ASTContext.cpp revision b8409215523e5478b8b0aa9cdcd10038cf7651fe
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const ClassTemplateSpecializationDecl *CTSD =
89          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
90    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
91    if (TSK == TSK_ImplicitInstantiation ||
92        TSK == TSK_Undeclared)
93      return NULL;
94  }
95
96  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
97    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
98      return NULL;
99  }
100  if (const TagDecl *TD = dyn_cast<TagDecl>(D)) {
101    // When tag declaration (but not definition!) is part of the
102    // decl-specifier-seq of some other declaration, it doesn't get comment
103    if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
104      return NULL;
105  }
106  // TODO: handle comments for function parameters properly.
107  if (isa<ParmVarDecl>(D))
108    return NULL;
109
110  // TODO: we could look up template parameter documentation in the template
111  // documentation.
112  if (isa<TemplateTypeParmDecl>(D) ||
113      isa<NonTypeTemplateParmDecl>(D) ||
114      isa<TemplateTemplateParmDecl>(D))
115    return NULL;
116
117  ArrayRef<RawComment *> RawComments = Comments.getComments();
118
119  // If there are no comments anywhere, we won't find anything.
120  if (RawComments.empty())
121    return NULL;
122
123  // Find declaration location.
124  // For Objective-C declarations we generally don't expect to have multiple
125  // declarators, thus use declaration starting location as the "declaration
126  // location".
127  // For all other declarations multiple declarators are used quite frequently,
128  // so we use the location of the identifier as the "declaration location".
129  SourceLocation DeclLoc;
130  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
131      isa<ObjCPropertyDecl>(D) ||
132      isa<RedeclarableTemplateDecl>(D) ||
133      isa<ClassTemplateSpecializationDecl>(D))
134    DeclLoc = D->getLocStart();
135  else
136    DeclLoc = D->getLocation();
137
138  // If the declaration doesn't map directly to a location in a file, we
139  // can't find the comment.
140  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
141    return NULL;
142
143  // Find the comment that occurs just after this declaration.
144  ArrayRef<RawComment *>::iterator Comment;
145  {
146    // When searching for comments during parsing, the comment we are looking
147    // for is usually among the last two comments we parsed -- check them
148    // first.
149    RawComment CommentAtDeclLoc(
150        SourceMgr, SourceRange(DeclLoc), false,
151        LangOpts.CommentOpts.ParseAllComments);
152    BeforeThanCompare<RawComment> Compare(SourceMgr);
153    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
154    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
155    if (!Found && RawComments.size() >= 2) {
156      MaybeBeforeDecl--;
157      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
158    }
159
160    if (Found) {
161      Comment = MaybeBeforeDecl + 1;
162      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
163                                         &CommentAtDeclLoc, Compare));
164    } else {
165      // Slow path.
166      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
167                                 &CommentAtDeclLoc, Compare);
168    }
169  }
170
171  // Decompose the location for the declaration and find the beginning of the
172  // file buffer.
173  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
174
175  // First check whether we have a trailing comment.
176  if (Comment != RawComments.end() &&
177      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
178      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
179    std::pair<FileID, unsigned> CommentBeginDecomp
180      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
181    // Check that Doxygen trailing comment comes after the declaration, starts
182    // on the same line and in the same file as the declaration.
183    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
184        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
185          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
186                                     CommentBeginDecomp.second)) {
187      return *Comment;
188    }
189  }
190
191  // The comment just after the declaration was not a trailing comment.
192  // Let's look at the previous comment.
193  if (Comment == RawComments.begin())
194    return NULL;
195  --Comment;
196
197  // Check that we actually have a non-member Doxygen comment.
198  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
199    return NULL;
200
201  // Decompose the end of the comment.
202  std::pair<FileID, unsigned> CommentEndDecomp
203    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
204
205  // If the comment and the declaration aren't in the same file, then they
206  // aren't related.
207  if (DeclLocDecomp.first != CommentEndDecomp.first)
208    return NULL;
209
210  // Get the corresponding buffer.
211  bool Invalid = false;
212  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
213                                               &Invalid).data();
214  if (Invalid)
215    return NULL;
216
217  // Extract text between the comment and declaration.
218  StringRef Text(Buffer + CommentEndDecomp.second,
219                 DeclLocDecomp.second - CommentEndDecomp.second);
220
221  // There should be no other declarations or preprocessor directives between
222  // comment and declaration.
223  if (Text.find_first_of(",;{}#@") != StringRef::npos)
224    return NULL;
225
226  return *Comment;
227}
228
229namespace {
230/// If we have a 'templated' declaration for a template, adjust 'D' to
231/// refer to the actual template.
232/// If we have an implicit instantiation, adjust 'D' to refer to template.
233const Decl *adjustDeclToTemplate(const Decl *D) {
234  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
235    // Is this function declaration part of a function template?
236    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
237      return FTD;
238
239    // Nothing to do if function is not an implicit instantiation.
240    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
241      return D;
242
243    // Function is an implicit instantiation of a function template?
244    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
245      return FTD;
246
247    // Function is instantiated from a member definition of a class template?
248    if (const FunctionDecl *MemberDecl =
249            FD->getInstantiatedFromMemberFunction())
250      return MemberDecl;
251
252    return D;
253  }
254  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
255    // Static data member is instantiated from a member definition of a class
256    // template?
257    if (VD->isStaticDataMember())
258      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
259        return MemberDecl;
260
261    return D;
262  }
263  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
264    // Is this class declaration part of a class template?
265    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
266      return CTD;
267
268    // Class is an implicit instantiation of a class template or partial
269    // specialization?
270    if (const ClassTemplateSpecializationDecl *CTSD =
271            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
272      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
273        return D;
274      llvm::PointerUnion<ClassTemplateDecl *,
275                         ClassTemplatePartialSpecializationDecl *>
276          PU = CTSD->getSpecializedTemplateOrPartial();
277      return PU.is<ClassTemplateDecl*>() ?
278          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
279          static_cast<const Decl*>(
280              PU.get<ClassTemplatePartialSpecializationDecl *>());
281    }
282
283    // Class is instantiated from a member definition of a class template?
284    if (const MemberSpecializationInfo *Info =
285                   CRD->getMemberSpecializationInfo())
286      return Info->getInstantiatedFrom();
287
288    return D;
289  }
290  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
291    // Enum is instantiated from a member definition of a class template?
292    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
293      return MemberDecl;
294
295    return D;
296  }
297  // FIXME: Adjust alias templates?
298  return D;
299}
300} // unnamed namespace
301
302const RawComment *ASTContext::getRawCommentForAnyRedecl(
303                                                const Decl *D,
304                                                const Decl **OriginalDecl) const {
305  D = adjustDeclToTemplate(D);
306
307  // Check whether we have cached a comment for this declaration already.
308  {
309    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
310        RedeclComments.find(D);
311    if (Pos != RedeclComments.end()) {
312      const RawCommentAndCacheFlags &Raw = Pos->second;
313      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
314        if (OriginalDecl)
315          *OriginalDecl = Raw.getOriginalDecl();
316        return Raw.getRaw();
317      }
318    }
319  }
320
321  // Search for comments attached to declarations in the redeclaration chain.
322  const RawComment *RC = NULL;
323  const Decl *OriginalDeclForRC = NULL;
324  for (Decl::redecl_iterator I = D->redecls_begin(),
325                             E = D->redecls_end();
326       I != E; ++I) {
327    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
328        RedeclComments.find(*I);
329    if (Pos != RedeclComments.end()) {
330      const RawCommentAndCacheFlags &Raw = Pos->second;
331      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
332        RC = Raw.getRaw();
333        OriginalDeclForRC = Raw.getOriginalDecl();
334        break;
335      }
336    } else {
337      RC = getRawCommentForDeclNoCache(*I);
338      OriginalDeclForRC = *I;
339      RawCommentAndCacheFlags Raw;
340      if (RC) {
341        Raw.setRaw(RC);
342        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
343      } else
344        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
345      Raw.setOriginalDecl(*I);
346      RedeclComments[*I] = Raw;
347      if (RC)
348        break;
349    }
350  }
351
352  // If we found a comment, it should be a documentation comment.
353  assert(!RC || RC->isDocumentation());
354
355  if (OriginalDecl)
356    *OriginalDecl = OriginalDeclForRC;
357
358  // Update cache for every declaration in the redeclaration chain.
359  RawCommentAndCacheFlags Raw;
360  Raw.setRaw(RC);
361  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
362  Raw.setOriginalDecl(OriginalDeclForRC);
363
364  for (Decl::redecl_iterator I = D->redecls_begin(),
365                             E = D->redecls_end();
366       I != E; ++I) {
367    RawCommentAndCacheFlags &R = RedeclComments[*I];
368    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
369      R = Raw;
370  }
371
372  return RC;
373}
374
375static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
376                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
377  const DeclContext *DC = ObjCMethod->getDeclContext();
378  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
379    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
380    if (!ID)
381      return;
382    // Add redeclared method here.
383    for (ObjCInterfaceDecl::known_extensions_iterator
384           Ext = ID->known_extensions_begin(),
385           ExtEnd = ID->known_extensions_end();
386         Ext != ExtEnd; ++Ext) {
387      if (ObjCMethodDecl *RedeclaredMethod =
388            Ext->getMethod(ObjCMethod->getSelector(),
389                                  ObjCMethod->isInstanceMethod()))
390        Redeclared.push_back(RedeclaredMethod);
391    }
392  }
393}
394
395comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
396                                                    const Decl *D) const {
397  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
398  ThisDeclInfo->CommentDecl = D;
399  ThisDeclInfo->IsFilled = false;
400  ThisDeclInfo->fill();
401  ThisDeclInfo->CommentDecl = FC->getDecl();
402  comments::FullComment *CFC =
403    new (*this) comments::FullComment(FC->getBlocks(),
404                                      ThisDeclInfo);
405  return CFC;
406
407}
408
409comments::FullComment *ASTContext::getCommentForDecl(
410                                              const Decl *D,
411                                              const Preprocessor *PP) const {
412  D = adjustDeclToTemplate(D);
413
414  const Decl *Canonical = D->getCanonicalDecl();
415  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
416      ParsedComments.find(Canonical);
417
418  if (Pos != ParsedComments.end()) {
419    if (Canonical != D) {
420      comments::FullComment *FC = Pos->second;
421      comments::FullComment *CFC = cloneFullComment(FC, D);
422      return CFC;
423    }
424    return Pos->second;
425  }
426
427  const Decl *OriginalDecl;
428
429  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
430  if (!RC) {
431    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
432      SmallVector<const NamedDecl*, 8> Overridden;
433      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
434      if (OMD && OMD->isPropertyAccessor())
435        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
436          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
437            return cloneFullComment(FC, D);
438      if (OMD)
439        addRedeclaredMethods(OMD, Overridden);
440      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
441      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
442        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
443          return cloneFullComment(FC, D);
444    }
445    else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
446      // Attach any tag type's documentation to its typedef if latter
447      // does not have one of its own.
448      QualType QT = TD->getUnderlyingType();
449      if (const TagType *TT = QT->getAs<TagType>())
450        if (const Decl *TD = TT->getDecl())
451          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
452            return cloneFullComment(FC, D);
453    }
454    else if (const ObjCInterfaceDecl *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
455      while (IC->getSuperClass()) {
456        IC = IC->getSuperClass();
457        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
458          return cloneFullComment(FC, D);
459      }
460    }
461    else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(D)) {
462      if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
463        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
464          return cloneFullComment(FC, D);
465    }
466    else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
467      if (!(RD = RD->getDefinition()))
468        return NULL;
469      // Check non-virtual bases.
470      for (CXXRecordDecl::base_class_const_iterator I =
471           RD->bases_begin(), E = RD->bases_end(); I != E; ++I) {
472        if (I->isVirtual() || (I->getAccessSpecifier() != AS_public))
473          continue;
474        QualType Ty = I->getType();
475        if (Ty.isNull())
476          continue;
477        if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
478          if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
479            continue;
480
481          if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
482            return cloneFullComment(FC, D);
483        }
484      }
485      // Check virtual bases.
486      for (CXXRecordDecl::base_class_const_iterator I =
487           RD->vbases_begin(), E = RD->vbases_end(); I != E; ++I) {
488        if (I->getAccessSpecifier() != AS_public)
489          continue;
490        QualType Ty = I->getType();
491        if (Ty.isNull())
492          continue;
493        if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
494          if (!(VirtualBase= VirtualBase->getDefinition()))
495            continue;
496          if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
497            return cloneFullComment(FC, D);
498        }
499      }
500    }
501    return NULL;
502  }
503
504  // If the RawComment was attached to other redeclaration of this Decl, we
505  // should parse the comment in context of that other Decl.  This is important
506  // because comments can contain references to parameter names which can be
507  // different across redeclarations.
508  if (D != OriginalDecl)
509    return getCommentForDecl(OriginalDecl, PP);
510
511  comments::FullComment *FC = RC->parse(*this, PP, D);
512  ParsedComments[Canonical] = FC;
513  return FC;
514}
515
516void
517ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
518                                               TemplateTemplateParmDecl *Parm) {
519  ID.AddInteger(Parm->getDepth());
520  ID.AddInteger(Parm->getPosition());
521  ID.AddBoolean(Parm->isParameterPack());
522
523  TemplateParameterList *Params = Parm->getTemplateParameters();
524  ID.AddInteger(Params->size());
525  for (TemplateParameterList::const_iterator P = Params->begin(),
526                                          PEnd = Params->end();
527       P != PEnd; ++P) {
528    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
529      ID.AddInteger(0);
530      ID.AddBoolean(TTP->isParameterPack());
531      continue;
532    }
533
534    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
535      ID.AddInteger(1);
536      ID.AddBoolean(NTTP->isParameterPack());
537      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
538      if (NTTP->isExpandedParameterPack()) {
539        ID.AddBoolean(true);
540        ID.AddInteger(NTTP->getNumExpansionTypes());
541        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
542          QualType T = NTTP->getExpansionType(I);
543          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
544        }
545      } else
546        ID.AddBoolean(false);
547      continue;
548    }
549
550    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
551    ID.AddInteger(2);
552    Profile(ID, TTP);
553  }
554}
555
556TemplateTemplateParmDecl *
557ASTContext::getCanonicalTemplateTemplateParmDecl(
558                                          TemplateTemplateParmDecl *TTP) const {
559  // Check if we already have a canonical template template parameter.
560  llvm::FoldingSetNodeID ID;
561  CanonicalTemplateTemplateParm::Profile(ID, TTP);
562  void *InsertPos = 0;
563  CanonicalTemplateTemplateParm *Canonical
564    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
565  if (Canonical)
566    return Canonical->getParam();
567
568  // Build a canonical template parameter list.
569  TemplateParameterList *Params = TTP->getTemplateParameters();
570  SmallVector<NamedDecl *, 4> CanonParams;
571  CanonParams.reserve(Params->size());
572  for (TemplateParameterList::const_iterator P = Params->begin(),
573                                          PEnd = Params->end();
574       P != PEnd; ++P) {
575    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
576      CanonParams.push_back(
577                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
578                                               SourceLocation(),
579                                               SourceLocation(),
580                                               TTP->getDepth(),
581                                               TTP->getIndex(), 0, false,
582                                               TTP->isParameterPack()));
583    else if (NonTypeTemplateParmDecl *NTTP
584             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
585      QualType T = getCanonicalType(NTTP->getType());
586      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
587      NonTypeTemplateParmDecl *Param;
588      if (NTTP->isExpandedParameterPack()) {
589        SmallVector<QualType, 2> ExpandedTypes;
590        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
591        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
592          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
593          ExpandedTInfos.push_back(
594                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
595        }
596
597        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
598                                                SourceLocation(),
599                                                SourceLocation(),
600                                                NTTP->getDepth(),
601                                                NTTP->getPosition(), 0,
602                                                T,
603                                                TInfo,
604                                                ExpandedTypes.data(),
605                                                ExpandedTypes.size(),
606                                                ExpandedTInfos.data());
607      } else {
608        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
609                                                SourceLocation(),
610                                                SourceLocation(),
611                                                NTTP->getDepth(),
612                                                NTTP->getPosition(), 0,
613                                                T,
614                                                NTTP->isParameterPack(),
615                                                TInfo);
616      }
617      CanonParams.push_back(Param);
618
619    } else
620      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
621                                           cast<TemplateTemplateParmDecl>(*P)));
622  }
623
624  TemplateTemplateParmDecl *CanonTTP
625    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
626                                       SourceLocation(), TTP->getDepth(),
627                                       TTP->getPosition(),
628                                       TTP->isParameterPack(),
629                                       0,
630                         TemplateParameterList::Create(*this, SourceLocation(),
631                                                       SourceLocation(),
632                                                       CanonParams.data(),
633                                                       CanonParams.size(),
634                                                       SourceLocation()));
635
636  // Get the new insert position for the node we care about.
637  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
638  assert(Canonical == 0 && "Shouldn't be in the map!");
639  (void)Canonical;
640
641  // Create the canonical template template parameter entry.
642  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
643  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
644  return CanonTTP;
645}
646
647CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
648  if (!LangOpts.CPlusPlus) return 0;
649
650  switch (T.getCXXABI().getKind()) {
651  case TargetCXXABI::GenericARM:
652  case TargetCXXABI::iOS:
653    return CreateARMCXXABI(*this);
654  case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
655  case TargetCXXABI::GenericItanium:
656    return CreateItaniumCXXABI(*this);
657  case TargetCXXABI::Microsoft:
658    return CreateMicrosoftCXXABI(*this);
659  }
660  llvm_unreachable("Invalid CXXABI type!");
661}
662
663static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
664                                             const LangOptions &LOpts) {
665  if (LOpts.FakeAddressSpaceMap) {
666    // The fake address space map must have a distinct entry for each
667    // language-specific address space.
668    static const unsigned FakeAddrSpaceMap[] = {
669      1, // opencl_global
670      2, // opencl_local
671      3, // opencl_constant
672      4, // cuda_device
673      5, // cuda_constant
674      6  // cuda_shared
675    };
676    return &FakeAddrSpaceMap;
677  } else {
678    return &T.getAddressSpaceMap();
679  }
680}
681
682ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
683                       const TargetInfo *t,
684                       IdentifierTable &idents, SelectorTable &sels,
685                       Builtin::Context &builtins,
686                       unsigned size_reserve,
687                       bool DelayInitialization)
688  : FunctionProtoTypes(this_()),
689    TemplateSpecializationTypes(this_()),
690    DependentTemplateSpecializationTypes(this_()),
691    SubstTemplateTemplateParmPacks(this_()),
692    GlobalNestedNameSpecifier(0),
693    Int128Decl(0), UInt128Decl(0),
694    BuiltinVaListDecl(0),
695    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
696    BOOLDecl(0),
697    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
698    FILEDecl(0),
699    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
700    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
701    cudaConfigureCallDecl(0),
702    NullTypeSourceInfo(QualType()),
703    FirstLocalImport(), LastLocalImport(),
704    SourceMgr(SM), LangOpts(LOpts),
705    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
706    Idents(idents), Selectors(sels),
707    BuiltinInfo(builtins),
708    DeclarationNames(*this),
709    ExternalSource(0), Listener(0),
710    Comments(SM), CommentsLoaded(false),
711    CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
712    LastSDM(0, 0),
713    UniqueBlockByRefTypeID(0)
714{
715  if (size_reserve > 0) Types.reserve(size_reserve);
716  TUDecl = TranslationUnitDecl::Create(*this);
717
718  if (!DelayInitialization) {
719    assert(t && "No target supplied for ASTContext initialization");
720    InitBuiltinTypes(*t);
721  }
722}
723
724ASTContext::~ASTContext() {
725  // Release the DenseMaps associated with DeclContext objects.
726  // FIXME: Is this the ideal solution?
727  ReleaseDeclContextMaps();
728
729  // Call all of the deallocation functions.
730  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
731    Deallocations[I].first(Deallocations[I].second);
732
733  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
734  // because they can contain DenseMaps.
735  for (llvm::DenseMap<const ObjCContainerDecl*,
736       const ASTRecordLayout*>::iterator
737       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
738    // Increment in loop to prevent using deallocated memory.
739    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
740      R->Destroy(*this);
741
742  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
743       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
744    // Increment in loop to prevent using deallocated memory.
745    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
746      R->Destroy(*this);
747  }
748
749  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
750                                                    AEnd = DeclAttrs.end();
751       A != AEnd; ++A)
752    A->second->~AttrVec();
753}
754
755void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
756  Deallocations.push_back(std::make_pair(Callback, Data));
757}
758
759void
760ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
761  ExternalSource.reset(Source.take());
762}
763
764void ASTContext::PrintStats() const {
765  llvm::errs() << "\n*** AST Context Stats:\n";
766  llvm::errs() << "  " << Types.size() << " types total.\n";
767
768  unsigned counts[] = {
769#define TYPE(Name, Parent) 0,
770#define ABSTRACT_TYPE(Name, Parent)
771#include "clang/AST/TypeNodes.def"
772    0 // Extra
773  };
774
775  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
776    Type *T = Types[i];
777    counts[(unsigned)T->getTypeClass()]++;
778  }
779
780  unsigned Idx = 0;
781  unsigned TotalBytes = 0;
782#define TYPE(Name, Parent)                                              \
783  if (counts[Idx])                                                      \
784    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
785                 << " types\n";                                         \
786  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
787  ++Idx;
788#define ABSTRACT_TYPE(Name, Parent)
789#include "clang/AST/TypeNodes.def"
790
791  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
792
793  // Implicit special member functions.
794  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
795               << NumImplicitDefaultConstructors
796               << " implicit default constructors created\n";
797  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
798               << NumImplicitCopyConstructors
799               << " implicit copy constructors created\n";
800  if (getLangOpts().CPlusPlus)
801    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
802                 << NumImplicitMoveConstructors
803                 << " implicit move constructors created\n";
804  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
805               << NumImplicitCopyAssignmentOperators
806               << " implicit copy assignment operators created\n";
807  if (getLangOpts().CPlusPlus)
808    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
809                 << NumImplicitMoveAssignmentOperators
810                 << " implicit move assignment operators created\n";
811  llvm::errs() << NumImplicitDestructorsDeclared << "/"
812               << NumImplicitDestructors
813               << " implicit destructors created\n";
814
815  if (ExternalSource.get()) {
816    llvm::errs() << "\n";
817    ExternalSource->PrintStats();
818  }
819
820  BumpAlloc.PrintStats();
821}
822
823TypedefDecl *ASTContext::getInt128Decl() const {
824  if (!Int128Decl) {
825    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
826    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
827                                     getTranslationUnitDecl(),
828                                     SourceLocation(),
829                                     SourceLocation(),
830                                     &Idents.get("__int128_t"),
831                                     TInfo);
832  }
833
834  return Int128Decl;
835}
836
837TypedefDecl *ASTContext::getUInt128Decl() const {
838  if (!UInt128Decl) {
839    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
840    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
841                                     getTranslationUnitDecl(),
842                                     SourceLocation(),
843                                     SourceLocation(),
844                                     &Idents.get("__uint128_t"),
845                                     TInfo);
846  }
847
848  return UInt128Decl;
849}
850
851void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
852  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
853  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
854  Types.push_back(Ty);
855}
856
857void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
858  assert((!this->Target || this->Target == &Target) &&
859         "Incorrect target reinitialization");
860  assert(VoidTy.isNull() && "Context reinitialized?");
861
862  this->Target = &Target;
863
864  ABI.reset(createCXXABI(Target));
865  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
866
867  // C99 6.2.5p19.
868  InitBuiltinType(VoidTy,              BuiltinType::Void);
869
870  // C99 6.2.5p2.
871  InitBuiltinType(BoolTy,              BuiltinType::Bool);
872  // C99 6.2.5p3.
873  if (LangOpts.CharIsSigned)
874    InitBuiltinType(CharTy,            BuiltinType::Char_S);
875  else
876    InitBuiltinType(CharTy,            BuiltinType::Char_U);
877  // C99 6.2.5p4.
878  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
879  InitBuiltinType(ShortTy,             BuiltinType::Short);
880  InitBuiltinType(IntTy,               BuiltinType::Int);
881  InitBuiltinType(LongTy,              BuiltinType::Long);
882  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
883
884  // C99 6.2.5p6.
885  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
886  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
887  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
888  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
889  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
890
891  // C99 6.2.5p10.
892  InitBuiltinType(FloatTy,             BuiltinType::Float);
893  InitBuiltinType(DoubleTy,            BuiltinType::Double);
894  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
895
896  // GNU extension, 128-bit integers.
897  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
898  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
899
900  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
901    if (TargetInfo::isTypeSigned(Target.getWCharType()))
902      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
903    else  // -fshort-wchar makes wchar_t be unsigned.
904      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
905  } else // C99 (or C++ using -fno-wchar)
906    WCharTy = getFromTargetType(Target.getWCharType());
907
908  WIntTy = getFromTargetType(Target.getWIntType());
909
910  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
911    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
912  else // C99
913    Char16Ty = getFromTargetType(Target.getChar16Type());
914
915  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
916    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
917  else // C99
918    Char32Ty = getFromTargetType(Target.getChar32Type());
919
920  // Placeholder type for type-dependent expressions whose type is
921  // completely unknown. No code should ever check a type against
922  // DependentTy and users should never see it; however, it is here to
923  // help diagnose failures to properly check for type-dependent
924  // expressions.
925  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
926
927  // Placeholder type for functions.
928  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
929
930  // Placeholder type for bound members.
931  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
932
933  // Placeholder type for pseudo-objects.
934  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
935
936  // "any" type; useful for debugger-like clients.
937  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
938
939  // Placeholder type for unbridged ARC casts.
940  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
941
942  // Placeholder type for builtin functions.
943  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
944
945  // C99 6.2.5p11.
946  FloatComplexTy      = getComplexType(FloatTy);
947  DoubleComplexTy     = getComplexType(DoubleTy);
948  LongDoubleComplexTy = getComplexType(LongDoubleTy);
949
950  // Builtin types for 'id', 'Class', and 'SEL'.
951  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
952  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
953  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
954
955  if (LangOpts.OpenCL) {
956    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
957    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
958    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
959    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
960    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
961    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
962
963    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
964    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
965  }
966
967  // Builtin type for __objc_yes and __objc_no
968  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
969                       SignedCharTy : BoolTy);
970
971  ObjCConstantStringType = QualType();
972
973  ObjCSuperType = QualType();
974
975  // void * type
976  VoidPtrTy = getPointerType(VoidTy);
977
978  // nullptr type (C++0x 2.14.7)
979  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
980
981  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
982  InitBuiltinType(HalfTy, BuiltinType::Half);
983
984  // Builtin type used to help define __builtin_va_list.
985  VaListTagTy = QualType();
986}
987
988DiagnosticsEngine &ASTContext::getDiagnostics() const {
989  return SourceMgr.getDiagnostics();
990}
991
992AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
993  AttrVec *&Result = DeclAttrs[D];
994  if (!Result) {
995    void *Mem = Allocate(sizeof(AttrVec));
996    Result = new (Mem) AttrVec;
997  }
998
999  return *Result;
1000}
1001
1002/// \brief Erase the attributes corresponding to the given declaration.
1003void ASTContext::eraseDeclAttrs(const Decl *D) {
1004  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1005  if (Pos != DeclAttrs.end()) {
1006    Pos->second->~AttrVec();
1007    DeclAttrs.erase(Pos);
1008  }
1009}
1010
1011MemberSpecializationInfo *
1012ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1013  assert(Var->isStaticDataMember() && "Not a static data member");
1014  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
1015    = InstantiatedFromStaticDataMember.find(Var);
1016  if (Pos == InstantiatedFromStaticDataMember.end())
1017    return 0;
1018
1019  return Pos->second;
1020}
1021
1022void
1023ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1024                                                TemplateSpecializationKind TSK,
1025                                          SourceLocation PointOfInstantiation) {
1026  assert(Inst->isStaticDataMember() && "Not a static data member");
1027  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1028  assert(!InstantiatedFromStaticDataMember[Inst] &&
1029         "Already noted what static data member was instantiated from");
1030  InstantiatedFromStaticDataMember[Inst]
1031    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
1032}
1033
1034FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
1035                                                     const FunctionDecl *FD){
1036  assert(FD && "Specialization is 0");
1037  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
1038    = ClassScopeSpecializationPattern.find(FD);
1039  if (Pos == ClassScopeSpecializationPattern.end())
1040    return 0;
1041
1042  return Pos->second;
1043}
1044
1045void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
1046                                        FunctionDecl *Pattern) {
1047  assert(FD && "Specialization is 0");
1048  assert(Pattern && "Class scope specialization pattern is 0");
1049  ClassScopeSpecializationPattern[FD] = Pattern;
1050}
1051
1052NamedDecl *
1053ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1054  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1055    = InstantiatedFromUsingDecl.find(UUD);
1056  if (Pos == InstantiatedFromUsingDecl.end())
1057    return 0;
1058
1059  return Pos->second;
1060}
1061
1062void
1063ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1064  assert((isa<UsingDecl>(Pattern) ||
1065          isa<UnresolvedUsingValueDecl>(Pattern) ||
1066          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1067         "pattern decl is not a using decl");
1068  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1069  InstantiatedFromUsingDecl[Inst] = Pattern;
1070}
1071
1072UsingShadowDecl *
1073ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1074  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1075    = InstantiatedFromUsingShadowDecl.find(Inst);
1076  if (Pos == InstantiatedFromUsingShadowDecl.end())
1077    return 0;
1078
1079  return Pos->second;
1080}
1081
1082void
1083ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1084                                               UsingShadowDecl *Pattern) {
1085  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1086  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1087}
1088
1089FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1090  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1091    = InstantiatedFromUnnamedFieldDecl.find(Field);
1092  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1093    return 0;
1094
1095  return Pos->second;
1096}
1097
1098void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1099                                                     FieldDecl *Tmpl) {
1100  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1101  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1102  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1103         "Already noted what unnamed field was instantiated from");
1104
1105  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1106}
1107
1108bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1109                                    const FieldDecl *LastFD) const {
1110  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1111          FD->getBitWidthValue(*this) == 0);
1112}
1113
1114bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1115                                             const FieldDecl *LastFD) const {
1116  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1117          FD->getBitWidthValue(*this) == 0 &&
1118          LastFD->getBitWidthValue(*this) != 0);
1119}
1120
1121bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1122                                         const FieldDecl *LastFD) const {
1123  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1124          FD->getBitWidthValue(*this) &&
1125          LastFD->getBitWidthValue(*this));
1126}
1127
1128bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1129                                         const FieldDecl *LastFD) const {
1130  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1131          LastFD->getBitWidthValue(*this));
1132}
1133
1134bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1135                                             const FieldDecl *LastFD) const {
1136  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1137          FD->getBitWidthValue(*this));
1138}
1139
1140ASTContext::overridden_cxx_method_iterator
1141ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1142  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1143    = OverriddenMethods.find(Method->getCanonicalDecl());
1144  if (Pos == OverriddenMethods.end())
1145    return 0;
1146
1147  return Pos->second.begin();
1148}
1149
1150ASTContext::overridden_cxx_method_iterator
1151ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1152  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1153    = OverriddenMethods.find(Method->getCanonicalDecl());
1154  if (Pos == OverriddenMethods.end())
1155    return 0;
1156
1157  return Pos->second.end();
1158}
1159
1160unsigned
1161ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1162  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1163    = OverriddenMethods.find(Method->getCanonicalDecl());
1164  if (Pos == OverriddenMethods.end())
1165    return 0;
1166
1167  return Pos->second.size();
1168}
1169
1170void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1171                                     const CXXMethodDecl *Overridden) {
1172  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1173  OverriddenMethods[Method].push_back(Overridden);
1174}
1175
1176void ASTContext::getOverriddenMethods(
1177                      const NamedDecl *D,
1178                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1179  assert(D);
1180
1181  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1182    Overridden.append(overridden_methods_begin(CXXMethod),
1183                      overridden_methods_end(CXXMethod));
1184    return;
1185  }
1186
1187  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1188  if (!Method)
1189    return;
1190
1191  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1192  Method->getOverriddenMethods(OverDecls);
1193  Overridden.append(OverDecls.begin(), OverDecls.end());
1194}
1195
1196void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1197  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1198  assert(!Import->isFromASTFile() && "Non-local import declaration");
1199  if (!FirstLocalImport) {
1200    FirstLocalImport = Import;
1201    LastLocalImport = Import;
1202    return;
1203  }
1204
1205  LastLocalImport->NextLocalImport = Import;
1206  LastLocalImport = Import;
1207}
1208
1209//===----------------------------------------------------------------------===//
1210//                         Type Sizing and Analysis
1211//===----------------------------------------------------------------------===//
1212
1213/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1214/// scalar floating point type.
1215const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1216  const BuiltinType *BT = T->getAs<BuiltinType>();
1217  assert(BT && "Not a floating point type!");
1218  switch (BT->getKind()) {
1219  default: llvm_unreachable("Not a floating point type!");
1220  case BuiltinType::Half:       return Target->getHalfFormat();
1221  case BuiltinType::Float:      return Target->getFloatFormat();
1222  case BuiltinType::Double:     return Target->getDoubleFormat();
1223  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1224  }
1225}
1226
1227/// getDeclAlign - Return a conservative estimate of the alignment of the
1228/// specified decl.  Note that bitfields do not have a valid alignment, so
1229/// this method will assert on them.
1230/// If @p RefAsPointee, references are treated like their underlying type
1231/// (for alignof), else they're treated like pointers (for CodeGen).
1232CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1233  unsigned Align = Target->getCharWidth();
1234
1235  bool UseAlignAttrOnly = false;
1236  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1237    Align = AlignFromAttr;
1238
1239    // __attribute__((aligned)) can increase or decrease alignment
1240    // *except* on a struct or struct member, where it only increases
1241    // alignment unless 'packed' is also specified.
1242    //
1243    // It is an error for alignas to decrease alignment, so we can
1244    // ignore that possibility;  Sema should diagnose it.
1245    if (isa<FieldDecl>(D)) {
1246      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1247        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1248    } else {
1249      UseAlignAttrOnly = true;
1250    }
1251  }
1252  else if (isa<FieldDecl>(D))
1253      UseAlignAttrOnly =
1254        D->hasAttr<PackedAttr>() ||
1255        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1256
1257  // If we're using the align attribute only, just ignore everything
1258  // else about the declaration and its type.
1259  if (UseAlignAttrOnly) {
1260    // do nothing
1261
1262  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1263    QualType T = VD->getType();
1264    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1265      if (RefAsPointee)
1266        T = RT->getPointeeType();
1267      else
1268        T = getPointerType(RT->getPointeeType());
1269    }
1270    if (!T->isIncompleteType() && !T->isFunctionType()) {
1271      // Adjust alignments of declarations with array type by the
1272      // large-array alignment on the target.
1273      unsigned MinWidth = Target->getLargeArrayMinWidth();
1274      const ArrayType *arrayType;
1275      if (MinWidth && (arrayType = getAsArrayType(T))) {
1276        if (isa<VariableArrayType>(arrayType))
1277          Align = std::max(Align, Target->getLargeArrayAlign());
1278        else if (isa<ConstantArrayType>(arrayType) &&
1279                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1280          Align = std::max(Align, Target->getLargeArrayAlign());
1281
1282        // Walk through any array types while we're at it.
1283        T = getBaseElementType(arrayType);
1284      }
1285      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1286      if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1287        if (VD->hasGlobalStorage())
1288          Align = std::max(Align, getTargetInfo().getMinGlobalAlign());
1289      }
1290    }
1291
1292    // Fields can be subject to extra alignment constraints, like if
1293    // the field is packed, the struct is packed, or the struct has a
1294    // a max-field-alignment constraint (#pragma pack).  So calculate
1295    // the actual alignment of the field within the struct, and then
1296    // (as we're expected to) constrain that by the alignment of the type.
1297    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1298      // So calculate the alignment of the field.
1299      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1300
1301      // Start with the record's overall alignment.
1302      unsigned fieldAlign = toBits(layout.getAlignment());
1303
1304      // Use the GCD of that and the offset within the record.
1305      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1306      if (offset > 0) {
1307        // Alignment is always a power of 2, so the GCD will be a power of 2,
1308        // which means we get to do this crazy thing instead of Euclid's.
1309        uint64_t lowBitOfOffset = offset & (~offset + 1);
1310        if (lowBitOfOffset < fieldAlign)
1311          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1312      }
1313
1314      Align = std::min(Align, fieldAlign);
1315    }
1316  }
1317
1318  return toCharUnitsFromBits(Align);
1319}
1320
1321// getTypeInfoDataSizeInChars - Return the size of a type, in
1322// chars. If the type is a record, its data size is returned.  This is
1323// the size of the memcpy that's performed when assigning this type
1324// using a trivial copy/move assignment operator.
1325std::pair<CharUnits, CharUnits>
1326ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1327  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1328
1329  // In C++, objects can sometimes be allocated into the tail padding
1330  // of a base-class subobject.  We decide whether that's possible
1331  // during class layout, so here we can just trust the layout results.
1332  if (getLangOpts().CPlusPlus) {
1333    if (const RecordType *RT = T->getAs<RecordType>()) {
1334      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1335      sizeAndAlign.first = layout.getDataSize();
1336    }
1337  }
1338
1339  return sizeAndAlign;
1340}
1341
1342std::pair<CharUnits, CharUnits>
1343ASTContext::getTypeInfoInChars(const Type *T) const {
1344  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1345  return std::make_pair(toCharUnitsFromBits(Info.first),
1346                        toCharUnitsFromBits(Info.second));
1347}
1348
1349std::pair<CharUnits, CharUnits>
1350ASTContext::getTypeInfoInChars(QualType T) const {
1351  return getTypeInfoInChars(T.getTypePtr());
1352}
1353
1354std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1355  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1356  if (it != MemoizedTypeInfo.end())
1357    return it->second;
1358
1359  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1360  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1361  return Info;
1362}
1363
1364/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1365/// method does not work on incomplete types.
1366///
1367/// FIXME: Pointers into different addr spaces could have different sizes and
1368/// alignment requirements: getPointerInfo should take an AddrSpace, this
1369/// should take a QualType, &c.
1370std::pair<uint64_t, unsigned>
1371ASTContext::getTypeInfoImpl(const Type *T) const {
1372  uint64_t Width=0;
1373  unsigned Align=8;
1374  switch (T->getTypeClass()) {
1375#define TYPE(Class, Base)
1376#define ABSTRACT_TYPE(Class, Base)
1377#define NON_CANONICAL_TYPE(Class, Base)
1378#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1379#include "clang/AST/TypeNodes.def"
1380    llvm_unreachable("Should not see dependent types");
1381
1382  case Type::FunctionNoProto:
1383  case Type::FunctionProto:
1384    // GCC extension: alignof(function) = 32 bits
1385    Width = 0;
1386    Align = 32;
1387    break;
1388
1389  case Type::IncompleteArray:
1390  case Type::VariableArray:
1391    Width = 0;
1392    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1393    break;
1394
1395  case Type::ConstantArray: {
1396    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1397
1398    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1399    uint64_t Size = CAT->getSize().getZExtValue();
1400    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1401           "Overflow in array type bit size evaluation");
1402    Width = EltInfo.first*Size;
1403    Align = EltInfo.second;
1404    Width = llvm::RoundUpToAlignment(Width, Align);
1405    break;
1406  }
1407  case Type::ExtVector:
1408  case Type::Vector: {
1409    const VectorType *VT = cast<VectorType>(T);
1410    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1411    Width = EltInfo.first*VT->getNumElements();
1412    Align = Width;
1413    // If the alignment is not a power of 2, round up to the next power of 2.
1414    // This happens for non-power-of-2 length vectors.
1415    if (Align & (Align-1)) {
1416      Align = llvm::NextPowerOf2(Align);
1417      Width = llvm::RoundUpToAlignment(Width, Align);
1418    }
1419    // Adjust the alignment based on the target max.
1420    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1421    if (TargetVectorAlign && TargetVectorAlign < Align)
1422      Align = TargetVectorAlign;
1423    break;
1424  }
1425
1426  case Type::Builtin:
1427    switch (cast<BuiltinType>(T)->getKind()) {
1428    default: llvm_unreachable("Unknown builtin type!");
1429    case BuiltinType::Void:
1430      // GCC extension: alignof(void) = 8 bits.
1431      Width = 0;
1432      Align = 8;
1433      break;
1434
1435    case BuiltinType::Bool:
1436      Width = Target->getBoolWidth();
1437      Align = Target->getBoolAlign();
1438      break;
1439    case BuiltinType::Char_S:
1440    case BuiltinType::Char_U:
1441    case BuiltinType::UChar:
1442    case BuiltinType::SChar:
1443      Width = Target->getCharWidth();
1444      Align = Target->getCharAlign();
1445      break;
1446    case BuiltinType::WChar_S:
1447    case BuiltinType::WChar_U:
1448      Width = Target->getWCharWidth();
1449      Align = Target->getWCharAlign();
1450      break;
1451    case BuiltinType::Char16:
1452      Width = Target->getChar16Width();
1453      Align = Target->getChar16Align();
1454      break;
1455    case BuiltinType::Char32:
1456      Width = Target->getChar32Width();
1457      Align = Target->getChar32Align();
1458      break;
1459    case BuiltinType::UShort:
1460    case BuiltinType::Short:
1461      Width = Target->getShortWidth();
1462      Align = Target->getShortAlign();
1463      break;
1464    case BuiltinType::UInt:
1465    case BuiltinType::Int:
1466      Width = Target->getIntWidth();
1467      Align = Target->getIntAlign();
1468      break;
1469    case BuiltinType::ULong:
1470    case BuiltinType::Long:
1471      Width = Target->getLongWidth();
1472      Align = Target->getLongAlign();
1473      break;
1474    case BuiltinType::ULongLong:
1475    case BuiltinType::LongLong:
1476      Width = Target->getLongLongWidth();
1477      Align = Target->getLongLongAlign();
1478      break;
1479    case BuiltinType::Int128:
1480    case BuiltinType::UInt128:
1481      Width = 128;
1482      Align = 128; // int128_t is 128-bit aligned on all targets.
1483      break;
1484    case BuiltinType::Half:
1485      Width = Target->getHalfWidth();
1486      Align = Target->getHalfAlign();
1487      break;
1488    case BuiltinType::Float:
1489      Width = Target->getFloatWidth();
1490      Align = Target->getFloatAlign();
1491      break;
1492    case BuiltinType::Double:
1493      Width = Target->getDoubleWidth();
1494      Align = Target->getDoubleAlign();
1495      break;
1496    case BuiltinType::LongDouble:
1497      Width = Target->getLongDoubleWidth();
1498      Align = Target->getLongDoubleAlign();
1499      break;
1500    case BuiltinType::NullPtr:
1501      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1502      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1503      break;
1504    case BuiltinType::ObjCId:
1505    case BuiltinType::ObjCClass:
1506    case BuiltinType::ObjCSel:
1507      Width = Target->getPointerWidth(0);
1508      Align = Target->getPointerAlign(0);
1509      break;
1510    case BuiltinType::OCLSampler:
1511      // Samplers are modeled as integers.
1512      Width = Target->getIntWidth();
1513      Align = Target->getIntAlign();
1514      break;
1515    case BuiltinType::OCLEvent:
1516    case BuiltinType::OCLImage1d:
1517    case BuiltinType::OCLImage1dArray:
1518    case BuiltinType::OCLImage1dBuffer:
1519    case BuiltinType::OCLImage2d:
1520    case BuiltinType::OCLImage2dArray:
1521    case BuiltinType::OCLImage3d:
1522      // Currently these types are pointers to opaque types.
1523      Width = Target->getPointerWidth(0);
1524      Align = Target->getPointerAlign(0);
1525      break;
1526    }
1527    break;
1528  case Type::ObjCObjectPointer:
1529    Width = Target->getPointerWidth(0);
1530    Align = Target->getPointerAlign(0);
1531    break;
1532  case Type::BlockPointer: {
1533    unsigned AS = getTargetAddressSpace(
1534        cast<BlockPointerType>(T)->getPointeeType());
1535    Width = Target->getPointerWidth(AS);
1536    Align = Target->getPointerAlign(AS);
1537    break;
1538  }
1539  case Type::LValueReference:
1540  case Type::RValueReference: {
1541    // alignof and sizeof should never enter this code path here, so we go
1542    // the pointer route.
1543    unsigned AS = getTargetAddressSpace(
1544        cast<ReferenceType>(T)->getPointeeType());
1545    Width = Target->getPointerWidth(AS);
1546    Align = Target->getPointerAlign(AS);
1547    break;
1548  }
1549  case Type::Pointer: {
1550    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1551    Width = Target->getPointerWidth(AS);
1552    Align = Target->getPointerAlign(AS);
1553    break;
1554  }
1555  case Type::MemberPointer: {
1556    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1557    llvm::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1558    break;
1559  }
1560  case Type::Complex: {
1561    // Complex types have the same alignment as their elements, but twice the
1562    // size.
1563    std::pair<uint64_t, unsigned> EltInfo =
1564      getTypeInfo(cast<ComplexType>(T)->getElementType());
1565    Width = EltInfo.first*2;
1566    Align = EltInfo.second;
1567    break;
1568  }
1569  case Type::ObjCObject:
1570    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1571  case Type::ObjCInterface: {
1572    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1573    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1574    Width = toBits(Layout.getSize());
1575    Align = toBits(Layout.getAlignment());
1576    break;
1577  }
1578  case Type::Record:
1579  case Type::Enum: {
1580    const TagType *TT = cast<TagType>(T);
1581
1582    if (TT->getDecl()->isInvalidDecl()) {
1583      Width = 8;
1584      Align = 8;
1585      break;
1586    }
1587
1588    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1589      return getTypeInfo(ET->getDecl()->getIntegerType());
1590
1591    const RecordType *RT = cast<RecordType>(TT);
1592    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1593    Width = toBits(Layout.getSize());
1594    Align = toBits(Layout.getAlignment());
1595    break;
1596  }
1597
1598  case Type::SubstTemplateTypeParm:
1599    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1600                       getReplacementType().getTypePtr());
1601
1602  case Type::Auto: {
1603    const AutoType *A = cast<AutoType>(T);
1604    assert(!A->getDeducedType().isNull() &&
1605           "cannot request the size of an undeduced or dependent auto type");
1606    return getTypeInfo(A->getDeducedType().getTypePtr());
1607  }
1608
1609  case Type::Paren:
1610    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1611
1612  case Type::Typedef: {
1613    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1614    std::pair<uint64_t, unsigned> Info
1615      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1616    // If the typedef has an aligned attribute on it, it overrides any computed
1617    // alignment we have.  This violates the GCC documentation (which says that
1618    // attribute(aligned) can only round up) but matches its implementation.
1619    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1620      Align = AttrAlign;
1621    else
1622      Align = Info.second;
1623    Width = Info.first;
1624    break;
1625  }
1626
1627  case Type::TypeOfExpr:
1628    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1629                         .getTypePtr());
1630
1631  case Type::TypeOf:
1632    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1633
1634  case Type::Decltype:
1635    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1636                        .getTypePtr());
1637
1638  case Type::UnaryTransform:
1639    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1640
1641  case Type::Elaborated:
1642    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1643
1644  case Type::Attributed:
1645    return getTypeInfo(
1646                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1647
1648  case Type::TemplateSpecialization: {
1649    assert(getCanonicalType(T) != T &&
1650           "Cannot request the size of a dependent type");
1651    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1652    // A type alias template specialization may refer to a typedef with the
1653    // aligned attribute on it.
1654    if (TST->isTypeAlias())
1655      return getTypeInfo(TST->getAliasedType().getTypePtr());
1656    else
1657      return getTypeInfo(getCanonicalType(T));
1658  }
1659
1660  case Type::Atomic: {
1661    // Start with the base type information.
1662    std::pair<uint64_t, unsigned> Info
1663      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1664    Width = Info.first;
1665    Align = Info.second;
1666
1667    // If the size of the type doesn't exceed the platform's max
1668    // atomic promotion width, make the size and alignment more
1669    // favorable to atomic operations:
1670    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1671      // Round the size up to a power of 2.
1672      if (!llvm::isPowerOf2_64(Width))
1673        Width = llvm::NextPowerOf2(Width);
1674
1675      // Set the alignment equal to the size.
1676      Align = static_cast<unsigned>(Width);
1677    }
1678  }
1679
1680  }
1681
1682  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1683  return std::make_pair(Width, Align);
1684}
1685
1686/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1687CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1688  return CharUnits::fromQuantity(BitSize / getCharWidth());
1689}
1690
1691/// toBits - Convert a size in characters to a size in characters.
1692int64_t ASTContext::toBits(CharUnits CharSize) const {
1693  return CharSize.getQuantity() * getCharWidth();
1694}
1695
1696/// getTypeSizeInChars - Return the size of the specified type, in characters.
1697/// This method does not work on incomplete types.
1698CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1699  return toCharUnitsFromBits(getTypeSize(T));
1700}
1701CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1702  return toCharUnitsFromBits(getTypeSize(T));
1703}
1704
1705/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1706/// characters. This method does not work on incomplete types.
1707CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1708  return toCharUnitsFromBits(getTypeAlign(T));
1709}
1710CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1711  return toCharUnitsFromBits(getTypeAlign(T));
1712}
1713
1714/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1715/// type for the current target in bits.  This can be different than the ABI
1716/// alignment in cases where it is beneficial for performance to overalign
1717/// a data type.
1718unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1719  unsigned ABIAlign = getTypeAlign(T);
1720
1721  // Double and long long should be naturally aligned if possible.
1722  if (const ComplexType* CT = T->getAs<ComplexType>())
1723    T = CT->getElementType().getTypePtr();
1724  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1725      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1726      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1727    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1728
1729  return ABIAlign;
1730}
1731
1732/// getAlignOfGlobalVar - Return the alignment in bits that should be given
1733/// to a global variable of the specified type.
1734unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
1735  return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign());
1736}
1737
1738/// getAlignOfGlobalVarInChars - Return the alignment in characters that
1739/// should be given to a global variable of the specified type.
1740CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
1741  return toCharUnitsFromBits(getAlignOfGlobalVar(T));
1742}
1743
1744/// DeepCollectObjCIvars -
1745/// This routine first collects all declared, but not synthesized, ivars in
1746/// super class and then collects all ivars, including those synthesized for
1747/// current class. This routine is used for implementation of current class
1748/// when all ivars, declared and synthesized are known.
1749///
1750void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1751                                      bool leafClass,
1752                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1753  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1754    DeepCollectObjCIvars(SuperClass, false, Ivars);
1755  if (!leafClass) {
1756    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1757         E = OI->ivar_end(); I != E; ++I)
1758      Ivars.push_back(*I);
1759  } else {
1760    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1761    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1762         Iv= Iv->getNextIvar())
1763      Ivars.push_back(Iv);
1764  }
1765}
1766
1767/// CollectInheritedProtocols - Collect all protocols in current class and
1768/// those inherited by it.
1769void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1770                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1771  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1772    // We can use protocol_iterator here instead of
1773    // all_referenced_protocol_iterator since we are walking all categories.
1774    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1775         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1776      ObjCProtocolDecl *Proto = (*P);
1777      Protocols.insert(Proto->getCanonicalDecl());
1778      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1779           PE = Proto->protocol_end(); P != PE; ++P) {
1780        Protocols.insert((*P)->getCanonicalDecl());
1781        CollectInheritedProtocols(*P, Protocols);
1782      }
1783    }
1784
1785    // Categories of this Interface.
1786    for (ObjCInterfaceDecl::visible_categories_iterator
1787           Cat = OI->visible_categories_begin(),
1788           CatEnd = OI->visible_categories_end();
1789         Cat != CatEnd; ++Cat) {
1790      CollectInheritedProtocols(*Cat, Protocols);
1791    }
1792
1793    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1794      while (SD) {
1795        CollectInheritedProtocols(SD, Protocols);
1796        SD = SD->getSuperClass();
1797      }
1798  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1799    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1800         PE = OC->protocol_end(); P != PE; ++P) {
1801      ObjCProtocolDecl *Proto = (*P);
1802      Protocols.insert(Proto->getCanonicalDecl());
1803      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1804           PE = Proto->protocol_end(); P != PE; ++P)
1805        CollectInheritedProtocols(*P, Protocols);
1806    }
1807  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1808    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1809         PE = OP->protocol_end(); P != PE; ++P) {
1810      ObjCProtocolDecl *Proto = (*P);
1811      Protocols.insert(Proto->getCanonicalDecl());
1812      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1813           PE = Proto->protocol_end(); P != PE; ++P)
1814        CollectInheritedProtocols(*P, Protocols);
1815    }
1816  }
1817}
1818
1819unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1820  unsigned count = 0;
1821  // Count ivars declared in class extension.
1822  for (ObjCInterfaceDecl::known_extensions_iterator
1823         Ext = OI->known_extensions_begin(),
1824         ExtEnd = OI->known_extensions_end();
1825       Ext != ExtEnd; ++Ext) {
1826    count += Ext->ivar_size();
1827  }
1828
1829  // Count ivar defined in this class's implementation.  This
1830  // includes synthesized ivars.
1831  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1832    count += ImplDecl->ivar_size();
1833
1834  return count;
1835}
1836
1837bool ASTContext::isSentinelNullExpr(const Expr *E) {
1838  if (!E)
1839    return false;
1840
1841  // nullptr_t is always treated as null.
1842  if (E->getType()->isNullPtrType()) return true;
1843
1844  if (E->getType()->isAnyPointerType() &&
1845      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1846                                                Expr::NPC_ValueDependentIsNull))
1847    return true;
1848
1849  // Unfortunately, __null has type 'int'.
1850  if (isa<GNUNullExpr>(E)) return true;
1851
1852  return false;
1853}
1854
1855/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1856ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1857  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1858    I = ObjCImpls.find(D);
1859  if (I != ObjCImpls.end())
1860    return cast<ObjCImplementationDecl>(I->second);
1861  return 0;
1862}
1863/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1864ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1865  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1866    I = ObjCImpls.find(D);
1867  if (I != ObjCImpls.end())
1868    return cast<ObjCCategoryImplDecl>(I->second);
1869  return 0;
1870}
1871
1872/// \brief Set the implementation of ObjCInterfaceDecl.
1873void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1874                           ObjCImplementationDecl *ImplD) {
1875  assert(IFaceD && ImplD && "Passed null params");
1876  ObjCImpls[IFaceD] = ImplD;
1877}
1878/// \brief Set the implementation of ObjCCategoryDecl.
1879void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1880                           ObjCCategoryImplDecl *ImplD) {
1881  assert(CatD && ImplD && "Passed null params");
1882  ObjCImpls[CatD] = ImplD;
1883}
1884
1885const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1886                                              const NamedDecl *ND) const {
1887  if (const ObjCInterfaceDecl *ID =
1888          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1889    return ID;
1890  if (const ObjCCategoryDecl *CD =
1891          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1892    return CD->getClassInterface();
1893  if (const ObjCImplDecl *IMD =
1894          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1895    return IMD->getClassInterface();
1896
1897  return 0;
1898}
1899
1900/// \brief Get the copy initialization expression of VarDecl,or NULL if
1901/// none exists.
1902Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1903  assert(VD && "Passed null params");
1904  assert(VD->hasAttr<BlocksAttr>() &&
1905         "getBlockVarCopyInits - not __block var");
1906  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1907    I = BlockVarCopyInits.find(VD);
1908  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1909}
1910
1911/// \brief Set the copy inialization expression of a block var decl.
1912void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1913  assert(VD && Init && "Passed null params");
1914  assert(VD->hasAttr<BlocksAttr>() &&
1915         "setBlockVarCopyInits - not __block var");
1916  BlockVarCopyInits[VD] = Init;
1917}
1918
1919TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1920                                                 unsigned DataSize) const {
1921  if (!DataSize)
1922    DataSize = TypeLoc::getFullDataSizeForType(T);
1923  else
1924    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1925           "incorrect data size provided to CreateTypeSourceInfo!");
1926
1927  TypeSourceInfo *TInfo =
1928    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1929  new (TInfo) TypeSourceInfo(T);
1930  return TInfo;
1931}
1932
1933TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1934                                                     SourceLocation L) const {
1935  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1936  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1937  return DI;
1938}
1939
1940const ASTRecordLayout &
1941ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1942  return getObjCLayout(D, 0);
1943}
1944
1945const ASTRecordLayout &
1946ASTContext::getASTObjCImplementationLayout(
1947                                        const ObjCImplementationDecl *D) const {
1948  return getObjCLayout(D->getClassInterface(), D);
1949}
1950
1951//===----------------------------------------------------------------------===//
1952//                   Type creation/memoization methods
1953//===----------------------------------------------------------------------===//
1954
1955QualType
1956ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1957  unsigned fastQuals = quals.getFastQualifiers();
1958  quals.removeFastQualifiers();
1959
1960  // Check if we've already instantiated this type.
1961  llvm::FoldingSetNodeID ID;
1962  ExtQuals::Profile(ID, baseType, quals);
1963  void *insertPos = 0;
1964  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1965    assert(eq->getQualifiers() == quals);
1966    return QualType(eq, fastQuals);
1967  }
1968
1969  // If the base type is not canonical, make the appropriate canonical type.
1970  QualType canon;
1971  if (!baseType->isCanonicalUnqualified()) {
1972    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1973    canonSplit.Quals.addConsistentQualifiers(quals);
1974    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1975
1976    // Re-find the insert position.
1977    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1978  }
1979
1980  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1981  ExtQualNodes.InsertNode(eq, insertPos);
1982  return QualType(eq, fastQuals);
1983}
1984
1985QualType
1986ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1987  QualType CanT = getCanonicalType(T);
1988  if (CanT.getAddressSpace() == AddressSpace)
1989    return T;
1990
1991  // If we are composing extended qualifiers together, merge together
1992  // into one ExtQuals node.
1993  QualifierCollector Quals;
1994  const Type *TypeNode = Quals.strip(T);
1995
1996  // If this type already has an address space specified, it cannot get
1997  // another one.
1998  assert(!Quals.hasAddressSpace() &&
1999         "Type cannot be in multiple addr spaces!");
2000  Quals.addAddressSpace(AddressSpace);
2001
2002  return getExtQualType(TypeNode, Quals);
2003}
2004
2005QualType ASTContext::getObjCGCQualType(QualType T,
2006                                       Qualifiers::GC GCAttr) const {
2007  QualType CanT = getCanonicalType(T);
2008  if (CanT.getObjCGCAttr() == GCAttr)
2009    return T;
2010
2011  if (const PointerType *ptr = T->getAs<PointerType>()) {
2012    QualType Pointee = ptr->getPointeeType();
2013    if (Pointee->isAnyPointerType()) {
2014      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2015      return getPointerType(ResultType);
2016    }
2017  }
2018
2019  // If we are composing extended qualifiers together, merge together
2020  // into one ExtQuals node.
2021  QualifierCollector Quals;
2022  const Type *TypeNode = Quals.strip(T);
2023
2024  // If this type already has an ObjCGC specified, it cannot get
2025  // another one.
2026  assert(!Quals.hasObjCGCAttr() &&
2027         "Type cannot have multiple ObjCGCs!");
2028  Quals.addObjCGCAttr(GCAttr);
2029
2030  return getExtQualType(TypeNode, Quals);
2031}
2032
2033const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2034                                                   FunctionType::ExtInfo Info) {
2035  if (T->getExtInfo() == Info)
2036    return T;
2037
2038  QualType Result;
2039  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2040    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
2041  } else {
2042    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2043    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2044    EPI.ExtInfo = Info;
2045    Result = getFunctionType(FPT->getResultType(),
2046                             ArrayRef<QualType>(FPT->arg_type_begin(),
2047                                                FPT->getNumArgs()),
2048                             EPI);
2049  }
2050
2051  return cast<FunctionType>(Result.getTypePtr());
2052}
2053
2054void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2055                                                 QualType ResultType) {
2056  // FIXME: Need to inform serialization code about this!
2057  for (FD = FD->getMostRecentDecl(); FD; FD = FD->getPreviousDecl()) {
2058    const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
2059    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2060    FD->setType(getFunctionType(ResultType, FPT->getArgTypes(), EPI));
2061  }
2062}
2063
2064/// getComplexType - Return the uniqued reference to the type for a complex
2065/// number with the specified element type.
2066QualType ASTContext::getComplexType(QualType T) const {
2067  // Unique pointers, to guarantee there is only one pointer of a particular
2068  // structure.
2069  llvm::FoldingSetNodeID ID;
2070  ComplexType::Profile(ID, T);
2071
2072  void *InsertPos = 0;
2073  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
2074    return QualType(CT, 0);
2075
2076  // If the pointee type isn't canonical, this won't be a canonical type either,
2077  // so fill in the canonical type field.
2078  QualType Canonical;
2079  if (!T.isCanonical()) {
2080    Canonical = getComplexType(getCanonicalType(T));
2081
2082    // Get the new insert position for the node we care about.
2083    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2084    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2085  }
2086  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2087  Types.push_back(New);
2088  ComplexTypes.InsertNode(New, InsertPos);
2089  return QualType(New, 0);
2090}
2091
2092/// getPointerType - Return the uniqued reference to the type for a pointer to
2093/// the specified type.
2094QualType ASTContext::getPointerType(QualType T) const {
2095  // Unique pointers, to guarantee there is only one pointer of a particular
2096  // structure.
2097  llvm::FoldingSetNodeID ID;
2098  PointerType::Profile(ID, T);
2099
2100  void *InsertPos = 0;
2101  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2102    return QualType(PT, 0);
2103
2104  // If the pointee type isn't canonical, this won't be a canonical type either,
2105  // so fill in the canonical type field.
2106  QualType Canonical;
2107  if (!T.isCanonical()) {
2108    Canonical = getPointerType(getCanonicalType(T));
2109
2110    // Get the new insert position for the node we care about.
2111    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2112    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2113  }
2114  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2115  Types.push_back(New);
2116  PointerTypes.InsertNode(New, InsertPos);
2117  return QualType(New, 0);
2118}
2119
2120/// getBlockPointerType - Return the uniqued reference to the type for
2121/// a pointer to the specified block.
2122QualType ASTContext::getBlockPointerType(QualType T) const {
2123  assert(T->isFunctionType() && "block of function types only");
2124  // Unique pointers, to guarantee there is only one block of a particular
2125  // structure.
2126  llvm::FoldingSetNodeID ID;
2127  BlockPointerType::Profile(ID, T);
2128
2129  void *InsertPos = 0;
2130  if (BlockPointerType *PT =
2131        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2132    return QualType(PT, 0);
2133
2134  // If the block pointee type isn't canonical, this won't be a canonical
2135  // type either so fill in the canonical type field.
2136  QualType Canonical;
2137  if (!T.isCanonical()) {
2138    Canonical = getBlockPointerType(getCanonicalType(T));
2139
2140    // Get the new insert position for the node we care about.
2141    BlockPointerType *NewIP =
2142      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2143    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2144  }
2145  BlockPointerType *New
2146    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2147  Types.push_back(New);
2148  BlockPointerTypes.InsertNode(New, InsertPos);
2149  return QualType(New, 0);
2150}
2151
2152/// getLValueReferenceType - Return the uniqued reference to the type for an
2153/// lvalue reference to the specified type.
2154QualType
2155ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2156  assert(getCanonicalType(T) != OverloadTy &&
2157         "Unresolved overloaded function type");
2158
2159  // Unique pointers, to guarantee there is only one pointer of a particular
2160  // structure.
2161  llvm::FoldingSetNodeID ID;
2162  ReferenceType::Profile(ID, T, SpelledAsLValue);
2163
2164  void *InsertPos = 0;
2165  if (LValueReferenceType *RT =
2166        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2167    return QualType(RT, 0);
2168
2169  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2170
2171  // If the referencee type isn't canonical, this won't be a canonical type
2172  // either, so fill in the canonical type field.
2173  QualType Canonical;
2174  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2175    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2176    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2177
2178    // Get the new insert position for the node we care about.
2179    LValueReferenceType *NewIP =
2180      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2181    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2182  }
2183
2184  LValueReferenceType *New
2185    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2186                                                     SpelledAsLValue);
2187  Types.push_back(New);
2188  LValueReferenceTypes.InsertNode(New, InsertPos);
2189
2190  return QualType(New, 0);
2191}
2192
2193/// getRValueReferenceType - Return the uniqued reference to the type for an
2194/// rvalue reference to the specified type.
2195QualType ASTContext::getRValueReferenceType(QualType T) const {
2196  // Unique pointers, to guarantee there is only one pointer of a particular
2197  // structure.
2198  llvm::FoldingSetNodeID ID;
2199  ReferenceType::Profile(ID, T, false);
2200
2201  void *InsertPos = 0;
2202  if (RValueReferenceType *RT =
2203        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2204    return QualType(RT, 0);
2205
2206  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2207
2208  // If the referencee type isn't canonical, this won't be a canonical type
2209  // either, so fill in the canonical type field.
2210  QualType Canonical;
2211  if (InnerRef || !T.isCanonical()) {
2212    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2213    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2214
2215    // Get the new insert position for the node we care about.
2216    RValueReferenceType *NewIP =
2217      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2218    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2219  }
2220
2221  RValueReferenceType *New
2222    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2223  Types.push_back(New);
2224  RValueReferenceTypes.InsertNode(New, InsertPos);
2225  return QualType(New, 0);
2226}
2227
2228/// getMemberPointerType - Return the uniqued reference to the type for a
2229/// member pointer to the specified type, in the specified class.
2230QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2231  // Unique pointers, to guarantee there is only one pointer of a particular
2232  // structure.
2233  llvm::FoldingSetNodeID ID;
2234  MemberPointerType::Profile(ID, T, Cls);
2235
2236  void *InsertPos = 0;
2237  if (MemberPointerType *PT =
2238      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2239    return QualType(PT, 0);
2240
2241  // If the pointee or class type isn't canonical, this won't be a canonical
2242  // type either, so fill in the canonical type field.
2243  QualType Canonical;
2244  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2245    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2246
2247    // Get the new insert position for the node we care about.
2248    MemberPointerType *NewIP =
2249      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2250    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2251  }
2252  MemberPointerType *New
2253    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2254  Types.push_back(New);
2255  MemberPointerTypes.InsertNode(New, InsertPos);
2256  return QualType(New, 0);
2257}
2258
2259/// getConstantArrayType - Return the unique reference to the type for an
2260/// array of the specified element type.
2261QualType ASTContext::getConstantArrayType(QualType EltTy,
2262                                          const llvm::APInt &ArySizeIn,
2263                                          ArrayType::ArraySizeModifier ASM,
2264                                          unsigned IndexTypeQuals) const {
2265  assert((EltTy->isDependentType() ||
2266          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2267         "Constant array of VLAs is illegal!");
2268
2269  // Convert the array size into a canonical width matching the pointer size for
2270  // the target.
2271  llvm::APInt ArySize(ArySizeIn);
2272  ArySize =
2273    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2274
2275  llvm::FoldingSetNodeID ID;
2276  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2277
2278  void *InsertPos = 0;
2279  if (ConstantArrayType *ATP =
2280      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2281    return QualType(ATP, 0);
2282
2283  // If the element type isn't canonical or has qualifiers, this won't
2284  // be a canonical type either, so fill in the canonical type field.
2285  QualType Canon;
2286  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2287    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2288    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2289                                 ASM, IndexTypeQuals);
2290    Canon = getQualifiedType(Canon, canonSplit.Quals);
2291
2292    // Get the new insert position for the node we care about.
2293    ConstantArrayType *NewIP =
2294      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2295    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2296  }
2297
2298  ConstantArrayType *New = new(*this,TypeAlignment)
2299    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2300  ConstantArrayTypes.InsertNode(New, InsertPos);
2301  Types.push_back(New);
2302  return QualType(New, 0);
2303}
2304
2305/// getVariableArrayDecayedType - Turns the given type, which may be
2306/// variably-modified, into the corresponding type with all the known
2307/// sizes replaced with [*].
2308QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2309  // Vastly most common case.
2310  if (!type->isVariablyModifiedType()) return type;
2311
2312  QualType result;
2313
2314  SplitQualType split = type.getSplitDesugaredType();
2315  const Type *ty = split.Ty;
2316  switch (ty->getTypeClass()) {
2317#define TYPE(Class, Base)
2318#define ABSTRACT_TYPE(Class, Base)
2319#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2320#include "clang/AST/TypeNodes.def"
2321    llvm_unreachable("didn't desugar past all non-canonical types?");
2322
2323  // These types should never be variably-modified.
2324  case Type::Builtin:
2325  case Type::Complex:
2326  case Type::Vector:
2327  case Type::ExtVector:
2328  case Type::DependentSizedExtVector:
2329  case Type::ObjCObject:
2330  case Type::ObjCInterface:
2331  case Type::ObjCObjectPointer:
2332  case Type::Record:
2333  case Type::Enum:
2334  case Type::UnresolvedUsing:
2335  case Type::TypeOfExpr:
2336  case Type::TypeOf:
2337  case Type::Decltype:
2338  case Type::UnaryTransform:
2339  case Type::DependentName:
2340  case Type::InjectedClassName:
2341  case Type::TemplateSpecialization:
2342  case Type::DependentTemplateSpecialization:
2343  case Type::TemplateTypeParm:
2344  case Type::SubstTemplateTypeParmPack:
2345  case Type::Auto:
2346  case Type::PackExpansion:
2347    llvm_unreachable("type should never be variably-modified");
2348
2349  // These types can be variably-modified but should never need to
2350  // further decay.
2351  case Type::FunctionNoProto:
2352  case Type::FunctionProto:
2353  case Type::BlockPointer:
2354  case Type::MemberPointer:
2355    return type;
2356
2357  // These types can be variably-modified.  All these modifications
2358  // preserve structure except as noted by comments.
2359  // TODO: if we ever care about optimizing VLAs, there are no-op
2360  // optimizations available here.
2361  case Type::Pointer:
2362    result = getPointerType(getVariableArrayDecayedType(
2363                              cast<PointerType>(ty)->getPointeeType()));
2364    break;
2365
2366  case Type::LValueReference: {
2367    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2368    result = getLValueReferenceType(
2369                 getVariableArrayDecayedType(lv->getPointeeType()),
2370                                    lv->isSpelledAsLValue());
2371    break;
2372  }
2373
2374  case Type::RValueReference: {
2375    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2376    result = getRValueReferenceType(
2377                 getVariableArrayDecayedType(lv->getPointeeType()));
2378    break;
2379  }
2380
2381  case Type::Atomic: {
2382    const AtomicType *at = cast<AtomicType>(ty);
2383    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2384    break;
2385  }
2386
2387  case Type::ConstantArray: {
2388    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2389    result = getConstantArrayType(
2390                 getVariableArrayDecayedType(cat->getElementType()),
2391                                  cat->getSize(),
2392                                  cat->getSizeModifier(),
2393                                  cat->getIndexTypeCVRQualifiers());
2394    break;
2395  }
2396
2397  case Type::DependentSizedArray: {
2398    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2399    result = getDependentSizedArrayType(
2400                 getVariableArrayDecayedType(dat->getElementType()),
2401                                        dat->getSizeExpr(),
2402                                        dat->getSizeModifier(),
2403                                        dat->getIndexTypeCVRQualifiers(),
2404                                        dat->getBracketsRange());
2405    break;
2406  }
2407
2408  // Turn incomplete types into [*] types.
2409  case Type::IncompleteArray: {
2410    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2411    result = getVariableArrayType(
2412                 getVariableArrayDecayedType(iat->getElementType()),
2413                                  /*size*/ 0,
2414                                  ArrayType::Normal,
2415                                  iat->getIndexTypeCVRQualifiers(),
2416                                  SourceRange());
2417    break;
2418  }
2419
2420  // Turn VLA types into [*] types.
2421  case Type::VariableArray: {
2422    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2423    result = getVariableArrayType(
2424                 getVariableArrayDecayedType(vat->getElementType()),
2425                                  /*size*/ 0,
2426                                  ArrayType::Star,
2427                                  vat->getIndexTypeCVRQualifiers(),
2428                                  vat->getBracketsRange());
2429    break;
2430  }
2431  }
2432
2433  // Apply the top-level qualifiers from the original.
2434  return getQualifiedType(result, split.Quals);
2435}
2436
2437/// getVariableArrayType - Returns a non-unique reference to the type for a
2438/// variable array of the specified element type.
2439QualType ASTContext::getVariableArrayType(QualType EltTy,
2440                                          Expr *NumElts,
2441                                          ArrayType::ArraySizeModifier ASM,
2442                                          unsigned IndexTypeQuals,
2443                                          SourceRange Brackets) const {
2444  // Since we don't unique expressions, it isn't possible to unique VLA's
2445  // that have an expression provided for their size.
2446  QualType Canon;
2447
2448  // Be sure to pull qualifiers off the element type.
2449  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2450    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2451    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2452                                 IndexTypeQuals, Brackets);
2453    Canon = getQualifiedType(Canon, canonSplit.Quals);
2454  }
2455
2456  VariableArrayType *New = new(*this, TypeAlignment)
2457    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2458
2459  VariableArrayTypes.push_back(New);
2460  Types.push_back(New);
2461  return QualType(New, 0);
2462}
2463
2464/// getDependentSizedArrayType - Returns a non-unique reference to
2465/// the type for a dependently-sized array of the specified element
2466/// type.
2467QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2468                                                Expr *numElements,
2469                                                ArrayType::ArraySizeModifier ASM,
2470                                                unsigned elementTypeQuals,
2471                                                SourceRange brackets) const {
2472  assert((!numElements || numElements->isTypeDependent() ||
2473          numElements->isValueDependent()) &&
2474         "Size must be type- or value-dependent!");
2475
2476  // Dependently-sized array types that do not have a specified number
2477  // of elements will have their sizes deduced from a dependent
2478  // initializer.  We do no canonicalization here at all, which is okay
2479  // because they can't be used in most locations.
2480  if (!numElements) {
2481    DependentSizedArrayType *newType
2482      = new (*this, TypeAlignment)
2483          DependentSizedArrayType(*this, elementType, QualType(),
2484                                  numElements, ASM, elementTypeQuals,
2485                                  brackets);
2486    Types.push_back(newType);
2487    return QualType(newType, 0);
2488  }
2489
2490  // Otherwise, we actually build a new type every time, but we
2491  // also build a canonical type.
2492
2493  SplitQualType canonElementType = getCanonicalType(elementType).split();
2494
2495  void *insertPos = 0;
2496  llvm::FoldingSetNodeID ID;
2497  DependentSizedArrayType::Profile(ID, *this,
2498                                   QualType(canonElementType.Ty, 0),
2499                                   ASM, elementTypeQuals, numElements);
2500
2501  // Look for an existing type with these properties.
2502  DependentSizedArrayType *canonTy =
2503    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2504
2505  // If we don't have one, build one.
2506  if (!canonTy) {
2507    canonTy = new (*this, TypeAlignment)
2508      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2509                              QualType(), numElements, ASM, elementTypeQuals,
2510                              brackets);
2511    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2512    Types.push_back(canonTy);
2513  }
2514
2515  // Apply qualifiers from the element type to the array.
2516  QualType canon = getQualifiedType(QualType(canonTy,0),
2517                                    canonElementType.Quals);
2518
2519  // If we didn't need extra canonicalization for the element type,
2520  // then just use that as our result.
2521  if (QualType(canonElementType.Ty, 0) == elementType)
2522    return canon;
2523
2524  // Otherwise, we need to build a type which follows the spelling
2525  // of the element type.
2526  DependentSizedArrayType *sugaredType
2527    = new (*this, TypeAlignment)
2528        DependentSizedArrayType(*this, elementType, canon, numElements,
2529                                ASM, elementTypeQuals, brackets);
2530  Types.push_back(sugaredType);
2531  return QualType(sugaredType, 0);
2532}
2533
2534QualType ASTContext::getIncompleteArrayType(QualType elementType,
2535                                            ArrayType::ArraySizeModifier ASM,
2536                                            unsigned elementTypeQuals) const {
2537  llvm::FoldingSetNodeID ID;
2538  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2539
2540  void *insertPos = 0;
2541  if (IncompleteArrayType *iat =
2542       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2543    return QualType(iat, 0);
2544
2545  // If the element type isn't canonical, this won't be a canonical type
2546  // either, so fill in the canonical type field.  We also have to pull
2547  // qualifiers off the element type.
2548  QualType canon;
2549
2550  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2551    SplitQualType canonSplit = getCanonicalType(elementType).split();
2552    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2553                                   ASM, elementTypeQuals);
2554    canon = getQualifiedType(canon, canonSplit.Quals);
2555
2556    // Get the new insert position for the node we care about.
2557    IncompleteArrayType *existing =
2558      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2559    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2560  }
2561
2562  IncompleteArrayType *newType = new (*this, TypeAlignment)
2563    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2564
2565  IncompleteArrayTypes.InsertNode(newType, insertPos);
2566  Types.push_back(newType);
2567  return QualType(newType, 0);
2568}
2569
2570/// getVectorType - Return the unique reference to a vector type of
2571/// the specified element type and size. VectorType must be a built-in type.
2572QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2573                                   VectorType::VectorKind VecKind) const {
2574  assert(vecType->isBuiltinType());
2575
2576  // Check if we've already instantiated a vector of this type.
2577  llvm::FoldingSetNodeID ID;
2578  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2579
2580  void *InsertPos = 0;
2581  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2582    return QualType(VTP, 0);
2583
2584  // If the element type isn't canonical, this won't be a canonical type either,
2585  // so fill in the canonical type field.
2586  QualType Canonical;
2587  if (!vecType.isCanonical()) {
2588    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2589
2590    // Get the new insert position for the node we care about.
2591    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2592    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2593  }
2594  VectorType *New = new (*this, TypeAlignment)
2595    VectorType(vecType, NumElts, Canonical, VecKind);
2596  VectorTypes.InsertNode(New, InsertPos);
2597  Types.push_back(New);
2598  return QualType(New, 0);
2599}
2600
2601/// getExtVectorType - Return the unique reference to an extended vector type of
2602/// the specified element type and size. VectorType must be a built-in type.
2603QualType
2604ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2605  assert(vecType->isBuiltinType() || vecType->isDependentType());
2606
2607  // Check if we've already instantiated a vector of this type.
2608  llvm::FoldingSetNodeID ID;
2609  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2610                      VectorType::GenericVector);
2611  void *InsertPos = 0;
2612  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2613    return QualType(VTP, 0);
2614
2615  // If the element type isn't canonical, this won't be a canonical type either,
2616  // so fill in the canonical type field.
2617  QualType Canonical;
2618  if (!vecType.isCanonical()) {
2619    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2620
2621    // Get the new insert position for the node we care about.
2622    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2623    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2624  }
2625  ExtVectorType *New = new (*this, TypeAlignment)
2626    ExtVectorType(vecType, NumElts, Canonical);
2627  VectorTypes.InsertNode(New, InsertPos);
2628  Types.push_back(New);
2629  return QualType(New, 0);
2630}
2631
2632QualType
2633ASTContext::getDependentSizedExtVectorType(QualType vecType,
2634                                           Expr *SizeExpr,
2635                                           SourceLocation AttrLoc) const {
2636  llvm::FoldingSetNodeID ID;
2637  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2638                                       SizeExpr);
2639
2640  void *InsertPos = 0;
2641  DependentSizedExtVectorType *Canon
2642    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2643  DependentSizedExtVectorType *New;
2644  if (Canon) {
2645    // We already have a canonical version of this array type; use it as
2646    // the canonical type for a newly-built type.
2647    New = new (*this, TypeAlignment)
2648      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2649                                  SizeExpr, AttrLoc);
2650  } else {
2651    QualType CanonVecTy = getCanonicalType(vecType);
2652    if (CanonVecTy == vecType) {
2653      New = new (*this, TypeAlignment)
2654        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2655                                    AttrLoc);
2656
2657      DependentSizedExtVectorType *CanonCheck
2658        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2659      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2660      (void)CanonCheck;
2661      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2662    } else {
2663      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2664                                                      SourceLocation());
2665      New = new (*this, TypeAlignment)
2666        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2667    }
2668  }
2669
2670  Types.push_back(New);
2671  return QualType(New, 0);
2672}
2673
2674/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2675///
2676QualType
2677ASTContext::getFunctionNoProtoType(QualType ResultTy,
2678                                   const FunctionType::ExtInfo &Info) const {
2679  const CallingConv DefaultCC = Info.getCC();
2680  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2681                               CC_X86StdCall : DefaultCC;
2682  // Unique functions, to guarantee there is only one function of a particular
2683  // structure.
2684  llvm::FoldingSetNodeID ID;
2685  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2686
2687  void *InsertPos = 0;
2688  if (FunctionNoProtoType *FT =
2689        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2690    return QualType(FT, 0);
2691
2692  QualType Canonical;
2693  if (!ResultTy.isCanonical() ||
2694      getCanonicalCallConv(CallConv) != CallConv) {
2695    Canonical =
2696      getFunctionNoProtoType(getCanonicalType(ResultTy),
2697                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2698
2699    // Get the new insert position for the node we care about.
2700    FunctionNoProtoType *NewIP =
2701      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2702    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2703  }
2704
2705  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2706  FunctionNoProtoType *New = new (*this, TypeAlignment)
2707    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2708  Types.push_back(New);
2709  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2710  return QualType(New, 0);
2711}
2712
2713/// \brief Determine whether \p T is canonical as the result type of a function.
2714static bool isCanonicalResultType(QualType T) {
2715  return T.isCanonical() &&
2716         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2717          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2718}
2719
2720/// getFunctionType - Return a normal function type with a typed argument
2721/// list.  isVariadic indicates whether the argument list includes '...'.
2722QualType
2723ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2724                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2725  size_t NumArgs = ArgArray.size();
2726
2727  // Unique functions, to guarantee there is only one function of a particular
2728  // structure.
2729  llvm::FoldingSetNodeID ID;
2730  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2731                             *this);
2732
2733  void *InsertPos = 0;
2734  if (FunctionProtoType *FTP =
2735        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2736    return QualType(FTP, 0);
2737
2738  // Determine whether the type being created is already canonical or not.
2739  bool isCanonical =
2740    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2741    !EPI.HasTrailingReturn;
2742  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2743    if (!ArgArray[i].isCanonicalAsParam())
2744      isCanonical = false;
2745
2746  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2747  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2748                               CC_X86StdCall : DefaultCC;
2749
2750  // If this type isn't canonical, get the canonical version of it.
2751  // The exception spec is not part of the canonical type.
2752  QualType Canonical;
2753  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2754    SmallVector<QualType, 16> CanonicalArgs;
2755    CanonicalArgs.reserve(NumArgs);
2756    for (unsigned i = 0; i != NumArgs; ++i)
2757      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2758
2759    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2760    CanonicalEPI.HasTrailingReturn = false;
2761    CanonicalEPI.ExceptionSpecType = EST_None;
2762    CanonicalEPI.NumExceptions = 0;
2763    CanonicalEPI.ExtInfo
2764      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2765
2766    // Result types do not have ARC lifetime qualifiers.
2767    QualType CanResultTy = getCanonicalType(ResultTy);
2768    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2769      Qualifiers Qs = CanResultTy.getQualifiers();
2770      Qs.removeObjCLifetime();
2771      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2772    }
2773
2774    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2775
2776    // Get the new insert position for the node we care about.
2777    FunctionProtoType *NewIP =
2778      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2779    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2780  }
2781
2782  // FunctionProtoType objects are allocated with extra bytes after
2783  // them for three variable size arrays at the end:
2784  //  - parameter types
2785  //  - exception types
2786  //  - consumed-arguments flags
2787  // Instead of the exception types, there could be a noexcept
2788  // expression, or information used to resolve the exception
2789  // specification.
2790  size_t Size = sizeof(FunctionProtoType) +
2791                NumArgs * sizeof(QualType);
2792  if (EPI.ExceptionSpecType == EST_Dynamic) {
2793    Size += EPI.NumExceptions * sizeof(QualType);
2794  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2795    Size += sizeof(Expr*);
2796  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2797    Size += 2 * sizeof(FunctionDecl*);
2798  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2799    Size += sizeof(FunctionDecl*);
2800  }
2801  if (EPI.ConsumedArguments)
2802    Size += NumArgs * sizeof(bool);
2803
2804  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2805  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2806  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2807  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2808  Types.push_back(FTP);
2809  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2810  return QualType(FTP, 0);
2811}
2812
2813#ifndef NDEBUG
2814static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2815  if (!isa<CXXRecordDecl>(D)) return false;
2816  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2817  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2818    return true;
2819  if (RD->getDescribedClassTemplate() &&
2820      !isa<ClassTemplateSpecializationDecl>(RD))
2821    return true;
2822  return false;
2823}
2824#endif
2825
2826/// getInjectedClassNameType - Return the unique reference to the
2827/// injected class name type for the specified templated declaration.
2828QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2829                                              QualType TST) const {
2830  assert(NeedsInjectedClassNameType(Decl));
2831  if (Decl->TypeForDecl) {
2832    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2833  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2834    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2835    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2836    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2837  } else {
2838    Type *newType =
2839      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2840    Decl->TypeForDecl = newType;
2841    Types.push_back(newType);
2842  }
2843  return QualType(Decl->TypeForDecl, 0);
2844}
2845
2846/// getTypeDeclType - Return the unique reference to the type for the
2847/// specified type declaration.
2848QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2849  assert(Decl && "Passed null for Decl param");
2850  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2851
2852  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2853    return getTypedefType(Typedef);
2854
2855  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2856         "Template type parameter types are always available.");
2857
2858  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2859    assert(!Record->getPreviousDecl() &&
2860           "struct/union has previous declaration");
2861    assert(!NeedsInjectedClassNameType(Record));
2862    return getRecordType(Record);
2863  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2864    assert(!Enum->getPreviousDecl() &&
2865           "enum has previous declaration");
2866    return getEnumType(Enum);
2867  } else if (const UnresolvedUsingTypenameDecl *Using =
2868               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2869    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2870    Decl->TypeForDecl = newType;
2871    Types.push_back(newType);
2872  } else
2873    llvm_unreachable("TypeDecl without a type?");
2874
2875  return QualType(Decl->TypeForDecl, 0);
2876}
2877
2878/// getTypedefType - Return the unique reference to the type for the
2879/// specified typedef name decl.
2880QualType
2881ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2882                           QualType Canonical) const {
2883  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2884
2885  if (Canonical.isNull())
2886    Canonical = getCanonicalType(Decl->getUnderlyingType());
2887  TypedefType *newType = new(*this, TypeAlignment)
2888    TypedefType(Type::Typedef, Decl, Canonical);
2889  Decl->TypeForDecl = newType;
2890  Types.push_back(newType);
2891  return QualType(newType, 0);
2892}
2893
2894QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2895  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2896
2897  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2898    if (PrevDecl->TypeForDecl)
2899      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2900
2901  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2902  Decl->TypeForDecl = newType;
2903  Types.push_back(newType);
2904  return QualType(newType, 0);
2905}
2906
2907QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2908  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2909
2910  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2911    if (PrevDecl->TypeForDecl)
2912      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2913
2914  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2915  Decl->TypeForDecl = newType;
2916  Types.push_back(newType);
2917  return QualType(newType, 0);
2918}
2919
2920QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2921                                       QualType modifiedType,
2922                                       QualType equivalentType) {
2923  llvm::FoldingSetNodeID id;
2924  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2925
2926  void *insertPos = 0;
2927  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2928  if (type) return QualType(type, 0);
2929
2930  QualType canon = getCanonicalType(equivalentType);
2931  type = new (*this, TypeAlignment)
2932           AttributedType(canon, attrKind, modifiedType, equivalentType);
2933
2934  Types.push_back(type);
2935  AttributedTypes.InsertNode(type, insertPos);
2936
2937  return QualType(type, 0);
2938}
2939
2940
2941/// \brief Retrieve a substitution-result type.
2942QualType
2943ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2944                                         QualType Replacement) const {
2945  assert(Replacement.isCanonical()
2946         && "replacement types must always be canonical");
2947
2948  llvm::FoldingSetNodeID ID;
2949  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2950  void *InsertPos = 0;
2951  SubstTemplateTypeParmType *SubstParm
2952    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2953
2954  if (!SubstParm) {
2955    SubstParm = new (*this, TypeAlignment)
2956      SubstTemplateTypeParmType(Parm, Replacement);
2957    Types.push_back(SubstParm);
2958    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2959  }
2960
2961  return QualType(SubstParm, 0);
2962}
2963
2964/// \brief Retrieve a
2965QualType ASTContext::getSubstTemplateTypeParmPackType(
2966                                          const TemplateTypeParmType *Parm,
2967                                              const TemplateArgument &ArgPack) {
2968#ifndef NDEBUG
2969  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2970                                    PEnd = ArgPack.pack_end();
2971       P != PEnd; ++P) {
2972    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2973    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2974  }
2975#endif
2976
2977  llvm::FoldingSetNodeID ID;
2978  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2979  void *InsertPos = 0;
2980  if (SubstTemplateTypeParmPackType *SubstParm
2981        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2982    return QualType(SubstParm, 0);
2983
2984  QualType Canon;
2985  if (!Parm->isCanonicalUnqualified()) {
2986    Canon = getCanonicalType(QualType(Parm, 0));
2987    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2988                                             ArgPack);
2989    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2990  }
2991
2992  SubstTemplateTypeParmPackType *SubstParm
2993    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2994                                                               ArgPack);
2995  Types.push_back(SubstParm);
2996  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2997  return QualType(SubstParm, 0);
2998}
2999
3000/// \brief Retrieve the template type parameter type for a template
3001/// parameter or parameter pack with the given depth, index, and (optionally)
3002/// name.
3003QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
3004                                             bool ParameterPack,
3005                                             TemplateTypeParmDecl *TTPDecl) const {
3006  llvm::FoldingSetNodeID ID;
3007  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
3008  void *InsertPos = 0;
3009  TemplateTypeParmType *TypeParm
3010    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3011
3012  if (TypeParm)
3013    return QualType(TypeParm, 0);
3014
3015  if (TTPDecl) {
3016    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
3017    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
3018
3019    TemplateTypeParmType *TypeCheck
3020      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
3021    assert(!TypeCheck && "Template type parameter canonical type broken");
3022    (void)TypeCheck;
3023  } else
3024    TypeParm = new (*this, TypeAlignment)
3025      TemplateTypeParmType(Depth, Index, ParameterPack);
3026
3027  Types.push_back(TypeParm);
3028  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
3029
3030  return QualType(TypeParm, 0);
3031}
3032
3033TypeSourceInfo *
3034ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
3035                                              SourceLocation NameLoc,
3036                                        const TemplateArgumentListInfo &Args,
3037                                              QualType Underlying) const {
3038  assert(!Name.getAsDependentTemplateName() &&
3039         "No dependent template names here!");
3040  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
3041
3042  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
3043  TemplateSpecializationTypeLoc TL =
3044      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
3045  TL.setTemplateKeywordLoc(SourceLocation());
3046  TL.setTemplateNameLoc(NameLoc);
3047  TL.setLAngleLoc(Args.getLAngleLoc());
3048  TL.setRAngleLoc(Args.getRAngleLoc());
3049  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
3050    TL.setArgLocInfo(i, Args[i].getLocInfo());
3051  return DI;
3052}
3053
3054QualType
3055ASTContext::getTemplateSpecializationType(TemplateName Template,
3056                                          const TemplateArgumentListInfo &Args,
3057                                          QualType Underlying) const {
3058  assert(!Template.getAsDependentTemplateName() &&
3059         "No dependent template names here!");
3060
3061  unsigned NumArgs = Args.size();
3062
3063  SmallVector<TemplateArgument, 4> ArgVec;
3064  ArgVec.reserve(NumArgs);
3065  for (unsigned i = 0; i != NumArgs; ++i)
3066    ArgVec.push_back(Args[i].getArgument());
3067
3068  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
3069                                       Underlying);
3070}
3071
3072#ifndef NDEBUG
3073static bool hasAnyPackExpansions(const TemplateArgument *Args,
3074                                 unsigned NumArgs) {
3075  for (unsigned I = 0; I != NumArgs; ++I)
3076    if (Args[I].isPackExpansion())
3077      return true;
3078
3079  return true;
3080}
3081#endif
3082
3083QualType
3084ASTContext::getTemplateSpecializationType(TemplateName Template,
3085                                          const TemplateArgument *Args,
3086                                          unsigned NumArgs,
3087                                          QualType Underlying) const {
3088  assert(!Template.getAsDependentTemplateName() &&
3089         "No dependent template names here!");
3090  // Look through qualified template names.
3091  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3092    Template = TemplateName(QTN->getTemplateDecl());
3093
3094  bool IsTypeAlias =
3095    Template.getAsTemplateDecl() &&
3096    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3097  QualType CanonType;
3098  if (!Underlying.isNull())
3099    CanonType = getCanonicalType(Underlying);
3100  else {
3101    // We can get here with an alias template when the specialization contains
3102    // a pack expansion that does not match up with a parameter pack.
3103    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3104           "Caller must compute aliased type");
3105    IsTypeAlias = false;
3106    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3107                                                       NumArgs);
3108  }
3109
3110  // Allocate the (non-canonical) template specialization type, but don't
3111  // try to unique it: these types typically have location information that
3112  // we don't unique and don't want to lose.
3113  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3114                       sizeof(TemplateArgument) * NumArgs +
3115                       (IsTypeAlias? sizeof(QualType) : 0),
3116                       TypeAlignment);
3117  TemplateSpecializationType *Spec
3118    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3119                                         IsTypeAlias ? Underlying : QualType());
3120
3121  Types.push_back(Spec);
3122  return QualType(Spec, 0);
3123}
3124
3125QualType
3126ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3127                                                   const TemplateArgument *Args,
3128                                                   unsigned NumArgs) const {
3129  assert(!Template.getAsDependentTemplateName() &&
3130         "No dependent template names here!");
3131
3132  // Look through qualified template names.
3133  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3134    Template = TemplateName(QTN->getTemplateDecl());
3135
3136  // Build the canonical template specialization type.
3137  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3138  SmallVector<TemplateArgument, 4> CanonArgs;
3139  CanonArgs.reserve(NumArgs);
3140  for (unsigned I = 0; I != NumArgs; ++I)
3141    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3142
3143  // Determine whether this canonical template specialization type already
3144  // exists.
3145  llvm::FoldingSetNodeID ID;
3146  TemplateSpecializationType::Profile(ID, CanonTemplate,
3147                                      CanonArgs.data(), NumArgs, *this);
3148
3149  void *InsertPos = 0;
3150  TemplateSpecializationType *Spec
3151    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3152
3153  if (!Spec) {
3154    // Allocate a new canonical template specialization type.
3155    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3156                          sizeof(TemplateArgument) * NumArgs),
3157                         TypeAlignment);
3158    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3159                                                CanonArgs.data(), NumArgs,
3160                                                QualType(), QualType());
3161    Types.push_back(Spec);
3162    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3163  }
3164
3165  assert(Spec->isDependentType() &&
3166         "Non-dependent template-id type must have a canonical type");
3167  return QualType(Spec, 0);
3168}
3169
3170QualType
3171ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3172                              NestedNameSpecifier *NNS,
3173                              QualType NamedType) const {
3174  llvm::FoldingSetNodeID ID;
3175  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3176
3177  void *InsertPos = 0;
3178  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3179  if (T)
3180    return QualType(T, 0);
3181
3182  QualType Canon = NamedType;
3183  if (!Canon.isCanonical()) {
3184    Canon = getCanonicalType(NamedType);
3185    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3186    assert(!CheckT && "Elaborated canonical type broken");
3187    (void)CheckT;
3188  }
3189
3190  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3191  Types.push_back(T);
3192  ElaboratedTypes.InsertNode(T, InsertPos);
3193  return QualType(T, 0);
3194}
3195
3196QualType
3197ASTContext::getParenType(QualType InnerType) const {
3198  llvm::FoldingSetNodeID ID;
3199  ParenType::Profile(ID, InnerType);
3200
3201  void *InsertPos = 0;
3202  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3203  if (T)
3204    return QualType(T, 0);
3205
3206  QualType Canon = InnerType;
3207  if (!Canon.isCanonical()) {
3208    Canon = getCanonicalType(InnerType);
3209    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3210    assert(!CheckT && "Paren canonical type broken");
3211    (void)CheckT;
3212  }
3213
3214  T = new (*this) ParenType(InnerType, Canon);
3215  Types.push_back(T);
3216  ParenTypes.InsertNode(T, InsertPos);
3217  return QualType(T, 0);
3218}
3219
3220QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3221                                          NestedNameSpecifier *NNS,
3222                                          const IdentifierInfo *Name,
3223                                          QualType Canon) const {
3224  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3225
3226  if (Canon.isNull()) {
3227    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3228    ElaboratedTypeKeyword CanonKeyword = Keyword;
3229    if (Keyword == ETK_None)
3230      CanonKeyword = ETK_Typename;
3231
3232    if (CanonNNS != NNS || CanonKeyword != Keyword)
3233      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3234  }
3235
3236  llvm::FoldingSetNodeID ID;
3237  DependentNameType::Profile(ID, Keyword, NNS, Name);
3238
3239  void *InsertPos = 0;
3240  DependentNameType *T
3241    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3242  if (T)
3243    return QualType(T, 0);
3244
3245  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3246  Types.push_back(T);
3247  DependentNameTypes.InsertNode(T, InsertPos);
3248  return QualType(T, 0);
3249}
3250
3251QualType
3252ASTContext::getDependentTemplateSpecializationType(
3253                                 ElaboratedTypeKeyword Keyword,
3254                                 NestedNameSpecifier *NNS,
3255                                 const IdentifierInfo *Name,
3256                                 const TemplateArgumentListInfo &Args) const {
3257  // TODO: avoid this copy
3258  SmallVector<TemplateArgument, 16> ArgCopy;
3259  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3260    ArgCopy.push_back(Args[I].getArgument());
3261  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3262                                                ArgCopy.size(),
3263                                                ArgCopy.data());
3264}
3265
3266QualType
3267ASTContext::getDependentTemplateSpecializationType(
3268                                 ElaboratedTypeKeyword Keyword,
3269                                 NestedNameSpecifier *NNS,
3270                                 const IdentifierInfo *Name,
3271                                 unsigned NumArgs,
3272                                 const TemplateArgument *Args) const {
3273  assert((!NNS || NNS->isDependent()) &&
3274         "nested-name-specifier must be dependent");
3275
3276  llvm::FoldingSetNodeID ID;
3277  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3278                                               Name, NumArgs, Args);
3279
3280  void *InsertPos = 0;
3281  DependentTemplateSpecializationType *T
3282    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3283  if (T)
3284    return QualType(T, 0);
3285
3286  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3287
3288  ElaboratedTypeKeyword CanonKeyword = Keyword;
3289  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3290
3291  bool AnyNonCanonArgs = false;
3292  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3293  for (unsigned I = 0; I != NumArgs; ++I) {
3294    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3295    if (!CanonArgs[I].structurallyEquals(Args[I]))
3296      AnyNonCanonArgs = true;
3297  }
3298
3299  QualType Canon;
3300  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3301    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3302                                                   Name, NumArgs,
3303                                                   CanonArgs.data());
3304
3305    // Find the insert position again.
3306    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3307  }
3308
3309  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3310                        sizeof(TemplateArgument) * NumArgs),
3311                       TypeAlignment);
3312  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3313                                                    Name, NumArgs, Args, Canon);
3314  Types.push_back(T);
3315  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3316  return QualType(T, 0);
3317}
3318
3319QualType ASTContext::getPackExpansionType(QualType Pattern,
3320                                          Optional<unsigned> NumExpansions) {
3321  llvm::FoldingSetNodeID ID;
3322  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3323
3324  assert(Pattern->containsUnexpandedParameterPack() &&
3325         "Pack expansions must expand one or more parameter packs");
3326  void *InsertPos = 0;
3327  PackExpansionType *T
3328    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3329  if (T)
3330    return QualType(T, 0);
3331
3332  QualType Canon;
3333  if (!Pattern.isCanonical()) {
3334    Canon = getCanonicalType(Pattern);
3335    // The canonical type might not contain an unexpanded parameter pack, if it
3336    // contains an alias template specialization which ignores one of its
3337    // parameters.
3338    if (Canon->containsUnexpandedParameterPack()) {
3339      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3340
3341      // Find the insert position again, in case we inserted an element into
3342      // PackExpansionTypes and invalidated our insert position.
3343      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3344    }
3345  }
3346
3347  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3348  Types.push_back(T);
3349  PackExpansionTypes.InsertNode(T, InsertPos);
3350  return QualType(T, 0);
3351}
3352
3353/// CmpProtocolNames - Comparison predicate for sorting protocols
3354/// alphabetically.
3355static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3356                            const ObjCProtocolDecl *RHS) {
3357  return LHS->getDeclName() < RHS->getDeclName();
3358}
3359
3360static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3361                                unsigned NumProtocols) {
3362  if (NumProtocols == 0) return true;
3363
3364  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3365    return false;
3366
3367  for (unsigned i = 1; i != NumProtocols; ++i)
3368    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3369        Protocols[i]->getCanonicalDecl() != Protocols[i])
3370      return false;
3371  return true;
3372}
3373
3374static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3375                                   unsigned &NumProtocols) {
3376  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3377
3378  // Sort protocols, keyed by name.
3379  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3380
3381  // Canonicalize.
3382  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3383    Protocols[I] = Protocols[I]->getCanonicalDecl();
3384
3385  // Remove duplicates.
3386  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3387  NumProtocols = ProtocolsEnd-Protocols;
3388}
3389
3390QualType ASTContext::getObjCObjectType(QualType BaseType,
3391                                       ObjCProtocolDecl * const *Protocols,
3392                                       unsigned NumProtocols) const {
3393  // If the base type is an interface and there aren't any protocols
3394  // to add, then the interface type will do just fine.
3395  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3396    return BaseType;
3397
3398  // Look in the folding set for an existing type.
3399  llvm::FoldingSetNodeID ID;
3400  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3401  void *InsertPos = 0;
3402  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3403    return QualType(QT, 0);
3404
3405  // Build the canonical type, which has the canonical base type and
3406  // a sorted-and-uniqued list of protocols.
3407  QualType Canonical;
3408  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3409  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3410    if (!ProtocolsSorted) {
3411      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3412                                                     Protocols + NumProtocols);
3413      unsigned UniqueCount = NumProtocols;
3414
3415      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3416      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3417                                    &Sorted[0], UniqueCount);
3418    } else {
3419      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3420                                    Protocols, NumProtocols);
3421    }
3422
3423    // Regenerate InsertPos.
3424    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3425  }
3426
3427  unsigned Size = sizeof(ObjCObjectTypeImpl);
3428  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3429  void *Mem = Allocate(Size, TypeAlignment);
3430  ObjCObjectTypeImpl *T =
3431    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3432
3433  Types.push_back(T);
3434  ObjCObjectTypes.InsertNode(T, InsertPos);
3435  return QualType(T, 0);
3436}
3437
3438/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3439/// the given object type.
3440QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3441  llvm::FoldingSetNodeID ID;
3442  ObjCObjectPointerType::Profile(ID, ObjectT);
3443
3444  void *InsertPos = 0;
3445  if (ObjCObjectPointerType *QT =
3446              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3447    return QualType(QT, 0);
3448
3449  // Find the canonical object type.
3450  QualType Canonical;
3451  if (!ObjectT.isCanonical()) {
3452    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3453
3454    // Regenerate InsertPos.
3455    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3456  }
3457
3458  // No match.
3459  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3460  ObjCObjectPointerType *QType =
3461    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3462
3463  Types.push_back(QType);
3464  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3465  return QualType(QType, 0);
3466}
3467
3468/// getObjCInterfaceType - Return the unique reference to the type for the
3469/// specified ObjC interface decl. The list of protocols is optional.
3470QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3471                                          ObjCInterfaceDecl *PrevDecl) const {
3472  if (Decl->TypeForDecl)
3473    return QualType(Decl->TypeForDecl, 0);
3474
3475  if (PrevDecl) {
3476    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3477    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3478    return QualType(PrevDecl->TypeForDecl, 0);
3479  }
3480
3481  // Prefer the definition, if there is one.
3482  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3483    Decl = Def;
3484
3485  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3486  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3487  Decl->TypeForDecl = T;
3488  Types.push_back(T);
3489  return QualType(T, 0);
3490}
3491
3492/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3493/// TypeOfExprType AST's (since expression's are never shared). For example,
3494/// multiple declarations that refer to "typeof(x)" all contain different
3495/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3496/// on canonical type's (which are always unique).
3497QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3498  TypeOfExprType *toe;
3499  if (tofExpr->isTypeDependent()) {
3500    llvm::FoldingSetNodeID ID;
3501    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3502
3503    void *InsertPos = 0;
3504    DependentTypeOfExprType *Canon
3505      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3506    if (Canon) {
3507      // We already have a "canonical" version of an identical, dependent
3508      // typeof(expr) type. Use that as our canonical type.
3509      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3510                                          QualType((TypeOfExprType*)Canon, 0));
3511    } else {
3512      // Build a new, canonical typeof(expr) type.
3513      Canon
3514        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3515      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3516      toe = Canon;
3517    }
3518  } else {
3519    QualType Canonical = getCanonicalType(tofExpr->getType());
3520    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3521  }
3522  Types.push_back(toe);
3523  return QualType(toe, 0);
3524}
3525
3526/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3527/// TypeOfType AST's. The only motivation to unique these nodes would be
3528/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3529/// an issue. This doesn't effect the type checker, since it operates
3530/// on canonical type's (which are always unique).
3531QualType ASTContext::getTypeOfType(QualType tofType) const {
3532  QualType Canonical = getCanonicalType(tofType);
3533  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3534  Types.push_back(tot);
3535  return QualType(tot, 0);
3536}
3537
3538
3539/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3540/// DecltypeType AST's. The only motivation to unique these nodes would be
3541/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3542/// an issue. This doesn't effect the type checker, since it operates
3543/// on canonical types (which are always unique).
3544QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3545  DecltypeType *dt;
3546
3547  // C++0x [temp.type]p2:
3548  //   If an expression e involves a template parameter, decltype(e) denotes a
3549  //   unique dependent type. Two such decltype-specifiers refer to the same
3550  //   type only if their expressions are equivalent (14.5.6.1).
3551  if (e->isInstantiationDependent()) {
3552    llvm::FoldingSetNodeID ID;
3553    DependentDecltypeType::Profile(ID, *this, e);
3554
3555    void *InsertPos = 0;
3556    DependentDecltypeType *Canon
3557      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3558    if (Canon) {
3559      // We already have a "canonical" version of an equivalent, dependent
3560      // decltype type. Use that as our canonical type.
3561      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3562                                       QualType((DecltypeType*)Canon, 0));
3563    } else {
3564      // Build a new, canonical typeof(expr) type.
3565      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3566      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3567      dt = Canon;
3568    }
3569  } else {
3570    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3571                                      getCanonicalType(UnderlyingType));
3572  }
3573  Types.push_back(dt);
3574  return QualType(dt, 0);
3575}
3576
3577/// getUnaryTransformationType - We don't unique these, since the memory
3578/// savings are minimal and these are rare.
3579QualType ASTContext::getUnaryTransformType(QualType BaseType,
3580                                           QualType UnderlyingType,
3581                                           UnaryTransformType::UTTKind Kind)
3582    const {
3583  UnaryTransformType *Ty =
3584    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3585                                                   Kind,
3586                                 UnderlyingType->isDependentType() ?
3587                                 QualType() : getCanonicalType(UnderlyingType));
3588  Types.push_back(Ty);
3589  return QualType(Ty, 0);
3590}
3591
3592/// getAutoType - Return the uniqued reference to the 'auto' type which has been
3593/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
3594/// canonical deduced-but-dependent 'auto' type.
3595QualType ASTContext::getAutoType(QualType DeducedType, bool IsDecltypeAuto,
3596                                 bool IsDependent) const {
3597  if (DeducedType.isNull() && !IsDecltypeAuto && !IsDependent)
3598    return getAutoDeductType();
3599
3600  // Look in the folding set for an existing type.
3601  void *InsertPos = 0;
3602  llvm::FoldingSetNodeID ID;
3603  AutoType::Profile(ID, DeducedType, IsDecltypeAuto, IsDependent);
3604  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3605    return QualType(AT, 0);
3606
3607  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType,
3608                                                     IsDecltypeAuto,
3609                                                     IsDependent);
3610  Types.push_back(AT);
3611  if (InsertPos)
3612    AutoTypes.InsertNode(AT, InsertPos);
3613  return QualType(AT, 0);
3614}
3615
3616/// getAtomicType - Return the uniqued reference to the atomic type for
3617/// the given value type.
3618QualType ASTContext::getAtomicType(QualType T) const {
3619  // Unique pointers, to guarantee there is only one pointer of a particular
3620  // structure.
3621  llvm::FoldingSetNodeID ID;
3622  AtomicType::Profile(ID, T);
3623
3624  void *InsertPos = 0;
3625  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3626    return QualType(AT, 0);
3627
3628  // If the atomic value type isn't canonical, this won't be a canonical type
3629  // either, so fill in the canonical type field.
3630  QualType Canonical;
3631  if (!T.isCanonical()) {
3632    Canonical = getAtomicType(getCanonicalType(T));
3633
3634    // Get the new insert position for the node we care about.
3635    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3636    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3637  }
3638  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3639  Types.push_back(New);
3640  AtomicTypes.InsertNode(New, InsertPos);
3641  return QualType(New, 0);
3642}
3643
3644/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3645QualType ASTContext::getAutoDeductType() const {
3646  if (AutoDeductTy.isNull())
3647    AutoDeductTy = QualType(
3648      new (*this, TypeAlignment) AutoType(QualType(), /*decltype(auto)*/false,
3649                                          /*dependent*/false),
3650      0);
3651  return AutoDeductTy;
3652}
3653
3654/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3655QualType ASTContext::getAutoRRefDeductType() const {
3656  if (AutoRRefDeductTy.isNull())
3657    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3658  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3659  return AutoRRefDeductTy;
3660}
3661
3662/// getTagDeclType - Return the unique reference to the type for the
3663/// specified TagDecl (struct/union/class/enum) decl.
3664QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3665  assert (Decl);
3666  // FIXME: What is the design on getTagDeclType when it requires casting
3667  // away const?  mutable?
3668  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3669}
3670
3671/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3672/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3673/// needs to agree with the definition in <stddef.h>.
3674CanQualType ASTContext::getSizeType() const {
3675  return getFromTargetType(Target->getSizeType());
3676}
3677
3678/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3679CanQualType ASTContext::getIntMaxType() const {
3680  return getFromTargetType(Target->getIntMaxType());
3681}
3682
3683/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3684CanQualType ASTContext::getUIntMaxType() const {
3685  return getFromTargetType(Target->getUIntMaxType());
3686}
3687
3688/// getSignedWCharType - Return the type of "signed wchar_t".
3689/// Used when in C++, as a GCC extension.
3690QualType ASTContext::getSignedWCharType() const {
3691  // FIXME: derive from "Target" ?
3692  return WCharTy;
3693}
3694
3695/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3696/// Used when in C++, as a GCC extension.
3697QualType ASTContext::getUnsignedWCharType() const {
3698  // FIXME: derive from "Target" ?
3699  return UnsignedIntTy;
3700}
3701
3702QualType ASTContext::getIntPtrType() const {
3703  return getFromTargetType(Target->getIntPtrType());
3704}
3705
3706QualType ASTContext::getUIntPtrType() const {
3707  return getCorrespondingUnsignedType(getIntPtrType());
3708}
3709
3710/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3711/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3712QualType ASTContext::getPointerDiffType() const {
3713  return getFromTargetType(Target->getPtrDiffType(0));
3714}
3715
3716/// \brief Return the unique type for "pid_t" defined in
3717/// <sys/types.h>. We need this to compute the correct type for vfork().
3718QualType ASTContext::getProcessIDType() const {
3719  return getFromTargetType(Target->getProcessIDType());
3720}
3721
3722//===----------------------------------------------------------------------===//
3723//                              Type Operators
3724//===----------------------------------------------------------------------===//
3725
3726CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3727  // Push qualifiers into arrays, and then discard any remaining
3728  // qualifiers.
3729  T = getCanonicalType(T);
3730  T = getVariableArrayDecayedType(T);
3731  const Type *Ty = T.getTypePtr();
3732  QualType Result;
3733  if (isa<ArrayType>(Ty)) {
3734    Result = getArrayDecayedType(QualType(Ty,0));
3735  } else if (isa<FunctionType>(Ty)) {
3736    Result = getPointerType(QualType(Ty, 0));
3737  } else {
3738    Result = QualType(Ty, 0);
3739  }
3740
3741  return CanQualType::CreateUnsafe(Result);
3742}
3743
3744QualType ASTContext::getUnqualifiedArrayType(QualType type,
3745                                             Qualifiers &quals) {
3746  SplitQualType splitType = type.getSplitUnqualifiedType();
3747
3748  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3749  // the unqualified desugared type and then drops it on the floor.
3750  // We then have to strip that sugar back off with
3751  // getUnqualifiedDesugaredType(), which is silly.
3752  const ArrayType *AT =
3753    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3754
3755  // If we don't have an array, just use the results in splitType.
3756  if (!AT) {
3757    quals = splitType.Quals;
3758    return QualType(splitType.Ty, 0);
3759  }
3760
3761  // Otherwise, recurse on the array's element type.
3762  QualType elementType = AT->getElementType();
3763  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3764
3765  // If that didn't change the element type, AT has no qualifiers, so we
3766  // can just use the results in splitType.
3767  if (elementType == unqualElementType) {
3768    assert(quals.empty()); // from the recursive call
3769    quals = splitType.Quals;
3770    return QualType(splitType.Ty, 0);
3771  }
3772
3773  // Otherwise, add in the qualifiers from the outermost type, then
3774  // build the type back up.
3775  quals.addConsistentQualifiers(splitType.Quals);
3776
3777  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3778    return getConstantArrayType(unqualElementType, CAT->getSize(),
3779                                CAT->getSizeModifier(), 0);
3780  }
3781
3782  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3783    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3784  }
3785
3786  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3787    return getVariableArrayType(unqualElementType,
3788                                VAT->getSizeExpr(),
3789                                VAT->getSizeModifier(),
3790                                VAT->getIndexTypeCVRQualifiers(),
3791                                VAT->getBracketsRange());
3792  }
3793
3794  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3795  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3796                                    DSAT->getSizeModifier(), 0,
3797                                    SourceRange());
3798}
3799
3800/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3801/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3802/// they point to and return true. If T1 and T2 aren't pointer types
3803/// or pointer-to-member types, or if they are not similar at this
3804/// level, returns false and leaves T1 and T2 unchanged. Top-level
3805/// qualifiers on T1 and T2 are ignored. This function will typically
3806/// be called in a loop that successively "unwraps" pointer and
3807/// pointer-to-member types to compare them at each level.
3808bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3809  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3810                    *T2PtrType = T2->getAs<PointerType>();
3811  if (T1PtrType && T2PtrType) {
3812    T1 = T1PtrType->getPointeeType();
3813    T2 = T2PtrType->getPointeeType();
3814    return true;
3815  }
3816
3817  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3818                          *T2MPType = T2->getAs<MemberPointerType>();
3819  if (T1MPType && T2MPType &&
3820      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3821                             QualType(T2MPType->getClass(), 0))) {
3822    T1 = T1MPType->getPointeeType();
3823    T2 = T2MPType->getPointeeType();
3824    return true;
3825  }
3826
3827  if (getLangOpts().ObjC1) {
3828    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3829                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3830    if (T1OPType && T2OPType) {
3831      T1 = T1OPType->getPointeeType();
3832      T2 = T2OPType->getPointeeType();
3833      return true;
3834    }
3835  }
3836
3837  // FIXME: Block pointers, too?
3838
3839  return false;
3840}
3841
3842DeclarationNameInfo
3843ASTContext::getNameForTemplate(TemplateName Name,
3844                               SourceLocation NameLoc) const {
3845  switch (Name.getKind()) {
3846  case TemplateName::QualifiedTemplate:
3847  case TemplateName::Template:
3848    // DNInfo work in progress: CHECKME: what about DNLoc?
3849    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3850                               NameLoc);
3851
3852  case TemplateName::OverloadedTemplate: {
3853    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3854    // DNInfo work in progress: CHECKME: what about DNLoc?
3855    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3856  }
3857
3858  case TemplateName::DependentTemplate: {
3859    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3860    DeclarationName DName;
3861    if (DTN->isIdentifier()) {
3862      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3863      return DeclarationNameInfo(DName, NameLoc);
3864    } else {
3865      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3866      // DNInfo work in progress: FIXME: source locations?
3867      DeclarationNameLoc DNLoc;
3868      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3869      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3870      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3871    }
3872  }
3873
3874  case TemplateName::SubstTemplateTemplateParm: {
3875    SubstTemplateTemplateParmStorage *subst
3876      = Name.getAsSubstTemplateTemplateParm();
3877    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3878                               NameLoc);
3879  }
3880
3881  case TemplateName::SubstTemplateTemplateParmPack: {
3882    SubstTemplateTemplateParmPackStorage *subst
3883      = Name.getAsSubstTemplateTemplateParmPack();
3884    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3885                               NameLoc);
3886  }
3887  }
3888
3889  llvm_unreachable("bad template name kind!");
3890}
3891
3892TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3893  switch (Name.getKind()) {
3894  case TemplateName::QualifiedTemplate:
3895  case TemplateName::Template: {
3896    TemplateDecl *Template = Name.getAsTemplateDecl();
3897    if (TemplateTemplateParmDecl *TTP
3898          = dyn_cast<TemplateTemplateParmDecl>(Template))
3899      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3900
3901    // The canonical template name is the canonical template declaration.
3902    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3903  }
3904
3905  case TemplateName::OverloadedTemplate:
3906    llvm_unreachable("cannot canonicalize overloaded template");
3907
3908  case TemplateName::DependentTemplate: {
3909    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3910    assert(DTN && "Non-dependent template names must refer to template decls.");
3911    return DTN->CanonicalTemplateName;
3912  }
3913
3914  case TemplateName::SubstTemplateTemplateParm: {
3915    SubstTemplateTemplateParmStorage *subst
3916      = Name.getAsSubstTemplateTemplateParm();
3917    return getCanonicalTemplateName(subst->getReplacement());
3918  }
3919
3920  case TemplateName::SubstTemplateTemplateParmPack: {
3921    SubstTemplateTemplateParmPackStorage *subst
3922                                  = Name.getAsSubstTemplateTemplateParmPack();
3923    TemplateTemplateParmDecl *canonParameter
3924      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3925    TemplateArgument canonArgPack
3926      = getCanonicalTemplateArgument(subst->getArgumentPack());
3927    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3928  }
3929  }
3930
3931  llvm_unreachable("bad template name!");
3932}
3933
3934bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3935  X = getCanonicalTemplateName(X);
3936  Y = getCanonicalTemplateName(Y);
3937  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3938}
3939
3940TemplateArgument
3941ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3942  switch (Arg.getKind()) {
3943    case TemplateArgument::Null:
3944      return Arg;
3945
3946    case TemplateArgument::Expression:
3947      return Arg;
3948
3949    case TemplateArgument::Declaration: {
3950      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3951      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3952    }
3953
3954    case TemplateArgument::NullPtr:
3955      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3956                              /*isNullPtr*/true);
3957
3958    case TemplateArgument::Template:
3959      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3960
3961    case TemplateArgument::TemplateExpansion:
3962      return TemplateArgument(getCanonicalTemplateName(
3963                                         Arg.getAsTemplateOrTemplatePattern()),
3964                              Arg.getNumTemplateExpansions());
3965
3966    case TemplateArgument::Integral:
3967      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3968
3969    case TemplateArgument::Type:
3970      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3971
3972    case TemplateArgument::Pack: {
3973      if (Arg.pack_size() == 0)
3974        return Arg;
3975
3976      TemplateArgument *CanonArgs
3977        = new (*this) TemplateArgument[Arg.pack_size()];
3978      unsigned Idx = 0;
3979      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3980                                        AEnd = Arg.pack_end();
3981           A != AEnd; (void)++A, ++Idx)
3982        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3983
3984      return TemplateArgument(CanonArgs, Arg.pack_size());
3985    }
3986  }
3987
3988  // Silence GCC warning
3989  llvm_unreachable("Unhandled template argument kind");
3990}
3991
3992NestedNameSpecifier *
3993ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3994  if (!NNS)
3995    return 0;
3996
3997  switch (NNS->getKind()) {
3998  case NestedNameSpecifier::Identifier:
3999    // Canonicalize the prefix but keep the identifier the same.
4000    return NestedNameSpecifier::Create(*this,
4001                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
4002                                       NNS->getAsIdentifier());
4003
4004  case NestedNameSpecifier::Namespace:
4005    // A namespace is canonical; build a nested-name-specifier with
4006    // this namespace and no prefix.
4007    return NestedNameSpecifier::Create(*this, 0,
4008                                 NNS->getAsNamespace()->getOriginalNamespace());
4009
4010  case NestedNameSpecifier::NamespaceAlias:
4011    // A namespace is canonical; build a nested-name-specifier with
4012    // this namespace and no prefix.
4013    return NestedNameSpecifier::Create(*this, 0,
4014                                    NNS->getAsNamespaceAlias()->getNamespace()
4015                                                      ->getOriginalNamespace());
4016
4017  case NestedNameSpecifier::TypeSpec:
4018  case NestedNameSpecifier::TypeSpecWithTemplate: {
4019    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
4020
4021    // If we have some kind of dependent-named type (e.g., "typename T::type"),
4022    // break it apart into its prefix and identifier, then reconsititute those
4023    // as the canonical nested-name-specifier. This is required to canonicalize
4024    // a dependent nested-name-specifier involving typedefs of dependent-name
4025    // types, e.g.,
4026    //   typedef typename T::type T1;
4027    //   typedef typename T1::type T2;
4028    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
4029      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
4030                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
4031
4032    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
4033    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
4034    // first place?
4035    return NestedNameSpecifier::Create(*this, 0, false,
4036                                       const_cast<Type*>(T.getTypePtr()));
4037  }
4038
4039  case NestedNameSpecifier::Global:
4040    // The global specifier is canonical and unique.
4041    return NNS;
4042  }
4043
4044  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4045}
4046
4047
4048const ArrayType *ASTContext::getAsArrayType(QualType T) const {
4049  // Handle the non-qualified case efficiently.
4050  if (!T.hasLocalQualifiers()) {
4051    // Handle the common positive case fast.
4052    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
4053      return AT;
4054  }
4055
4056  // Handle the common negative case fast.
4057  if (!isa<ArrayType>(T.getCanonicalType()))
4058    return 0;
4059
4060  // Apply any qualifiers from the array type to the element type.  This
4061  // implements C99 6.7.3p8: "If the specification of an array type includes
4062  // any type qualifiers, the element type is so qualified, not the array type."
4063
4064  // If we get here, we either have type qualifiers on the type, or we have
4065  // sugar such as a typedef in the way.  If we have type qualifiers on the type
4066  // we must propagate them down into the element type.
4067
4068  SplitQualType split = T.getSplitDesugaredType();
4069  Qualifiers qs = split.Quals;
4070
4071  // If we have a simple case, just return now.
4072  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
4073  if (ATy == 0 || qs.empty())
4074    return ATy;
4075
4076  // Otherwise, we have an array and we have qualifiers on it.  Push the
4077  // qualifiers into the array element type and return a new array type.
4078  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
4079
4080  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
4081    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
4082                                                CAT->getSizeModifier(),
4083                                           CAT->getIndexTypeCVRQualifiers()));
4084  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
4085    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
4086                                                  IAT->getSizeModifier(),
4087                                           IAT->getIndexTypeCVRQualifiers()));
4088
4089  if (const DependentSizedArrayType *DSAT
4090        = dyn_cast<DependentSizedArrayType>(ATy))
4091    return cast<ArrayType>(
4092                     getDependentSizedArrayType(NewEltTy,
4093                                                DSAT->getSizeExpr(),
4094                                                DSAT->getSizeModifier(),
4095                                              DSAT->getIndexTypeCVRQualifiers(),
4096                                                DSAT->getBracketsRange()));
4097
4098  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4099  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4100                                              VAT->getSizeExpr(),
4101                                              VAT->getSizeModifier(),
4102                                              VAT->getIndexTypeCVRQualifiers(),
4103                                              VAT->getBracketsRange()));
4104}
4105
4106QualType ASTContext::getAdjustedParameterType(QualType T) const {
4107  // C99 6.7.5.3p7:
4108  //   A declaration of a parameter as "array of type" shall be
4109  //   adjusted to "qualified pointer to type", where the type
4110  //   qualifiers (if any) are those specified within the [ and ] of
4111  //   the array type derivation.
4112  if (T->isArrayType())
4113    return getArrayDecayedType(T);
4114
4115  // C99 6.7.5.3p8:
4116  //   A declaration of a parameter as "function returning type"
4117  //   shall be adjusted to "pointer to function returning type", as
4118  //   in 6.3.2.1.
4119  if (T->isFunctionType())
4120    return getPointerType(T);
4121
4122  return T;
4123}
4124
4125QualType ASTContext::getSignatureParameterType(QualType T) const {
4126  T = getVariableArrayDecayedType(T);
4127  T = getAdjustedParameterType(T);
4128  return T.getUnqualifiedType();
4129}
4130
4131/// getArrayDecayedType - Return the properly qualified result of decaying the
4132/// specified array type to a pointer.  This operation is non-trivial when
4133/// handling typedefs etc.  The canonical type of "T" must be an array type,
4134/// this returns a pointer to a properly qualified element of the array.
4135///
4136/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4137QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4138  // Get the element type with 'getAsArrayType' so that we don't lose any
4139  // typedefs in the element type of the array.  This also handles propagation
4140  // of type qualifiers from the array type into the element type if present
4141  // (C99 6.7.3p8).
4142  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4143  assert(PrettyArrayType && "Not an array type!");
4144
4145  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4146
4147  // int x[restrict 4] ->  int *restrict
4148  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4149}
4150
4151QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4152  return getBaseElementType(array->getElementType());
4153}
4154
4155QualType ASTContext::getBaseElementType(QualType type) const {
4156  Qualifiers qs;
4157  while (true) {
4158    SplitQualType split = type.getSplitDesugaredType();
4159    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4160    if (!array) break;
4161
4162    type = array->getElementType();
4163    qs.addConsistentQualifiers(split.Quals);
4164  }
4165
4166  return getQualifiedType(type, qs);
4167}
4168
4169/// getConstantArrayElementCount - Returns number of constant array elements.
4170uint64_t
4171ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4172  uint64_t ElementCount = 1;
4173  do {
4174    ElementCount *= CA->getSize().getZExtValue();
4175    CA = dyn_cast_or_null<ConstantArrayType>(
4176      CA->getElementType()->getAsArrayTypeUnsafe());
4177  } while (CA);
4178  return ElementCount;
4179}
4180
4181/// getFloatingRank - Return a relative rank for floating point types.
4182/// This routine will assert if passed a built-in type that isn't a float.
4183static FloatingRank getFloatingRank(QualType T) {
4184  if (const ComplexType *CT = T->getAs<ComplexType>())
4185    return getFloatingRank(CT->getElementType());
4186
4187  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4188  switch (T->getAs<BuiltinType>()->getKind()) {
4189  default: llvm_unreachable("getFloatingRank(): not a floating type");
4190  case BuiltinType::Half:       return HalfRank;
4191  case BuiltinType::Float:      return FloatRank;
4192  case BuiltinType::Double:     return DoubleRank;
4193  case BuiltinType::LongDouble: return LongDoubleRank;
4194  }
4195}
4196
4197/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4198/// point or a complex type (based on typeDomain/typeSize).
4199/// 'typeDomain' is a real floating point or complex type.
4200/// 'typeSize' is a real floating point or complex type.
4201QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4202                                                       QualType Domain) const {
4203  FloatingRank EltRank = getFloatingRank(Size);
4204  if (Domain->isComplexType()) {
4205    switch (EltRank) {
4206    case HalfRank: llvm_unreachable("Complex half is not supported");
4207    case FloatRank:      return FloatComplexTy;
4208    case DoubleRank:     return DoubleComplexTy;
4209    case LongDoubleRank: return LongDoubleComplexTy;
4210    }
4211  }
4212
4213  assert(Domain->isRealFloatingType() && "Unknown domain!");
4214  switch (EltRank) {
4215  case HalfRank:       return HalfTy;
4216  case FloatRank:      return FloatTy;
4217  case DoubleRank:     return DoubleTy;
4218  case LongDoubleRank: return LongDoubleTy;
4219  }
4220  llvm_unreachable("getFloatingRank(): illegal value for rank");
4221}
4222
4223/// getFloatingTypeOrder - Compare the rank of the two specified floating
4224/// point types, ignoring the domain of the type (i.e. 'double' ==
4225/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4226/// LHS < RHS, return -1.
4227int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4228  FloatingRank LHSR = getFloatingRank(LHS);
4229  FloatingRank RHSR = getFloatingRank(RHS);
4230
4231  if (LHSR == RHSR)
4232    return 0;
4233  if (LHSR > RHSR)
4234    return 1;
4235  return -1;
4236}
4237
4238/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4239/// routine will assert if passed a built-in type that isn't an integer or enum,
4240/// or if it is not canonicalized.
4241unsigned ASTContext::getIntegerRank(const Type *T) const {
4242  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4243
4244  switch (cast<BuiltinType>(T)->getKind()) {
4245  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4246  case BuiltinType::Bool:
4247    return 1 + (getIntWidth(BoolTy) << 3);
4248  case BuiltinType::Char_S:
4249  case BuiltinType::Char_U:
4250  case BuiltinType::SChar:
4251  case BuiltinType::UChar:
4252    return 2 + (getIntWidth(CharTy) << 3);
4253  case BuiltinType::Short:
4254  case BuiltinType::UShort:
4255    return 3 + (getIntWidth(ShortTy) << 3);
4256  case BuiltinType::Int:
4257  case BuiltinType::UInt:
4258    return 4 + (getIntWidth(IntTy) << 3);
4259  case BuiltinType::Long:
4260  case BuiltinType::ULong:
4261    return 5 + (getIntWidth(LongTy) << 3);
4262  case BuiltinType::LongLong:
4263  case BuiltinType::ULongLong:
4264    return 6 + (getIntWidth(LongLongTy) << 3);
4265  case BuiltinType::Int128:
4266  case BuiltinType::UInt128:
4267    return 7 + (getIntWidth(Int128Ty) << 3);
4268  }
4269}
4270
4271/// \brief Whether this is a promotable bitfield reference according
4272/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4273///
4274/// \returns the type this bit-field will promote to, or NULL if no
4275/// promotion occurs.
4276QualType ASTContext::isPromotableBitField(Expr *E) const {
4277  if (E->isTypeDependent() || E->isValueDependent())
4278    return QualType();
4279
4280  FieldDecl *Field = E->getBitField();
4281  if (!Field)
4282    return QualType();
4283
4284  QualType FT = Field->getType();
4285
4286  uint64_t BitWidth = Field->getBitWidthValue(*this);
4287  uint64_t IntSize = getTypeSize(IntTy);
4288  // GCC extension compatibility: if the bit-field size is less than or equal
4289  // to the size of int, it gets promoted no matter what its type is.
4290  // For instance, unsigned long bf : 4 gets promoted to signed int.
4291  if (BitWidth < IntSize)
4292    return IntTy;
4293
4294  if (BitWidth == IntSize)
4295    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4296
4297  // Types bigger than int are not subject to promotions, and therefore act
4298  // like the base type.
4299  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4300  // is ridiculous.
4301  return QualType();
4302}
4303
4304/// getPromotedIntegerType - Returns the type that Promotable will
4305/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4306/// integer type.
4307QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4308  assert(!Promotable.isNull());
4309  assert(Promotable->isPromotableIntegerType());
4310  if (const EnumType *ET = Promotable->getAs<EnumType>())
4311    return ET->getDecl()->getPromotionType();
4312
4313  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4314    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4315    // (3.9.1) can be converted to a prvalue of the first of the following
4316    // types that can represent all the values of its underlying type:
4317    // int, unsigned int, long int, unsigned long int, long long int, or
4318    // unsigned long long int [...]
4319    // FIXME: Is there some better way to compute this?
4320    if (BT->getKind() == BuiltinType::WChar_S ||
4321        BT->getKind() == BuiltinType::WChar_U ||
4322        BT->getKind() == BuiltinType::Char16 ||
4323        BT->getKind() == BuiltinType::Char32) {
4324      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4325      uint64_t FromSize = getTypeSize(BT);
4326      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4327                                  LongLongTy, UnsignedLongLongTy };
4328      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4329        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4330        if (FromSize < ToSize ||
4331            (FromSize == ToSize &&
4332             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4333          return PromoteTypes[Idx];
4334      }
4335      llvm_unreachable("char type should fit into long long");
4336    }
4337  }
4338
4339  // At this point, we should have a signed or unsigned integer type.
4340  if (Promotable->isSignedIntegerType())
4341    return IntTy;
4342  uint64_t PromotableSize = getIntWidth(Promotable);
4343  uint64_t IntSize = getIntWidth(IntTy);
4344  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4345  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4346}
4347
4348/// \brief Recurses in pointer/array types until it finds an objc retainable
4349/// type and returns its ownership.
4350Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4351  while (!T.isNull()) {
4352    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4353      return T.getObjCLifetime();
4354    if (T->isArrayType())
4355      T = getBaseElementType(T);
4356    else if (const PointerType *PT = T->getAs<PointerType>())
4357      T = PT->getPointeeType();
4358    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4359      T = RT->getPointeeType();
4360    else
4361      break;
4362  }
4363
4364  return Qualifiers::OCL_None;
4365}
4366
4367/// getIntegerTypeOrder - Returns the highest ranked integer type:
4368/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4369/// LHS < RHS, return -1.
4370int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4371  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4372  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4373  if (LHSC == RHSC) return 0;
4374
4375  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4376  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4377
4378  unsigned LHSRank = getIntegerRank(LHSC);
4379  unsigned RHSRank = getIntegerRank(RHSC);
4380
4381  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4382    if (LHSRank == RHSRank) return 0;
4383    return LHSRank > RHSRank ? 1 : -1;
4384  }
4385
4386  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4387  if (LHSUnsigned) {
4388    // If the unsigned [LHS] type is larger, return it.
4389    if (LHSRank >= RHSRank)
4390      return 1;
4391
4392    // If the signed type can represent all values of the unsigned type, it
4393    // wins.  Because we are dealing with 2's complement and types that are
4394    // powers of two larger than each other, this is always safe.
4395    return -1;
4396  }
4397
4398  // If the unsigned [RHS] type is larger, return it.
4399  if (RHSRank >= LHSRank)
4400    return -1;
4401
4402  // If the signed type can represent all values of the unsigned type, it
4403  // wins.  Because we are dealing with 2's complement and types that are
4404  // powers of two larger than each other, this is always safe.
4405  return 1;
4406}
4407
4408static RecordDecl *
4409CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4410                 DeclContext *DC, IdentifierInfo *Id) {
4411  SourceLocation Loc;
4412  if (Ctx.getLangOpts().CPlusPlus)
4413    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4414  else
4415    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4416}
4417
4418// getCFConstantStringType - Return the type used for constant CFStrings.
4419QualType ASTContext::getCFConstantStringType() const {
4420  if (!CFConstantStringTypeDecl) {
4421    CFConstantStringTypeDecl =
4422      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4423                       &Idents.get("NSConstantString"));
4424    CFConstantStringTypeDecl->startDefinition();
4425
4426    QualType FieldTypes[4];
4427
4428    // const int *isa;
4429    FieldTypes[0] = getPointerType(IntTy.withConst());
4430    // int flags;
4431    FieldTypes[1] = IntTy;
4432    // const char *str;
4433    FieldTypes[2] = getPointerType(CharTy.withConst());
4434    // long length;
4435    FieldTypes[3] = LongTy;
4436
4437    // Create fields
4438    for (unsigned i = 0; i < 4; ++i) {
4439      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4440                                           SourceLocation(),
4441                                           SourceLocation(), 0,
4442                                           FieldTypes[i], /*TInfo=*/0,
4443                                           /*BitWidth=*/0,
4444                                           /*Mutable=*/false,
4445                                           ICIS_NoInit);
4446      Field->setAccess(AS_public);
4447      CFConstantStringTypeDecl->addDecl(Field);
4448    }
4449
4450    CFConstantStringTypeDecl->completeDefinition();
4451  }
4452
4453  return getTagDeclType(CFConstantStringTypeDecl);
4454}
4455
4456QualType ASTContext::getObjCSuperType() const {
4457  if (ObjCSuperType.isNull()) {
4458    RecordDecl *ObjCSuperTypeDecl  =
4459      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4460    TUDecl->addDecl(ObjCSuperTypeDecl);
4461    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4462  }
4463  return ObjCSuperType;
4464}
4465
4466void ASTContext::setCFConstantStringType(QualType T) {
4467  const RecordType *Rec = T->getAs<RecordType>();
4468  assert(Rec && "Invalid CFConstantStringType");
4469  CFConstantStringTypeDecl = Rec->getDecl();
4470}
4471
4472QualType ASTContext::getBlockDescriptorType() const {
4473  if (BlockDescriptorType)
4474    return getTagDeclType(BlockDescriptorType);
4475
4476  RecordDecl *T;
4477  // FIXME: Needs the FlagAppleBlock bit.
4478  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4479                       &Idents.get("__block_descriptor"));
4480  T->startDefinition();
4481
4482  QualType FieldTypes[] = {
4483    UnsignedLongTy,
4484    UnsignedLongTy,
4485  };
4486
4487  const char *FieldNames[] = {
4488    "reserved",
4489    "Size"
4490  };
4491
4492  for (size_t i = 0; i < 2; ++i) {
4493    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4494                                         SourceLocation(),
4495                                         &Idents.get(FieldNames[i]),
4496                                         FieldTypes[i], /*TInfo=*/0,
4497                                         /*BitWidth=*/0,
4498                                         /*Mutable=*/false,
4499                                         ICIS_NoInit);
4500    Field->setAccess(AS_public);
4501    T->addDecl(Field);
4502  }
4503
4504  T->completeDefinition();
4505
4506  BlockDescriptorType = T;
4507
4508  return getTagDeclType(BlockDescriptorType);
4509}
4510
4511QualType ASTContext::getBlockDescriptorExtendedType() const {
4512  if (BlockDescriptorExtendedType)
4513    return getTagDeclType(BlockDescriptorExtendedType);
4514
4515  RecordDecl *T;
4516  // FIXME: Needs the FlagAppleBlock bit.
4517  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4518                       &Idents.get("__block_descriptor_withcopydispose"));
4519  T->startDefinition();
4520
4521  QualType FieldTypes[] = {
4522    UnsignedLongTy,
4523    UnsignedLongTy,
4524    getPointerType(VoidPtrTy),
4525    getPointerType(VoidPtrTy)
4526  };
4527
4528  const char *FieldNames[] = {
4529    "reserved",
4530    "Size",
4531    "CopyFuncPtr",
4532    "DestroyFuncPtr"
4533  };
4534
4535  for (size_t i = 0; i < 4; ++i) {
4536    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4537                                         SourceLocation(),
4538                                         &Idents.get(FieldNames[i]),
4539                                         FieldTypes[i], /*TInfo=*/0,
4540                                         /*BitWidth=*/0,
4541                                         /*Mutable=*/false,
4542                                         ICIS_NoInit);
4543    Field->setAccess(AS_public);
4544    T->addDecl(Field);
4545  }
4546
4547  T->completeDefinition();
4548
4549  BlockDescriptorExtendedType = T;
4550
4551  return getTagDeclType(BlockDescriptorExtendedType);
4552}
4553
4554/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4555/// requires copy/dispose. Note that this must match the logic
4556/// in buildByrefHelpers.
4557bool ASTContext::BlockRequiresCopying(QualType Ty,
4558                                      const VarDecl *D) {
4559  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4560    const Expr *copyExpr = getBlockVarCopyInits(D);
4561    if (!copyExpr && record->hasTrivialDestructor()) return false;
4562
4563    return true;
4564  }
4565
4566  if (!Ty->isObjCRetainableType()) return false;
4567
4568  Qualifiers qs = Ty.getQualifiers();
4569
4570  // If we have lifetime, that dominates.
4571  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4572    assert(getLangOpts().ObjCAutoRefCount);
4573
4574    switch (lifetime) {
4575      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4576
4577      // These are just bits as far as the runtime is concerned.
4578      case Qualifiers::OCL_ExplicitNone:
4579      case Qualifiers::OCL_Autoreleasing:
4580        return false;
4581
4582      // Tell the runtime that this is ARC __weak, called by the
4583      // byref routines.
4584      case Qualifiers::OCL_Weak:
4585      // ARC __strong __block variables need to be retained.
4586      case Qualifiers::OCL_Strong:
4587        return true;
4588    }
4589    llvm_unreachable("fell out of lifetime switch!");
4590  }
4591  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4592          Ty->isObjCObjectPointerType());
4593}
4594
4595bool ASTContext::getByrefLifetime(QualType Ty,
4596                              Qualifiers::ObjCLifetime &LifeTime,
4597                              bool &HasByrefExtendedLayout) const {
4598
4599  if (!getLangOpts().ObjC1 ||
4600      getLangOpts().getGC() != LangOptions::NonGC)
4601    return false;
4602
4603  HasByrefExtendedLayout = false;
4604  if (Ty->isRecordType()) {
4605    HasByrefExtendedLayout = true;
4606    LifeTime = Qualifiers::OCL_None;
4607  }
4608  else if (getLangOpts().ObjCAutoRefCount)
4609    LifeTime = Ty.getObjCLifetime();
4610  // MRR.
4611  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4612    LifeTime = Qualifiers::OCL_ExplicitNone;
4613  else
4614    LifeTime = Qualifiers::OCL_None;
4615  return true;
4616}
4617
4618TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4619  if (!ObjCInstanceTypeDecl)
4620    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4621                                               getTranslationUnitDecl(),
4622                                               SourceLocation(),
4623                                               SourceLocation(),
4624                                               &Idents.get("instancetype"),
4625                                     getTrivialTypeSourceInfo(getObjCIdType()));
4626  return ObjCInstanceTypeDecl;
4627}
4628
4629// This returns true if a type has been typedefed to BOOL:
4630// typedef <type> BOOL;
4631static bool isTypeTypedefedAsBOOL(QualType T) {
4632  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4633    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4634      return II->isStr("BOOL");
4635
4636  return false;
4637}
4638
4639/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4640/// purpose.
4641CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4642  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4643    return CharUnits::Zero();
4644
4645  CharUnits sz = getTypeSizeInChars(type);
4646
4647  // Make all integer and enum types at least as large as an int
4648  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4649    sz = std::max(sz, getTypeSizeInChars(IntTy));
4650  // Treat arrays as pointers, since that's how they're passed in.
4651  else if (type->isArrayType())
4652    sz = getTypeSizeInChars(VoidPtrTy);
4653  return sz;
4654}
4655
4656static inline
4657std::string charUnitsToString(const CharUnits &CU) {
4658  return llvm::itostr(CU.getQuantity());
4659}
4660
4661/// getObjCEncodingForBlock - Return the encoded type for this block
4662/// declaration.
4663std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4664  std::string S;
4665
4666  const BlockDecl *Decl = Expr->getBlockDecl();
4667  QualType BlockTy =
4668      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4669  // Encode result type.
4670  if (getLangOpts().EncodeExtendedBlockSig)
4671    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4672                            BlockTy->getAs<FunctionType>()->getResultType(),
4673                            S, true /*Extended*/);
4674  else
4675    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4676                           S);
4677  // Compute size of all parameters.
4678  // Start with computing size of a pointer in number of bytes.
4679  // FIXME: There might(should) be a better way of doing this computation!
4680  SourceLocation Loc;
4681  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4682  CharUnits ParmOffset = PtrSize;
4683  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4684       E = Decl->param_end(); PI != E; ++PI) {
4685    QualType PType = (*PI)->getType();
4686    CharUnits sz = getObjCEncodingTypeSize(PType);
4687    if (sz.isZero())
4688      continue;
4689    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4690    ParmOffset += sz;
4691  }
4692  // Size of the argument frame
4693  S += charUnitsToString(ParmOffset);
4694  // Block pointer and offset.
4695  S += "@?0";
4696
4697  // Argument types.
4698  ParmOffset = PtrSize;
4699  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4700       Decl->param_end(); PI != E; ++PI) {
4701    ParmVarDecl *PVDecl = *PI;
4702    QualType PType = PVDecl->getOriginalType();
4703    if (const ArrayType *AT =
4704          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4705      // Use array's original type only if it has known number of
4706      // elements.
4707      if (!isa<ConstantArrayType>(AT))
4708        PType = PVDecl->getType();
4709    } else if (PType->isFunctionType())
4710      PType = PVDecl->getType();
4711    if (getLangOpts().EncodeExtendedBlockSig)
4712      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4713                                      S, true /*Extended*/);
4714    else
4715      getObjCEncodingForType(PType, S);
4716    S += charUnitsToString(ParmOffset);
4717    ParmOffset += getObjCEncodingTypeSize(PType);
4718  }
4719
4720  return S;
4721}
4722
4723bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4724                                                std::string& S) {
4725  // Encode result type.
4726  getObjCEncodingForType(Decl->getResultType(), S);
4727  CharUnits ParmOffset;
4728  // Compute size of all parameters.
4729  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4730       E = Decl->param_end(); PI != E; ++PI) {
4731    QualType PType = (*PI)->getType();
4732    CharUnits sz = getObjCEncodingTypeSize(PType);
4733    if (sz.isZero())
4734      continue;
4735
4736    assert (sz.isPositive() &&
4737        "getObjCEncodingForFunctionDecl - Incomplete param type");
4738    ParmOffset += sz;
4739  }
4740  S += charUnitsToString(ParmOffset);
4741  ParmOffset = CharUnits::Zero();
4742
4743  // Argument types.
4744  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4745       E = Decl->param_end(); PI != E; ++PI) {
4746    ParmVarDecl *PVDecl = *PI;
4747    QualType PType = PVDecl->getOriginalType();
4748    if (const ArrayType *AT =
4749          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4750      // Use array's original type only if it has known number of
4751      // elements.
4752      if (!isa<ConstantArrayType>(AT))
4753        PType = PVDecl->getType();
4754    } else if (PType->isFunctionType())
4755      PType = PVDecl->getType();
4756    getObjCEncodingForType(PType, S);
4757    S += charUnitsToString(ParmOffset);
4758    ParmOffset += getObjCEncodingTypeSize(PType);
4759  }
4760
4761  return false;
4762}
4763
4764/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4765/// method parameter or return type. If Extended, include class names and
4766/// block object types.
4767void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4768                                                   QualType T, std::string& S,
4769                                                   bool Extended) const {
4770  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4771  getObjCEncodingForTypeQualifier(QT, S);
4772  // Encode parameter type.
4773  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4774                             true     /*OutermostType*/,
4775                             false    /*EncodingProperty*/,
4776                             false    /*StructField*/,
4777                             Extended /*EncodeBlockParameters*/,
4778                             Extended /*EncodeClassNames*/);
4779}
4780
4781/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4782/// declaration.
4783bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4784                                              std::string& S,
4785                                              bool Extended) const {
4786  // FIXME: This is not very efficient.
4787  // Encode return type.
4788  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4789                                    Decl->getResultType(), S, Extended);
4790  // Compute size of all parameters.
4791  // Start with computing size of a pointer in number of bytes.
4792  // FIXME: There might(should) be a better way of doing this computation!
4793  SourceLocation Loc;
4794  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4795  // The first two arguments (self and _cmd) are pointers; account for
4796  // their size.
4797  CharUnits ParmOffset = 2 * PtrSize;
4798  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4799       E = Decl->sel_param_end(); PI != E; ++PI) {
4800    QualType PType = (*PI)->getType();
4801    CharUnits sz = getObjCEncodingTypeSize(PType);
4802    if (sz.isZero())
4803      continue;
4804
4805    assert (sz.isPositive() &&
4806        "getObjCEncodingForMethodDecl - Incomplete param type");
4807    ParmOffset += sz;
4808  }
4809  S += charUnitsToString(ParmOffset);
4810  S += "@0:";
4811  S += charUnitsToString(PtrSize);
4812
4813  // Argument types.
4814  ParmOffset = 2 * PtrSize;
4815  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4816       E = Decl->sel_param_end(); PI != E; ++PI) {
4817    const ParmVarDecl *PVDecl = *PI;
4818    QualType PType = PVDecl->getOriginalType();
4819    if (const ArrayType *AT =
4820          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4821      // Use array's original type only if it has known number of
4822      // elements.
4823      if (!isa<ConstantArrayType>(AT))
4824        PType = PVDecl->getType();
4825    } else if (PType->isFunctionType())
4826      PType = PVDecl->getType();
4827    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4828                                      PType, S, Extended);
4829    S += charUnitsToString(ParmOffset);
4830    ParmOffset += getObjCEncodingTypeSize(PType);
4831  }
4832
4833  return false;
4834}
4835
4836/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4837/// property declaration. If non-NULL, Container must be either an
4838/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4839/// NULL when getting encodings for protocol properties.
4840/// Property attributes are stored as a comma-delimited C string. The simple
4841/// attributes readonly and bycopy are encoded as single characters. The
4842/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4843/// encoded as single characters, followed by an identifier. Property types
4844/// are also encoded as a parametrized attribute. The characters used to encode
4845/// these attributes are defined by the following enumeration:
4846/// @code
4847/// enum PropertyAttributes {
4848/// kPropertyReadOnly = 'R',   // property is read-only.
4849/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4850/// kPropertyByref = '&',  // property is a reference to the value last assigned
4851/// kPropertyDynamic = 'D',    // property is dynamic
4852/// kPropertyGetter = 'G',     // followed by getter selector name
4853/// kPropertySetter = 'S',     // followed by setter selector name
4854/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4855/// kPropertyType = 'T'              // followed by old-style type encoding.
4856/// kPropertyWeak = 'W'              // 'weak' property
4857/// kPropertyStrong = 'P'            // property GC'able
4858/// kPropertyNonAtomic = 'N'         // property non-atomic
4859/// };
4860/// @endcode
4861void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4862                                                const Decl *Container,
4863                                                std::string& S) const {
4864  // Collect information from the property implementation decl(s).
4865  bool Dynamic = false;
4866  ObjCPropertyImplDecl *SynthesizePID = 0;
4867
4868  // FIXME: Duplicated code due to poor abstraction.
4869  if (Container) {
4870    if (const ObjCCategoryImplDecl *CID =
4871        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4872      for (ObjCCategoryImplDecl::propimpl_iterator
4873             i = CID->propimpl_begin(), e = CID->propimpl_end();
4874           i != e; ++i) {
4875        ObjCPropertyImplDecl *PID = *i;
4876        if (PID->getPropertyDecl() == PD) {
4877          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4878            Dynamic = true;
4879          } else {
4880            SynthesizePID = PID;
4881          }
4882        }
4883      }
4884    } else {
4885      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4886      for (ObjCCategoryImplDecl::propimpl_iterator
4887             i = OID->propimpl_begin(), e = OID->propimpl_end();
4888           i != e; ++i) {
4889        ObjCPropertyImplDecl *PID = *i;
4890        if (PID->getPropertyDecl() == PD) {
4891          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4892            Dynamic = true;
4893          } else {
4894            SynthesizePID = PID;
4895          }
4896        }
4897      }
4898    }
4899  }
4900
4901  // FIXME: This is not very efficient.
4902  S = "T";
4903
4904  // Encode result type.
4905  // GCC has some special rules regarding encoding of properties which
4906  // closely resembles encoding of ivars.
4907  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4908                             true /* outermost type */,
4909                             true /* encoding for property */);
4910
4911  if (PD->isReadOnly()) {
4912    S += ",R";
4913  } else {
4914    switch (PD->getSetterKind()) {
4915    case ObjCPropertyDecl::Assign: break;
4916    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4917    case ObjCPropertyDecl::Retain: S += ",&"; break;
4918    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4919    }
4920  }
4921
4922  // It really isn't clear at all what this means, since properties
4923  // are "dynamic by default".
4924  if (Dynamic)
4925    S += ",D";
4926
4927  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4928    S += ",N";
4929
4930  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4931    S += ",G";
4932    S += PD->getGetterName().getAsString();
4933  }
4934
4935  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4936    S += ",S";
4937    S += PD->getSetterName().getAsString();
4938  }
4939
4940  if (SynthesizePID) {
4941    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4942    S += ",V";
4943    S += OID->getNameAsString();
4944  }
4945
4946  // FIXME: OBJCGC: weak & strong
4947}
4948
4949/// getLegacyIntegralTypeEncoding -
4950/// Another legacy compatibility encoding: 32-bit longs are encoded as
4951/// 'l' or 'L' , but not always.  For typedefs, we need to use
4952/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4953///
4954void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4955  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4956    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4957      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4958        PointeeTy = UnsignedIntTy;
4959      else
4960        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4961          PointeeTy = IntTy;
4962    }
4963  }
4964}
4965
4966void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4967                                        const FieldDecl *Field) const {
4968  // We follow the behavior of gcc, expanding structures which are
4969  // directly pointed to, and expanding embedded structures. Note that
4970  // these rules are sufficient to prevent recursive encoding of the
4971  // same type.
4972  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4973                             true /* outermost type */);
4974}
4975
4976static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
4977                                            BuiltinType::Kind kind) {
4978    switch (kind) {
4979    case BuiltinType::Void:       return 'v';
4980    case BuiltinType::Bool:       return 'B';
4981    case BuiltinType::Char_U:
4982    case BuiltinType::UChar:      return 'C';
4983    case BuiltinType::Char16:
4984    case BuiltinType::UShort:     return 'S';
4985    case BuiltinType::Char32:
4986    case BuiltinType::UInt:       return 'I';
4987    case BuiltinType::ULong:
4988        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
4989    case BuiltinType::UInt128:    return 'T';
4990    case BuiltinType::ULongLong:  return 'Q';
4991    case BuiltinType::Char_S:
4992    case BuiltinType::SChar:      return 'c';
4993    case BuiltinType::Short:      return 's';
4994    case BuiltinType::WChar_S:
4995    case BuiltinType::WChar_U:
4996    case BuiltinType::Int:        return 'i';
4997    case BuiltinType::Long:
4998      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
4999    case BuiltinType::LongLong:   return 'q';
5000    case BuiltinType::Int128:     return 't';
5001    case BuiltinType::Float:      return 'f';
5002    case BuiltinType::Double:     return 'd';
5003    case BuiltinType::LongDouble: return 'D';
5004    case BuiltinType::NullPtr:    return '*'; // like char*
5005
5006    case BuiltinType::Half:
5007      // FIXME: potentially need @encodes for these!
5008      return ' ';
5009
5010    case BuiltinType::ObjCId:
5011    case BuiltinType::ObjCClass:
5012    case BuiltinType::ObjCSel:
5013      llvm_unreachable("@encoding ObjC primitive type");
5014
5015    // OpenCL and placeholder types don't need @encodings.
5016    case BuiltinType::OCLImage1d:
5017    case BuiltinType::OCLImage1dArray:
5018    case BuiltinType::OCLImage1dBuffer:
5019    case BuiltinType::OCLImage2d:
5020    case BuiltinType::OCLImage2dArray:
5021    case BuiltinType::OCLImage3d:
5022    case BuiltinType::OCLEvent:
5023    case BuiltinType::OCLSampler:
5024    case BuiltinType::Dependent:
5025#define BUILTIN_TYPE(KIND, ID)
5026#define PLACEHOLDER_TYPE(KIND, ID) \
5027    case BuiltinType::KIND:
5028#include "clang/AST/BuiltinTypes.def"
5029      llvm_unreachable("invalid builtin type for @encode");
5030    }
5031    llvm_unreachable("invalid BuiltinType::Kind value");
5032}
5033
5034static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
5035  EnumDecl *Enum = ET->getDecl();
5036
5037  // The encoding of an non-fixed enum type is always 'i', regardless of size.
5038  if (!Enum->isFixed())
5039    return 'i';
5040
5041  // The encoding of a fixed enum type matches its fixed underlying type.
5042  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
5043  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
5044}
5045
5046static void EncodeBitField(const ASTContext *Ctx, std::string& S,
5047                           QualType T, const FieldDecl *FD) {
5048  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
5049  S += 'b';
5050  // The NeXT runtime encodes bit fields as b followed by the number of bits.
5051  // The GNU runtime requires more information; bitfields are encoded as b,
5052  // then the offset (in bits) of the first element, then the type of the
5053  // bitfield, then the size in bits.  For example, in this structure:
5054  //
5055  // struct
5056  // {
5057  //    int integer;
5058  //    int flags:2;
5059  // };
5060  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
5061  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
5062  // information is not especially sensible, but we're stuck with it for
5063  // compatibility with GCC, although providing it breaks anything that
5064  // actually uses runtime introspection and wants to work on both runtimes...
5065  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
5066    const RecordDecl *RD = FD->getParent();
5067    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
5068    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
5069    if (const EnumType *ET = T->getAs<EnumType>())
5070      S += ObjCEncodingForEnumType(Ctx, ET);
5071    else {
5072      const BuiltinType *BT = T->castAs<BuiltinType>();
5073      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
5074    }
5075  }
5076  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
5077}
5078
5079// FIXME: Use SmallString for accumulating string.
5080void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
5081                                            bool ExpandPointedToStructures,
5082                                            bool ExpandStructures,
5083                                            const FieldDecl *FD,
5084                                            bool OutermostType,
5085                                            bool EncodingProperty,
5086                                            bool StructField,
5087                                            bool EncodeBlockParameters,
5088                                            bool EncodeClassNames,
5089                                            bool EncodePointerToObjCTypedef) const {
5090  CanQualType CT = getCanonicalType(T);
5091  switch (CT->getTypeClass()) {
5092  case Type::Builtin:
5093  case Type::Enum:
5094    if (FD && FD->isBitField())
5095      return EncodeBitField(this, S, T, FD);
5096    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5097      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5098    else
5099      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5100    return;
5101
5102  case Type::Complex: {
5103    const ComplexType *CT = T->castAs<ComplexType>();
5104    S += 'j';
5105    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5106                               false);
5107    return;
5108  }
5109
5110  case Type::Atomic: {
5111    const AtomicType *AT = T->castAs<AtomicType>();
5112    S += 'A';
5113    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5114                               false, false);
5115    return;
5116  }
5117
5118  // encoding for pointer or reference types.
5119  case Type::Pointer:
5120  case Type::LValueReference:
5121  case Type::RValueReference: {
5122    QualType PointeeTy;
5123    if (isa<PointerType>(CT)) {
5124      const PointerType *PT = T->castAs<PointerType>();
5125      if (PT->isObjCSelType()) {
5126        S += ':';
5127        return;
5128      }
5129      PointeeTy = PT->getPointeeType();
5130    } else {
5131      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5132    }
5133
5134    bool isReadOnly = false;
5135    // For historical/compatibility reasons, the read-only qualifier of the
5136    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5137    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5138    // Also, do not emit the 'r' for anything but the outermost type!
5139    if (isa<TypedefType>(T.getTypePtr())) {
5140      if (OutermostType && T.isConstQualified()) {
5141        isReadOnly = true;
5142        S += 'r';
5143      }
5144    } else if (OutermostType) {
5145      QualType P = PointeeTy;
5146      while (P->getAs<PointerType>())
5147        P = P->getAs<PointerType>()->getPointeeType();
5148      if (P.isConstQualified()) {
5149        isReadOnly = true;
5150        S += 'r';
5151      }
5152    }
5153    if (isReadOnly) {
5154      // Another legacy compatibility encoding. Some ObjC qualifier and type
5155      // combinations need to be rearranged.
5156      // Rewrite "in const" from "nr" to "rn"
5157      if (StringRef(S).endswith("nr"))
5158        S.replace(S.end()-2, S.end(), "rn");
5159    }
5160
5161    if (PointeeTy->isCharType()) {
5162      // char pointer types should be encoded as '*' unless it is a
5163      // type that has been typedef'd to 'BOOL'.
5164      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5165        S += '*';
5166        return;
5167      }
5168    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5169      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5170      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5171        S += '#';
5172        return;
5173      }
5174      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5175      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5176        S += '@';
5177        return;
5178      }
5179      // fall through...
5180    }
5181    S += '^';
5182    getLegacyIntegralTypeEncoding(PointeeTy);
5183
5184    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5185                               NULL);
5186    return;
5187  }
5188
5189  case Type::ConstantArray:
5190  case Type::IncompleteArray:
5191  case Type::VariableArray: {
5192    const ArrayType *AT = cast<ArrayType>(CT);
5193
5194    if (isa<IncompleteArrayType>(AT) && !StructField) {
5195      // Incomplete arrays are encoded as a pointer to the array element.
5196      S += '^';
5197
5198      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5199                                 false, ExpandStructures, FD);
5200    } else {
5201      S += '[';
5202
5203      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5204        if (getTypeSize(CAT->getElementType()) == 0)
5205          S += '0';
5206        else
5207          S += llvm::utostr(CAT->getSize().getZExtValue());
5208      } else {
5209        //Variable length arrays are encoded as a regular array with 0 elements.
5210        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5211               "Unknown array type!");
5212        S += '0';
5213      }
5214
5215      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5216                                 false, ExpandStructures, FD);
5217      S += ']';
5218    }
5219    return;
5220  }
5221
5222  case Type::FunctionNoProto:
5223  case Type::FunctionProto:
5224    S += '?';
5225    return;
5226
5227  case Type::Record: {
5228    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5229    S += RDecl->isUnion() ? '(' : '{';
5230    // Anonymous structures print as '?'
5231    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5232      S += II->getName();
5233      if (ClassTemplateSpecializationDecl *Spec
5234          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5235        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5236        llvm::raw_string_ostream OS(S);
5237        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5238                                            TemplateArgs.data(),
5239                                            TemplateArgs.size(),
5240                                            (*this).getPrintingPolicy());
5241      }
5242    } else {
5243      S += '?';
5244    }
5245    if (ExpandStructures) {
5246      S += '=';
5247      if (!RDecl->isUnion()) {
5248        getObjCEncodingForStructureImpl(RDecl, S, FD);
5249      } else {
5250        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5251                                     FieldEnd = RDecl->field_end();
5252             Field != FieldEnd; ++Field) {
5253          if (FD) {
5254            S += '"';
5255            S += Field->getNameAsString();
5256            S += '"';
5257          }
5258
5259          // Special case bit-fields.
5260          if (Field->isBitField()) {
5261            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5262                                       *Field);
5263          } else {
5264            QualType qt = Field->getType();
5265            getLegacyIntegralTypeEncoding(qt);
5266            getObjCEncodingForTypeImpl(qt, S, false, true,
5267                                       FD, /*OutermostType*/false,
5268                                       /*EncodingProperty*/false,
5269                                       /*StructField*/true);
5270          }
5271        }
5272      }
5273    }
5274    S += RDecl->isUnion() ? ')' : '}';
5275    return;
5276  }
5277
5278  case Type::BlockPointer: {
5279    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5280    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5281    if (EncodeBlockParameters) {
5282      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5283
5284      S += '<';
5285      // Block return type
5286      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5287                                 ExpandPointedToStructures, ExpandStructures,
5288                                 FD,
5289                                 false /* OutermostType */,
5290                                 EncodingProperty,
5291                                 false /* StructField */,
5292                                 EncodeBlockParameters,
5293                                 EncodeClassNames);
5294      // Block self
5295      S += "@?";
5296      // Block parameters
5297      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5298        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5299               E = FPT->arg_type_end(); I && (I != E); ++I) {
5300          getObjCEncodingForTypeImpl(*I, S,
5301                                     ExpandPointedToStructures,
5302                                     ExpandStructures,
5303                                     FD,
5304                                     false /* OutermostType */,
5305                                     EncodingProperty,
5306                                     false /* StructField */,
5307                                     EncodeBlockParameters,
5308                                     EncodeClassNames);
5309        }
5310      }
5311      S += '>';
5312    }
5313    return;
5314  }
5315
5316  case Type::ObjCObject:
5317  case Type::ObjCInterface: {
5318    // Ignore protocol qualifiers when mangling at this level.
5319    T = T->castAs<ObjCObjectType>()->getBaseType();
5320
5321    // The assumption seems to be that this assert will succeed
5322    // because nested levels will have filtered out 'id' and 'Class'.
5323    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5324    // @encode(class_name)
5325    ObjCInterfaceDecl *OI = OIT->getDecl();
5326    S += '{';
5327    const IdentifierInfo *II = OI->getIdentifier();
5328    S += II->getName();
5329    S += '=';
5330    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5331    DeepCollectObjCIvars(OI, true, Ivars);
5332    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5333      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5334      if (Field->isBitField())
5335        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5336      else
5337        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5338                                   false, false, false, false, false,
5339                                   EncodePointerToObjCTypedef);
5340    }
5341    S += '}';
5342    return;
5343  }
5344
5345  case Type::ObjCObjectPointer: {
5346    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5347    if (OPT->isObjCIdType()) {
5348      S += '@';
5349      return;
5350    }
5351
5352    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5353      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5354      // Since this is a binary compatibility issue, need to consult with runtime
5355      // folks. Fortunately, this is a *very* obsure construct.
5356      S += '#';
5357      return;
5358    }
5359
5360    if (OPT->isObjCQualifiedIdType()) {
5361      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5362                                 ExpandPointedToStructures,
5363                                 ExpandStructures, FD);
5364      if (FD || EncodingProperty || EncodeClassNames) {
5365        // Note that we do extended encoding of protocol qualifer list
5366        // Only when doing ivar or property encoding.
5367        S += '"';
5368        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5369             E = OPT->qual_end(); I != E; ++I) {
5370          S += '<';
5371          S += (*I)->getNameAsString();
5372          S += '>';
5373        }
5374        S += '"';
5375      }
5376      return;
5377    }
5378
5379    QualType PointeeTy = OPT->getPointeeType();
5380    if (!EncodingProperty &&
5381        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5382        !EncodePointerToObjCTypedef) {
5383      // Another historical/compatibility reason.
5384      // We encode the underlying type which comes out as
5385      // {...};
5386      S += '^';
5387      getObjCEncodingForTypeImpl(PointeeTy, S,
5388                                 false, ExpandPointedToStructures,
5389                                 NULL,
5390                                 false, false, false, false, false,
5391                                 /*EncodePointerToObjCTypedef*/true);
5392      return;
5393    }
5394
5395    S += '@';
5396    if (OPT->getInterfaceDecl() &&
5397        (FD || EncodingProperty || EncodeClassNames)) {
5398      S += '"';
5399      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5400      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5401           E = OPT->qual_end(); I != E; ++I) {
5402        S += '<';
5403        S += (*I)->getNameAsString();
5404        S += '>';
5405      }
5406      S += '"';
5407    }
5408    return;
5409  }
5410
5411  // gcc just blithely ignores member pointers.
5412  // FIXME: we shoul do better than that.  'M' is available.
5413  case Type::MemberPointer:
5414    return;
5415
5416  case Type::Vector:
5417  case Type::ExtVector:
5418    // This matches gcc's encoding, even though technically it is
5419    // insufficient.
5420    // FIXME. We should do a better job than gcc.
5421    return;
5422
5423  case Type::Auto:
5424    // We could see an undeduced auto type here during error recovery.
5425    // Just ignore it.
5426    return;
5427
5428#define ABSTRACT_TYPE(KIND, BASE)
5429#define TYPE(KIND, BASE)
5430#define DEPENDENT_TYPE(KIND, BASE) \
5431  case Type::KIND:
5432#define NON_CANONICAL_TYPE(KIND, BASE) \
5433  case Type::KIND:
5434#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5435  case Type::KIND:
5436#include "clang/AST/TypeNodes.def"
5437    llvm_unreachable("@encode for dependent type!");
5438  }
5439  llvm_unreachable("bad type kind!");
5440}
5441
5442void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5443                                                 std::string &S,
5444                                                 const FieldDecl *FD,
5445                                                 bool includeVBases) const {
5446  assert(RDecl && "Expected non-null RecordDecl");
5447  assert(!RDecl->isUnion() && "Should not be called for unions");
5448  if (!RDecl->getDefinition())
5449    return;
5450
5451  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5452  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5453  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5454
5455  if (CXXRec) {
5456    for (CXXRecordDecl::base_class_iterator
5457           BI = CXXRec->bases_begin(),
5458           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5459      if (!BI->isVirtual()) {
5460        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5461        if (base->isEmpty())
5462          continue;
5463        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5464        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5465                                  std::make_pair(offs, base));
5466      }
5467    }
5468  }
5469
5470  unsigned i = 0;
5471  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5472                               FieldEnd = RDecl->field_end();
5473       Field != FieldEnd; ++Field, ++i) {
5474    uint64_t offs = layout.getFieldOffset(i);
5475    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5476                              std::make_pair(offs, *Field));
5477  }
5478
5479  if (CXXRec && includeVBases) {
5480    for (CXXRecordDecl::base_class_iterator
5481           BI = CXXRec->vbases_begin(),
5482           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5483      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5484      if (base->isEmpty())
5485        continue;
5486      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5487      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5488        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5489                                  std::make_pair(offs, base));
5490    }
5491  }
5492
5493  CharUnits size;
5494  if (CXXRec) {
5495    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5496  } else {
5497    size = layout.getSize();
5498  }
5499
5500  uint64_t CurOffs = 0;
5501  std::multimap<uint64_t, NamedDecl *>::iterator
5502    CurLayObj = FieldOrBaseOffsets.begin();
5503
5504  if (CXXRec && CXXRec->isDynamicClass() &&
5505      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5506    if (FD) {
5507      S += "\"_vptr$";
5508      std::string recname = CXXRec->getNameAsString();
5509      if (recname.empty()) recname = "?";
5510      S += recname;
5511      S += '"';
5512    }
5513    S += "^^?";
5514    CurOffs += getTypeSize(VoidPtrTy);
5515  }
5516
5517  if (!RDecl->hasFlexibleArrayMember()) {
5518    // Mark the end of the structure.
5519    uint64_t offs = toBits(size);
5520    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5521                              std::make_pair(offs, (NamedDecl*)0));
5522  }
5523
5524  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5525    assert(CurOffs <= CurLayObj->first);
5526
5527    if (CurOffs < CurLayObj->first) {
5528      uint64_t padding = CurLayObj->first - CurOffs;
5529      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5530      // packing/alignment of members is different that normal, in which case
5531      // the encoding will be out-of-sync with the real layout.
5532      // If the runtime switches to just consider the size of types without
5533      // taking into account alignment, we could make padding explicit in the
5534      // encoding (e.g. using arrays of chars). The encoding strings would be
5535      // longer then though.
5536      CurOffs += padding;
5537    }
5538
5539    NamedDecl *dcl = CurLayObj->second;
5540    if (dcl == 0)
5541      break; // reached end of structure.
5542
5543    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5544      // We expand the bases without their virtual bases since those are going
5545      // in the initial structure. Note that this differs from gcc which
5546      // expands virtual bases each time one is encountered in the hierarchy,
5547      // making the encoding type bigger than it really is.
5548      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5549      assert(!base->isEmpty());
5550      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5551    } else {
5552      FieldDecl *field = cast<FieldDecl>(dcl);
5553      if (FD) {
5554        S += '"';
5555        S += field->getNameAsString();
5556        S += '"';
5557      }
5558
5559      if (field->isBitField()) {
5560        EncodeBitField(this, S, field->getType(), field);
5561        CurOffs += field->getBitWidthValue(*this);
5562      } else {
5563        QualType qt = field->getType();
5564        getLegacyIntegralTypeEncoding(qt);
5565        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5566                                   /*OutermostType*/false,
5567                                   /*EncodingProperty*/false,
5568                                   /*StructField*/true);
5569        CurOffs += getTypeSize(field->getType());
5570      }
5571    }
5572  }
5573}
5574
5575void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5576                                                 std::string& S) const {
5577  if (QT & Decl::OBJC_TQ_In)
5578    S += 'n';
5579  if (QT & Decl::OBJC_TQ_Inout)
5580    S += 'N';
5581  if (QT & Decl::OBJC_TQ_Out)
5582    S += 'o';
5583  if (QT & Decl::OBJC_TQ_Bycopy)
5584    S += 'O';
5585  if (QT & Decl::OBJC_TQ_Byref)
5586    S += 'R';
5587  if (QT & Decl::OBJC_TQ_Oneway)
5588    S += 'V';
5589}
5590
5591TypedefDecl *ASTContext::getObjCIdDecl() const {
5592  if (!ObjCIdDecl) {
5593    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5594    T = getObjCObjectPointerType(T);
5595    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5596    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5597                                     getTranslationUnitDecl(),
5598                                     SourceLocation(), SourceLocation(),
5599                                     &Idents.get("id"), IdInfo);
5600  }
5601
5602  return ObjCIdDecl;
5603}
5604
5605TypedefDecl *ASTContext::getObjCSelDecl() const {
5606  if (!ObjCSelDecl) {
5607    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5608    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5609    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5610                                      getTranslationUnitDecl(),
5611                                      SourceLocation(), SourceLocation(),
5612                                      &Idents.get("SEL"), SelInfo);
5613  }
5614  return ObjCSelDecl;
5615}
5616
5617TypedefDecl *ASTContext::getObjCClassDecl() const {
5618  if (!ObjCClassDecl) {
5619    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5620    T = getObjCObjectPointerType(T);
5621    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5622    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5623                                        getTranslationUnitDecl(),
5624                                        SourceLocation(), SourceLocation(),
5625                                        &Idents.get("Class"), ClassInfo);
5626  }
5627
5628  return ObjCClassDecl;
5629}
5630
5631ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5632  if (!ObjCProtocolClassDecl) {
5633    ObjCProtocolClassDecl
5634      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5635                                  SourceLocation(),
5636                                  &Idents.get("Protocol"),
5637                                  /*PrevDecl=*/0,
5638                                  SourceLocation(), true);
5639  }
5640
5641  return ObjCProtocolClassDecl;
5642}
5643
5644//===----------------------------------------------------------------------===//
5645// __builtin_va_list Construction Functions
5646//===----------------------------------------------------------------------===//
5647
5648static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5649  // typedef char* __builtin_va_list;
5650  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5651  TypeSourceInfo *TInfo
5652    = Context->getTrivialTypeSourceInfo(CharPtrType);
5653
5654  TypedefDecl *VaListTypeDecl
5655    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5656                          Context->getTranslationUnitDecl(),
5657                          SourceLocation(), SourceLocation(),
5658                          &Context->Idents.get("__builtin_va_list"),
5659                          TInfo);
5660  return VaListTypeDecl;
5661}
5662
5663static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5664  // typedef void* __builtin_va_list;
5665  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5666  TypeSourceInfo *TInfo
5667    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5668
5669  TypedefDecl *VaListTypeDecl
5670    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5671                          Context->getTranslationUnitDecl(),
5672                          SourceLocation(), SourceLocation(),
5673                          &Context->Idents.get("__builtin_va_list"),
5674                          TInfo);
5675  return VaListTypeDecl;
5676}
5677
5678static TypedefDecl *
5679CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5680  RecordDecl *VaListTagDecl;
5681  if (Context->getLangOpts().CPlusPlus) {
5682    // namespace std { struct __va_list {
5683    NamespaceDecl *NS;
5684    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5685                               Context->getTranslationUnitDecl(),
5686                               /*Inline*/false, SourceLocation(),
5687                               SourceLocation(), &Context->Idents.get("std"),
5688                               /*PrevDecl*/0);
5689
5690    VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5691                                          Context->getTranslationUnitDecl(),
5692                                          SourceLocation(), SourceLocation(),
5693                                          &Context->Idents.get("__va_list"));
5694    VaListTagDecl->setDeclContext(NS);
5695  } else {
5696    // struct __va_list
5697    VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5698                                   Context->getTranslationUnitDecl(),
5699                                   &Context->Idents.get("__va_list"));
5700  }
5701
5702  VaListTagDecl->startDefinition();
5703
5704  const size_t NumFields = 5;
5705  QualType FieldTypes[NumFields];
5706  const char *FieldNames[NumFields];
5707
5708  // void *__stack;
5709  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5710  FieldNames[0] = "__stack";
5711
5712  // void *__gr_top;
5713  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5714  FieldNames[1] = "__gr_top";
5715
5716  // void *__vr_top;
5717  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5718  FieldNames[2] = "__vr_top";
5719
5720  // int __gr_offs;
5721  FieldTypes[3] = Context->IntTy;
5722  FieldNames[3] = "__gr_offs";
5723
5724  // int __vr_offs;
5725  FieldTypes[4] = Context->IntTy;
5726  FieldNames[4] = "__vr_offs";
5727
5728  // Create fields
5729  for (unsigned i = 0; i < NumFields; ++i) {
5730    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5731                                         VaListTagDecl,
5732                                         SourceLocation(),
5733                                         SourceLocation(),
5734                                         &Context->Idents.get(FieldNames[i]),
5735                                         FieldTypes[i], /*TInfo=*/0,
5736                                         /*BitWidth=*/0,
5737                                         /*Mutable=*/false,
5738                                         ICIS_NoInit);
5739    Field->setAccess(AS_public);
5740    VaListTagDecl->addDecl(Field);
5741  }
5742  VaListTagDecl->completeDefinition();
5743  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5744  Context->VaListTagTy = VaListTagType;
5745
5746  // } __builtin_va_list;
5747  TypedefDecl *VaListTypedefDecl
5748    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5749                          Context->getTranslationUnitDecl(),
5750                          SourceLocation(), SourceLocation(),
5751                          &Context->Idents.get("__builtin_va_list"),
5752                          Context->getTrivialTypeSourceInfo(VaListTagType));
5753
5754  return VaListTypedefDecl;
5755}
5756
5757static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5758  // typedef struct __va_list_tag {
5759  RecordDecl *VaListTagDecl;
5760
5761  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5762                                   Context->getTranslationUnitDecl(),
5763                                   &Context->Idents.get("__va_list_tag"));
5764  VaListTagDecl->startDefinition();
5765
5766  const size_t NumFields = 5;
5767  QualType FieldTypes[NumFields];
5768  const char *FieldNames[NumFields];
5769
5770  //   unsigned char gpr;
5771  FieldTypes[0] = Context->UnsignedCharTy;
5772  FieldNames[0] = "gpr";
5773
5774  //   unsigned char fpr;
5775  FieldTypes[1] = Context->UnsignedCharTy;
5776  FieldNames[1] = "fpr";
5777
5778  //   unsigned short reserved;
5779  FieldTypes[2] = Context->UnsignedShortTy;
5780  FieldNames[2] = "reserved";
5781
5782  //   void* overflow_arg_area;
5783  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5784  FieldNames[3] = "overflow_arg_area";
5785
5786  //   void* reg_save_area;
5787  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5788  FieldNames[4] = "reg_save_area";
5789
5790  // Create fields
5791  for (unsigned i = 0; i < NumFields; ++i) {
5792    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5793                                         SourceLocation(),
5794                                         SourceLocation(),
5795                                         &Context->Idents.get(FieldNames[i]),
5796                                         FieldTypes[i], /*TInfo=*/0,
5797                                         /*BitWidth=*/0,
5798                                         /*Mutable=*/false,
5799                                         ICIS_NoInit);
5800    Field->setAccess(AS_public);
5801    VaListTagDecl->addDecl(Field);
5802  }
5803  VaListTagDecl->completeDefinition();
5804  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5805  Context->VaListTagTy = VaListTagType;
5806
5807  // } __va_list_tag;
5808  TypedefDecl *VaListTagTypedefDecl
5809    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5810                          Context->getTranslationUnitDecl(),
5811                          SourceLocation(), SourceLocation(),
5812                          &Context->Idents.get("__va_list_tag"),
5813                          Context->getTrivialTypeSourceInfo(VaListTagType));
5814  QualType VaListTagTypedefType =
5815    Context->getTypedefType(VaListTagTypedefDecl);
5816
5817  // typedef __va_list_tag __builtin_va_list[1];
5818  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5819  QualType VaListTagArrayType
5820    = Context->getConstantArrayType(VaListTagTypedefType,
5821                                    Size, ArrayType::Normal, 0);
5822  TypeSourceInfo *TInfo
5823    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5824  TypedefDecl *VaListTypedefDecl
5825    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5826                          Context->getTranslationUnitDecl(),
5827                          SourceLocation(), SourceLocation(),
5828                          &Context->Idents.get("__builtin_va_list"),
5829                          TInfo);
5830
5831  return VaListTypedefDecl;
5832}
5833
5834static TypedefDecl *
5835CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5836  // typedef struct __va_list_tag {
5837  RecordDecl *VaListTagDecl;
5838  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5839                                   Context->getTranslationUnitDecl(),
5840                                   &Context->Idents.get("__va_list_tag"));
5841  VaListTagDecl->startDefinition();
5842
5843  const size_t NumFields = 4;
5844  QualType FieldTypes[NumFields];
5845  const char *FieldNames[NumFields];
5846
5847  //   unsigned gp_offset;
5848  FieldTypes[0] = Context->UnsignedIntTy;
5849  FieldNames[0] = "gp_offset";
5850
5851  //   unsigned fp_offset;
5852  FieldTypes[1] = Context->UnsignedIntTy;
5853  FieldNames[1] = "fp_offset";
5854
5855  //   void* overflow_arg_area;
5856  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5857  FieldNames[2] = "overflow_arg_area";
5858
5859  //   void* reg_save_area;
5860  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5861  FieldNames[3] = "reg_save_area";
5862
5863  // Create fields
5864  for (unsigned i = 0; i < NumFields; ++i) {
5865    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5866                                         VaListTagDecl,
5867                                         SourceLocation(),
5868                                         SourceLocation(),
5869                                         &Context->Idents.get(FieldNames[i]),
5870                                         FieldTypes[i], /*TInfo=*/0,
5871                                         /*BitWidth=*/0,
5872                                         /*Mutable=*/false,
5873                                         ICIS_NoInit);
5874    Field->setAccess(AS_public);
5875    VaListTagDecl->addDecl(Field);
5876  }
5877  VaListTagDecl->completeDefinition();
5878  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5879  Context->VaListTagTy = VaListTagType;
5880
5881  // } __va_list_tag;
5882  TypedefDecl *VaListTagTypedefDecl
5883    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5884                          Context->getTranslationUnitDecl(),
5885                          SourceLocation(), SourceLocation(),
5886                          &Context->Idents.get("__va_list_tag"),
5887                          Context->getTrivialTypeSourceInfo(VaListTagType));
5888  QualType VaListTagTypedefType =
5889    Context->getTypedefType(VaListTagTypedefDecl);
5890
5891  // typedef __va_list_tag __builtin_va_list[1];
5892  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5893  QualType VaListTagArrayType
5894    = Context->getConstantArrayType(VaListTagTypedefType,
5895                                      Size, ArrayType::Normal,0);
5896  TypeSourceInfo *TInfo
5897    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5898  TypedefDecl *VaListTypedefDecl
5899    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5900                          Context->getTranslationUnitDecl(),
5901                          SourceLocation(), SourceLocation(),
5902                          &Context->Idents.get("__builtin_va_list"),
5903                          TInfo);
5904
5905  return VaListTypedefDecl;
5906}
5907
5908static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5909  // typedef int __builtin_va_list[4];
5910  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5911  QualType IntArrayType
5912    = Context->getConstantArrayType(Context->IntTy,
5913				    Size, ArrayType::Normal, 0);
5914  TypedefDecl *VaListTypedefDecl
5915    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5916                          Context->getTranslationUnitDecl(),
5917                          SourceLocation(), SourceLocation(),
5918                          &Context->Idents.get("__builtin_va_list"),
5919                          Context->getTrivialTypeSourceInfo(IntArrayType));
5920
5921  return VaListTypedefDecl;
5922}
5923
5924static TypedefDecl *
5925CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5926  RecordDecl *VaListDecl;
5927  if (Context->getLangOpts().CPlusPlus) {
5928    // namespace std { struct __va_list {
5929    NamespaceDecl *NS;
5930    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5931                               Context->getTranslationUnitDecl(),
5932                               /*Inline*/false, SourceLocation(),
5933                               SourceLocation(), &Context->Idents.get("std"),
5934                               /*PrevDecl*/0);
5935
5936    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5937                                       Context->getTranslationUnitDecl(),
5938                                       SourceLocation(), SourceLocation(),
5939                                       &Context->Idents.get("__va_list"));
5940
5941    VaListDecl->setDeclContext(NS);
5942
5943  } else {
5944    // struct __va_list {
5945    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5946                                  Context->getTranslationUnitDecl(),
5947                                  &Context->Idents.get("__va_list"));
5948  }
5949
5950  VaListDecl->startDefinition();
5951
5952  // void * __ap;
5953  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5954                                       VaListDecl,
5955                                       SourceLocation(),
5956                                       SourceLocation(),
5957                                       &Context->Idents.get("__ap"),
5958                                       Context->getPointerType(Context->VoidTy),
5959                                       /*TInfo=*/0,
5960                                       /*BitWidth=*/0,
5961                                       /*Mutable=*/false,
5962                                       ICIS_NoInit);
5963  Field->setAccess(AS_public);
5964  VaListDecl->addDecl(Field);
5965
5966  // };
5967  VaListDecl->completeDefinition();
5968
5969  // typedef struct __va_list __builtin_va_list;
5970  TypeSourceInfo *TInfo
5971    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5972
5973  TypedefDecl *VaListTypeDecl
5974    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5975                          Context->getTranslationUnitDecl(),
5976                          SourceLocation(), SourceLocation(),
5977                          &Context->Idents.get("__builtin_va_list"),
5978                          TInfo);
5979
5980  return VaListTypeDecl;
5981}
5982
5983static TypedefDecl *
5984CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
5985  // typedef struct __va_list_tag {
5986  RecordDecl *VaListTagDecl;
5987  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5988                                   Context->getTranslationUnitDecl(),
5989                                   &Context->Idents.get("__va_list_tag"));
5990  VaListTagDecl->startDefinition();
5991
5992  const size_t NumFields = 4;
5993  QualType FieldTypes[NumFields];
5994  const char *FieldNames[NumFields];
5995
5996  //   long __gpr;
5997  FieldTypes[0] = Context->LongTy;
5998  FieldNames[0] = "__gpr";
5999
6000  //   long __fpr;
6001  FieldTypes[1] = Context->LongTy;
6002  FieldNames[1] = "__fpr";
6003
6004  //   void *__overflow_arg_area;
6005  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
6006  FieldNames[2] = "__overflow_arg_area";
6007
6008  //   void *__reg_save_area;
6009  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
6010  FieldNames[3] = "__reg_save_area";
6011
6012  // Create fields
6013  for (unsigned i = 0; i < NumFields; ++i) {
6014    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
6015                                         VaListTagDecl,
6016                                         SourceLocation(),
6017                                         SourceLocation(),
6018                                         &Context->Idents.get(FieldNames[i]),
6019                                         FieldTypes[i], /*TInfo=*/0,
6020                                         /*BitWidth=*/0,
6021                                         /*Mutable=*/false,
6022                                         ICIS_NoInit);
6023    Field->setAccess(AS_public);
6024    VaListTagDecl->addDecl(Field);
6025  }
6026  VaListTagDecl->completeDefinition();
6027  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
6028  Context->VaListTagTy = VaListTagType;
6029
6030  // } __va_list_tag;
6031  TypedefDecl *VaListTagTypedefDecl
6032    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6033                          Context->getTranslationUnitDecl(),
6034                          SourceLocation(), SourceLocation(),
6035                          &Context->Idents.get("__va_list_tag"),
6036                          Context->getTrivialTypeSourceInfo(VaListTagType));
6037  QualType VaListTagTypedefType =
6038    Context->getTypedefType(VaListTagTypedefDecl);
6039
6040  // typedef __va_list_tag __builtin_va_list[1];
6041  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
6042  QualType VaListTagArrayType
6043    = Context->getConstantArrayType(VaListTagTypedefType,
6044                                      Size, ArrayType::Normal,0);
6045  TypeSourceInfo *TInfo
6046    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
6047  TypedefDecl *VaListTypedefDecl
6048    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
6049                          Context->getTranslationUnitDecl(),
6050                          SourceLocation(), SourceLocation(),
6051                          &Context->Idents.get("__builtin_va_list"),
6052                          TInfo);
6053
6054  return VaListTypedefDecl;
6055}
6056
6057static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
6058                                     TargetInfo::BuiltinVaListKind Kind) {
6059  switch (Kind) {
6060  case TargetInfo::CharPtrBuiltinVaList:
6061    return CreateCharPtrBuiltinVaListDecl(Context);
6062  case TargetInfo::VoidPtrBuiltinVaList:
6063    return CreateVoidPtrBuiltinVaListDecl(Context);
6064  case TargetInfo::AArch64ABIBuiltinVaList:
6065    return CreateAArch64ABIBuiltinVaListDecl(Context);
6066  case TargetInfo::PowerABIBuiltinVaList:
6067    return CreatePowerABIBuiltinVaListDecl(Context);
6068  case TargetInfo::X86_64ABIBuiltinVaList:
6069    return CreateX86_64ABIBuiltinVaListDecl(Context);
6070  case TargetInfo::PNaClABIBuiltinVaList:
6071    return CreatePNaClABIBuiltinVaListDecl(Context);
6072  case TargetInfo::AAPCSABIBuiltinVaList:
6073    return CreateAAPCSABIBuiltinVaListDecl(Context);
6074  case TargetInfo::SystemZBuiltinVaList:
6075    return CreateSystemZBuiltinVaListDecl(Context);
6076  }
6077
6078  llvm_unreachable("Unhandled __builtin_va_list type kind");
6079}
6080
6081TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
6082  if (!BuiltinVaListDecl)
6083    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
6084
6085  return BuiltinVaListDecl;
6086}
6087
6088QualType ASTContext::getVaListTagType() const {
6089  // Force the creation of VaListTagTy by building the __builtin_va_list
6090  // declaration.
6091  if (VaListTagTy.isNull())
6092    (void) getBuiltinVaListDecl();
6093
6094  return VaListTagTy;
6095}
6096
6097void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
6098  assert(ObjCConstantStringType.isNull() &&
6099         "'NSConstantString' type already set!");
6100
6101  ObjCConstantStringType = getObjCInterfaceType(Decl);
6102}
6103
6104/// \brief Retrieve the template name that corresponds to a non-empty
6105/// lookup.
6106TemplateName
6107ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
6108                                      UnresolvedSetIterator End) const {
6109  unsigned size = End - Begin;
6110  assert(size > 1 && "set is not overloaded!");
6111
6112  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
6113                          size * sizeof(FunctionTemplateDecl*));
6114  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
6115
6116  NamedDecl **Storage = OT->getStorage();
6117  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
6118    NamedDecl *D = *I;
6119    assert(isa<FunctionTemplateDecl>(D) ||
6120           (isa<UsingShadowDecl>(D) &&
6121            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
6122    *Storage++ = D;
6123  }
6124
6125  return TemplateName(OT);
6126}
6127
6128/// \brief Retrieve the template name that represents a qualified
6129/// template name such as \c std::vector.
6130TemplateName
6131ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
6132                                     bool TemplateKeyword,
6133                                     TemplateDecl *Template) const {
6134  assert(NNS && "Missing nested-name-specifier in qualified template name");
6135
6136  // FIXME: Canonicalization?
6137  llvm::FoldingSetNodeID ID;
6138  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
6139
6140  void *InsertPos = 0;
6141  QualifiedTemplateName *QTN =
6142    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6143  if (!QTN) {
6144    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
6145        QualifiedTemplateName(NNS, TemplateKeyword, Template);
6146    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
6147  }
6148
6149  return TemplateName(QTN);
6150}
6151
6152/// \brief Retrieve the template name that represents a dependent
6153/// template name such as \c MetaFun::template apply.
6154TemplateName
6155ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6156                                     const IdentifierInfo *Name) const {
6157  assert((!NNS || NNS->isDependent()) &&
6158         "Nested name specifier must be dependent");
6159
6160  llvm::FoldingSetNodeID ID;
6161  DependentTemplateName::Profile(ID, NNS, Name);
6162
6163  void *InsertPos = 0;
6164  DependentTemplateName *QTN =
6165    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6166
6167  if (QTN)
6168    return TemplateName(QTN);
6169
6170  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6171  if (CanonNNS == NNS) {
6172    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6173        DependentTemplateName(NNS, Name);
6174  } else {
6175    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6176    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6177        DependentTemplateName(NNS, Name, Canon);
6178    DependentTemplateName *CheckQTN =
6179      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6180    assert(!CheckQTN && "Dependent type name canonicalization broken");
6181    (void)CheckQTN;
6182  }
6183
6184  DependentTemplateNames.InsertNode(QTN, InsertPos);
6185  return TemplateName(QTN);
6186}
6187
6188/// \brief Retrieve the template name that represents a dependent
6189/// template name such as \c MetaFun::template operator+.
6190TemplateName
6191ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6192                                     OverloadedOperatorKind Operator) const {
6193  assert((!NNS || NNS->isDependent()) &&
6194         "Nested name specifier must be dependent");
6195
6196  llvm::FoldingSetNodeID ID;
6197  DependentTemplateName::Profile(ID, NNS, Operator);
6198
6199  void *InsertPos = 0;
6200  DependentTemplateName *QTN
6201    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6202
6203  if (QTN)
6204    return TemplateName(QTN);
6205
6206  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6207  if (CanonNNS == NNS) {
6208    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6209        DependentTemplateName(NNS, Operator);
6210  } else {
6211    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6212    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6213        DependentTemplateName(NNS, Operator, Canon);
6214
6215    DependentTemplateName *CheckQTN
6216      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6217    assert(!CheckQTN && "Dependent template name canonicalization broken");
6218    (void)CheckQTN;
6219  }
6220
6221  DependentTemplateNames.InsertNode(QTN, InsertPos);
6222  return TemplateName(QTN);
6223}
6224
6225TemplateName
6226ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6227                                         TemplateName replacement) const {
6228  llvm::FoldingSetNodeID ID;
6229  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6230
6231  void *insertPos = 0;
6232  SubstTemplateTemplateParmStorage *subst
6233    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6234
6235  if (!subst) {
6236    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6237    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6238  }
6239
6240  return TemplateName(subst);
6241}
6242
6243TemplateName
6244ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6245                                       const TemplateArgument &ArgPack) const {
6246  ASTContext &Self = const_cast<ASTContext &>(*this);
6247  llvm::FoldingSetNodeID ID;
6248  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6249
6250  void *InsertPos = 0;
6251  SubstTemplateTemplateParmPackStorage *Subst
6252    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6253
6254  if (!Subst) {
6255    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6256                                                           ArgPack.pack_size(),
6257                                                         ArgPack.pack_begin());
6258    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6259  }
6260
6261  return TemplateName(Subst);
6262}
6263
6264/// getFromTargetType - Given one of the integer types provided by
6265/// TargetInfo, produce the corresponding type. The unsigned @p Type
6266/// is actually a value of type @c TargetInfo::IntType.
6267CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6268  switch (Type) {
6269  case TargetInfo::NoInt: return CanQualType();
6270  case TargetInfo::SignedShort: return ShortTy;
6271  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6272  case TargetInfo::SignedInt: return IntTy;
6273  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6274  case TargetInfo::SignedLong: return LongTy;
6275  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6276  case TargetInfo::SignedLongLong: return LongLongTy;
6277  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6278  }
6279
6280  llvm_unreachable("Unhandled TargetInfo::IntType value");
6281}
6282
6283//===----------------------------------------------------------------------===//
6284//                        Type Predicates.
6285//===----------------------------------------------------------------------===//
6286
6287/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6288/// garbage collection attribute.
6289///
6290Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6291  if (getLangOpts().getGC() == LangOptions::NonGC)
6292    return Qualifiers::GCNone;
6293
6294  assert(getLangOpts().ObjC1);
6295  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6296
6297  // Default behaviour under objective-C's gc is for ObjC pointers
6298  // (or pointers to them) be treated as though they were declared
6299  // as __strong.
6300  if (GCAttrs == Qualifiers::GCNone) {
6301    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6302      return Qualifiers::Strong;
6303    else if (Ty->isPointerType())
6304      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6305  } else {
6306    // It's not valid to set GC attributes on anything that isn't a
6307    // pointer.
6308#ifndef NDEBUG
6309    QualType CT = Ty->getCanonicalTypeInternal();
6310    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6311      CT = AT->getElementType();
6312    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6313#endif
6314  }
6315  return GCAttrs;
6316}
6317
6318//===----------------------------------------------------------------------===//
6319//                        Type Compatibility Testing
6320//===----------------------------------------------------------------------===//
6321
6322/// areCompatVectorTypes - Return true if the two specified vector types are
6323/// compatible.
6324static bool areCompatVectorTypes(const VectorType *LHS,
6325                                 const VectorType *RHS) {
6326  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6327  return LHS->getElementType() == RHS->getElementType() &&
6328         LHS->getNumElements() == RHS->getNumElements();
6329}
6330
6331bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6332                                          QualType SecondVec) {
6333  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6334  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6335
6336  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6337    return true;
6338
6339  // Treat Neon vector types and most AltiVec vector types as if they are the
6340  // equivalent GCC vector types.
6341  const VectorType *First = FirstVec->getAs<VectorType>();
6342  const VectorType *Second = SecondVec->getAs<VectorType>();
6343  if (First->getNumElements() == Second->getNumElements() &&
6344      hasSameType(First->getElementType(), Second->getElementType()) &&
6345      First->getVectorKind() != VectorType::AltiVecPixel &&
6346      First->getVectorKind() != VectorType::AltiVecBool &&
6347      Second->getVectorKind() != VectorType::AltiVecPixel &&
6348      Second->getVectorKind() != VectorType::AltiVecBool)
6349    return true;
6350
6351  return false;
6352}
6353
6354//===----------------------------------------------------------------------===//
6355// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6356//===----------------------------------------------------------------------===//
6357
6358/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6359/// inheritance hierarchy of 'rProto'.
6360bool
6361ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6362                                           ObjCProtocolDecl *rProto) const {
6363  if (declaresSameEntity(lProto, rProto))
6364    return true;
6365  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6366       E = rProto->protocol_end(); PI != E; ++PI)
6367    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6368      return true;
6369  return false;
6370}
6371
6372/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6373/// return true if lhs's protocols conform to rhs's protocol; false
6374/// otherwise.
6375bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6376  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6377    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6378  return false;
6379}
6380
6381/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6382/// Class<pr1, ...>.
6383bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6384                                                      QualType rhs) {
6385  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6386  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6387  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6388
6389  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6390       E = lhsQID->qual_end(); I != E; ++I) {
6391    bool match = false;
6392    ObjCProtocolDecl *lhsProto = *I;
6393    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6394         E = rhsOPT->qual_end(); J != E; ++J) {
6395      ObjCProtocolDecl *rhsProto = *J;
6396      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6397        match = true;
6398        break;
6399      }
6400    }
6401    if (!match)
6402      return false;
6403  }
6404  return true;
6405}
6406
6407/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6408/// ObjCQualifiedIDType.
6409bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6410                                                   bool compare) {
6411  // Allow id<P..> and an 'id' or void* type in all cases.
6412  if (lhs->isVoidPointerType() ||
6413      lhs->isObjCIdType() || lhs->isObjCClassType())
6414    return true;
6415  else if (rhs->isVoidPointerType() ||
6416           rhs->isObjCIdType() || rhs->isObjCClassType())
6417    return true;
6418
6419  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6420    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6421
6422    if (!rhsOPT) return false;
6423
6424    if (rhsOPT->qual_empty()) {
6425      // If the RHS is a unqualified interface pointer "NSString*",
6426      // make sure we check the class hierarchy.
6427      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6428        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6429             E = lhsQID->qual_end(); I != E; ++I) {
6430          // when comparing an id<P> on lhs with a static type on rhs,
6431          // see if static class implements all of id's protocols, directly or
6432          // through its super class and categories.
6433          if (!rhsID->ClassImplementsProtocol(*I, true))
6434            return false;
6435        }
6436      }
6437      // If there are no qualifiers and no interface, we have an 'id'.
6438      return true;
6439    }
6440    // Both the right and left sides have qualifiers.
6441    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6442         E = lhsQID->qual_end(); I != E; ++I) {
6443      ObjCProtocolDecl *lhsProto = *I;
6444      bool match = false;
6445
6446      // when comparing an id<P> on lhs with a static type on rhs,
6447      // see if static class implements all of id's protocols, directly or
6448      // through its super class and categories.
6449      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6450           E = rhsOPT->qual_end(); J != E; ++J) {
6451        ObjCProtocolDecl *rhsProto = *J;
6452        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6453            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6454          match = true;
6455          break;
6456        }
6457      }
6458      // If the RHS is a qualified interface pointer "NSString<P>*",
6459      // make sure we check the class hierarchy.
6460      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6461        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6462             E = lhsQID->qual_end(); I != E; ++I) {
6463          // when comparing an id<P> on lhs with a static type on rhs,
6464          // see if static class implements all of id's protocols, directly or
6465          // through its super class and categories.
6466          if (rhsID->ClassImplementsProtocol(*I, true)) {
6467            match = true;
6468            break;
6469          }
6470        }
6471      }
6472      if (!match)
6473        return false;
6474    }
6475
6476    return true;
6477  }
6478
6479  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6480  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6481
6482  if (const ObjCObjectPointerType *lhsOPT =
6483        lhs->getAsObjCInterfacePointerType()) {
6484    // If both the right and left sides have qualifiers.
6485    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6486         E = lhsOPT->qual_end(); I != E; ++I) {
6487      ObjCProtocolDecl *lhsProto = *I;
6488      bool match = false;
6489
6490      // when comparing an id<P> on rhs with a static type on lhs,
6491      // see if static class implements all of id's protocols, directly or
6492      // through its super class and categories.
6493      // First, lhs protocols in the qualifier list must be found, direct
6494      // or indirect in rhs's qualifier list or it is a mismatch.
6495      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6496           E = rhsQID->qual_end(); J != E; ++J) {
6497        ObjCProtocolDecl *rhsProto = *J;
6498        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6499            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6500          match = true;
6501          break;
6502        }
6503      }
6504      if (!match)
6505        return false;
6506    }
6507
6508    // Static class's protocols, or its super class or category protocols
6509    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6510    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6511      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6512      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6513      // This is rather dubious but matches gcc's behavior. If lhs has
6514      // no type qualifier and its class has no static protocol(s)
6515      // assume that it is mismatch.
6516      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6517        return false;
6518      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6519           LHSInheritedProtocols.begin(),
6520           E = LHSInheritedProtocols.end(); I != E; ++I) {
6521        bool match = false;
6522        ObjCProtocolDecl *lhsProto = (*I);
6523        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6524             E = rhsQID->qual_end(); J != E; ++J) {
6525          ObjCProtocolDecl *rhsProto = *J;
6526          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6527              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6528            match = true;
6529            break;
6530          }
6531        }
6532        if (!match)
6533          return false;
6534      }
6535    }
6536    return true;
6537  }
6538  return false;
6539}
6540
6541/// canAssignObjCInterfaces - Return true if the two interface types are
6542/// compatible for assignment from RHS to LHS.  This handles validation of any
6543/// protocol qualifiers on the LHS or RHS.
6544///
6545bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6546                                         const ObjCObjectPointerType *RHSOPT) {
6547  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6548  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6549
6550  // If either type represents the built-in 'id' or 'Class' types, return true.
6551  if (LHS->isObjCUnqualifiedIdOrClass() ||
6552      RHS->isObjCUnqualifiedIdOrClass())
6553    return true;
6554
6555  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6556    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6557                                             QualType(RHSOPT,0),
6558                                             false);
6559
6560  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6561    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6562                                                QualType(RHSOPT,0));
6563
6564  // If we have 2 user-defined types, fall into that path.
6565  if (LHS->getInterface() && RHS->getInterface())
6566    return canAssignObjCInterfaces(LHS, RHS);
6567
6568  return false;
6569}
6570
6571/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6572/// for providing type-safety for objective-c pointers used to pass/return
6573/// arguments in block literals. When passed as arguments, passing 'A*' where
6574/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6575/// not OK. For the return type, the opposite is not OK.
6576bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6577                                         const ObjCObjectPointerType *LHSOPT,
6578                                         const ObjCObjectPointerType *RHSOPT,
6579                                         bool BlockReturnType) {
6580  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6581    return true;
6582
6583  if (LHSOPT->isObjCBuiltinType()) {
6584    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6585  }
6586
6587  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6588    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6589                                             QualType(RHSOPT,0),
6590                                             false);
6591
6592  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6593  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6594  if (LHS && RHS)  { // We have 2 user-defined types.
6595    if (LHS != RHS) {
6596      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6597        return BlockReturnType;
6598      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6599        return !BlockReturnType;
6600    }
6601    else
6602      return true;
6603  }
6604  return false;
6605}
6606
6607/// getIntersectionOfProtocols - This routine finds the intersection of set
6608/// of protocols inherited from two distinct objective-c pointer objects.
6609/// It is used to build composite qualifier list of the composite type of
6610/// the conditional expression involving two objective-c pointer objects.
6611static
6612void getIntersectionOfProtocols(ASTContext &Context,
6613                                const ObjCObjectPointerType *LHSOPT,
6614                                const ObjCObjectPointerType *RHSOPT,
6615      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6616
6617  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6618  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6619  assert(LHS->getInterface() && "LHS must have an interface base");
6620  assert(RHS->getInterface() && "RHS must have an interface base");
6621
6622  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6623  unsigned LHSNumProtocols = LHS->getNumProtocols();
6624  if (LHSNumProtocols > 0)
6625    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6626  else {
6627    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6628    Context.CollectInheritedProtocols(LHS->getInterface(),
6629                                      LHSInheritedProtocols);
6630    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6631                                LHSInheritedProtocols.end());
6632  }
6633
6634  unsigned RHSNumProtocols = RHS->getNumProtocols();
6635  if (RHSNumProtocols > 0) {
6636    ObjCProtocolDecl **RHSProtocols =
6637      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6638    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6639      if (InheritedProtocolSet.count(RHSProtocols[i]))
6640        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6641  } else {
6642    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6643    Context.CollectInheritedProtocols(RHS->getInterface(),
6644                                      RHSInheritedProtocols);
6645    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6646         RHSInheritedProtocols.begin(),
6647         E = RHSInheritedProtocols.end(); I != E; ++I)
6648      if (InheritedProtocolSet.count((*I)))
6649        IntersectionOfProtocols.push_back((*I));
6650  }
6651}
6652
6653/// areCommonBaseCompatible - Returns common base class of the two classes if
6654/// one found. Note that this is O'2 algorithm. But it will be called as the
6655/// last type comparison in a ?-exp of ObjC pointer types before a
6656/// warning is issued. So, its invokation is extremely rare.
6657QualType ASTContext::areCommonBaseCompatible(
6658                                          const ObjCObjectPointerType *Lptr,
6659                                          const ObjCObjectPointerType *Rptr) {
6660  const ObjCObjectType *LHS = Lptr->getObjectType();
6661  const ObjCObjectType *RHS = Rptr->getObjectType();
6662  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6663  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6664  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6665    return QualType();
6666
6667  do {
6668    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6669    if (canAssignObjCInterfaces(LHS, RHS)) {
6670      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6671      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6672
6673      QualType Result = QualType(LHS, 0);
6674      if (!Protocols.empty())
6675        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6676      Result = getObjCObjectPointerType(Result);
6677      return Result;
6678    }
6679  } while ((LDecl = LDecl->getSuperClass()));
6680
6681  return QualType();
6682}
6683
6684bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6685                                         const ObjCObjectType *RHS) {
6686  assert(LHS->getInterface() && "LHS is not an interface type");
6687  assert(RHS->getInterface() && "RHS is not an interface type");
6688
6689  // Verify that the base decls are compatible: the RHS must be a subclass of
6690  // the LHS.
6691  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6692    return false;
6693
6694  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6695  // protocol qualified at all, then we are good.
6696  if (LHS->getNumProtocols() == 0)
6697    return true;
6698
6699  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6700  // more detailed analysis is required.
6701  if (RHS->getNumProtocols() == 0) {
6702    // OK, if LHS is a superclass of RHS *and*
6703    // this superclass is assignment compatible with LHS.
6704    // false otherwise.
6705    bool IsSuperClass =
6706      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6707    if (IsSuperClass) {
6708      // OK if conversion of LHS to SuperClass results in narrowing of types
6709      // ; i.e., SuperClass may implement at least one of the protocols
6710      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6711      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6712      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6713      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6714      // If super class has no protocols, it is not a match.
6715      if (SuperClassInheritedProtocols.empty())
6716        return false;
6717
6718      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6719           LHSPE = LHS->qual_end();
6720           LHSPI != LHSPE; LHSPI++) {
6721        bool SuperImplementsProtocol = false;
6722        ObjCProtocolDecl *LHSProto = (*LHSPI);
6723
6724        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6725             SuperClassInheritedProtocols.begin(),
6726             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6727          ObjCProtocolDecl *SuperClassProto = (*I);
6728          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6729            SuperImplementsProtocol = true;
6730            break;
6731          }
6732        }
6733        if (!SuperImplementsProtocol)
6734          return false;
6735      }
6736      return true;
6737    }
6738    return false;
6739  }
6740
6741  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6742                                     LHSPE = LHS->qual_end();
6743       LHSPI != LHSPE; LHSPI++) {
6744    bool RHSImplementsProtocol = false;
6745
6746    // If the RHS doesn't implement the protocol on the left, the types
6747    // are incompatible.
6748    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6749                                       RHSPE = RHS->qual_end();
6750         RHSPI != RHSPE; RHSPI++) {
6751      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6752        RHSImplementsProtocol = true;
6753        break;
6754      }
6755    }
6756    // FIXME: For better diagnostics, consider passing back the protocol name.
6757    if (!RHSImplementsProtocol)
6758      return false;
6759  }
6760  // The RHS implements all protocols listed on the LHS.
6761  return true;
6762}
6763
6764bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6765  // get the "pointed to" types
6766  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6767  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6768
6769  if (!LHSOPT || !RHSOPT)
6770    return false;
6771
6772  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6773         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6774}
6775
6776bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6777  return canAssignObjCInterfaces(
6778                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6779                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6780}
6781
6782/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6783/// both shall have the identically qualified version of a compatible type.
6784/// C99 6.2.7p1: Two types have compatible types if their types are the
6785/// same. See 6.7.[2,3,5] for additional rules.
6786bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6787                                    bool CompareUnqualified) {
6788  if (getLangOpts().CPlusPlus)
6789    return hasSameType(LHS, RHS);
6790
6791  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6792}
6793
6794bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6795  return typesAreCompatible(LHS, RHS);
6796}
6797
6798bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6799  return !mergeTypes(LHS, RHS, true).isNull();
6800}
6801
6802/// mergeTransparentUnionType - if T is a transparent union type and a member
6803/// of T is compatible with SubType, return the merged type, else return
6804/// QualType()
6805QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6806                                               bool OfBlockPointer,
6807                                               bool Unqualified) {
6808  if (const RecordType *UT = T->getAsUnionType()) {
6809    RecordDecl *UD = UT->getDecl();
6810    if (UD->hasAttr<TransparentUnionAttr>()) {
6811      for (RecordDecl::field_iterator it = UD->field_begin(),
6812           itend = UD->field_end(); it != itend; ++it) {
6813        QualType ET = it->getType().getUnqualifiedType();
6814        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6815        if (!MT.isNull())
6816          return MT;
6817      }
6818    }
6819  }
6820
6821  return QualType();
6822}
6823
6824/// mergeFunctionArgumentTypes - merge two types which appear as function
6825/// argument types
6826QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6827                                                bool OfBlockPointer,
6828                                                bool Unqualified) {
6829  // GNU extension: two types are compatible if they appear as a function
6830  // argument, one of the types is a transparent union type and the other
6831  // type is compatible with a union member
6832  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6833                                              Unqualified);
6834  if (!lmerge.isNull())
6835    return lmerge;
6836
6837  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6838                                              Unqualified);
6839  if (!rmerge.isNull())
6840    return rmerge;
6841
6842  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6843}
6844
6845QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6846                                        bool OfBlockPointer,
6847                                        bool Unqualified) {
6848  const FunctionType *lbase = lhs->getAs<FunctionType>();
6849  const FunctionType *rbase = rhs->getAs<FunctionType>();
6850  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6851  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6852  bool allLTypes = true;
6853  bool allRTypes = true;
6854
6855  // Check return type
6856  QualType retType;
6857  if (OfBlockPointer) {
6858    QualType RHS = rbase->getResultType();
6859    QualType LHS = lbase->getResultType();
6860    bool UnqualifiedResult = Unqualified;
6861    if (!UnqualifiedResult)
6862      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6863    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6864  }
6865  else
6866    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6867                         Unqualified);
6868  if (retType.isNull()) return QualType();
6869
6870  if (Unqualified)
6871    retType = retType.getUnqualifiedType();
6872
6873  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6874  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6875  if (Unqualified) {
6876    LRetType = LRetType.getUnqualifiedType();
6877    RRetType = RRetType.getUnqualifiedType();
6878  }
6879
6880  if (getCanonicalType(retType) != LRetType)
6881    allLTypes = false;
6882  if (getCanonicalType(retType) != RRetType)
6883    allRTypes = false;
6884
6885  // FIXME: double check this
6886  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6887  //                           rbase->getRegParmAttr() != 0 &&
6888  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6889  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6890  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6891
6892  // Compatible functions must have compatible calling conventions
6893  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6894    return QualType();
6895
6896  // Regparm is part of the calling convention.
6897  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6898    return QualType();
6899  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6900    return QualType();
6901
6902  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6903    return QualType();
6904
6905  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6906  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6907
6908  if (lbaseInfo.getNoReturn() != NoReturn)
6909    allLTypes = false;
6910  if (rbaseInfo.getNoReturn() != NoReturn)
6911    allRTypes = false;
6912
6913  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6914
6915  if (lproto && rproto) { // two C99 style function prototypes
6916    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6917           "C++ shouldn't be here");
6918    unsigned lproto_nargs = lproto->getNumArgs();
6919    unsigned rproto_nargs = rproto->getNumArgs();
6920
6921    // Compatible functions must have the same number of arguments
6922    if (lproto_nargs != rproto_nargs)
6923      return QualType();
6924
6925    // Variadic and non-variadic functions aren't compatible
6926    if (lproto->isVariadic() != rproto->isVariadic())
6927      return QualType();
6928
6929    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6930      return QualType();
6931
6932    if (LangOpts.ObjCAutoRefCount &&
6933        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6934      return QualType();
6935
6936    // Check argument compatibility
6937    SmallVector<QualType, 10> types;
6938    for (unsigned i = 0; i < lproto_nargs; i++) {
6939      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6940      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6941      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6942                                                    OfBlockPointer,
6943                                                    Unqualified);
6944      if (argtype.isNull()) return QualType();
6945
6946      if (Unqualified)
6947        argtype = argtype.getUnqualifiedType();
6948
6949      types.push_back(argtype);
6950      if (Unqualified) {
6951        largtype = largtype.getUnqualifiedType();
6952        rargtype = rargtype.getUnqualifiedType();
6953      }
6954
6955      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6956        allLTypes = false;
6957      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6958        allRTypes = false;
6959    }
6960
6961    if (allLTypes) return lhs;
6962    if (allRTypes) return rhs;
6963
6964    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6965    EPI.ExtInfo = einfo;
6966    return getFunctionType(retType, types, EPI);
6967  }
6968
6969  if (lproto) allRTypes = false;
6970  if (rproto) allLTypes = false;
6971
6972  const FunctionProtoType *proto = lproto ? lproto : rproto;
6973  if (proto) {
6974    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6975    if (proto->isVariadic()) return QualType();
6976    // Check that the types are compatible with the types that
6977    // would result from default argument promotions (C99 6.7.5.3p15).
6978    // The only types actually affected are promotable integer
6979    // types and floats, which would be passed as a different
6980    // type depending on whether the prototype is visible.
6981    unsigned proto_nargs = proto->getNumArgs();
6982    for (unsigned i = 0; i < proto_nargs; ++i) {
6983      QualType argTy = proto->getArgType(i);
6984
6985      // Look at the converted type of enum types, since that is the type used
6986      // to pass enum values.
6987      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6988        argTy = Enum->getDecl()->getIntegerType();
6989        if (argTy.isNull())
6990          return QualType();
6991      }
6992
6993      if (argTy->isPromotableIntegerType() ||
6994          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6995        return QualType();
6996    }
6997
6998    if (allLTypes) return lhs;
6999    if (allRTypes) return rhs;
7000
7001    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
7002    EPI.ExtInfo = einfo;
7003    return getFunctionType(retType,
7004                           ArrayRef<QualType>(proto->arg_type_begin(),
7005                                              proto->getNumArgs()),
7006                           EPI);
7007  }
7008
7009  if (allLTypes) return lhs;
7010  if (allRTypes) return rhs;
7011  return getFunctionNoProtoType(retType, einfo);
7012}
7013
7014/// Given that we have an enum type and a non-enum type, try to merge them.
7015static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
7016                                     QualType other, bool isBlockReturnType) {
7017  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
7018  // a signed integer type, or an unsigned integer type.
7019  // Compatibility is based on the underlying type, not the promotion
7020  // type.
7021  QualType underlyingType = ET->getDecl()->getIntegerType();
7022  if (underlyingType.isNull()) return QualType();
7023  if (Context.hasSameType(underlyingType, other))
7024    return other;
7025
7026  // In block return types, we're more permissive and accept any
7027  // integral type of the same size.
7028  if (isBlockReturnType && other->isIntegerType() &&
7029      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
7030    return other;
7031
7032  return QualType();
7033}
7034
7035QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
7036                                bool OfBlockPointer,
7037                                bool Unqualified, bool BlockReturnType) {
7038  // C++ [expr]: If an expression initially has the type "reference to T", the
7039  // type is adjusted to "T" prior to any further analysis, the expression
7040  // designates the object or function denoted by the reference, and the
7041  // expression is an lvalue unless the reference is an rvalue reference and
7042  // the expression is a function call (possibly inside parentheses).
7043  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
7044  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
7045
7046  if (Unqualified) {
7047    LHS = LHS.getUnqualifiedType();
7048    RHS = RHS.getUnqualifiedType();
7049  }
7050
7051  QualType LHSCan = getCanonicalType(LHS),
7052           RHSCan = getCanonicalType(RHS);
7053
7054  // If two types are identical, they are compatible.
7055  if (LHSCan == RHSCan)
7056    return LHS;
7057
7058  // If the qualifiers are different, the types aren't compatible... mostly.
7059  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7060  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7061  if (LQuals != RQuals) {
7062    // If any of these qualifiers are different, we have a type
7063    // mismatch.
7064    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7065        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
7066        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
7067      return QualType();
7068
7069    // Exactly one GC qualifier difference is allowed: __strong is
7070    // okay if the other type has no GC qualifier but is an Objective
7071    // C object pointer (i.e. implicitly strong by default).  We fix
7072    // this by pretending that the unqualified type was actually
7073    // qualified __strong.
7074    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7075    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7076    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7077
7078    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7079      return QualType();
7080
7081    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
7082      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
7083    }
7084    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
7085      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
7086    }
7087    return QualType();
7088  }
7089
7090  // Okay, qualifiers are equal.
7091
7092  Type::TypeClass LHSClass = LHSCan->getTypeClass();
7093  Type::TypeClass RHSClass = RHSCan->getTypeClass();
7094
7095  // We want to consider the two function types to be the same for these
7096  // comparisons, just force one to the other.
7097  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
7098  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
7099
7100  // Same as above for arrays
7101  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
7102    LHSClass = Type::ConstantArray;
7103  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
7104    RHSClass = Type::ConstantArray;
7105
7106  // ObjCInterfaces are just specialized ObjCObjects.
7107  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
7108  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
7109
7110  // Canonicalize ExtVector -> Vector.
7111  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
7112  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
7113
7114  // If the canonical type classes don't match.
7115  if (LHSClass != RHSClass) {
7116    // Note that we only have special rules for turning block enum
7117    // returns into block int returns, not vice-versa.
7118    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
7119      return mergeEnumWithInteger(*this, ETy, RHS, false);
7120    }
7121    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
7122      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
7123    }
7124    // allow block pointer type to match an 'id' type.
7125    if (OfBlockPointer && !BlockReturnType) {
7126       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
7127         return LHS;
7128      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
7129        return RHS;
7130    }
7131
7132    return QualType();
7133  }
7134
7135  // The canonical type classes match.
7136  switch (LHSClass) {
7137#define TYPE(Class, Base)
7138#define ABSTRACT_TYPE(Class, Base)
7139#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
7140#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
7141#define DEPENDENT_TYPE(Class, Base) case Type::Class:
7142#include "clang/AST/TypeNodes.def"
7143    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
7144
7145  case Type::Auto:
7146  case Type::LValueReference:
7147  case Type::RValueReference:
7148  case Type::MemberPointer:
7149    llvm_unreachable("C++ should never be in mergeTypes");
7150
7151  case Type::ObjCInterface:
7152  case Type::IncompleteArray:
7153  case Type::VariableArray:
7154  case Type::FunctionProto:
7155  case Type::ExtVector:
7156    llvm_unreachable("Types are eliminated above");
7157
7158  case Type::Pointer:
7159  {
7160    // Merge two pointer types, while trying to preserve typedef info
7161    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
7162    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
7163    if (Unqualified) {
7164      LHSPointee = LHSPointee.getUnqualifiedType();
7165      RHSPointee = RHSPointee.getUnqualifiedType();
7166    }
7167    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
7168                                     Unqualified);
7169    if (ResultType.isNull()) return QualType();
7170    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7171      return LHS;
7172    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7173      return RHS;
7174    return getPointerType(ResultType);
7175  }
7176  case Type::BlockPointer:
7177  {
7178    // Merge two block pointer types, while trying to preserve typedef info
7179    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7180    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7181    if (Unqualified) {
7182      LHSPointee = LHSPointee.getUnqualifiedType();
7183      RHSPointee = RHSPointee.getUnqualifiedType();
7184    }
7185    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7186                                     Unqualified);
7187    if (ResultType.isNull()) return QualType();
7188    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7189      return LHS;
7190    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7191      return RHS;
7192    return getBlockPointerType(ResultType);
7193  }
7194  case Type::Atomic:
7195  {
7196    // Merge two pointer types, while trying to preserve typedef info
7197    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7198    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7199    if (Unqualified) {
7200      LHSValue = LHSValue.getUnqualifiedType();
7201      RHSValue = RHSValue.getUnqualifiedType();
7202    }
7203    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7204                                     Unqualified);
7205    if (ResultType.isNull()) return QualType();
7206    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7207      return LHS;
7208    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7209      return RHS;
7210    return getAtomicType(ResultType);
7211  }
7212  case Type::ConstantArray:
7213  {
7214    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7215    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7216    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7217      return QualType();
7218
7219    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7220    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7221    if (Unqualified) {
7222      LHSElem = LHSElem.getUnqualifiedType();
7223      RHSElem = RHSElem.getUnqualifiedType();
7224    }
7225
7226    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7227    if (ResultType.isNull()) return QualType();
7228    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7229      return LHS;
7230    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7231      return RHS;
7232    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7233                                          ArrayType::ArraySizeModifier(), 0);
7234    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7235                                          ArrayType::ArraySizeModifier(), 0);
7236    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7237    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7238    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7239      return LHS;
7240    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7241      return RHS;
7242    if (LVAT) {
7243      // FIXME: This isn't correct! But tricky to implement because
7244      // the array's size has to be the size of LHS, but the type
7245      // has to be different.
7246      return LHS;
7247    }
7248    if (RVAT) {
7249      // FIXME: This isn't correct! But tricky to implement because
7250      // the array's size has to be the size of RHS, but the type
7251      // has to be different.
7252      return RHS;
7253    }
7254    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7255    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7256    return getIncompleteArrayType(ResultType,
7257                                  ArrayType::ArraySizeModifier(), 0);
7258  }
7259  case Type::FunctionNoProto:
7260    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7261  case Type::Record:
7262  case Type::Enum:
7263    return QualType();
7264  case Type::Builtin:
7265    // Only exactly equal builtin types are compatible, which is tested above.
7266    return QualType();
7267  case Type::Complex:
7268    // Distinct complex types are incompatible.
7269    return QualType();
7270  case Type::Vector:
7271    // FIXME: The merged type should be an ExtVector!
7272    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7273                             RHSCan->getAs<VectorType>()))
7274      return LHS;
7275    return QualType();
7276  case Type::ObjCObject: {
7277    // Check if the types are assignment compatible.
7278    // FIXME: This should be type compatibility, e.g. whether
7279    // "LHS x; RHS x;" at global scope is legal.
7280    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7281    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7282    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7283      return LHS;
7284
7285    return QualType();
7286  }
7287  case Type::ObjCObjectPointer: {
7288    if (OfBlockPointer) {
7289      if (canAssignObjCInterfacesInBlockPointer(
7290                                          LHS->getAs<ObjCObjectPointerType>(),
7291                                          RHS->getAs<ObjCObjectPointerType>(),
7292                                          BlockReturnType))
7293        return LHS;
7294      return QualType();
7295    }
7296    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7297                                RHS->getAs<ObjCObjectPointerType>()))
7298      return LHS;
7299
7300    return QualType();
7301  }
7302  }
7303
7304  llvm_unreachable("Invalid Type::Class!");
7305}
7306
7307bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7308                   const FunctionProtoType *FromFunctionType,
7309                   const FunctionProtoType *ToFunctionType) {
7310  if (FromFunctionType->hasAnyConsumedArgs() !=
7311      ToFunctionType->hasAnyConsumedArgs())
7312    return false;
7313  FunctionProtoType::ExtProtoInfo FromEPI =
7314    FromFunctionType->getExtProtoInfo();
7315  FunctionProtoType::ExtProtoInfo ToEPI =
7316    ToFunctionType->getExtProtoInfo();
7317  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7318    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7319         ArgIdx != NumArgs; ++ArgIdx)  {
7320      if (FromEPI.ConsumedArguments[ArgIdx] !=
7321          ToEPI.ConsumedArguments[ArgIdx])
7322        return false;
7323    }
7324  return true;
7325}
7326
7327/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7328/// 'RHS' attributes and returns the merged version; including for function
7329/// return types.
7330QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7331  QualType LHSCan = getCanonicalType(LHS),
7332  RHSCan = getCanonicalType(RHS);
7333  // If two types are identical, they are compatible.
7334  if (LHSCan == RHSCan)
7335    return LHS;
7336  if (RHSCan->isFunctionType()) {
7337    if (!LHSCan->isFunctionType())
7338      return QualType();
7339    QualType OldReturnType =
7340      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7341    QualType NewReturnType =
7342      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7343    QualType ResReturnType =
7344      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7345    if (ResReturnType.isNull())
7346      return QualType();
7347    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7348      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7349      // In either case, use OldReturnType to build the new function type.
7350      const FunctionType *F = LHS->getAs<FunctionType>();
7351      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7352        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7353        EPI.ExtInfo = getFunctionExtInfo(LHS);
7354        QualType ResultType
7355          = getFunctionType(OldReturnType,
7356                            ArrayRef<QualType>(FPT->arg_type_begin(),
7357                                               FPT->getNumArgs()),
7358                            EPI);
7359        return ResultType;
7360      }
7361    }
7362    return QualType();
7363  }
7364
7365  // If the qualifiers are different, the types can still be merged.
7366  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7367  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7368  if (LQuals != RQuals) {
7369    // If any of these qualifiers are different, we have a type mismatch.
7370    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7371        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7372      return QualType();
7373
7374    // Exactly one GC qualifier difference is allowed: __strong is
7375    // okay if the other type has no GC qualifier but is an Objective
7376    // C object pointer (i.e. implicitly strong by default).  We fix
7377    // this by pretending that the unqualified type was actually
7378    // qualified __strong.
7379    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7380    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7381    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7382
7383    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7384      return QualType();
7385
7386    if (GC_L == Qualifiers::Strong)
7387      return LHS;
7388    if (GC_R == Qualifiers::Strong)
7389      return RHS;
7390    return QualType();
7391  }
7392
7393  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7394    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7395    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7396    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7397    if (ResQT == LHSBaseQT)
7398      return LHS;
7399    if (ResQT == RHSBaseQT)
7400      return RHS;
7401  }
7402  return QualType();
7403}
7404
7405//===----------------------------------------------------------------------===//
7406//                         Integer Predicates
7407//===----------------------------------------------------------------------===//
7408
7409unsigned ASTContext::getIntWidth(QualType T) const {
7410  if (const EnumType *ET = dyn_cast<EnumType>(T))
7411    T = ET->getDecl()->getIntegerType();
7412  if (T->isBooleanType())
7413    return 1;
7414  // For builtin types, just use the standard type sizing method
7415  return (unsigned)getTypeSize(T);
7416}
7417
7418QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7419  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7420
7421  // Turn <4 x signed int> -> <4 x unsigned int>
7422  if (const VectorType *VTy = T->getAs<VectorType>())
7423    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7424                         VTy->getNumElements(), VTy->getVectorKind());
7425
7426  // For enums, we return the unsigned version of the base type.
7427  if (const EnumType *ETy = T->getAs<EnumType>())
7428    T = ETy->getDecl()->getIntegerType();
7429
7430  const BuiltinType *BTy = T->getAs<BuiltinType>();
7431  assert(BTy && "Unexpected signed integer type");
7432  switch (BTy->getKind()) {
7433  case BuiltinType::Char_S:
7434  case BuiltinType::SChar:
7435    return UnsignedCharTy;
7436  case BuiltinType::Short:
7437    return UnsignedShortTy;
7438  case BuiltinType::Int:
7439    return UnsignedIntTy;
7440  case BuiltinType::Long:
7441    return UnsignedLongTy;
7442  case BuiltinType::LongLong:
7443    return UnsignedLongLongTy;
7444  case BuiltinType::Int128:
7445    return UnsignedInt128Ty;
7446  default:
7447    llvm_unreachable("Unexpected signed integer type");
7448  }
7449}
7450
7451ASTMutationListener::~ASTMutationListener() { }
7452
7453
7454//===----------------------------------------------------------------------===//
7455//                          Builtin Type Computation
7456//===----------------------------------------------------------------------===//
7457
7458/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7459/// pointer over the consumed characters.  This returns the resultant type.  If
7460/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7461/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7462/// a vector of "i*".
7463///
7464/// RequiresICE is filled in on return to indicate whether the value is required
7465/// to be an Integer Constant Expression.
7466static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7467                                  ASTContext::GetBuiltinTypeError &Error,
7468                                  bool &RequiresICE,
7469                                  bool AllowTypeModifiers) {
7470  // Modifiers.
7471  int HowLong = 0;
7472  bool Signed = false, Unsigned = false;
7473  RequiresICE = false;
7474
7475  // Read the prefixed modifiers first.
7476  bool Done = false;
7477  while (!Done) {
7478    switch (*Str++) {
7479    default: Done = true; --Str; break;
7480    case 'I':
7481      RequiresICE = true;
7482      break;
7483    case 'S':
7484      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7485      assert(!Signed && "Can't use 'S' modifier multiple times!");
7486      Signed = true;
7487      break;
7488    case 'U':
7489      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7490      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7491      Unsigned = true;
7492      break;
7493    case 'L':
7494      assert(HowLong <= 2 && "Can't have LLLL modifier");
7495      ++HowLong;
7496      break;
7497    }
7498  }
7499
7500  QualType Type;
7501
7502  // Read the base type.
7503  switch (*Str++) {
7504  default: llvm_unreachable("Unknown builtin type letter!");
7505  case 'v':
7506    assert(HowLong == 0 && !Signed && !Unsigned &&
7507           "Bad modifiers used with 'v'!");
7508    Type = Context.VoidTy;
7509    break;
7510  case 'f':
7511    assert(HowLong == 0 && !Signed && !Unsigned &&
7512           "Bad modifiers used with 'f'!");
7513    Type = Context.FloatTy;
7514    break;
7515  case 'd':
7516    assert(HowLong < 2 && !Signed && !Unsigned &&
7517           "Bad modifiers used with 'd'!");
7518    if (HowLong)
7519      Type = Context.LongDoubleTy;
7520    else
7521      Type = Context.DoubleTy;
7522    break;
7523  case 's':
7524    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7525    if (Unsigned)
7526      Type = Context.UnsignedShortTy;
7527    else
7528      Type = Context.ShortTy;
7529    break;
7530  case 'i':
7531    if (HowLong == 3)
7532      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7533    else if (HowLong == 2)
7534      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7535    else if (HowLong == 1)
7536      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7537    else
7538      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7539    break;
7540  case 'c':
7541    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7542    if (Signed)
7543      Type = Context.SignedCharTy;
7544    else if (Unsigned)
7545      Type = Context.UnsignedCharTy;
7546    else
7547      Type = Context.CharTy;
7548    break;
7549  case 'b': // boolean
7550    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7551    Type = Context.BoolTy;
7552    break;
7553  case 'z':  // size_t.
7554    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7555    Type = Context.getSizeType();
7556    break;
7557  case 'F':
7558    Type = Context.getCFConstantStringType();
7559    break;
7560  case 'G':
7561    Type = Context.getObjCIdType();
7562    break;
7563  case 'H':
7564    Type = Context.getObjCSelType();
7565    break;
7566  case 'M':
7567    Type = Context.getObjCSuperType();
7568    break;
7569  case 'a':
7570    Type = Context.getBuiltinVaListType();
7571    assert(!Type.isNull() && "builtin va list type not initialized!");
7572    break;
7573  case 'A':
7574    // This is a "reference" to a va_list; however, what exactly
7575    // this means depends on how va_list is defined. There are two
7576    // different kinds of va_list: ones passed by value, and ones
7577    // passed by reference.  An example of a by-value va_list is
7578    // x86, where va_list is a char*. An example of by-ref va_list
7579    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7580    // we want this argument to be a char*&; for x86-64, we want
7581    // it to be a __va_list_tag*.
7582    Type = Context.getBuiltinVaListType();
7583    assert(!Type.isNull() && "builtin va list type not initialized!");
7584    if (Type->isArrayType())
7585      Type = Context.getArrayDecayedType(Type);
7586    else
7587      Type = Context.getLValueReferenceType(Type);
7588    break;
7589  case 'V': {
7590    char *End;
7591    unsigned NumElements = strtoul(Str, &End, 10);
7592    assert(End != Str && "Missing vector size");
7593    Str = End;
7594
7595    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7596                                             RequiresICE, false);
7597    assert(!RequiresICE && "Can't require vector ICE");
7598
7599    // TODO: No way to make AltiVec vectors in builtins yet.
7600    Type = Context.getVectorType(ElementType, NumElements,
7601                                 VectorType::GenericVector);
7602    break;
7603  }
7604  case 'E': {
7605    char *End;
7606
7607    unsigned NumElements = strtoul(Str, &End, 10);
7608    assert(End != Str && "Missing vector size");
7609
7610    Str = End;
7611
7612    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7613                                             false);
7614    Type = Context.getExtVectorType(ElementType, NumElements);
7615    break;
7616  }
7617  case 'X': {
7618    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7619                                             false);
7620    assert(!RequiresICE && "Can't require complex ICE");
7621    Type = Context.getComplexType(ElementType);
7622    break;
7623  }
7624  case 'Y' : {
7625    Type = Context.getPointerDiffType();
7626    break;
7627  }
7628  case 'P':
7629    Type = Context.getFILEType();
7630    if (Type.isNull()) {
7631      Error = ASTContext::GE_Missing_stdio;
7632      return QualType();
7633    }
7634    break;
7635  case 'J':
7636    if (Signed)
7637      Type = Context.getsigjmp_bufType();
7638    else
7639      Type = Context.getjmp_bufType();
7640
7641    if (Type.isNull()) {
7642      Error = ASTContext::GE_Missing_setjmp;
7643      return QualType();
7644    }
7645    break;
7646  case 'K':
7647    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7648    Type = Context.getucontext_tType();
7649
7650    if (Type.isNull()) {
7651      Error = ASTContext::GE_Missing_ucontext;
7652      return QualType();
7653    }
7654    break;
7655  case 'p':
7656    Type = Context.getProcessIDType();
7657    break;
7658  }
7659
7660  // If there are modifiers and if we're allowed to parse them, go for it.
7661  Done = !AllowTypeModifiers;
7662  while (!Done) {
7663    switch (char c = *Str++) {
7664    default: Done = true; --Str; break;
7665    case '*':
7666    case '&': {
7667      // Both pointers and references can have their pointee types
7668      // qualified with an address space.
7669      char *End;
7670      unsigned AddrSpace = strtoul(Str, &End, 10);
7671      if (End != Str && AddrSpace != 0) {
7672        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7673        Str = End;
7674      }
7675      if (c == '*')
7676        Type = Context.getPointerType(Type);
7677      else
7678        Type = Context.getLValueReferenceType(Type);
7679      break;
7680    }
7681    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7682    case 'C':
7683      Type = Type.withConst();
7684      break;
7685    case 'D':
7686      Type = Context.getVolatileType(Type);
7687      break;
7688    case 'R':
7689      Type = Type.withRestrict();
7690      break;
7691    }
7692  }
7693
7694  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7695         "Integer constant 'I' type must be an integer");
7696
7697  return Type;
7698}
7699
7700/// GetBuiltinType - Return the type for the specified builtin.
7701QualType ASTContext::GetBuiltinType(unsigned Id,
7702                                    GetBuiltinTypeError &Error,
7703                                    unsigned *IntegerConstantArgs) const {
7704  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7705
7706  SmallVector<QualType, 8> ArgTypes;
7707
7708  bool RequiresICE = false;
7709  Error = GE_None;
7710  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7711                                       RequiresICE, true);
7712  if (Error != GE_None)
7713    return QualType();
7714
7715  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7716
7717  while (TypeStr[0] && TypeStr[0] != '.') {
7718    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7719    if (Error != GE_None)
7720      return QualType();
7721
7722    // If this argument is required to be an IntegerConstantExpression and the
7723    // caller cares, fill in the bitmask we return.
7724    if (RequiresICE && IntegerConstantArgs)
7725      *IntegerConstantArgs |= 1 << ArgTypes.size();
7726
7727    // Do array -> pointer decay.  The builtin should use the decayed type.
7728    if (Ty->isArrayType())
7729      Ty = getArrayDecayedType(Ty);
7730
7731    ArgTypes.push_back(Ty);
7732  }
7733
7734  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7735         "'.' should only occur at end of builtin type list!");
7736
7737  FunctionType::ExtInfo EI;
7738  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7739
7740  bool Variadic = (TypeStr[0] == '.');
7741
7742  // We really shouldn't be making a no-proto type here, especially in C++.
7743  if (ArgTypes.empty() && Variadic)
7744    return getFunctionNoProtoType(ResType, EI);
7745
7746  FunctionProtoType::ExtProtoInfo EPI;
7747  EPI.ExtInfo = EI;
7748  EPI.Variadic = Variadic;
7749
7750  return getFunctionType(ResType, ArgTypes, EPI);
7751}
7752
7753GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7754  GVALinkage External = GVA_StrongExternal;
7755
7756  Linkage L = FD->getLinkage();
7757  switch (L) {
7758  case NoLinkage:
7759  case InternalLinkage:
7760  case UniqueExternalLinkage:
7761    return GVA_Internal;
7762
7763  case ExternalLinkage:
7764    switch (FD->getTemplateSpecializationKind()) {
7765    case TSK_Undeclared:
7766    case TSK_ExplicitSpecialization:
7767      External = GVA_StrongExternal;
7768      break;
7769
7770    case TSK_ExplicitInstantiationDefinition:
7771      return GVA_ExplicitTemplateInstantiation;
7772
7773    case TSK_ExplicitInstantiationDeclaration:
7774    case TSK_ImplicitInstantiation:
7775      External = GVA_TemplateInstantiation;
7776      break;
7777    }
7778  }
7779
7780  if (!FD->isInlined())
7781    return External;
7782
7783  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7784    // GNU or C99 inline semantics. Determine whether this symbol should be
7785    // externally visible.
7786    if (FD->isInlineDefinitionExternallyVisible())
7787      return External;
7788
7789    // C99 inline semantics, where the symbol is not externally visible.
7790    return GVA_C99Inline;
7791  }
7792
7793  // C++0x [temp.explicit]p9:
7794  //   [ Note: The intent is that an inline function that is the subject of
7795  //   an explicit instantiation declaration will still be implicitly
7796  //   instantiated when used so that the body can be considered for
7797  //   inlining, but that no out-of-line copy of the inline function would be
7798  //   generated in the translation unit. -- end note ]
7799  if (FD->getTemplateSpecializationKind()
7800                                       == TSK_ExplicitInstantiationDeclaration)
7801    return GVA_C99Inline;
7802
7803  return GVA_CXXInline;
7804}
7805
7806GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7807  // If this is a static data member, compute the kind of template
7808  // specialization. Otherwise, this variable is not part of a
7809  // template.
7810  TemplateSpecializationKind TSK = TSK_Undeclared;
7811  if (VD->isStaticDataMember())
7812    TSK = VD->getTemplateSpecializationKind();
7813
7814  Linkage L = VD->getLinkage();
7815
7816  switch (L) {
7817  case NoLinkage:
7818  case InternalLinkage:
7819  case UniqueExternalLinkage:
7820    return GVA_Internal;
7821
7822  case ExternalLinkage:
7823    switch (TSK) {
7824    case TSK_Undeclared:
7825    case TSK_ExplicitSpecialization:
7826      return GVA_StrongExternal;
7827
7828    case TSK_ExplicitInstantiationDeclaration:
7829      llvm_unreachable("Variable should not be instantiated");
7830      // Fall through to treat this like any other instantiation.
7831
7832    case TSK_ExplicitInstantiationDefinition:
7833      return GVA_ExplicitTemplateInstantiation;
7834
7835    case TSK_ImplicitInstantiation:
7836      return GVA_TemplateInstantiation;
7837    }
7838  }
7839
7840  llvm_unreachable("Invalid Linkage!");
7841}
7842
7843bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7844  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7845    if (!VD->isFileVarDecl())
7846      return false;
7847  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7848    // We never need to emit an uninstantiated function template.
7849    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7850      return false;
7851  } else
7852    return false;
7853
7854  // If this is a member of a class template, we do not need to emit it.
7855  if (D->getDeclContext()->isDependentContext())
7856    return false;
7857
7858  // Weak references don't produce any output by themselves.
7859  if (D->hasAttr<WeakRefAttr>())
7860    return false;
7861
7862  // Aliases and used decls are required.
7863  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7864    return true;
7865
7866  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7867    // Forward declarations aren't required.
7868    if (!FD->doesThisDeclarationHaveABody())
7869      return FD->doesDeclarationForceExternallyVisibleDefinition();
7870
7871    // Constructors and destructors are required.
7872    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7873      return true;
7874
7875    // The key function for a class is required.  This rule only comes
7876    // into play when inline functions can be key functions, though.
7877    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7878      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7879        const CXXRecordDecl *RD = MD->getParent();
7880        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7881          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7882          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7883            return true;
7884        }
7885      }
7886    }
7887
7888    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7889
7890    // static, static inline, always_inline, and extern inline functions can
7891    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7892    // Implicit template instantiations can also be deferred in C++.
7893    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7894        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7895      return false;
7896    return true;
7897  }
7898
7899  const VarDecl *VD = cast<VarDecl>(D);
7900  assert(VD->isFileVarDecl() && "Expected file scoped var");
7901
7902  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7903    return false;
7904
7905  // Variables that can be needed in other TUs are required.
7906  GVALinkage L = GetGVALinkageForVariable(VD);
7907  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7908    return true;
7909
7910  // Variables that have destruction with side-effects are required.
7911  if (VD->getType().isDestructedType())
7912    return true;
7913
7914  // Variables that have initialization with side-effects are required.
7915  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7916    return true;
7917
7918  return false;
7919}
7920
7921CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7922  // Pass through to the C++ ABI object
7923  return ABI->getDefaultMethodCallConv(isVariadic);
7924}
7925
7926CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7927  if (CC == CC_C && !LangOpts.MRTD &&
7928      getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7929    return CC_Default;
7930  return CC;
7931}
7932
7933bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7934  // Pass through to the C++ ABI object
7935  return ABI->isNearlyEmpty(RD);
7936}
7937
7938MangleContext *ASTContext::createMangleContext() {
7939  switch (Target->getCXXABI().getKind()) {
7940  case TargetCXXABI::GenericAArch64:
7941  case TargetCXXABI::GenericItanium:
7942  case TargetCXXABI::GenericARM:
7943  case TargetCXXABI::iOS:
7944    return createItaniumMangleContext(*this, getDiagnostics());
7945  case TargetCXXABI::Microsoft:
7946    return createMicrosoftMangleContext(*this, getDiagnostics());
7947  }
7948  llvm_unreachable("Unsupported ABI");
7949}
7950
7951CXXABI::~CXXABI() {}
7952
7953size_t ASTContext::getSideTableAllocatedMemory() const {
7954  return ASTRecordLayouts.getMemorySize()
7955    + llvm::capacity_in_bytes(ObjCLayouts)
7956    + llvm::capacity_in_bytes(KeyFunctions)
7957    + llvm::capacity_in_bytes(ObjCImpls)
7958    + llvm::capacity_in_bytes(BlockVarCopyInits)
7959    + llvm::capacity_in_bytes(DeclAttrs)
7960    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7961    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7962    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7963    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7964    + llvm::capacity_in_bytes(OverriddenMethods)
7965    + llvm::capacity_in_bytes(Types)
7966    + llvm::capacity_in_bytes(VariableArrayTypes)
7967    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7968}
7969
7970void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7971  // FIXME: This mangling should be applied to function local classes too
7972  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7973      !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
7974    return;
7975
7976  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7977    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7978  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7979}
7980
7981int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7982  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7983    UnnamedMangleNumbers.find(Tag);
7984  return I != UnnamedMangleNumbers.end() ? I->second : -1;
7985}
7986
7987unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7988  CXXRecordDecl *Lambda = CallOperator->getParent();
7989  return LambdaMangleContexts[Lambda->getDeclContext()]
7990           .getManglingNumber(CallOperator);
7991}
7992
7993
7994void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7995  ParamIndices[D] = index;
7996}
7997
7998unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7999  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
8000  assert(I != ParamIndices.end() &&
8001         "ParmIndices lacks entry set by ParmVarDecl");
8002  return I->second;
8003}
8004