ASTContext.cpp revision a4923eb7c4b04d360cb2747641a5e92818edf804
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include "RecordLayoutBuilder.h"
30
31using namespace clang;
32
33enum FloatingRank {
34  FloatRank, DoubleRank, LongDoubleRank
35};
36
37ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
38                       const TargetInfo &t,
39                       IdentifierTable &idents, SelectorTable &sels,
40                       Builtin::Context &builtins,
41                       bool FreeMem, unsigned size_reserve) :
42  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
43  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
44  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
45  SourceMgr(SM), LangOpts(LOpts),
46  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
47  Idents(idents), Selectors(sels),
48  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
49  ObjCIdRedefinitionType = QualType();
50  ObjCClassRedefinitionType = QualType();
51  if (size_reserve > 0) Types.reserve(size_reserve);
52  TUDecl = TranslationUnitDecl::Create(*this);
53  InitBuiltinTypes();
54}
55
56ASTContext::~ASTContext() {
57  // Deallocate all the types.
58  while (!Types.empty()) {
59    Types.back()->Destroy(*this);
60    Types.pop_back();
61  }
62
63  {
64    llvm::FoldingSet<ExtQuals>::iterator
65      I = ExtQualNodes.begin(), E = ExtQualNodes.end();
66    while (I != E)
67      Deallocate(&*I++);
68  }
69
70  {
71    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
72      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
73    while (I != E) {
74      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
75      delete R;
76    }
77  }
78
79  {
80    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
81      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
82    while (I != E) {
83      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
84      delete R;
85    }
86  }
87
88  // Destroy nested-name-specifiers.
89  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
90         NNS = NestedNameSpecifiers.begin(),
91         NNSEnd = NestedNameSpecifiers.end();
92       NNS != NNSEnd;
93       /* Increment in loop */)
94    (*NNS++).Destroy(*this);
95
96  if (GlobalNestedNameSpecifier)
97    GlobalNestedNameSpecifier->Destroy(*this);
98
99  TUDecl->Destroy(*this);
100}
101
102void
103ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
104  ExternalSource.reset(Source.take());
105}
106
107void ASTContext::PrintStats() const {
108  fprintf(stderr, "*** AST Context Stats:\n");
109  fprintf(stderr, "  %d types total.\n", (int)Types.size());
110
111  unsigned counts[] = {
112#define TYPE(Name, Parent) 0,
113#define ABSTRACT_TYPE(Name, Parent)
114#include "clang/AST/TypeNodes.def"
115    0 // Extra
116  };
117
118  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
119    Type *T = Types[i];
120    counts[(unsigned)T->getTypeClass()]++;
121  }
122
123  unsigned Idx = 0;
124  unsigned TotalBytes = 0;
125#define TYPE(Name, Parent)                                              \
126  if (counts[Idx])                                                      \
127    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
128  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
129  ++Idx;
130#define ABSTRACT_TYPE(Name, Parent)
131#include "clang/AST/TypeNodes.def"
132
133  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
134
135  if (ExternalSource.get()) {
136    fprintf(stderr, "\n");
137    ExternalSource->PrintStats();
138  }
139}
140
141
142void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
143  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
144  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
145  Types.push_back(Ty);
146}
147
148void ASTContext::InitBuiltinTypes() {
149  assert(VoidTy.isNull() && "Context reinitialized?");
150
151  // C99 6.2.5p19.
152  InitBuiltinType(VoidTy,              BuiltinType::Void);
153
154  // C99 6.2.5p2.
155  InitBuiltinType(BoolTy,              BuiltinType::Bool);
156  // C99 6.2.5p3.
157  if (LangOpts.CharIsSigned)
158    InitBuiltinType(CharTy,            BuiltinType::Char_S);
159  else
160    InitBuiltinType(CharTy,            BuiltinType::Char_U);
161  // C99 6.2.5p4.
162  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
163  InitBuiltinType(ShortTy,             BuiltinType::Short);
164  InitBuiltinType(IntTy,               BuiltinType::Int);
165  InitBuiltinType(LongTy,              BuiltinType::Long);
166  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
167
168  // C99 6.2.5p6.
169  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
170  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
171  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
172  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
173  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
174
175  // C99 6.2.5p10.
176  InitBuiltinType(FloatTy,             BuiltinType::Float);
177  InitBuiltinType(DoubleTy,            BuiltinType::Double);
178  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
179
180  // GNU extension, 128-bit integers.
181  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
182  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
183
184  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
185    InitBuiltinType(WCharTy,           BuiltinType::WChar);
186  else // C99
187    WCharTy = getFromTargetType(Target.getWCharType());
188
189  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
190    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
191  else // C99
192    Char16Ty = getFromTargetType(Target.getChar16Type());
193
194  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
195    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
196  else // C99
197    Char32Ty = getFromTargetType(Target.getChar32Type());
198
199  // Placeholder type for functions.
200  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
201
202  // Placeholder type for type-dependent expressions whose type is
203  // completely unknown. No code should ever check a type against
204  // DependentTy and users should never see it; however, it is here to
205  // help diagnose failures to properly check for type-dependent
206  // expressions.
207  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
208
209  // Placeholder type for C++0x auto declarations whose real type has
210  // not yet been deduced.
211  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
212
213  // C99 6.2.5p11.
214  FloatComplexTy      = getComplexType(FloatTy);
215  DoubleComplexTy     = getComplexType(DoubleTy);
216  LongDoubleComplexTy = getComplexType(LongDoubleTy);
217
218  BuiltinVaListType = QualType();
219
220  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
221  ObjCIdTypedefType = QualType();
222  ObjCClassTypedefType = QualType();
223
224  // Builtin types for 'id' and 'Class'.
225  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
226  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
227
228  ObjCConstantStringType = QualType();
229
230  // void * type
231  VoidPtrTy = getPointerType(VoidTy);
232
233  // nullptr type (C++0x 2.14.7)
234  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
235}
236
237MemberSpecializationInfo *
238ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
239  assert(Var->isStaticDataMember() && "Not a static data member");
240  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
241    = InstantiatedFromStaticDataMember.find(Var);
242  if (Pos == InstantiatedFromStaticDataMember.end())
243    return 0;
244
245  return Pos->second;
246}
247
248void
249ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
250                                                TemplateSpecializationKind TSK) {
251  assert(Inst->isStaticDataMember() && "Not a static data member");
252  assert(Tmpl->isStaticDataMember() && "Not a static data member");
253  assert(!InstantiatedFromStaticDataMember[Inst] &&
254         "Already noted what static data member was instantiated from");
255  InstantiatedFromStaticDataMember[Inst]
256    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
257}
258
259UnresolvedUsingDecl *
260ASTContext::getInstantiatedFromUnresolvedUsingDecl(UsingDecl *UUD) {
261  llvm::DenseMap<UsingDecl *, UnresolvedUsingDecl *>::const_iterator Pos
262    = InstantiatedFromUnresolvedUsingDecl.find(UUD);
263  if (Pos == InstantiatedFromUnresolvedUsingDecl.end())
264    return 0;
265
266  return Pos->second;
267}
268
269void
270ASTContext::setInstantiatedFromUnresolvedUsingDecl(UsingDecl *UD,
271                                                   UnresolvedUsingDecl *UUD) {
272  assert(!InstantiatedFromUnresolvedUsingDecl[UD] &&
273         "Already noted what using decl what instantiated from");
274  InstantiatedFromUnresolvedUsingDecl[UD] = UUD;
275}
276
277FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
278  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
279    = InstantiatedFromUnnamedFieldDecl.find(Field);
280  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
281    return 0;
282
283  return Pos->second;
284}
285
286void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
287                                                     FieldDecl *Tmpl) {
288  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
289  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
290  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
291         "Already noted what unnamed field was instantiated from");
292
293  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
294}
295
296namespace {
297  class BeforeInTranslationUnit
298    : std::binary_function<SourceRange, SourceRange, bool> {
299    SourceManager *SourceMgr;
300
301  public:
302    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
303
304    bool operator()(SourceRange X, SourceRange Y) {
305      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
306    }
307  };
308}
309
310/// \brief Determine whether the given comment is a Doxygen-style comment.
311///
312/// \param Start the start of the comment text.
313///
314/// \param End the end of the comment text.
315///
316/// \param Member whether we want to check whether this is a member comment
317/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
318/// we only return true when we find a non-member comment.
319static bool
320isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
321                 bool Member = false) {
322  const char *BufferStart
323    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
324  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
325  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
326
327  if (End - Start < 4)
328    return false;
329
330  assert(Start[0] == '/' && "Not a comment?");
331  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
332    return false;
333  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
334    return false;
335
336  return (Start[3] == '<') == Member;
337}
338
339/// \brief Retrieve the comment associated with the given declaration, if
340/// it has one.
341const char *ASTContext::getCommentForDecl(const Decl *D) {
342  if (!D)
343    return 0;
344
345  // Check whether we have cached a comment string for this declaration
346  // already.
347  llvm::DenseMap<const Decl *, std::string>::iterator Pos
348    = DeclComments.find(D);
349  if (Pos != DeclComments.end())
350    return Pos->second.c_str();
351
352  // If we have an external AST source and have not yet loaded comments from
353  // that source, do so now.
354  if (ExternalSource && !LoadedExternalComments) {
355    std::vector<SourceRange> LoadedComments;
356    ExternalSource->ReadComments(LoadedComments);
357
358    if (!LoadedComments.empty())
359      Comments.insert(Comments.begin(), LoadedComments.begin(),
360                      LoadedComments.end());
361
362    LoadedExternalComments = true;
363  }
364
365  // If there are no comments anywhere, we won't find anything.
366  if (Comments.empty())
367    return 0;
368
369  // If the declaration doesn't map directly to a location in a file, we
370  // can't find the comment.
371  SourceLocation DeclStartLoc = D->getLocStart();
372  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
373    return 0;
374
375  // Find the comment that occurs just before this declaration.
376  std::vector<SourceRange>::iterator LastComment
377    = std::lower_bound(Comments.begin(), Comments.end(),
378                       SourceRange(DeclStartLoc),
379                       BeforeInTranslationUnit(&SourceMgr));
380
381  // Decompose the location for the start of the declaration and find the
382  // beginning of the file buffer.
383  std::pair<FileID, unsigned> DeclStartDecomp
384    = SourceMgr.getDecomposedLoc(DeclStartLoc);
385  const char *FileBufferStart
386    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
387
388  // First check whether we have a comment for a member.
389  if (LastComment != Comments.end() &&
390      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
391      isDoxygenComment(SourceMgr, *LastComment, true)) {
392    std::pair<FileID, unsigned> LastCommentEndDecomp
393      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
394    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
395        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
396          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
397                                     LastCommentEndDecomp.second)) {
398      // The Doxygen member comment comes after the declaration starts and
399      // is on the same line and in the same file as the declaration. This
400      // is the comment we want.
401      std::string &Result = DeclComments[D];
402      Result.append(FileBufferStart +
403                      SourceMgr.getFileOffset(LastComment->getBegin()),
404                    FileBufferStart + LastCommentEndDecomp.second + 1);
405      return Result.c_str();
406    }
407  }
408
409  if (LastComment == Comments.begin())
410    return 0;
411  --LastComment;
412
413  // Decompose the end of the comment.
414  std::pair<FileID, unsigned> LastCommentEndDecomp
415    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
416
417  // If the comment and the declaration aren't in the same file, then they
418  // aren't related.
419  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
420    return 0;
421
422  // Check that we actually have a Doxygen comment.
423  if (!isDoxygenComment(SourceMgr, *LastComment))
424    return 0;
425
426  // Compute the starting line for the declaration and for the end of the
427  // comment (this is expensive).
428  unsigned DeclStartLine
429    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
430  unsigned CommentEndLine
431    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
432                              LastCommentEndDecomp.second);
433
434  // If the comment does not end on the line prior to the declaration, then
435  // the comment is not associated with the declaration at all.
436  if (CommentEndLine + 1 != DeclStartLine)
437    return 0;
438
439  // We have a comment, but there may be more comments on the previous lines.
440  // Keep looking so long as the comments are still Doxygen comments and are
441  // still adjacent.
442  unsigned ExpectedLine
443    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
444  std::vector<SourceRange>::iterator FirstComment = LastComment;
445  while (FirstComment != Comments.begin()) {
446    // Look at the previous comment
447    --FirstComment;
448    std::pair<FileID, unsigned> Decomp
449      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
450
451    // If this previous comment is in a different file, we're done.
452    if (Decomp.first != DeclStartDecomp.first) {
453      ++FirstComment;
454      break;
455    }
456
457    // If this comment is not a Doxygen comment, we're done.
458    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
459      ++FirstComment;
460      break;
461    }
462
463    // If the line number is not what we expected, we're done.
464    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
465    if (Line != ExpectedLine) {
466      ++FirstComment;
467      break;
468    }
469
470    // Set the next expected line number.
471    ExpectedLine
472      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
473  }
474
475  // The iterator range [FirstComment, LastComment] contains all of the
476  // BCPL comments that, together, are associated with this declaration.
477  // Form a single comment block string for this declaration that concatenates
478  // all of these comments.
479  std::string &Result = DeclComments[D];
480  while (FirstComment != LastComment) {
481    std::pair<FileID, unsigned> DecompStart
482      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
483    std::pair<FileID, unsigned> DecompEnd
484      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
485    Result.append(FileBufferStart + DecompStart.second,
486                  FileBufferStart + DecompEnd.second + 1);
487    ++FirstComment;
488  }
489
490  // Append the last comment line.
491  Result.append(FileBufferStart +
492                  SourceMgr.getFileOffset(LastComment->getBegin()),
493                FileBufferStart + LastCommentEndDecomp.second + 1);
494  return Result.c_str();
495}
496
497//===----------------------------------------------------------------------===//
498//                         Type Sizing and Analysis
499//===----------------------------------------------------------------------===//
500
501/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
502/// scalar floating point type.
503const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
504  const BuiltinType *BT = T->getAs<BuiltinType>();
505  assert(BT && "Not a floating point type!");
506  switch (BT->getKind()) {
507  default: assert(0 && "Not a floating point type!");
508  case BuiltinType::Float:      return Target.getFloatFormat();
509  case BuiltinType::Double:     return Target.getDoubleFormat();
510  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
511  }
512}
513
514/// getDeclAlignInBytes - Return a conservative estimate of the alignment of the
515/// specified decl.  Note that bitfields do not have a valid alignment, so
516/// this method will assert on them.
517unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
518  unsigned Align = Target.getCharWidth();
519
520  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
521    Align = std::max(Align, AA->getAlignment());
522
523  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
524    QualType T = VD->getType();
525    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
526      unsigned AS = RT->getPointeeType().getAddressSpace();
527      Align = Target.getPointerAlign(AS);
528    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
529      // Incomplete or function types default to 1.
530      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
531        T = cast<ArrayType>(T)->getElementType();
532
533      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
534    }
535  }
536
537  return Align / Target.getCharWidth();
538}
539
540/// getTypeSize - Return the size of the specified type, in bits.  This method
541/// does not work on incomplete types.
542///
543/// FIXME: Pointers into different addr spaces could have different sizes and
544/// alignment requirements: getPointerInfo should take an AddrSpace, this
545/// should take a QualType, &c.
546std::pair<uint64_t, unsigned>
547ASTContext::getTypeInfo(const Type *T) {
548  uint64_t Width=0;
549  unsigned Align=8;
550  switch (T->getTypeClass()) {
551#define TYPE(Class, Base)
552#define ABSTRACT_TYPE(Class, Base)
553#define NON_CANONICAL_TYPE(Class, Base)
554#define DEPENDENT_TYPE(Class, Base) case Type::Class:
555#include "clang/AST/TypeNodes.def"
556    assert(false && "Should not see dependent types");
557    break;
558
559  case Type::FunctionNoProto:
560  case Type::FunctionProto:
561    // GCC extension: alignof(function) = 32 bits
562    Width = 0;
563    Align = 32;
564    break;
565
566  case Type::IncompleteArray:
567  case Type::VariableArray:
568    Width = 0;
569    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
570    break;
571
572  case Type::ConstantArray: {
573    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
574
575    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
576    Width = EltInfo.first*CAT->getSize().getZExtValue();
577    Align = EltInfo.second;
578    break;
579  }
580  case Type::ExtVector:
581  case Type::Vector: {
582    const VectorType *VT = cast<VectorType>(T);
583    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
584    Width = EltInfo.first*VT->getNumElements();
585    Align = Width;
586    // If the alignment is not a power of 2, round up to the next power of 2.
587    // This happens for non-power-of-2 length vectors.
588    if (VT->getNumElements() & (VT->getNumElements()-1)) {
589      Align = llvm::NextPowerOf2(Align);
590      Width = llvm::RoundUpToAlignment(Width, Align);
591    }
592    break;
593  }
594
595  case Type::Builtin:
596    switch (cast<BuiltinType>(T)->getKind()) {
597    default: assert(0 && "Unknown builtin type!");
598    case BuiltinType::Void:
599      // GCC extension: alignof(void) = 8 bits.
600      Width = 0;
601      Align = 8;
602      break;
603
604    case BuiltinType::Bool:
605      Width = Target.getBoolWidth();
606      Align = Target.getBoolAlign();
607      break;
608    case BuiltinType::Char_S:
609    case BuiltinType::Char_U:
610    case BuiltinType::UChar:
611    case BuiltinType::SChar:
612      Width = Target.getCharWidth();
613      Align = Target.getCharAlign();
614      break;
615    case BuiltinType::WChar:
616      Width = Target.getWCharWidth();
617      Align = Target.getWCharAlign();
618      break;
619    case BuiltinType::Char16:
620      Width = Target.getChar16Width();
621      Align = Target.getChar16Align();
622      break;
623    case BuiltinType::Char32:
624      Width = Target.getChar32Width();
625      Align = Target.getChar32Align();
626      break;
627    case BuiltinType::UShort:
628    case BuiltinType::Short:
629      Width = Target.getShortWidth();
630      Align = Target.getShortAlign();
631      break;
632    case BuiltinType::UInt:
633    case BuiltinType::Int:
634      Width = Target.getIntWidth();
635      Align = Target.getIntAlign();
636      break;
637    case BuiltinType::ULong:
638    case BuiltinType::Long:
639      Width = Target.getLongWidth();
640      Align = Target.getLongAlign();
641      break;
642    case BuiltinType::ULongLong:
643    case BuiltinType::LongLong:
644      Width = Target.getLongLongWidth();
645      Align = Target.getLongLongAlign();
646      break;
647    case BuiltinType::Int128:
648    case BuiltinType::UInt128:
649      Width = 128;
650      Align = 128; // int128_t is 128-bit aligned on all targets.
651      break;
652    case BuiltinType::Float:
653      Width = Target.getFloatWidth();
654      Align = Target.getFloatAlign();
655      break;
656    case BuiltinType::Double:
657      Width = Target.getDoubleWidth();
658      Align = Target.getDoubleAlign();
659      break;
660    case BuiltinType::LongDouble:
661      Width = Target.getLongDoubleWidth();
662      Align = Target.getLongDoubleAlign();
663      break;
664    case BuiltinType::NullPtr:
665      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
666      Align = Target.getPointerAlign(0); //   == sizeof(void*)
667      break;
668    }
669    break;
670  case Type::FixedWidthInt:
671    // FIXME: This isn't precisely correct; the width/alignment should depend
672    // on the available types for the target
673    Width = cast<FixedWidthIntType>(T)->getWidth();
674    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
675    Align = Width;
676    break;
677  case Type::ObjCObjectPointer:
678    Width = Target.getPointerWidth(0);
679    Align = Target.getPointerAlign(0);
680    break;
681  case Type::BlockPointer: {
682    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
683    Width = Target.getPointerWidth(AS);
684    Align = Target.getPointerAlign(AS);
685    break;
686  }
687  case Type::Pointer: {
688    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
689    Width = Target.getPointerWidth(AS);
690    Align = Target.getPointerAlign(AS);
691    break;
692  }
693  case Type::LValueReference:
694  case Type::RValueReference:
695    // "When applied to a reference or a reference type, the result is the size
696    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
697    // FIXME: This is wrong for struct layout: a reference in a struct has
698    // pointer size.
699    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
700  case Type::MemberPointer: {
701    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
702    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
703    // If we ever want to support other ABIs this needs to be abstracted.
704
705    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
706    std::pair<uint64_t, unsigned> PtrDiffInfo =
707      getTypeInfo(getPointerDiffType());
708    Width = PtrDiffInfo.first;
709    if (Pointee->isFunctionType())
710      Width *= 2;
711    Align = PtrDiffInfo.second;
712    break;
713  }
714  case Type::Complex: {
715    // Complex types have the same alignment as their elements, but twice the
716    // size.
717    std::pair<uint64_t, unsigned> EltInfo =
718      getTypeInfo(cast<ComplexType>(T)->getElementType());
719    Width = EltInfo.first*2;
720    Align = EltInfo.second;
721    break;
722  }
723  case Type::ObjCInterface: {
724    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
725    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
726    Width = Layout.getSize();
727    Align = Layout.getAlignment();
728    break;
729  }
730  case Type::Record:
731  case Type::Enum: {
732    const TagType *TT = cast<TagType>(T);
733
734    if (TT->getDecl()->isInvalidDecl()) {
735      Width = 1;
736      Align = 1;
737      break;
738    }
739
740    if (const EnumType *ET = dyn_cast<EnumType>(TT))
741      return getTypeInfo(ET->getDecl()->getIntegerType());
742
743    const RecordType *RT = cast<RecordType>(TT);
744    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
745    Width = Layout.getSize();
746    Align = Layout.getAlignment();
747    break;
748  }
749
750  case Type::SubstTemplateTypeParm:
751    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
752                       getReplacementType().getTypePtr());
753
754  case Type::Elaborated:
755    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
756                         .getTypePtr());
757
758  case Type::Typedef: {
759    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
760    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
761      Align = Aligned->getAlignment();
762      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
763    } else
764      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
765    break;
766  }
767
768  case Type::TypeOfExpr:
769    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
770                         .getTypePtr());
771
772  case Type::TypeOf:
773    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
774
775  case Type::Decltype:
776    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
777                        .getTypePtr());
778
779  case Type::QualifiedName:
780    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
781
782  case Type::TemplateSpecialization:
783    assert(getCanonicalType(T) != T &&
784           "Cannot request the size of a dependent type");
785    // FIXME: this is likely to be wrong once we support template
786    // aliases, since a template alias could refer to a typedef that
787    // has an __aligned__ attribute on it.
788    return getTypeInfo(getCanonicalType(T));
789  }
790
791  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
792  return std::make_pair(Width, Align);
793}
794
795/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
796/// type for the current target in bits.  This can be different than the ABI
797/// alignment in cases where it is beneficial for performance to overalign
798/// a data type.
799unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
800  unsigned ABIAlign = getTypeAlign(T);
801
802  // Double and long long should be naturally aligned if possible.
803  if (const ComplexType* CT = T->getAs<ComplexType>())
804    T = CT->getElementType().getTypePtr();
805  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
806      T->isSpecificBuiltinType(BuiltinType::LongLong))
807    return std::max(ABIAlign, (unsigned)getTypeSize(T));
808
809  return ABIAlign;
810}
811
812static void CollectLocalObjCIvars(ASTContext *Ctx,
813                                  const ObjCInterfaceDecl *OI,
814                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
815  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
816       E = OI->ivar_end(); I != E; ++I) {
817    ObjCIvarDecl *IVDecl = *I;
818    if (!IVDecl->isInvalidDecl())
819      Fields.push_back(cast<FieldDecl>(IVDecl));
820  }
821}
822
823void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
824                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
825  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
826    CollectObjCIvars(SuperClass, Fields);
827  CollectLocalObjCIvars(this, OI, Fields);
828}
829
830/// ShallowCollectObjCIvars -
831/// Collect all ivars, including those synthesized, in the current class.
832///
833void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
834                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
835                                 bool CollectSynthesized) {
836  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
837         E = OI->ivar_end(); I != E; ++I) {
838     Ivars.push_back(*I);
839  }
840  if (CollectSynthesized)
841    CollectSynthesizedIvars(OI, Ivars);
842}
843
844void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
845                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
846  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
847       E = PD->prop_end(); I != E; ++I)
848    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
849      Ivars.push_back(Ivar);
850
851  // Also look into nested protocols.
852  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
853       E = PD->protocol_end(); P != E; ++P)
854    CollectProtocolSynthesizedIvars(*P, Ivars);
855}
856
857/// CollectSynthesizedIvars -
858/// This routine collect synthesized ivars for the designated class.
859///
860void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
861                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
862  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
863       E = OI->prop_end(); I != E; ++I) {
864    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
865      Ivars.push_back(Ivar);
866  }
867  // Also look into interface's protocol list for properties declared
868  // in the protocol and whose ivars are synthesized.
869  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
870       PE = OI->protocol_end(); P != PE; ++P) {
871    ObjCProtocolDecl *PD = (*P);
872    CollectProtocolSynthesizedIvars(PD, Ivars);
873  }
874}
875
876/// CollectInheritedProtocols - Collect all protocols in current class and
877/// those inherited by it.
878void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
879                          llvm::SmallVectorImpl<ObjCProtocolDecl*> &Protocols) {
880  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
881    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
882         PE = OI->protocol_end(); P != PE; ++P) {
883      ObjCProtocolDecl *Proto = (*P);
884      Protocols.push_back(Proto);
885      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
886           PE = Proto->protocol_end(); P != PE; ++P)
887        CollectInheritedProtocols(*P, Protocols);
888      }
889
890    // Categories of this Interface.
891    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
892         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
893      CollectInheritedProtocols(CDeclChain, Protocols);
894    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
895      while (SD) {
896        CollectInheritedProtocols(SD, Protocols);
897        SD = SD->getSuperClass();
898      }
899    return;
900  }
901  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
902    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
903         PE = OC->protocol_end(); P != PE; ++P) {
904      ObjCProtocolDecl *Proto = (*P);
905      Protocols.push_back(Proto);
906      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
907           PE = Proto->protocol_end(); P != PE; ++P)
908        CollectInheritedProtocols(*P, Protocols);
909    }
910    return;
911  }
912  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
913    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
914         PE = OP->protocol_end(); P != PE; ++P) {
915      ObjCProtocolDecl *Proto = (*P);
916      Protocols.push_back(Proto);
917      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
918           PE = Proto->protocol_end(); P != PE; ++P)
919        CollectInheritedProtocols(*P, Protocols);
920    }
921    return;
922  }
923}
924
925unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
926  unsigned count = 0;
927  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
928       E = PD->prop_end(); I != E; ++I)
929    if ((*I)->getPropertyIvarDecl())
930      ++count;
931
932  // Also look into nested protocols.
933  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
934       E = PD->protocol_end(); P != E; ++P)
935    count += CountProtocolSynthesizedIvars(*P);
936  return count;
937}
938
939unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
940  unsigned count = 0;
941  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
942       E = OI->prop_end(); I != E; ++I) {
943    if ((*I)->getPropertyIvarDecl())
944      ++count;
945  }
946  // Also look into interface's protocol list for properties declared
947  // in the protocol and whose ivars are synthesized.
948  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
949       PE = OI->protocol_end(); P != PE; ++P) {
950    ObjCProtocolDecl *PD = (*P);
951    count += CountProtocolSynthesizedIvars(PD);
952  }
953  return count;
954}
955
956/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
957ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
958  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
959    I = ObjCImpls.find(D);
960  if (I != ObjCImpls.end())
961    return cast<ObjCImplementationDecl>(I->second);
962  return 0;
963}
964/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
965ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
966  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
967    I = ObjCImpls.find(D);
968  if (I != ObjCImpls.end())
969    return cast<ObjCCategoryImplDecl>(I->second);
970  return 0;
971}
972
973/// \brief Set the implementation of ObjCInterfaceDecl.
974void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
975                           ObjCImplementationDecl *ImplD) {
976  assert(IFaceD && ImplD && "Passed null params");
977  ObjCImpls[IFaceD] = ImplD;
978}
979/// \brief Set the implementation of ObjCCategoryDecl.
980void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
981                           ObjCCategoryImplDecl *ImplD) {
982  assert(CatD && ImplD && "Passed null params");
983  ObjCImpls[CatD] = ImplD;
984}
985
986/// \brief Allocate an uninitialized DeclaratorInfo.
987///
988/// The caller should initialize the memory held by DeclaratorInfo using
989/// the TypeLoc wrappers.
990///
991/// \param T the type that will be the basis for type source info. This type
992/// should refer to how the declarator was written in source code, not to
993/// what type semantic analysis resolved the declarator to.
994DeclaratorInfo *ASTContext::CreateDeclaratorInfo(QualType T,
995                                                 unsigned DataSize) {
996  if (!DataSize)
997    DataSize = TypeLoc::getFullDataSizeForType(T);
998  else
999    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1000           "incorrect data size provided to CreateDeclaratorInfo!");
1001
1002  DeclaratorInfo *DInfo =
1003    (DeclaratorInfo*)BumpAlloc.Allocate(sizeof(DeclaratorInfo) + DataSize, 8);
1004  new (DInfo) DeclaratorInfo(T);
1005  return DInfo;
1006}
1007
1008DeclaratorInfo *ASTContext::getTrivialDeclaratorInfo(QualType T,
1009                                                     SourceLocation L) {
1010  DeclaratorInfo *DI = CreateDeclaratorInfo(T);
1011  DI->getTypeLoc().initialize(L);
1012  return DI;
1013}
1014
1015/// getInterfaceLayoutImpl - Get or compute information about the
1016/// layout of the given interface.
1017///
1018/// \param Impl - If given, also include the layout of the interface's
1019/// implementation. This may differ by including synthesized ivars.
1020const ASTRecordLayout &
1021ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1022                          const ObjCImplementationDecl *Impl) {
1023  assert(!D->isForwardDecl() && "Invalid interface decl!");
1024
1025  // Look up this layout, if already laid out, return what we have.
1026  ObjCContainerDecl *Key =
1027    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1028  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1029    return *Entry;
1030
1031  // Add in synthesized ivar count if laying out an implementation.
1032  if (Impl) {
1033    unsigned FieldCount = D->ivar_size();
1034    unsigned SynthCount = CountSynthesizedIvars(D);
1035    FieldCount += SynthCount;
1036    // If there aren't any sythesized ivars then reuse the interface
1037    // entry. Note we can't cache this because we simply free all
1038    // entries later; however we shouldn't look up implementations
1039    // frequently.
1040    if (SynthCount == 0)
1041      return getObjCLayout(D, 0);
1042  }
1043
1044  const ASTRecordLayout *NewEntry =
1045    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1046  ObjCLayouts[Key] = NewEntry;
1047
1048  return *NewEntry;
1049}
1050
1051const ASTRecordLayout &
1052ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1053  return getObjCLayout(D, 0);
1054}
1055
1056const ASTRecordLayout &
1057ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1058  return getObjCLayout(D->getClassInterface(), D);
1059}
1060
1061/// getASTRecordLayout - Get or compute information about the layout of the
1062/// specified record (struct/union/class), which indicates its size and field
1063/// position information.
1064const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1065  D = D->getDefinition(*this);
1066  assert(D && "Cannot get layout of forward declarations!");
1067
1068  // Look up this layout, if already laid out, return what we have.
1069  // Note that we can't save a reference to the entry because this function
1070  // is recursive.
1071  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1072  if (Entry) return *Entry;
1073
1074  const ASTRecordLayout *NewEntry =
1075    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1076  ASTRecordLayouts[D] = NewEntry;
1077
1078  return *NewEntry;
1079}
1080
1081//===----------------------------------------------------------------------===//
1082//                   Type creation/memoization methods
1083//===----------------------------------------------------------------------===//
1084
1085QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1086  unsigned Fast = Quals.getFastQualifiers();
1087  Quals.removeFastQualifiers();
1088
1089  // Check if we've already instantiated this type.
1090  llvm::FoldingSetNodeID ID;
1091  ExtQuals::Profile(ID, TypeNode, Quals);
1092  void *InsertPos = 0;
1093  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1094    assert(EQ->getQualifiers() == Quals);
1095    QualType T = QualType(EQ, Fast);
1096    return T;
1097  }
1098
1099  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1100  ExtQualNodes.InsertNode(New, InsertPos);
1101  QualType T = QualType(New, Fast);
1102  return T;
1103}
1104
1105QualType ASTContext::getVolatileType(QualType T) {
1106  QualType CanT = getCanonicalType(T);
1107  if (CanT.isVolatileQualified()) return T;
1108
1109  QualifierCollector Quals;
1110  const Type *TypeNode = Quals.strip(T);
1111  Quals.addVolatile();
1112
1113  return getExtQualType(TypeNode, Quals);
1114}
1115
1116QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1117  QualType CanT = getCanonicalType(T);
1118  if (CanT.getAddressSpace() == AddressSpace)
1119    return T;
1120
1121  // If we are composing extended qualifiers together, merge together
1122  // into one ExtQuals node.
1123  QualifierCollector Quals;
1124  const Type *TypeNode = Quals.strip(T);
1125
1126  // If this type already has an address space specified, it cannot get
1127  // another one.
1128  assert(!Quals.hasAddressSpace() &&
1129         "Type cannot be in multiple addr spaces!");
1130  Quals.addAddressSpace(AddressSpace);
1131
1132  return getExtQualType(TypeNode, Quals);
1133}
1134
1135QualType ASTContext::getObjCGCQualType(QualType T,
1136                                       Qualifiers::GC GCAttr) {
1137  QualType CanT = getCanonicalType(T);
1138  if (CanT.getObjCGCAttr() == GCAttr)
1139    return T;
1140
1141  if (T->isPointerType()) {
1142    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1143    if (Pointee->isAnyPointerType()) {
1144      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1145      return getPointerType(ResultType);
1146    }
1147  }
1148
1149  // If we are composing extended qualifiers together, merge together
1150  // into one ExtQuals node.
1151  QualifierCollector Quals;
1152  const Type *TypeNode = Quals.strip(T);
1153
1154  // If this type already has an ObjCGC specified, it cannot get
1155  // another one.
1156  assert(!Quals.hasObjCGCAttr() &&
1157         "Type cannot have multiple ObjCGCs!");
1158  Quals.addObjCGCAttr(GCAttr);
1159
1160  return getExtQualType(TypeNode, Quals);
1161}
1162
1163QualType ASTContext::getNoReturnType(QualType T) {
1164  QualType ResultType;
1165  if (T->isPointerType()) {
1166    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1167    ResultType = getNoReturnType(Pointee);
1168    ResultType = getPointerType(ResultType);
1169  } else if (T->isBlockPointerType()) {
1170    QualType Pointee = T->getAs<BlockPointerType>()->getPointeeType();
1171    ResultType = getNoReturnType(Pointee);
1172    ResultType = getBlockPointerType(ResultType);
1173  } else {
1174    assert (T->isFunctionType()
1175            && "can't noreturn qualify non-pointer to function or block type");
1176
1177    if (const FunctionNoProtoType *FNPT = T->getAs<FunctionNoProtoType>()) {
1178      ResultType = getFunctionNoProtoType(FNPT->getResultType(), true);
1179    } else {
1180      const FunctionProtoType *F = T->getAs<FunctionProtoType>();
1181      ResultType
1182        = getFunctionType(F->getResultType(), F->arg_type_begin(),
1183                          F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1184                          F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1185                          F->getNumExceptions(), F->exception_begin(), true);
1186    }
1187  }
1188
1189  return getQualifiedType(ResultType, T.getLocalQualifiers());
1190}
1191
1192/// getComplexType - Return the uniqued reference to the type for a complex
1193/// number with the specified element type.
1194QualType ASTContext::getComplexType(QualType T) {
1195  // Unique pointers, to guarantee there is only one pointer of a particular
1196  // structure.
1197  llvm::FoldingSetNodeID ID;
1198  ComplexType::Profile(ID, T);
1199
1200  void *InsertPos = 0;
1201  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1202    return QualType(CT, 0);
1203
1204  // If the pointee type isn't canonical, this won't be a canonical type either,
1205  // so fill in the canonical type field.
1206  QualType Canonical;
1207  if (!T.isCanonical()) {
1208    Canonical = getComplexType(getCanonicalType(T));
1209
1210    // Get the new insert position for the node we care about.
1211    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1212    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1213  }
1214  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1215  Types.push_back(New);
1216  ComplexTypes.InsertNode(New, InsertPos);
1217  return QualType(New, 0);
1218}
1219
1220QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1221  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1222     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1223  FixedWidthIntType *&Entry = Map[Width];
1224  if (!Entry)
1225    Entry = new FixedWidthIntType(Width, Signed);
1226  return QualType(Entry, 0);
1227}
1228
1229/// getPointerType - Return the uniqued reference to the type for a pointer to
1230/// the specified type.
1231QualType ASTContext::getPointerType(QualType T) {
1232  // Unique pointers, to guarantee there is only one pointer of a particular
1233  // structure.
1234  llvm::FoldingSetNodeID ID;
1235  PointerType::Profile(ID, T);
1236
1237  void *InsertPos = 0;
1238  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1239    return QualType(PT, 0);
1240
1241  // If the pointee type isn't canonical, this won't be a canonical type either,
1242  // so fill in the canonical type field.
1243  QualType Canonical;
1244  if (!T.isCanonical()) {
1245    Canonical = getPointerType(getCanonicalType(T));
1246
1247    // Get the new insert position for the node we care about.
1248    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1249    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1250  }
1251  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1252  Types.push_back(New);
1253  PointerTypes.InsertNode(New, InsertPos);
1254  return QualType(New, 0);
1255}
1256
1257/// getBlockPointerType - Return the uniqued reference to the type for
1258/// a pointer to the specified block.
1259QualType ASTContext::getBlockPointerType(QualType T) {
1260  assert(T->isFunctionType() && "block of function types only");
1261  // Unique pointers, to guarantee there is only one block of a particular
1262  // structure.
1263  llvm::FoldingSetNodeID ID;
1264  BlockPointerType::Profile(ID, T);
1265
1266  void *InsertPos = 0;
1267  if (BlockPointerType *PT =
1268        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1269    return QualType(PT, 0);
1270
1271  // If the block pointee type isn't canonical, this won't be a canonical
1272  // type either so fill in the canonical type field.
1273  QualType Canonical;
1274  if (!T.isCanonical()) {
1275    Canonical = getBlockPointerType(getCanonicalType(T));
1276
1277    // Get the new insert position for the node we care about.
1278    BlockPointerType *NewIP =
1279      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1280    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1281  }
1282  BlockPointerType *New
1283    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1284  Types.push_back(New);
1285  BlockPointerTypes.InsertNode(New, InsertPos);
1286  return QualType(New, 0);
1287}
1288
1289/// getLValueReferenceType - Return the uniqued reference to the type for an
1290/// lvalue reference to the specified type.
1291QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1292  // Unique pointers, to guarantee there is only one pointer of a particular
1293  // structure.
1294  llvm::FoldingSetNodeID ID;
1295  ReferenceType::Profile(ID, T, SpelledAsLValue);
1296
1297  void *InsertPos = 0;
1298  if (LValueReferenceType *RT =
1299        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1300    return QualType(RT, 0);
1301
1302  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1303
1304  // If the referencee type isn't canonical, this won't be a canonical type
1305  // either, so fill in the canonical type field.
1306  QualType Canonical;
1307  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1308    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1309    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1310
1311    // Get the new insert position for the node we care about.
1312    LValueReferenceType *NewIP =
1313      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1314    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1315  }
1316
1317  LValueReferenceType *New
1318    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1319                                                     SpelledAsLValue);
1320  Types.push_back(New);
1321  LValueReferenceTypes.InsertNode(New, InsertPos);
1322
1323  return QualType(New, 0);
1324}
1325
1326/// getRValueReferenceType - Return the uniqued reference to the type for an
1327/// rvalue reference to the specified type.
1328QualType ASTContext::getRValueReferenceType(QualType T) {
1329  // Unique pointers, to guarantee there is only one pointer of a particular
1330  // structure.
1331  llvm::FoldingSetNodeID ID;
1332  ReferenceType::Profile(ID, T, false);
1333
1334  void *InsertPos = 0;
1335  if (RValueReferenceType *RT =
1336        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1337    return QualType(RT, 0);
1338
1339  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1340
1341  // If the referencee type isn't canonical, this won't be a canonical type
1342  // either, so fill in the canonical type field.
1343  QualType Canonical;
1344  if (InnerRef || !T.isCanonical()) {
1345    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1346    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1347
1348    // Get the new insert position for the node we care about.
1349    RValueReferenceType *NewIP =
1350      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1351    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1352  }
1353
1354  RValueReferenceType *New
1355    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1356  Types.push_back(New);
1357  RValueReferenceTypes.InsertNode(New, InsertPos);
1358  return QualType(New, 0);
1359}
1360
1361/// getMemberPointerType - Return the uniqued reference to the type for a
1362/// member pointer to the specified type, in the specified class.
1363QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1364  // Unique pointers, to guarantee there is only one pointer of a particular
1365  // structure.
1366  llvm::FoldingSetNodeID ID;
1367  MemberPointerType::Profile(ID, T, Cls);
1368
1369  void *InsertPos = 0;
1370  if (MemberPointerType *PT =
1371      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1372    return QualType(PT, 0);
1373
1374  // If the pointee or class type isn't canonical, this won't be a canonical
1375  // type either, so fill in the canonical type field.
1376  QualType Canonical;
1377  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1378    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1379
1380    // Get the new insert position for the node we care about.
1381    MemberPointerType *NewIP =
1382      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1383    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1384  }
1385  MemberPointerType *New
1386    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1387  Types.push_back(New);
1388  MemberPointerTypes.InsertNode(New, InsertPos);
1389  return QualType(New, 0);
1390}
1391
1392/// getConstantArrayType - Return the unique reference to the type for an
1393/// array of the specified element type.
1394QualType ASTContext::getConstantArrayType(QualType EltTy,
1395                                          const llvm::APInt &ArySizeIn,
1396                                          ArrayType::ArraySizeModifier ASM,
1397                                          unsigned EltTypeQuals) {
1398  assert((EltTy->isDependentType() ||
1399          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1400         "Constant array of VLAs is illegal!");
1401
1402  // Convert the array size into a canonical width matching the pointer size for
1403  // the target.
1404  llvm::APInt ArySize(ArySizeIn);
1405  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1406
1407  llvm::FoldingSetNodeID ID;
1408  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1409
1410  void *InsertPos = 0;
1411  if (ConstantArrayType *ATP =
1412      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1413    return QualType(ATP, 0);
1414
1415  // If the element type isn't canonical, this won't be a canonical type either,
1416  // so fill in the canonical type field.
1417  QualType Canonical;
1418  if (!EltTy.isCanonical()) {
1419    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1420                                     ASM, EltTypeQuals);
1421    // Get the new insert position for the node we care about.
1422    ConstantArrayType *NewIP =
1423      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1424    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1425  }
1426
1427  ConstantArrayType *New = new(*this,TypeAlignment)
1428    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1429  ConstantArrayTypes.InsertNode(New, InsertPos);
1430  Types.push_back(New);
1431  return QualType(New, 0);
1432}
1433
1434/// getVariableArrayType - Returns a non-unique reference to the type for a
1435/// variable array of the specified element type.
1436QualType ASTContext::getVariableArrayType(QualType EltTy,
1437                                          Expr *NumElts,
1438                                          ArrayType::ArraySizeModifier ASM,
1439                                          unsigned EltTypeQuals,
1440                                          SourceRange Brackets) {
1441  // Since we don't unique expressions, it isn't possible to unique VLA's
1442  // that have an expression provided for their size.
1443
1444  VariableArrayType *New = new(*this, TypeAlignment)
1445    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1446
1447  VariableArrayTypes.push_back(New);
1448  Types.push_back(New);
1449  return QualType(New, 0);
1450}
1451
1452/// getDependentSizedArrayType - Returns a non-unique reference to
1453/// the type for a dependently-sized array of the specified element
1454/// type.
1455QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1456                                                Expr *NumElts,
1457                                                ArrayType::ArraySizeModifier ASM,
1458                                                unsigned EltTypeQuals,
1459                                                SourceRange Brackets) {
1460  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1461         "Size must be type- or value-dependent!");
1462
1463  llvm::FoldingSetNodeID ID;
1464  DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1465                                   EltTypeQuals, NumElts);
1466
1467  void *InsertPos = 0;
1468  DependentSizedArrayType *Canon
1469    = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1470  DependentSizedArrayType *New;
1471  if (Canon) {
1472    // We already have a canonical version of this array type; use it as
1473    // the canonical type for a newly-built type.
1474    New = new (*this, TypeAlignment)
1475      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1476                              NumElts, ASM, EltTypeQuals, Brackets);
1477  } else {
1478    QualType CanonEltTy = getCanonicalType(EltTy);
1479    if (CanonEltTy == EltTy) {
1480      New = new (*this, TypeAlignment)
1481        DependentSizedArrayType(*this, EltTy, QualType(),
1482                                NumElts, ASM, EltTypeQuals, Brackets);
1483      DependentSizedArrayTypes.InsertNode(New, InsertPos);
1484    } else {
1485      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1486                                                  ASM, EltTypeQuals,
1487                                                  SourceRange());
1488      New = new (*this, TypeAlignment)
1489        DependentSizedArrayType(*this, EltTy, Canon,
1490                                NumElts, ASM, EltTypeQuals, Brackets);
1491    }
1492  }
1493
1494  Types.push_back(New);
1495  return QualType(New, 0);
1496}
1497
1498QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1499                                            ArrayType::ArraySizeModifier ASM,
1500                                            unsigned EltTypeQuals) {
1501  llvm::FoldingSetNodeID ID;
1502  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1503
1504  void *InsertPos = 0;
1505  if (IncompleteArrayType *ATP =
1506       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1507    return QualType(ATP, 0);
1508
1509  // If the element type isn't canonical, this won't be a canonical type
1510  // either, so fill in the canonical type field.
1511  QualType Canonical;
1512
1513  if (!EltTy.isCanonical()) {
1514    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1515                                       ASM, EltTypeQuals);
1516
1517    // Get the new insert position for the node we care about.
1518    IncompleteArrayType *NewIP =
1519      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1520    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1521  }
1522
1523  IncompleteArrayType *New = new (*this, TypeAlignment)
1524    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1525
1526  IncompleteArrayTypes.InsertNode(New, InsertPos);
1527  Types.push_back(New);
1528  return QualType(New, 0);
1529}
1530
1531/// getVectorType - Return the unique reference to a vector type of
1532/// the specified element type and size. VectorType must be a built-in type.
1533QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1534  BuiltinType *baseType;
1535
1536  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1537  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1538
1539  // Check if we've already instantiated a vector of this type.
1540  llvm::FoldingSetNodeID ID;
1541  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1542  void *InsertPos = 0;
1543  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1544    return QualType(VTP, 0);
1545
1546  // If the element type isn't canonical, this won't be a canonical type either,
1547  // so fill in the canonical type field.
1548  QualType Canonical;
1549  if (!vecType.isCanonical()) {
1550    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1551
1552    // Get the new insert position for the node we care about.
1553    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1554    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1555  }
1556  VectorType *New = new (*this, TypeAlignment)
1557    VectorType(vecType, NumElts, Canonical);
1558  VectorTypes.InsertNode(New, InsertPos);
1559  Types.push_back(New);
1560  return QualType(New, 0);
1561}
1562
1563/// getExtVectorType - Return the unique reference to an extended vector type of
1564/// the specified element type and size. VectorType must be a built-in type.
1565QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1566  BuiltinType *baseType;
1567
1568  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1569  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1570
1571  // Check if we've already instantiated a vector of this type.
1572  llvm::FoldingSetNodeID ID;
1573  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1574  void *InsertPos = 0;
1575  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1576    return QualType(VTP, 0);
1577
1578  // If the element type isn't canonical, this won't be a canonical type either,
1579  // so fill in the canonical type field.
1580  QualType Canonical;
1581  if (!vecType.isCanonical()) {
1582    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1583
1584    // Get the new insert position for the node we care about.
1585    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1586    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1587  }
1588  ExtVectorType *New = new (*this, TypeAlignment)
1589    ExtVectorType(vecType, NumElts, Canonical);
1590  VectorTypes.InsertNode(New, InsertPos);
1591  Types.push_back(New);
1592  return QualType(New, 0);
1593}
1594
1595QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1596                                                    Expr *SizeExpr,
1597                                                    SourceLocation AttrLoc) {
1598  llvm::FoldingSetNodeID ID;
1599  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1600                                       SizeExpr);
1601
1602  void *InsertPos = 0;
1603  DependentSizedExtVectorType *Canon
1604    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1605  DependentSizedExtVectorType *New;
1606  if (Canon) {
1607    // We already have a canonical version of this array type; use it as
1608    // the canonical type for a newly-built type.
1609    New = new (*this, TypeAlignment)
1610      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1611                                  SizeExpr, AttrLoc);
1612  } else {
1613    QualType CanonVecTy = getCanonicalType(vecType);
1614    if (CanonVecTy == vecType) {
1615      New = new (*this, TypeAlignment)
1616        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1617                                    AttrLoc);
1618      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1619    } else {
1620      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1621                                                      SourceLocation());
1622      New = new (*this, TypeAlignment)
1623        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1624    }
1625  }
1626
1627  Types.push_back(New);
1628  return QualType(New, 0);
1629}
1630
1631/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1632///
1633QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1634  // Unique functions, to guarantee there is only one function of a particular
1635  // structure.
1636  llvm::FoldingSetNodeID ID;
1637  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1638
1639  void *InsertPos = 0;
1640  if (FunctionNoProtoType *FT =
1641        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1642    return QualType(FT, 0);
1643
1644  QualType Canonical;
1645  if (!ResultTy.isCanonical()) {
1646    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1647
1648    // Get the new insert position for the node we care about.
1649    FunctionNoProtoType *NewIP =
1650      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1651    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1652  }
1653
1654  FunctionNoProtoType *New = new (*this, TypeAlignment)
1655    FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1656  Types.push_back(New);
1657  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1658  return QualType(New, 0);
1659}
1660
1661/// getFunctionType - Return a normal function type with a typed argument
1662/// list.  isVariadic indicates whether the argument list includes '...'.
1663QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1664                                     unsigned NumArgs, bool isVariadic,
1665                                     unsigned TypeQuals, bool hasExceptionSpec,
1666                                     bool hasAnyExceptionSpec, unsigned NumExs,
1667                                     const QualType *ExArray, bool NoReturn) {
1668  // Unique functions, to guarantee there is only one function of a particular
1669  // structure.
1670  llvm::FoldingSetNodeID ID;
1671  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1672                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1673                             NumExs, ExArray, NoReturn);
1674
1675  void *InsertPos = 0;
1676  if (FunctionProtoType *FTP =
1677        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1678    return QualType(FTP, 0);
1679
1680  // Determine whether the type being created is already canonical or not.
1681  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1682  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1683    if (!ArgArray[i].isCanonicalAsParam())
1684      isCanonical = false;
1685
1686  // If this type isn't canonical, get the canonical version of it.
1687  // The exception spec is not part of the canonical type.
1688  QualType Canonical;
1689  if (!isCanonical) {
1690    llvm::SmallVector<QualType, 16> CanonicalArgs;
1691    CanonicalArgs.reserve(NumArgs);
1692    for (unsigned i = 0; i != NumArgs; ++i)
1693      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1694
1695    Canonical = getFunctionType(getCanonicalType(ResultTy),
1696                                CanonicalArgs.data(), NumArgs,
1697                                isVariadic, TypeQuals, false,
1698                                false, 0, 0, NoReturn);
1699
1700    // Get the new insert position for the node we care about.
1701    FunctionProtoType *NewIP =
1702      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1703    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1704  }
1705
1706  // FunctionProtoType objects are allocated with extra bytes after them
1707  // for two variable size arrays (for parameter and exception types) at the
1708  // end of them.
1709  FunctionProtoType *FTP =
1710    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1711                                 NumArgs*sizeof(QualType) +
1712                                 NumExs*sizeof(QualType), TypeAlignment);
1713  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1714                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1715                              ExArray, NumExs, Canonical, NoReturn);
1716  Types.push_back(FTP);
1717  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1718  return QualType(FTP, 0);
1719}
1720
1721/// getTypeDeclType - Return the unique reference to the type for the
1722/// specified type declaration.
1723QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1724  assert(Decl && "Passed null for Decl param");
1725  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1726
1727  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1728    return getTypedefType(Typedef);
1729  else if (isa<TemplateTypeParmDecl>(Decl)) {
1730    assert(false && "Template type parameter types are always available.");
1731  } else if (ObjCInterfaceDecl *ObjCInterface
1732               = dyn_cast<ObjCInterfaceDecl>(Decl))
1733    return getObjCInterfaceType(ObjCInterface);
1734
1735  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1736    if (PrevDecl)
1737      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1738    else
1739      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1740  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1741    if (PrevDecl)
1742      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1743    else
1744      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1745  } else
1746    assert(false && "TypeDecl without a type?");
1747
1748  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1749  return QualType(Decl->TypeForDecl, 0);
1750}
1751
1752/// getTypedefType - Return the unique reference to the type for the
1753/// specified typename decl.
1754QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1755  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1756
1757  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1758  Decl->TypeForDecl = new(*this, TypeAlignment)
1759    TypedefType(Type::Typedef, Decl, Canonical);
1760  Types.push_back(Decl->TypeForDecl);
1761  return QualType(Decl->TypeForDecl, 0);
1762}
1763
1764/// \brief Retrieve a substitution-result type.
1765QualType
1766ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1767                                         QualType Replacement) {
1768  assert(Replacement.isCanonical()
1769         && "replacement types must always be canonical");
1770
1771  llvm::FoldingSetNodeID ID;
1772  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1773  void *InsertPos = 0;
1774  SubstTemplateTypeParmType *SubstParm
1775    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1776
1777  if (!SubstParm) {
1778    SubstParm = new (*this, TypeAlignment)
1779      SubstTemplateTypeParmType(Parm, Replacement);
1780    Types.push_back(SubstParm);
1781    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1782  }
1783
1784  return QualType(SubstParm, 0);
1785}
1786
1787/// \brief Retrieve the template type parameter type for a template
1788/// parameter or parameter pack with the given depth, index, and (optionally)
1789/// name.
1790QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1791                                             bool ParameterPack,
1792                                             IdentifierInfo *Name) {
1793  llvm::FoldingSetNodeID ID;
1794  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1795  void *InsertPos = 0;
1796  TemplateTypeParmType *TypeParm
1797    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1798
1799  if (TypeParm)
1800    return QualType(TypeParm, 0);
1801
1802  if (Name) {
1803    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1804    TypeParm = new (*this, TypeAlignment)
1805      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1806  } else
1807    TypeParm = new (*this, TypeAlignment)
1808      TemplateTypeParmType(Depth, Index, ParameterPack);
1809
1810  Types.push_back(TypeParm);
1811  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1812
1813  return QualType(TypeParm, 0);
1814}
1815
1816QualType
1817ASTContext::getTemplateSpecializationType(TemplateName Template,
1818                                          const TemplateArgumentLoc *Args,
1819                                          unsigned NumArgs,
1820                                          QualType Canon) {
1821  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1822  ArgVec.reserve(NumArgs);
1823  for (unsigned i = 0; i != NumArgs; ++i)
1824    ArgVec.push_back(Args[i].getArgument());
1825
1826  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1827}
1828
1829QualType
1830ASTContext::getTemplateSpecializationType(TemplateName Template,
1831                                          const TemplateArgument *Args,
1832                                          unsigned NumArgs,
1833                                          QualType Canon) {
1834  if (!Canon.isNull())
1835    Canon = getCanonicalType(Canon);
1836  else {
1837    // Build the canonical template specialization type.
1838    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1839    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1840    CanonArgs.reserve(NumArgs);
1841    for (unsigned I = 0; I != NumArgs; ++I)
1842      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1843
1844    // Determine whether this canonical template specialization type already
1845    // exists.
1846    llvm::FoldingSetNodeID ID;
1847    TemplateSpecializationType::Profile(ID, CanonTemplate,
1848                                        CanonArgs.data(), NumArgs, *this);
1849
1850    void *InsertPos = 0;
1851    TemplateSpecializationType *Spec
1852      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1853
1854    if (!Spec) {
1855      // Allocate a new canonical template specialization type.
1856      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1857                            sizeof(TemplateArgument) * NumArgs),
1858                           TypeAlignment);
1859      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1860                                                  CanonArgs.data(), NumArgs,
1861                                                  Canon);
1862      Types.push_back(Spec);
1863      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1864    }
1865
1866    if (Canon.isNull())
1867      Canon = QualType(Spec, 0);
1868    assert(Canon->isDependentType() &&
1869           "Non-dependent template-id type must have a canonical type");
1870  }
1871
1872  // Allocate the (non-canonical) template specialization type, but don't
1873  // try to unique it: these types typically have location information that
1874  // we don't unique and don't want to lose.
1875  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1876                        sizeof(TemplateArgument) * NumArgs),
1877                       TypeAlignment);
1878  TemplateSpecializationType *Spec
1879    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1880                                           Canon);
1881
1882  Types.push_back(Spec);
1883  return QualType(Spec, 0);
1884}
1885
1886QualType
1887ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1888                                 QualType NamedType) {
1889  llvm::FoldingSetNodeID ID;
1890  QualifiedNameType::Profile(ID, NNS, NamedType);
1891
1892  void *InsertPos = 0;
1893  QualifiedNameType *T
1894    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1895  if (T)
1896    return QualType(T, 0);
1897
1898  T = new (*this) QualifiedNameType(NNS, NamedType,
1899                                    getCanonicalType(NamedType));
1900  Types.push_back(T);
1901  QualifiedNameTypes.InsertNode(T, InsertPos);
1902  return QualType(T, 0);
1903}
1904
1905QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1906                                     const IdentifierInfo *Name,
1907                                     QualType Canon) {
1908  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1909
1910  if (Canon.isNull()) {
1911    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1912    if (CanonNNS != NNS)
1913      Canon = getTypenameType(CanonNNS, Name);
1914  }
1915
1916  llvm::FoldingSetNodeID ID;
1917  TypenameType::Profile(ID, NNS, Name);
1918
1919  void *InsertPos = 0;
1920  TypenameType *T
1921    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1922  if (T)
1923    return QualType(T, 0);
1924
1925  T = new (*this) TypenameType(NNS, Name, Canon);
1926  Types.push_back(T);
1927  TypenameTypes.InsertNode(T, InsertPos);
1928  return QualType(T, 0);
1929}
1930
1931QualType
1932ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1933                            const TemplateSpecializationType *TemplateId,
1934                            QualType Canon) {
1935  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1936
1937  if (Canon.isNull()) {
1938    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1939    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1940    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1941      const TemplateSpecializationType *CanonTemplateId
1942        = CanonType->getAs<TemplateSpecializationType>();
1943      assert(CanonTemplateId &&
1944             "Canonical type must also be a template specialization type");
1945      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1946    }
1947  }
1948
1949  llvm::FoldingSetNodeID ID;
1950  TypenameType::Profile(ID, NNS, TemplateId);
1951
1952  void *InsertPos = 0;
1953  TypenameType *T
1954    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1955  if (T)
1956    return QualType(T, 0);
1957
1958  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1959  Types.push_back(T);
1960  TypenameTypes.InsertNode(T, InsertPos);
1961  return QualType(T, 0);
1962}
1963
1964QualType
1965ASTContext::getElaboratedType(QualType UnderlyingType,
1966                              ElaboratedType::TagKind Tag) {
1967  llvm::FoldingSetNodeID ID;
1968  ElaboratedType::Profile(ID, UnderlyingType, Tag);
1969
1970  void *InsertPos = 0;
1971  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1972  if (T)
1973    return QualType(T, 0);
1974
1975  QualType Canon = getCanonicalType(UnderlyingType);
1976
1977  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
1978  Types.push_back(T);
1979  ElaboratedTypes.InsertNode(T, InsertPos);
1980  return QualType(T, 0);
1981}
1982
1983/// CmpProtocolNames - Comparison predicate for sorting protocols
1984/// alphabetically.
1985static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1986                            const ObjCProtocolDecl *RHS) {
1987  return LHS->getDeclName() < RHS->getDeclName();
1988}
1989
1990static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
1991                                unsigned NumProtocols) {
1992  if (NumProtocols == 0) return true;
1993
1994  for (unsigned i = 1; i != NumProtocols; ++i)
1995    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
1996      return false;
1997  return true;
1998}
1999
2000static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2001                                   unsigned &NumProtocols) {
2002  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2003
2004  // Sort protocols, keyed by name.
2005  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2006
2007  // Remove duplicates.
2008  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2009  NumProtocols = ProtocolsEnd-Protocols;
2010}
2011
2012/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2013/// the given interface decl and the conforming protocol list.
2014QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2015                                              ObjCProtocolDecl **Protocols,
2016                                              unsigned NumProtocols) {
2017  llvm::FoldingSetNodeID ID;
2018  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2019
2020  void *InsertPos = 0;
2021  if (ObjCObjectPointerType *QT =
2022              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2023    return QualType(QT, 0);
2024
2025  // Sort the protocol list alphabetically to canonicalize it.
2026  QualType Canonical;
2027  if (!InterfaceT.isCanonical() ||
2028      !areSortedAndUniqued(Protocols, NumProtocols)) {
2029    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2030      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2031      unsigned UniqueCount = NumProtocols;
2032
2033      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2034      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2035
2036      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2037                                           &Sorted[0], UniqueCount);
2038    } else {
2039      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2040                                           Protocols, NumProtocols);
2041    }
2042
2043    // Regenerate InsertPos.
2044    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2045  }
2046
2047  // No Match;
2048  ObjCObjectPointerType *QType = new (*this, TypeAlignment)
2049    ObjCObjectPointerType(Canonical, InterfaceT, Protocols, NumProtocols);
2050
2051  Types.push_back(QType);
2052  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2053  return QualType(QType, 0);
2054}
2055
2056/// getObjCInterfaceType - Return the unique reference to the type for the
2057/// specified ObjC interface decl. The list of protocols is optional.
2058QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2059                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2060  llvm::FoldingSetNodeID ID;
2061  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2062
2063  void *InsertPos = 0;
2064  if (ObjCInterfaceType *QT =
2065      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2066    return QualType(QT, 0);
2067
2068  // Sort the protocol list alphabetically to canonicalize it.
2069  QualType Canonical;
2070  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2071    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2072    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2073
2074    unsigned UniqueCount = NumProtocols;
2075    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2076
2077    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2078
2079    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2080  }
2081
2082  ObjCInterfaceType *QType = new (*this, TypeAlignment)
2083    ObjCInterfaceType(Canonical, const_cast<ObjCInterfaceDecl*>(Decl),
2084                      Protocols, NumProtocols);
2085
2086  Types.push_back(QType);
2087  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2088  return QualType(QType, 0);
2089}
2090
2091/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2092/// TypeOfExprType AST's (since expression's are never shared). For example,
2093/// multiple declarations that refer to "typeof(x)" all contain different
2094/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2095/// on canonical type's (which are always unique).
2096QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2097  TypeOfExprType *toe;
2098  if (tofExpr->isTypeDependent()) {
2099    llvm::FoldingSetNodeID ID;
2100    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2101
2102    void *InsertPos = 0;
2103    DependentTypeOfExprType *Canon
2104      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2105    if (Canon) {
2106      // We already have a "canonical" version of an identical, dependent
2107      // typeof(expr) type. Use that as our canonical type.
2108      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2109                                          QualType((TypeOfExprType*)Canon, 0));
2110    }
2111    else {
2112      // Build a new, canonical typeof(expr) type.
2113      Canon
2114        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2115      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2116      toe = Canon;
2117    }
2118  } else {
2119    QualType Canonical = getCanonicalType(tofExpr->getType());
2120    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2121  }
2122  Types.push_back(toe);
2123  return QualType(toe, 0);
2124}
2125
2126/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2127/// TypeOfType AST's. The only motivation to unique these nodes would be
2128/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2129/// an issue. This doesn't effect the type checker, since it operates
2130/// on canonical type's (which are always unique).
2131QualType ASTContext::getTypeOfType(QualType tofType) {
2132  QualType Canonical = getCanonicalType(tofType);
2133  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2134  Types.push_back(tot);
2135  return QualType(tot, 0);
2136}
2137
2138/// getDecltypeForExpr - Given an expr, will return the decltype for that
2139/// expression, according to the rules in C++0x [dcl.type.simple]p4
2140static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2141  if (e->isTypeDependent())
2142    return Context.DependentTy;
2143
2144  // If e is an id expression or a class member access, decltype(e) is defined
2145  // as the type of the entity named by e.
2146  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2147    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2148      return VD->getType();
2149  }
2150  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2151    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2152      return FD->getType();
2153  }
2154  // If e is a function call or an invocation of an overloaded operator,
2155  // (parentheses around e are ignored), decltype(e) is defined as the
2156  // return type of that function.
2157  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2158    return CE->getCallReturnType();
2159
2160  QualType T = e->getType();
2161
2162  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2163  // defined as T&, otherwise decltype(e) is defined as T.
2164  if (e->isLvalue(Context) == Expr::LV_Valid)
2165    T = Context.getLValueReferenceType(T);
2166
2167  return T;
2168}
2169
2170/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2171/// DecltypeType AST's. The only motivation to unique these nodes would be
2172/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2173/// an issue. This doesn't effect the type checker, since it operates
2174/// on canonical type's (which are always unique).
2175QualType ASTContext::getDecltypeType(Expr *e) {
2176  DecltypeType *dt;
2177  if (e->isTypeDependent()) {
2178    llvm::FoldingSetNodeID ID;
2179    DependentDecltypeType::Profile(ID, *this, e);
2180
2181    void *InsertPos = 0;
2182    DependentDecltypeType *Canon
2183      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2184    if (Canon) {
2185      // We already have a "canonical" version of an equivalent, dependent
2186      // decltype type. Use that as our canonical type.
2187      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2188                                       QualType((DecltypeType*)Canon, 0));
2189    }
2190    else {
2191      // Build a new, canonical typeof(expr) type.
2192      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2193      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2194      dt = Canon;
2195    }
2196  } else {
2197    QualType T = getDecltypeForExpr(e, *this);
2198    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2199  }
2200  Types.push_back(dt);
2201  return QualType(dt, 0);
2202}
2203
2204/// getTagDeclType - Return the unique reference to the type for the
2205/// specified TagDecl (struct/union/class/enum) decl.
2206QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2207  assert (Decl);
2208  // FIXME: What is the design on getTagDeclType when it requires casting
2209  // away const?  mutable?
2210  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2211}
2212
2213/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2214/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2215/// needs to agree with the definition in <stddef.h>.
2216QualType ASTContext::getSizeType() const {
2217  return getFromTargetType(Target.getSizeType());
2218}
2219
2220/// getSignedWCharType - Return the type of "signed wchar_t".
2221/// Used when in C++, as a GCC extension.
2222QualType ASTContext::getSignedWCharType() const {
2223  // FIXME: derive from "Target" ?
2224  return WCharTy;
2225}
2226
2227/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2228/// Used when in C++, as a GCC extension.
2229QualType ASTContext::getUnsignedWCharType() const {
2230  // FIXME: derive from "Target" ?
2231  return UnsignedIntTy;
2232}
2233
2234/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2235/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2236QualType ASTContext::getPointerDiffType() const {
2237  return getFromTargetType(Target.getPtrDiffType(0));
2238}
2239
2240//===----------------------------------------------------------------------===//
2241//                              Type Operators
2242//===----------------------------------------------------------------------===//
2243
2244CanQualType ASTContext::getCanonicalParamType(QualType T) {
2245  // Push qualifiers into arrays, and then discard any remaining
2246  // qualifiers.
2247  T = getCanonicalType(T);
2248  const Type *Ty = T.getTypePtr();
2249
2250  QualType Result;
2251  if (isa<ArrayType>(Ty)) {
2252    Result = getArrayDecayedType(QualType(Ty,0));
2253  } else if (isa<FunctionType>(Ty)) {
2254    Result = getPointerType(QualType(Ty, 0));
2255  } else {
2256    Result = QualType(Ty, 0);
2257  }
2258
2259  return CanQualType::CreateUnsafe(Result);
2260}
2261
2262/// getCanonicalType - Return the canonical (structural) type corresponding to
2263/// the specified potentially non-canonical type.  The non-canonical version
2264/// of a type may have many "decorated" versions of types.  Decorators can
2265/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2266/// to be free of any of these, allowing two canonical types to be compared
2267/// for exact equality with a simple pointer comparison.
2268CanQualType ASTContext::getCanonicalType(QualType T) {
2269  QualifierCollector Quals;
2270  const Type *Ptr = Quals.strip(T);
2271  QualType CanType = Ptr->getCanonicalTypeInternal();
2272
2273  // The canonical internal type will be the canonical type *except*
2274  // that we push type qualifiers down through array types.
2275
2276  // If there are no new qualifiers to push down, stop here.
2277  if (!Quals.hasQualifiers())
2278    return CanQualType::CreateUnsafe(CanType);
2279
2280  // If the type qualifiers are on an array type, get the canonical
2281  // type of the array with the qualifiers applied to the element
2282  // type.
2283  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2284  if (!AT)
2285    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2286
2287  // Get the canonical version of the element with the extra qualifiers on it.
2288  // This can recursively sink qualifiers through multiple levels of arrays.
2289  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2290  NewEltTy = getCanonicalType(NewEltTy);
2291
2292  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2293    return CanQualType::CreateUnsafe(
2294             getConstantArrayType(NewEltTy, CAT->getSize(),
2295                                  CAT->getSizeModifier(),
2296                                  CAT->getIndexTypeCVRQualifiers()));
2297  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2298    return CanQualType::CreateUnsafe(
2299             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2300                                    IAT->getIndexTypeCVRQualifiers()));
2301
2302  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2303    return CanQualType::CreateUnsafe(
2304             getDependentSizedArrayType(NewEltTy,
2305                                        DSAT->getSizeExpr() ?
2306                                          DSAT->getSizeExpr()->Retain() : 0,
2307                                        DSAT->getSizeModifier(),
2308                                        DSAT->getIndexTypeCVRQualifiers(),
2309                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2310
2311  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2312  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2313                                                        VAT->getSizeExpr() ?
2314                                              VAT->getSizeExpr()->Retain() : 0,
2315                                                        VAT->getSizeModifier(),
2316                                              VAT->getIndexTypeCVRQualifiers(),
2317                                                     VAT->getBracketsRange()));
2318}
2319
2320TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2321  // If this template name refers to a template, the canonical
2322  // template name merely stores the template itself.
2323  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2324    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2325
2326  // If this template name refers to a set of overloaded function templates,
2327  /// the canonical template name merely stores the set of function templates.
2328  if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl()) {
2329    OverloadedFunctionDecl *CanonOvl = 0;
2330    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2331                                                FEnd = Ovl->function_end();
2332         F != FEnd; ++F) {
2333      Decl *Canon = F->get()->getCanonicalDecl();
2334      if (CanonOvl || Canon != F->get()) {
2335        if (!CanonOvl)
2336          CanonOvl = OverloadedFunctionDecl::Create(*this,
2337                                                    Ovl->getDeclContext(),
2338                                                    Ovl->getDeclName());
2339
2340        CanonOvl->addOverload(
2341                    AnyFunctionDecl::getFromNamedDecl(cast<NamedDecl>(Canon)));
2342      }
2343    }
2344
2345    return TemplateName(CanonOvl? CanonOvl : Ovl);
2346  }
2347
2348  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2349  assert(DTN && "Non-dependent template names must refer to template decls.");
2350  return DTN->CanonicalTemplateName;
2351}
2352
2353bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2354  X = getCanonicalTemplateName(X);
2355  Y = getCanonicalTemplateName(Y);
2356  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2357}
2358
2359TemplateArgument
2360ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2361  switch (Arg.getKind()) {
2362    case TemplateArgument::Null:
2363      return Arg;
2364
2365    case TemplateArgument::Expression:
2366      return Arg;
2367
2368    case TemplateArgument::Declaration:
2369      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2370
2371    case TemplateArgument::Template:
2372      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2373
2374    case TemplateArgument::Integral:
2375      return TemplateArgument(*Arg.getAsIntegral(),
2376                              getCanonicalType(Arg.getIntegralType()));
2377
2378    case TemplateArgument::Type:
2379      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2380
2381    case TemplateArgument::Pack: {
2382      // FIXME: Allocate in ASTContext
2383      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2384      unsigned Idx = 0;
2385      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2386                                        AEnd = Arg.pack_end();
2387           A != AEnd; (void)++A, ++Idx)
2388        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2389
2390      TemplateArgument Result;
2391      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2392      return Result;
2393    }
2394  }
2395
2396  // Silence GCC warning
2397  assert(false && "Unhandled template argument kind");
2398  return TemplateArgument();
2399}
2400
2401NestedNameSpecifier *
2402ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2403  if (!NNS)
2404    return 0;
2405
2406  switch (NNS->getKind()) {
2407  case NestedNameSpecifier::Identifier:
2408    // Canonicalize the prefix but keep the identifier the same.
2409    return NestedNameSpecifier::Create(*this,
2410                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2411                                       NNS->getAsIdentifier());
2412
2413  case NestedNameSpecifier::Namespace:
2414    // A namespace is canonical; build a nested-name-specifier with
2415    // this namespace and no prefix.
2416    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2417
2418  case NestedNameSpecifier::TypeSpec:
2419  case NestedNameSpecifier::TypeSpecWithTemplate: {
2420    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2421    return NestedNameSpecifier::Create(*this, 0,
2422                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2423                                       T.getTypePtr());
2424  }
2425
2426  case NestedNameSpecifier::Global:
2427    // The global specifier is canonical and unique.
2428    return NNS;
2429  }
2430
2431  // Required to silence a GCC warning
2432  return 0;
2433}
2434
2435
2436const ArrayType *ASTContext::getAsArrayType(QualType T) {
2437  // Handle the non-qualified case efficiently.
2438  if (!T.hasLocalQualifiers()) {
2439    // Handle the common positive case fast.
2440    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2441      return AT;
2442  }
2443
2444  // Handle the common negative case fast.
2445  QualType CType = T->getCanonicalTypeInternal();
2446  if (!isa<ArrayType>(CType))
2447    return 0;
2448
2449  // Apply any qualifiers from the array type to the element type.  This
2450  // implements C99 6.7.3p8: "If the specification of an array type includes
2451  // any type qualifiers, the element type is so qualified, not the array type."
2452
2453  // If we get here, we either have type qualifiers on the type, or we have
2454  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2455  // we must propagate them down into the element type.
2456
2457  QualifierCollector Qs;
2458  const Type *Ty = Qs.strip(T.getDesugaredType());
2459
2460  // If we have a simple case, just return now.
2461  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2462  if (ATy == 0 || Qs.empty())
2463    return ATy;
2464
2465  // Otherwise, we have an array and we have qualifiers on it.  Push the
2466  // qualifiers into the array element type and return a new array type.
2467  // Get the canonical version of the element with the extra qualifiers on it.
2468  // This can recursively sink qualifiers through multiple levels of arrays.
2469  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2470
2471  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2472    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2473                                                CAT->getSizeModifier(),
2474                                           CAT->getIndexTypeCVRQualifiers()));
2475  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2476    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2477                                                  IAT->getSizeModifier(),
2478                                           IAT->getIndexTypeCVRQualifiers()));
2479
2480  if (const DependentSizedArrayType *DSAT
2481        = dyn_cast<DependentSizedArrayType>(ATy))
2482    return cast<ArrayType>(
2483                     getDependentSizedArrayType(NewEltTy,
2484                                                DSAT->getSizeExpr() ?
2485                                              DSAT->getSizeExpr()->Retain() : 0,
2486                                                DSAT->getSizeModifier(),
2487                                              DSAT->getIndexTypeCVRQualifiers(),
2488                                                DSAT->getBracketsRange()));
2489
2490  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2491  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2492                                              VAT->getSizeExpr() ?
2493                                              VAT->getSizeExpr()->Retain() : 0,
2494                                              VAT->getSizeModifier(),
2495                                              VAT->getIndexTypeCVRQualifiers(),
2496                                              VAT->getBracketsRange()));
2497}
2498
2499
2500/// getArrayDecayedType - Return the properly qualified result of decaying the
2501/// specified array type to a pointer.  This operation is non-trivial when
2502/// handling typedefs etc.  The canonical type of "T" must be an array type,
2503/// this returns a pointer to a properly qualified element of the array.
2504///
2505/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2506QualType ASTContext::getArrayDecayedType(QualType Ty) {
2507  // Get the element type with 'getAsArrayType' so that we don't lose any
2508  // typedefs in the element type of the array.  This also handles propagation
2509  // of type qualifiers from the array type into the element type if present
2510  // (C99 6.7.3p8).
2511  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2512  assert(PrettyArrayType && "Not an array type!");
2513
2514  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2515
2516  // int x[restrict 4] ->  int *restrict
2517  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2518}
2519
2520QualType ASTContext::getBaseElementType(QualType QT) {
2521  QualifierCollector Qs;
2522  while (true) {
2523    const Type *UT = Qs.strip(QT);
2524    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2525      QT = AT->getElementType();
2526    } else {
2527      return Qs.apply(QT);
2528    }
2529  }
2530}
2531
2532QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2533  QualType ElemTy = AT->getElementType();
2534
2535  if (const ArrayType *AT = getAsArrayType(ElemTy))
2536    return getBaseElementType(AT);
2537
2538  return ElemTy;
2539}
2540
2541/// getConstantArrayElementCount - Returns number of constant array elements.
2542uint64_t
2543ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2544  uint64_t ElementCount = 1;
2545  do {
2546    ElementCount *= CA->getSize().getZExtValue();
2547    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2548  } while (CA);
2549  return ElementCount;
2550}
2551
2552/// getFloatingRank - Return a relative rank for floating point types.
2553/// This routine will assert if passed a built-in type that isn't a float.
2554static FloatingRank getFloatingRank(QualType T) {
2555  if (const ComplexType *CT = T->getAs<ComplexType>())
2556    return getFloatingRank(CT->getElementType());
2557
2558  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2559  switch (T->getAs<BuiltinType>()->getKind()) {
2560  default: assert(0 && "getFloatingRank(): not a floating type");
2561  case BuiltinType::Float:      return FloatRank;
2562  case BuiltinType::Double:     return DoubleRank;
2563  case BuiltinType::LongDouble: return LongDoubleRank;
2564  }
2565}
2566
2567/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2568/// point or a complex type (based on typeDomain/typeSize).
2569/// 'typeDomain' is a real floating point or complex type.
2570/// 'typeSize' is a real floating point or complex type.
2571QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2572                                                       QualType Domain) const {
2573  FloatingRank EltRank = getFloatingRank(Size);
2574  if (Domain->isComplexType()) {
2575    switch (EltRank) {
2576    default: assert(0 && "getFloatingRank(): illegal value for rank");
2577    case FloatRank:      return FloatComplexTy;
2578    case DoubleRank:     return DoubleComplexTy;
2579    case LongDoubleRank: return LongDoubleComplexTy;
2580    }
2581  }
2582
2583  assert(Domain->isRealFloatingType() && "Unknown domain!");
2584  switch (EltRank) {
2585  default: assert(0 && "getFloatingRank(): illegal value for rank");
2586  case FloatRank:      return FloatTy;
2587  case DoubleRank:     return DoubleTy;
2588  case LongDoubleRank: return LongDoubleTy;
2589  }
2590}
2591
2592/// getFloatingTypeOrder - Compare the rank of the two specified floating
2593/// point types, ignoring the domain of the type (i.e. 'double' ==
2594/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2595/// LHS < RHS, return -1.
2596int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2597  FloatingRank LHSR = getFloatingRank(LHS);
2598  FloatingRank RHSR = getFloatingRank(RHS);
2599
2600  if (LHSR == RHSR)
2601    return 0;
2602  if (LHSR > RHSR)
2603    return 1;
2604  return -1;
2605}
2606
2607/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2608/// routine will assert if passed a built-in type that isn't an integer or enum,
2609/// or if it is not canonicalized.
2610unsigned ASTContext::getIntegerRank(Type *T) {
2611  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2612  if (EnumType* ET = dyn_cast<EnumType>(T))
2613    T = ET->getDecl()->getIntegerType().getTypePtr();
2614
2615  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2616    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2617
2618  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2619    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2620
2621  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2622    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2623
2624  // There are two things which impact the integer rank: the width, and
2625  // the ordering of builtins.  The builtin ordering is encoded in the
2626  // bottom three bits; the width is encoded in the bits above that.
2627  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2628    return FWIT->getWidth() << 3;
2629
2630  switch (cast<BuiltinType>(T)->getKind()) {
2631  default: assert(0 && "getIntegerRank(): not a built-in integer");
2632  case BuiltinType::Bool:
2633    return 1 + (getIntWidth(BoolTy) << 3);
2634  case BuiltinType::Char_S:
2635  case BuiltinType::Char_U:
2636  case BuiltinType::SChar:
2637  case BuiltinType::UChar:
2638    return 2 + (getIntWidth(CharTy) << 3);
2639  case BuiltinType::Short:
2640  case BuiltinType::UShort:
2641    return 3 + (getIntWidth(ShortTy) << 3);
2642  case BuiltinType::Int:
2643  case BuiltinType::UInt:
2644    return 4 + (getIntWidth(IntTy) << 3);
2645  case BuiltinType::Long:
2646  case BuiltinType::ULong:
2647    return 5 + (getIntWidth(LongTy) << 3);
2648  case BuiltinType::LongLong:
2649  case BuiltinType::ULongLong:
2650    return 6 + (getIntWidth(LongLongTy) << 3);
2651  case BuiltinType::Int128:
2652  case BuiltinType::UInt128:
2653    return 7 + (getIntWidth(Int128Ty) << 3);
2654  }
2655}
2656
2657/// \brief Whether this is a promotable bitfield reference according
2658/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2659///
2660/// \returns the type this bit-field will promote to, or NULL if no
2661/// promotion occurs.
2662QualType ASTContext::isPromotableBitField(Expr *E) {
2663  FieldDecl *Field = E->getBitField();
2664  if (!Field)
2665    return QualType();
2666
2667  QualType FT = Field->getType();
2668
2669  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2670  uint64_t BitWidth = BitWidthAP.getZExtValue();
2671  uint64_t IntSize = getTypeSize(IntTy);
2672  // GCC extension compatibility: if the bit-field size is less than or equal
2673  // to the size of int, it gets promoted no matter what its type is.
2674  // For instance, unsigned long bf : 4 gets promoted to signed int.
2675  if (BitWidth < IntSize)
2676    return IntTy;
2677
2678  if (BitWidth == IntSize)
2679    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2680
2681  // Types bigger than int are not subject to promotions, and therefore act
2682  // like the base type.
2683  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2684  // is ridiculous.
2685  return QualType();
2686}
2687
2688/// getPromotedIntegerType - Returns the type that Promotable will
2689/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2690/// integer type.
2691QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2692  assert(!Promotable.isNull());
2693  assert(Promotable->isPromotableIntegerType());
2694  if (Promotable->isSignedIntegerType())
2695    return IntTy;
2696  uint64_t PromotableSize = getTypeSize(Promotable);
2697  uint64_t IntSize = getTypeSize(IntTy);
2698  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2699  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2700}
2701
2702/// getIntegerTypeOrder - Returns the highest ranked integer type:
2703/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2704/// LHS < RHS, return -1.
2705int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2706  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2707  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2708  if (LHSC == RHSC) return 0;
2709
2710  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2711  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2712
2713  unsigned LHSRank = getIntegerRank(LHSC);
2714  unsigned RHSRank = getIntegerRank(RHSC);
2715
2716  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2717    if (LHSRank == RHSRank) return 0;
2718    return LHSRank > RHSRank ? 1 : -1;
2719  }
2720
2721  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2722  if (LHSUnsigned) {
2723    // If the unsigned [LHS] type is larger, return it.
2724    if (LHSRank >= RHSRank)
2725      return 1;
2726
2727    // If the signed type can represent all values of the unsigned type, it
2728    // wins.  Because we are dealing with 2's complement and types that are
2729    // powers of two larger than each other, this is always safe.
2730    return -1;
2731  }
2732
2733  // If the unsigned [RHS] type is larger, return it.
2734  if (RHSRank >= LHSRank)
2735    return -1;
2736
2737  // If the signed type can represent all values of the unsigned type, it
2738  // wins.  Because we are dealing with 2's complement and types that are
2739  // powers of two larger than each other, this is always safe.
2740  return 1;
2741}
2742
2743static RecordDecl *
2744CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2745                 SourceLocation L, IdentifierInfo *Id) {
2746  if (Ctx.getLangOptions().CPlusPlus)
2747    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2748  else
2749    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2750}
2751
2752// getCFConstantStringType - Return the type used for constant CFStrings.
2753QualType ASTContext::getCFConstantStringType() {
2754  if (!CFConstantStringTypeDecl) {
2755    CFConstantStringTypeDecl =
2756      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2757                       &Idents.get("NSConstantString"));
2758
2759    QualType FieldTypes[4];
2760
2761    // const int *isa;
2762    FieldTypes[0] = getPointerType(IntTy.withConst());
2763    // int flags;
2764    FieldTypes[1] = IntTy;
2765    // const char *str;
2766    FieldTypes[2] = getPointerType(CharTy.withConst());
2767    // long length;
2768    FieldTypes[3] = LongTy;
2769
2770    // Create fields
2771    for (unsigned i = 0; i < 4; ++i) {
2772      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2773                                           SourceLocation(), 0,
2774                                           FieldTypes[i], /*DInfo=*/0,
2775                                           /*BitWidth=*/0,
2776                                           /*Mutable=*/false);
2777      CFConstantStringTypeDecl->addDecl(Field);
2778    }
2779
2780    CFConstantStringTypeDecl->completeDefinition(*this);
2781  }
2782
2783  return getTagDeclType(CFConstantStringTypeDecl);
2784}
2785
2786void ASTContext::setCFConstantStringType(QualType T) {
2787  const RecordType *Rec = T->getAs<RecordType>();
2788  assert(Rec && "Invalid CFConstantStringType");
2789  CFConstantStringTypeDecl = Rec->getDecl();
2790}
2791
2792QualType ASTContext::getObjCFastEnumerationStateType() {
2793  if (!ObjCFastEnumerationStateTypeDecl) {
2794    ObjCFastEnumerationStateTypeDecl =
2795      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2796                       &Idents.get("__objcFastEnumerationState"));
2797
2798    QualType FieldTypes[] = {
2799      UnsignedLongTy,
2800      getPointerType(ObjCIdTypedefType),
2801      getPointerType(UnsignedLongTy),
2802      getConstantArrayType(UnsignedLongTy,
2803                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2804    };
2805
2806    for (size_t i = 0; i < 4; ++i) {
2807      FieldDecl *Field = FieldDecl::Create(*this,
2808                                           ObjCFastEnumerationStateTypeDecl,
2809                                           SourceLocation(), 0,
2810                                           FieldTypes[i], /*DInfo=*/0,
2811                                           /*BitWidth=*/0,
2812                                           /*Mutable=*/false);
2813      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2814    }
2815
2816    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2817  }
2818
2819  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2820}
2821
2822QualType ASTContext::getBlockDescriptorType() {
2823  if (BlockDescriptorType)
2824    return getTagDeclType(BlockDescriptorType);
2825
2826  RecordDecl *T;
2827  // FIXME: Needs the FlagAppleBlock bit.
2828  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2829                       &Idents.get("__block_descriptor"));
2830
2831  QualType FieldTypes[] = {
2832    UnsignedLongTy,
2833    UnsignedLongTy,
2834  };
2835
2836  const char *FieldNames[] = {
2837    "reserved",
2838    "Size"
2839  };
2840
2841  for (size_t i = 0; i < 2; ++i) {
2842    FieldDecl *Field = FieldDecl::Create(*this,
2843                                         T,
2844                                         SourceLocation(),
2845                                         &Idents.get(FieldNames[i]),
2846                                         FieldTypes[i], /*DInfo=*/0,
2847                                         /*BitWidth=*/0,
2848                                         /*Mutable=*/false);
2849    T->addDecl(Field);
2850  }
2851
2852  T->completeDefinition(*this);
2853
2854  BlockDescriptorType = T;
2855
2856  return getTagDeclType(BlockDescriptorType);
2857}
2858
2859void ASTContext::setBlockDescriptorType(QualType T) {
2860  const RecordType *Rec = T->getAs<RecordType>();
2861  assert(Rec && "Invalid BlockDescriptorType");
2862  BlockDescriptorType = Rec->getDecl();
2863}
2864
2865QualType ASTContext::getBlockDescriptorExtendedType() {
2866  if (BlockDescriptorExtendedType)
2867    return getTagDeclType(BlockDescriptorExtendedType);
2868
2869  RecordDecl *T;
2870  // FIXME: Needs the FlagAppleBlock bit.
2871  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2872                       &Idents.get("__block_descriptor_withcopydispose"));
2873
2874  QualType FieldTypes[] = {
2875    UnsignedLongTy,
2876    UnsignedLongTy,
2877    getPointerType(VoidPtrTy),
2878    getPointerType(VoidPtrTy)
2879  };
2880
2881  const char *FieldNames[] = {
2882    "reserved",
2883    "Size",
2884    "CopyFuncPtr",
2885    "DestroyFuncPtr"
2886  };
2887
2888  for (size_t i = 0; i < 4; ++i) {
2889    FieldDecl *Field = FieldDecl::Create(*this,
2890                                         T,
2891                                         SourceLocation(),
2892                                         &Idents.get(FieldNames[i]),
2893                                         FieldTypes[i], /*DInfo=*/0,
2894                                         /*BitWidth=*/0,
2895                                         /*Mutable=*/false);
2896    T->addDecl(Field);
2897  }
2898
2899  T->completeDefinition(*this);
2900
2901  BlockDescriptorExtendedType = T;
2902
2903  return getTagDeclType(BlockDescriptorExtendedType);
2904}
2905
2906void ASTContext::setBlockDescriptorExtendedType(QualType T) {
2907  const RecordType *Rec = T->getAs<RecordType>();
2908  assert(Rec && "Invalid BlockDescriptorType");
2909  BlockDescriptorExtendedType = Rec->getDecl();
2910}
2911
2912bool ASTContext::BlockRequiresCopying(QualType Ty) {
2913  if (Ty->isBlockPointerType())
2914    return true;
2915  if (isObjCNSObjectType(Ty))
2916    return true;
2917  if (Ty->isObjCObjectPointerType())
2918    return true;
2919  return false;
2920}
2921
2922QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
2923  //  type = struct __Block_byref_1_X {
2924  //    void *__isa;
2925  //    struct __Block_byref_1_X *__forwarding;
2926  //    unsigned int __flags;
2927  //    unsigned int __size;
2928  //    void *__copy_helper;		// as needed
2929  //    void *__destroy_help		// as needed
2930  //    int X;
2931  //  } *
2932
2933  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
2934
2935  // FIXME: Move up
2936  static unsigned int UniqueBlockByRefTypeID = 0;
2937  llvm::SmallString<36> Name;
2938  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
2939                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
2940  RecordDecl *T;
2941  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2942                       &Idents.get(Name.str()));
2943  T->startDefinition();
2944  QualType Int32Ty = IntTy;
2945  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
2946  QualType FieldTypes[] = {
2947    getPointerType(VoidPtrTy),
2948    getPointerType(getTagDeclType(T)),
2949    Int32Ty,
2950    Int32Ty,
2951    getPointerType(VoidPtrTy),
2952    getPointerType(VoidPtrTy),
2953    Ty
2954  };
2955
2956  const char *FieldNames[] = {
2957    "__isa",
2958    "__forwarding",
2959    "__flags",
2960    "__size",
2961    "__copy_helper",
2962    "__destroy_helper",
2963    DeclName,
2964  };
2965
2966  for (size_t i = 0; i < 7; ++i) {
2967    if (!HasCopyAndDispose && i >=4 && i <= 5)
2968      continue;
2969    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
2970                                         &Idents.get(FieldNames[i]),
2971                                         FieldTypes[i], /*DInfo=*/0,
2972                                         /*BitWidth=*/0, /*Mutable=*/false);
2973    T->addDecl(Field);
2974  }
2975
2976  T->completeDefinition(*this);
2977
2978  return getPointerType(getTagDeclType(T));
2979}
2980
2981
2982QualType ASTContext::getBlockParmType(
2983  bool BlockHasCopyDispose,
2984  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
2985  // FIXME: Move up
2986  static unsigned int UniqueBlockParmTypeID = 0;
2987  llvm::SmallString<36> Name;
2988  llvm::raw_svector_ostream(Name) << "__block_literal_"
2989                                  << ++UniqueBlockParmTypeID;
2990  RecordDecl *T;
2991  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2992                       &Idents.get(Name.str()));
2993  QualType FieldTypes[] = {
2994    getPointerType(VoidPtrTy),
2995    IntTy,
2996    IntTy,
2997    getPointerType(VoidPtrTy),
2998    (BlockHasCopyDispose ?
2999     getPointerType(getBlockDescriptorExtendedType()) :
3000     getPointerType(getBlockDescriptorType()))
3001  };
3002
3003  const char *FieldNames[] = {
3004    "__isa",
3005    "__flags",
3006    "__reserved",
3007    "__FuncPtr",
3008    "__descriptor"
3009  };
3010
3011  for (size_t i = 0; i < 5; ++i) {
3012    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3013                                         &Idents.get(FieldNames[i]),
3014                                         FieldTypes[i], /*DInfo=*/0,
3015                                         /*BitWidth=*/0, /*Mutable=*/false);
3016    T->addDecl(Field);
3017  }
3018
3019  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3020    const Expr *E = BlockDeclRefDecls[i];
3021    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3022    clang::IdentifierInfo *Name = 0;
3023    if (BDRE) {
3024      const ValueDecl *D = BDRE->getDecl();
3025      Name = &Idents.get(D->getName());
3026    }
3027    QualType FieldType = E->getType();
3028
3029    if (BDRE && BDRE->isByRef())
3030      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3031                                 FieldType);
3032
3033    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3034                                         Name, FieldType, /*DInfo=*/0,
3035                                         /*BitWidth=*/0, /*Mutable=*/false);
3036    T->addDecl(Field);
3037  }
3038
3039  T->completeDefinition(*this);
3040
3041  return getPointerType(getTagDeclType(T));
3042}
3043
3044void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3045  const RecordType *Rec = T->getAs<RecordType>();
3046  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3047  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3048}
3049
3050// This returns true if a type has been typedefed to BOOL:
3051// typedef <type> BOOL;
3052static bool isTypeTypedefedAsBOOL(QualType T) {
3053  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3054    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3055      return II->isStr("BOOL");
3056
3057  return false;
3058}
3059
3060/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3061/// purpose.
3062int ASTContext::getObjCEncodingTypeSize(QualType type) {
3063  uint64_t sz = getTypeSize(type);
3064
3065  // Make all integer and enum types at least as large as an int
3066  if (sz > 0 && type->isIntegralType())
3067    sz = std::max(sz, getTypeSize(IntTy));
3068  // Treat arrays as pointers, since that's how they're passed in.
3069  else if (type->isArrayType())
3070    sz = getTypeSize(VoidPtrTy);
3071  return sz / getTypeSize(CharTy);
3072}
3073
3074/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3075/// declaration.
3076void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3077                                              std::string& S) {
3078  // FIXME: This is not very efficient.
3079  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3080  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3081  // Encode result type.
3082  getObjCEncodingForType(Decl->getResultType(), S);
3083  // Compute size of all parameters.
3084  // Start with computing size of a pointer in number of bytes.
3085  // FIXME: There might(should) be a better way of doing this computation!
3086  SourceLocation Loc;
3087  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
3088  // The first two arguments (self and _cmd) are pointers; account for
3089  // their size.
3090  int ParmOffset = 2 * PtrSize;
3091  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3092       E = Decl->param_end(); PI != E; ++PI) {
3093    QualType PType = (*PI)->getType();
3094    int sz = getObjCEncodingTypeSize(PType);
3095    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
3096    ParmOffset += sz;
3097  }
3098  S += llvm::utostr(ParmOffset);
3099  S += "@0:";
3100  S += llvm::utostr(PtrSize);
3101
3102  // Argument types.
3103  ParmOffset = 2 * PtrSize;
3104  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3105       E = Decl->param_end(); PI != E; ++PI) {
3106    ParmVarDecl *PVDecl = *PI;
3107    QualType PType = PVDecl->getOriginalType();
3108    if (const ArrayType *AT =
3109          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3110      // Use array's original type only if it has known number of
3111      // elements.
3112      if (!isa<ConstantArrayType>(AT))
3113        PType = PVDecl->getType();
3114    } else if (PType->isFunctionType())
3115      PType = PVDecl->getType();
3116    // Process argument qualifiers for user supplied arguments; such as,
3117    // 'in', 'inout', etc.
3118    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3119    getObjCEncodingForType(PType, S);
3120    S += llvm::utostr(ParmOffset);
3121    ParmOffset += getObjCEncodingTypeSize(PType);
3122  }
3123}
3124
3125/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3126/// property declaration. If non-NULL, Container must be either an
3127/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3128/// NULL when getting encodings for protocol properties.
3129/// Property attributes are stored as a comma-delimited C string. The simple
3130/// attributes readonly and bycopy are encoded as single characters. The
3131/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3132/// encoded as single characters, followed by an identifier. Property types
3133/// are also encoded as a parametrized attribute. The characters used to encode
3134/// these attributes are defined by the following enumeration:
3135/// @code
3136/// enum PropertyAttributes {
3137/// kPropertyReadOnly = 'R',   // property is read-only.
3138/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3139/// kPropertyByref = '&',  // property is a reference to the value last assigned
3140/// kPropertyDynamic = 'D',    // property is dynamic
3141/// kPropertyGetter = 'G',     // followed by getter selector name
3142/// kPropertySetter = 'S',     // followed by setter selector name
3143/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3144/// kPropertyType = 't'              // followed by old-style type encoding.
3145/// kPropertyWeak = 'W'              // 'weak' property
3146/// kPropertyStrong = 'P'            // property GC'able
3147/// kPropertyNonAtomic = 'N'         // property non-atomic
3148/// };
3149/// @endcode
3150void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3151                                                const Decl *Container,
3152                                                std::string& S) {
3153  // Collect information from the property implementation decl(s).
3154  bool Dynamic = false;
3155  ObjCPropertyImplDecl *SynthesizePID = 0;
3156
3157  // FIXME: Duplicated code due to poor abstraction.
3158  if (Container) {
3159    if (const ObjCCategoryImplDecl *CID =
3160        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3161      for (ObjCCategoryImplDecl::propimpl_iterator
3162             i = CID->propimpl_begin(), e = CID->propimpl_end();
3163           i != e; ++i) {
3164        ObjCPropertyImplDecl *PID = *i;
3165        if (PID->getPropertyDecl() == PD) {
3166          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3167            Dynamic = true;
3168          } else {
3169            SynthesizePID = PID;
3170          }
3171        }
3172      }
3173    } else {
3174      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3175      for (ObjCCategoryImplDecl::propimpl_iterator
3176             i = OID->propimpl_begin(), e = OID->propimpl_end();
3177           i != e; ++i) {
3178        ObjCPropertyImplDecl *PID = *i;
3179        if (PID->getPropertyDecl() == PD) {
3180          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3181            Dynamic = true;
3182          } else {
3183            SynthesizePID = PID;
3184          }
3185        }
3186      }
3187    }
3188  }
3189
3190  // FIXME: This is not very efficient.
3191  S = "T";
3192
3193  // Encode result type.
3194  // GCC has some special rules regarding encoding of properties which
3195  // closely resembles encoding of ivars.
3196  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3197                             true /* outermost type */,
3198                             true /* encoding for property */);
3199
3200  if (PD->isReadOnly()) {
3201    S += ",R";
3202  } else {
3203    switch (PD->getSetterKind()) {
3204    case ObjCPropertyDecl::Assign: break;
3205    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3206    case ObjCPropertyDecl::Retain: S += ",&"; break;
3207    }
3208  }
3209
3210  // It really isn't clear at all what this means, since properties
3211  // are "dynamic by default".
3212  if (Dynamic)
3213    S += ",D";
3214
3215  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3216    S += ",N";
3217
3218  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3219    S += ",G";
3220    S += PD->getGetterName().getAsString();
3221  }
3222
3223  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3224    S += ",S";
3225    S += PD->getSetterName().getAsString();
3226  }
3227
3228  if (SynthesizePID) {
3229    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3230    S += ",V";
3231    S += OID->getNameAsString();
3232  }
3233
3234  // FIXME: OBJCGC: weak & strong
3235}
3236
3237/// getLegacyIntegralTypeEncoding -
3238/// Another legacy compatibility encoding: 32-bit longs are encoded as
3239/// 'l' or 'L' , but not always.  For typedefs, we need to use
3240/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3241///
3242void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3243  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3244    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3245      if (BT->getKind() == BuiltinType::ULong &&
3246          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3247        PointeeTy = UnsignedIntTy;
3248      else
3249        if (BT->getKind() == BuiltinType::Long &&
3250            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3251          PointeeTy = IntTy;
3252    }
3253  }
3254}
3255
3256void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3257                                        const FieldDecl *Field) {
3258  // We follow the behavior of gcc, expanding structures which are
3259  // directly pointed to, and expanding embedded structures. Note that
3260  // these rules are sufficient to prevent recursive encoding of the
3261  // same type.
3262  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3263                             true /* outermost type */);
3264}
3265
3266static void EncodeBitField(const ASTContext *Context, std::string& S,
3267                           const FieldDecl *FD) {
3268  const Expr *E = FD->getBitWidth();
3269  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3270  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3271  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3272  S += 'b';
3273  S += llvm::utostr(N);
3274}
3275
3276// FIXME: Use SmallString for accumulating string.
3277void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3278                                            bool ExpandPointedToStructures,
3279                                            bool ExpandStructures,
3280                                            const FieldDecl *FD,
3281                                            bool OutermostType,
3282                                            bool EncodingProperty) {
3283  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3284    if (FD && FD->isBitField())
3285      return EncodeBitField(this, S, FD);
3286    char encoding;
3287    switch (BT->getKind()) {
3288    default: assert(0 && "Unhandled builtin type kind");
3289    case BuiltinType::Void:       encoding = 'v'; break;
3290    case BuiltinType::Bool:       encoding = 'B'; break;
3291    case BuiltinType::Char_U:
3292    case BuiltinType::UChar:      encoding = 'C'; break;
3293    case BuiltinType::UShort:     encoding = 'S'; break;
3294    case BuiltinType::UInt:       encoding = 'I'; break;
3295    case BuiltinType::ULong:
3296        encoding =
3297          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3298        break;
3299    case BuiltinType::UInt128:    encoding = 'T'; break;
3300    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3301    case BuiltinType::Char_S:
3302    case BuiltinType::SChar:      encoding = 'c'; break;
3303    case BuiltinType::Short:      encoding = 's'; break;
3304    case BuiltinType::Int:        encoding = 'i'; break;
3305    case BuiltinType::Long:
3306      encoding =
3307        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3308      break;
3309    case BuiltinType::LongLong:   encoding = 'q'; break;
3310    case BuiltinType::Int128:     encoding = 't'; break;
3311    case BuiltinType::Float:      encoding = 'f'; break;
3312    case BuiltinType::Double:     encoding = 'd'; break;
3313    case BuiltinType::LongDouble: encoding = 'd'; break;
3314    }
3315
3316    S += encoding;
3317    return;
3318  }
3319
3320  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3321    S += 'j';
3322    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3323                               false);
3324    return;
3325  }
3326
3327  if (const PointerType *PT = T->getAs<PointerType>()) {
3328    QualType PointeeTy = PT->getPointeeType();
3329    bool isReadOnly = false;
3330    // For historical/compatibility reasons, the read-only qualifier of the
3331    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3332    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3333    // Also, do not emit the 'r' for anything but the outermost type!
3334    if (isa<TypedefType>(T.getTypePtr())) {
3335      if (OutermostType && T.isConstQualified()) {
3336        isReadOnly = true;
3337        S += 'r';
3338      }
3339    } else if (OutermostType) {
3340      QualType P = PointeeTy;
3341      while (P->getAs<PointerType>())
3342        P = P->getAs<PointerType>()->getPointeeType();
3343      if (P.isConstQualified()) {
3344        isReadOnly = true;
3345        S += 'r';
3346      }
3347    }
3348    if (isReadOnly) {
3349      // Another legacy compatibility encoding. Some ObjC qualifier and type
3350      // combinations need to be rearranged.
3351      // Rewrite "in const" from "nr" to "rn"
3352      const char * s = S.c_str();
3353      int len = S.length();
3354      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3355        std::string replace = "rn";
3356        S.replace(S.end()-2, S.end(), replace);
3357      }
3358    }
3359    if (isObjCSelType(PointeeTy)) {
3360      S += ':';
3361      return;
3362    }
3363
3364    if (PointeeTy->isCharType()) {
3365      // char pointer types should be encoded as '*' unless it is a
3366      // type that has been typedef'd to 'BOOL'.
3367      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3368        S += '*';
3369        return;
3370      }
3371    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3372      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3373      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3374        S += '#';
3375        return;
3376      }
3377      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3378      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3379        S += '@';
3380        return;
3381      }
3382      // fall through...
3383    }
3384    S += '^';
3385    getLegacyIntegralTypeEncoding(PointeeTy);
3386
3387    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3388                               NULL);
3389    return;
3390  }
3391
3392  if (const ArrayType *AT =
3393      // Ignore type qualifiers etc.
3394        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3395    if (isa<IncompleteArrayType>(AT)) {
3396      // Incomplete arrays are encoded as a pointer to the array element.
3397      S += '^';
3398
3399      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3400                                 false, ExpandStructures, FD);
3401    } else {
3402      S += '[';
3403
3404      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3405        S += llvm::utostr(CAT->getSize().getZExtValue());
3406      else {
3407        //Variable length arrays are encoded as a regular array with 0 elements.
3408        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3409        S += '0';
3410      }
3411
3412      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3413                                 false, ExpandStructures, FD);
3414      S += ']';
3415    }
3416    return;
3417  }
3418
3419  if (T->getAs<FunctionType>()) {
3420    S += '?';
3421    return;
3422  }
3423
3424  if (const RecordType *RTy = T->getAs<RecordType>()) {
3425    RecordDecl *RDecl = RTy->getDecl();
3426    S += RDecl->isUnion() ? '(' : '{';
3427    // Anonymous structures print as '?'
3428    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3429      S += II->getName();
3430    } else {
3431      S += '?';
3432    }
3433    if (ExpandStructures) {
3434      S += '=';
3435      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3436                                   FieldEnd = RDecl->field_end();
3437           Field != FieldEnd; ++Field) {
3438        if (FD) {
3439          S += '"';
3440          S += Field->getNameAsString();
3441          S += '"';
3442        }
3443
3444        // Special case bit-fields.
3445        if (Field->isBitField()) {
3446          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3447                                     (*Field));
3448        } else {
3449          QualType qt = Field->getType();
3450          getLegacyIntegralTypeEncoding(qt);
3451          getObjCEncodingForTypeImpl(qt, S, false, true,
3452                                     FD);
3453        }
3454      }
3455    }
3456    S += RDecl->isUnion() ? ')' : '}';
3457    return;
3458  }
3459
3460  if (T->isEnumeralType()) {
3461    if (FD && FD->isBitField())
3462      EncodeBitField(this, S, FD);
3463    else
3464      S += 'i';
3465    return;
3466  }
3467
3468  if (T->isBlockPointerType()) {
3469    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3470    return;
3471  }
3472
3473  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3474    // @encode(class_name)
3475    ObjCInterfaceDecl *OI = OIT->getDecl();
3476    S += '{';
3477    const IdentifierInfo *II = OI->getIdentifier();
3478    S += II->getName();
3479    S += '=';
3480    llvm::SmallVector<FieldDecl*, 32> RecFields;
3481    CollectObjCIvars(OI, RecFields);
3482    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3483      if (RecFields[i]->isBitField())
3484        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3485                                   RecFields[i]);
3486      else
3487        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3488                                   FD);
3489    }
3490    S += '}';
3491    return;
3492  }
3493
3494  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3495    if (OPT->isObjCIdType()) {
3496      S += '@';
3497      return;
3498    }
3499
3500    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3501      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3502      // Since this is a binary compatibility issue, need to consult with runtime
3503      // folks. Fortunately, this is a *very* obsure construct.
3504      S += '#';
3505      return;
3506    }
3507
3508    if (OPT->isObjCQualifiedIdType()) {
3509      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3510                                 ExpandPointedToStructures,
3511                                 ExpandStructures, FD);
3512      if (FD || EncodingProperty) {
3513        // Note that we do extended encoding of protocol qualifer list
3514        // Only when doing ivar or property encoding.
3515        S += '"';
3516        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3517             E = OPT->qual_end(); I != E; ++I) {
3518          S += '<';
3519          S += (*I)->getNameAsString();
3520          S += '>';
3521        }
3522        S += '"';
3523      }
3524      return;
3525    }
3526
3527    QualType PointeeTy = OPT->getPointeeType();
3528    if (!EncodingProperty &&
3529        isa<TypedefType>(PointeeTy.getTypePtr())) {
3530      // Another historical/compatibility reason.
3531      // We encode the underlying type which comes out as
3532      // {...};
3533      S += '^';
3534      getObjCEncodingForTypeImpl(PointeeTy, S,
3535                                 false, ExpandPointedToStructures,
3536                                 NULL);
3537      return;
3538    }
3539
3540    S += '@';
3541    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3542      S += '"';
3543      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3544      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3545           E = OPT->qual_end(); I != E; ++I) {
3546        S += '<';
3547        S += (*I)->getNameAsString();
3548        S += '>';
3549      }
3550      S += '"';
3551    }
3552    return;
3553  }
3554
3555  assert(0 && "@encode for type not implemented!");
3556}
3557
3558void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3559                                                 std::string& S) const {
3560  if (QT & Decl::OBJC_TQ_In)
3561    S += 'n';
3562  if (QT & Decl::OBJC_TQ_Inout)
3563    S += 'N';
3564  if (QT & Decl::OBJC_TQ_Out)
3565    S += 'o';
3566  if (QT & Decl::OBJC_TQ_Bycopy)
3567    S += 'O';
3568  if (QT & Decl::OBJC_TQ_Byref)
3569    S += 'R';
3570  if (QT & Decl::OBJC_TQ_Oneway)
3571    S += 'V';
3572}
3573
3574void ASTContext::setBuiltinVaListType(QualType T) {
3575  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3576
3577  BuiltinVaListType = T;
3578}
3579
3580void ASTContext::setObjCIdType(QualType T) {
3581  ObjCIdTypedefType = T;
3582}
3583
3584void ASTContext::setObjCSelType(QualType T) {
3585  ObjCSelType = T;
3586
3587  const TypedefType *TT = T->getAs<TypedefType>();
3588  if (!TT)
3589    return;
3590  TypedefDecl *TD = TT->getDecl();
3591
3592  // typedef struct objc_selector *SEL;
3593  const PointerType *ptr = TD->getUnderlyingType()->getAs<PointerType>();
3594  if (!ptr)
3595    return;
3596  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
3597  if (!rec)
3598    return;
3599  SelStructType = rec;
3600}
3601
3602void ASTContext::setObjCProtoType(QualType QT) {
3603  ObjCProtoType = QT;
3604}
3605
3606void ASTContext::setObjCClassType(QualType T) {
3607  ObjCClassTypedefType = T;
3608}
3609
3610void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3611  assert(ObjCConstantStringType.isNull() &&
3612         "'NSConstantString' type already set!");
3613
3614  ObjCConstantStringType = getObjCInterfaceType(Decl);
3615}
3616
3617/// \brief Retrieve the template name that represents a qualified
3618/// template name such as \c std::vector.
3619TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3620                                                  bool TemplateKeyword,
3621                                                  TemplateDecl *Template) {
3622  llvm::FoldingSetNodeID ID;
3623  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3624
3625  void *InsertPos = 0;
3626  QualifiedTemplateName *QTN =
3627    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3628  if (!QTN) {
3629    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3630    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3631  }
3632
3633  return TemplateName(QTN);
3634}
3635
3636/// \brief Retrieve the template name that represents a qualified
3637/// template name such as \c std::vector.
3638TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3639                                                  bool TemplateKeyword,
3640                                            OverloadedFunctionDecl *Template) {
3641  llvm::FoldingSetNodeID ID;
3642  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3643
3644  void *InsertPos = 0;
3645  QualifiedTemplateName *QTN =
3646  QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3647  if (!QTN) {
3648    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3649    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3650  }
3651
3652  return TemplateName(QTN);
3653}
3654
3655/// \brief Retrieve the template name that represents a dependent
3656/// template name such as \c MetaFun::template apply.
3657TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3658                                                  const IdentifierInfo *Name) {
3659  assert((!NNS || NNS->isDependent()) &&
3660         "Nested name specifier must be dependent");
3661
3662  llvm::FoldingSetNodeID ID;
3663  DependentTemplateName::Profile(ID, NNS, Name);
3664
3665  void *InsertPos = 0;
3666  DependentTemplateName *QTN =
3667    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3668
3669  if (QTN)
3670    return TemplateName(QTN);
3671
3672  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3673  if (CanonNNS == NNS) {
3674    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3675  } else {
3676    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3677    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3678  }
3679
3680  DependentTemplateNames.InsertNode(QTN, InsertPos);
3681  return TemplateName(QTN);
3682}
3683
3684/// \brief Retrieve the template name that represents a dependent
3685/// template name such as \c MetaFun::template operator+.
3686TemplateName
3687ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3688                                     OverloadedOperatorKind Operator) {
3689  assert((!NNS || NNS->isDependent()) &&
3690         "Nested name specifier must be dependent");
3691
3692  llvm::FoldingSetNodeID ID;
3693  DependentTemplateName::Profile(ID, NNS, Operator);
3694
3695  void *InsertPos = 0;
3696  DependentTemplateName *QTN =
3697  DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3698
3699  if (QTN)
3700    return TemplateName(QTN);
3701
3702  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3703  if (CanonNNS == NNS) {
3704    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3705  } else {
3706    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3707    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3708  }
3709
3710  DependentTemplateNames.InsertNode(QTN, InsertPos);
3711  return TemplateName(QTN);
3712}
3713
3714/// getFromTargetType - Given one of the integer types provided by
3715/// TargetInfo, produce the corresponding type. The unsigned @p Type
3716/// is actually a value of type @c TargetInfo::IntType.
3717CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3718  switch (Type) {
3719  case TargetInfo::NoInt: return CanQualType();
3720  case TargetInfo::SignedShort: return ShortTy;
3721  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3722  case TargetInfo::SignedInt: return IntTy;
3723  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3724  case TargetInfo::SignedLong: return LongTy;
3725  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3726  case TargetInfo::SignedLongLong: return LongLongTy;
3727  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3728  }
3729
3730  assert(false && "Unhandled TargetInfo::IntType value");
3731  return CanQualType();
3732}
3733
3734//===----------------------------------------------------------------------===//
3735//                        Type Predicates.
3736//===----------------------------------------------------------------------===//
3737
3738/// isObjCNSObjectType - Return true if this is an NSObject object using
3739/// NSObject attribute on a c-style pointer type.
3740/// FIXME - Make it work directly on types.
3741/// FIXME: Move to Type.
3742///
3743bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3744  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3745    if (TypedefDecl *TD = TDT->getDecl())
3746      if (TD->getAttr<ObjCNSObjectAttr>())
3747        return true;
3748  }
3749  return false;
3750}
3751
3752/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3753/// garbage collection attribute.
3754///
3755Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3756  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3757  if (getLangOptions().ObjC1 &&
3758      getLangOptions().getGCMode() != LangOptions::NonGC) {
3759    GCAttrs = Ty.getObjCGCAttr();
3760    // Default behavious under objective-c's gc is for objective-c pointers
3761    // (or pointers to them) be treated as though they were declared
3762    // as __strong.
3763    if (GCAttrs == Qualifiers::GCNone) {
3764      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3765        GCAttrs = Qualifiers::Strong;
3766      else if (Ty->isPointerType())
3767        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3768    }
3769    // Non-pointers have none gc'able attribute regardless of the attribute
3770    // set on them.
3771    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3772      return Qualifiers::GCNone;
3773  }
3774  return GCAttrs;
3775}
3776
3777//===----------------------------------------------------------------------===//
3778//                        Type Compatibility Testing
3779//===----------------------------------------------------------------------===//
3780
3781/// areCompatVectorTypes - Return true if the two specified vector types are
3782/// compatible.
3783static bool areCompatVectorTypes(const VectorType *LHS,
3784                                 const VectorType *RHS) {
3785  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
3786  return LHS->getElementType() == RHS->getElementType() &&
3787         LHS->getNumElements() == RHS->getNumElements();
3788}
3789
3790//===----------------------------------------------------------------------===//
3791// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3792//===----------------------------------------------------------------------===//
3793
3794/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3795/// inheritance hierarchy of 'rProto'.
3796bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3797                                                ObjCProtocolDecl *rProto) {
3798  if (lProto == rProto)
3799    return true;
3800  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3801       E = rProto->protocol_end(); PI != E; ++PI)
3802    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3803      return true;
3804  return false;
3805}
3806
3807/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3808/// return true if lhs's protocols conform to rhs's protocol; false
3809/// otherwise.
3810bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3811  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3812    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3813  return false;
3814}
3815
3816/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3817/// ObjCQualifiedIDType.
3818bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3819                                                   bool compare) {
3820  // Allow id<P..> and an 'id' or void* type in all cases.
3821  if (lhs->isVoidPointerType() ||
3822      lhs->isObjCIdType() || lhs->isObjCClassType())
3823    return true;
3824  else if (rhs->isVoidPointerType() ||
3825           rhs->isObjCIdType() || rhs->isObjCClassType())
3826    return true;
3827
3828  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3829    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
3830
3831    if (!rhsOPT) return false;
3832
3833    if (rhsOPT->qual_empty()) {
3834      // If the RHS is a unqualified interface pointer "NSString*",
3835      // make sure we check the class hierarchy.
3836      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3837        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3838             E = lhsQID->qual_end(); I != E; ++I) {
3839          // when comparing an id<P> on lhs with a static type on rhs,
3840          // see if static class implements all of id's protocols, directly or
3841          // through its super class and categories.
3842          if (!rhsID->ClassImplementsProtocol(*I, true))
3843            return false;
3844        }
3845      }
3846      // If there are no qualifiers and no interface, we have an 'id'.
3847      return true;
3848    }
3849    // Both the right and left sides have qualifiers.
3850    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3851         E = lhsQID->qual_end(); I != E; ++I) {
3852      ObjCProtocolDecl *lhsProto = *I;
3853      bool match = false;
3854
3855      // when comparing an id<P> on lhs with a static type on rhs,
3856      // see if static class implements all of id's protocols, directly or
3857      // through its super class and categories.
3858      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3859           E = rhsOPT->qual_end(); J != E; ++J) {
3860        ObjCProtocolDecl *rhsProto = *J;
3861        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3862            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3863          match = true;
3864          break;
3865        }
3866      }
3867      // If the RHS is a qualified interface pointer "NSString<P>*",
3868      // make sure we check the class hierarchy.
3869      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3870        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3871             E = lhsQID->qual_end(); I != E; ++I) {
3872          // when comparing an id<P> on lhs with a static type on rhs,
3873          // see if static class implements all of id's protocols, directly or
3874          // through its super class and categories.
3875          if (rhsID->ClassImplementsProtocol(*I, true)) {
3876            match = true;
3877            break;
3878          }
3879        }
3880      }
3881      if (!match)
3882        return false;
3883    }
3884
3885    return true;
3886  }
3887
3888  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3889  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3890
3891  if (const ObjCObjectPointerType *lhsOPT =
3892        lhs->getAsObjCInterfacePointerType()) {
3893    if (lhsOPT->qual_empty()) {
3894      bool match = false;
3895      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3896        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3897             E = rhsQID->qual_end(); I != E; ++I) {
3898          // when comparing an id<P> on lhs with a static type on rhs,
3899          // see if static class implements all of id's protocols, directly or
3900          // through its super class and categories.
3901          if (lhsID->ClassImplementsProtocol(*I, true)) {
3902            match = true;
3903            break;
3904          }
3905        }
3906        if (!match)
3907          return false;
3908      }
3909      return true;
3910    }
3911    // Both the right and left sides have qualifiers.
3912    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3913         E = lhsOPT->qual_end(); I != E; ++I) {
3914      ObjCProtocolDecl *lhsProto = *I;
3915      bool match = false;
3916
3917      // when comparing an id<P> on lhs with a static type on rhs,
3918      // see if static class implements all of id's protocols, directly or
3919      // through its super class and categories.
3920      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3921           E = rhsQID->qual_end(); J != E; ++J) {
3922        ObjCProtocolDecl *rhsProto = *J;
3923        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3924            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3925          match = true;
3926          break;
3927        }
3928      }
3929      if (!match)
3930        return false;
3931    }
3932    return true;
3933  }
3934  return false;
3935}
3936
3937/// canAssignObjCInterfaces - Return true if the two interface types are
3938/// compatible for assignment from RHS to LHS.  This handles validation of any
3939/// protocol qualifiers on the LHS or RHS.
3940///
3941bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3942                                         const ObjCObjectPointerType *RHSOPT) {
3943  // If either type represents the built-in 'id' or 'Class' types, return true.
3944  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3945    return true;
3946
3947  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
3948    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
3949                                             QualType(RHSOPT,0),
3950                                             false);
3951
3952  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3953  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3954  if (LHS && RHS) // We have 2 user-defined types.
3955    return canAssignObjCInterfaces(LHS, RHS);
3956
3957  return false;
3958}
3959
3960/// getIntersectionOfProtocols - This routine finds the intersection of set
3961/// of protocols inherited from two distinct objective-c pointer objects.
3962/// It is used to build composite qualifier list of the composite type of
3963/// the conditional expression involving two objective-c pointer objects.
3964static
3965void getIntersectionOfProtocols(ASTContext &Context,
3966                                const ObjCObjectPointerType *LHSOPT,
3967                                const ObjCObjectPointerType *RHSOPT,
3968      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
3969
3970  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3971  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3972
3973  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
3974  unsigned LHSNumProtocols = LHS->getNumProtocols();
3975  if (LHSNumProtocols > 0)
3976    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
3977  else {
3978    llvm::SmallVector<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
3979     Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
3980    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
3981                                LHSInheritedProtocols.end());
3982  }
3983
3984  unsigned RHSNumProtocols = RHS->getNumProtocols();
3985  if (RHSNumProtocols > 0) {
3986    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
3987    for (unsigned i = 0; i < RHSNumProtocols; ++i)
3988      if (InheritedProtocolSet.count(RHSProtocols[i]))
3989        IntersectionOfProtocols.push_back(RHSProtocols[i]);
3990  }
3991  else {
3992    llvm::SmallVector<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
3993    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
3994    // FIXME. This may cause duplication of protocols in the list, but should
3995    // be harmless.
3996    for (unsigned i = 0, len = RHSInheritedProtocols.size(); i < len; ++i)
3997      if (InheritedProtocolSet.count(RHSInheritedProtocols[i]))
3998        IntersectionOfProtocols.push_back(RHSInheritedProtocols[i]);
3999  }
4000}
4001
4002/// areCommonBaseCompatible - Returns common base class of the two classes if
4003/// one found. Note that this is O'2 algorithm. But it will be called as the
4004/// last type comparison in a ?-exp of ObjC pointer types before a
4005/// warning is issued. So, its invokation is extremely rare.
4006QualType ASTContext::areCommonBaseCompatible(
4007                                          const ObjCObjectPointerType *LHSOPT,
4008                                          const ObjCObjectPointerType *RHSOPT) {
4009  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4010  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4011  if (!LHS || !RHS)
4012    return QualType();
4013
4014  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4015    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4016    LHS = LHSTy->getAs<ObjCInterfaceType>();
4017    if (canAssignObjCInterfaces(LHS, RHS)) {
4018      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4019      getIntersectionOfProtocols(*this,
4020                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4021      if (IntersectionOfProtocols.empty())
4022        LHSTy = getObjCObjectPointerType(LHSTy);
4023      else
4024        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4025                                                IntersectionOfProtocols.size());
4026      return LHSTy;
4027    }
4028  }
4029
4030  return QualType();
4031}
4032
4033bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4034                                         const ObjCInterfaceType *RHS) {
4035  // Verify that the base decls are compatible: the RHS must be a subclass of
4036  // the LHS.
4037  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4038    return false;
4039
4040  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4041  // protocol qualified at all, then we are good.
4042  if (LHS->getNumProtocols() == 0)
4043    return true;
4044
4045  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4046  // isn't a superset.
4047  if (RHS->getNumProtocols() == 0)
4048    return true;  // FIXME: should return false!
4049
4050  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4051                                        LHSPE = LHS->qual_end();
4052       LHSPI != LHSPE; LHSPI++) {
4053    bool RHSImplementsProtocol = false;
4054
4055    // If the RHS doesn't implement the protocol on the left, the types
4056    // are incompatible.
4057    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4058                                          RHSPE = RHS->qual_end();
4059         RHSPI != RHSPE; RHSPI++) {
4060      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4061        RHSImplementsProtocol = true;
4062        break;
4063      }
4064    }
4065    // FIXME: For better diagnostics, consider passing back the protocol name.
4066    if (!RHSImplementsProtocol)
4067      return false;
4068  }
4069  // The RHS implements all protocols listed on the LHS.
4070  return true;
4071}
4072
4073bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4074  // get the "pointed to" types
4075  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4076  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4077
4078  if (!LHSOPT || !RHSOPT)
4079    return false;
4080
4081  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4082         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4083}
4084
4085/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4086/// both shall have the identically qualified version of a compatible type.
4087/// C99 6.2.7p1: Two types have compatible types if their types are the
4088/// same. See 6.7.[2,3,5] for additional rules.
4089bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4090  return !mergeTypes(LHS, RHS).isNull();
4091}
4092
4093QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4094  const FunctionType *lbase = lhs->getAs<FunctionType>();
4095  const FunctionType *rbase = rhs->getAs<FunctionType>();
4096  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4097  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4098  bool allLTypes = true;
4099  bool allRTypes = true;
4100
4101  // Check return type
4102  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4103  if (retType.isNull()) return QualType();
4104  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4105    allLTypes = false;
4106  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4107    allRTypes = false;
4108  // FIXME: double check this
4109  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4110  if (NoReturn != lbase->getNoReturnAttr())
4111    allLTypes = false;
4112  if (NoReturn != rbase->getNoReturnAttr())
4113    allRTypes = false;
4114
4115  if (lproto && rproto) { // two C99 style function prototypes
4116    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4117           "C++ shouldn't be here");
4118    unsigned lproto_nargs = lproto->getNumArgs();
4119    unsigned rproto_nargs = rproto->getNumArgs();
4120
4121    // Compatible functions must have the same number of arguments
4122    if (lproto_nargs != rproto_nargs)
4123      return QualType();
4124
4125    // Variadic and non-variadic functions aren't compatible
4126    if (lproto->isVariadic() != rproto->isVariadic())
4127      return QualType();
4128
4129    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4130      return QualType();
4131
4132    // Check argument compatibility
4133    llvm::SmallVector<QualType, 10> types;
4134    for (unsigned i = 0; i < lproto_nargs; i++) {
4135      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4136      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4137      QualType argtype = mergeTypes(largtype, rargtype);
4138      if (argtype.isNull()) return QualType();
4139      types.push_back(argtype);
4140      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4141        allLTypes = false;
4142      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4143        allRTypes = false;
4144    }
4145    if (allLTypes) return lhs;
4146    if (allRTypes) return rhs;
4147    return getFunctionType(retType, types.begin(), types.size(),
4148                           lproto->isVariadic(), lproto->getTypeQuals(),
4149                           NoReturn);
4150  }
4151
4152  if (lproto) allRTypes = false;
4153  if (rproto) allLTypes = false;
4154
4155  const FunctionProtoType *proto = lproto ? lproto : rproto;
4156  if (proto) {
4157    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4158    if (proto->isVariadic()) return QualType();
4159    // Check that the types are compatible with the types that
4160    // would result from default argument promotions (C99 6.7.5.3p15).
4161    // The only types actually affected are promotable integer
4162    // types and floats, which would be passed as a different
4163    // type depending on whether the prototype is visible.
4164    unsigned proto_nargs = proto->getNumArgs();
4165    for (unsigned i = 0; i < proto_nargs; ++i) {
4166      QualType argTy = proto->getArgType(i);
4167      if (argTy->isPromotableIntegerType() ||
4168          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4169        return QualType();
4170    }
4171
4172    if (allLTypes) return lhs;
4173    if (allRTypes) return rhs;
4174    return getFunctionType(retType, proto->arg_type_begin(),
4175                           proto->getNumArgs(), proto->isVariadic(),
4176                           proto->getTypeQuals(), NoReturn);
4177  }
4178
4179  if (allLTypes) return lhs;
4180  if (allRTypes) return rhs;
4181  return getFunctionNoProtoType(retType, NoReturn);
4182}
4183
4184QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4185  // C++ [expr]: If an expression initially has the type "reference to T", the
4186  // type is adjusted to "T" prior to any further analysis, the expression
4187  // designates the object or function denoted by the reference, and the
4188  // expression is an lvalue unless the reference is an rvalue reference and
4189  // the expression is a function call (possibly inside parentheses).
4190  // FIXME: C++ shouldn't be going through here!  The rules are different
4191  // enough that they should be handled separately.
4192  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
4193  // shouldn't be going through here!
4194  if (const ReferenceType *RT = LHS->getAs<ReferenceType>())
4195    LHS = RT->getPointeeType();
4196  if (const ReferenceType *RT = RHS->getAs<ReferenceType>())
4197    RHS = RT->getPointeeType();
4198
4199  QualType LHSCan = getCanonicalType(LHS),
4200           RHSCan = getCanonicalType(RHS);
4201
4202  // If two types are identical, they are compatible.
4203  if (LHSCan == RHSCan)
4204    return LHS;
4205
4206  // If the qualifiers are different, the types aren't compatible... mostly.
4207  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4208  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4209  if (LQuals != RQuals) {
4210    // If any of these qualifiers are different, we have a type
4211    // mismatch.
4212    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4213        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4214      return QualType();
4215
4216    // Exactly one GC qualifier difference is allowed: __strong is
4217    // okay if the other type has no GC qualifier but is an Objective
4218    // C object pointer (i.e. implicitly strong by default).  We fix
4219    // this by pretending that the unqualified type was actually
4220    // qualified __strong.
4221    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4222    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4223    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4224
4225    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4226      return QualType();
4227
4228    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4229      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4230    }
4231    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4232      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4233    }
4234    return QualType();
4235  }
4236
4237  // Okay, qualifiers are equal.
4238
4239  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4240  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4241
4242  // We want to consider the two function types to be the same for these
4243  // comparisons, just force one to the other.
4244  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4245  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4246
4247  // Same as above for arrays
4248  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4249    LHSClass = Type::ConstantArray;
4250  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4251    RHSClass = Type::ConstantArray;
4252
4253  // Canonicalize ExtVector -> Vector.
4254  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4255  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4256
4257  // If the canonical type classes don't match.
4258  if (LHSClass != RHSClass) {
4259    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4260    // a signed integer type, or an unsigned integer type.
4261    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4262      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4263        return RHS;
4264    }
4265    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4266      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4267        return LHS;
4268    }
4269
4270    return QualType();
4271  }
4272
4273  // The canonical type classes match.
4274  switch (LHSClass) {
4275#define TYPE(Class, Base)
4276#define ABSTRACT_TYPE(Class, Base)
4277#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4278#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4279#include "clang/AST/TypeNodes.def"
4280    assert(false && "Non-canonical and dependent types shouldn't get here");
4281    return QualType();
4282
4283  case Type::LValueReference:
4284  case Type::RValueReference:
4285  case Type::MemberPointer:
4286    assert(false && "C++ should never be in mergeTypes");
4287    return QualType();
4288
4289  case Type::IncompleteArray:
4290  case Type::VariableArray:
4291  case Type::FunctionProto:
4292  case Type::ExtVector:
4293    assert(false && "Types are eliminated above");
4294    return QualType();
4295
4296  case Type::Pointer:
4297  {
4298    // Merge two pointer types, while trying to preserve typedef info
4299    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4300    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4301    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4302    if (ResultType.isNull()) return QualType();
4303    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4304      return LHS;
4305    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4306      return RHS;
4307    return getPointerType(ResultType);
4308  }
4309  case Type::BlockPointer:
4310  {
4311    // Merge two block pointer types, while trying to preserve typedef info
4312    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4313    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4314    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4315    if (ResultType.isNull()) return QualType();
4316    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4317      return LHS;
4318    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4319      return RHS;
4320    return getBlockPointerType(ResultType);
4321  }
4322  case Type::ConstantArray:
4323  {
4324    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4325    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4326    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4327      return QualType();
4328
4329    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4330    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4331    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4332    if (ResultType.isNull()) return QualType();
4333    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4334      return LHS;
4335    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4336      return RHS;
4337    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4338                                          ArrayType::ArraySizeModifier(), 0);
4339    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4340                                          ArrayType::ArraySizeModifier(), 0);
4341    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4342    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4343    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4344      return LHS;
4345    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4346      return RHS;
4347    if (LVAT) {
4348      // FIXME: This isn't correct! But tricky to implement because
4349      // the array's size has to be the size of LHS, but the type
4350      // has to be different.
4351      return LHS;
4352    }
4353    if (RVAT) {
4354      // FIXME: This isn't correct! But tricky to implement because
4355      // the array's size has to be the size of RHS, but the type
4356      // has to be different.
4357      return RHS;
4358    }
4359    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4360    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4361    return getIncompleteArrayType(ResultType,
4362                                  ArrayType::ArraySizeModifier(), 0);
4363  }
4364  case Type::FunctionNoProto:
4365    return mergeFunctionTypes(LHS, RHS);
4366  case Type::Record:
4367  case Type::Enum:
4368    return QualType();
4369  case Type::Builtin:
4370    // Only exactly equal builtin types are compatible, which is tested above.
4371    return QualType();
4372  case Type::Complex:
4373    // Distinct complex types are incompatible.
4374    return QualType();
4375  case Type::Vector:
4376    // FIXME: The merged type should be an ExtVector!
4377    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4378      return LHS;
4379    return QualType();
4380  case Type::ObjCInterface: {
4381    // Check if the interfaces are assignment compatible.
4382    // FIXME: This should be type compatibility, e.g. whether
4383    // "LHS x; RHS x;" at global scope is legal.
4384    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4385    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4386    if (LHSIface && RHSIface &&
4387        canAssignObjCInterfaces(LHSIface, RHSIface))
4388      return LHS;
4389
4390    return QualType();
4391  }
4392  case Type::ObjCObjectPointer: {
4393    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4394                                RHS->getAs<ObjCObjectPointerType>()))
4395      return LHS;
4396
4397    return QualType();
4398  }
4399  case Type::FixedWidthInt:
4400    // Distinct fixed-width integers are not compatible.
4401    return QualType();
4402  case Type::TemplateSpecialization:
4403    assert(false && "Dependent types have no size");
4404    break;
4405  }
4406
4407  return QualType();
4408}
4409
4410//===----------------------------------------------------------------------===//
4411//                         Integer Predicates
4412//===----------------------------------------------------------------------===//
4413
4414unsigned ASTContext::getIntWidth(QualType T) {
4415  if (T->isBooleanType())
4416    return 1;
4417  if (FixedWidthIntType *FWIT = dyn_cast<FixedWidthIntType>(T)) {
4418    return FWIT->getWidth();
4419  }
4420  // For builtin types, just use the standard type sizing method
4421  return (unsigned)getTypeSize(T);
4422}
4423
4424QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4425  assert(T->isSignedIntegerType() && "Unexpected type");
4426
4427  // Turn <4 x signed int> -> <4 x unsigned int>
4428  if (const VectorType *VTy = T->getAs<VectorType>())
4429    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4430                         VTy->getNumElements());
4431
4432  // For enums, we return the unsigned version of the base type.
4433  if (const EnumType *ETy = T->getAs<EnumType>())
4434    T = ETy->getDecl()->getIntegerType();
4435
4436  const BuiltinType *BTy = T->getAs<BuiltinType>();
4437  assert(BTy && "Unexpected signed integer type");
4438  switch (BTy->getKind()) {
4439  case BuiltinType::Char_S:
4440  case BuiltinType::SChar:
4441    return UnsignedCharTy;
4442  case BuiltinType::Short:
4443    return UnsignedShortTy;
4444  case BuiltinType::Int:
4445    return UnsignedIntTy;
4446  case BuiltinType::Long:
4447    return UnsignedLongTy;
4448  case BuiltinType::LongLong:
4449    return UnsignedLongLongTy;
4450  case BuiltinType::Int128:
4451    return UnsignedInt128Ty;
4452  default:
4453    assert(0 && "Unexpected signed integer type");
4454    return QualType();
4455  }
4456}
4457
4458ExternalASTSource::~ExternalASTSource() { }
4459
4460void ExternalASTSource::PrintStats() { }
4461
4462
4463//===----------------------------------------------------------------------===//
4464//                          Builtin Type Computation
4465//===----------------------------------------------------------------------===//
4466
4467/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4468/// pointer over the consumed characters.  This returns the resultant type.
4469static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4470                                  ASTContext::GetBuiltinTypeError &Error,
4471                                  bool AllowTypeModifiers = true) {
4472  // Modifiers.
4473  int HowLong = 0;
4474  bool Signed = false, Unsigned = false;
4475
4476  // Read the modifiers first.
4477  bool Done = false;
4478  while (!Done) {
4479    switch (*Str++) {
4480    default: Done = true; --Str; break;
4481    case 'S':
4482      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4483      assert(!Signed && "Can't use 'S' modifier multiple times!");
4484      Signed = true;
4485      break;
4486    case 'U':
4487      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4488      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4489      Unsigned = true;
4490      break;
4491    case 'L':
4492      assert(HowLong <= 2 && "Can't have LLLL modifier");
4493      ++HowLong;
4494      break;
4495    }
4496  }
4497
4498  QualType Type;
4499
4500  // Read the base type.
4501  switch (*Str++) {
4502  default: assert(0 && "Unknown builtin type letter!");
4503  case 'v':
4504    assert(HowLong == 0 && !Signed && !Unsigned &&
4505           "Bad modifiers used with 'v'!");
4506    Type = Context.VoidTy;
4507    break;
4508  case 'f':
4509    assert(HowLong == 0 && !Signed && !Unsigned &&
4510           "Bad modifiers used with 'f'!");
4511    Type = Context.FloatTy;
4512    break;
4513  case 'd':
4514    assert(HowLong < 2 && !Signed && !Unsigned &&
4515           "Bad modifiers used with 'd'!");
4516    if (HowLong)
4517      Type = Context.LongDoubleTy;
4518    else
4519      Type = Context.DoubleTy;
4520    break;
4521  case 's':
4522    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4523    if (Unsigned)
4524      Type = Context.UnsignedShortTy;
4525    else
4526      Type = Context.ShortTy;
4527    break;
4528  case 'i':
4529    if (HowLong == 3)
4530      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4531    else if (HowLong == 2)
4532      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4533    else if (HowLong == 1)
4534      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4535    else
4536      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4537    break;
4538  case 'c':
4539    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4540    if (Signed)
4541      Type = Context.SignedCharTy;
4542    else if (Unsigned)
4543      Type = Context.UnsignedCharTy;
4544    else
4545      Type = Context.CharTy;
4546    break;
4547  case 'b': // boolean
4548    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4549    Type = Context.BoolTy;
4550    break;
4551  case 'z':  // size_t.
4552    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4553    Type = Context.getSizeType();
4554    break;
4555  case 'F':
4556    Type = Context.getCFConstantStringType();
4557    break;
4558  case 'a':
4559    Type = Context.getBuiltinVaListType();
4560    assert(!Type.isNull() && "builtin va list type not initialized!");
4561    break;
4562  case 'A':
4563    // This is a "reference" to a va_list; however, what exactly
4564    // this means depends on how va_list is defined. There are two
4565    // different kinds of va_list: ones passed by value, and ones
4566    // passed by reference.  An example of a by-value va_list is
4567    // x86, where va_list is a char*. An example of by-ref va_list
4568    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4569    // we want this argument to be a char*&; for x86-64, we want
4570    // it to be a __va_list_tag*.
4571    Type = Context.getBuiltinVaListType();
4572    assert(!Type.isNull() && "builtin va list type not initialized!");
4573    if (Type->isArrayType()) {
4574      Type = Context.getArrayDecayedType(Type);
4575    } else {
4576      Type = Context.getLValueReferenceType(Type);
4577    }
4578    break;
4579  case 'V': {
4580    char *End;
4581    unsigned NumElements = strtoul(Str, &End, 10);
4582    assert(End != Str && "Missing vector size");
4583
4584    Str = End;
4585
4586    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4587    Type = Context.getVectorType(ElementType, NumElements);
4588    break;
4589  }
4590  case 'X': {
4591    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4592    Type = Context.getComplexType(ElementType);
4593    break;
4594  }
4595  case 'P':
4596    Type = Context.getFILEType();
4597    if (Type.isNull()) {
4598      Error = ASTContext::GE_Missing_stdio;
4599      return QualType();
4600    }
4601    break;
4602  case 'J':
4603    if (Signed)
4604      Type = Context.getsigjmp_bufType();
4605    else
4606      Type = Context.getjmp_bufType();
4607
4608    if (Type.isNull()) {
4609      Error = ASTContext::GE_Missing_setjmp;
4610      return QualType();
4611    }
4612    break;
4613  }
4614
4615  if (!AllowTypeModifiers)
4616    return Type;
4617
4618  Done = false;
4619  while (!Done) {
4620    switch (*Str++) {
4621      default: Done = true; --Str; break;
4622      case '*':
4623        Type = Context.getPointerType(Type);
4624        break;
4625      case '&':
4626        Type = Context.getLValueReferenceType(Type);
4627        break;
4628      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4629      case 'C':
4630        Type = Type.withConst();
4631        break;
4632    }
4633  }
4634
4635  return Type;
4636}
4637
4638/// GetBuiltinType - Return the type for the specified builtin.
4639QualType ASTContext::GetBuiltinType(unsigned id,
4640                                    GetBuiltinTypeError &Error) {
4641  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4642
4643  llvm::SmallVector<QualType, 8> ArgTypes;
4644
4645  Error = GE_None;
4646  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4647  if (Error != GE_None)
4648    return QualType();
4649  while (TypeStr[0] && TypeStr[0] != '.') {
4650    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4651    if (Error != GE_None)
4652      return QualType();
4653
4654    // Do array -> pointer decay.  The builtin should use the decayed type.
4655    if (Ty->isArrayType())
4656      Ty = getArrayDecayedType(Ty);
4657
4658    ArgTypes.push_back(Ty);
4659  }
4660
4661  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4662         "'.' should only occur at end of builtin type list!");
4663
4664  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4665  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4666    return getFunctionNoProtoType(ResType);
4667  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4668                         TypeStr[0] == '.', 0);
4669}
4670
4671QualType
4672ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4673  // Perform the usual unary conversions. We do this early so that
4674  // integral promotions to "int" can allow us to exit early, in the
4675  // lhs == rhs check. Also, for conversion purposes, we ignore any
4676  // qualifiers.  For example, "const float" and "float" are
4677  // equivalent.
4678  if (lhs->isPromotableIntegerType())
4679    lhs = getPromotedIntegerType(lhs);
4680  else
4681    lhs = lhs.getUnqualifiedType();
4682  if (rhs->isPromotableIntegerType())
4683    rhs = getPromotedIntegerType(rhs);
4684  else
4685    rhs = rhs.getUnqualifiedType();
4686
4687  // If both types are identical, no conversion is needed.
4688  if (lhs == rhs)
4689    return lhs;
4690
4691  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4692  // The caller can deal with this (e.g. pointer + int).
4693  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4694    return lhs;
4695
4696  // At this point, we have two different arithmetic types.
4697
4698  // Handle complex types first (C99 6.3.1.8p1).
4699  if (lhs->isComplexType() || rhs->isComplexType()) {
4700    // if we have an integer operand, the result is the complex type.
4701    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4702      // convert the rhs to the lhs complex type.
4703      return lhs;
4704    }
4705    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4706      // convert the lhs to the rhs complex type.
4707      return rhs;
4708    }
4709    // This handles complex/complex, complex/float, or float/complex.
4710    // When both operands are complex, the shorter operand is converted to the
4711    // type of the longer, and that is the type of the result. This corresponds
4712    // to what is done when combining two real floating-point operands.
4713    // The fun begins when size promotion occur across type domains.
4714    // From H&S 6.3.4: When one operand is complex and the other is a real
4715    // floating-point type, the less precise type is converted, within it's
4716    // real or complex domain, to the precision of the other type. For example,
4717    // when combining a "long double" with a "double _Complex", the
4718    // "double _Complex" is promoted to "long double _Complex".
4719    int result = getFloatingTypeOrder(lhs, rhs);
4720
4721    if (result > 0) { // The left side is bigger, convert rhs.
4722      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4723    } else if (result < 0) { // The right side is bigger, convert lhs.
4724      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4725    }
4726    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4727    // domains match. This is a requirement for our implementation, C99
4728    // does not require this promotion.
4729    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4730      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4731        return rhs;
4732      } else { // handle "_Complex double, double".
4733        return lhs;
4734      }
4735    }
4736    return lhs; // The domain/size match exactly.
4737  }
4738  // Now handle "real" floating types (i.e. float, double, long double).
4739  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4740    // if we have an integer operand, the result is the real floating type.
4741    if (rhs->isIntegerType()) {
4742      // convert rhs to the lhs floating point type.
4743      return lhs;
4744    }
4745    if (rhs->isComplexIntegerType()) {
4746      // convert rhs to the complex floating point type.
4747      return getComplexType(lhs);
4748    }
4749    if (lhs->isIntegerType()) {
4750      // convert lhs to the rhs floating point type.
4751      return rhs;
4752    }
4753    if (lhs->isComplexIntegerType()) {
4754      // convert lhs to the complex floating point type.
4755      return getComplexType(rhs);
4756    }
4757    // We have two real floating types, float/complex combos were handled above.
4758    // Convert the smaller operand to the bigger result.
4759    int result = getFloatingTypeOrder(lhs, rhs);
4760    if (result > 0) // convert the rhs
4761      return lhs;
4762    assert(result < 0 && "illegal float comparison");
4763    return rhs;   // convert the lhs
4764  }
4765  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4766    // Handle GCC complex int extension.
4767    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4768    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4769
4770    if (lhsComplexInt && rhsComplexInt) {
4771      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4772                              rhsComplexInt->getElementType()) >= 0)
4773        return lhs; // convert the rhs
4774      return rhs;
4775    } else if (lhsComplexInt && rhs->isIntegerType()) {
4776      // convert the rhs to the lhs complex type.
4777      return lhs;
4778    } else if (rhsComplexInt && lhs->isIntegerType()) {
4779      // convert the lhs to the rhs complex type.
4780      return rhs;
4781    }
4782  }
4783  // Finally, we have two differing integer types.
4784  // The rules for this case are in C99 6.3.1.8
4785  int compare = getIntegerTypeOrder(lhs, rhs);
4786  bool lhsSigned = lhs->isSignedIntegerType(),
4787       rhsSigned = rhs->isSignedIntegerType();
4788  QualType destType;
4789  if (lhsSigned == rhsSigned) {
4790    // Same signedness; use the higher-ranked type
4791    destType = compare >= 0 ? lhs : rhs;
4792  } else if (compare != (lhsSigned ? 1 : -1)) {
4793    // The unsigned type has greater than or equal rank to the
4794    // signed type, so use the unsigned type
4795    destType = lhsSigned ? rhs : lhs;
4796  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
4797    // The two types are different widths; if we are here, that
4798    // means the signed type is larger than the unsigned type, so
4799    // use the signed type.
4800    destType = lhsSigned ? lhs : rhs;
4801  } else {
4802    // The signed type is higher-ranked than the unsigned type,
4803    // but isn't actually any bigger (like unsigned int and long
4804    // on most 32-bit systems).  Use the unsigned type corresponding
4805    // to the signed type.
4806    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
4807  }
4808  return destType;
4809}
4810