm::FoldingSetNodeID ID;
3287  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3288                                               Name, NumArgs, Args);
3289
3290  void *InsertPos = 0;
3291  DependentTemplateSpecializationType *T
3292    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3293  if (T)
3294    return QualType(T, 0);
3295
3296  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3297
3298  ElaboratedTypeKeyword CanonKeyword = Keyword;
3299  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3300
3301  bool AnyNonCanonArgs = false;
3302  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3303  for (unsigned I = 0; I != NumArgs; ++I) {
3304    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3305    if (!CanonArgs[I].structurallyEquals(Args[I]))
3306      AnyNonCanonArgs = true;
3307  }
3308
3309  QualType Canon;
3310  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3311    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3312                                                   Name, NumArgs,
3313                                                   CanonArgs.data());
3314
3315    // Find the insert position again.
3316    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3317  }
3318
3319  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3320                        sizeof(TemplateArgument) * NumArgs),
3321                       TypeAlignment);
3322  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3323                                                    Name, NumArgs, Args, Canon);
3324  Types.push_back(T);
3325  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3326  return QualType(T, 0);
3327}
3328
3329QualType ASTContext::getPackExpansionType(QualType Pattern,
3330                                          Optional<unsigned> NumExpansions) {
3331  llvm::FoldingSetNodeID ID;
3332  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3333
3334  assert(Pattern->containsUnexpandedParameterPack() &&
3335         "Pack expansions must expand one or more parameter packs");
3336  void *InsertPos = 0;
3337  PackExpansionType *T
3338    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3339  if (T)
3340    return QualType(T, 0);
3341
3342  QualType Canon;
3343  if (!Pattern.isCanonical()) {
3344    Canon = getCanonicalType(Pattern);
3345    // The canonical type might not contain an unexpanded parameter pack, if it
3346    // contains an alias template specialization which ignores one of its
3347    // parameters.
3348    if (Canon->containsUnexpandedParameterPack()) {
3349      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3350
3351      // Find the insert position again, in case we inserted an element into
3352      // PackExpansionTypes and invalidated our insert position.
3353      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3354    }
3355  }
3356
3357  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3358  Types.push_back(T);
3359  PackExpansionTypes.InsertNode(T, InsertPos);
3360  return QualType(T, 0);
3361}
3362
3363/// CmpProtocolNames - Comparison predicate for sorting protocols
3364/// alphabetically.
3365static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3366                            const ObjCProtocolDecl *RHS) {
3367  return LHS->getDeclName() < RHS->getDeclName();
3368}
3369
3370static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3371                                unsigned NumProtocols) {
3372  if (NumProtocols == 0) return true;
3373
3374  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3375    return false;
3376
3377  for (unsigned i = 1; i != NumProtocols; ++i)
3378    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3379        Protocols[i]->getCanonicalDecl() != Protocols[i])
3380      return false;
3381  return true;
3382}
3383
3384static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3385                                   unsigned &NumProtocols) {
3386  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3387
3388  // Sort protocols, keyed by name.
3389  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3390
3391  // Canonicalize.
3392  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3393    Protocols[I] = Protocols[I]->getCanonicalDecl();
3394
3395  // Remove duplicates.
3396  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3397  NumProtocols = ProtocolsEnd-Protocols;
3398}
3399
3400QualType ASTContext::getObjCObjectType(QualType BaseType,
3401                                       ObjCProtocolDecl * const *Protocols,
3402                                       unsigned NumProtocols) const {
3403  // If the base type is an interface and there aren't any protocols
3404  // to add, then the interface type will do just fine.
3405  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3406    return BaseType;
3407
3408  // Look in the folding set for an existing type.
3409  llvm::FoldingSetNodeID ID;
3410  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3411  void *InsertPos = 0;
3412  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3413    return QualType(QT, 0);
3414
3415  // Build the canonical type, which has the canonical base type and
3416  // a sorted-and-uniqued list of protocols.
3417  QualType Canonical;
3418  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3419  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3420    if (!ProtocolsSorted) {
3421      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3422                                                     Protocols + NumProtocols);
3423      unsigned UniqueCount = NumProtocols;
3424
3425      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3426      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3427                                    &Sorted[0], UniqueCount);
3428    } else {
3429      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3430                                    Protocols, NumProtocols);
3431    }
3432
3433    // Regenerate InsertPos.
3434    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3435  }
3436
3437  unsigned Size = sizeof(ObjCObjectTypeImpl);
3438  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3439  void *Mem = Allocate(Size, TypeAlignment);
3440  ObjCObjectTypeImpl *T =
3441    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3442
3443  Types.push_back(T);
3444  ObjCObjectTypes.InsertNode(T, InsertPos);
3445  return QualType(T, 0);
3446}
3447
3448/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3449/// the given object type.
3450QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3451  llvm::FoldingSetNodeID ID;
3452  ObjCObjectPointerType::Profile(ID, ObjectT);
3453
3454  void *InsertPos = 0;
3455  if (ObjCObjectPointerType *QT =
3456              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3457    return QualType(QT, 0);
3458
3459  // Find the canonical object type.
3460  QualType Canonical;
3461  if (!ObjectT.isCanonical()) {
3462    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3463
3464    // Regenerate InsertPos.
3465    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3466  }
3467
3468  // No match.
3469  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3470  ObjCObjectPointerType *QType =
3471    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3472
3473  Types.push_back(QType);
3474  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3475  return QualType(QType, 0);
3476}
3477
3478/// getObjCInterfaceType - Return the unique reference to the type for the
3479/// specified ObjC interface decl. The list of protocols is optional.
3480QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3481                                          ObjCInterfaceDecl *PrevDecl) const {
3482  if (Decl->TypeForDecl)
3483    return QualType(Decl->TypeForDecl, 0);
3484
3485  if (PrevDecl) {
3486    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3487    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3488    return QualType(PrevDecl->TypeForDecl, 0);
3489  }
3490
3491  // Prefer the definition, if there is one.
3492  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3493    Decl = Def;
3494
3495  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3496  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3497  Decl->TypeForDecl = T;
3498  Types.push_back(T);
3499  return QualType(T, 0);
3500}
3501
3502/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3503/// TypeOfExprType AST's (since expression's are never shared). For example,
3504/// multiple declarations that refer to "typeof(x)" all contain different
3505/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3506/// on canonical type's (which are always unique).
3507QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3508  TypeOfExprType *toe;
3509  if (tofExpr->isTypeDependent()) {
3510    llvm::FoldingSetNodeID ID;
3511    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3512
3513    void *InsertPos = 0;
3514    DependentTypeOfExprType *Canon
3515      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3516    if (Canon) {
3517      // We already have a "canonical" version of an identical, dependent
3518      // typeof(expr) type. Use that as our canonical type.
3519      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3520                                          QualType((TypeOfExprType*)Canon, 0));
3521    } else {
3522      // Build a new, canonical typeof(expr) type.
3523      Canon
3524        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3525      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3526      toe = Canon;
3527    }
3528  } else {
3529    QualType Canonical = getCanonicalType(tofExpr->getType());
3530    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3531  }
3532  Types.push_back(toe);
3533  return QualType(toe, 0);
3534}
3535
3536/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3537/// TypeOfType AST's. The only motivation to unique these nodes would be
3538/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3539/// an issue. This doesn't effect the type checker, since it operates
3540/// on canonical type's (which are always unique).
3541QualType ASTContext::getTypeOfType(QualType tofType) const {
3542  QualType Canonical = getCanonicalType(tofType);
3543  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3544  Types.push_back(tot);
3545  return QualType(tot, 0);
3546}
3547
3548
3549/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3550/// DecltypeType AST's. The only motivation to unique these nodes would be
3551/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3552/// an issue. This doesn't effect the type checker, since it operates
3553/// on canonical types (which are always unique).
3554QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3555  DecltypeType *dt;
3556
3557  // C++0x [temp.type]p2:
3558  //   If an expression e involves a template parameter, decltype(e) denotes a
3559  //   unique dependent type. Two such decltype-specifiers refer to the same
3560  //   type only if their expressions are equivalent (14.5.6.1).
3561  if (e->isInstantiationDependent()) {
3562    llvm::FoldingSetNodeID ID;
3563    DependentDecltypeType::Profile(ID, *this, e);
3564
3565    void *InsertPos = 0;
3566    DependentDecltypeType *Canon
3567      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3568    if (Canon) {
3569      // We already have a "canonical" version of an equivalent, dependent
3570      // decltype type. Use that as our canonical type.
3571      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3572                                       QualType((DecltypeType*)Canon, 0));
3573    } else {
3574      // Build a new, canonical typeof(expr) type.
3575      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3576      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3577      dt = Canon;
3578    }
3579  } else {
3580    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3581                                      getCanonicalType(UnderlyingType));
3582  }
3583  Types.push_back(dt);
3584  return QualType(dt, 0);
3585}
3586
3587/// getUnaryTransformationType - We don't unique these, since the memory
3588/// savings are minimal and these are rare.
3589QualType ASTContext::getUnaryTransformType(QualType BaseType,
3590                                           QualType UnderlyingType,
3591                                           UnaryTransformType::UTTKind Kind)
3592    const {
3593  UnaryTransformType *Ty =
3594    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3595                                                   Kind,
3596                                 UnderlyingType->isDependentType() ?
3597                                 QualType() : getCanonicalType(UnderlyingType));
3598  Types.push_back(Ty);
3599  return QualType(Ty, 0);
3600}
3601
3602/// getAutoType - Return the uniqued reference to the 'auto' type which has been
3603/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3604/// canonical deduced-but-dependent 'auto' type.
3605QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3606                                 bool IsDependent) const {
3607  if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3608    return getAutoDeductType();
3609
3610  // Look in the folding set for an existing type.
3611  void *InsertPos = 0;
3612  llvm::FoldingSetNodeID ID;
3613  AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3614  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3615    return QualType(AT, 0);
3616
3617  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3618                                                     IsDecltypeAuto,
3619                                                     IsDependent);
3620  Types.push_back(AT);
3621  if (InsertPos)
3622    AutoTypes.InsertNode(AT, InsertPos);
3623  return QualType(AT, 0);
3624}
3625
3626/// getAtomicType - Return the uniqued reference to the atomic type for
3627/// the given value type.
3628QualType ASTContext::getAtomicType(QualType T) const {
3629  // Unique pointers, to guarantee there is only one pointer of a particular
3630  // structure.
3631  llvm::FoldingSetNodeID ID;
3632  AtomicType::Profile(ID, T);
3633
3634  void *InsertPos = 0;
3635  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3636    return QualType(AT, 0);
3637
3638  // If the atomic value type isn't canonical, this won't be a canonical type
3639  // either, so fill in the canonical type field.
3640  QualType Canonical;
3641  if (!T.isCanonical()) {
3642    Canonical = getAtomicType(getCanonicalType(T));
3643
3644    // Get the new insert position for the node we care about.
3645    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3646    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3647  }
3648  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3649  Types.push_back(New);
3650  AtomicTypes.InsertNode(New, InsertPos);
3651  return QualType(New, 0);
3652}
3653
3654/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3655QualType ASTContext::getAutoDeductType() const {
3656  if (AutoDeductTy.isNull())
3657    AutoDeductTy = QualType(
3658      new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3659                                          /*dependent*/false),
3660      0);
3661  return AutoDeductTy;
3662}
3663
3664/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3665QualType ASTContext::getAutoRRefDeductType() const {
3666  if (AutoRRefDeductTy.isNull())
3667    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3668  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3669  return AutoRRefDeductTy;
3670}
3671
3672/// getTagDeclType - Return the unique reference to the type for the
3673/// specified TagDecl (struct/union/class/enum) decl.
3674QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3675  assert (Decl);
3676  // FIXME: What is the design on getTagDeclType when it requires casting
3677  // away const?  mutable?
3678  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3679}
3680
3681/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3682/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3683/// needs to agree with the definition in <stddef.h>.
3684CanQualType ASTContext::getSizeType() const {
3685  return getFromTargetType(Target->getSizeType());
3686}
3687
3688/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3689CanQualType ASTContext::getIntMaxType() const {
3690  return getFromTargetType(Target->getIntMaxType());
3691}
3692
3693/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3694CanQualType ASTContext::getUIntMaxType() const {
3695  return getFromTargetType(Target->getUIntMaxType());
3696}
3697
3698/// getSignedWCharType - Return the type of "signed wchar_t".
3699/// Used when in C++, as a GCC extension.
3700QualType ASTContext::getSignedWCharType() const {
3701  // FIXME: derive from "Target" ?
3702  return WCharTy;
3703}
3704
3705/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3706/// Used when in C++, as a GCC extension.
3707QualType ASTContext::getUnsignedWCharType() const {
3708  // FIXME: derive from "Target" ?
3709  return UnsignedIntTy;
3710}
3711
3712QualType ASTContext::getIntPtrType() const {
3713  return getFromTargetType(Target->getIntPtrType());
3714}
3715
3716QualType ASTContext::getUIntPtrType() const {
3717  return getCorrespondingUnsignedType(getIntPtrType());
3718}
3719
3720/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3721/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3722QualType ASTContext::getPointerDiffType() const {
3723  return getFromTargetType(Target->getPtrDiffType(0));
3724}
3725
3726/// \brief Return the unique type for "pid_t" defined in
3727/// <sys/types.h>. We need this to compute the correct type for vfork().
3728QualType ASTContext::getProcessIDType() const {
3729  return getFromTargetType(Target->getProcessIDType());
3730}
3731
3732//===----------------------------------------------------------------------===//
3733//                              Type Operators
3734//===----------------------------------------------------------------------===//
3735
3736CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3737  // Push qualifiers into arrays, and then discard any remaining
3738  // qualifiers.
3739  T = getCanonicalType(T);
3740  T = getVariableArrayDecayedType(T);
3741  const Type *Ty = T.getTypePtr();
3742  QualType Result;
3743  if (isa<ArrayType>(Ty)) {
3744    Result = getArrayDecayedType(QualType(Ty,0));
3745  } else if (isa<FunctionType>(Ty)) {
3746    Result = getPointerType(QualType(Ty, 0));
3747  } else {
3748    Result = QualType(Ty, 0);
3749  }
3750
3751  return CanQualType::CreateUnsafe(Result);
3752}
3753
3754QualType ASTContext::getUnqualifiedArrayType(QualType type,
3755                                             Qualifiers &quals) {
3756  SplitQualType splitType = type.getSplitUnqualifiedType();
3757
3758  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3759  // the unqualified desugared type and then drops it on the floor.
3760  // We then have to strip that sugar back off with
3761  // getUnqualifiedDesugaredType(), which is silly.
3762  const ArrayType *AT =
3763    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3764
3765  // If we don't have an array, just use the results in splitType.
3766  if (!AT) {
3767    quals = splitType.Quals;
3768    return QualType(splitType.Ty, 0);
3769  }
3770
3771  // Otherwise, recurse on the array's element type.
3772  QualType elementType = AT->getElementType();
3773  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3774
3775  // If that didn't change the element type, AT has no qualifiers, so we
3776  // can just use the results in splitType.
3777  if (elementType == unqualElementType) {
3778    assert(quals.empty()); // from the recursive call
3779    quals = splitType.Quals;
3780    return QualType(splitType.Ty, 0);
3781  }
3782
3783  // Otherwise, add in the qualifiers from the outermost type, then
3784  // build the type back up.
3785  quals.addConsistentQualifiers(splitType.Quals);
3786
3787  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3788    return getConstantArrayType(unqualElementType, CAT->getSize(),
3789                                CAT->getSizeModifier(), 0);
3790  }
3791
3792  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3793    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3794  }
3795
3796  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3797    return getVariableArrayType(unqualElementType,
3798                                VAT->getSizeExpr(),
3799                                VAT->getSizeModifier(),
3800                                VAT->getIndexTypeCVRQualifiers(),
3801                                VAT->getBracketsRange());
3802  }
3803
3804  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3805  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3806                                    DSAT->getSizeModifier(), 0,
3807                                    SourceRange());
3808}
3809
3810/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3811/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3812/// they point to and return true. If T1 and T2 aren't pointer types
3813/// or pointer-to-member types, or if they are not similar at this
3814/// level, returns false and leaves T1 and T2 unchanged. Top-level
3815/// qualifiers on T1 and T2 are ignored. This function will typically
3816/// be called in a loop that successively "unwraps" pointer and
3817/// pointer-to-member types to compare them at each level.
3818bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3819  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3820                    *T2PtrType = T2->getAs<PointerType>();
3821  if (T1PtrType && T2PtrType) {
3822    T1 = T1PtrType->getPointeeType();
3823    T2 = T2PtrType->getPointeeType();
3824    return true;
3825  }
3826
3827  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3828                          *T2MPType = T2->getAs<MemberPointerType>();
3829  if (T1MPType && T2MPType &&
3830      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3831                             QualType(T2MPType->getClass(), 0))) {
3832    T1 = T1MPType->getPointeeType();
3833    T2 = T2MPType->getPointeeType();
3834    return true;
3835  }
3836
3837  if (getLangOpts().ObjC1) {
3838    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3839                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3840    if (T1OPType && T2OPType) {
3841      T1 = T1OPType->getPointeeType();
3842      T2 = T2OPType->getPointeeType();
3843      return true;
3844    }
3845  }
3846
3847  // FIXME: Block pointers, too?
3848
3849  return false;
3850}
3851
3852DeclarationNameInfo
3853ASTContext::getNameForTemplate(TemplateName Name,
3854                               SourceLocation NameLoc) const {
3855  switch (Name.getKind()) {
3856  case TemplateName::QualifiedTemplate:
3857  case TemplateName::Template:
3858    // DNInfo work in progress: CHECKME: what about DNLoc?
3859    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3860                               NameLoc);
3861
3862  case TemplateName::OverloadedTemplate: {
3863    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3864    // DNInfo work in progress: CHECKME: what about DNLoc?
3865    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3866  }
3867
3868  case TemplateName::DependentTemplate: {
3869    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3870    DeclarationName DName;
3871    if (DTN->isIdentifier()) {
3872      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3873      return DeclarationNameInfo(DName, NameLoc);
3874    } else {
3875      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3876      // DNInfo work in progress: FIXME: source locations?
3877      DeclarationNameLoc DNLoc;
3878      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3879      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3880      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3881    }
3882  }
3883
3884  case TemplateName::SubstTemplateTemplateParm: {
3885    SubstTemplateTemplateParmStorage *subst
3886      = Name.getAsSubstTemplateTemplateParm();
3887    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3888                               NameLoc);
3889  }
3890
3891  case TemplateName::SubstTemplateTemplateParmPack: {
3892    SubstTemplateTemplateParmPackStorage *subst
3893      = Name.getAsSubstTemplateTemplateParmPack();
3894    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3895                               NameLoc);
3896  }
3897  }
3898
3899  llvm_unreachable("bad template name kind!");
3900}
3901
3902TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3903  switch (Name.getKind()) {
3904  case TemplateName::QualifiedTemplate:
3905  case TemplateName::Template: {
3906    TemplateDecl *Template = Name.getAsTemplateDecl();
3907    if (TemplateTemplateParmDecl *TTP
3908          = dyn_cast<TemplateTemplateParmDecl>(Template))
3909      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3910
3911    // The canonical template name is the canonical template declaration.
3912    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3913  }
3914
3915  case TemplateName::OverloadedTemplate:
3916    llvm_unreachable("cannot canonicalize overloaded template");
3917
3918  case TemplateName::DependentTemplate: {
3919    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3920    assert(DTN && "Non-dependent template names must refer to template decls.");
3921    return DTN->CanonicalTemplateName;
3922  }
3923
3924  case TemplateName::SubstTemplateTemplateParm: {
3925    SubstTemplateTemplateParmStorage *subst
3926      = Name.getAsSubstTemplateTemplateParm();
3927    return getCanonicalTemplateName(subst->getReplacement());
3928  }
3929
3930  case TemplateName::SubstTemplateTemplateParmPack: {
3931    SubstTemplateTemplateParmPackStorage *subst
3932                                  = Name.getAsSubstTemplateTemplateParmPack();
3933    TemplateTemplateParmDecl *canonParameter
3934      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3935    TemplateArgument canonArgPack
3936      = getCanonicalTemplateArgument(subst->getArgumentPack());
3937    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3938  }
3939  }
3940
3941  llvm_unreachable("bad template name!");
3942}
3943
3944bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3945  X = getCanonicalTemplateName(X);
3946  Y = getCanonicalTemplateName(Y);
3947  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3948}
3949
3950TemplateArgument
3951ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3952  switch (Arg.getKind()) {
3953    case TemplateArgument::Null:
3954      return Arg;
3955
3956    case TemplateArgument::Expression:
3957      return Arg;
3958
3959    case TemplateArgument::Declaration: {
3960      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3961      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3962    }
3963
3964    case TemplateArgument::NullPtr:
3965      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3966                              /*isNullPtr*/true);
3967
3968    case TemplateArgument::Template:
3969      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3970
3971    case TemplateArgument::TemplateExpansion:
3972      return TemplateArgument(getCanonicalTemplateName(
3973                                         Arg.getAsTemplateOrTemplatePattern()),
3974                              Arg.getNumTemplateExpansions());
3975
3976    case TemplateArgument::Integral:
3977      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3978
3979    case TemplateArgument::Type:
3980      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3981
3982    case TemplateArgument::Pack: {
3983      if (Arg.pack_size() == 0)
3984        return Arg;
3985
3986      TemplateArgument *CanonArgs
3987        = new (*this) TemplateArgument[Arg.pack_size()];
3988      unsigned Idx = 0;
3989      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3990                                        AEnd = Arg.pack_end();
3991           A != AEnd; (void)++A, ++Idx)
3992        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3993
3994      return TemplateArgument(CanonArgs, Arg.pack_size());
3995    }
3996  }
3997
3998  // Silence GCC warning
3999  llvm_unreachable("Unhandled template argument kind");
4000}
4001
4002NestedNameSpecifier *
4003ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
4004  if (!NNS)
4005    return 0;
4006
4007  switch (NNS->getKind()) {
4008  case NestedNameSpecifier::Identifier:
4009    // Canonicalize the prefix but keep the identifier the same.
4010    return NestedNameSpecifier::Create(*this,
4011                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4012                                       NNS->getAsIdentifier());
4013
4014  case NestedNameSpecifier::Namespace:
4015    // A namespace is canonical; build a nested-name-specifier with
4016    // this namespace and no prefix.
4017    return NestedNameSpecifier::Create(*this, 0,
4018                                 NNS->getAsNamespace()->getOriginalNamespace());
4019
4020  case NestedNameSpecifier::NamespaceAlias:
4021    // A namespace is canonical; build a nested-name-specifier with
4022    // this namespace and no prefix.
4023    return NestedNameSpecifier::Create(*this, 0,
4024                                    NNS->getAsNamespaceAlias()->getNamespace()
4025                                                      ->getOriginalNamespace());
4026
4027  case NestedNameSpecifier::TypeSpec:
4028  case NestedNameSpecifier::TypeSpecWithTemplate: {
4029    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4030
4031    // If we have some kind of dependent-named type (e.g., "typename T::type"),
4032    // break it apart into its prefix and identifier, then reconsititute those
4033    // as the canonical nested-name-specifier. This is required to canonicalize
4034    // a dependent nested-name-specifier involving typedefs of dependent-name
4035    // types, e.g.,
4036    //   typedef typename T::type T1;
4037    //   typedef typename T1::type T2;
4038    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4039      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4040                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4041
4042    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4043    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4044    // first place?
4045    return NestedNameSpecifier::Create(*this, 0, false,
4046                                       const_cast<Type*>(T.getTypePtr()));
4047  }
4048
4049  case NestedNameSpecifier::Global:
4050    // The global specifier is canonical and unique.
4051    return NNS;
4052  }
4053
4054  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4055}
4056
4057
4058const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4059  // Handle the non-qualified case efficiently.
4060  if (!T.hasLocalQualifiers()) {
4061    // Handle the common positive case fast.
4062    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4063      return AT;
4064  }
4065
4066  // Handle the common negative case fast.
4067  if (!isa<ArrayType>(T.getCanonicalType()))
4068    return 0;
4069
4070  // Apply any qualifiers from the array type to the element type.  This
4071  // implements C99 6.7.3p8: "If the specification of an array type includes
4072  // any type qualifiers, the element type is so qualified, not the array type."
4073
4074  // If we get here, we either have type qualifiers on the type, or we have
4075  // sugar such as a typedef in the way.  If we have type qualifiers on the type
4076  // we must propagate them down into the element type.
4077
4078  SplitQualType split = T.getSplitDesugaredType();
4079  Qualifiers qs = split.Quals;
4080
4081  // If we have a simple case, just return now.
4082  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4083  if (ATy == 0 || qs.empty())
4084    return ATy;
4085
4086  // Otherwise, we have an array and we have qualifiers on it.  Push the
4087  // qualifiers into the array element type and return a new array type.
4088  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4089
4090  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4091    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4092                                                CAT->getSizeModifier(),
4093                                           CAT->getIndexTypeCVRQualifiers()));
4094  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4095    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4096                                                  IAT->getSizeModifier(),
4097                                           IAT->getIndexTypeCVRQualifiers()));
4098
4099  if (const DependentSizedArrayType *DSAT
4100        = dyn_cast<DependentSizedArrayType>(ATy))
4101    return cast<ArrayType>(
4102                     getDependentSizedArrayType(NewEltTy,
4103                                                DSAT->getSizeExpr(),
4104                                                DSAT->getSizeModifier(),
4105                                              DSAT->getIndexTypeCVRQualifiers(),
4106                                                DSAT->getBracketsRange()));
4107
4108  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4109  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4110                                              VAT->getSizeExpr(),
4111                                              VAT->getSizeModifier(),
4112                                              VAT->getIndexTypeCVRQualifiers(),
4113                                              VAT->getBracketsRange()));
4114}
4115
4116QualType ASTContext::getAdjustedParameterType(QualType T) const {
4117  // C99 6.7.5.3p7:
4118  //   A declaration of a parameter as "array of type" shall be
4119  //   adjusted to "qualified pointer to type", where the type
4120  //   qualifiers (if any) are those specified within the [ and ] of
4121  //   the array type derivation.
4122  if (T->isArrayType())
4123    return getArrayDecayedType(T);
4124
4125  // C99 6.7.5.3p8:
4126  //   A declaration of a parameter as "function returning type"
4127  //   shall be adjusted to "pointer to function returning type", as
4128  //   in 6.3.2.1.
4129  if (T->isFunctionType())
4130    return getPointerType(T);
4131
4132  return T;
4133}
4134
4135QualType ASTContext::getSignatureParameterType(QualType T) const {
4136  T = getVariableArrayDecayedType(T);
4137  T = getAdjustedParameterType(T);
4138  return T.getUnqualifiedType();
4139}
4140
4141/// getArrayDecayedType - Return the properly qualified result of decaying the
4142/// specified array type to a pointer.  This operation is non-trivial when
4143/// handling typedefs etc.  The canonical type of "T" must be an array type,
4144/// this returns a pointer to a properly qualified element of the array.
4145///
4146/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4147QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4148  // Get the element type with 'getAsArrayType' so that we don't lose any
4149  // typedefs in the element type of the array.  This also handles propagation
4150  // of type qualifiers from the array type into the element type if present
4151  // (C99 6.7.3p8).
4152  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4153  assert(PrettyArrayType && "Not an array type!");
4154
4155  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4156
4157  // int x[restrict 4] ->  int *restrict
4158  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4159}
4160
4161QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4162  return getBaseElementType(array->getElementType());
4163}
4164
4165QualType ASTContext::getBaseElementType(QualType type) const {
4166  Qualifiers qs;
4167  while (true) {
4168    SplitQualType split = type.getSplitDesugaredType();
4169    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4170    if (!array) break;
4171
4172    type = array->getElementType();
4173    qs.addConsistentQualifiers(split.Quals);
4174  }
4175
4176  return getQualifiedType(type, qs);
4177}
4178
4179/// getConstantArrayElementCount - Returns number of constant array elements.
4180uint64_t
4181ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4182  uint64_t ElementCount = 1;
4183  do {
4184    ElementCount *= CA->getSize().getZExtValue();
4185    CA = dyn_cast_or_null<ConstantArrayType>(
4186      CA->getElementType()->getAsArrayTypeUnsafe());
4187  } while (CA);
4188  return ElementCount;
4189}
4190
4191/// getFloatingRank - Return a relative rank for floating point types.
4192/// This routine will assert if passed a built-in type that isn't a float.
4193static FloatingRank getFloatingRank(QualType T) {
4194  if (const ComplexType *CT = T->getAs<ComplexType>())
4195    return getFloatingRank(CT->getElementType());
4196
4197  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4198  switch (T->getAs<BuiltinType>()->getKind()) {
4199  default: llvm_unreachable("getFloatingRank(): not a floating type");
4200  case BuiltinType::Half:       return HalfRank;
4201  case BuiltinType::Float:      return FloatRank;
4202  case BuiltinType::Double:     return DoubleRank;
4203  case BuiltinType::LongDouble: return LongDoubleRank;
4204  }
4205}
4206
4207/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4208/// point or a complex type (based on typeDomain/typeSize).
4209/// 'typeDomain' is a real floating point or complex type.
4210/// 'typeSize' is a real floating point or complex type.
4211QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4212                                                       QualType Domain) const {
4213  FloatingRank EltRank = getFloatingRank(Size);
4214  if (Domain->isComplexType()) {
4215    switch (EltRank) {
4216    case HalfRank: llvm_unreachable("Complex half is not supported");
4217    case FloatRank:      return FloatComplexTy;
4218    case DoubleRank:     return DoubleComplexTy;
4219    case LongDoubleRank: return LongDoubleComplexTy;
4220    }
4221  }
4222
4223  assert(Domain->isRealFloatingType() && "Unknown domain!");
4224  switch (EltRank) {
4225  case HalfRank:       return HalfTy;
4226  case FloatRank:      return FloatTy;
4227  case DoubleRank:     return DoubleTy;
4228  case LongDoubleRank: return LongDoubleTy;
4229  }
4230  llvm_unreachable("getFloatingRank(): illegal value for rank");
4231}
4232
4233/// getFloatingTypeOrder - Compare the rank of the two specified floating
4234/// point types, ignoring the domain of the type (i.e. 'double' ==
4235/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4236/// LHS < RHS, return -1.
4237int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4238  FloatingRank LHSR = getFloatingRank(LHS);
4239  FloatingRank RHSR = getFloatingRank(RHS);
4240
4241  if (LHSR == RHSR)
4242    return 0;
4243  if (LHSR > RHSR)
4244    return 1;
4245  return -1;
4246}
4247
4248/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4249/// routine will assert if passed a built-in type that isn't an integer or enum,
4250/// or if it is not canonicalized.
4251unsigned ASTContext::getIntegerRank(const Type *T) const {
4252  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4253
4254  switch (cast<BuiltinType>(T)->getKind()) {
4255  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4256  case BuiltinType::Bool:
4257    return 1 + (getIntWidth(BoolTy) << 3);
4258  case BuiltinType::Char_S:
4259  case BuiltinType::Char_U:
4260  case BuiltinType::SChar:
4261  case BuiltinType::UChar:
4262    return 2 + (getIntWidth(CharTy) << 3);
4263  case BuiltinType::Short:
4264  case BuiltinType::UShort:
4265    return 3 + (getIntWidth(ShortTy) << 3);
4266  case BuiltinType::Int:
4267  case BuiltinType::UInt:
4268    return 4 + (getIntWidth(IntTy) << 3);
4269  case BuiltinType::Long:
4270  case BuiltinType::ULong:
4271    return 5 + (getIntWidth(LongTy) << 3);
4272  case BuiltinType::LongLong:
4273  case BuiltinType::ULongLong:
4274    return 6 + (getIntWidth(LongLongTy) << 3);
4275  case BuiltinType::Int128:
4276  case BuiltinType::UInt128:
4277    return 7 + (getIntWidth(Int128Ty) << 3);
4278  }
4279}
4280
4281/// \brief Whether this is a promotable bitfield reference according
4282/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4283///
4284/// \returns the type this bit-field will promote to, or NULL if no
4285/// promotion occurs.
4286QualType ASTContext::isPromotableBitField(Expr *E) const {
4287  if (E->isTypeDependent() || E->isValueDependent())
4288    return QualType();
4289
4290  FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
4291  if (!Field)
4292    return QualType();
4293
4294  QualType FT = Field->getType();
4295
4296  uint64_t BitWidth = Field->getBitWidthValue(*this);
4297  uint64_t IntSize = getTypeSize(IntTy);
4298  // GCC extension compatibility: if the bit-field size is less than or equal
4299  // to the size of int, it gets promoted no matter what its type is.
4300  // For instance, unsigned long bf : 4 gets promoted to signed int.
4301  if (BitWidth < IntSize)
4302    return IntTy;
4303
4304  if (BitWidth == IntSize)
4305    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4306
4307  // Types bigger than int are not subject to promotions, and therefore act
4308  // like the base type.
4309  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4310  // is ridiculous.
4311  return QualType();
4312}
4313
4314/// getPromotedIntegerType - Returns the type that Promotable will
4315/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4316/// integer type.
4317QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4318  assert(!Promotable.isNull());
4319  assert(Promotable->isPromotableIntegerType());
4320  if (const EnumType *ET = Promotable->getAs<EnumType>())
4321    return ET->getDecl()->getPromotionType();
4322
4323  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4324    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4325    // (3.9.1) can be converted to a prvalue of the first of the following
4326    // types that can represent all the values of its underlying type:
4327    // int, unsigned int, long int, unsigned long int, long long int, or
4328    // unsigned long long int [...]
4329    // FIXME: Is there some better way to compute this?
4330    if (BT->getKind() == BuiltinType::WChar_S ||
4331        BT->getKind() == BuiltinType::WChar_U ||
4332        BT->getKind() == BuiltinType::Char16 ||
4333        BT->getKind() == BuiltinType::Char32) {
4334      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4335      uint64_t FromSize = getTypeSize(BT);
4336      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4337                                  LongLongTy, UnsignedLongLongTy };
4338      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4339        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4340        if (FromSize < ToSize ||
4341            (FromSize == ToSize &&
4342             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4343          return PromoteTypes[Idx];
4344      }
4345      llvm_unreachable("char type should fit into long long");
4346    }
4347  }
4348
4349  // At this point, we should have a signed or unsigned integer type.
4350  if (Promotable->isSignedIntegerType())
4351    return IntTy;
4352  uint64_t PromotableSize = getIntWidth(Promotable);
4353  uint64_t IntSize = getIntWidth(IntTy);
4354  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4355  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4356}
4357
4358/// \brief Recurses in pointer/array types until it finds an objc retainable
4359/// type and returns its ownership.
4360Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4361  while (!T.isNull()) {
4362    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4363      return T.getObjCLifetime();
4364    if (T->isArrayType())
4365      T = getBaseElementType(T);
4366    else if (const PointerType *PT = T->getAs<PointerType>())
4367      T = PT->getPointeeType();
4368    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4369      T = RT->getPointeeType();
4370    else
4371      break;
4372  }
4373
4374  return Qualifiers::OCL_None;
4375}
4376
4377/// getIntegerTypeOrder - Returns the highest ranked integer type:
4378/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4379/// LHS < RHS, return -1.
4380int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4381  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4382  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4383  if (LHSC == RHSC) return 0;
4384
4385  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4386  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4387
4388  unsigned LHSRank = getIntegerRank(LHSC);
4389  unsigned RHSRank = getIntegerRank(RHSC);
4390
4391  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4392    if (LHSRank == RHSRank) return 0;
4393    return LHSRank > RHSRank ? 1 : -1;
4394  }
4395
4396  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4397  if (LHSUnsigned) {
4398    // If the unsigned [LHS] type is larger, return it.
4399    if (LHSRank >= RHSRank)
4400      return 1;
4401
4402    // If the signed type can represent all values of the unsigned type, it
4403    // wins.  Because we are dealing with 2's complement and types that are
4404    // powers of two larger than each other, this is always safe.
4405    return -1;
4406  }
4407
4408  // If the unsigned [RHS] type is larger, return it.
4409  if (RHSRank >= LHSRank)
4410    return -1;
4411
4412  // If the signed type can represent all values of the unsigned type, it
4413  // wins.  Because we are dealing with 2's complement and types that are
4414  // powers of two larger than each other, this is always safe.
4415  return 1;
4416}
4417
4418static RecordDecl *
4419CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4420                 DeclContext *DC, IdentifierInfo *Id) {
4421  SourceLocation Loc;
4422  if (Ctx.getLangOpts().CPlusPlus)
4423    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4424  else
4425    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4426}
4427
4428// getCFConstantStringType - Return the type used for constant CFStrings.
4429QualType ASTContext::getCFConstantStringType() const {
4430  if (!CFConstantStringTypeDecl) {
4431    CFConstantStringTypeDecl =
4432      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4433                       &Idents.get("NSConstantString"));
4434    CFConstantStringTypeDecl->startDefinition();
4435
4436    QualType FieldTypes[4];
4437
4438    // const int *isa;
4439    FieldTypes[0] = getPointerType(IntTy.withConst());
4440    // int flags;
4441    FieldTypes[1] = IntTy;
4442    // const char *str;
4443    FieldTypes[2] = getPointerType(CharTy.withConst());
4444    // long length;
4445    FieldTypes[3] = LongTy;
4446
4447    // Create fields
4448    for (unsigned i = 0; i < 4; ++i) {
4449      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4450                                           SourceLocation(),
4451                                           SourceLocation(), 0,
4452                                           FieldTypes[i], /*TInfo=*/0,
4453                                           /*BitWidth=*/0,
4454                                           /*Mutable=*/false,
4455                                           ICIS_NoInit);
4456      Field->setAccess(AS_public);
4457      CFConstantStringTypeDecl->addDecl(Field);
4458    }
4459
4460    CFConstantStringTypeDecl->completeDefinition();
4461  }
4462
4463  return getTagDeclType(CFConstantStringTypeDecl);
4464}
4465
4466QualType ASTContext::getObjCSuperType() const {
4467  if (ObjCSuperType.isNull()) {
4468    RecordDecl *ObjCSuperTypeDecl  =
4469      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4470    TUDecl->addDecl(ObjCSuperTypeDecl);
4471    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4472  }
4473  return ObjCSuperType;
4474}
4475
4476void ASTContext::setCFConstantStringType(QualType T) {
4477  const RecordType *Rec = T->getAs<RecordType>();
4478  assert(Rec && "Invalid CFConstantStringType");
4479  CFConstantStringTypeDecl = Rec->getDecl();
4480}
4481
4482QualType ASTContext::getBlockDescriptorType() const {
4483  if (BlockDescriptorType)
4484    return getTagDeclType(BlockDescriptorType);
4485
4486  RecordDecl *T;
4487  // FIXME: Needs the FlagAppleBlock bit.
4488  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4489                       &Idents.get("__block_descriptor"));
4490  T->startDefinition();
4491
4492  QualType FieldTypes[] = {
4493    UnsignedLongTy,
4494    UnsignedLongTy,
4495  };
4496
4497  const char *FieldNames[] = {
4498    "reserved",
4499    "Size"
4500  };
4501
4502  for (size_t i = 0; i < 2; ++i) {
4503    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4504                                         SourceLocation(),
4505                                         &Idents.get(FieldNames[i]),
4506                                         FieldTypes[i], /*TInfo=*/0,
4507                                         /*BitWidth=*/0,
4508                                         /*Mutable=*/false,
4509                                         ICIS_NoInit);
4510    Field->setAccess(AS_public);
4511    T->addDecl(Field);
4512  }
4513
4514  T->completeDefinition();
4515
4516  BlockDescriptorType = T;
4517
4518  return getTagDeclType(BlockDescriptorType);
4519}
4520
4521QualType ASTContext::getBlockDescriptorExtendedType() const {
4522  if (BlockDescriptorExtendedType)
4523    return getTagDeclType(BlockDescriptorExtendedType);
4524
4525  RecordDecl *T;
4526  // FIXME: Needs the FlagAppleBlock bit.
4527  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4528                       &Idents.get("__block_descriptor_withcopydispose"));
4529  T->startDefinition();
4530
4531  QualType FieldTypes[] = {
4532    UnsignedLongTy,
4533    UnsignedLongTy,
4534    getPointerType(VoidPtrTy),
4535    getPointerType(VoidPtrTy)
4536  };
4537
4538  const char *FieldNames[] = {
4539    "reserved",
4540    "Size",
4541    "CopyFuncPtr",
4542    "DestroyFuncPtr"
4543  };
4544
4545  for (size_t i = 0; i < 4; ++i) {
4546    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4547                                         SourceLocation(),
4548                                         &Idents.get(FieldNames[i]),
4549                                         FieldTypes[i], /*TInfo=*/0,
4550                                         /*BitWidth=*/0,
4551                                         /*Mutable=*/false,
4552                                         ICIS_NoInit);
4553    Field->setAccess(AS_public);
4554    T->addDecl(Field);
4555  }
4556
4557  T->completeDefinition();
4558
4559  BlockDescriptorExtendedType = T;
4560
4561  return getTagDeclType(BlockDescriptorExtendedType);
4562}
4563
4564/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4565/// requires copy/dispose. Note that this must match the logic
4566/// in buildByrefHelpers.
4567bool ASTContext::BlockRequiresCopying(QualType Ty,
4568                                      const VarDecl *D) {
4569  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4570    const Expr *copyExpr = getBlockVarCopyInits(D);
4571    if (!copyExpr && record->hasTrivialDestructor()) return false;
4572
4573    return true;
4574  }
4575
4576  if (!Ty->isObjCRetainableType()) return false;
4577
4578  Qualifiers qs = Ty.getQualifiers();
4579
4580  // If we have lifetime, that dominates.
4581  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4582    assert(getLangOpts().ObjCAutoRefCount);
4583
4584    switch (lifetime) {
4585      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4586
4587      // These are just bits as far as the runtime is concerned.
4588      case Qualifiers::OCL_ExplicitNone:
4589      case Qualifiers::OCL_Autoreleasing:
4590        return false;
4591
4592      // Tell the runtime that this is ARC __weak, called by the
4593      // byref routines.
4594      case Qualifiers::OCL_Weak:
4595      // ARC __strong __block variables need to be retained.
4596      case Qualifiers::OCL_Strong:
4597        return true;
4598    }
4599    llvm_unreachable("fell out of lifetime switch!");
4600  }
4601  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4602          Ty->isObjCObjectPointerType());
4603}
4604
4605bool ASTContext::getByrefLifetime(QualType Ty,
4606                              Qualifiers::ObjCLifetime &LifeTime,
4607                              bool &HasByrefExtendedLayout) const {
4608
4609  if (!getLangOpts().ObjC1 ||
4610      getLangOpts().getGC() != LangOptions::NonGC)
4611    return false;
4612
4613  HasByrefExtendedLayout = false;
4614  if (Ty->isRecordType()) {
4615    HasByrefExtendedLayout = true;
4616    LifeTime = Qualifiers::OCL_None;
4617  }
4618  else if (getLangOpts().ObjCAutoRefCount)
4619    LifeTime = Ty.getObjCLifetime();
4620  // MRR.
4621  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4622    LifeTime = Qualifiers::OCL_ExplicitNone;
4623  else
4624    LifeTime = Qualifiers::OCL_None;
4625  return true;
4626}
4627
4628TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4629  if (!ObjCInstanceTypeDecl)
4630    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4631                                               getTranslationUnitDecl(),
4632                                               SourceLocation(),
4633                                               SourceLocation(),
4634                                               &Idents.get("instancetype"),
4635                                     getTrivialTypeSourceInfo(getObjCIdType()));
4636  return ObjCInstanceTypeDecl;
4637}
4638
4639// This returns true if a type has been typedefed to BOOL:
4640// typedef <type> BOOL;
4641static bool isTypeTypedefedAsBOOL(QualType T) {
4642  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4643    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4644      return II->isStr("BOOL");
4645
4646  return false;
4647}
4648
4649/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4650/// purpose.
4651CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4652  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4653    return CharUnits::Zero();
4654
4655  CharUnits sz = getTypeSizeInChars(type);
4656
4657  // Make all integer and enum types at least as large as an int
4658  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4659    sz = std::max(sz, getTypeSizeInChars(IntTy));
4660  // Treat arrays as pointers, since that's how they're passed in.
4661  else if (type->isArrayType())
4662    sz = getTypeSizeInChars(VoidPtrTy);
4663  return sz;
4664}
4665
4666static inline
4667std::string charUnitsToString(const CharUnits &CU) {
4668  return llvm::itostr(CU.getQuantity());
4669}
4670
4671/// getObjCEncodingForBlock - Return the encoded type for this block
4672/// declaration.
4673std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4674  std::string S;
4675
4676  const BlockDecl *Decl = Expr->getBlockDecl();
4677  QualType BlockTy =
4678      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4679  // Encode result type.
4680  if (getLangOpts().EncodeExtendedBlockSig)
4681    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4682                            BlockTy->getAs<FunctionType>()->getResultType(),
4683                            S, true /*Extended*/);
4684  else
4685    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4686                           S);
4687  // Compute size of all parameters.
4688  // Start with computing size of a pointer in number of bytes.
4689  // FIXME: There might(should) be a better way of doing this computation!
4690  SourceLocation Loc;
4691  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4692  CharUnits ParmOffset = PtrSize;
4693  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4694       E = Decl->param_end(); PI != E; ++PI) {
4695    QualType PType = (*PI)->getType();
4696    CharUnits sz = getObjCEncodingTypeSize(PType);
4697    if (sz.isZero())
4698      continue;
4699    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4700    ParmOffset += sz;
4701  }
4702  // Size of the argument frame
4703  S += charUnitsToString(ParmOffset);
4704  // Block pointer and offset.
4705  S += "@?0";
4706
4707  // Argument types.
4708  ParmOffset = PtrSize;
4709  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4710       Decl->param_end(); PI != E; ++PI) {
4711    ParmVarDecl *PVDecl = *PI;
4712    QualType PType = PVDecl->getOriginalType();
4713    if (const ArrayType *AT =
4714          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4715      // Use array's original type only if it has known number of
4716      // elements.
4717      if (!isa<ConstantArrayType>(AT))
4718        PType = PVDecl->getType();
4719    } else if (PType->isFunctionType())
4720      PType = PVDecl->getType();
4721    if (getLangOpts().EncodeExtendedBlockSig)
4722      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4723                                      S, true /*Extended*/);
4724    else
4725      getObjCEncodingForType(PType, S);
4726    S += charUnitsToString(ParmOffset);
4727    ParmOffset += getObjCEncodingTypeSize(PType);
4728  }
4729
4730  return S;
4731}
4732
4733bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4734                                                std::string& S) {
4735  // Encode result type.
4736  getObjCEncodingForType(Decl->getResultType(), S);
4737  CharUnits ParmOffset;
4738  // Compute size of all parameters.
4739  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4740       E = Decl->param_end(); PI != E; ++PI) {
4741    QualType PType = (*PI)->getType();
4742    CharUnits sz = getObjCEncodingTypeSize(PType);
4743    if (sz.isZero())
4744      continue;
4745
4746    assert (sz.isPositive() &&
4747        "getObjCEncodingForFunctionDecl - Incomplete param type");
4748    ParmOffset += sz;
4749  }
4750  S += charUnitsToString(ParmOffset);
4751  ParmOffset = CharUnits::Zero();
4752
4753  // Argument types.
4754  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4755       E = Decl->param_end(); PI != E; ++PI) {
4756    ParmVarDecl *PVDecl = *PI;
4757    QualType PType = PVDecl->getOriginalType();
4758    if (const ArrayType *AT =
4759          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4760      // Use array's original type only if it has known number of
4761      // elements.
4762      if (!isa<ConstantArrayType>(AT))
4763        PType = PVDecl->getType();
4764    } else if (PType->isFunctionType())
4765      PType = PVDecl->getType();
4766    getObjCEncodingForType(PType, S);
4767    S += charUnitsToString(ParmOffset);
4768    ParmOffset += getObjCEncodingTypeSize(PType);
4769  }
4770
4771  return false;
4772}
4773
4774/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4775/// method parameter or return type. If Extended, include class names and
4776/// block object types.
4777void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4778                                                   QualType T, std::string& S,
4779                                                   bool Extended) const {
4780  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4781  getObjCEncodingForTypeQualifier(QT, S);
4782  // Encode parameter type.
4783  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4784                             true     /*OutermostType*/,
4785                             false    /*EncodingProperty*/,
4786                             false    /*StructField*/,
4787                             Extended /*EncodeBlockParameters*/,
4788                             Extended /*EncodeClassNames*/);
4789}
4790
4791/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4792/// declaration.
4793bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4794                                              std::string& S,
4795                                              bool Extended) const {
4796  // FIXME: This is not very efficient.
4797  // Encode return type.
4798  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4799                                    Decl->getResultType(), S, Extended);
4800  // Compute size of all parameters.
4801  // Start with computing size of a pointer in number of bytes.
4802  // FIXME: There might(should) be a better way of doing this computation!
4803  SourceLocation Loc;
4804  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4805  // The first two arguments (self and _cmd) are pointers; account for
4806  // their size.
4807  CharUnits ParmOffset = 2 * PtrSize;
4808  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4809       E = Decl->sel_param_end(); PI != E; ++PI) {
4810    QualType PType = (*PI)->getType();
4811    CharUnits sz = getObjCEncodingTypeSize(PType);
4812    if (sz.isZero())
4813      continue;
4814
4815    assert (sz.isPositive() &&
4816        "getObjCEncodingForMethodDecl - Incomplete param type");
4817    ParmOffset += sz;
4818  }
4819  S += charUnitsToString(ParmOffset);
4820  S += "@0:";
4821  S += charUnitsToString(PtrSize);
4822
4823  // Argument types.
4824  ParmOffset = 2 * PtrSize;
4825  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4826       E = Decl->sel_param_end(); PI != E; ++PI) {
4827    const ParmVarDecl *PVDecl = *PI;
4828    QualType PType = PVDecl->getOriginalType();
4829    if (const ArrayType *AT =
4830          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4831      // Use array's original type only if it has known number of
4832      // elements.
4833      if (!isa<ConstantArrayType>(AT))
4834        PType = PVDecl->getType();
4835    } else if (PType->isFunctionType())
4836      PType = PVDecl->getType();
4837    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4838                                      PType, S, Extended);
4839    S += charUnitsToString(ParmOffset);
4840    ParmOffset += getObjCEncodingTypeSize(PType);
4841  }
4842
4843  return false;
4844}
4845
4846/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4847/// property declaration. If non-NULL, Container must be either an
4848/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4849/// NULL when getting encodings for protocol properties.
4850/// Property attributes are stored as a comma-delimited C string. The simple
4851/// attributes readonly and bycopy are encoded as single characters. The
4852/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4853/// encoded as single characters, followed by an identifier. Property types
4854/// are also encoded as a parametrized attribute. The characters used to encode
4855/// these attributes are defined by the following enumeration:
4856/// @code
4857/// enum PropertyAttributes {
4858/// kPropertyReadOnly = 'R',   // property is read-only.
4859/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4860/// kPropertyByref = '&',  // property is a reference to the value last assigned
4861/// kPropertyDynamic = 'D',    // property is dynamic
4862/// kPropertyGetter = 'G',     // followed by getter selector name
4863/// kPropertySetter = 'S',     // followed by setter selector name
4864/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4865/// kPropertyType = 'T'              // followed by old-style type encoding.
4866/// kPropertyWeak = 'W'              // 'weak' property
4867/// kPropertyStrong = 'P'            // property GC'able
4868/// kPropertyNonAtomic = 'N'         // property non-atomic
4869/// };
4870/// @endcode
4871void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4872                                                const Decl *Container,
4873                                                std::string& S) const {
4874  // Collect information from the property implementation decl(s).
4875  bool Dynamic = false;
4876  ObjCPropertyImplDecl *SynthesizePID = 0;
4877
4878  // FIXME: Duplicated code due to poor abstraction.
4879  if (Container) {
4880    if (const ObjCCategoryImplDecl *CID =
4881        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4882      for (ObjCCategoryImplDecl::propimpl_iterator
4883             i = CID->propimpl_begin(), e = CID->propimpl_end();
4884           i != e; ++i) {
4885        ObjCPropertyImplDecl *PID = *i;
4886        if (PID->getPropertyDecl() == PD) {
4887          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4888            Dynamic = true;
4889          } else {
4890            SynthesizePID = PID;
4891          }
4892        }
4893      }
4894    } else {
4895      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4896      for (ObjCCategoryImplDecl::propimpl_iterator
4897             i = OID->propimpl_begin(), e = OID->propimpl_end();
4898           i != e; ++i) {
4899        ObjCPropertyImplDecl *PID = *i;
4900        if (PID->getPropertyDecl() == PD) {
4901          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4902            Dynamic = true;
4903          } else {
4904            SynthesizePID = PID;
4905          }
4906        }
4907      }
4908    }
4909  }
4910
4911  // FIXME: This is not very efficient.
4912  S = "T";
4913
4914  // Encode result type.
4915  // GCC has some special rules regarding encoding of properties which
4916  // closely resembles encoding of ivars.
4917  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4918                             true /* outermost type */,
4919                             true /* encoding for property */);
4920
4921  if (PD->isReadOnly()) {
4922    S += ",R";
4923    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
4924      S += ",C";
4925    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
4926      S += ",&";
4927  } else {
4928    switch (PD->getSetterKind()) {
4929    case ObjCPropertyDecl::Assign: break;
4930    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4931    case ObjCPropertyDecl::Retain: S += ",&"; break;
4932    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4933    }
4934  }
4935
4936  // It really isn't clear at all what this means, since properties
4937  // are "dynamic by default".
4938  if (Dynamic)
4939    S += ",D";
4940
4941  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4942    S += ",N";
4943
4944  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4945    S += ",G";
4946    S += PD->getGetterName().getAsString();
4947  }
4948
4949  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4950    S += ",S";
4951    S += PD->getSetterName().getAsString();
4952  }
4953
4954  if (SynthesizePID) {
4955    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4956    S += ",V";
4957    S += OID->getNameAsString();
4958  }
4959
4960  // FIXME: OBJCGC: weak & strong
4961}
4962
4963/// getLegacyIntegralTypeEncoding -
4964/// Another legacy compatibility encoding: 32-bit longs are encoded as
4965/// 'l' or 'L' , but not always.  For typedefs, we need to use
4966/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4967///
4968void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4969  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4970    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4971      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4972        PointeeTy = UnsignedIntTy;
4973      else
4974        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4975          PointeeTy = IntTy;
4976    }
4977  }
4978}
4979
4980void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4981                                        const FieldDecl *Field) const {
4982  // We follow the behavior of gcc, expanding structures which are
4983  // directly pointed to, and expanding embedded structures. Note that
4984  // these rules are sufficient to prevent recursive encoding of the
4985  // same type.
4986  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4987                             true /* outermost type */);
4988}
4989
4990static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
4991                                            BuiltinType::Kind kind) {
4992    switch (kind) {
4993    case BuiltinType::Void:       return 'v';
4994    case BuiltinType::Bool:       return 'B';
4995    case BuiltinType::Char_U:
4996    case BuiltinType::UChar:      return 'C';
4997    case BuiltinType::Char16:
4998    case BuiltinType::UShort:     return 'S';
4999    case BuiltinType::Char32:
5000    case BuiltinType::UInt:       return 'I';
5001    case BuiltinType::ULong:
5002        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
5003    case BuiltinType::UInt128:    return 'T';
5004    case BuiltinType::ULongLong:  return 'Q';
5005    case BuiltinType::Char_S:
5006    case BuiltinType::SChar:      return 'c';
5007    case BuiltinType::Short:      return 's';
5008    case BuiltinType::WChar_S:
5009    case BuiltinType::WChar_U:
5010    case BuiltinType::Int:        return 'i';
5011    case BuiltinType::Long:
5012      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
5013    case BuiltinType::LongLong:   return 'q';
5014    case BuiltinType::Int128:     return 't';
5015    case BuiltinType::Float:      return 'f';
5016    case BuiltinType::Double:     return 'd';
5017    case BuiltinType::LongDouble: return 'D';
5018    case BuiltinType::NullPtr:    return '*'; // like char*
5019
5020    case BuiltinType::Half:
5021      // FIXME: potentially need @encodes for these!
5022      return ' ';
5023
5024    case BuiltinType::ObjCId:
5025    case BuiltinType::ObjCClass:
5026    case BuiltinType::ObjCSel:
5027      llvm_unreachable("@encoding ObjC primitive type");
5028
5029    // OpenCL and placeholder types don't need @encodings.
5030    case BuiltinType::OCLImage1d:
5031    case BuiltinType::OCLImage1dArray:
5032    case BuiltinType::OCLImage1dBuffer:
5033    case BuiltinType::OCLImage2d:
5034    case BuiltinType::OCLImage2dArray:
5035    case BuiltinType::OCLImage3d:
5036    case BuiltinType::OCLEvent:
5037    case BuiltinType::OCLSampler:
5038    case BuiltinType::Dependent:
5039#define BUILTIN_TYPE(KIND, ID)
5040#define PLACEHOLDER_TYPE(KIND, ID) \
5041    case BuiltinType::KIND:
5042#include "clang/AST/BuiltinTypes.def"
5043      llvm_unreachable("invalid builtin type for @encode");
5044    }
5045    llvm_unreachable("invalid BuiltinType::Kind value");
5046}
5047
5048static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5049  EnumDecl *Enum = ET->getDecl();
5050
5051  // The encoding of an non-fixed enum type is always 'i', regardless of size.
5052  if (!Enum->isFixed())
5053    return 'i';
5054
5055  // The encoding of a fixed enum type matches its fixed underlying type.
5056  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5057  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5058}
5059
5060static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5061                           QualType T, const FieldDecl *FD) {
5062  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5063  S += 'b';
5064  // The NeXT runtime encodes bit fields as b followed by the number of bits.
5065  // The GNU runtime requires more information; bitfields are encoded as b,
5066  // then the offset (in bits) of the first element, then the type of the
5067  // bitfield, then the size in bits.  For example, in this structure:
5068  //
5069  // struct
5070  // {
5071  //    int integer;
5072  //    int flags:2;
5073  // };
5074  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5075  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5076  // information is not especially sensible, but we're stuck with it for
5077  // compatibility with GCC, although providing it breaks anything that
5078  // actually uses runtime introspection and wants to work on both runtimes...
5079  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5080    const RecordDecl *RD = FD->getParent();
5081    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5082    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5083    if (const EnumType *ET = T->getAs<EnumType>())
5084      S += ObjCEncodingForEnumType(Ctx, ET);
5085    else {
5086      const BuiltinType *BT = T->castAs<BuiltinType>();
5087      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5088    }
5089  }
5090  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5091}
5092
5093// FIXME: Use SmallString for accumulating string.
5094void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5095                                            bool ExpandPointedToStructures,
5096                                            bool ExpandStructures,
5097                                            const FieldDecl *FD,
5098                                            bool OutermostType,
5099                                            bool EncodingProperty,
5100                                            bool StructField,
5101                                            bool EncodeBlockParameters,
5102                                            bool EncodeClassNames,
5103                                            bool EncodePointerToObjCTypedef) const {
5104  CanQualType CT = getCanonicalType(T);
5105  switch (CT->getTypeClass()) {
5106  case Type::Builtin:
5107  case Type::Enum:
5108    if (FD && FD->isBitField())
5109      return EncodeBitField(this, S, T, FD);
5110    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5111      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5112    else
5113      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5114    return;
5115
5116  case Type::Complex: {
5117    const ComplexType *CT = T->castAs<ComplexType>();
5118    S += 'j';
5119    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5120                               false);
5121    return;
5122  }
5123
5124  case Type::Atomic: {
5125    const AtomicType *AT = T->castAs<AtomicType>();
5126    S += 'A';
5127    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5128                               false, false);
5129    return;
5130  }
5131
5132  // encoding for pointer or reference types.
5133  case Type::Pointer:
5134  case Type::LValueReference:
5135  case Type::RValueReference: {
5136    QualType PointeeTy;
5137    if (isa<PointerType>(CT)) {
5138      const PointerType *PT = T->castAs<PointerType>();
5139      if (PT->isObjCSelType()) {
5140        S += ':';
5141        return;
5142      }
5143      PointeeTy = PT->getPointeeType();
5144    } else {
5145      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5146    }
5147
5148    bool isReadOnly = false;
5149    // For historical/compatibility reasons, the read-only qualifier of the
5150    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5151    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5152    // Also, do not emit the 'r' for anything but the outermost type!
5153    if (isa<TypedefType>(T.getTypePtr())) {
5154      if (OutermostType && T.isConstQualified()) {
5155        isReadOnly = true;
5156        S += 'r';
5157      }
5158    } else if (OutermostType) {
5159      QualType P = PointeeTy;
5160      while (P->getAs<PointerType>())
5161        P = P->getAs<PointerType>()->getPointeeType();
5162      if (P.isConstQualified()) {
5163        isReadOnly = true;
5164        S += 'r';
5165      }
5166    }
5167    if (isReadOnly) {
5168      // Another legacy compatibility encoding. Some ObjC qualifier and type
5169      // combinations need to be rearranged.
5170      // Rewrite "in const" from "nr" to "rn"
5171      if (StringRef(S).endswith("nr"))
5172        S.replace(S.end()-2, S.end(), "rn");
5173    }
5174
5175    if (PointeeTy->isCharType()) {
5176      // char pointer types should be encoded as '*' unless it is a
5177      // type that has been typedef'd to 'BOOL'.
5178      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5179        S += '*';
5180        return;
5181      }
5182    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5183      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5184      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5185        S += '#';
5186        return;
5187      }
5188      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5189      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5190        S += '@';
5191        return;
5192      }
5193      // fall through...
5194    }
5195    S += '^';
5196    getLegacyIntegralTypeEncoding(PointeeTy);
5197
5198    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5199                               NULL);
5200    return;
5201  }
5202
5203  case Type::ConstantArray:
5204  case Type::IncompleteArray:
5205  case Type::VariableArray: {
5206    const ArrayType *AT = cast<ArrayType>(CT);
5207
5208    if (isa<IncompleteArrayType>(AT) && !StructField) {
5209      // Incomplete arrays are encoded as a pointer to the array element.
5210      S += '^';
5211
5212      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5213                                 false, ExpandStructures, FD);
5214    } else {
5215      S += '[';
5216
5217      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5218        if (getTypeSize(CAT->getElementType()) == 0)
5219          S += '0';
5220        else
5221          S += llvm::utostr(CAT->getSize().getZExtValue());
5222      } else {
5223        //Variable length arrays are encoded as a regular array with 0 elements.
5224        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5225               "Unknown array type!");
5226        S += '0';
5227      }
5228
5229      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5230                                 false, ExpandStructures, FD);
5231      S += ']';
5232    }
5233    return;
5234  }
5235
5236  case Type::FunctionNoProto:
5237  case Type::FunctionProto:
5238    S += '?';
5239    return;
5240
5241  case Type::Record: {
5242    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5243    S += RDecl->isUnion() ? '(' : '{';
5244    // Anonymous structures print as '?'
5245    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5246      S += II->getName();
5247      if (ClassTemplateSpecializationDecl *Spec
5248          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5249        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5250        llvm::raw_string_ostream OS(S);
5251        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5252                                            TemplateArgs.data(),
5253                                            TemplateArgs.size(),
5254                                            (*this).getPrintingPolicy());
5255      }
5256    } else {
5257      S += '?';
5258    }
5259    if (ExpandStructures) {
5260      S += '=';
5261      if (!RDecl->isUnion()) {
5262        getObjCEncodingForStructureImpl(RDecl, S, FD);
5263      } else {
5264        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5265                                     FieldEnd = RDecl->field_end();
5266             Field != FieldEnd; ++Field) {
5267          if (FD) {
5268            S += '"';
5269            S += Field->getNameAsString();
5270            S += '"';
5271          }
5272
5273          // Special case bit-fields.
5274          if (Field->isBitField()) {
5275            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5276                                       *Field);
5277          } else {
5278            QualType qt = Field->getType();
5279            getLegacyIntegralTypeEncoding(qt);
5280            getObjCEncodingForTypeImpl(qt, S, false, true,
5281                                       FD, /*OutermostType*/false,
5282                                       /*EncodingProperty*/false,
5283                                       /*StructField*/true);
5284          }
5285        }
5286      }
5287    }
5288    S += RDecl->isUnion() ? ')' : '}';
5289    return;
5290  }
5291
5292  case Type::BlockPointer: {
5293    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5294    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5295    if (EncodeBlockParameters) {
5296      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5297
5298      S += '<';
5299      // Block return type
5300      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5301                                 ExpandPointedToStructures, ExpandStructures,
5302                                 FD,
5303                                 false /* OutermostType */,
5304                                 EncodingProperty,
5305                                 false /* StructField */,
5306                                 EncodeBlockParameters,
5307                                 EncodeClassNames);
5308      // Block self
5309      S += "@?";
5310      // Block parameters
5311      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5312        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5313               E = FPT->arg_type_end(); I && (I != E); ++I) {
5314          getObjCEncodingForTypeImpl(*I, S,
5315                                     ExpandPointedToStructures,
5316                                     ExpandStructures,
5317                                     FD,
5318                                     false /* OutermostType */,
5319                                     EncodingProperty,
5320                                     false /* StructField */,
5321                                     EncodeBlockParameters,
5322                                     EncodeClassNames);
5323        }
5324      }
5325      S += '>';
5326    }
5327    return;
5328  }
5329
5330  case Type::ObjCObject:
5331  case Type::ObjCInterface: {
5332    // Ignore protocol qualifiers when mangling at this level.
5333    T = T->castAs<ObjCObjectType>()->getBaseType();
5334
5335    // The assumption seems to be that this assert will succeed
5336    // because nested levels will have filtered out 'id' and 'Class'.
5337    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5338    // @encode(class_name)
5339    ObjCInterfaceDecl *OI = OIT->getDecl();
5340    S += '{';
5341    const IdentifierInfo *II = OI->getIdentifier();
5342    S += II->getName();
5343    S += '=';
5344    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5345    DeepCollectObjCIvars(OI, true, Ivars);
5346    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5347      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5348      if (Field->isBitField())
5349        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5350      else
5351        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5352                                   false, false, false, false, false,
5353                                   EncodePointerToObjCTypedef);
5354    }
5355    S += '}';
5356    return;
5357  }
5358
5359  case Type::ObjCObjectPointer: {
5360    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5361    if (OPT->isObjCIdType()) {
5362      S += '@';
5363      return;
5364    }
5365
5366    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5367      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5368      // Since this is a binary compatibility issue, need to consult with runtime
5369      // folks. Fortunately, this is a *very* obsure construct.
5370      S += '#';
5371      return;
5372    }
5373
5374    if (OPT->isObjCQualifiedIdType()) {
5375      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5376                                 ExpandPointedToStructures,
5377                                 ExpandStructures, FD);
5378      if (FD || EncodingProperty || EncodeClassNames) {
5379        // Note that we do extended encoding of protocol qualifer list
5380        // Only when doing ivar or property encoding.
5381        S += '"';
5382        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5383             E = OPT->qual_end(); I != E; ++I) {
5384          S += '<';
5385          S += (*I)->getNameAsString();
5386          S += '>';
5387        }
5388        S += '"';
5389      }
5390      return;
5391    }
5392
5393    QualType PointeeTy = OPT->getPointeeType();
5394    if (!EncodingProperty &&
5395        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5396        !EncodePointerToObjCTypedef) {
5397      // Another historical/compatibility reason.
5398      // We encode the underlying type which comes out as
5399      // {...};
5400      S += '^';
5401      getObjCEncodingForTypeImpl(PointeeTy, S,
5402                                 false, ExpandPointedToStructures,
5403                                 NULL,
5404                                 false, false, false, false, false,
5405                                 /*EncodePointerToObjCTypedef*/true);
5406      return;
5407    }
5408
5409    S += '@';
5410    if (OPT->getInterfaceDecl() &&
5411        (FD || EncodingProperty || EncodeClassNames)) {
5412      S += '"';
5413      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5414      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5415           E = OPT->qual_end(); I != E; ++I) {
5416        S += '<';
5417        S += (*I)->getNameAsString();
5418        S += '>';
5419      }
5420      S += '"';
5421    }
5422    return;
5423  }
5424
5425  // gcc just blithely ignores member pointers.
5426  // FIXME: we shoul do better than that.  'M' is available.
5427  case Type::MemberPointer:
5428    return;
5429
5430  case Type::Vector:
5431  case Type::ExtVector:
5432    // This matches gcc's encoding, even though technically it is
5433    // insufficient.
5434    // FIXME. We should do a better job than gcc.
5435    return;
5436
5437  case Type::Auto:
5438    // We could see an undeduced auto type here during error recovery.
5439    // Just ignore it.
5440    return;
5441
5442#define ABSTRACT_TYPE(KIND, BASE)
5443#define TYPE(KIND, BASE)
5444#define DEPENDENT_TYPE(KIND, BASE) \
5445  case Type::KIND:
5446#define NON_CANONICAL_TYPE(KIND, BASE) \
5447  case Type::KIND:
5448#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5449  case Type::KIND:
5450#include "clang/AST/TypeNodes.def"
5451    llvm_unreachable("@encode for dependent type!");
5452  }
5453  llvm_unreachable("bad type kind!");
5454}
5455
5456void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5457                                                 std::string &S,
5458                                                 const FieldDecl *FD,
5459                                                 bool includeVBases) const {
5460  assert(RDecl && "Expected non-null RecordDecl");
5461  assert(!RDecl->isUnion() && "Should not be called for unions");
5462  if (!RDecl->getDefinition())
5463    return;
5464
5465  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5466  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5467  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5468
5469  if (CXXRec) {
5470    for (CXXRecordDecl::base_class_iterator
5471           BI = CXXRec->bases_begin(),
5472           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5473      if (!BI->isVirtual()) {
5474        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5475        if (base->isEmpty())
5476          continue;
5477        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5478        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5479                                  std::make_pair(offs, base));
5480      }
5481    }
5482  }
5483
5484  unsigned i = 0;
5485  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5486                               FieldEnd = RDecl->field_end();
5487       Field != FieldEnd; ++Field, ++i) {
5488    uint64_t offs = layout.getFieldOffset(i);
5489    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5490                              std::make_pair(offs, *Field));
5491  }
5492
5493  if (CXXRec && includeVBases) {
5494    for (CXXRecordDecl::base_class_iterator
5495           BI = CXXRec->vbases_begin(),
5496           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5497      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5498      if (base->isEmpty())
5499        continue;
5500      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5501      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5502        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5503                                  std::make_pair(offs, base));
5504    }
5505  }
5506
5507  CharUnits size;
5508  if (CXXRec) {
5509    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5510  } else {
5511    size = layout.getSize();
5512  }
5513
5514  uint64_t CurOffs = 0;
5515  std::multimap<uint64_t, NamedDecl *>::iterator
5516    CurLayObj = FieldOrBaseOffsets.begin();
5517
5518  if (CXXRec && CXXRec->isDynamicClass() &&
5519      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5520    if (FD) {
5521      S += "\"_vptr$";
5522      std::string recname = CXXRec->getNameAsString();
5523      if (recname.empty()) recname = "?";
5524      S += recname;
5525      S += '"';
5526    }
5527    S += "^^?";
5528    CurOffs += getTypeSize(VoidPtrTy);
5529  }
5530
5531  if (!RDecl->hasFlexibleArrayMember()) {
5532    // Mark the end of the structure.
5533    uint64_t offs = toBits(size);
5534    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5535                              std::make_pair(offs, (NamedDecl*)0));
5536  }
5537
5538  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5539    assert(CurOffs <= CurLayObj->first);
5540
5541    if (CurOffs < CurLayObj->first) {
5542      uint64_t padding = CurLayObj->first - CurOffs;
5543      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5544      // packing/alignment of members is different that normal, in which case
5545      // the encoding will be out-of-sync with the real layout.
5546      // If the runtime switches to just consider the size of types without
5547      // taking into account alignment, we could make padding explicit in the
5548      // encoding (e.g. using arrays of chars). The encoding strings would be
5549      // longer then though.
5550      CurOffs += padding;
5551    }
5552
5553    NamedDecl *dcl = CurLayObj->second;
5554    if (dcl == 0)
5555      break; // reached end of structure.
5556
5557    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5558      // We expand the bases without their virtual bases since those are going
5559      // in the initial structure. Note that this differs from gcc which
5560      // expands virtual bases each time one is encountered in the hierarchy,
5561      // making the encoding type bigger than it really is.
5562      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5563      assert(!base->isEmpty());
5564      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5565    } else {
5566      FieldDecl *field = cast<FieldDecl>(dcl);
5567      if (FD) {
5568        S += '"';
5569        S += field->getNameAsString();
5570        S += '"';
5571      }
5572
5573      if (field->isBitField()) {
5574        EncodeBitField(this, S, field->getType(), field);
5575        CurOffs += field->getBitWidthValue(*this);
5576      } else {
5577        QualType qt = field->getType();
5578        getLegacyIntegralTypeEncoding(qt);
5579        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5580                                   /*OutermostType*/false,
5581                                   /*EncodingProperty*/false,
5582                                   /*StructField*/true);
5583        CurOffs += getTypeSize(field->getType());
5584      }
5585    }
5586  }
5587}
5588
5589void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5590                                                 std::string& S) const {
5591  if (QT & Decl::OBJC_TQ_In)
5592    S += 'n';
5593  if (QT & Decl::OBJC_TQ_Inout)
5594    S += 'N';
5595  if (QT & Decl::OBJC_TQ_Out)
5596    S += 'o';
5597  if (QT & Decl::OBJC_TQ_Bycopy)
5598    S += 'O';
5599  if (QT & Decl::OBJC_TQ_Byref)
5600    S += 'R';
5601  if (QT & Decl::OBJC_TQ_Oneway)
5602    S += 'V';
5603}
5604
5605TypedefDecl *ASTContext::getObjCIdDecl() const {
5606  if (!ObjCIdDecl) {
5607    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5608    T = getObjCObjectPointerType(T);
5609    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5610    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5611                                     getTranslationUnitDecl(),
5612                                     SourceLocation(), SourceLocation(),
5613                                     &Idents.get("id"), IdInfo);
5614  }
5615
5616  return ObjCIdDecl;
5617}
5618
5619TypedefDecl *ASTContext::getObjCSelDecl() const {
5620  if (!ObjCSelDecl) {
5621    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5622    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5623    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5624                                      getTranslationUnitDecl(),
5625                                      SourceLocation(), SourceLocation(),
5626                                      &Idents.get("SEL"), SelInfo);
5627  }
5628  return ObjCSelDecl;
5629}
5630
5631TypedefDecl *ASTContext::getObjCClassDecl() const {
5632  if (!ObjCClassDecl) {
5633    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5634    T = getObjCObjectPointerType(T);
5635    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5636    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5637                                        getTranslationUnitDecl(),
5638                                        SourceLocation(), SourceLocation(),
5639                                        &Idents.get("Class"), ClassInfo);
5640  }
5641
5642  return ObjCClassDecl;
5643}
5644
5645ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5646  if (!ObjCProtocolClassDecl) {
5647    ObjCProtocolClassDecl
5648      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5649                                  SourceLocation(),
5650                                  &Idents.get("Protocol"),
5651                                  /*PrevDecl=*/0,
5652                                  SourceLocation(), true);
5653  }
5654
5655  return ObjCProtocolClassDecl;
5656}
5657
5658//===----------------------------------------------------------------------===//
5659// __builtin_va_list Construction Functions
5660//===----------------------------------------------------------------------===//
5661
5662static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5663  // typedef char* __builtin_va_list;
5664  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5665  TypeSourceInfo *TInfo
5666    = Context->getTrivialTypeSourceInfo(CharPtrType);
5667
5668  TypedefDecl *VaListTypeDecl
5669    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5670                          Context->getTranslationUnitDecl(),
5671                          SourceLocation(), SourceLocation(),
5672                          &Context->Idents.get("__builtin_va_list"),
5673                          TInfo);
5674  return VaListTypeDecl;
5675}
5676
5677static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5678  // typedef void* __builtin_va_list;
5679  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5680  TypeSourceInfo *TInfo
5681    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5682
5683  TypedefDecl *VaListTypeDecl
5684    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5685                          Context->getTranslationUnitDecl(),
5686                          SourceLocation(), SourceLocation(),
5687                          &Context->Idents.get("__builtin_va_list"),
5688                          TInfo);
5689  return VaListTypeDecl;
5690}
5691
5692static TypedefDecl *
5693CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5694  RecordDecl *VaListTagDecl;
5695  if (Context->getLangOpts().CPlusPlus) {
5696    // namespace std { struct __va_list {
5697    NamespaceDecl *NS;
5698    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5699                               Context->getTranslationUnitDecl(),
5700                               /*Inline*/false, SourceLocation(),
5701                               SourceLocation(), &Context->Idents.get("std"),
5702                               /*PrevDecl*/0);
5703
5704    VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5705                                          Context->getTranslationUnitDecl(),
5706                                          SourceLocation(), SourceLocation(),
5707                                          &Context->Idents.get("__va_list"));
5708    VaListTagDecl->setDeclContext(NS);
5709  } else {
5710    // struct __va_list
5711    VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5712                                   Context->getTranslationUnitDecl(),
5713                                   &Context->Idents.get("__va_list"));
5714  }
5715
5716  VaListTagDecl->startDefinition();
5717
5718  const size_t NumFields = 5;
5719  QualType FieldTypes[NumFields];
5720  const char *FieldNames[NumFields];
5721
5722  // void *__stack;
5723  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5724  FieldNames[0] = "__stack";
5725
5726  // void *__gr_top;
5727  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5728  FieldNames[1] = "__gr_top";
5729
5730  // void *__vr_top;
5731  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5732  FieldNames[2] = "__vr_top";
5733
5734  // int __gr_offs;
5735  FieldTypes[3] = Context->IntTy;
5736  FieldNames[3] = "__gr_offs";
5737
5738  // int __vr_offs;
5739  FieldTypes[4] = Context->IntTy;
5740  FieldNames[4] = "__vr_offs";
5741
5742  // Create fields
5743  for (unsigned i = 0; i < NumFields; ++i) {
5744    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5745                                         VaListTagDecl,
5746                                         SourceLocation(),
5747                                         SourceLocation(),
5748                                         &Context->Idents.get(FieldNames[i]),
5749                                         FieldTypes[i], /*TInfo=*/0,
5750                                         /*BitWidth=*/0,
5751                                         /*Mutable=*/false,
5752                                         ICIS_NoInit);
5753    Field->setAccess(AS_public);
5754    VaListTagDecl->addDecl(Field);
5755  }
5756  VaListTagDecl->completeDefinition();
5757  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5758  Context->VaListTagTy = VaListTagType;
5759
5760  // } __builtin_va_list;
5761  TypedefDecl *VaListTypedefDecl
5762    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5763                          Context->getTranslationUnitDecl(),
5764                          SourceLocation(), SourceLocation(),
5765                          &Context->Idents.get("__builtin_va_list"),
5766                          Context->getTrivialTypeSourceInfo(VaListTagType));
5767
5768  return VaListTypedefDecl;
5769}
5770
5771static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5772  // typedef struct __va_list_tag {
5773  RecordDecl *VaListTagDecl;
5774
5775  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5776                                   Context->getTranslationUnitDecl(),
5777                                   &Context->Idents.get("__va_list_tag"));
5778  VaListTagDecl->startDefinition();
5779
5780  const size_t NumFields = 5;
5781  QualType FieldTypes[NumFields];
5782  const char *FieldNames[NumFields];
5783
5784  //   unsigned char gpr;
5785  FieldTypes[0] = Context->UnsignedCharTy;
5786  FieldNames[0] = "gpr";
5787
5788  //   unsigned char fpr;
5789  FieldTypes[1] = Context->UnsignedCharTy;
5790  FieldNames[1] = "fpr";
5791
5792  //   unsigned short reserved;
5793  FieldTypes[2] = Context->UnsignedShortTy;
5794  FieldNames[2] = "reserved";
5795
5796  //   void* overflow_arg_area;
5797  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5798  FieldNames[3] = "overflow_arg_area";
5799
5800  //   void* reg_save_area;
5801  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5802  FieldNames[4] = "reg_save_area";
5803
5804  // Create fields
5805  for (unsigned i = 0; i < NumFields; ++i) {
5806    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5807                                         SourceLocation(),
5808                                         SourceLocation(),
5809                                         &Context->Idents.get(FieldNames[i]),
5810                                         FieldTypes[i], /*TInfo=*/0,
5811                                         /*BitWidth=*/0,
5812                                         /*Mutable=*/false,
5813                                         ICIS_NoInit);
5814    Field->setAccess(AS_public);
5815    VaListTagDecl->addDecl(Field);
5816  }
5817  VaListTagDecl->completeDefinition();
5818  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5819  Context->VaListTagTy = VaListTagType;
5820
5821  // } __va_list_tag;
5822  TypedefDecl *VaListTagTypedefDecl
5823    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5824                          Context->getTranslationUnitDecl(),
5825                          SourceLocation(), SourceLocation(),
5826                          &Context->Idents.get("__va_list_tag"),
5827                          Context->getTrivialTypeSourceInfo(VaListTagType));
5828  QualType VaListTagTypedefType =
5829    Context->getTypedefType(VaListTagTypedefDecl);
5830
5831  // typedef __va_list_tag __builtin_va_list[1];
5832  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5833  QualType VaListTagArrayType
5834    = Context->getConstantArrayType(VaListTagTypedefType,
5835                                    Size, ArrayType::Normal, 0);
5836  TypeSourceInfo *TInfo
5837    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5838  TypedefDecl *VaListTypedefDecl
5839    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5840                          Context->getTranslationUnitDecl(),
5841                          SourceLocation(), SourceLocation(),
5842                          &Context->Idents.get("__builtin_va_list"),
5843                          TInfo);
5844
5845  return VaListTypedefDecl;
5846}
5847
5848static TypedefDecl *
5849CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5850  // typedef struct __va_list_tag {
5851  RecordDecl *VaListTagDecl;
5852  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5853                                   Context->getTranslationUnitDecl(),
5854                                   &Context->Idents.get("__va_list_tag"));
5855  VaListTagDecl->startDefinition();
5856
5857  const size_t NumFields = 4;
5858  QualType FieldTypes[NumFields];
5859  const char *FieldNames[NumFields];
5860
5861  //   unsigned gp_offset;
5862  FieldTypes[0] = Context->UnsignedIntTy;
5863  FieldNames[0] = "gp_offset";
5864
5865  //   unsigned fp_offset;
5866  FieldTypes[1] = Context->UnsignedIntTy;
5867  FieldNames[1] = "fp_offset";
5868
5869  //   void* overflow_arg_area;
5870  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5871  FieldNames[2] = "overflow_arg_area";
5872
5873  //   void* reg_save_area;
5874  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5875  FieldNames[3] = "reg_save_area";
5876
5877  // Create fields
5878  for (unsigned i = 0; i < NumFields; ++i) {
5879    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5880                                         VaListTagDecl,
5881                                         SourceLocation(),
5882                                         SourceLocation(),
5883                                         &Context->Idents.get(FieldNames[i]),
5884                                         FieldTypes[i], /*TInfo=*/0,
5885                                         /*BitWidth=*/0,
5886                                         /*Mutable=*/false,
5887                                         ICIS_NoInit);
5888    Field->setAccess(AS_public);
5889    VaListTagDecl->addDecl(Field);
5890  }
5891  VaListTagDecl->completeDefinition();
5892  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5893  Context->VaListTagTy = VaListTagType;
5894
5895  // } __va_list_tag;
5896  TypedefDecl *VaListTagTypedefDecl
5897    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5898                          Context->getTranslationUnitDecl(),
5899                          SourceLocation(), SourceLocation(),
5900                          &Context->Idents.get("__va_list_tag"),
5901                          Context->getTrivialTypeSourceInfo(VaListTagType));
5902  QualType VaListTagTypedefType =
5903    Context->getTypedefType(VaListTagTypedefDecl);
5904
5905  // typedef __va_list_tag __builtin_va_list[1];
5906  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5907  QualType VaListTagArrayType
5908    = Context->getConstantArrayType(VaListTagTypedefType,
5909                                      Size, ArrayType::Normal,0);
5910  TypeSourceInfo *TInfo
5911    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5912  TypedefDecl *VaListTypedefDecl
5913    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5914                          Context->getTranslationUnitDecl(),
5915                          SourceLocation(), SourceLocation(),
5916                          &Context->Idents.get("__builtin_va_list"),
5917                          TInfo);
5918
5919  return VaListTypedefDecl;
5920}
5921
5922static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5923  // typedef int __builtin_va_list[4];
5924  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5925  QualType IntArrayType
5926    = Context->getConstantArrayType(Context->IntTy,
5927				    Size, ArrayType::Normal, 0);
5928  TypedefDecl *VaListTypedefDecl
5929    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5930                          Context->getTranslationUnitDecl(),
5931                          SourceLocation(), SourceLocation(),
5932                          &Context->Idents.get("__builtin_va_list"),
5933                          Context->getTrivialTypeSourceInfo(IntArrayType));
5934
5935  return VaListTypedefDecl;
5936}
5937
5938static TypedefDecl *
5939CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5940  RecordDecl *VaListDecl;
5941  if (Context->getLangOpts().CPlusPlus) {
5942    // namespace std { struct __va_list {
5943    NamespaceDecl *NS;
5944    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5945                               Context->getTranslationUnitDecl(),
5946                               /*Inline*/false, SourceLocation(),
5947                               SourceLocation(), &Context->Idents.get("std"),
5948                               /*PrevDecl*/0);
5949
5950    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5951                                       Context->getTranslationUnitDecl(),
5952                                       SourceLocation(), SourceLocation(),
5953                                       &Context->Idents.get("__va_list"));
5954
5955    VaListDecl->setDeclContext(NS);
5956
5957  } else {
5958    // struct __va_list {
5959    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5960                                  Context->getTranslationUnitDecl(),
5961                                  &Context->Idents.get("__va_list"));
5962  }
5963
5964  VaListDecl->startDefinition();
5965
5966  // void * __ap;
5967  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5968                                       VaListDecl,
5969                                       SourceLocation(),
5970                                       SourceLocation(),
5971                                       &Context->Idents.get("__ap"),
5972                                       Context->getPointerType(Context->VoidTy),
5973                                       /*TInfo=*/0,
5974                                       /*BitWidth=*/0,
5975                                       /*Mutable=*/false,
5976                                       ICIS_NoInit);
5977  Field->setAccess(AS_public);
5978  VaListDecl->addDecl(Field);
5979
5980  // };
5981  VaListDecl->completeDefinition();
5982
5983  // typedef struct __va_list __builtin_va_list;
5984  TypeSourceInfo *TInfo
5985    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5986
5987  TypedefDecl *VaListTypeDecl
5988    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5989                          Context->getTranslationUnitDecl(),
5990                          SourceLocation(), SourceLocation(),
5991                          &Context->Idents.get("__builtin_va_list"),
5992                          TInfo);
5993
5994  return VaListTypeDecl;
5995}
5996
5997static TypedefDecl *
5998CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
5999  // typedef struct __va_list_tag {
6000  RecordDecl *VaListTagDecl;
6001  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
6002                                   Context->getTranslationUnitDecl(),
6003                                   &Context->Idents.get("__va_list_tag"));
6004  VaListTagDecl->startDefinition();
6005
6006  const size_t NumFields = 4;
6007  QualType FieldTypes[NumFields];
6008  const char *FieldNames[NumFields];
6009
6010  //   long __gpr;
6011  FieldTypes[0] = Context->LongTy;
6012  FieldNames[0] = "__gpr";
6013
6014  //   long __fpr;
6015  FieldTypes[1] = Context->LongTy;
6016  FieldNames[1] = "__fpr";
6017
6018  //   void *__overflow_arg_area;
6019  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6020  FieldNames[2] = "__overflow_arg_area";
6021
6022  //   void *__reg_save_area;
6023  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6024  FieldNames[3] = "__reg_save_area";
6025
6026  // Create fields
6027  for (unsigned i = 0; i < NumFields; ++i) {
6028    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6029                                         VaListTagDecl,
6030                                         SourceLocation(),
6031                                         SourceLocation(),
6032                                         &Context->Idents.get(FieldNames[i]),
6033                                         FieldTypes[i], /*TInfo=*/0,
6034                                         /*BitWidth=*/0,
6035                                         /*Mutable=*/false,
6036                                         ICIS_NoInit);
6037    Field->setAccess(AS_public);
6038    VaListTagDecl->addDecl(Field);
6039  }
6040  VaListTagDecl->completeDefinition();
6041  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6042  Context->VaListTagTy = VaListTagType;
6043
6044  // } __va_list_tag;
6045  TypedefDecl *VaListTagTypedefDecl
6046    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6047                          Context->getTranslationUnitDecl(),
6048                          SourceLocation(), SourceLocation(),
6049                          &Context->Idents.get("__va_list_tag"),
6050                          Context->getTrivialTypeSourceInfo(VaListTagType));
6051  QualType VaListTagTypedefType =
6052    Context->getTypedefType(VaListTagTypedefDecl);
6053
6054  // typedef __va_list_tag __builtin_va_list[1];
6055  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6056  QualType VaListTagArrayType
6057    = Context->getConstantArrayType(VaListTagTypedefType,
6058                                      Size, ArrayType::Normal,0);
6059  TypeSourceInfo *TInfo
6060    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
6061  TypedefDecl *VaListTypedefDecl
6062    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6063                          Context->getTranslationUnitDecl(),
6064                          SourceLocation(), SourceLocation(),
6065                          &Context->Idents.get("__builtin_va_list"),
6066                          TInfo);
6067
6068  return VaListTypedefDecl;
6069}
6070
6071static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6072                                     TargetInfo::BuiltinVaListKind Kind) {
6073  switch (Kind) {
6074  case TargetInfo::CharPtrBuiltinVaList:
6075    return CreateCharPtrBuiltinVaListDecl(Context);
6076  case TargetInfo::VoidPtrBuiltinVaList:
6077    return CreateVoidPtrBuiltinVaListDecl(Context);
6078  case TargetInfo::AArch64ABIBuiltinVaList:
6079    return CreateAArch64ABIBuiltinVaListDecl(Context);
6080  case TargetInfo::PowerABIBuiltinVaList:
6081    return CreatePowerABIBuiltinVaListDecl(Context);
6082  case TargetInfo::X86_64ABIBuiltinVaList:
6083    return CreateX86_64ABIBuiltinVaListDecl(Context);
6084  case TargetInfo::PNaClABIBuiltinVaList:
6085    return CreatePNaClABIBuiltinVaListDecl(Context);
6086  case TargetInfo::AAPCSABIBuiltinVaList:
6087    return CreateAAPCSABIBuiltinVaListDecl(Context);
6088  case TargetInfo::SystemZBuiltinVaList:
6089    return CreateSystemZBuiltinVaListDecl(Context);
6090  }
6091
6092  llvm_unreachable("Unhandled __builtin_va_list type kind");
6093}
6094
6095TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6096  if (!BuiltinVaListDecl)
6097    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6098
6099  return BuiltinVaListDecl;
6100}
6101
6102QualType ASTContext::getVaListTagType() const {
6103  // Force the creation of VaListTagTy by building the __builtin_va_list
6104  // declaration.
6105  if (VaListTagTy.isNull())
6106    (void) getBuiltinVaListDecl();
6107
6108  return VaListTagTy;
6109}
6110
6111void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6112  assert(ObjCConstantStringType.isNull() &&
6113         "'NSConstantString' type already set!");
6114
6115  ObjCConstantStringType = getObjCInterfaceType(Decl);
6116}
6117
6118/// \brief Retrieve the template name that corresponds to a non-empty
6119/// lookup.
6120TemplateName
6121ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6122                                      UnresolvedSetIterator End) const {
6123  unsigned size = End - Begin;
6124  assert(size > 1 && "set is not overloaded!");
6125
6126  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6127                          size * sizeof(FunctionTemplateDecl*));
6128  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6129
6130  NamedDecl **Storage = OT->getStorage();
6131  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6132    NamedDecl *D = *I;
6133    assert(isa<FunctionTemplateDecl>(D) ||
6134           (isa<UsingShadowDecl>(D) &&
6135            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6136    *Storage++ = D;
6137  }
6138
6139  return TemplateName(OT);
6140}
6141
6142/// \brief Retrieve the template name that represents a qualified
6143/// template name such as \c std::vector.
6144TemplateName
6145ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6146                                     bool TemplateKeyword,
6147                                     TemplateDecl *Template) const {
6148  assert(NNS && "Missing nested-name-specifier in qualified template name");
6149
6150  // FIXME: Canonicalization?
6151  llvm::FoldingSetNodeID ID;
6152  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6153
6154  void *InsertPos = 0;
6155  QualifiedTemplateName *QTN =
6156    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6157  if (!QTN) {
6158    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6159        QualifiedTemplateName(NNS, TemplateKeyword, Template);
6160    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6161  }
6162
6163  return TemplateName(QTN);
6164}
6165
6166/// \brief Retrieve the template name that represents a dependent
6167/// template name such as \c MetaFun::template apply.
6168TemplateName
6169ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6170                                     const IdentifierInfo *Name) const {
6171  assert((!NNS || NNS->isDependent()) &&
6172         "Nested name specifier must be dependent");
6173
6174  llvm::FoldingSetNodeID ID;
6175  DependentTemplateName::Profile(ID, NNS, Name);
6176
6177  void *InsertPos = 0;
6178  DependentTemplateName *QTN =
6179    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6180
6181  if (QTN)
6182    return TemplateName(QTN);
6183
6184  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6185  if (CanonNNS == NNS) {
6186    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6187        DependentTemplateName(NNS, Name);
6188  } else {
6189    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6190    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6191        DependentTemplateName(NNS, Name, Canon);
6192    DependentTemplateName *CheckQTN =
6193      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6194    assert(!CheckQTN && "Dependent type name canonicalization broken");
6195    (void)CheckQTN;
6196  }
6197
6198  DependentTemplateNames.InsertNode(QTN, InsertPos);
6199  return TemplateName(QTN);
6200}
6201
6202/// \brief Retrieve the template name that represents a dependent
6203/// template name such as \c MetaFun::template operator+.
6204TemplateName
6205ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6206                                     OverloadedOperatorKind Operator) const {
6207  assert((!NNS || NNS->isDependent()) &&
6208         "Nested name specifier must be dependent");
6209
6210  llvm::FoldingSetNodeID ID;
6211  DependentTemplateName::Profile(ID, NNS, Operator);
6212
6213  void *InsertPos = 0;
6214  DependentTemplateName *QTN
6215    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6216
6217  if (QTN)
6218    return TemplateName(QTN);
6219
6220  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6221  if (CanonNNS == NNS) {
6222    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6223        DependentTemplateName(NNS, Operator);
6224  } else {
6225    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6226    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6227        DependentTemplateName(NNS, Operator, Canon);
6228
6229    DependentTemplateName *CheckQTN
6230      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6231    assert(!CheckQTN && "Dependent template name canonicalization broken");
6232    (void)CheckQTN;
6233  }
6234
6235  DependentTemplateNames.InsertNode(QTN, InsertPos);
6236  return TemplateName(QTN);
6237}
6238
6239TemplateName
6240ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6241                                         TemplateName replacement) const {
6242  llvm::FoldingSetNodeID ID;
6243  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6244
6245  void *insertPos = 0;
6246  SubstTemplateTemplateParmStorage *subst
6247    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6248
6249  if (!subst) {
6250    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6251    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6252  }
6253
6254  return TemplateName(subst);
6255}
6256
6257TemplateName
6258ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6259                                       const TemplateArgument &ArgPack) const {
6260  ASTContext &Self = const_cast<ASTContext &>(*this);
6261  llvm::FoldingSetNodeID ID;
6262  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6263
6264  void *InsertPos = 0;
6265  SubstTemplateTemplateParmPackStorage *Subst
6266    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6267
6268  if (!Subst) {
6269    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6270                                                           ArgPack.pack_size(),
6271                                                         ArgPack.pack_begin());
6272    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6273  }
6274
6275  return TemplateName(Subst);
6276}
6277
6278/// getFromTargetType - Given one of the integer types provided by
6279/// TargetInfo, produce the corresponding type. The unsigned @p Type
6280/// is actually a value of type @c TargetInfo::IntType.
6281CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6282  switch (Type) {
6283  case TargetInfo::NoInt: return CanQualType();
6284  case TargetInfo::SignedShort: return ShortTy;
6285  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6286  case TargetInfo::SignedInt: return IntTy;
6287  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6288  case TargetInfo::SignedLong: return LongTy;
6289  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6290  case TargetInfo::SignedLongLong: return LongLongTy;
6291  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6292  }
6293
6294  llvm_unreachable("Unhandled TargetInfo::IntType value");
6295}
6296
6297//===----------------------------------------------------------------------===//
6298//                        Type Predicates.
6299//===----------------------------------------------------------------------===//
6300
6301/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6302/// garbage collection attribute.
6303///
6304Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6305  if (getLangOpts().getGC() == LangOptions::NonGC)
6306    return Qualifiers::GCNone;
6307
6308  assert(getLangOpts().ObjC1);
6309  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6310
6311  // Default behaviour under objective-C's gc is for ObjC pointers
6312  // (or pointers to them) be treated as though they were declared
6313  // as __strong.
6314  if (GCAttrs == Qualifiers::GCNone) {
6315    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6316      return Qualifiers::Strong;
6317    else if (Ty->isPointerType())
6318      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6319  } else {
6320    // It's not valid to set GC attributes on anything that isn't a
6321    // pointer.
6322#ifndef NDEBUG
6323    QualType CT = Ty->getCanonicalTypeInternal();
6324    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6325      CT = AT->getElementType();
6326    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6327#endif
6328  }
6329  return GCAttrs;
6330}
6331
6332//===----------------------------------------------------------------------===//
6333//                        Type Compatibility Testing
6334//===----------------------------------------------------------------------===//
6335
6336/// areCompatVectorTypes - Return true if the two specified vector types are
6337/// compatible.
6338static bool areCompatVectorTypes(const VectorType *LHS,
6339                                 const VectorType *RHS) {
6340  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6341  return LHS->getElementType() == RHS->getElementType() &&
6342         LHS->getNumElements() == RHS->getNumElements();
6343}
6344
6345bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6346                                          QualType SecondVec) {
6347  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6348  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6349
6350  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6351    return true;
6352
6353  // Treat Neon vector types and most AltiVec vector types as if they are the
6354  // equivalent GCC vector types.
6355  const VectorType *First = FirstVec->getAs<VectorType>();
6356  const VectorType *Second = SecondVec->getAs<VectorType>();
6357  if (First->getNumElements() == Second->getNumElements() &&
6358      hasSameType(First->getElementType(), Second->getElementType()) &&
6359      First->getVectorKind() != VectorType::AltiVecPixel &&
6360      First->getVectorKind() != VectorType::AltiVecBool &&
6361      Second->getVectorKind() != VectorType::AltiVecPixel &&
6362      Second->getVectorKind() != VectorType::AltiVecBool)
6363    return true;
6364
6365  return false;
6366}
6367
6368//===----------------------------------------------------------------------===//
6369// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6370//===----------------------------------------------------------------------===//
6371
6372/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6373/// inheritance hierarchy of 'rProto'.
6374bool
6375ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6376                                           ObjCProtocolDecl *rProto) const {
6377  if (declaresSameEntity(lProto, rProto))
6378    return true;
6379  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6380       E = rProto->protocol_end(); PI != E; ++PI)
6381    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6382      return true;
6383  return false;
6384}
6385
6386/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6387/// return true if lhs's protocols conform to rhs's protocol; false
6388/// otherwise.
6389bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6390  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6391    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6392  return false;
6393}
6394
6395/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6396/// Class<pr1, ...>.
6397bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6398                                                      QualType rhs) {
6399  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6400  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6401  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6402
6403  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6404       E = lhsQID->qual_end(); I != E; ++I) {
6405    bool match = false;
6406    ObjCProtocolDecl *lhsProto = *I;
6407    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6408         E = rhsOPT->qual_end(); J != E; ++J) {
6409      ObjCProtocolDecl *rhsProto = *J;
6410      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6411        match = true;
6412        break;
6413      }
6414    }
6415    if (!match)
6416      return false;
6417  }
6418  return true;
6419}
6420
6421/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6422/// ObjCQualifiedIDType.
6423bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6424                                                   bool compare) {
6425  // Allow id<P..> and an 'id' or void* type in all cases.
6426  if (lhs->isVoidPointerType() ||
6427      lhs->isObjCIdType() || lhs->isObjCClassType())
6428    return true;
6429  else if (rhs->isVoidPointerType() ||
6430           rhs->isObjCIdType() || rhs->isObjCClassType())
6431    return true;
6432
6433  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6434    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6435
6436    if (!rhsOPT) return false;
6437
6438    if (rhsOPT->qual_empty()) {
6439      // If the RHS is a unqualified interface pointer "NSString*",
6440      // make sure we check the class hierarchy.
6441      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6442        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6443             E = lhsQID->qual_end(); I != E; ++I) {
6444          // when comparing an id<P> on lhs with a static type on rhs,
6445          // see if static class implements all of id's protocols, directly or
6446          // through its super class and categories.
6447          if (!rhsID->ClassImplementsProtocol(*I, true))
6448            return false;
6449        }
6450      }
6451      // If there are no qualifiers and no interface, we have an 'id'.
6452      return true;
6453    }
6454    // Both the right and left sides have qualifiers.
6455    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6456         E = lhsQID->qual_end(); I != E; ++I) {
6457      ObjCProtocolDecl *lhsProto = *I;
6458      bool match = false;
6459
6460      // when comparing an id<P> on lhs with a static type on rhs,
6461      // see if static class implements all of id's protocols, directly or
6462      // through its super class and categories.
6463      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6464           E = rhsOPT->qual_end(); J != E; ++J) {
6465        ObjCProtocolDecl *rhsProto = *J;
6466        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6467            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6468          match = true;
6469          break;
6470        }
6471      }
6472      // If the RHS is a qualified interface pointer "NSString<P>*",
6473      // make sure we check the class hierarchy.
6474      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6475        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6476             E = lhsQID->qual_end(); I != E; ++I) {
6477          // when comparing an id<P> on lhs with a static type on rhs,
6478          // see if static class implements all of id's protocols, directly or
6479          // through its super class and categories.
6480          if (rhsID->ClassImplementsProtocol(*I, true)) {
6481            match = true;
6482            break;
6483          }
6484        }
6485      }
6486      if (!match)
6487        return false;
6488    }
6489
6490    return true;
6491  }
6492
6493  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6494  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6495
6496  if (const ObjCObjectPointerType *lhsOPT =
6497        lhs->getAsObjCInterfacePointerType()) {
6498    // If both the right and left sides have qualifiers.
6499    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6500         E = lhsOPT->qual_end(); I != E; ++I) {
6501      ObjCProtocolDecl *lhsProto = *I;
6502      bool match = false;
6503
6504      // when comparing an id<P> on rhs with a static type on lhs,
6505      // see if static class implements all of id's protocols, directly or
6506      // through its super class and categories.
6507      // First, lhs protocols in the qualifier list must be found, direct
6508      // or indirect in rhs's qualifier list or it is a mismatch.
6509      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6510           E = rhsQID->qual_end(); J != E; ++J) {
6511        ObjCProtocolDecl *rhsProto = *J;
6512        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6513            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6514          match = true;
6515          break;
6516        }
6517      }
6518      if (!match)
6519        return false;
6520    }
6521
6522    // Static class's protocols, or its super class or category protocols
6523    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6524    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6525      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6526      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6527      // This is rather dubious but matches gcc's behavior. If lhs has
6528      // no type qualifier and its class has no static protocol(s)
6529      // assume that it is mismatch.
6530      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6531        return false;
6532      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6533           LHSInheritedProtocols.begin(),
6534           E = LHSInheritedProtocols.end(); I != E; ++I) {
6535        bool match = false;
6536        ObjCProtocolDecl *lhsProto = (*I);
6537        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6538             E = rhsQID->qual_end(); J != E; ++J) {
6539          ObjCProtocolDecl *rhsProto = *J;
6540          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6541              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6542            match = true;
6543            break;
6544          }
6545        }
6546        if (!match)
6547          return false;
6548      }
6549    }
6550    return true;
6551  }
6552  return false;
6553}
6554
6555/// canAssignObjCInterfaces - Return true if the two interface types are
6556/// compatible for assignment from RHS to LHS.  This handles validation of any
6557/// protocol qualifiers on the LHS or RHS.
6558///
6559bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6560                                         const ObjCObjectPointerType *RHSOPT) {
6561  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6562  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6563
6564  // If either type represents the built-in 'id' or 'Class' types, return true.
6565  if (LHS->isObjCUnqualifiedIdOrClass() ||
6566      RHS->isObjCUnqualifiedIdOrClass())
6567    return true;
6568
6569  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6570    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6571                                             QualType(RHSOPT,0),
6572                                             false);
6573
6574  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6575    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6576                                                QualType(RHSOPT,0));
6577
6578  // If we have 2 user-defined types, fall into that path.
6579  if (LHS->getInterface() && RHS->getInterface())
6580    return canAssignObjCInterfaces(LHS, RHS);
6581
6582  return false;
6583}
6584
6585/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6586/// for providing type-safety for objective-c pointers used to pass/return
6587/// arguments in block literals. When passed as arguments, passing 'A*' where
6588/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6589/// not OK. For the return type, the opposite is not OK.
6590bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6591                                         const ObjCObjectPointerType *LHSOPT,
6592                                         const ObjCObjectPointerType *RHSOPT,
6593                                         bool BlockReturnType) {
6594  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6595    return true;
6596
6597  if (LHSOPT->isObjCBuiltinType()) {
6598    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6599  }
6600
6601  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6602    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6603                                             QualType(RHSOPT,0),
6604                                             false);
6605
6606  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6607  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6608  if (LHS && RHS)  { // We have 2 user-defined types.
6609    if (LHS != RHS) {
6610      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6611        return BlockReturnType;
6612      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6613        return !BlockReturnType;
6614    }
6615    else
6616      return true;
6617  }
6618  return false;
6619}
6620
6621/// getIntersectionOfProtocols - This routine finds the intersection of set
6622/// of protocols inherited from two distinct objective-c pointer objects.
6623/// It is used to build composite qualifier list of the composite type of
6624/// the conditional expression involving two objective-c pointer objects.
6625static
6626void getIntersectionOfProtocols(ASTContext &Context,
6627                                const ObjCObjectPointerType *LHSOPT,
6628                                const ObjCObjectPointerType *RHSOPT,
6629      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6630
6631  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6632  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6633  assert(LHS->getInterface() && "LHS must have an interface base");
6634  assert(RHS->getInterface() && "RHS must have an interface base");
6635
6636  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6637  unsigned LHSNumProtocols = LHS->getNumProtocols();
6638  if (LHSNumProtocols > 0)
6639    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6640  else {
6641    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6642    Context.CollectInheritedProtocols(LHS->getInterface(),
6643                                      LHSInheritedProtocols);
6644    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6645                                LHSInheritedProtocols.end());
6646  }
6647
6648  unsigned RHSNumProtocols = RHS->getNumProtocols();
6649  if (RHSNumProtocols > 0) {
6650    ObjCProtocolDecl **RHSProtocols =
6651      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6652    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6653      if (InheritedProtocolSet.count(RHSProtocols[i]))
6654        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6655  } else {
6656    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6657    Context.CollectInheritedProtocols(RHS->getInterface(),
6658                                      RHSInheritedProtocols);
6659    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6660         RHSInheritedProtocols.begin(),
6661         E = RHSInheritedProtocols.end(); I != E; ++I)
6662      if (InheritedProtocolSet.count((*I)))
6663        IntersectionOfProtocols.push_back((*I));
6664  }
6665}
6666
6667/// areCommonBaseCompatible - Returns common base class of the two classes if
6668/// one found. Note that this is O'2 algorithm. But it will be called as the
6669/// last type comparison in a ?-exp of ObjC pointer types before a
6670/// warning is issued. So, its invokation is extremely rare.
6671QualType ASTContext::areCommonBaseCompatible(
6672                                          const ObjCObjectPointerType *Lptr,
6673                                          const ObjCObjectPointerType *Rptr) {
6674  const ObjCObjectType *LHS = Lptr->getObjectType();
6675  const ObjCObjectType *RHS = Rptr->getObjectType();
6676  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6677  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6678  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6679    return QualType();
6680
6681  do {
6682    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6683    if (canAssignObjCInterfaces(LHS, RHS)) {
6684      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6685      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6686
6687      QualType Result = QualType(LHS, 0);
6688      if (!Protocols.empty())
6689        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6690      Result = getObjCObjectPointerType(Result);
6691      return Result;
6692    }
6693  } while ((LDecl = LDecl->getSuperClass()));
6694
6695  return QualType();
6696}
6697
6698bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6699                                         const ObjCObjectType *RHS) {
6700  assert(LHS->getInterface() && "LHS is not an interface type");
6701  assert(RHS->getInterface() && "RHS is not an interface type");
6702
6703  // Verify that the base decls are compatible: the RHS must be a subclass of
6704  // the LHS.
6705  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6706    return false;
6707
6708  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6709  // protocol qualified at all, then we are good.
6710  if (LHS->getNumProtocols() == 0)
6711    return true;
6712
6713  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6714  // more detailed analysis is required.
6715  if (RHS->getNumProtocols() == 0) {
6716    // OK, if LHS is a superclass of RHS *and*
6717    // this superclass is assignment compatible with LHS.
6718    // false otherwise.
6719    bool IsSuperClass =
6720      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6721    if (IsSuperClass) {
6722      // OK if conversion of LHS to SuperClass results in narrowing of types
6723      // ; i.e., SuperClass may implement at least one of the protocols
6724      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6725      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6726      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6727      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6728      // If super class has no protocols, it is not a match.
6729      if (SuperClassInheritedProtocols.empty())
6730        return false;
6731
6732      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6733           LHSPE = LHS->qual_end();
6734           LHSPI != LHSPE; LHSPI++) {
6735        bool SuperImplementsProtocol = false;
6736        ObjCProtocolDecl *LHSProto = (*LHSPI);
6737
6738        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6739             SuperClassInheritedProtocols.begin(),
6740             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6741          ObjCProtocolDecl *SuperClassProto = (*I);
6742          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6743            SuperImplementsProtocol = true;
6744            break;
6745          }
6746        }
6747        if (!SuperImplementsProtocol)
6748          return false;
6749      }
6750      return true;
6751    }
6752    return false;
6753  }
6754
6755  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6756                                     LHSPE = LHS->qual_end();
6757       LHSPI != LHSPE; LHSPI++) {
6758    bool RHSImplementsProtocol = false;
6759
6760    // If the RHS doesn't implement the protocol on the left, the types
6761    // are incompatible.
6762    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6763                                       RHSPE = RHS->qual_end();
6764         RHSPI != RHSPE; RHSPI++) {
6765      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6766        RHSImplementsProtocol = true;
6767        break;
6768      }
6769    }
6770    // FIXME: For better diagnostics, consider passing back the protocol name.
6771    if (!RHSImplementsProtocol)
6772      return false;
6773  }
6774  // The RHS implements all protocols listed on the LHS.
6775  return true;
6776}
6777
6778bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6779  // get the "pointed to" types
6780  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6781  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6782
6783  if (!LHSOPT || !RHSOPT)
6784    return false;
6785
6786  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6787         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6788}
6789
6790bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6791  return canAssignObjCInterfaces(
6792                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6793                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6794}
6795
6796/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6797/// both shall have the identically qualified version of a compatible type.
6798/// C99 6.2.7p1: Two types have compatible types if their types are the
6799/// same. See 6.7.[2,3,5] for additional rules.
6800bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6801                                    bool CompareUnqualified) {
6802  if (getLangOpts().CPlusPlus)
6803    return hasSameType(LHS, RHS);
6804
6805  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6806}
6807
6808bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6809  return typesAreCompatible(LHS, RHS);
6810}
6811
6812bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6813  return !mergeTypes(LHS, RHS, true).isNull();
6814}
6815
6816/// mergeTransparentUnionType - if T is a transparent union type and a member
6817/// of T is compatible with SubType, return the merged type, else return
6818/// QualType()
6819QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6820                                               bool OfBlockPointer,
6821                                               bool Unqualified) {
6822  if (const RecordType *UT = T->getAsUnionType()) {
6823    RecordDecl *UD = UT->getDecl();
6824    if (UD->hasAttr<TransparentUnionAttr>()) {
6825      for (RecordDecl::field_iterator it = UD->field_begin(),
6826           itend = UD->field_end(); it != itend; ++it) {
6827        QualType ET = it->getType().getUnqualifiedType();
6828        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6829        if (!MT.isNull())
6830          return MT;
6831      }
6832    }
6833  }
6834
6835  return QualType();
6836}
6837
6838/// mergeFunctionArgumentTypes - merge two types which appear as function
6839/// argument types
6840QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6841                                                bool OfBlockPointer,
6842                                                bool Unqualified) {
6843  // GNU extension: two types are compatible if they appear as a function
6844  // argument, one of the types is a transparent union type and the other
6845  // type is compatible with a union member
6846  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6847                                              Unqualified);
6848  if (!lmerge.isNull())
6849    return lmerge;
6850
6851  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6852                                              Unqualified);
6853  if (!rmerge.isNull())
6854    return rmerge;
6855
6856  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6857}
6858
6859QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6860                                        bool OfBlockPointer,
6861                                        bool Unqualified) {
6862  const FunctionType *lbase = lhs->getAs<FunctionType>();
6863  const FunctionType *rbase = rhs->getAs<FunctionType>();
6864  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6865  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6866  bool allLTypes = true;
6867  bool allRTypes = true;
6868
6869  // Check return type
6870  QualType retType;
6871  if (OfBlockPointer) {
6872    QualType RHS = rbase->getResultType();
6873    QualType LHS = lbase->getResultType();
6874    bool UnqualifiedResult = Unqualified;
6875    if (!UnqualifiedResult)
6876      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6877    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6878  }
6879  else
6880    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6881                         Unqualified);
6882  if (retType.isNull()) return QualType();
6883
6884  if (Unqualified)
6885    retType = retType.getUnqualifiedType();
6886
6887  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6888  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6889  if (Unqualified) {
6890    LRetType = LRetType.getUnqualifiedType();
6891    RRetType = RRetType.getUnqualifiedType();
6892  }
6893
6894  if (getCanonicalType(retType) != LRetType)
6895    allLTypes = false;
6896  if (getCanonicalType(retType) != RRetType)
6897    allRTypes = false;
6898
6899  // FIXME: double check this
6900  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6901  //                           rbase->getRegParmAttr() != 0 &&
6902  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6903  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6904  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6905
6906  // Compatible functions must have compatible calling conventions
6907  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6908    return QualType();
6909
6910  // Regparm is part of the calling convention.
6911  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6912    return QualType();
6913  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6914    return QualType();
6915
6916  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6917    return QualType();
6918
6919  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6920  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6921
6922  if (lbaseInfo.getNoReturn() != NoReturn)
6923    allLTypes = false;
6924  if (rbaseInfo.getNoReturn() != NoReturn)
6925    allRTypes = false;
6926
6927  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6928
6929  if (lproto && rproto) { // two C99 style function prototypes
6930    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6931           "C++ shouldn't be here");
6932    unsigned lproto_nargs = lproto->getNumArgs();
6933    unsigned rproto_nargs = rproto->getNumArgs();
6934
6935    // Compatible functions must have the same number of arguments
6936    if (lproto_nargs != rproto_nargs)
6937      return QualType();
6938
6939    // Variadic and non-variadic functions aren't compatible
6940    if (lproto->isVariadic() != rproto->isVariadic())
6941      return QualType();
6942
6943    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6944      return QualType();
6945
6946    if (LangOpts.ObjCAutoRefCount &&
6947        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6948      return QualType();
6949
6950    // Check argument compatibility
6951    SmallVector<QualType, 10> types;
6952    for (unsigned i = 0; i < lproto_nargs; i++) {
6953      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6954      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6955      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6956                                                    OfBlockPointer,
6957                                                    Unqualified);
6958      if (argtype.isNull()) return QualType();
6959
6960      if (Unqualified)
6961        argtype = argtype.getUnqualifiedType();
6962
6963      types.push_back(argtype);
6964      if (Unqualified) {
6965        largtype = largtype.getUnqualifiedType();
6966        rargtype = rargtype.getUnqualifiedType();
6967      }
6968
6969      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6970        allLTypes = false;
6971      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6972        allRTypes = false;
6973    }
6974
6975    if (allLTypes) return lhs;
6976    if (allRTypes) return rhs;
6977
6978    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6979    EPI.ExtInfo = einfo;
6980    return getFunctionType(retType, types, EPI);
6981  }
6982
6983  if (lproto) allRTypes = false;
6984  if (rproto) allLTypes = false;
6985
6986  const FunctionProtoType *proto = lproto ? lproto : rproto;
6987  if (proto) {
6988    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6989    if (proto->isVariadic()) return QualType();
6990    // Check that the types are compatible with the types that
6991    // would result from default argument promotions (C99 6.7.5.3p15).
6992    // The only types actually affected are promotable integer
6993    // types and floats, which would be passed as a different
6994    // type depending on whether the prototype is visible.
6995    unsigned proto_nargs = proto->getNumArgs();
6996    for (unsigned i = 0; i < proto_nargs; ++i) {
6997      QualType argTy = proto->getArgType(i);
6998
6999      // Look at the converted type of enum types, since that is the type used
7000      // to pass enum values.
7001      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
7002        argTy = Enum->getDecl()->getIntegerType();
7003        if (argTy.isNull())
7004          return QualType();
7005      }
7006
7007      if (argTy->isPromotableIntegerType() ||
7008          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
7009        return QualType();
7010    }
7011
7012    if (allLTypes) return lhs;
7013    if (allRTypes) return rhs;
7014
7015    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7016    EPI.ExtInfo = einfo;
7017    return getFunctionType(retType,
7018                           ArrayRef<QualType>(proto->arg_type_begin(),
7019                                              proto->getNumArgs()),
7020                           EPI);
7021  }
7022
7023  if (allLTypes) return lhs;
7024  if (allRTypes) return rhs;
7025  return getFunctionNoProtoType(retType, einfo);
7026}
7027
7028/// Given that we have an enum type and a non-enum type, try to merge them.
7029static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7030                                     QualType other, bool isBlockReturnType) {
7031  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7032  // a signed integer type, or an unsigned integer type.
7033  // Compatibility is based on the underlying type, not the promotion
7034  // type.
7035  QualType underlyingType = ET->getDecl()->getIntegerType();
7036  if (underlyingType.isNull()) return QualType();
7037  if (Context.hasSameType(underlyingType, other))
7038    return other;
7039
7040  // In block return types, we're more permissive and accept any
7041  // integral type of the same size.
7042  if (isBlockReturnType && other->isIntegerType() &&
7043      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7044    return other;
7045
7046  return QualType();
7047}
7048
7049QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7050                                bool OfBlockPointer,
7051                                bool Unqualified, bool BlockReturnType) {
7052  // C++ [expr]: If an expression initially has the type "reference to T", the
7053  // type is adjusted to "T" prior to any further analysis, the expression
7054  // designates the object or function denoted by the reference, and the
7055  // expression is an lvalue unless the reference is an rvalue reference and
7056  // the expression is a function call (possibly inside parentheses).
7057  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7058  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7059
7060  if (Unqualified) {
7061    LHS = LHS.getUnqualifiedType();
7062    RHS = RHS.getUnqualifiedType();
7063  }
7064
7065  QualType LHSCan = getCanonicalType(LHS),
7066           RHSCan = getCanonicalType(RHS);
7067
7068  // If two types are identical, they are compatible.
7069  if (LHSCan == RHSCan)
7070    return LHS;
7071
7072  // If the qualifiers are different, the types aren't compatible... mostly.
7073  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7074  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7075  if (LQuals != RQuals) {
7076    // If any of these qualifiers are different, we have a type
7077    // mismatch.
7078    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7079        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7080        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7081      return QualType();
7082
7083    // Exactly one GC qualifier difference is allowed: __strong is
7084    // okay if the other type has no GC qualifier but is an Objective
7085    // C object pointer (i.e. implicitly strong by default).  We fix
7086    // this by pretending that the unqualified type was actually
7087    // qualified __strong.
7088    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7089    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7090    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7091
7092    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7093      return QualType();
7094
7095    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7096      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7097    }
7098    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7099      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7100    }
7101    return QualType();
7102  }
7103
7104  // Okay, qualifiers are equal.
7105
7106  Type::TypeClass LHSClass = LHSCan->getTypeClass();
7107  Type::TypeClass RHSClass = RHSCan->getTypeClass();
7108
7109  // We want to consider the two function types to be the same for these
7110  // comparisons, just force one to the other.
7111  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7112  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7113
7114  // Same as above for arrays
7115  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7116    LHSClass = Type::ConstantArray;
7117  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7118    RHSClass = Type::ConstantArray;
7119
7120  // ObjCInterfaces are just specialized ObjCObjects.
7121  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7122  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7123
7124  // Canonicalize ExtVector -> Vector.
7125  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7126  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7127
7128  // If the canonical type classes don't match.
7129  if (LHSClass != RHSClass) {
7130    // Note that we only have special rules for turning block enum
7131    // returns into block int returns, not vice-versa.
7132    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7133      return mergeEnumWithInteger(*this, ETy, RHS, false);
7134    }
7135    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7136      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7137    }
7138    // allow block pointer type to match an 'id' type.
7139    if (OfBlockPointer && !BlockReturnType) {
7140       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7141         return LHS;
7142      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7143        return RHS;
7144    }
7145
7146    return QualType();
7147  }
7148
7149  // The canonical type classes match.
7150  switch (LHSClass) {
7151#define TYPE(Class, Base)
7152#define ABSTRACT_TYPE(Class, Base)
7153#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7154#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7155#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7156#include "clang/AST/TypeNodes.def"
7157    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7158
7159  case Type::Auto:
7160  case Type::LValueReference:
7161  case Type::RValueReference:
7162  case Type::MemberPointer:
7163    llvm_unreachable("C++ should never be in mergeTypes");
7164
7165  case Type::ObjCInterface:
7166  case Type::IncompleteArray:
7167  case Type::VariableArray:
7168  case Type::FunctionProto:
7169  case Type::ExtVector:
7170    llvm_unreachable("Types are eliminated above");
7171
7172  case Type::Pointer:
7173  {
7174    // Merge two pointer types, while trying to preserve typedef info
7175    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7176    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7177    if (Unqualified) {
7178      LHSPointee = LHSPointee.getUnqualifiedType();
7179      RHSPointee = RHSPointee.getUnqualifiedType();
7180    }
7181    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7182                                     Unqualified);
7183    if (ResultType.isNull()) return QualType();
7184    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7185      return LHS;
7186    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7187      return RHS;
7188    return getPointerType(ResultType);
7189  }
7190  case Type::BlockPointer:
7191  {
7192    // Merge two block pointer types, while trying to preserve typedef info
7193    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7194    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7195    if (Unqualified) {
7196      LHSPointee = LHSPointee.getUnqualifiedType();
7197      RHSPointee = RHSPointee.getUnqualifiedType();
7198    }
7199    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7200                                     Unqualified);
7201    if (ResultType.isNull()) return QualType();
7202    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7203      return LHS;
7204    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7205      return RHS;
7206    return getBlockPointerType(ResultType);
7207  }
7208  case Type::Atomic:
7209  {
7210    // Merge two pointer types, while trying to preserve typedef info
7211    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7212    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7213    if (Unqualified) {
7214      LHSValue = LHSValue.getUnqualifiedType();
7215      RHSValue = RHSValue.getUnqualifiedType();
7216    }
7217    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7218                                     Unqualified);
7219    if (ResultType.isNull()) return QualType();
7220    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7221      return LHS;
7222    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7223      return RHS;
7224    return getAtomicType(ResultType);
7225  }
7226  case Type::ConstantArray:
7227  {
7228    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7229    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7230    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7231      return QualType();
7232
7233    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7234    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7235    if (Unqualified) {
7236      LHSElem = LHSElem.getUnqualifiedType();
7237      RHSElem = RHSElem.getUnqualifiedType();
7238    }
7239
7240    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7241    if (ResultType.isNull()) return QualType();
7242    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7243      return LHS;
7244    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7245      return RHS;
7246    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7247                                          ArrayType::ArraySizeModifier(), 0);
7248    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7249                                          ArrayType::ArraySizeModifier(), 0);
7250    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7251    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7252    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7253      return LHS;
7254    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7255      return RHS;
7256    if (LVAT) {
7257      // FIXME: This isn't correct! But tricky to implement because
7258      // the array's size has to be the size of LHS, but the type
7259      // has to be different.
7260      return LHS;
7261    }
7262    if (RVAT) {
7263      // FIXME: This isn't correct! But tricky to implement because
7264      // the array's size has to be the size of RHS, but the type
7265      // has to be different.
7266      return RHS;
7267    }
7268    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7269    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7270    return getIncompleteArrayType(ResultType,
7271                                  ArrayType::ArraySizeModifier(), 0);
7272  }
7273  case Type::FunctionNoProto:
7274    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7275  case Type::Record:
7276  case Type::Enum:
7277    return QualType();
7278  case Type::Builtin:
7279    // Only exactly equal builtin types are compatible, which is tested above.
7280    return QualType();
7281  case Type::Complex:
7282    // Distinct complex types are incompatible.
7283    return QualType();
7284  case Type::Vector:
7285    // FIXME: The merged type should be an ExtVector!
7286    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7287                             RHSCan->getAs<VectorType>()))
7288      return LHS;
7289    return QualType();
7290  case Type::ObjCObject: {
7291    // Check if the types are assignment compatible.
7292    // FIXME: This should be type compatibility, e.g. whether
7293    // "LHS x; RHS x;" at global scope is legal.
7294    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7295    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7296    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7297      return LHS;
7298
7299    return QualType();
7300  }
7301  case Type::ObjCObjectPointer: {
7302    if (OfBlockPointer) {
7303      if (canAssignObjCInterfacesInBlockPointer(
7304                                          LHS->getAs<ObjCObjectPointerType>(),
7305                                          RHS->getAs<ObjCObjectPointerType>(),
7306                                          BlockReturnType))
7307        return LHS;
7308      return QualType();
7309    }
7310    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7311                                RHS->getAs<ObjCObjectPointerType>()))
7312      return LHS;
7313
7314    return QualType();
7315  }
7316  }
7317
7318  llvm_unreachable("Invalid Type::Class!");
7319}
7320
7321bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7322                   const FunctionProtoType *FromFunctionType,
7323                   const FunctionProtoType *ToFunctionType) {
7324  if (FromFunctionType->hasAnyConsumedArgs() !=
7325      ToFunctionType->hasAnyConsumedArgs())
7326    return false;
7327  FunctionProtoType::ExtProtoInfo FromEPI =
7328    FromFunctionType->getExtProtoInfo();
7329  FunctionProtoType::ExtProtoInfo ToEPI =
7330    ToFunctionType->getExtProtoInfo();
7331  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7332    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7333         ArgIdx != NumArgs; ++ArgIdx)  {
7334      if (FromEPI.ConsumedArguments[ArgIdx] !=
7335          ToEPI.ConsumedArguments[ArgIdx])
7336        return false;
7337    }
7338  return true;
7339}
7340
7341/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7342/// 'RHS' attributes and returns the merged version; including for function
7343/// return types.
7344QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7345  QualType LHSCan = getCanonicalType(LHS),
7346  RHSCan = getCanonicalType(RHS);
7347  // If two types are identical, they are compatible.
7348  if (LHSCan == RHSCan)
7349    return LHS;
7350  if (RHSCan->isFunctionType()) {
7351    if (!LHSCan->isFunctionType())
7352      return QualType();
7353    QualType OldReturnType =
7354      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7355    QualType NewReturnType =
7356      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7357    QualType ResReturnType =
7358      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7359    if (ResReturnType.isNull())
7360      return QualType();
7361    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7362      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7363      // In either case, use OldReturnType to build the new function type.
7364      const FunctionType *F = LHS->getAs<FunctionType>();
7365      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7366        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7367        EPI.ExtInfo = getFunctionExtInfo(LHS);
7368        QualType ResultType
7369          = getFunctionType(OldReturnType,
7370                            ArrayRef<QualType>(FPT->arg_type_begin(),
7371                                               FPT->getNumArgs()),
7372                            EPI);
7373        return ResultType;
7374      }
7375    }
7376    return QualType();
7377  }
7378
7379  // If the qualifiers are different, the types can still be merged.
7380  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7381  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7382  if (LQuals != RQuals) {
7383    // If any of these qualifiers are different, we have a type mismatch.
7384    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7385        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7386      return QualType();
7387
7388    // Exactly one GC qualifier difference is allowed: __strong is
7389    // okay if the other type has no GC qualifier but is an Objective
7390    // C object pointer (i.e. implicitly strong by default).  We fix
7391    // this by pretending that the unqualified type was actually
7392    // qualified __strong.
7393    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7394    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7395    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7396
7397    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7398      return QualType();
7399
7400    if (GC_L == Qualifiers::Strong)
7401      return LHS;
7402    if (GC_R == Qualifiers::Strong)
7403      return RHS;
7404    return QualType();
7405  }
7406
7407  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7408    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7409    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7410    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7411    if (ResQT == LHSBaseQT)
7412      return LHS;
7413    if (ResQT == RHSBaseQT)
7414      return RHS;
7415  }
7416  return QualType();
7417}
7418
7419//===----------------------------------------------------------------------===//
7420//                         Integer Predicates
7421//===----------------------------------------------------------------------===//
7422
7423unsigned ASTContext::getIntWidth(QualType T) const {
7424  if (const EnumType *ET = dyn_cast<EnumType>(T))
7425    T = ET->getDecl()->getIntegerType();
7426  if (T->isBooleanType())
7427    return 1;
7428  // For builtin types, just use the standard type sizing method
7429  return (unsigned)getTypeSize(T);
7430}
7431
7432QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7433  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7434
7435  // Turn <4 x signed int> -> <4 x unsigned int>
7436  if (const VectorType *VTy = T->getAs<VectorType>())
7437    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7438                         VTy->getNumElements(), VTy->getVectorKind());
7439
7440  // For enums, we return the unsigned version of the base type.
7441  if (const EnumType *ETy = T->getAs<EnumType>())
7442    T = ETy->getDecl()->getIntegerType();
7443
7444  const BuiltinType *BTy = T->getAs<BuiltinType>();
7445  assert(BTy && "Unexpected signed integer type");
7446  switch (BTy->getKind()) {
7447  case BuiltinType::Char_S:
7448  case BuiltinType::SChar:
7449    return UnsignedCharTy;
7450  case BuiltinType::Short:
7451    return UnsignedShortTy;
7452  case BuiltinType::Int:
7453    return UnsignedIntTy;
7454  case BuiltinType::Long:
7455    return UnsignedLongTy;
7456  case BuiltinType::LongLong:
7457    return UnsignedLongLongTy;
7458  case BuiltinType::Int128:
7459    return UnsignedInt128Ty;
7460  default:
7461    llvm_unreachable("Unexpected signed integer type");
7462  }
7463}
7464
7465ASTMutationListener::~ASTMutationListener() { }
7466
7467void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
7468                                            QualType ReturnType) {}
7469
7470//===----------------------------------------------------------------------===//
7471//                          Builtin Type Computation
7472//===----------------------------------------------------------------------===//
7473
7474/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7475/// pointer over the consumed characters.  This returns the resultant type.  If
7476/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7477/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7478/// a vector of "i*".
7479///
7480/// RequiresICE is filled in on return to indicate whether the value is required
7481/// to be an Integer Constant Expression.
7482static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7483                                  ASTContext::GetBuiltinTypeError &Error,
7484                                  bool &RequiresICE,
7485                                  bool AllowTypeModifiers) {
7486  // Modifiers.
7487  int HowLong = 0;
7488  bool Signed = false, Unsigned = false;
7489  RequiresICE = false;
7490
7491  // Read the prefixed modifiers first.
7492  bool Done = false;
7493  while (!Done) {
7494    switch (*Str++) {
7495    default: Done = true; --Str; break;
7496    case 'I':
7497      RequiresICE = true;
7498      break;
7499    case 'S':
7500      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7501      assert(!Signed && "Can't use 'S' modifier multiple times!");
7502      Signed = true;
7503      break;
7504    case 'U':
7505      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7506      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7507      Unsigned = true;
7508      break;
7509    case 'L':
7510      assert(HowLong <= 2 && "Can't have LLLL modifier");
7511      ++HowLong;
7512      break;
7513    }
7514  }
7515
7516  QualType Type;
7517
7518  // Read the base type.
7519  switch (*Str++) {
7520  default: llvm_unreachable("Unknown builtin type letter!");
7521  case 'v':
7522    assert(HowLong == 0 && !Signed && !Unsigned &&
7523           "Bad modifiers used with 'v'!");
7524    Type = Context.VoidTy;
7525    break;
7526  case 'f':
7527    assert(HowLong == 0 && !Signed && !Unsigned &&
7528           "Bad modifiers used with 'f'!");
7529    Type = Context.FloatTy;
7530    break;
7531  case 'd':
7532    assert(HowLong < 2 && !Signed && !Unsigned &&
7533           "Bad modifiers used with 'd'!");
7534    if (HowLong)
7535      Type = Context.LongDoubleTy;
7536    else
7537      Type = Context.DoubleTy;
7538    break;
7539  case 's':
7540    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7541    if (Unsigned)
7542      Type = Context.UnsignedShortTy;
7543    else
7544      Type = Context.ShortTy;
7545    break;
7546  case 'i':
7547    if (HowLong == 3)
7548      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7549    else if (HowLong == 2)
7550      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7551    else if (HowLong == 1)
7552      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7553    else
7554      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7555    break;
7556  case 'c':
7557    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7558    if (Signed)
7559      Type = Context.SignedCharTy;
7560    else if (Unsigned)
7561      Type = Context.UnsignedCharTy;
7562    else
7563      Type = Context.CharTy;
7564    break;
7565  case 'b': // boolean
7566    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7567    Type = Context.BoolTy;
7568    break;
7569  case 'z':  // size_t.
7570    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7571    Type = Context.getSizeType();
7572    break;
7573  case 'F':
7574    Type = Context.getCFConstantStringType();
7575    break;
7576  case 'G':
7577    Type = Context.getObjCIdType();
7578    break;
7579  case 'H':
7580    Type = Context.getObjCSelType();
7581    break;
7582  case 'M':
7583    Type = Context.getObjCSuperType();
7584    break;
7585  case 'a':
7586    Type = Context.getBuiltinVaListType();
7587    assert(!Type.isNull() && "builtin va list type not initialized!");
7588    break;
7589  case 'A':
7590    // This is a "reference" to a va_list; however, what exactly
7591    // this means depends on how va_list is defined. There are two
7592    // different kinds of va_list: ones passed by value, and ones
7593    // passed by reference.  An example of a by-value va_list is
7594    // x86, where va_list is a char*. An example of by-ref va_list
7595    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7596    // we want this argument to be a char*&; for x86-64, we want
7597    // it to be a __va_list_tag*.
7598    Type = Context.getBuiltinVaListType();
7599    assert(!Type.isNull() && "builtin va list type not initialized!");
7600    if (Type->isArrayType())
7601      Type = Context.getArrayDecayedType(Type);
7602    else
7603      Type = Context.getLValueReferenceType(Type);
7604    break;
7605  case 'V': {
7606    char *End;
7607    unsigned NumElements = strtoul(Str, &End, 10);
7608    assert(End != Str && "Missing vector size");
7609    Str = End;
7610
7611    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7612                                             RequiresICE, false);
7613    assert(!RequiresICE && "Can't require vector ICE");
7614
7615    // TODO: No way to make AltiVec vectors in builtins yet.
7616    Type = Context.getVectorType(ElementType, NumElements,
7617                                 VectorType::GenericVector);
7618    break;
7619  }
7620  case 'E': {
7621    char *End;
7622
7623    unsigned NumElements = strtoul(Str, &End, 10);
7624    assert(End != Str && "Missing vector size");
7625
7626    Str = End;
7627
7628    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7629                                             false);
7630    Type = Context.getExtVectorType(ElementType, NumElements);
7631    break;
7632  }
7633  case 'X': {
7634    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7635                                             false);
7636    assert(!RequiresICE && "Can't require complex ICE");
7637    Type = Context.getComplexType(ElementType);
7638    break;
7639  }
7640  case 'Y' : {
7641    Type = Context.getPointerDiffType();
7642    break;
7643  }
7644  case 'P':
7645    Type = Context.getFILEType();
7646    if (Type.isNull()) {
7647      Error = ASTContext::GE_Missing_stdio;
7648      return QualType();
7649    }
7650    break;
7651  case 'J':
7652    if (Signed)
7653      Type = Context.getsigjmp_bufType();
7654    else
7655      Type = Context.getjmp_bufType();
7656
7657    if (Type.isNull()) {
7658      Error = ASTContext::GE_Missing_setjmp;
7659      return QualType();
7660    }
7661    break;
7662  case 'K':
7663    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7664    Type = Context.getucontext_tType();
7665
7666    if (Type.isNull()) {
7667      Error = ASTContext::GE_Missing_ucontext;
7668      return QualType();
7669    }
7670    break;
7671  case 'p':
7672    Type = Context.getProcessIDType();
7673    break;
7674  }
7675
7676  // If there are modifiers and if we're allowed to parse them, go for it.
7677  Done = !AllowTypeModifiers;
7678  while (!Done) {
7679    switch (char c = *Str++) {
7680    default: Done = true; --Str; break;
7681    case '*':
7682    case '&': {
7683      // Both pointers and references can have their pointee types
7684      // qualified with an address space.
7685      char *End;
7686      unsigned AddrSpace = strtoul(Str, &End, 10);
7687      if (End != Str && AddrSpace != 0) {
7688        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7689        Str = End;
7690      }
7691      if (c == '*')
7692        Type = Context.getPointerType(Type);
7693      else
7694        Type = Context.getLValueReferenceType(Type);
7695      break;
7696    }
7697    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7698    case 'C':
7699      Type = Type.withConst();
7700      break;
7701    case 'D':
7702      Type = Context.getVolatileType(Type);
7703      break;
7704    case 'R':
7705      Type = Type.withRestrict();
7706      break;
7707    }
7708  }
7709
7710  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7711         "Integer constant 'I' type must be an integer");
7712
7713  return Type;
7714}
7715
7716/// GetBuiltinType - Return the type for the specified builtin.
7717QualType ASTContext::GetBuiltinType(unsigned Id,
7718                                    GetBuiltinTypeError &Error,
7719                                    unsigned *IntegerConstantArgs) const {
7720  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7721
7722  SmallVector<QualType, 8> ArgTypes;
7723
7724  bool RequiresICE = false;
7725  Error = GE_None;
7726  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7727                                       RequiresICE, true);
7728  if (Error != GE_None)
7729    return QualType();
7730
7731  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7732
7733  while (TypeStr[0] && TypeStr[0] != '.') {
7734    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7735    if (Error != GE_None)
7736      return QualType();
7737
7738    // If this argument is required to be an IntegerConstantExpression and the
7739    // caller cares, fill in the bitmask we return.
7740    if (RequiresICE && IntegerConstantArgs)
7741      *IntegerConstantArgs |= 1 << ArgTypes.size();
7742
7743    // Do array -> pointer decay.  The builtin should use the decayed type.
7744    if (Ty->isArrayType())
7745      Ty = getArrayDecayedType(Ty);
7746
7747    ArgTypes.push_back(Ty);
7748  }
7749
7750  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7751         "'.' should only occur at end of builtin type list!");
7752
7753  FunctionType::ExtInfo EI;
7754  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7755
7756  bool Variadic = (TypeStr[0] == '.');
7757
7758  // We really shouldn't be making a no-proto type here, especially in C++.
7759  if (ArgTypes.empty() && Variadic)
7760    return getFunctionNoProtoType(ResType, EI);
7761
7762  FunctionProtoType::ExtProtoInfo EPI;
7763  EPI.ExtInfo = EI;
7764  EPI.Variadic = Variadic;
7765
7766  return getFunctionType(ResType, ArgTypes, EPI);
7767}
7768
7769GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7770  GVALinkage External = GVA_StrongExternal;
7771
7772  Linkage L = FD->getLinkage();
7773  switch (L) {
7774  case NoLinkage:
7775  case InternalLinkage:
7776  case UniqueExternalLinkage:
7777    return GVA_Internal;
7778
7779  case ExternalLinkage:
7780    switch (FD->getTemplateSpecializationKind()) {
7781    case TSK_Undeclared:
7782    case TSK_ExplicitSpecialization:
7783      External = GVA_StrongExternal;
7784      break;
7785
7786    case TSK_ExplicitInstantiationDefinition:
7787      return GVA_ExplicitTemplateInstantiation;
7788
7789    case TSK_ExplicitInstantiationDeclaration:
7790    case TSK_ImplicitInstantiation:
7791      External = GVA_TemplateInstantiation;
7792      break;
7793    }
7794  }
7795
7796  if (!FD->isInlined())
7797    return External;
7798
7799  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7800    // GNU or C99 inline semantics. Determine whether this symbol should be
7801    // externally visible.
7802    if (FD->isInlineDefinitionExternallyVisible())
7803      return External;
7804
7805    // C99 inline semantics, where the symbol is not externally visible.
7806    return GVA_C99Inline;
7807  }
7808
7809  // C++0x [temp.explicit]p9:
7810  //   [ Note: The intent is that an inline function that is the subject of
7811  //   an explicit instantiation declaration will still be implicitly
7812  //   instantiated when used so that the body can be considered for
7813  //   inlining, but that no out-of-line copy of the inline function would be
7814  //   generated in the translation unit. -- end note ]
7815  if (FD->getTemplateSpecializationKind()
7816                                       == TSK_ExplicitInstantiationDeclaration)
7817    return GVA_C99Inline;
7818
7819  return GVA_CXXInline;
7820}
7821
7822GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7823  // If this is a static data member, compute the kind of template
7824  // specialization. Otherwise, this variable is not part of a
7825  // template.
7826  TemplateSpecializationKind TSK = TSK_Undeclared;
7827  if (VD->isStaticDataMember())
7828    TSK = VD->getTemplateSpecializationKind();
7829
7830  Linkage L = VD->getLinkage();
7831
7832  switch (L) {
7833  case NoLinkage:
7834  case InternalLinkage:
7835  case UniqueExternalLinkage:
7836    return GVA_Internal;
7837
7838  case ExternalLinkage:
7839    switch (TSK) {
7840    case TSK_Undeclared:
7841    case TSK_ExplicitSpecialization:
7842      return GVA_StrongExternal;
7843
7844    case TSK_ExplicitInstantiationDeclaration:
7845      llvm_unreachable("Variable should not be instantiated");
7846      // Fall through to treat this like any other instantiation.
7847
7848    case TSK_ExplicitInstantiationDefinition:
7849      return GVA_ExplicitTemplateInstantiation;
7850
7851    case TSK_ImplicitInstantiation:
7852      return GVA_TemplateInstantiation;
7853    }
7854  }
7855
7856  llvm_unreachable("Invalid Linkage!");
7857}
7858
7859bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7860  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7861    if (!VD->isFileVarDecl())
7862      return false;
7863  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7864    // We never need to emit an uninstantiated function template.
7865    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7866      return false;
7867  } else
7868    return false;
7869
7870  // If this is a member of a class template, we do not need to emit it.
7871  if (D->getDeclContext()->isDependentContext())
7872    return false;
7873
7874  // Weak references don't produce any output by themselves.
7875  if (D->hasAttr<WeakRefAttr>())
7876    return false;
7877
7878  // Aliases and used decls are required.
7879  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7880    return true;
7881
7882  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7883    // Forward declarations aren't required.
7884    if (!FD->doesThisDeclarationHaveABody())
7885      return FD->doesDeclarationForceExternallyVisibleDefinition();
7886
7887    // Constructors and destructors are required.
7888    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7889      return true;
7890
7891    // The key function for a class is required.  This rule only comes
7892    // into play when inline functions can be key functions, though.
7893    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7894      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7895        const CXXRecordDecl *RD = MD->getParent();
7896        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7897          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7898          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7899            return true;
7900        }
7901      }
7902    }
7903
7904    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7905
7906    // static, static inline, always_inline, and extern inline functions can
7907    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7908    // Implicit template instantiations can also be deferred in C++.
7909    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7910        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7911      return false;
7912    return true;
7913  }
7914
7915  const VarDecl *VD = cast<VarDecl>(D);
7916  assert(VD->isFileVarDecl() && "Expected file scoped var");
7917
7918  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7919    return false;
7920
7921  // Variables that can be needed in other TUs are required.
7922  GVALinkage L = GetGVALinkageForVariable(VD);
7923  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7924    return true;
7925
7926  // Variables that have destruction with side-effects are required.
7927  if (VD->getType().isDestructedType())
7928    return true;
7929
7930  // Variables that have initialization with side-effects are required.
7931  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7932    return true;
7933
7934  return false;
7935}
7936
7937CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7938  // Pass through to the C++ ABI object
7939  return ABI->getDefaultMethodCallConv(isVariadic);
7940}
7941
7942CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7943  if (CC == CC_C && !LangOpts.MRTD &&
7944      getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7945    return CC_Default;
7946  return CC;
7947}
7948
7949bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7950  // Pass through to the C++ ABI object
7951  return ABI->isNearlyEmpty(RD);
7952}
7953
7954MangleContext *ASTContext::createMangleContext() {
7955  switch (Target->getCXXABI().getKind()) {
7956  case TargetCXXABI::GenericAArch64:
7957  case TargetCXXABI::GenericItanium:
7958  case TargetCXXABI::GenericARM:
7959  case TargetCXXABI::iOS:
7960    return createItaniumMangleContext(*this, getDiagnostics());
7961  case TargetCXXABI::Microsoft:
7962    return createMicrosoftMangleContext(*this, getDiagnostics());
7963  }
7964  llvm_unreachable("Unsupported ABI");
7965}
7966
7967CXXABI::~CXXABI() {}
7968
7969size_t ASTContext::getSideTableAllocatedMemory() const {
7970  return ASTRecordLayouts.getMemorySize()
7971    + llvm::capacity_in_bytes(ObjCLayouts)
7972    + llvm::capacity_in_bytes(KeyFunctions)
7973    + llvm::capacity_in_bytes(ObjCImpls)
7974    + llvm::capacity_in_bytes(BlockVarCopyInits)
7975    + llvm::capacity_in_bytes(DeclAttrs)
7976    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7977    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7978    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7979    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7980    + llvm::capacity_in_bytes(OverriddenMethods)
7981    + llvm::capacity_in_bytes(Types)
7982    + llvm::capacity_in_bytes(VariableArrayTypes)
7983    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7984}
7985
7986void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7987  // FIXME: This mangling should be applied to function local classes too
7988  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7989      !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
7990    return;
7991
7992  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7993    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7994  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7995}
7996
7997int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7998  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7999    UnnamedMangleNumbers.find(Tag);
8000  return I != UnnamedMangleNumbers.end() ? I->second : -1;
8001}
8002
8003unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
8004  CXXRecordDecl *Lambda = CallOperator->getParent();
8005  return LambdaMangleContexts[Lambda->getDeclContext()]
8006           .getManglingNumber(CallOperator);
8007}
8008
8009
8010void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
8011  ParamIndices[D] = index;
8012}
8013
8014unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
8015  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8016  assert(I != ParamIndices.end() &&
8017         "ParmIndices lacks entry set by ParmVarDecl");
8018  return I->second;
8019}
8020