ASTContext.cpp revision ba6f816d633e3b88c38c6896c2d78d19489650f2
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/TargetInfo.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/ADT/StringExtras.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31
32using namespace clang;
33
34unsigned ASTContext::NumImplicitDefaultConstructors;
35unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
36unsigned ASTContext::NumImplicitCopyConstructors;
37unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
38unsigned ASTContext::NumImplicitCopyAssignmentOperators;
39unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
40unsigned ASTContext::NumImplicitDestructors;
41unsigned ASTContext::NumImplicitDestructorsDeclared;
42
43enum FloatingRank {
44  FloatRank, DoubleRank, LongDoubleRank
45};
46
47void
48ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
49                                               TemplateTemplateParmDecl *Parm) {
50  ID.AddInteger(Parm->getDepth());
51  ID.AddInteger(Parm->getPosition());
52  // FIXME: Parameter pack
53
54  TemplateParameterList *Params = Parm->getTemplateParameters();
55  ID.AddInteger(Params->size());
56  for (TemplateParameterList::const_iterator P = Params->begin(),
57                                          PEnd = Params->end();
58       P != PEnd; ++P) {
59    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
60      ID.AddInteger(0);
61      ID.AddBoolean(TTP->isParameterPack());
62      continue;
63    }
64
65    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
66      ID.AddInteger(1);
67      // FIXME: Parameter pack
68      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
69      continue;
70    }
71
72    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
73    ID.AddInteger(2);
74    Profile(ID, TTP);
75  }
76}
77
78TemplateTemplateParmDecl *
79ASTContext::getCanonicalTemplateTemplateParmDecl(
80                                                 TemplateTemplateParmDecl *TTP) {
81  // Check if we already have a canonical template template parameter.
82  llvm::FoldingSetNodeID ID;
83  CanonicalTemplateTemplateParm::Profile(ID, TTP);
84  void *InsertPos = 0;
85  CanonicalTemplateTemplateParm *Canonical
86    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
87  if (Canonical)
88    return Canonical->getParam();
89
90  // Build a canonical template parameter list.
91  TemplateParameterList *Params = TTP->getTemplateParameters();
92  llvm::SmallVector<NamedDecl *, 4> CanonParams;
93  CanonParams.reserve(Params->size());
94  for (TemplateParameterList::const_iterator P = Params->begin(),
95                                          PEnd = Params->end();
96       P != PEnd; ++P) {
97    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
98      CanonParams.push_back(
99                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
100                                               SourceLocation(), TTP->getDepth(),
101                                               TTP->getIndex(), 0, false,
102                                               TTP->isParameterPack()));
103    else if (NonTypeTemplateParmDecl *NTTP
104             = dyn_cast<NonTypeTemplateParmDecl>(*P))
105      CanonParams.push_back(
106            NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
107                                            SourceLocation(), NTTP->getDepth(),
108                                            NTTP->getPosition(), 0,
109                                            getCanonicalType(NTTP->getType()),
110                                            0));
111    else
112      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
113                                           cast<TemplateTemplateParmDecl>(*P)));
114  }
115
116  TemplateTemplateParmDecl *CanonTTP
117    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
118                                       SourceLocation(), TTP->getDepth(),
119                                       TTP->getPosition(), 0,
120                         TemplateParameterList::Create(*this, SourceLocation(),
121                                                       SourceLocation(),
122                                                       CanonParams.data(),
123                                                       CanonParams.size(),
124                                                       SourceLocation()));
125
126  // Get the new insert position for the node we care about.
127  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
128  assert(Canonical == 0 && "Shouldn't be in the map!");
129  (void)Canonical;
130
131  // Create the canonical template template parameter entry.
132  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
133  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
134  return CanonTTP;
135}
136
137ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
138                       const TargetInfo &t,
139                       IdentifierTable &idents, SelectorTable &sels,
140                       Builtin::Context &builtins,
141                       unsigned size_reserve) :
142  TemplateSpecializationTypes(this_()),
143  DependentTemplateSpecializationTypes(this_()),
144  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
145  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
146  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
147  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
148  NullTypeSourceInfo(QualType()),
149  SourceMgr(SM), LangOpts(LOpts), Target(t),
150  Idents(idents), Selectors(sels),
151  BuiltinInfo(builtins),
152  DeclarationNames(*this),
153  ExternalSource(0), PrintingPolicy(LOpts),
154  LastSDM(0, 0),
155  UniqueBlockByRefTypeID(0), UniqueBlockParmTypeID(0) {
156  ObjCIdRedefinitionType = QualType();
157  ObjCClassRedefinitionType = QualType();
158  ObjCSelRedefinitionType = QualType();
159  if (size_reserve > 0) Types.reserve(size_reserve);
160  TUDecl = TranslationUnitDecl::Create(*this);
161  InitBuiltinTypes();
162}
163
164ASTContext::~ASTContext() {
165  // Release the DenseMaps associated with DeclContext objects.
166  // FIXME: Is this the ideal solution?
167  ReleaseDeclContextMaps();
168
169  // Call all of the deallocation functions.
170  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
171    Deallocations[I].first(Deallocations[I].second);
172
173  // Release all of the memory associated with overridden C++ methods.
174  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
175         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
176       OM != OMEnd; ++OM)
177    OM->second.Destroy();
178
179  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
180  // because they can contain DenseMaps.
181  for (llvm::DenseMap<const ObjCContainerDecl*,
182       const ASTRecordLayout*>::iterator
183       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
184    // Increment in loop to prevent using deallocated memory.
185    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
186      R->Destroy(*this);
187
188  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
189       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
190    // Increment in loop to prevent using deallocated memory.
191    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
192      R->Destroy(*this);
193  }
194  }
195
196void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
197  Deallocations.push_back(std::make_pair(Callback, Data));
198}
199
200void
201ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
202  ExternalSource.reset(Source.take());
203}
204
205void ASTContext::PrintStats() const {
206  fprintf(stderr, "*** AST Context Stats:\n");
207  fprintf(stderr, "  %d types total.\n", (int)Types.size());
208
209  unsigned counts[] = {
210#define TYPE(Name, Parent) 0,
211#define ABSTRACT_TYPE(Name, Parent)
212#include "clang/AST/TypeNodes.def"
213    0 // Extra
214  };
215
216  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
217    Type *T = Types[i];
218    counts[(unsigned)T->getTypeClass()]++;
219  }
220
221  unsigned Idx = 0;
222  unsigned TotalBytes = 0;
223#define TYPE(Name, Parent)                                              \
224  if (counts[Idx])                                                      \
225    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
226  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
227  ++Idx;
228#define ABSTRACT_TYPE(Name, Parent)
229#include "clang/AST/TypeNodes.def"
230
231  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
232
233  // Implicit special member functions.
234  fprintf(stderr, "  %u/%u implicit default constructors created\n",
235          NumImplicitDefaultConstructorsDeclared,
236          NumImplicitDefaultConstructors);
237  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
238          NumImplicitCopyConstructorsDeclared,
239          NumImplicitCopyConstructors);
240  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
241          NumImplicitCopyAssignmentOperatorsDeclared,
242          NumImplicitCopyAssignmentOperators);
243  fprintf(stderr, "  %u/%u implicit destructors created\n",
244          NumImplicitDestructorsDeclared, NumImplicitDestructors);
245
246  if (ExternalSource.get()) {
247    fprintf(stderr, "\n");
248    ExternalSource->PrintStats();
249  }
250
251  BumpAlloc.PrintStats();
252}
253
254
255void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
256  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
257  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
258  Types.push_back(Ty);
259}
260
261void ASTContext::InitBuiltinTypes() {
262  assert(VoidTy.isNull() && "Context reinitialized?");
263
264  // C99 6.2.5p19.
265  InitBuiltinType(VoidTy,              BuiltinType::Void);
266
267  // C99 6.2.5p2.
268  InitBuiltinType(BoolTy,              BuiltinType::Bool);
269  // C99 6.2.5p3.
270  if (LangOpts.CharIsSigned)
271    InitBuiltinType(CharTy,            BuiltinType::Char_S);
272  else
273    InitBuiltinType(CharTy,            BuiltinType::Char_U);
274  // C99 6.2.5p4.
275  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
276  InitBuiltinType(ShortTy,             BuiltinType::Short);
277  InitBuiltinType(IntTy,               BuiltinType::Int);
278  InitBuiltinType(LongTy,              BuiltinType::Long);
279  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
280
281  // C99 6.2.5p6.
282  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
283  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
284  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
285  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
286  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
287
288  // C99 6.2.5p10.
289  InitBuiltinType(FloatTy,             BuiltinType::Float);
290  InitBuiltinType(DoubleTy,            BuiltinType::Double);
291  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
292
293  // GNU extension, 128-bit integers.
294  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
295  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
296
297  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
298    InitBuiltinType(WCharTy,           BuiltinType::WChar);
299  else // C99
300    WCharTy = getFromTargetType(Target.getWCharType());
301
302  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
303    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
304  else // C99
305    Char16Ty = getFromTargetType(Target.getChar16Type());
306
307  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
308    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
309  else // C99
310    Char32Ty = getFromTargetType(Target.getChar32Type());
311
312  // Placeholder type for functions.
313  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
314
315  // Placeholder type for type-dependent expressions whose type is
316  // completely unknown. No code should ever check a type against
317  // DependentTy and users should never see it; however, it is here to
318  // help diagnose failures to properly check for type-dependent
319  // expressions.
320  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
321
322  // Placeholder type for C++0x auto declarations whose real type has
323  // not yet been deduced.
324  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
325
326  // C99 6.2.5p11.
327  FloatComplexTy      = getComplexType(FloatTy);
328  DoubleComplexTy     = getComplexType(DoubleTy);
329  LongDoubleComplexTy = getComplexType(LongDoubleTy);
330
331  BuiltinVaListType = QualType();
332
333  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
334  ObjCIdTypedefType = QualType();
335  ObjCClassTypedefType = QualType();
336  ObjCSelTypedefType = QualType();
337
338  // Builtin types for 'id', 'Class', and 'SEL'.
339  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
340  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
341  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
342
343  ObjCConstantStringType = QualType();
344
345  // void * type
346  VoidPtrTy = getPointerType(VoidTy);
347
348  // nullptr type (C++0x 2.14.7)
349  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
350}
351
352MemberSpecializationInfo *
353ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
354  assert(Var->isStaticDataMember() && "Not a static data member");
355  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
356    = InstantiatedFromStaticDataMember.find(Var);
357  if (Pos == InstantiatedFromStaticDataMember.end())
358    return 0;
359
360  return Pos->second;
361}
362
363void
364ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
365                                                TemplateSpecializationKind TSK,
366                                          SourceLocation PointOfInstantiation) {
367  assert(Inst->isStaticDataMember() && "Not a static data member");
368  assert(Tmpl->isStaticDataMember() && "Not a static data member");
369  assert(!InstantiatedFromStaticDataMember[Inst] &&
370         "Already noted what static data member was instantiated from");
371  InstantiatedFromStaticDataMember[Inst]
372    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
373}
374
375NamedDecl *
376ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
377  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
378    = InstantiatedFromUsingDecl.find(UUD);
379  if (Pos == InstantiatedFromUsingDecl.end())
380    return 0;
381
382  return Pos->second;
383}
384
385void
386ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
387  assert((isa<UsingDecl>(Pattern) ||
388          isa<UnresolvedUsingValueDecl>(Pattern) ||
389          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
390         "pattern decl is not a using decl");
391  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
392  InstantiatedFromUsingDecl[Inst] = Pattern;
393}
394
395UsingShadowDecl *
396ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
397  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
398    = InstantiatedFromUsingShadowDecl.find(Inst);
399  if (Pos == InstantiatedFromUsingShadowDecl.end())
400    return 0;
401
402  return Pos->second;
403}
404
405void
406ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
407                                               UsingShadowDecl *Pattern) {
408  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
409  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
410}
411
412FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
413  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
414    = InstantiatedFromUnnamedFieldDecl.find(Field);
415  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
416    return 0;
417
418  return Pos->second;
419}
420
421void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
422                                                     FieldDecl *Tmpl) {
423  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
424  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
425  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
426         "Already noted what unnamed field was instantiated from");
427
428  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
429}
430
431ASTContext::overridden_cxx_method_iterator
432ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
433  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
434    = OverriddenMethods.find(Method);
435  if (Pos == OverriddenMethods.end())
436    return 0;
437
438  return Pos->second.begin();
439}
440
441ASTContext::overridden_cxx_method_iterator
442ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
443  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
444    = OverriddenMethods.find(Method);
445  if (Pos == OverriddenMethods.end())
446    return 0;
447
448  return Pos->second.end();
449}
450
451unsigned
452ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
453  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
454    = OverriddenMethods.find(Method);
455  if (Pos == OverriddenMethods.end())
456    return 0;
457
458  return Pos->second.size();
459}
460
461void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
462                                     const CXXMethodDecl *Overridden) {
463  OverriddenMethods[Method].push_back(Overridden);
464}
465
466//===----------------------------------------------------------------------===//
467//                         Type Sizing and Analysis
468//===----------------------------------------------------------------------===//
469
470/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
471/// scalar floating point type.
472const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
473  const BuiltinType *BT = T->getAs<BuiltinType>();
474  assert(BT && "Not a floating point type!");
475  switch (BT->getKind()) {
476  default: assert(0 && "Not a floating point type!");
477  case BuiltinType::Float:      return Target.getFloatFormat();
478  case BuiltinType::Double:     return Target.getDoubleFormat();
479  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
480  }
481}
482
483/// getDeclAlign - Return a conservative estimate of the alignment of the
484/// specified decl.  Note that bitfields do not have a valid alignment, so
485/// this method will assert on them.
486/// If @p RefAsPointee, references are treated like their underlying type
487/// (for alignof), else they're treated like pointers (for CodeGen).
488CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
489  unsigned Align = Target.getCharWidth();
490
491  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
492    Align = std::max(Align, AA->getMaxAlignment());
493
494  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
495    QualType T = VD->getType();
496    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
497      if (RefAsPointee)
498        T = RT->getPointeeType();
499      else
500        T = getPointerType(RT->getPointeeType());
501    }
502    if (!T->isIncompleteType() && !T->isFunctionType()) {
503      unsigned MinWidth = Target.getLargeArrayMinWidth();
504      unsigned ArrayAlign = Target.getLargeArrayAlign();
505      if (isa<VariableArrayType>(T) && MinWidth != 0)
506        Align = std::max(Align, ArrayAlign);
507      if (ConstantArrayType *CT = dyn_cast<ConstantArrayType>(T)) {
508        unsigned Size = getTypeSize(CT);
509        if (MinWidth != 0 && MinWidth <= Size)
510          Align = std::max(Align, ArrayAlign);
511      }
512      // Incomplete or function types default to 1.
513      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
514        T = cast<ArrayType>(T)->getElementType();
515
516      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
517    }
518    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
519      // In the case of a field in a packed struct, we want the minimum
520      // of the alignment of the field and the alignment of the struct.
521      Align = std::min(Align,
522        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
523    }
524  }
525
526  return CharUnits::fromQuantity(Align / Target.getCharWidth());
527}
528
529std::pair<CharUnits, CharUnits>
530ASTContext::getTypeInfoInChars(const Type *T) {
531  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
532  return std::make_pair(CharUnits::fromQuantity(Info.first / getCharWidth()),
533                        CharUnits::fromQuantity(Info.second / getCharWidth()));
534}
535
536std::pair<CharUnits, CharUnits>
537ASTContext::getTypeInfoInChars(QualType T) {
538  return getTypeInfoInChars(T.getTypePtr());
539}
540
541/// getTypeSize - Return the size of the specified type, in bits.  This method
542/// does not work on incomplete types.
543///
544/// FIXME: Pointers into different addr spaces could have different sizes and
545/// alignment requirements: getPointerInfo should take an AddrSpace, this
546/// should take a QualType, &c.
547std::pair<uint64_t, unsigned>
548ASTContext::getTypeInfo(const Type *T) {
549  uint64_t Width=0;
550  unsigned Align=8;
551  switch (T->getTypeClass()) {
552#define TYPE(Class, Base)
553#define ABSTRACT_TYPE(Class, Base)
554#define NON_CANONICAL_TYPE(Class, Base)
555#define DEPENDENT_TYPE(Class, Base) case Type::Class:
556#include "clang/AST/TypeNodes.def"
557    assert(false && "Should not see dependent types");
558    break;
559
560  case Type::FunctionNoProto:
561  case Type::FunctionProto:
562    // GCC extension: alignof(function) = 32 bits
563    Width = 0;
564    Align = 32;
565    break;
566
567  case Type::IncompleteArray:
568  case Type::VariableArray:
569    Width = 0;
570    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
571    break;
572
573  case Type::ConstantArray: {
574    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
575
576    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
577    Width = EltInfo.first*CAT->getSize().getZExtValue();
578    Align = EltInfo.second;
579    break;
580  }
581  case Type::ExtVector:
582  case Type::Vector: {
583    const VectorType *VT = cast<VectorType>(T);
584    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
585    Width = EltInfo.first*VT->getNumElements();
586    Align = Width;
587    // If the alignment is not a power of 2, round up to the next power of 2.
588    // This happens for non-power-of-2 length vectors.
589    if (Align & (Align-1)) {
590      Align = llvm::NextPowerOf2(Align);
591      Width = llvm::RoundUpToAlignment(Width, Align);
592    }
593    break;
594  }
595
596  case Type::Builtin:
597    switch (cast<BuiltinType>(T)->getKind()) {
598    default: assert(0 && "Unknown builtin type!");
599    case BuiltinType::Void:
600      // GCC extension: alignof(void) = 8 bits.
601      Width = 0;
602      Align = 8;
603      break;
604
605    case BuiltinType::Bool:
606      Width = Target.getBoolWidth();
607      Align = Target.getBoolAlign();
608      break;
609    case BuiltinType::Char_S:
610    case BuiltinType::Char_U:
611    case BuiltinType::UChar:
612    case BuiltinType::SChar:
613      Width = Target.getCharWidth();
614      Align = Target.getCharAlign();
615      break;
616    case BuiltinType::WChar:
617      Width = Target.getWCharWidth();
618      Align = Target.getWCharAlign();
619      break;
620    case BuiltinType::Char16:
621      Width = Target.getChar16Width();
622      Align = Target.getChar16Align();
623      break;
624    case BuiltinType::Char32:
625      Width = Target.getChar32Width();
626      Align = Target.getChar32Align();
627      break;
628    case BuiltinType::UShort:
629    case BuiltinType::Short:
630      Width = Target.getShortWidth();
631      Align = Target.getShortAlign();
632      break;
633    case BuiltinType::UInt:
634    case BuiltinType::Int:
635      Width = Target.getIntWidth();
636      Align = Target.getIntAlign();
637      break;
638    case BuiltinType::ULong:
639    case BuiltinType::Long:
640      Width = Target.getLongWidth();
641      Align = Target.getLongAlign();
642      break;
643    case BuiltinType::ULongLong:
644    case BuiltinType::LongLong:
645      Width = Target.getLongLongWidth();
646      Align = Target.getLongLongAlign();
647      break;
648    case BuiltinType::Int128:
649    case BuiltinType::UInt128:
650      Width = 128;
651      Align = 128; // int128_t is 128-bit aligned on all targets.
652      break;
653    case BuiltinType::Float:
654      Width = Target.getFloatWidth();
655      Align = Target.getFloatAlign();
656      break;
657    case BuiltinType::Double:
658      Width = Target.getDoubleWidth();
659      Align = Target.getDoubleAlign();
660      break;
661    case BuiltinType::LongDouble:
662      Width = Target.getLongDoubleWidth();
663      Align = Target.getLongDoubleAlign();
664      break;
665    case BuiltinType::NullPtr:
666      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
667      Align = Target.getPointerAlign(0); //   == sizeof(void*)
668      break;
669    case BuiltinType::ObjCId:
670    case BuiltinType::ObjCClass:
671    case BuiltinType::ObjCSel:
672      Width = Target.getPointerWidth(0);
673      Align = Target.getPointerAlign(0);
674      break;
675    }
676    break;
677  case Type::ObjCObjectPointer:
678    Width = Target.getPointerWidth(0);
679    Align = Target.getPointerAlign(0);
680    break;
681  case Type::BlockPointer: {
682    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
683    Width = Target.getPointerWidth(AS);
684    Align = Target.getPointerAlign(AS);
685    break;
686  }
687  case Type::LValueReference:
688  case Type::RValueReference: {
689    // alignof and sizeof should never enter this code path here, so we go
690    // the pointer route.
691    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
692    Width = Target.getPointerWidth(AS);
693    Align = Target.getPointerAlign(AS);
694    break;
695  }
696  case Type::Pointer: {
697    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
698    Width = Target.getPointerWidth(AS);
699    Align = Target.getPointerAlign(AS);
700    break;
701  }
702  case Type::MemberPointer: {
703    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
704    std::pair<uint64_t, unsigned> PtrDiffInfo =
705      getTypeInfo(getPointerDiffType());
706    Width = PtrDiffInfo.first;
707    if (Pointee->isFunctionType())
708      Width *= 2;
709    Align = PtrDiffInfo.second;
710    break;
711  }
712  case Type::Complex: {
713    // Complex types have the same alignment as their elements, but twice the
714    // size.
715    std::pair<uint64_t, unsigned> EltInfo =
716      getTypeInfo(cast<ComplexType>(T)->getElementType());
717    Width = EltInfo.first*2;
718    Align = EltInfo.second;
719    break;
720  }
721  case Type::ObjCObject:
722    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
723  case Type::ObjCInterface: {
724    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
725    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
726    Width = Layout.getSize();
727    Align = Layout.getAlignment();
728    break;
729  }
730  case Type::Record:
731  case Type::Enum: {
732    const TagType *TT = cast<TagType>(T);
733
734    if (TT->getDecl()->isInvalidDecl()) {
735      Width = 1;
736      Align = 1;
737      break;
738    }
739
740    if (const EnumType *ET = dyn_cast<EnumType>(TT))
741      return getTypeInfo(ET->getDecl()->getIntegerType());
742
743    const RecordType *RT = cast<RecordType>(TT);
744    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
745    Width = Layout.getSize();
746    Align = Layout.getAlignment();
747    break;
748  }
749
750  case Type::SubstTemplateTypeParm:
751    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
752                       getReplacementType().getTypePtr());
753
754  case Type::Typedef: {
755    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
756    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
757      Align = std::max(Aligned->getMaxAlignment(),
758                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
759      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
760    } else
761      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
762    break;
763  }
764
765  case Type::TypeOfExpr:
766    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
767                         .getTypePtr());
768
769  case Type::TypeOf:
770    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
771
772  case Type::Decltype:
773    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
774                        .getTypePtr());
775
776  case Type::Elaborated:
777    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
778
779  case Type::TemplateSpecialization:
780    assert(getCanonicalType(T) != T &&
781           "Cannot request the size of a dependent type");
782    // FIXME: this is likely to be wrong once we support template
783    // aliases, since a template alias could refer to a typedef that
784    // has an __aligned__ attribute on it.
785    return getTypeInfo(getCanonicalType(T));
786  }
787
788  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
789  return std::make_pair(Width, Align);
790}
791
792/// getTypeSizeInChars - Return the size of the specified type, in characters.
793/// This method does not work on incomplete types.
794CharUnits ASTContext::getTypeSizeInChars(QualType T) {
795  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
796}
797CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
798  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
799}
800
801/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
802/// characters. This method does not work on incomplete types.
803CharUnits ASTContext::getTypeAlignInChars(QualType T) {
804  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
805}
806CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
807  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
808}
809
810/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
811/// type for the current target in bits.  This can be different than the ABI
812/// alignment in cases where it is beneficial for performance to overalign
813/// a data type.
814unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
815  unsigned ABIAlign = getTypeAlign(T);
816
817  // Double and long long should be naturally aligned if possible.
818  if (const ComplexType* CT = T->getAs<ComplexType>())
819    T = CT->getElementType().getTypePtr();
820  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
821      T->isSpecificBuiltinType(BuiltinType::LongLong))
822    return std::max(ABIAlign, (unsigned)getTypeSize(T));
823
824  return ABIAlign;
825}
826
827static void CollectLocalObjCIvars(ASTContext *Ctx,
828                                  const ObjCInterfaceDecl *OI,
829                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
830  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
831       E = OI->ivar_end(); I != E; ++I) {
832    ObjCIvarDecl *IVDecl = *I;
833    if (!IVDecl->isInvalidDecl())
834      Fields.push_back(cast<FieldDecl>(IVDecl));
835  }
836}
837
838void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
839                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
840  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
841    CollectObjCIvars(SuperClass, Fields);
842  CollectLocalObjCIvars(this, OI, Fields);
843}
844
845/// ShallowCollectObjCIvars -
846/// Collect all ivars, including those synthesized, in the current class.
847///
848void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
849                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
850  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
851         E = OI->ivar_end(); I != E; ++I) {
852     Ivars.push_back(*I);
853  }
854
855  CollectNonClassIvars(OI, Ivars);
856}
857
858/// CollectNonClassIvars -
859/// This routine collects all other ivars which are not declared in the class.
860/// This includes synthesized ivars (via @synthesize) and those in
861//  class's @implementation.
862///
863void ASTContext::CollectNonClassIvars(const ObjCInterfaceDecl *OI,
864                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
865  // Find ivars declared in class extension.
866  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
867       CDecl = CDecl->getNextClassExtension()) {
868    for (ObjCCategoryDecl::ivar_iterator I = CDecl->ivar_begin(),
869         E = CDecl->ivar_end(); I != E; ++I) {
870      Ivars.push_back(*I);
871    }
872  }
873
874  // Also add any ivar defined in this class's implementation.  This
875  // includes synthesized ivars.
876  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
877    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
878         E = ImplDecl->ivar_end(); I != E; ++I)
879      Ivars.push_back(*I);
880  }
881}
882
883/// CollectInheritedProtocols - Collect all protocols in current class and
884/// those inherited by it.
885void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
886                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
887  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
888    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
889         PE = OI->protocol_end(); P != PE; ++P) {
890      ObjCProtocolDecl *Proto = (*P);
891      Protocols.insert(Proto);
892      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
893           PE = Proto->protocol_end(); P != PE; ++P) {
894        Protocols.insert(*P);
895        CollectInheritedProtocols(*P, Protocols);
896      }
897    }
898
899    // Categories of this Interface.
900    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
901         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
902      CollectInheritedProtocols(CDeclChain, Protocols);
903    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
904      while (SD) {
905        CollectInheritedProtocols(SD, Protocols);
906        SD = SD->getSuperClass();
907      }
908  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
909    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
910         PE = OC->protocol_end(); P != PE; ++P) {
911      ObjCProtocolDecl *Proto = (*P);
912      Protocols.insert(Proto);
913      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
914           PE = Proto->protocol_end(); P != PE; ++P)
915        CollectInheritedProtocols(*P, Protocols);
916    }
917  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
918    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
919         PE = OP->protocol_end(); P != PE; ++P) {
920      ObjCProtocolDecl *Proto = (*P);
921      Protocols.insert(Proto);
922      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
923           PE = Proto->protocol_end(); P != PE; ++P)
924        CollectInheritedProtocols(*P, Protocols);
925    }
926  }
927}
928
929unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) {
930  unsigned count = 0;
931  // Count ivars declared in class extension.
932  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
933       CDecl = CDecl->getNextClassExtension())
934    count += CDecl->ivar_size();
935
936  // Count ivar defined in this class's implementation.  This
937  // includes synthesized ivars.
938  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
939    count += ImplDecl->ivar_size();
940
941  return count;
942}
943
944/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
945ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
946  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
947    I = ObjCImpls.find(D);
948  if (I != ObjCImpls.end())
949    return cast<ObjCImplementationDecl>(I->second);
950  return 0;
951}
952/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
953ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
954  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
955    I = ObjCImpls.find(D);
956  if (I != ObjCImpls.end())
957    return cast<ObjCCategoryImplDecl>(I->second);
958  return 0;
959}
960
961/// \brief Set the implementation of ObjCInterfaceDecl.
962void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
963                           ObjCImplementationDecl *ImplD) {
964  assert(IFaceD && ImplD && "Passed null params");
965  ObjCImpls[IFaceD] = ImplD;
966}
967/// \brief Set the implementation of ObjCCategoryDecl.
968void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
969                           ObjCCategoryImplDecl *ImplD) {
970  assert(CatD && ImplD && "Passed null params");
971  ObjCImpls[CatD] = ImplD;
972}
973
974/// \brief Allocate an uninitialized TypeSourceInfo.
975///
976/// The caller should initialize the memory held by TypeSourceInfo using
977/// the TypeLoc wrappers.
978///
979/// \param T the type that will be the basis for type source info. This type
980/// should refer to how the declarator was written in source code, not to
981/// what type semantic analysis resolved the declarator to.
982TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
983                                                 unsigned DataSize) {
984  if (!DataSize)
985    DataSize = TypeLoc::getFullDataSizeForType(T);
986  else
987    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
988           "incorrect data size provided to CreateTypeSourceInfo!");
989
990  TypeSourceInfo *TInfo =
991    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
992  new (TInfo) TypeSourceInfo(T);
993  return TInfo;
994}
995
996TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
997                                                     SourceLocation L) {
998  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
999  DI->getTypeLoc().initialize(L);
1000  return DI;
1001}
1002
1003const ASTRecordLayout &
1004ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1005  return getObjCLayout(D, 0);
1006}
1007
1008const ASTRecordLayout &
1009ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1010  return getObjCLayout(D->getClassInterface(), D);
1011}
1012
1013//===----------------------------------------------------------------------===//
1014//                   Type creation/memoization methods
1015//===----------------------------------------------------------------------===//
1016
1017QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1018  unsigned Fast = Quals.getFastQualifiers();
1019  Quals.removeFastQualifiers();
1020
1021  // Check if we've already instantiated this type.
1022  llvm::FoldingSetNodeID ID;
1023  ExtQuals::Profile(ID, TypeNode, Quals);
1024  void *InsertPos = 0;
1025  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1026    assert(EQ->getQualifiers() == Quals);
1027    QualType T = QualType(EQ, Fast);
1028    return T;
1029  }
1030
1031  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1032  ExtQualNodes.InsertNode(New, InsertPos);
1033  QualType T = QualType(New, Fast);
1034  return T;
1035}
1036
1037QualType ASTContext::getVolatileType(QualType T) {
1038  QualType CanT = getCanonicalType(T);
1039  if (CanT.isVolatileQualified()) return T;
1040
1041  QualifierCollector Quals;
1042  const Type *TypeNode = Quals.strip(T);
1043  Quals.addVolatile();
1044
1045  return getExtQualType(TypeNode, Quals);
1046}
1047
1048QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1049  QualType CanT = getCanonicalType(T);
1050  if (CanT.getAddressSpace() == AddressSpace)
1051    return T;
1052
1053  // If we are composing extended qualifiers together, merge together
1054  // into one ExtQuals node.
1055  QualifierCollector Quals;
1056  const Type *TypeNode = Quals.strip(T);
1057
1058  // If this type already has an address space specified, it cannot get
1059  // another one.
1060  assert(!Quals.hasAddressSpace() &&
1061         "Type cannot be in multiple addr spaces!");
1062  Quals.addAddressSpace(AddressSpace);
1063
1064  return getExtQualType(TypeNode, Quals);
1065}
1066
1067QualType ASTContext::getObjCGCQualType(QualType T,
1068                                       Qualifiers::GC GCAttr) {
1069  QualType CanT = getCanonicalType(T);
1070  if (CanT.getObjCGCAttr() == GCAttr)
1071    return T;
1072
1073  if (T->isPointerType()) {
1074    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1075    if (Pointee->isAnyPointerType()) {
1076      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1077      return getPointerType(ResultType);
1078    }
1079  }
1080
1081  // If we are composing extended qualifiers together, merge together
1082  // into one ExtQuals node.
1083  QualifierCollector Quals;
1084  const Type *TypeNode = Quals.strip(T);
1085
1086  // If this type already has an ObjCGC specified, it cannot get
1087  // another one.
1088  assert(!Quals.hasObjCGCAttr() &&
1089         "Type cannot have multiple ObjCGCs!");
1090  Quals.addObjCGCAttr(GCAttr);
1091
1092  return getExtQualType(TypeNode, Quals);
1093}
1094
1095static QualType getExtFunctionType(ASTContext& Context, QualType T,
1096                                        const FunctionType::ExtInfo &Info) {
1097  QualType ResultType;
1098  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1099    QualType Pointee = Pointer->getPointeeType();
1100    ResultType = getExtFunctionType(Context, Pointee, Info);
1101    if (ResultType == Pointee)
1102      return T;
1103
1104    ResultType = Context.getPointerType(ResultType);
1105  } else if (const BlockPointerType *BlockPointer
1106                                              = T->getAs<BlockPointerType>()) {
1107    QualType Pointee = BlockPointer->getPointeeType();
1108    ResultType = getExtFunctionType(Context, Pointee, Info);
1109    if (ResultType == Pointee)
1110      return T;
1111
1112    ResultType = Context.getBlockPointerType(ResultType);
1113   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1114    if (F->getExtInfo() == Info)
1115      return T;
1116
1117    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1118      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1119                                                  Info);
1120    } else {
1121      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1122      ResultType
1123        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1124                                  FPT->getNumArgs(), FPT->isVariadic(),
1125                                  FPT->getTypeQuals(),
1126                                  FPT->hasExceptionSpec(),
1127                                  FPT->hasAnyExceptionSpec(),
1128                                  FPT->getNumExceptions(),
1129                                  FPT->exception_begin(),
1130                                  Info);
1131    }
1132  } else
1133    return T;
1134
1135  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1136}
1137
1138QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1139  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1140  return getExtFunctionType(*this, T,
1141                                 Info.withNoReturn(AddNoReturn));
1142}
1143
1144QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1145  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1146  return getExtFunctionType(*this, T,
1147                            Info.withCallingConv(CallConv));
1148}
1149
1150QualType ASTContext::getRegParmType(QualType T, unsigned RegParm) {
1151  FunctionType::ExtInfo Info = getFunctionExtInfo(T);
1152  return getExtFunctionType(*this, T,
1153                                 Info.withRegParm(RegParm));
1154}
1155
1156/// getComplexType - Return the uniqued reference to the type for a complex
1157/// number with the specified element type.
1158QualType ASTContext::getComplexType(QualType T) {
1159  // Unique pointers, to guarantee there is only one pointer of a particular
1160  // structure.
1161  llvm::FoldingSetNodeID ID;
1162  ComplexType::Profile(ID, T);
1163
1164  void *InsertPos = 0;
1165  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1166    return QualType(CT, 0);
1167
1168  // If the pointee type isn't canonical, this won't be a canonical type either,
1169  // so fill in the canonical type field.
1170  QualType Canonical;
1171  if (!T.isCanonical()) {
1172    Canonical = getComplexType(getCanonicalType(T));
1173
1174    // Get the new insert position for the node we care about.
1175    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1176    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1177  }
1178  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1179  Types.push_back(New);
1180  ComplexTypes.InsertNode(New, InsertPos);
1181  return QualType(New, 0);
1182}
1183
1184/// getPointerType - Return the uniqued reference to the type for a pointer to
1185/// the specified type.
1186QualType ASTContext::getPointerType(QualType T) {
1187  // Unique pointers, to guarantee there is only one pointer of a particular
1188  // structure.
1189  llvm::FoldingSetNodeID ID;
1190  PointerType::Profile(ID, T);
1191
1192  void *InsertPos = 0;
1193  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1194    return QualType(PT, 0);
1195
1196  // If the pointee type isn't canonical, this won't be a canonical type either,
1197  // so fill in the canonical type field.
1198  QualType Canonical;
1199  if (!T.isCanonical()) {
1200    Canonical = getPointerType(getCanonicalType(T));
1201
1202    // Get the new insert position for the node we care about.
1203    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1204    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1205  }
1206  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1207  Types.push_back(New);
1208  PointerTypes.InsertNode(New, InsertPos);
1209  return QualType(New, 0);
1210}
1211
1212/// getBlockPointerType - Return the uniqued reference to the type for
1213/// a pointer to the specified block.
1214QualType ASTContext::getBlockPointerType(QualType T) {
1215  assert(T->isFunctionType() && "block of function types only");
1216  // Unique pointers, to guarantee there is only one block of a particular
1217  // structure.
1218  llvm::FoldingSetNodeID ID;
1219  BlockPointerType::Profile(ID, T);
1220
1221  void *InsertPos = 0;
1222  if (BlockPointerType *PT =
1223        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1224    return QualType(PT, 0);
1225
1226  // If the block pointee type isn't canonical, this won't be a canonical
1227  // type either so fill in the canonical type field.
1228  QualType Canonical;
1229  if (!T.isCanonical()) {
1230    Canonical = getBlockPointerType(getCanonicalType(T));
1231
1232    // Get the new insert position for the node we care about.
1233    BlockPointerType *NewIP =
1234      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1235    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1236  }
1237  BlockPointerType *New
1238    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1239  Types.push_back(New);
1240  BlockPointerTypes.InsertNode(New, InsertPos);
1241  return QualType(New, 0);
1242}
1243
1244/// getLValueReferenceType - Return the uniqued reference to the type for an
1245/// lvalue reference to the specified type.
1246QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1247  // Unique pointers, to guarantee there is only one pointer of a particular
1248  // structure.
1249  llvm::FoldingSetNodeID ID;
1250  ReferenceType::Profile(ID, T, SpelledAsLValue);
1251
1252  void *InsertPos = 0;
1253  if (LValueReferenceType *RT =
1254        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1255    return QualType(RT, 0);
1256
1257  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1258
1259  // If the referencee type isn't canonical, this won't be a canonical type
1260  // either, so fill in the canonical type field.
1261  QualType Canonical;
1262  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1263    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1264    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1265
1266    // Get the new insert position for the node we care about.
1267    LValueReferenceType *NewIP =
1268      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1269    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1270  }
1271
1272  LValueReferenceType *New
1273    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1274                                                     SpelledAsLValue);
1275  Types.push_back(New);
1276  LValueReferenceTypes.InsertNode(New, InsertPos);
1277
1278  return QualType(New, 0);
1279}
1280
1281/// getRValueReferenceType - Return the uniqued reference to the type for an
1282/// rvalue reference to the specified type.
1283QualType ASTContext::getRValueReferenceType(QualType T) {
1284  // Unique pointers, to guarantee there is only one pointer of a particular
1285  // structure.
1286  llvm::FoldingSetNodeID ID;
1287  ReferenceType::Profile(ID, T, false);
1288
1289  void *InsertPos = 0;
1290  if (RValueReferenceType *RT =
1291        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1292    return QualType(RT, 0);
1293
1294  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1295
1296  // If the referencee type isn't canonical, this won't be a canonical type
1297  // either, so fill in the canonical type field.
1298  QualType Canonical;
1299  if (InnerRef || !T.isCanonical()) {
1300    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1301    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1302
1303    // Get the new insert position for the node we care about.
1304    RValueReferenceType *NewIP =
1305      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1306    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1307  }
1308
1309  RValueReferenceType *New
1310    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1311  Types.push_back(New);
1312  RValueReferenceTypes.InsertNode(New, InsertPos);
1313  return QualType(New, 0);
1314}
1315
1316/// getMemberPointerType - Return the uniqued reference to the type for a
1317/// member pointer to the specified type, in the specified class.
1318QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1319  // Unique pointers, to guarantee there is only one pointer of a particular
1320  // structure.
1321  llvm::FoldingSetNodeID ID;
1322  MemberPointerType::Profile(ID, T, Cls);
1323
1324  void *InsertPos = 0;
1325  if (MemberPointerType *PT =
1326      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1327    return QualType(PT, 0);
1328
1329  // If the pointee or class type isn't canonical, this won't be a canonical
1330  // type either, so fill in the canonical type field.
1331  QualType Canonical;
1332  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1333    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1334
1335    // Get the new insert position for the node we care about.
1336    MemberPointerType *NewIP =
1337      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1338    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1339  }
1340  MemberPointerType *New
1341    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1342  Types.push_back(New);
1343  MemberPointerTypes.InsertNode(New, InsertPos);
1344  return QualType(New, 0);
1345}
1346
1347/// getConstantArrayType - Return the unique reference to the type for an
1348/// array of the specified element type.
1349QualType ASTContext::getConstantArrayType(QualType EltTy,
1350                                          const llvm::APInt &ArySizeIn,
1351                                          ArrayType::ArraySizeModifier ASM,
1352                                          unsigned EltTypeQuals) {
1353  assert((EltTy->isDependentType() ||
1354          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1355         "Constant array of VLAs is illegal!");
1356
1357  // Convert the array size into a canonical width matching the pointer size for
1358  // the target.
1359  llvm::APInt ArySize(ArySizeIn);
1360  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1361
1362  llvm::FoldingSetNodeID ID;
1363  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1364
1365  void *InsertPos = 0;
1366  if (ConstantArrayType *ATP =
1367      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1368    return QualType(ATP, 0);
1369
1370  // If the element type isn't canonical, this won't be a canonical type either,
1371  // so fill in the canonical type field.
1372  QualType Canonical;
1373  if (!EltTy.isCanonical()) {
1374    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1375                                     ASM, EltTypeQuals);
1376    // Get the new insert position for the node we care about.
1377    ConstantArrayType *NewIP =
1378      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1379    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1380  }
1381
1382  ConstantArrayType *New = new(*this,TypeAlignment)
1383    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1384  ConstantArrayTypes.InsertNode(New, InsertPos);
1385  Types.push_back(New);
1386  return QualType(New, 0);
1387}
1388
1389/// getVariableArrayType - Returns a non-unique reference to the type for a
1390/// variable array of the specified element type.
1391QualType ASTContext::getVariableArrayType(QualType EltTy,
1392                                          Expr *NumElts,
1393                                          ArrayType::ArraySizeModifier ASM,
1394                                          unsigned EltTypeQuals,
1395                                          SourceRange Brackets) {
1396  // Since we don't unique expressions, it isn't possible to unique VLA's
1397  // that have an expression provided for their size.
1398  QualType CanonType;
1399
1400  if (!EltTy.isCanonical()) {
1401    if (NumElts)
1402      NumElts->Retain();
1403    CanonType = getVariableArrayType(getCanonicalType(EltTy), NumElts, ASM,
1404                                     EltTypeQuals, Brackets);
1405  }
1406
1407  VariableArrayType *New = new(*this, TypeAlignment)
1408    VariableArrayType(EltTy, CanonType, NumElts, ASM, EltTypeQuals, Brackets);
1409
1410  VariableArrayTypes.push_back(New);
1411  Types.push_back(New);
1412  return QualType(New, 0);
1413}
1414
1415/// getDependentSizedArrayType - Returns a non-unique reference to
1416/// the type for a dependently-sized array of the specified element
1417/// type.
1418QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1419                                                Expr *NumElts,
1420                                                ArrayType::ArraySizeModifier ASM,
1421                                                unsigned EltTypeQuals,
1422                                                SourceRange Brackets) {
1423  assert((!NumElts || NumElts->isTypeDependent() ||
1424          NumElts->isValueDependent()) &&
1425         "Size must be type- or value-dependent!");
1426
1427  void *InsertPos = 0;
1428  DependentSizedArrayType *Canon = 0;
1429  llvm::FoldingSetNodeID ID;
1430
1431  if (NumElts) {
1432    // Dependently-sized array types that do not have a specified
1433    // number of elements will have their sizes deduced from an
1434    // initializer.
1435    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1436                                     EltTypeQuals, NumElts);
1437
1438    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1439  }
1440
1441  DependentSizedArrayType *New;
1442  if (Canon) {
1443    // We already have a canonical version of this array type; use it as
1444    // the canonical type for a newly-built type.
1445    New = new (*this, TypeAlignment)
1446      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1447                              NumElts, ASM, EltTypeQuals, Brackets);
1448  } else {
1449    QualType CanonEltTy = getCanonicalType(EltTy);
1450    if (CanonEltTy == EltTy) {
1451      New = new (*this, TypeAlignment)
1452        DependentSizedArrayType(*this, EltTy, QualType(),
1453                                NumElts, ASM, EltTypeQuals, Brackets);
1454
1455      if (NumElts) {
1456        DependentSizedArrayType *CanonCheck
1457          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1458        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1459        (void)CanonCheck;
1460        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1461      }
1462    } else {
1463      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1464                                                  ASM, EltTypeQuals,
1465                                                  SourceRange());
1466      New = new (*this, TypeAlignment)
1467        DependentSizedArrayType(*this, EltTy, Canon,
1468                                NumElts, ASM, EltTypeQuals, Brackets);
1469    }
1470  }
1471
1472  Types.push_back(New);
1473  return QualType(New, 0);
1474}
1475
1476QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1477                                            ArrayType::ArraySizeModifier ASM,
1478                                            unsigned EltTypeQuals) {
1479  llvm::FoldingSetNodeID ID;
1480  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1481
1482  void *InsertPos = 0;
1483  if (IncompleteArrayType *ATP =
1484       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1485    return QualType(ATP, 0);
1486
1487  // If the element type isn't canonical, this won't be a canonical type
1488  // either, so fill in the canonical type field.
1489  QualType Canonical;
1490
1491  if (!EltTy.isCanonical()) {
1492    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1493                                       ASM, EltTypeQuals);
1494
1495    // Get the new insert position for the node we care about.
1496    IncompleteArrayType *NewIP =
1497      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1498    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1499  }
1500
1501  IncompleteArrayType *New = new (*this, TypeAlignment)
1502    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1503
1504  IncompleteArrayTypes.InsertNode(New, InsertPos);
1505  Types.push_back(New);
1506  return QualType(New, 0);
1507}
1508
1509/// getVectorType - Return the unique reference to a vector type of
1510/// the specified element type and size. VectorType must be a built-in type.
1511QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1512    VectorType::AltiVecSpecific AltiVecSpec) {
1513  BuiltinType *baseType;
1514
1515  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1516  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1517
1518  // Check if we've already instantiated a vector of this type.
1519  llvm::FoldingSetNodeID ID;
1520  VectorType::Profile(ID, vecType, NumElts, Type::Vector, AltiVecSpec);
1521
1522  void *InsertPos = 0;
1523  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1524    return QualType(VTP, 0);
1525
1526  // If the element type isn't canonical, this won't be a canonical type either,
1527  // so fill in the canonical type field.
1528  QualType Canonical;
1529  if (!vecType.isCanonical()) {
1530    Canonical = getVectorType(getCanonicalType(vecType), NumElts,
1531      VectorType::NotAltiVec);
1532
1533    // Get the new insert position for the node we care about.
1534    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1535    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1536  }
1537  VectorType *New = new (*this, TypeAlignment)
1538    VectorType(vecType, NumElts, Canonical, AltiVecSpec);
1539  VectorTypes.InsertNode(New, InsertPos);
1540  Types.push_back(New);
1541  return QualType(New, 0);
1542}
1543
1544/// getExtVectorType - Return the unique reference to an extended vector type of
1545/// the specified element type and size. VectorType must be a built-in type.
1546QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1547  BuiltinType *baseType;
1548
1549  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1550  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1551
1552  // Check if we've already instantiated a vector of this type.
1553  llvm::FoldingSetNodeID ID;
1554  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1555                      VectorType::NotAltiVec);
1556  void *InsertPos = 0;
1557  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1558    return QualType(VTP, 0);
1559
1560  // If the element type isn't canonical, this won't be a canonical type either,
1561  // so fill in the canonical type field.
1562  QualType Canonical;
1563  if (!vecType.isCanonical()) {
1564    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1565
1566    // Get the new insert position for the node we care about.
1567    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1568    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1569  }
1570  ExtVectorType *New = new (*this, TypeAlignment)
1571    ExtVectorType(vecType, NumElts, Canonical);
1572  VectorTypes.InsertNode(New, InsertPos);
1573  Types.push_back(New);
1574  return QualType(New, 0);
1575}
1576
1577QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1578                                                    Expr *SizeExpr,
1579                                                    SourceLocation AttrLoc) {
1580  llvm::FoldingSetNodeID ID;
1581  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1582                                       SizeExpr);
1583
1584  void *InsertPos = 0;
1585  DependentSizedExtVectorType *Canon
1586    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1587  DependentSizedExtVectorType *New;
1588  if (Canon) {
1589    // We already have a canonical version of this array type; use it as
1590    // the canonical type for a newly-built type.
1591    New = new (*this, TypeAlignment)
1592      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1593                                  SizeExpr, AttrLoc);
1594  } else {
1595    QualType CanonVecTy = getCanonicalType(vecType);
1596    if (CanonVecTy == vecType) {
1597      New = new (*this, TypeAlignment)
1598        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1599                                    AttrLoc);
1600
1601      DependentSizedExtVectorType *CanonCheck
1602        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1603      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1604      (void)CanonCheck;
1605      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1606    } else {
1607      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1608                                                      SourceLocation());
1609      New = new (*this, TypeAlignment)
1610        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1611    }
1612  }
1613
1614  Types.push_back(New);
1615  return QualType(New, 0);
1616}
1617
1618/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1619///
1620QualType ASTContext::getFunctionNoProtoType(QualType ResultTy,
1621                                            const FunctionType::ExtInfo &Info) {
1622  const CallingConv CallConv = Info.getCC();
1623  // Unique functions, to guarantee there is only one function of a particular
1624  // structure.
1625  llvm::FoldingSetNodeID ID;
1626  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1627
1628  void *InsertPos = 0;
1629  if (FunctionNoProtoType *FT =
1630        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1631    return QualType(FT, 0);
1632
1633  QualType Canonical;
1634  if (!ResultTy.isCanonical() ||
1635      getCanonicalCallConv(CallConv) != CallConv) {
1636    Canonical =
1637      getFunctionNoProtoType(getCanonicalType(ResultTy),
1638                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1639
1640    // Get the new insert position for the node we care about.
1641    FunctionNoProtoType *NewIP =
1642      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1643    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1644  }
1645
1646  FunctionNoProtoType *New = new (*this, TypeAlignment)
1647    FunctionNoProtoType(ResultTy, Canonical, Info);
1648  Types.push_back(New);
1649  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1650  return QualType(New, 0);
1651}
1652
1653/// getFunctionType - Return a normal function type with a typed argument
1654/// list.  isVariadic indicates whether the argument list includes '...'.
1655QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1656                                     unsigned NumArgs, bool isVariadic,
1657                                     unsigned TypeQuals, bool hasExceptionSpec,
1658                                     bool hasAnyExceptionSpec, unsigned NumExs,
1659                                     const QualType *ExArray,
1660                                     const FunctionType::ExtInfo &Info) {
1661  const CallingConv CallConv= Info.getCC();
1662  // Unique functions, to guarantee there is only one function of a particular
1663  // structure.
1664  llvm::FoldingSetNodeID ID;
1665  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1666                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1667                             NumExs, ExArray, Info);
1668
1669  void *InsertPos = 0;
1670  if (FunctionProtoType *FTP =
1671        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1672    return QualType(FTP, 0);
1673
1674  // Determine whether the type being created is already canonical or not.
1675  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1676  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1677    if (!ArgArray[i].isCanonicalAsParam())
1678      isCanonical = false;
1679
1680  // If this type isn't canonical, get the canonical version of it.
1681  // The exception spec is not part of the canonical type.
1682  QualType Canonical;
1683  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1684    llvm::SmallVector<QualType, 16> CanonicalArgs;
1685    CanonicalArgs.reserve(NumArgs);
1686    for (unsigned i = 0; i != NumArgs; ++i)
1687      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1688
1689    Canonical = getFunctionType(getCanonicalType(ResultTy),
1690                                CanonicalArgs.data(), NumArgs,
1691                                isVariadic, TypeQuals, false,
1692                                false, 0, 0,
1693                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1694
1695    // Get the new insert position for the node we care about.
1696    FunctionProtoType *NewIP =
1697      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1698    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1699  }
1700
1701  // FunctionProtoType objects are allocated with extra bytes after them
1702  // for two variable size arrays (for parameter and exception types) at the
1703  // end of them.
1704  FunctionProtoType *FTP =
1705    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1706                                 NumArgs*sizeof(QualType) +
1707                                 NumExs*sizeof(QualType), TypeAlignment);
1708  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1709                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1710                              ExArray, NumExs, Canonical, Info);
1711  Types.push_back(FTP);
1712  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1713  return QualType(FTP, 0);
1714}
1715
1716#ifndef NDEBUG
1717static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1718  if (!isa<CXXRecordDecl>(D)) return false;
1719  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1720  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1721    return true;
1722  if (RD->getDescribedClassTemplate() &&
1723      !isa<ClassTemplateSpecializationDecl>(RD))
1724    return true;
1725  return false;
1726}
1727#endif
1728
1729/// getInjectedClassNameType - Return the unique reference to the
1730/// injected class name type for the specified templated declaration.
1731QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1732                                              QualType TST) {
1733  assert(NeedsInjectedClassNameType(Decl));
1734  if (Decl->TypeForDecl) {
1735    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1736  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
1737    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1738    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1739    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1740  } else {
1741    Decl->TypeForDecl =
1742      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1743    Types.push_back(Decl->TypeForDecl);
1744  }
1745  return QualType(Decl->TypeForDecl, 0);
1746}
1747
1748/// getTypeDeclType - Return the unique reference to the type for the
1749/// specified type declaration.
1750QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) {
1751  assert(Decl && "Passed null for Decl param");
1752  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1753
1754  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1755    return getTypedefType(Typedef);
1756
1757  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1758         "Template type parameter types are always available.");
1759
1760  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1761    assert(!Record->getPreviousDeclaration() &&
1762           "struct/union has previous declaration");
1763    assert(!NeedsInjectedClassNameType(Record));
1764    return getRecordType(Record);
1765  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1766    assert(!Enum->getPreviousDeclaration() &&
1767           "enum has previous declaration");
1768    return getEnumType(Enum);
1769  } else if (const UnresolvedUsingTypenameDecl *Using =
1770               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1771    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1772  } else
1773    llvm_unreachable("TypeDecl without a type?");
1774
1775  Types.push_back(Decl->TypeForDecl);
1776  return QualType(Decl->TypeForDecl, 0);
1777}
1778
1779/// getTypedefType - Return the unique reference to the type for the
1780/// specified typename decl.
1781QualType
1782ASTContext::getTypedefType(const TypedefDecl *Decl, QualType Canonical) {
1783  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1784
1785  if (Canonical.isNull())
1786    Canonical = getCanonicalType(Decl->getUnderlyingType());
1787  Decl->TypeForDecl = new(*this, TypeAlignment)
1788    TypedefType(Type::Typedef, Decl, Canonical);
1789  Types.push_back(Decl->TypeForDecl);
1790  return QualType(Decl->TypeForDecl, 0);
1791}
1792
1793QualType ASTContext::getRecordType(const RecordDecl *Decl) {
1794  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1795
1796  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
1797    if (PrevDecl->TypeForDecl)
1798      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
1799
1800  Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Decl);
1801  Types.push_back(Decl->TypeForDecl);
1802  return QualType(Decl->TypeForDecl, 0);
1803}
1804
1805QualType ASTContext::getEnumType(const EnumDecl *Decl) {
1806  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1807
1808  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
1809    if (PrevDecl->TypeForDecl)
1810      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
1811
1812  Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Decl);
1813  Types.push_back(Decl->TypeForDecl);
1814  return QualType(Decl->TypeForDecl, 0);
1815}
1816
1817/// \brief Retrieve a substitution-result type.
1818QualType
1819ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1820                                         QualType Replacement) {
1821  assert(Replacement.isCanonical()
1822         && "replacement types must always be canonical");
1823
1824  llvm::FoldingSetNodeID ID;
1825  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1826  void *InsertPos = 0;
1827  SubstTemplateTypeParmType *SubstParm
1828    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1829
1830  if (!SubstParm) {
1831    SubstParm = new (*this, TypeAlignment)
1832      SubstTemplateTypeParmType(Parm, Replacement);
1833    Types.push_back(SubstParm);
1834    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1835  }
1836
1837  return QualType(SubstParm, 0);
1838}
1839
1840/// \brief Retrieve the template type parameter type for a template
1841/// parameter or parameter pack with the given depth, index, and (optionally)
1842/// name.
1843QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1844                                             bool ParameterPack,
1845                                             IdentifierInfo *Name) {
1846  llvm::FoldingSetNodeID ID;
1847  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1848  void *InsertPos = 0;
1849  TemplateTypeParmType *TypeParm
1850    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1851
1852  if (TypeParm)
1853    return QualType(TypeParm, 0);
1854
1855  if (Name) {
1856    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1857    TypeParm = new (*this, TypeAlignment)
1858      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1859
1860    TemplateTypeParmType *TypeCheck
1861      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1862    assert(!TypeCheck && "Template type parameter canonical type broken");
1863    (void)TypeCheck;
1864  } else
1865    TypeParm = new (*this, TypeAlignment)
1866      TemplateTypeParmType(Depth, Index, ParameterPack);
1867
1868  Types.push_back(TypeParm);
1869  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1870
1871  return QualType(TypeParm, 0);
1872}
1873
1874TypeSourceInfo *
1875ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
1876                                              SourceLocation NameLoc,
1877                                        const TemplateArgumentListInfo &Args,
1878                                              QualType CanonType) {
1879  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
1880
1881  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
1882  TemplateSpecializationTypeLoc TL
1883    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1884  TL.setTemplateNameLoc(NameLoc);
1885  TL.setLAngleLoc(Args.getLAngleLoc());
1886  TL.setRAngleLoc(Args.getRAngleLoc());
1887  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1888    TL.setArgLocInfo(i, Args[i].getLocInfo());
1889  return DI;
1890}
1891
1892QualType
1893ASTContext::getTemplateSpecializationType(TemplateName Template,
1894                                          const TemplateArgumentListInfo &Args,
1895                                          QualType Canon) {
1896  unsigned NumArgs = Args.size();
1897
1898  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1899  ArgVec.reserve(NumArgs);
1900  for (unsigned i = 0; i != NumArgs; ++i)
1901    ArgVec.push_back(Args[i].getArgument());
1902
1903  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
1904                                       Canon);
1905}
1906
1907QualType
1908ASTContext::getTemplateSpecializationType(TemplateName Template,
1909                                          const TemplateArgument *Args,
1910                                          unsigned NumArgs,
1911                                          QualType Canon) {
1912  if (!Canon.isNull())
1913    Canon = getCanonicalType(Canon);
1914  else
1915    Canon = getCanonicalTemplateSpecializationType(Template, Args, NumArgs);
1916
1917  // Allocate the (non-canonical) template specialization type, but don't
1918  // try to unique it: these types typically have location information that
1919  // we don't unique and don't want to lose.
1920  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1921                        sizeof(TemplateArgument) * NumArgs),
1922                       TypeAlignment);
1923  TemplateSpecializationType *Spec
1924    = new (Mem) TemplateSpecializationType(Template,
1925                                           Args, NumArgs,
1926                                           Canon);
1927
1928  Types.push_back(Spec);
1929  return QualType(Spec, 0);
1930}
1931
1932QualType
1933ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
1934                                                   const TemplateArgument *Args,
1935                                                   unsigned NumArgs) {
1936  // Build the canonical template specialization type.
1937  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1938  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1939  CanonArgs.reserve(NumArgs);
1940  for (unsigned I = 0; I != NumArgs; ++I)
1941    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1942
1943  // Determine whether this canonical template specialization type already
1944  // exists.
1945  llvm::FoldingSetNodeID ID;
1946  TemplateSpecializationType::Profile(ID, CanonTemplate,
1947                                      CanonArgs.data(), NumArgs, *this);
1948
1949  void *InsertPos = 0;
1950  TemplateSpecializationType *Spec
1951    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1952
1953  if (!Spec) {
1954    // Allocate a new canonical template specialization type.
1955    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1956                          sizeof(TemplateArgument) * NumArgs),
1957                         TypeAlignment);
1958    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
1959                                                CanonArgs.data(), NumArgs,
1960                                                QualType());
1961    Types.push_back(Spec);
1962    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1963  }
1964
1965  assert(Spec->isDependentType() &&
1966         "Non-dependent template-id type must have a canonical type");
1967  return QualType(Spec, 0);
1968}
1969
1970QualType
1971ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
1972                              NestedNameSpecifier *NNS,
1973                              QualType NamedType) {
1974  llvm::FoldingSetNodeID ID;
1975  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
1976
1977  void *InsertPos = 0;
1978  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1979  if (T)
1980    return QualType(T, 0);
1981
1982  QualType Canon = NamedType;
1983  if (!Canon.isCanonical()) {
1984    Canon = getCanonicalType(NamedType);
1985    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1986    assert(!CheckT && "Elaborated canonical type broken");
1987    (void)CheckT;
1988  }
1989
1990  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
1991  Types.push_back(T);
1992  ElaboratedTypes.InsertNode(T, InsertPos);
1993  return QualType(T, 0);
1994}
1995
1996QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
1997                                          NestedNameSpecifier *NNS,
1998                                          const IdentifierInfo *Name,
1999                                          QualType Canon) {
2000  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2001
2002  if (Canon.isNull()) {
2003    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2004    ElaboratedTypeKeyword CanonKeyword = Keyword;
2005    if (Keyword == ETK_None)
2006      CanonKeyword = ETK_Typename;
2007
2008    if (CanonNNS != NNS || CanonKeyword != Keyword)
2009      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2010  }
2011
2012  llvm::FoldingSetNodeID ID;
2013  DependentNameType::Profile(ID, Keyword, NNS, Name);
2014
2015  void *InsertPos = 0;
2016  DependentNameType *T
2017    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2018  if (T)
2019    return QualType(T, 0);
2020
2021  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2022  Types.push_back(T);
2023  DependentNameTypes.InsertNode(T, InsertPos);
2024  return QualType(T, 0);
2025}
2026
2027QualType
2028ASTContext::getDependentTemplateSpecializationType(
2029                                 ElaboratedTypeKeyword Keyword,
2030                                 NestedNameSpecifier *NNS,
2031                                 const IdentifierInfo *Name,
2032                                 const TemplateArgumentListInfo &Args) {
2033  // TODO: avoid this copy
2034  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2035  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2036    ArgCopy.push_back(Args[I].getArgument());
2037  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2038                                                ArgCopy.size(),
2039                                                ArgCopy.data());
2040}
2041
2042QualType
2043ASTContext::getDependentTemplateSpecializationType(
2044                                 ElaboratedTypeKeyword Keyword,
2045                                 NestedNameSpecifier *NNS,
2046                                 const IdentifierInfo *Name,
2047                                 unsigned NumArgs,
2048                                 const TemplateArgument *Args) {
2049  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2050
2051  llvm::FoldingSetNodeID ID;
2052  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2053                                               Name, NumArgs, Args);
2054
2055  void *InsertPos = 0;
2056  DependentTemplateSpecializationType *T
2057    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2058  if (T)
2059    return QualType(T, 0);
2060
2061  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2062
2063  ElaboratedTypeKeyword CanonKeyword = Keyword;
2064  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2065
2066  bool AnyNonCanonArgs = false;
2067  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2068  for (unsigned I = 0; I != NumArgs; ++I) {
2069    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2070    if (!CanonArgs[I].structurallyEquals(Args[I]))
2071      AnyNonCanonArgs = true;
2072  }
2073
2074  QualType Canon;
2075  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2076    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2077                                                   Name, NumArgs,
2078                                                   CanonArgs.data());
2079
2080    // Find the insert position again.
2081    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2082  }
2083
2084  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2085                        sizeof(TemplateArgument) * NumArgs),
2086                       TypeAlignment);
2087  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2088                                                    Name, NumArgs, Args, Canon);
2089  Types.push_back(T);
2090  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2091  return QualType(T, 0);
2092}
2093
2094/// CmpProtocolNames - Comparison predicate for sorting protocols
2095/// alphabetically.
2096static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2097                            const ObjCProtocolDecl *RHS) {
2098  return LHS->getDeclName() < RHS->getDeclName();
2099}
2100
2101static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2102                                unsigned NumProtocols) {
2103  if (NumProtocols == 0) return true;
2104
2105  for (unsigned i = 1; i != NumProtocols; ++i)
2106    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2107      return false;
2108  return true;
2109}
2110
2111static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2112                                   unsigned &NumProtocols) {
2113  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2114
2115  // Sort protocols, keyed by name.
2116  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2117
2118  // Remove duplicates.
2119  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2120  NumProtocols = ProtocolsEnd-Protocols;
2121}
2122
2123QualType ASTContext::getObjCObjectType(QualType BaseType,
2124                                       ObjCProtocolDecl * const *Protocols,
2125                                       unsigned NumProtocols) {
2126  // If the base type is an interface and there aren't any protocols
2127  // to add, then the interface type will do just fine.
2128  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2129    return BaseType;
2130
2131  // Look in the folding set for an existing type.
2132  llvm::FoldingSetNodeID ID;
2133  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2134  void *InsertPos = 0;
2135  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2136    return QualType(QT, 0);
2137
2138  // Build the canonical type, which has the canonical base type and
2139  // a sorted-and-uniqued list of protocols.
2140  QualType Canonical;
2141  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2142  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2143    if (!ProtocolsSorted) {
2144      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2145                                                     Protocols + NumProtocols);
2146      unsigned UniqueCount = NumProtocols;
2147
2148      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2149      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2150                                    &Sorted[0], UniqueCount);
2151    } else {
2152      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2153                                    Protocols, NumProtocols);
2154    }
2155
2156    // Regenerate InsertPos.
2157    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2158  }
2159
2160  unsigned Size = sizeof(ObjCObjectTypeImpl);
2161  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2162  void *Mem = Allocate(Size, TypeAlignment);
2163  ObjCObjectTypeImpl *T =
2164    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2165
2166  Types.push_back(T);
2167  ObjCObjectTypes.InsertNode(T, InsertPos);
2168  return QualType(T, 0);
2169}
2170
2171/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2172/// the given object type.
2173QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) {
2174  llvm::FoldingSetNodeID ID;
2175  ObjCObjectPointerType::Profile(ID, ObjectT);
2176
2177  void *InsertPos = 0;
2178  if (ObjCObjectPointerType *QT =
2179              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2180    return QualType(QT, 0);
2181
2182  // Find the canonical object type.
2183  QualType Canonical;
2184  if (!ObjectT.isCanonical()) {
2185    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2186
2187    // Regenerate InsertPos.
2188    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2189  }
2190
2191  // No match.
2192  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2193  ObjCObjectPointerType *QType =
2194    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2195
2196  Types.push_back(QType);
2197  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2198  return QualType(QType, 0);
2199}
2200
2201/// getObjCInterfaceType - Return the unique reference to the type for the
2202/// specified ObjC interface decl. The list of protocols is optional.
2203QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) {
2204  if (Decl->TypeForDecl)
2205    return QualType(Decl->TypeForDecl, 0);
2206
2207  // FIXME: redeclarations?
2208  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2209  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2210  Decl->TypeForDecl = T;
2211  Types.push_back(T);
2212  return QualType(T, 0);
2213}
2214
2215/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2216/// TypeOfExprType AST's (since expression's are never shared). For example,
2217/// multiple declarations that refer to "typeof(x)" all contain different
2218/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2219/// on canonical type's (which are always unique).
2220QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2221  TypeOfExprType *toe;
2222  if (tofExpr->isTypeDependent()) {
2223    llvm::FoldingSetNodeID ID;
2224    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2225
2226    void *InsertPos = 0;
2227    DependentTypeOfExprType *Canon
2228      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2229    if (Canon) {
2230      // We already have a "canonical" version of an identical, dependent
2231      // typeof(expr) type. Use that as our canonical type.
2232      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2233                                          QualType((TypeOfExprType*)Canon, 0));
2234    }
2235    else {
2236      // Build a new, canonical typeof(expr) type.
2237      Canon
2238        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2239      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2240      toe = Canon;
2241    }
2242  } else {
2243    QualType Canonical = getCanonicalType(tofExpr->getType());
2244    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2245  }
2246  Types.push_back(toe);
2247  return QualType(toe, 0);
2248}
2249
2250/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2251/// TypeOfType AST's. The only motivation to unique these nodes would be
2252/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2253/// an issue. This doesn't effect the type checker, since it operates
2254/// on canonical type's (which are always unique).
2255QualType ASTContext::getTypeOfType(QualType tofType) {
2256  QualType Canonical = getCanonicalType(tofType);
2257  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2258  Types.push_back(tot);
2259  return QualType(tot, 0);
2260}
2261
2262/// getDecltypeForExpr - Given an expr, will return the decltype for that
2263/// expression, according to the rules in C++0x [dcl.type.simple]p4
2264static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2265  if (e->isTypeDependent())
2266    return Context.DependentTy;
2267
2268  // If e is an id expression or a class member access, decltype(e) is defined
2269  // as the type of the entity named by e.
2270  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2271    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2272      return VD->getType();
2273  }
2274  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2275    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2276      return FD->getType();
2277  }
2278  // If e is a function call or an invocation of an overloaded operator,
2279  // (parentheses around e are ignored), decltype(e) is defined as the
2280  // return type of that function.
2281  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2282    return CE->getCallReturnType();
2283
2284  QualType T = e->getType();
2285
2286  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2287  // defined as T&, otherwise decltype(e) is defined as T.
2288  if (e->isLvalue(Context) == Expr::LV_Valid)
2289    T = Context.getLValueReferenceType(T);
2290
2291  return T;
2292}
2293
2294/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2295/// DecltypeType AST's. The only motivation to unique these nodes would be
2296/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2297/// an issue. This doesn't effect the type checker, since it operates
2298/// on canonical type's (which are always unique).
2299QualType ASTContext::getDecltypeType(Expr *e) {
2300  DecltypeType *dt;
2301  if (e->isTypeDependent()) {
2302    llvm::FoldingSetNodeID ID;
2303    DependentDecltypeType::Profile(ID, *this, e);
2304
2305    void *InsertPos = 0;
2306    DependentDecltypeType *Canon
2307      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2308    if (Canon) {
2309      // We already have a "canonical" version of an equivalent, dependent
2310      // decltype type. Use that as our canonical type.
2311      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2312                                       QualType((DecltypeType*)Canon, 0));
2313    }
2314    else {
2315      // Build a new, canonical typeof(expr) type.
2316      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2317      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2318      dt = Canon;
2319    }
2320  } else {
2321    QualType T = getDecltypeForExpr(e, *this);
2322    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2323  }
2324  Types.push_back(dt);
2325  return QualType(dt, 0);
2326}
2327
2328/// getTagDeclType - Return the unique reference to the type for the
2329/// specified TagDecl (struct/union/class/enum) decl.
2330QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2331  assert (Decl);
2332  // FIXME: What is the design on getTagDeclType when it requires casting
2333  // away const?  mutable?
2334  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2335}
2336
2337/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2338/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2339/// needs to agree with the definition in <stddef.h>.
2340CanQualType ASTContext::getSizeType() const {
2341  return getFromTargetType(Target.getSizeType());
2342}
2343
2344/// getSignedWCharType - Return the type of "signed wchar_t".
2345/// Used when in C++, as a GCC extension.
2346QualType ASTContext::getSignedWCharType() const {
2347  // FIXME: derive from "Target" ?
2348  return WCharTy;
2349}
2350
2351/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2352/// Used when in C++, as a GCC extension.
2353QualType ASTContext::getUnsignedWCharType() const {
2354  // FIXME: derive from "Target" ?
2355  return UnsignedIntTy;
2356}
2357
2358/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2359/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2360QualType ASTContext::getPointerDiffType() const {
2361  return getFromTargetType(Target.getPtrDiffType(0));
2362}
2363
2364//===----------------------------------------------------------------------===//
2365//                              Type Operators
2366//===----------------------------------------------------------------------===//
2367
2368CanQualType ASTContext::getCanonicalParamType(QualType T) {
2369  // Push qualifiers into arrays, and then discard any remaining
2370  // qualifiers.
2371  T = getCanonicalType(T);
2372  const Type *Ty = T.getTypePtr();
2373
2374  QualType Result;
2375  if (isa<ArrayType>(Ty)) {
2376    Result = getArrayDecayedType(QualType(Ty,0));
2377  } else if (isa<FunctionType>(Ty)) {
2378    Result = getPointerType(QualType(Ty, 0));
2379  } else {
2380    Result = QualType(Ty, 0);
2381  }
2382
2383  return CanQualType::CreateUnsafe(Result);
2384}
2385
2386/// getCanonicalType - Return the canonical (structural) type corresponding to
2387/// the specified potentially non-canonical type.  The non-canonical version
2388/// of a type may have many "decorated" versions of types.  Decorators can
2389/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2390/// to be free of any of these, allowing two canonical types to be compared
2391/// for exact equality with a simple pointer comparison.
2392CanQualType ASTContext::getCanonicalType(QualType T) {
2393  QualifierCollector Quals;
2394  const Type *Ptr = Quals.strip(T);
2395  QualType CanType = Ptr->getCanonicalTypeInternal();
2396
2397  // The canonical internal type will be the canonical type *except*
2398  // that we push type qualifiers down through array types.
2399
2400  // If there are no new qualifiers to push down, stop here.
2401  if (!Quals.hasQualifiers())
2402    return CanQualType::CreateUnsafe(CanType);
2403
2404  // If the type qualifiers are on an array type, get the canonical
2405  // type of the array with the qualifiers applied to the element
2406  // type.
2407  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2408  if (!AT)
2409    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2410
2411  // Get the canonical version of the element with the extra qualifiers on it.
2412  // This can recursively sink qualifiers through multiple levels of arrays.
2413  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2414  NewEltTy = getCanonicalType(NewEltTy);
2415
2416  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2417    return CanQualType::CreateUnsafe(
2418             getConstantArrayType(NewEltTy, CAT->getSize(),
2419                                  CAT->getSizeModifier(),
2420                                  CAT->getIndexTypeCVRQualifiers()));
2421  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2422    return CanQualType::CreateUnsafe(
2423             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2424                                    IAT->getIndexTypeCVRQualifiers()));
2425
2426  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2427    return CanQualType::CreateUnsafe(
2428             getDependentSizedArrayType(NewEltTy,
2429                                        DSAT->getSizeExpr() ?
2430                                          DSAT->getSizeExpr()->Retain() : 0,
2431                                        DSAT->getSizeModifier(),
2432                                        DSAT->getIndexTypeCVRQualifiers(),
2433                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2434
2435  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2436  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2437                                                        VAT->getSizeExpr() ?
2438                                              VAT->getSizeExpr()->Retain() : 0,
2439                                                        VAT->getSizeModifier(),
2440                                              VAT->getIndexTypeCVRQualifiers(),
2441                                                     VAT->getBracketsRange()));
2442}
2443
2444QualType ASTContext::getUnqualifiedArrayType(QualType T,
2445                                             Qualifiers &Quals) {
2446  Quals = T.getQualifiers();
2447  const ArrayType *AT = getAsArrayType(T);
2448  if (!AT) {
2449    return T.getUnqualifiedType();
2450  }
2451
2452  QualType Elt = AT->getElementType();
2453  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2454  if (Elt == UnqualElt)
2455    return T;
2456
2457  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2458    return getConstantArrayType(UnqualElt, CAT->getSize(),
2459                                CAT->getSizeModifier(), 0);
2460  }
2461
2462  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2463    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2464  }
2465
2466  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2467    return getVariableArrayType(UnqualElt,
2468                                VAT->getSizeExpr() ?
2469                                VAT->getSizeExpr()->Retain() : 0,
2470                                VAT->getSizeModifier(),
2471                                VAT->getIndexTypeCVRQualifiers(),
2472                                VAT->getBracketsRange());
2473  }
2474
2475  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2476  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2477                                    DSAT->getSizeModifier(), 0,
2478                                    SourceRange());
2479}
2480
2481/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2482/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2483/// they point to and return true. If T1 and T2 aren't pointer types
2484/// or pointer-to-member types, or if they are not similar at this
2485/// level, returns false and leaves T1 and T2 unchanged. Top-level
2486/// qualifiers on T1 and T2 are ignored. This function will typically
2487/// be called in a loop that successively "unwraps" pointer and
2488/// pointer-to-member types to compare them at each level.
2489bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2490  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2491                    *T2PtrType = T2->getAs<PointerType>();
2492  if (T1PtrType && T2PtrType) {
2493    T1 = T1PtrType->getPointeeType();
2494    T2 = T2PtrType->getPointeeType();
2495    return true;
2496  }
2497
2498  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2499                          *T2MPType = T2->getAs<MemberPointerType>();
2500  if (T1MPType && T2MPType &&
2501      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2502                             QualType(T2MPType->getClass(), 0))) {
2503    T1 = T1MPType->getPointeeType();
2504    T2 = T2MPType->getPointeeType();
2505    return true;
2506  }
2507
2508  if (getLangOptions().ObjC1) {
2509    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2510                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2511    if (T1OPType && T2OPType) {
2512      T1 = T1OPType->getPointeeType();
2513      T2 = T2OPType->getPointeeType();
2514      return true;
2515    }
2516  }
2517
2518  // FIXME: Block pointers, too?
2519
2520  return false;
2521}
2522
2523DeclarationNameInfo ASTContext::getNameForTemplate(TemplateName Name,
2524                                                   SourceLocation NameLoc) {
2525  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2526    // DNInfo work in progress: CHECKME: what about DNLoc?
2527    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
2528
2529  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2530    DeclarationName DName;
2531    if (DTN->isIdentifier()) {
2532      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
2533      return DeclarationNameInfo(DName, NameLoc);
2534    } else {
2535      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
2536      // DNInfo work in progress: FIXME: source locations?
2537      DeclarationNameLoc DNLoc;
2538      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
2539      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
2540      return DeclarationNameInfo(DName, NameLoc, DNLoc);
2541    }
2542  }
2543
2544  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2545  assert(Storage);
2546  // DNInfo work in progress: CHECKME: what about DNLoc?
2547  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
2548}
2549
2550TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2551  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2552    if (TemplateTemplateParmDecl *TTP
2553                              = dyn_cast<TemplateTemplateParmDecl>(Template))
2554      Template = getCanonicalTemplateTemplateParmDecl(TTP);
2555
2556    // The canonical template name is the canonical template declaration.
2557    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2558  }
2559
2560  assert(!Name.getAsOverloadedTemplate());
2561
2562  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2563  assert(DTN && "Non-dependent template names must refer to template decls.");
2564  return DTN->CanonicalTemplateName;
2565}
2566
2567bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2568  X = getCanonicalTemplateName(X);
2569  Y = getCanonicalTemplateName(Y);
2570  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2571}
2572
2573TemplateArgument
2574ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2575  switch (Arg.getKind()) {
2576    case TemplateArgument::Null:
2577      return Arg;
2578
2579    case TemplateArgument::Expression:
2580      return Arg;
2581
2582    case TemplateArgument::Declaration:
2583      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2584
2585    case TemplateArgument::Template:
2586      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2587
2588    case TemplateArgument::Integral:
2589      return TemplateArgument(*Arg.getAsIntegral(),
2590                              getCanonicalType(Arg.getIntegralType()));
2591
2592    case TemplateArgument::Type:
2593      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2594
2595    case TemplateArgument::Pack: {
2596      // FIXME: Allocate in ASTContext
2597      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2598      unsigned Idx = 0;
2599      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2600                                        AEnd = Arg.pack_end();
2601           A != AEnd; (void)++A, ++Idx)
2602        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2603
2604      TemplateArgument Result;
2605      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2606      return Result;
2607    }
2608  }
2609
2610  // Silence GCC warning
2611  assert(false && "Unhandled template argument kind");
2612  return TemplateArgument();
2613}
2614
2615NestedNameSpecifier *
2616ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2617  if (!NNS)
2618    return 0;
2619
2620  switch (NNS->getKind()) {
2621  case NestedNameSpecifier::Identifier:
2622    // Canonicalize the prefix but keep the identifier the same.
2623    return NestedNameSpecifier::Create(*this,
2624                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2625                                       NNS->getAsIdentifier());
2626
2627  case NestedNameSpecifier::Namespace:
2628    // A namespace is canonical; build a nested-name-specifier with
2629    // this namespace and no prefix.
2630    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2631
2632  case NestedNameSpecifier::TypeSpec:
2633  case NestedNameSpecifier::TypeSpecWithTemplate: {
2634    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2635    return NestedNameSpecifier::Create(*this, 0,
2636                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2637                                       T.getTypePtr());
2638  }
2639
2640  case NestedNameSpecifier::Global:
2641    // The global specifier is canonical and unique.
2642    return NNS;
2643  }
2644
2645  // Required to silence a GCC warning
2646  return 0;
2647}
2648
2649
2650const ArrayType *ASTContext::getAsArrayType(QualType T) {
2651  // Handle the non-qualified case efficiently.
2652  if (!T.hasLocalQualifiers()) {
2653    // Handle the common positive case fast.
2654    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2655      return AT;
2656  }
2657
2658  // Handle the common negative case fast.
2659  QualType CType = T->getCanonicalTypeInternal();
2660  if (!isa<ArrayType>(CType))
2661    return 0;
2662
2663  // Apply any qualifiers from the array type to the element type.  This
2664  // implements C99 6.7.3p8: "If the specification of an array type includes
2665  // any type qualifiers, the element type is so qualified, not the array type."
2666
2667  // If we get here, we either have type qualifiers on the type, or we have
2668  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2669  // we must propagate them down into the element type.
2670
2671  QualifierCollector Qs;
2672  const Type *Ty = Qs.strip(T.getDesugaredType());
2673
2674  // If we have a simple case, just return now.
2675  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2676  if (ATy == 0 || Qs.empty())
2677    return ATy;
2678
2679  // Otherwise, we have an array and we have qualifiers on it.  Push the
2680  // qualifiers into the array element type and return a new array type.
2681  // Get the canonical version of the element with the extra qualifiers on it.
2682  // This can recursively sink qualifiers through multiple levels of arrays.
2683  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2684
2685  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2686    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2687                                                CAT->getSizeModifier(),
2688                                           CAT->getIndexTypeCVRQualifiers()));
2689  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2690    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2691                                                  IAT->getSizeModifier(),
2692                                           IAT->getIndexTypeCVRQualifiers()));
2693
2694  if (const DependentSizedArrayType *DSAT
2695        = dyn_cast<DependentSizedArrayType>(ATy))
2696    return cast<ArrayType>(
2697                     getDependentSizedArrayType(NewEltTy,
2698                                                DSAT->getSizeExpr() ?
2699                                              DSAT->getSizeExpr()->Retain() : 0,
2700                                                DSAT->getSizeModifier(),
2701                                              DSAT->getIndexTypeCVRQualifiers(),
2702                                                DSAT->getBracketsRange()));
2703
2704  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2705  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2706                                              VAT->getSizeExpr() ?
2707                                              VAT->getSizeExpr()->Retain() : 0,
2708                                              VAT->getSizeModifier(),
2709                                              VAT->getIndexTypeCVRQualifiers(),
2710                                              VAT->getBracketsRange()));
2711}
2712
2713
2714/// getArrayDecayedType - Return the properly qualified result of decaying the
2715/// specified array type to a pointer.  This operation is non-trivial when
2716/// handling typedefs etc.  The canonical type of "T" must be an array type,
2717/// this returns a pointer to a properly qualified element of the array.
2718///
2719/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2720QualType ASTContext::getArrayDecayedType(QualType Ty) {
2721  // Get the element type with 'getAsArrayType' so that we don't lose any
2722  // typedefs in the element type of the array.  This also handles propagation
2723  // of type qualifiers from the array type into the element type if present
2724  // (C99 6.7.3p8).
2725  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2726  assert(PrettyArrayType && "Not an array type!");
2727
2728  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2729
2730  // int x[restrict 4] ->  int *restrict
2731  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2732}
2733
2734QualType ASTContext::getBaseElementType(QualType QT) {
2735  QualifierCollector Qs;
2736  while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
2737    QT = AT->getElementType();
2738  return Qs.apply(QT);
2739}
2740
2741QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2742  QualType ElemTy = AT->getElementType();
2743
2744  if (const ArrayType *AT = getAsArrayType(ElemTy))
2745    return getBaseElementType(AT);
2746
2747  return ElemTy;
2748}
2749
2750/// getConstantArrayElementCount - Returns number of constant array elements.
2751uint64_t
2752ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2753  uint64_t ElementCount = 1;
2754  do {
2755    ElementCount *= CA->getSize().getZExtValue();
2756    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2757  } while (CA);
2758  return ElementCount;
2759}
2760
2761/// getFloatingRank - Return a relative rank for floating point types.
2762/// This routine will assert if passed a built-in type that isn't a float.
2763static FloatingRank getFloatingRank(QualType T) {
2764  if (const ComplexType *CT = T->getAs<ComplexType>())
2765    return getFloatingRank(CT->getElementType());
2766
2767  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2768  switch (T->getAs<BuiltinType>()->getKind()) {
2769  default: assert(0 && "getFloatingRank(): not a floating type");
2770  case BuiltinType::Float:      return FloatRank;
2771  case BuiltinType::Double:     return DoubleRank;
2772  case BuiltinType::LongDouble: return LongDoubleRank;
2773  }
2774}
2775
2776/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2777/// point or a complex type (based on typeDomain/typeSize).
2778/// 'typeDomain' is a real floating point or complex type.
2779/// 'typeSize' is a real floating point or complex type.
2780QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2781                                                       QualType Domain) const {
2782  FloatingRank EltRank = getFloatingRank(Size);
2783  if (Domain->isComplexType()) {
2784    switch (EltRank) {
2785    default: assert(0 && "getFloatingRank(): illegal value for rank");
2786    case FloatRank:      return FloatComplexTy;
2787    case DoubleRank:     return DoubleComplexTy;
2788    case LongDoubleRank: return LongDoubleComplexTy;
2789    }
2790  }
2791
2792  assert(Domain->isRealFloatingType() && "Unknown domain!");
2793  switch (EltRank) {
2794  default: assert(0 && "getFloatingRank(): illegal value for rank");
2795  case FloatRank:      return FloatTy;
2796  case DoubleRank:     return DoubleTy;
2797  case LongDoubleRank: return LongDoubleTy;
2798  }
2799}
2800
2801/// getFloatingTypeOrder - Compare the rank of the two specified floating
2802/// point types, ignoring the domain of the type (i.e. 'double' ==
2803/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2804/// LHS < RHS, return -1.
2805int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2806  FloatingRank LHSR = getFloatingRank(LHS);
2807  FloatingRank RHSR = getFloatingRank(RHS);
2808
2809  if (LHSR == RHSR)
2810    return 0;
2811  if (LHSR > RHSR)
2812    return 1;
2813  return -1;
2814}
2815
2816/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2817/// routine will assert if passed a built-in type that isn't an integer or enum,
2818/// or if it is not canonicalized.
2819unsigned ASTContext::getIntegerRank(Type *T) {
2820  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2821  if (EnumType* ET = dyn_cast<EnumType>(T))
2822    T = ET->getDecl()->getPromotionType().getTypePtr();
2823
2824  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2825    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2826
2827  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2828    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2829
2830  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2831    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2832
2833  switch (cast<BuiltinType>(T)->getKind()) {
2834  default: assert(0 && "getIntegerRank(): not a built-in integer");
2835  case BuiltinType::Bool:
2836    return 1 + (getIntWidth(BoolTy) << 3);
2837  case BuiltinType::Char_S:
2838  case BuiltinType::Char_U:
2839  case BuiltinType::SChar:
2840  case BuiltinType::UChar:
2841    return 2 + (getIntWidth(CharTy) << 3);
2842  case BuiltinType::Short:
2843  case BuiltinType::UShort:
2844    return 3 + (getIntWidth(ShortTy) << 3);
2845  case BuiltinType::Int:
2846  case BuiltinType::UInt:
2847    return 4 + (getIntWidth(IntTy) << 3);
2848  case BuiltinType::Long:
2849  case BuiltinType::ULong:
2850    return 5 + (getIntWidth(LongTy) << 3);
2851  case BuiltinType::LongLong:
2852  case BuiltinType::ULongLong:
2853    return 6 + (getIntWidth(LongLongTy) << 3);
2854  case BuiltinType::Int128:
2855  case BuiltinType::UInt128:
2856    return 7 + (getIntWidth(Int128Ty) << 3);
2857  }
2858}
2859
2860/// \brief Whether this is a promotable bitfield reference according
2861/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2862///
2863/// \returns the type this bit-field will promote to, or NULL if no
2864/// promotion occurs.
2865QualType ASTContext::isPromotableBitField(Expr *E) {
2866  if (E->isTypeDependent() || E->isValueDependent())
2867    return QualType();
2868
2869  FieldDecl *Field = E->getBitField();
2870  if (!Field)
2871    return QualType();
2872
2873  QualType FT = Field->getType();
2874
2875  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2876  uint64_t BitWidth = BitWidthAP.getZExtValue();
2877  uint64_t IntSize = getTypeSize(IntTy);
2878  // GCC extension compatibility: if the bit-field size is less than or equal
2879  // to the size of int, it gets promoted no matter what its type is.
2880  // For instance, unsigned long bf : 4 gets promoted to signed int.
2881  if (BitWidth < IntSize)
2882    return IntTy;
2883
2884  if (BitWidth == IntSize)
2885    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2886
2887  // Types bigger than int are not subject to promotions, and therefore act
2888  // like the base type.
2889  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2890  // is ridiculous.
2891  return QualType();
2892}
2893
2894/// getPromotedIntegerType - Returns the type that Promotable will
2895/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2896/// integer type.
2897QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2898  assert(!Promotable.isNull());
2899  assert(Promotable->isPromotableIntegerType());
2900  if (const EnumType *ET = Promotable->getAs<EnumType>())
2901    return ET->getDecl()->getPromotionType();
2902  if (Promotable->isSignedIntegerType())
2903    return IntTy;
2904  uint64_t PromotableSize = getTypeSize(Promotable);
2905  uint64_t IntSize = getTypeSize(IntTy);
2906  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2907  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2908}
2909
2910/// getIntegerTypeOrder - Returns the highest ranked integer type:
2911/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2912/// LHS < RHS, return -1.
2913int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2914  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2915  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2916  if (LHSC == RHSC) return 0;
2917
2918  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2919  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2920
2921  unsigned LHSRank = getIntegerRank(LHSC);
2922  unsigned RHSRank = getIntegerRank(RHSC);
2923
2924  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2925    if (LHSRank == RHSRank) return 0;
2926    return LHSRank > RHSRank ? 1 : -1;
2927  }
2928
2929  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2930  if (LHSUnsigned) {
2931    // If the unsigned [LHS] type is larger, return it.
2932    if (LHSRank >= RHSRank)
2933      return 1;
2934
2935    // If the signed type can represent all values of the unsigned type, it
2936    // wins.  Because we are dealing with 2's complement and types that are
2937    // powers of two larger than each other, this is always safe.
2938    return -1;
2939  }
2940
2941  // If the unsigned [RHS] type is larger, return it.
2942  if (RHSRank >= LHSRank)
2943    return -1;
2944
2945  // If the signed type can represent all values of the unsigned type, it
2946  // wins.  Because we are dealing with 2's complement and types that are
2947  // powers of two larger than each other, this is always safe.
2948  return 1;
2949}
2950
2951static RecordDecl *
2952CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2953                 SourceLocation L, IdentifierInfo *Id) {
2954  if (Ctx.getLangOptions().CPlusPlus)
2955    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2956  else
2957    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2958}
2959
2960// getCFConstantStringType - Return the type used for constant CFStrings.
2961QualType ASTContext::getCFConstantStringType() {
2962  if (!CFConstantStringTypeDecl) {
2963    CFConstantStringTypeDecl =
2964      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
2965                       &Idents.get("NSConstantString"));
2966    CFConstantStringTypeDecl->startDefinition();
2967
2968    QualType FieldTypes[4];
2969
2970    // const int *isa;
2971    FieldTypes[0] = getPointerType(IntTy.withConst());
2972    // int flags;
2973    FieldTypes[1] = IntTy;
2974    // const char *str;
2975    FieldTypes[2] = getPointerType(CharTy.withConst());
2976    // long length;
2977    FieldTypes[3] = LongTy;
2978
2979    // Create fields
2980    for (unsigned i = 0; i < 4; ++i) {
2981      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2982                                           SourceLocation(), 0,
2983                                           FieldTypes[i], /*TInfo=*/0,
2984                                           /*BitWidth=*/0,
2985                                           /*Mutable=*/false);
2986      Field->setAccess(AS_public);
2987      CFConstantStringTypeDecl->addDecl(Field);
2988    }
2989
2990    CFConstantStringTypeDecl->completeDefinition();
2991  }
2992
2993  return getTagDeclType(CFConstantStringTypeDecl);
2994}
2995
2996void ASTContext::setCFConstantStringType(QualType T) {
2997  const RecordType *Rec = T->getAs<RecordType>();
2998  assert(Rec && "Invalid CFConstantStringType");
2999  CFConstantStringTypeDecl = Rec->getDecl();
3000}
3001
3002// getNSConstantStringType - Return the type used for constant NSStrings.
3003QualType ASTContext::getNSConstantStringType() {
3004  if (!NSConstantStringTypeDecl) {
3005    NSConstantStringTypeDecl =
3006    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3007                     &Idents.get("__builtin_NSString"));
3008    NSConstantStringTypeDecl->startDefinition();
3009
3010    QualType FieldTypes[3];
3011
3012    // const int *isa;
3013    FieldTypes[0] = getPointerType(IntTy.withConst());
3014    // const char *str;
3015    FieldTypes[1] = getPointerType(CharTy.withConst());
3016    // unsigned int length;
3017    FieldTypes[2] = UnsignedIntTy;
3018
3019    // Create fields
3020    for (unsigned i = 0; i < 3; ++i) {
3021      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3022                                           SourceLocation(), 0,
3023                                           FieldTypes[i], /*TInfo=*/0,
3024                                           /*BitWidth=*/0,
3025                                           /*Mutable=*/false);
3026      Field->setAccess(AS_public);
3027      NSConstantStringTypeDecl->addDecl(Field);
3028    }
3029
3030    NSConstantStringTypeDecl->completeDefinition();
3031  }
3032
3033  return getTagDeclType(NSConstantStringTypeDecl);
3034}
3035
3036void ASTContext::setNSConstantStringType(QualType T) {
3037  const RecordType *Rec = T->getAs<RecordType>();
3038  assert(Rec && "Invalid NSConstantStringType");
3039  NSConstantStringTypeDecl = Rec->getDecl();
3040}
3041
3042QualType ASTContext::getObjCFastEnumerationStateType() {
3043  if (!ObjCFastEnumerationStateTypeDecl) {
3044    ObjCFastEnumerationStateTypeDecl =
3045      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3046                       &Idents.get("__objcFastEnumerationState"));
3047    ObjCFastEnumerationStateTypeDecl->startDefinition();
3048
3049    QualType FieldTypes[] = {
3050      UnsignedLongTy,
3051      getPointerType(ObjCIdTypedefType),
3052      getPointerType(UnsignedLongTy),
3053      getConstantArrayType(UnsignedLongTy,
3054                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3055    };
3056
3057    for (size_t i = 0; i < 4; ++i) {
3058      FieldDecl *Field = FieldDecl::Create(*this,
3059                                           ObjCFastEnumerationStateTypeDecl,
3060                                           SourceLocation(), 0,
3061                                           FieldTypes[i], /*TInfo=*/0,
3062                                           /*BitWidth=*/0,
3063                                           /*Mutable=*/false);
3064      Field->setAccess(AS_public);
3065      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3066    }
3067    if (getLangOptions().CPlusPlus)
3068      if (CXXRecordDecl *CXXRD =
3069            dyn_cast<CXXRecordDecl>(ObjCFastEnumerationStateTypeDecl))
3070        CXXRD->setEmpty(false);
3071
3072    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3073  }
3074
3075  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3076}
3077
3078QualType ASTContext::getBlockDescriptorType() {
3079  if (BlockDescriptorType)
3080    return getTagDeclType(BlockDescriptorType);
3081
3082  RecordDecl *T;
3083  // FIXME: Needs the FlagAppleBlock bit.
3084  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3085                       &Idents.get("__block_descriptor"));
3086  T->startDefinition();
3087
3088  QualType FieldTypes[] = {
3089    UnsignedLongTy,
3090    UnsignedLongTy,
3091  };
3092
3093  const char *FieldNames[] = {
3094    "reserved",
3095    "Size"
3096  };
3097
3098  for (size_t i = 0; i < 2; ++i) {
3099    FieldDecl *Field = FieldDecl::Create(*this,
3100                                         T,
3101                                         SourceLocation(),
3102                                         &Idents.get(FieldNames[i]),
3103                                         FieldTypes[i], /*TInfo=*/0,
3104                                         /*BitWidth=*/0,
3105                                         /*Mutable=*/false);
3106    Field->setAccess(AS_public);
3107    T->addDecl(Field);
3108  }
3109
3110  T->completeDefinition();
3111
3112  BlockDescriptorType = T;
3113
3114  return getTagDeclType(BlockDescriptorType);
3115}
3116
3117void ASTContext::setBlockDescriptorType(QualType T) {
3118  const RecordType *Rec = T->getAs<RecordType>();
3119  assert(Rec && "Invalid BlockDescriptorType");
3120  BlockDescriptorType = Rec->getDecl();
3121}
3122
3123QualType ASTContext::getBlockDescriptorExtendedType() {
3124  if (BlockDescriptorExtendedType)
3125    return getTagDeclType(BlockDescriptorExtendedType);
3126
3127  RecordDecl *T;
3128  // FIXME: Needs the FlagAppleBlock bit.
3129  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3130                       &Idents.get("__block_descriptor_withcopydispose"));
3131  T->startDefinition();
3132
3133  QualType FieldTypes[] = {
3134    UnsignedLongTy,
3135    UnsignedLongTy,
3136    getPointerType(VoidPtrTy),
3137    getPointerType(VoidPtrTy)
3138  };
3139
3140  const char *FieldNames[] = {
3141    "reserved",
3142    "Size",
3143    "CopyFuncPtr",
3144    "DestroyFuncPtr"
3145  };
3146
3147  for (size_t i = 0; i < 4; ++i) {
3148    FieldDecl *Field = FieldDecl::Create(*this,
3149                                         T,
3150                                         SourceLocation(),
3151                                         &Idents.get(FieldNames[i]),
3152                                         FieldTypes[i], /*TInfo=*/0,
3153                                         /*BitWidth=*/0,
3154                                         /*Mutable=*/false);
3155    Field->setAccess(AS_public);
3156    T->addDecl(Field);
3157  }
3158
3159  T->completeDefinition();
3160
3161  BlockDescriptorExtendedType = T;
3162
3163  return getTagDeclType(BlockDescriptorExtendedType);
3164}
3165
3166void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3167  const RecordType *Rec = T->getAs<RecordType>();
3168  assert(Rec && "Invalid BlockDescriptorType");
3169  BlockDescriptorExtendedType = Rec->getDecl();
3170}
3171
3172bool ASTContext::BlockRequiresCopying(QualType Ty) {
3173  if (Ty->isBlockPointerType())
3174    return true;
3175  if (isObjCNSObjectType(Ty))
3176    return true;
3177  if (Ty->isObjCObjectPointerType())
3178    return true;
3179  return false;
3180}
3181
3182QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3183  //  type = struct __Block_byref_1_X {
3184  //    void *__isa;
3185  //    struct __Block_byref_1_X *__forwarding;
3186  //    unsigned int __flags;
3187  //    unsigned int __size;
3188  //    void *__copy_helper;		// as needed
3189  //    void *__destroy_help		// as needed
3190  //    int X;
3191  //  } *
3192
3193  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3194
3195  // FIXME: Move up
3196  llvm::SmallString<36> Name;
3197  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3198                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3199  RecordDecl *T;
3200  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3201                       &Idents.get(Name.str()));
3202  T->startDefinition();
3203  QualType Int32Ty = IntTy;
3204  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3205  QualType FieldTypes[] = {
3206    getPointerType(VoidPtrTy),
3207    getPointerType(getTagDeclType(T)),
3208    Int32Ty,
3209    Int32Ty,
3210    getPointerType(VoidPtrTy),
3211    getPointerType(VoidPtrTy),
3212    Ty
3213  };
3214
3215  const char *FieldNames[] = {
3216    "__isa",
3217    "__forwarding",
3218    "__flags",
3219    "__size",
3220    "__copy_helper",
3221    "__destroy_helper",
3222    DeclName,
3223  };
3224
3225  for (size_t i = 0; i < 7; ++i) {
3226    if (!HasCopyAndDispose && i >=4 && i <= 5)
3227      continue;
3228    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3229                                         &Idents.get(FieldNames[i]),
3230                                         FieldTypes[i], /*TInfo=*/0,
3231                                         /*BitWidth=*/0, /*Mutable=*/false);
3232    Field->setAccess(AS_public);
3233    T->addDecl(Field);
3234  }
3235
3236  T->completeDefinition();
3237
3238  return getPointerType(getTagDeclType(T));
3239}
3240
3241
3242QualType ASTContext::getBlockParmType(
3243  bool BlockHasCopyDispose,
3244  llvm::SmallVectorImpl<const Expr *> &Layout) {
3245
3246  // FIXME: Move up
3247  llvm::SmallString<36> Name;
3248  llvm::raw_svector_ostream(Name) << "__block_literal_"
3249                                  << ++UniqueBlockParmTypeID;
3250  RecordDecl *T;
3251  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3252                       &Idents.get(Name.str()));
3253  T->startDefinition();
3254  QualType FieldTypes[] = {
3255    getPointerType(VoidPtrTy),
3256    IntTy,
3257    IntTy,
3258    getPointerType(VoidPtrTy),
3259    (BlockHasCopyDispose ?
3260     getPointerType(getBlockDescriptorExtendedType()) :
3261     getPointerType(getBlockDescriptorType()))
3262  };
3263
3264  const char *FieldNames[] = {
3265    "__isa",
3266    "__flags",
3267    "__reserved",
3268    "__FuncPtr",
3269    "__descriptor"
3270  };
3271
3272  for (size_t i = 0; i < 5; ++i) {
3273    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3274                                         &Idents.get(FieldNames[i]),
3275                                         FieldTypes[i], /*TInfo=*/0,
3276                                         /*BitWidth=*/0, /*Mutable=*/false);
3277    Field->setAccess(AS_public);
3278    T->addDecl(Field);
3279  }
3280
3281  for (unsigned i = 0; i < Layout.size(); ++i) {
3282    const Expr *E = Layout[i];
3283
3284    QualType FieldType = E->getType();
3285    IdentifierInfo *FieldName = 0;
3286    if (isa<CXXThisExpr>(E)) {
3287      FieldName = &Idents.get("this");
3288    } else if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) {
3289      const ValueDecl *D = BDRE->getDecl();
3290      FieldName = D->getIdentifier();
3291      if (BDRE->isByRef())
3292        FieldType = BuildByRefType(D->getNameAsCString(), FieldType);
3293    } else {
3294      // Padding.
3295      assert(isa<ConstantArrayType>(FieldType) &&
3296             isa<DeclRefExpr>(E) &&
3297             !cast<DeclRefExpr>(E)->getDecl()->getDeclName() &&
3298             "doesn't match characteristics of padding decl");
3299    }
3300
3301    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3302                                         FieldName, FieldType, /*TInfo=*/0,
3303                                         /*BitWidth=*/0, /*Mutable=*/false);
3304    Field->setAccess(AS_public);
3305    T->addDecl(Field);
3306  }
3307
3308  T->completeDefinition();
3309
3310  return getPointerType(getTagDeclType(T));
3311}
3312
3313void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3314  const RecordType *Rec = T->getAs<RecordType>();
3315  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3316  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3317}
3318
3319// This returns true if a type has been typedefed to BOOL:
3320// typedef <type> BOOL;
3321static bool isTypeTypedefedAsBOOL(QualType T) {
3322  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3323    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3324      return II->isStr("BOOL");
3325
3326  return false;
3327}
3328
3329/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3330/// purpose.
3331CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3332  CharUnits sz = getTypeSizeInChars(type);
3333
3334  // Make all integer and enum types at least as large as an int
3335  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3336    sz = std::max(sz, getTypeSizeInChars(IntTy));
3337  // Treat arrays as pointers, since that's how they're passed in.
3338  else if (type->isArrayType())
3339    sz = getTypeSizeInChars(VoidPtrTy);
3340  return sz;
3341}
3342
3343static inline
3344std::string charUnitsToString(const CharUnits &CU) {
3345  return llvm::itostr(CU.getQuantity());
3346}
3347
3348/// getObjCEncodingForBlockDecl - Return the encoded type for this block
3349/// declaration.
3350void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3351                                             std::string& S) {
3352  const BlockDecl *Decl = Expr->getBlockDecl();
3353  QualType BlockTy =
3354      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3355  // Encode result type.
3356  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3357  // Compute size of all parameters.
3358  // Start with computing size of a pointer in number of bytes.
3359  // FIXME: There might(should) be a better way of doing this computation!
3360  SourceLocation Loc;
3361  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3362  CharUnits ParmOffset = PtrSize;
3363  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3364       E = Decl->param_end(); PI != E; ++PI) {
3365    QualType PType = (*PI)->getType();
3366    CharUnits sz = getObjCEncodingTypeSize(PType);
3367    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3368    ParmOffset += sz;
3369  }
3370  // Size of the argument frame
3371  S += charUnitsToString(ParmOffset);
3372  // Block pointer and offset.
3373  S += "@?0";
3374  ParmOffset = PtrSize;
3375
3376  // Argument types.
3377  ParmOffset = PtrSize;
3378  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3379       Decl->param_end(); PI != E; ++PI) {
3380    ParmVarDecl *PVDecl = *PI;
3381    QualType PType = PVDecl->getOriginalType();
3382    if (const ArrayType *AT =
3383          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3384      // Use array's original type only if it has known number of
3385      // elements.
3386      if (!isa<ConstantArrayType>(AT))
3387        PType = PVDecl->getType();
3388    } else if (PType->isFunctionType())
3389      PType = PVDecl->getType();
3390    getObjCEncodingForType(PType, S);
3391    S += charUnitsToString(ParmOffset);
3392    ParmOffset += getObjCEncodingTypeSize(PType);
3393  }
3394}
3395
3396/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3397/// declaration.
3398void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3399                                              std::string& S) {
3400  // FIXME: This is not very efficient.
3401  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3402  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3403  // Encode result type.
3404  getObjCEncodingForType(Decl->getResultType(), S);
3405  // Compute size of all parameters.
3406  // Start with computing size of a pointer in number of bytes.
3407  // FIXME: There might(should) be a better way of doing this computation!
3408  SourceLocation Loc;
3409  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3410  // The first two arguments (self and _cmd) are pointers; account for
3411  // their size.
3412  CharUnits ParmOffset = 2 * PtrSize;
3413  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3414       E = Decl->sel_param_end(); PI != E; ++PI) {
3415    QualType PType = (*PI)->getType();
3416    CharUnits sz = getObjCEncodingTypeSize(PType);
3417    assert (sz.isPositive() &&
3418        "getObjCEncodingForMethodDecl - Incomplete param type");
3419    ParmOffset += sz;
3420  }
3421  S += charUnitsToString(ParmOffset);
3422  S += "@0:";
3423  S += charUnitsToString(PtrSize);
3424
3425  // Argument types.
3426  ParmOffset = 2 * PtrSize;
3427  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3428       E = Decl->sel_param_end(); PI != E; ++PI) {
3429    ParmVarDecl *PVDecl = *PI;
3430    QualType PType = PVDecl->getOriginalType();
3431    if (const ArrayType *AT =
3432          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3433      // Use array's original type only if it has known number of
3434      // elements.
3435      if (!isa<ConstantArrayType>(AT))
3436        PType = PVDecl->getType();
3437    } else if (PType->isFunctionType())
3438      PType = PVDecl->getType();
3439    // Process argument qualifiers for user supplied arguments; such as,
3440    // 'in', 'inout', etc.
3441    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3442    getObjCEncodingForType(PType, S);
3443    S += charUnitsToString(ParmOffset);
3444    ParmOffset += getObjCEncodingTypeSize(PType);
3445  }
3446}
3447
3448/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3449/// property declaration. If non-NULL, Container must be either an
3450/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3451/// NULL when getting encodings for protocol properties.
3452/// Property attributes are stored as a comma-delimited C string. The simple
3453/// attributes readonly and bycopy are encoded as single characters. The
3454/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3455/// encoded as single characters, followed by an identifier. Property types
3456/// are also encoded as a parametrized attribute. The characters used to encode
3457/// these attributes are defined by the following enumeration:
3458/// @code
3459/// enum PropertyAttributes {
3460/// kPropertyReadOnly = 'R',   // property is read-only.
3461/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3462/// kPropertyByref = '&',  // property is a reference to the value last assigned
3463/// kPropertyDynamic = 'D',    // property is dynamic
3464/// kPropertyGetter = 'G',     // followed by getter selector name
3465/// kPropertySetter = 'S',     // followed by setter selector name
3466/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3467/// kPropertyType = 't'              // followed by old-style type encoding.
3468/// kPropertyWeak = 'W'              // 'weak' property
3469/// kPropertyStrong = 'P'            // property GC'able
3470/// kPropertyNonAtomic = 'N'         // property non-atomic
3471/// };
3472/// @endcode
3473void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3474                                                const Decl *Container,
3475                                                std::string& S) {
3476  // Collect information from the property implementation decl(s).
3477  bool Dynamic = false;
3478  ObjCPropertyImplDecl *SynthesizePID = 0;
3479
3480  // FIXME: Duplicated code due to poor abstraction.
3481  if (Container) {
3482    if (const ObjCCategoryImplDecl *CID =
3483        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3484      for (ObjCCategoryImplDecl::propimpl_iterator
3485             i = CID->propimpl_begin(), e = CID->propimpl_end();
3486           i != e; ++i) {
3487        ObjCPropertyImplDecl *PID = *i;
3488        if (PID->getPropertyDecl() == PD) {
3489          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3490            Dynamic = true;
3491          } else {
3492            SynthesizePID = PID;
3493          }
3494        }
3495      }
3496    } else {
3497      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3498      for (ObjCCategoryImplDecl::propimpl_iterator
3499             i = OID->propimpl_begin(), e = OID->propimpl_end();
3500           i != e; ++i) {
3501        ObjCPropertyImplDecl *PID = *i;
3502        if (PID->getPropertyDecl() == PD) {
3503          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3504            Dynamic = true;
3505          } else {
3506            SynthesizePID = PID;
3507          }
3508        }
3509      }
3510    }
3511  }
3512
3513  // FIXME: This is not very efficient.
3514  S = "T";
3515
3516  // Encode result type.
3517  // GCC has some special rules regarding encoding of properties which
3518  // closely resembles encoding of ivars.
3519  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3520                             true /* outermost type */,
3521                             true /* encoding for property */);
3522
3523  if (PD->isReadOnly()) {
3524    S += ",R";
3525  } else {
3526    switch (PD->getSetterKind()) {
3527    case ObjCPropertyDecl::Assign: break;
3528    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3529    case ObjCPropertyDecl::Retain: S += ",&"; break;
3530    }
3531  }
3532
3533  // It really isn't clear at all what this means, since properties
3534  // are "dynamic by default".
3535  if (Dynamic)
3536    S += ",D";
3537
3538  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3539    S += ",N";
3540
3541  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3542    S += ",G";
3543    S += PD->getGetterName().getAsString();
3544  }
3545
3546  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3547    S += ",S";
3548    S += PD->getSetterName().getAsString();
3549  }
3550
3551  if (SynthesizePID) {
3552    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3553    S += ",V";
3554    S += OID->getNameAsString();
3555  }
3556
3557  // FIXME: OBJCGC: weak & strong
3558}
3559
3560/// getLegacyIntegralTypeEncoding -
3561/// Another legacy compatibility encoding: 32-bit longs are encoded as
3562/// 'l' or 'L' , but not always.  For typedefs, we need to use
3563/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3564///
3565void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3566  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3567    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3568      if (BT->getKind() == BuiltinType::ULong &&
3569          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3570        PointeeTy = UnsignedIntTy;
3571      else
3572        if (BT->getKind() == BuiltinType::Long &&
3573            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3574          PointeeTy = IntTy;
3575    }
3576  }
3577}
3578
3579void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3580                                        const FieldDecl *Field) {
3581  // We follow the behavior of gcc, expanding structures which are
3582  // directly pointed to, and expanding embedded structures. Note that
3583  // these rules are sufficient to prevent recursive encoding of the
3584  // same type.
3585  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3586                             true /* outermost type */);
3587}
3588
3589static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3590    switch (T->getAs<BuiltinType>()->getKind()) {
3591    default: assert(0 && "Unhandled builtin type kind");
3592    case BuiltinType::Void:       return 'v';
3593    case BuiltinType::Bool:       return 'B';
3594    case BuiltinType::Char_U:
3595    case BuiltinType::UChar:      return 'C';
3596    case BuiltinType::UShort:     return 'S';
3597    case BuiltinType::UInt:       return 'I';
3598    case BuiltinType::ULong:
3599        return
3600          (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'L' : 'Q';
3601    case BuiltinType::UInt128:    return 'T';
3602    case BuiltinType::ULongLong:  return 'Q';
3603    case BuiltinType::Char_S:
3604    case BuiltinType::SChar:      return 'c';
3605    case BuiltinType::Short:      return 's';
3606    case BuiltinType::WChar:
3607    case BuiltinType::Int:        return 'i';
3608    case BuiltinType::Long:
3609      return
3610        (const_cast<ASTContext *>(C))->getIntWidth(T) == 32 ? 'l' : 'q';
3611    case BuiltinType::LongLong:   return 'q';
3612    case BuiltinType::Int128:     return 't';
3613    case BuiltinType::Float:      return 'f';
3614    case BuiltinType::Double:     return 'd';
3615    case BuiltinType::LongDouble: return 'd';
3616    }
3617}
3618
3619static void EncodeBitField(const ASTContext *Context, std::string& S,
3620                           QualType T, const FieldDecl *FD) {
3621  const Expr *E = FD->getBitWidth();
3622  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3623  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3624  S += 'b';
3625  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3626  // The GNU runtime requires more information; bitfields are encoded as b,
3627  // then the offset (in bits) of the first element, then the type of the
3628  // bitfield, then the size in bits.  For example, in this structure:
3629  //
3630  // struct
3631  // {
3632  //    int integer;
3633  //    int flags:2;
3634  // };
3635  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
3636  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
3637  // information is not especially sensible, but we're stuck with it for
3638  // compatibility with GCC, although providing it breaks anything that
3639  // actually uses runtime introspection and wants to work on both runtimes...
3640  if (!Ctx->getLangOptions().NeXTRuntime) {
3641    const RecordDecl *RD = FD->getParent();
3642    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
3643    // FIXME: This same linear search is also used in ExprConstant - it might
3644    // be better if the FieldDecl stored its offset.  We'd be increasing the
3645    // size of the object slightly, but saving some time every time it is used.
3646    unsigned i = 0;
3647    for (RecordDecl::field_iterator Field = RD->field_begin(),
3648                                 FieldEnd = RD->field_end();
3649         Field != FieldEnd; (void)++Field, ++i) {
3650      if (*Field == FD)
3651        break;
3652    }
3653    S += llvm::utostr(RL.getFieldOffset(i));
3654    S += ObjCEncodingForPrimitiveKind(Context, T);
3655  }
3656  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3657  S += llvm::utostr(N);
3658}
3659
3660// FIXME: Use SmallString for accumulating string.
3661void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3662                                            bool ExpandPointedToStructures,
3663                                            bool ExpandStructures,
3664                                            const FieldDecl *FD,
3665                                            bool OutermostType,
3666                                            bool EncodingProperty) {
3667  if (T->getAs<BuiltinType>()) {
3668    if (FD && FD->isBitField())
3669      return EncodeBitField(this, S, T, FD);
3670    S += ObjCEncodingForPrimitiveKind(this, T);
3671    return;
3672  }
3673
3674  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3675    S += 'j';
3676    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3677                               false);
3678    return;
3679  }
3680
3681  // encoding for pointer or r3eference types.
3682  QualType PointeeTy;
3683  if (const PointerType *PT = T->getAs<PointerType>()) {
3684    if (PT->isObjCSelType()) {
3685      S += ':';
3686      return;
3687    }
3688    PointeeTy = PT->getPointeeType();
3689  }
3690  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3691    PointeeTy = RT->getPointeeType();
3692  if (!PointeeTy.isNull()) {
3693    bool isReadOnly = false;
3694    // For historical/compatibility reasons, the read-only qualifier of the
3695    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3696    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3697    // Also, do not emit the 'r' for anything but the outermost type!
3698    if (isa<TypedefType>(T.getTypePtr())) {
3699      if (OutermostType && T.isConstQualified()) {
3700        isReadOnly = true;
3701        S += 'r';
3702      }
3703    } else if (OutermostType) {
3704      QualType P = PointeeTy;
3705      while (P->getAs<PointerType>())
3706        P = P->getAs<PointerType>()->getPointeeType();
3707      if (P.isConstQualified()) {
3708        isReadOnly = true;
3709        S += 'r';
3710      }
3711    }
3712    if (isReadOnly) {
3713      // Another legacy compatibility encoding. Some ObjC qualifier and type
3714      // combinations need to be rearranged.
3715      // Rewrite "in const" from "nr" to "rn"
3716      if (llvm::StringRef(S).endswith("nr"))
3717        S.replace(S.end()-2, S.end(), "rn");
3718    }
3719
3720    if (PointeeTy->isCharType()) {
3721      // char pointer types should be encoded as '*' unless it is a
3722      // type that has been typedef'd to 'BOOL'.
3723      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3724        S += '*';
3725        return;
3726      }
3727    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3728      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3729      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3730        S += '#';
3731        return;
3732      }
3733      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3734      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3735        S += '@';
3736        return;
3737      }
3738      // fall through...
3739    }
3740    S += '^';
3741    getLegacyIntegralTypeEncoding(PointeeTy);
3742
3743    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3744                               NULL);
3745    return;
3746  }
3747
3748  if (const ArrayType *AT =
3749      // Ignore type qualifiers etc.
3750        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3751    if (isa<IncompleteArrayType>(AT)) {
3752      // Incomplete arrays are encoded as a pointer to the array element.
3753      S += '^';
3754
3755      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3756                                 false, ExpandStructures, FD);
3757    } else {
3758      S += '[';
3759
3760      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3761        S += llvm::utostr(CAT->getSize().getZExtValue());
3762      else {
3763        //Variable length arrays are encoded as a regular array with 0 elements.
3764        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3765        S += '0';
3766      }
3767
3768      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3769                                 false, ExpandStructures, FD);
3770      S += ']';
3771    }
3772    return;
3773  }
3774
3775  if (T->getAs<FunctionType>()) {
3776    S += '?';
3777    return;
3778  }
3779
3780  if (const RecordType *RTy = T->getAs<RecordType>()) {
3781    RecordDecl *RDecl = RTy->getDecl();
3782    S += RDecl->isUnion() ? '(' : '{';
3783    // Anonymous structures print as '?'
3784    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3785      S += II->getName();
3786      if (ClassTemplateSpecializationDecl *Spec
3787          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
3788        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3789        std::string TemplateArgsStr
3790          = TemplateSpecializationType::PrintTemplateArgumentList(
3791                                            TemplateArgs.getFlatArgumentList(),
3792                                            TemplateArgs.flat_size(),
3793                                            (*this).PrintingPolicy);
3794
3795        S += TemplateArgsStr;
3796      }
3797    } else {
3798      S += '?';
3799    }
3800    if (ExpandStructures) {
3801      S += '=';
3802      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3803                                   FieldEnd = RDecl->field_end();
3804           Field != FieldEnd; ++Field) {
3805        if (FD) {
3806          S += '"';
3807          S += Field->getNameAsString();
3808          S += '"';
3809        }
3810
3811        // Special case bit-fields.
3812        if (Field->isBitField()) {
3813          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3814                                     (*Field));
3815        } else {
3816          QualType qt = Field->getType();
3817          getLegacyIntegralTypeEncoding(qt);
3818          getObjCEncodingForTypeImpl(qt, S, false, true,
3819                                     FD);
3820        }
3821      }
3822    }
3823    S += RDecl->isUnion() ? ')' : '}';
3824    return;
3825  }
3826
3827  if (T->isEnumeralType()) {
3828    if (FD && FD->isBitField())
3829      EncodeBitField(this, S, T, FD);
3830    else
3831      S += 'i';
3832    return;
3833  }
3834
3835  if (T->isBlockPointerType()) {
3836    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3837    return;
3838  }
3839
3840  // Ignore protocol qualifiers when mangling at this level.
3841  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
3842    T = OT->getBaseType();
3843
3844  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3845    // @encode(class_name)
3846    ObjCInterfaceDecl *OI = OIT->getDecl();
3847    S += '{';
3848    const IdentifierInfo *II = OI->getIdentifier();
3849    S += II->getName();
3850    S += '=';
3851    llvm::SmallVector<FieldDecl*, 32> RecFields;
3852    CollectObjCIvars(OI, RecFields);
3853    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3854      if (RecFields[i]->isBitField())
3855        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3856                                   RecFields[i]);
3857      else
3858        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3859                                   FD);
3860    }
3861    S += '}';
3862    return;
3863  }
3864
3865  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3866    if (OPT->isObjCIdType()) {
3867      S += '@';
3868      return;
3869    }
3870
3871    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3872      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3873      // Since this is a binary compatibility issue, need to consult with runtime
3874      // folks. Fortunately, this is a *very* obsure construct.
3875      S += '#';
3876      return;
3877    }
3878
3879    if (OPT->isObjCQualifiedIdType()) {
3880      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3881                                 ExpandPointedToStructures,
3882                                 ExpandStructures, FD);
3883      if (FD || EncodingProperty) {
3884        // Note that we do extended encoding of protocol qualifer list
3885        // Only when doing ivar or property encoding.
3886        S += '"';
3887        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3888             E = OPT->qual_end(); I != E; ++I) {
3889          S += '<';
3890          S += (*I)->getNameAsString();
3891          S += '>';
3892        }
3893        S += '"';
3894      }
3895      return;
3896    }
3897
3898    QualType PointeeTy = OPT->getPointeeType();
3899    if (!EncodingProperty &&
3900        isa<TypedefType>(PointeeTy.getTypePtr())) {
3901      // Another historical/compatibility reason.
3902      // We encode the underlying type which comes out as
3903      // {...};
3904      S += '^';
3905      getObjCEncodingForTypeImpl(PointeeTy, S,
3906                                 false, ExpandPointedToStructures,
3907                                 NULL);
3908      return;
3909    }
3910
3911    S += '@';
3912    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3913      S += '"';
3914      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3915      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3916           E = OPT->qual_end(); I != E; ++I) {
3917        S += '<';
3918        S += (*I)->getNameAsString();
3919        S += '>';
3920      }
3921      S += '"';
3922    }
3923    return;
3924  }
3925
3926  // gcc just blithely ignores member pointers.
3927  // TODO: maybe there should be a mangling for these
3928  if (T->getAs<MemberPointerType>())
3929    return;
3930
3931  assert(0 && "@encode for type not implemented!");
3932}
3933
3934void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3935                                                 std::string& S) const {
3936  if (QT & Decl::OBJC_TQ_In)
3937    S += 'n';
3938  if (QT & Decl::OBJC_TQ_Inout)
3939    S += 'N';
3940  if (QT & Decl::OBJC_TQ_Out)
3941    S += 'o';
3942  if (QT & Decl::OBJC_TQ_Bycopy)
3943    S += 'O';
3944  if (QT & Decl::OBJC_TQ_Byref)
3945    S += 'R';
3946  if (QT & Decl::OBJC_TQ_Oneway)
3947    S += 'V';
3948}
3949
3950void ASTContext::setBuiltinVaListType(QualType T) {
3951  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3952
3953  BuiltinVaListType = T;
3954}
3955
3956void ASTContext::setObjCIdType(QualType T) {
3957  ObjCIdTypedefType = T;
3958}
3959
3960void ASTContext::setObjCSelType(QualType T) {
3961  ObjCSelTypedefType = T;
3962}
3963
3964void ASTContext::setObjCProtoType(QualType QT) {
3965  ObjCProtoType = QT;
3966}
3967
3968void ASTContext::setObjCClassType(QualType T) {
3969  ObjCClassTypedefType = T;
3970}
3971
3972void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3973  assert(ObjCConstantStringType.isNull() &&
3974         "'NSConstantString' type already set!");
3975
3976  ObjCConstantStringType = getObjCInterfaceType(Decl);
3977}
3978
3979/// \brief Retrieve the template name that corresponds to a non-empty
3980/// lookup.
3981TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3982                                                   UnresolvedSetIterator End) {
3983  unsigned size = End - Begin;
3984  assert(size > 1 && "set is not overloaded!");
3985
3986  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3987                          size * sizeof(FunctionTemplateDecl*));
3988  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3989
3990  NamedDecl **Storage = OT->getStorage();
3991  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3992    NamedDecl *D = *I;
3993    assert(isa<FunctionTemplateDecl>(D) ||
3994           (isa<UsingShadowDecl>(D) &&
3995            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3996    *Storage++ = D;
3997  }
3998
3999  return TemplateName(OT);
4000}
4001
4002/// \brief Retrieve the template name that represents a qualified
4003/// template name such as \c std::vector.
4004TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4005                                                  bool TemplateKeyword,
4006                                                  TemplateDecl *Template) {
4007  // FIXME: Canonicalization?
4008  llvm::FoldingSetNodeID ID;
4009  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4010
4011  void *InsertPos = 0;
4012  QualifiedTemplateName *QTN =
4013    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4014  if (!QTN) {
4015    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4016    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4017  }
4018
4019  return TemplateName(QTN);
4020}
4021
4022/// \brief Retrieve the template name that represents a dependent
4023/// template name such as \c MetaFun::template apply.
4024TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4025                                                  const IdentifierInfo *Name) {
4026  assert((!NNS || NNS->isDependent()) &&
4027         "Nested name specifier must be dependent");
4028
4029  llvm::FoldingSetNodeID ID;
4030  DependentTemplateName::Profile(ID, NNS, Name);
4031
4032  void *InsertPos = 0;
4033  DependentTemplateName *QTN =
4034    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4035
4036  if (QTN)
4037    return TemplateName(QTN);
4038
4039  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4040  if (CanonNNS == NNS) {
4041    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4042  } else {
4043    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4044    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4045    DependentTemplateName *CheckQTN =
4046      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4047    assert(!CheckQTN && "Dependent type name canonicalization broken");
4048    (void)CheckQTN;
4049  }
4050
4051  DependentTemplateNames.InsertNode(QTN, InsertPos);
4052  return TemplateName(QTN);
4053}
4054
4055/// \brief Retrieve the template name that represents a dependent
4056/// template name such as \c MetaFun::template operator+.
4057TemplateName
4058ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4059                                     OverloadedOperatorKind Operator) {
4060  assert((!NNS || NNS->isDependent()) &&
4061         "Nested name specifier must be dependent");
4062
4063  llvm::FoldingSetNodeID ID;
4064  DependentTemplateName::Profile(ID, NNS, Operator);
4065
4066  void *InsertPos = 0;
4067  DependentTemplateName *QTN
4068    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4069
4070  if (QTN)
4071    return TemplateName(QTN);
4072
4073  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4074  if (CanonNNS == NNS) {
4075    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4076  } else {
4077    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4078    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4079
4080    DependentTemplateName *CheckQTN
4081      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4082    assert(!CheckQTN && "Dependent template name canonicalization broken");
4083    (void)CheckQTN;
4084  }
4085
4086  DependentTemplateNames.InsertNode(QTN, InsertPos);
4087  return TemplateName(QTN);
4088}
4089
4090/// getFromTargetType - Given one of the integer types provided by
4091/// TargetInfo, produce the corresponding type. The unsigned @p Type
4092/// is actually a value of type @c TargetInfo::IntType.
4093CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4094  switch (Type) {
4095  case TargetInfo::NoInt: return CanQualType();
4096  case TargetInfo::SignedShort: return ShortTy;
4097  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4098  case TargetInfo::SignedInt: return IntTy;
4099  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4100  case TargetInfo::SignedLong: return LongTy;
4101  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4102  case TargetInfo::SignedLongLong: return LongLongTy;
4103  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4104  }
4105
4106  assert(false && "Unhandled TargetInfo::IntType value");
4107  return CanQualType();
4108}
4109
4110//===----------------------------------------------------------------------===//
4111//                        Type Predicates.
4112//===----------------------------------------------------------------------===//
4113
4114/// isObjCNSObjectType - Return true if this is an NSObject object using
4115/// NSObject attribute on a c-style pointer type.
4116/// FIXME - Make it work directly on types.
4117/// FIXME: Move to Type.
4118///
4119bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4120  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4121    if (TypedefDecl *TD = TDT->getDecl())
4122      if (TD->getAttr<ObjCNSObjectAttr>())
4123        return true;
4124  }
4125  return false;
4126}
4127
4128/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4129/// garbage collection attribute.
4130///
4131Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
4132  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
4133  if (getLangOptions().ObjC1 &&
4134      getLangOptions().getGCMode() != LangOptions::NonGC) {
4135    GCAttrs = Ty.getObjCGCAttr();
4136    // Default behavious under objective-c's gc is for objective-c pointers
4137    // (or pointers to them) be treated as though they were declared
4138    // as __strong.
4139    if (GCAttrs == Qualifiers::GCNone) {
4140      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4141        GCAttrs = Qualifiers::Strong;
4142      else if (Ty->isPointerType())
4143        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4144    }
4145    // Non-pointers have none gc'able attribute regardless of the attribute
4146    // set on them.
4147    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
4148      return Qualifiers::GCNone;
4149  }
4150  return GCAttrs;
4151}
4152
4153//===----------------------------------------------------------------------===//
4154//                        Type Compatibility Testing
4155//===----------------------------------------------------------------------===//
4156
4157/// areCompatVectorTypes - Return true if the two specified vector types are
4158/// compatible.
4159static bool areCompatVectorTypes(const VectorType *LHS,
4160                                 const VectorType *RHS) {
4161  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4162  return LHS->getElementType() == RHS->getElementType() &&
4163         LHS->getNumElements() == RHS->getNumElements();
4164}
4165
4166bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4167                                          QualType SecondVec) {
4168  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4169  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4170
4171  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4172    return true;
4173
4174  // AltiVec vectors types are identical to equivalent GCC vector types
4175  const VectorType *First = FirstVec->getAs<VectorType>();
4176  const VectorType *Second = SecondVec->getAs<VectorType>();
4177  if ((((First->getAltiVecSpecific() == VectorType::AltiVec) &&
4178        (Second->getAltiVecSpecific() == VectorType::NotAltiVec)) ||
4179       ((First->getAltiVecSpecific() == VectorType::NotAltiVec) &&
4180        (Second->getAltiVecSpecific() == VectorType::AltiVec))) &&
4181      hasSameType(First->getElementType(), Second->getElementType()) &&
4182      (First->getNumElements() == Second->getNumElements()))
4183    return true;
4184
4185  return false;
4186}
4187
4188//===----------------------------------------------------------------------===//
4189// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4190//===----------------------------------------------------------------------===//
4191
4192/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4193/// inheritance hierarchy of 'rProto'.
4194bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4195                                                ObjCProtocolDecl *rProto) {
4196  if (lProto == rProto)
4197    return true;
4198  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4199       E = rProto->protocol_end(); PI != E; ++PI)
4200    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4201      return true;
4202  return false;
4203}
4204
4205/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4206/// return true if lhs's protocols conform to rhs's protocol; false
4207/// otherwise.
4208bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4209  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4210    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4211  return false;
4212}
4213
4214/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4215/// Class<p1, ...>.
4216bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4217                                                      QualType rhs) {
4218  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4219  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4220  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4221
4222  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4223       E = lhsQID->qual_end(); I != E; ++I) {
4224    bool match = false;
4225    ObjCProtocolDecl *lhsProto = *I;
4226    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4227         E = rhsOPT->qual_end(); J != E; ++J) {
4228      ObjCProtocolDecl *rhsProto = *J;
4229      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4230        match = true;
4231        break;
4232      }
4233    }
4234    if (!match)
4235      return false;
4236  }
4237  return true;
4238}
4239
4240/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4241/// ObjCQualifiedIDType.
4242bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4243                                                   bool compare) {
4244  // Allow id<P..> and an 'id' or void* type in all cases.
4245  if (lhs->isVoidPointerType() ||
4246      lhs->isObjCIdType() || lhs->isObjCClassType())
4247    return true;
4248  else if (rhs->isVoidPointerType() ||
4249           rhs->isObjCIdType() || rhs->isObjCClassType())
4250    return true;
4251
4252  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4253    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4254
4255    if (!rhsOPT) return false;
4256
4257    if (rhsOPT->qual_empty()) {
4258      // If the RHS is a unqualified interface pointer "NSString*",
4259      // make sure we check the class hierarchy.
4260      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4261        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4262             E = lhsQID->qual_end(); I != E; ++I) {
4263          // when comparing an id<P> on lhs with a static type on rhs,
4264          // see if static class implements all of id's protocols, directly or
4265          // through its super class and categories.
4266          if (!rhsID->ClassImplementsProtocol(*I, true))
4267            return false;
4268        }
4269      }
4270      // If there are no qualifiers and no interface, we have an 'id'.
4271      return true;
4272    }
4273    // Both the right and left sides have qualifiers.
4274    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4275         E = lhsQID->qual_end(); I != E; ++I) {
4276      ObjCProtocolDecl *lhsProto = *I;
4277      bool match = false;
4278
4279      // when comparing an id<P> on lhs with a static type on rhs,
4280      // see if static class implements all of id's protocols, directly or
4281      // through its super class and categories.
4282      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4283           E = rhsOPT->qual_end(); J != E; ++J) {
4284        ObjCProtocolDecl *rhsProto = *J;
4285        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4286            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4287          match = true;
4288          break;
4289        }
4290      }
4291      // If the RHS is a qualified interface pointer "NSString<P>*",
4292      // make sure we check the class hierarchy.
4293      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4294        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4295             E = lhsQID->qual_end(); I != E; ++I) {
4296          // when comparing an id<P> on lhs with a static type on rhs,
4297          // see if static class implements all of id's protocols, directly or
4298          // through its super class and categories.
4299          if (rhsID->ClassImplementsProtocol(*I, true)) {
4300            match = true;
4301            break;
4302          }
4303        }
4304      }
4305      if (!match)
4306        return false;
4307    }
4308
4309    return true;
4310  }
4311
4312  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4313  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4314
4315  if (const ObjCObjectPointerType *lhsOPT =
4316        lhs->getAsObjCInterfacePointerType()) {
4317    if (lhsOPT->qual_empty()) {
4318      bool match = false;
4319      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4320        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4321             E = rhsQID->qual_end(); I != E; ++I) {
4322          // when comparing an id<P> on rhs with a static type on lhs,
4323          // static class must implement all of id's protocols directly or
4324          // indirectly through its super class.
4325          if (lhsID->ClassImplementsProtocol(*I, true)) {
4326            match = true;
4327            break;
4328          }
4329        }
4330        if (!match)
4331          return false;
4332      }
4333      return true;
4334    }
4335    // Both the right and left sides have qualifiers.
4336    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4337         E = lhsOPT->qual_end(); I != E; ++I) {
4338      ObjCProtocolDecl *lhsProto = *I;
4339      bool match = false;
4340
4341      // when comparing an id<P> on lhs with a static type on rhs,
4342      // see if static class implements all of id's protocols, directly or
4343      // through its super class and categories.
4344      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4345           E = rhsQID->qual_end(); J != E; ++J) {
4346        ObjCProtocolDecl *rhsProto = *J;
4347        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4348            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4349          match = true;
4350          break;
4351        }
4352      }
4353      if (!match)
4354        return false;
4355    }
4356    return true;
4357  }
4358  return false;
4359}
4360
4361/// canAssignObjCInterfaces - Return true if the two interface types are
4362/// compatible for assignment from RHS to LHS.  This handles validation of any
4363/// protocol qualifiers on the LHS or RHS.
4364///
4365bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4366                                         const ObjCObjectPointerType *RHSOPT) {
4367  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4368  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4369
4370  // If either type represents the built-in 'id' or 'Class' types, return true.
4371  if (LHS->isObjCUnqualifiedIdOrClass() ||
4372      RHS->isObjCUnqualifiedIdOrClass())
4373    return true;
4374
4375  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4376    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4377                                             QualType(RHSOPT,0),
4378                                             false);
4379
4380  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
4381    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
4382                                                QualType(RHSOPT,0));
4383
4384  // If we have 2 user-defined types, fall into that path.
4385  if (LHS->getInterface() && RHS->getInterface())
4386    return canAssignObjCInterfaces(LHS, RHS);
4387
4388  return false;
4389}
4390
4391/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4392/// for providing type-safty for objective-c pointers used to pass/return
4393/// arguments in block literals. When passed as arguments, passing 'A*' where
4394/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4395/// not OK. For the return type, the opposite is not OK.
4396bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4397                                         const ObjCObjectPointerType *LHSOPT,
4398                                         const ObjCObjectPointerType *RHSOPT) {
4399  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4400    return true;
4401
4402  if (LHSOPT->isObjCBuiltinType()) {
4403    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4404  }
4405
4406  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4407    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4408                                             QualType(RHSOPT,0),
4409                                             false);
4410
4411  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4412  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4413  if (LHS && RHS)  { // We have 2 user-defined types.
4414    if (LHS != RHS) {
4415      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4416        return false;
4417      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4418        return true;
4419    }
4420    else
4421      return true;
4422  }
4423  return false;
4424}
4425
4426/// getIntersectionOfProtocols - This routine finds the intersection of set
4427/// of protocols inherited from two distinct objective-c pointer objects.
4428/// It is used to build composite qualifier list of the composite type of
4429/// the conditional expression involving two objective-c pointer objects.
4430static
4431void getIntersectionOfProtocols(ASTContext &Context,
4432                                const ObjCObjectPointerType *LHSOPT,
4433                                const ObjCObjectPointerType *RHSOPT,
4434      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4435
4436  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4437  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4438  assert(LHS->getInterface() && "LHS must have an interface base");
4439  assert(RHS->getInterface() && "RHS must have an interface base");
4440
4441  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4442  unsigned LHSNumProtocols = LHS->getNumProtocols();
4443  if (LHSNumProtocols > 0)
4444    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4445  else {
4446    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4447    Context.CollectInheritedProtocols(LHS->getInterface(),
4448                                      LHSInheritedProtocols);
4449    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4450                                LHSInheritedProtocols.end());
4451  }
4452
4453  unsigned RHSNumProtocols = RHS->getNumProtocols();
4454  if (RHSNumProtocols > 0) {
4455    ObjCProtocolDecl **RHSProtocols =
4456      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4457    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4458      if (InheritedProtocolSet.count(RHSProtocols[i]))
4459        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4460  }
4461  else {
4462    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4463    Context.CollectInheritedProtocols(RHS->getInterface(),
4464                                      RHSInheritedProtocols);
4465    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4466         RHSInheritedProtocols.begin(),
4467         E = RHSInheritedProtocols.end(); I != E; ++I)
4468      if (InheritedProtocolSet.count((*I)))
4469        IntersectionOfProtocols.push_back((*I));
4470  }
4471}
4472
4473/// areCommonBaseCompatible - Returns common base class of the two classes if
4474/// one found. Note that this is O'2 algorithm. But it will be called as the
4475/// last type comparison in a ?-exp of ObjC pointer types before a
4476/// warning is issued. So, its invokation is extremely rare.
4477QualType ASTContext::areCommonBaseCompatible(
4478                                          const ObjCObjectPointerType *Lptr,
4479                                          const ObjCObjectPointerType *Rptr) {
4480  const ObjCObjectType *LHS = Lptr->getObjectType();
4481  const ObjCObjectType *RHS = Rptr->getObjectType();
4482  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4483  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4484  if (!LDecl || !RDecl)
4485    return QualType();
4486
4487  while ((LDecl = LDecl->getSuperClass())) {
4488    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4489    if (canAssignObjCInterfaces(LHS, RHS)) {
4490      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4491      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4492
4493      QualType Result = QualType(LHS, 0);
4494      if (!Protocols.empty())
4495        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4496      Result = getObjCObjectPointerType(Result);
4497      return Result;
4498    }
4499  }
4500
4501  return QualType();
4502}
4503
4504bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4505                                         const ObjCObjectType *RHS) {
4506  assert(LHS->getInterface() && "LHS is not an interface type");
4507  assert(RHS->getInterface() && "RHS is not an interface type");
4508
4509  // Verify that the base decls are compatible: the RHS must be a subclass of
4510  // the LHS.
4511  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4512    return false;
4513
4514  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4515  // protocol qualified at all, then we are good.
4516  if (LHS->getNumProtocols() == 0)
4517    return true;
4518
4519  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4520  // isn't a superset.
4521  if (RHS->getNumProtocols() == 0)
4522    return true;  // FIXME: should return false!
4523
4524  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4525                                     LHSPE = LHS->qual_end();
4526       LHSPI != LHSPE; LHSPI++) {
4527    bool RHSImplementsProtocol = false;
4528
4529    // If the RHS doesn't implement the protocol on the left, the types
4530    // are incompatible.
4531    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4532                                       RHSPE = RHS->qual_end();
4533         RHSPI != RHSPE; RHSPI++) {
4534      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4535        RHSImplementsProtocol = true;
4536        break;
4537      }
4538    }
4539    // FIXME: For better diagnostics, consider passing back the protocol name.
4540    if (!RHSImplementsProtocol)
4541      return false;
4542  }
4543  // The RHS implements all protocols listed on the LHS.
4544  return true;
4545}
4546
4547bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4548  // get the "pointed to" types
4549  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4550  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4551
4552  if (!LHSOPT || !RHSOPT)
4553    return false;
4554
4555  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4556         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4557}
4558
4559bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
4560  return canAssignObjCInterfaces(
4561                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
4562                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
4563}
4564
4565/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4566/// both shall have the identically qualified version of a compatible type.
4567/// C99 6.2.7p1: Two types have compatible types if their types are the
4568/// same. See 6.7.[2,3,5] for additional rules.
4569bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
4570                                    bool CompareUnqualified) {
4571  if (getLangOptions().CPlusPlus)
4572    return hasSameType(LHS, RHS);
4573
4574  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
4575}
4576
4577bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4578  return !mergeTypes(LHS, RHS, true).isNull();
4579}
4580
4581QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4582                                        bool OfBlockPointer,
4583                                        bool Unqualified) {
4584  const FunctionType *lbase = lhs->getAs<FunctionType>();
4585  const FunctionType *rbase = rhs->getAs<FunctionType>();
4586  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4587  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4588  bool allLTypes = true;
4589  bool allRTypes = true;
4590
4591  // Check return type
4592  QualType retType;
4593  if (OfBlockPointer)
4594    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true,
4595                         Unqualified);
4596  else
4597   retType = mergeTypes(lbase->getResultType(), rbase->getResultType(),
4598                        false, Unqualified);
4599  if (retType.isNull()) return QualType();
4600
4601  if (Unqualified)
4602    retType = retType.getUnqualifiedType();
4603
4604  CanQualType LRetType = getCanonicalType(lbase->getResultType());
4605  CanQualType RRetType = getCanonicalType(rbase->getResultType());
4606  if (Unqualified) {
4607    LRetType = LRetType.getUnqualifiedType();
4608    RRetType = RRetType.getUnqualifiedType();
4609  }
4610
4611  if (getCanonicalType(retType) != LRetType)
4612    allLTypes = false;
4613  if (getCanonicalType(retType) != RRetType)
4614    allRTypes = false;
4615  // FIXME: double check this
4616  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4617  //                           rbase->getRegParmAttr() != 0 &&
4618  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4619  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4620  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4621  unsigned RegParm = lbaseInfo.getRegParm() == 0 ? rbaseInfo.getRegParm() :
4622      lbaseInfo.getRegParm();
4623  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4624  if (NoReturn != lbaseInfo.getNoReturn() ||
4625      RegParm != lbaseInfo.getRegParm())
4626    allLTypes = false;
4627  if (NoReturn != rbaseInfo.getNoReturn() ||
4628      RegParm != rbaseInfo.getRegParm())
4629    allRTypes = false;
4630  CallingConv lcc = lbaseInfo.getCC();
4631  CallingConv rcc = rbaseInfo.getCC();
4632  // Compatible functions must have compatible calling conventions
4633  if (!isSameCallConv(lcc, rcc))
4634    return QualType();
4635
4636  if (lproto && rproto) { // two C99 style function prototypes
4637    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4638           "C++ shouldn't be here");
4639    unsigned lproto_nargs = lproto->getNumArgs();
4640    unsigned rproto_nargs = rproto->getNumArgs();
4641
4642    // Compatible functions must have the same number of arguments
4643    if (lproto_nargs != rproto_nargs)
4644      return QualType();
4645
4646    // Variadic and non-variadic functions aren't compatible
4647    if (lproto->isVariadic() != rproto->isVariadic())
4648      return QualType();
4649
4650    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4651      return QualType();
4652
4653    // Check argument compatibility
4654    llvm::SmallVector<QualType, 10> types;
4655    for (unsigned i = 0; i < lproto_nargs; i++) {
4656      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4657      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4658      QualType argtype = mergeTypes(largtype, rargtype, OfBlockPointer,
4659                                    Unqualified);
4660      if (argtype.isNull()) return QualType();
4661
4662      if (Unqualified)
4663        argtype = argtype.getUnqualifiedType();
4664
4665      types.push_back(argtype);
4666      if (Unqualified) {
4667        largtype = largtype.getUnqualifiedType();
4668        rargtype = rargtype.getUnqualifiedType();
4669      }
4670
4671      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4672        allLTypes = false;
4673      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4674        allRTypes = false;
4675    }
4676    if (allLTypes) return lhs;
4677    if (allRTypes) return rhs;
4678    return getFunctionType(retType, types.begin(), types.size(),
4679                           lproto->isVariadic(), lproto->getTypeQuals(),
4680                           false, false, 0, 0,
4681                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4682  }
4683
4684  if (lproto) allRTypes = false;
4685  if (rproto) allLTypes = false;
4686
4687  const FunctionProtoType *proto = lproto ? lproto : rproto;
4688  if (proto) {
4689    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4690    if (proto->isVariadic()) return QualType();
4691    // Check that the types are compatible with the types that
4692    // would result from default argument promotions (C99 6.7.5.3p15).
4693    // The only types actually affected are promotable integer
4694    // types and floats, which would be passed as a different
4695    // type depending on whether the prototype is visible.
4696    unsigned proto_nargs = proto->getNumArgs();
4697    for (unsigned i = 0; i < proto_nargs; ++i) {
4698      QualType argTy = proto->getArgType(i);
4699
4700      // Look at the promotion type of enum types, since that is the type used
4701      // to pass enum values.
4702      if (const EnumType *Enum = argTy->getAs<EnumType>())
4703        argTy = Enum->getDecl()->getPromotionType();
4704
4705      if (argTy->isPromotableIntegerType() ||
4706          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4707        return QualType();
4708    }
4709
4710    if (allLTypes) return lhs;
4711    if (allRTypes) return rhs;
4712    return getFunctionType(retType, proto->arg_type_begin(),
4713                           proto->getNumArgs(), proto->isVariadic(),
4714                           proto->getTypeQuals(),
4715                           false, false, 0, 0,
4716                           FunctionType::ExtInfo(NoReturn, RegParm, lcc));
4717  }
4718
4719  if (allLTypes) return lhs;
4720  if (allRTypes) return rhs;
4721  FunctionType::ExtInfo Info(NoReturn, RegParm, lcc);
4722  return getFunctionNoProtoType(retType, Info);
4723}
4724
4725QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
4726                                bool OfBlockPointer,
4727                                bool Unqualified) {
4728  // C++ [expr]: If an expression initially has the type "reference to T", the
4729  // type is adjusted to "T" prior to any further analysis, the expression
4730  // designates the object or function denoted by the reference, and the
4731  // expression is an lvalue unless the reference is an rvalue reference and
4732  // the expression is a function call (possibly inside parentheses).
4733  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4734  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4735
4736  if (Unqualified) {
4737    LHS = LHS.getUnqualifiedType();
4738    RHS = RHS.getUnqualifiedType();
4739  }
4740
4741  QualType LHSCan = getCanonicalType(LHS),
4742           RHSCan = getCanonicalType(RHS);
4743
4744  // If two types are identical, they are compatible.
4745  if (LHSCan == RHSCan)
4746    return LHS;
4747
4748  // If the qualifiers are different, the types aren't compatible... mostly.
4749  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4750  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4751  if (LQuals != RQuals) {
4752    // If any of these qualifiers are different, we have a type
4753    // mismatch.
4754    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4755        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4756      return QualType();
4757
4758    // Exactly one GC qualifier difference is allowed: __strong is
4759    // okay if the other type has no GC qualifier but is an Objective
4760    // C object pointer (i.e. implicitly strong by default).  We fix
4761    // this by pretending that the unqualified type was actually
4762    // qualified __strong.
4763    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4764    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4765    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4766
4767    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4768      return QualType();
4769
4770    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4771      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4772    }
4773    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4774      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4775    }
4776    return QualType();
4777  }
4778
4779  // Okay, qualifiers are equal.
4780
4781  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4782  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4783
4784  // We want to consider the two function types to be the same for these
4785  // comparisons, just force one to the other.
4786  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4787  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4788
4789  // Same as above for arrays
4790  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4791    LHSClass = Type::ConstantArray;
4792  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4793    RHSClass = Type::ConstantArray;
4794
4795  // ObjCInterfaces are just specialized ObjCObjects.
4796  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
4797  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
4798
4799  // Canonicalize ExtVector -> Vector.
4800  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4801  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4802
4803  // If the canonical type classes don't match.
4804  if (LHSClass != RHSClass) {
4805    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4806    // a signed integer type, or an unsigned integer type.
4807    // Compatibility is based on the underlying type, not the promotion
4808    // type.
4809    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4810      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4811        return RHS;
4812    }
4813    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4814      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4815        return LHS;
4816    }
4817
4818    return QualType();
4819  }
4820
4821  // The canonical type classes match.
4822  switch (LHSClass) {
4823#define TYPE(Class, Base)
4824#define ABSTRACT_TYPE(Class, Base)
4825#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
4826#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4827#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4828#include "clang/AST/TypeNodes.def"
4829    assert(false && "Non-canonical and dependent types shouldn't get here");
4830    return QualType();
4831
4832  case Type::LValueReference:
4833  case Type::RValueReference:
4834  case Type::MemberPointer:
4835    assert(false && "C++ should never be in mergeTypes");
4836    return QualType();
4837
4838  case Type::ObjCInterface:
4839  case Type::IncompleteArray:
4840  case Type::VariableArray:
4841  case Type::FunctionProto:
4842  case Type::ExtVector:
4843    assert(false && "Types are eliminated above");
4844    return QualType();
4845
4846  case Type::Pointer:
4847  {
4848    // Merge two pointer types, while trying to preserve typedef info
4849    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4850    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4851    if (Unqualified) {
4852      LHSPointee = LHSPointee.getUnqualifiedType();
4853      RHSPointee = RHSPointee.getUnqualifiedType();
4854    }
4855    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
4856                                     Unqualified);
4857    if (ResultType.isNull()) return QualType();
4858    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4859      return LHS;
4860    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4861      return RHS;
4862    return getPointerType(ResultType);
4863  }
4864  case Type::BlockPointer:
4865  {
4866    // Merge two block pointer types, while trying to preserve typedef info
4867    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4868    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4869    if (Unqualified) {
4870      LHSPointee = LHSPointee.getUnqualifiedType();
4871      RHSPointee = RHSPointee.getUnqualifiedType();
4872    }
4873    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
4874                                     Unqualified);
4875    if (ResultType.isNull()) return QualType();
4876    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4877      return LHS;
4878    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4879      return RHS;
4880    return getBlockPointerType(ResultType);
4881  }
4882  case Type::ConstantArray:
4883  {
4884    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4885    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4886    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4887      return QualType();
4888
4889    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4890    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4891    if (Unqualified) {
4892      LHSElem = LHSElem.getUnqualifiedType();
4893      RHSElem = RHSElem.getUnqualifiedType();
4894    }
4895
4896    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
4897    if (ResultType.isNull()) return QualType();
4898    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4899      return LHS;
4900    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4901      return RHS;
4902    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4903                                          ArrayType::ArraySizeModifier(), 0);
4904    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4905                                          ArrayType::ArraySizeModifier(), 0);
4906    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4907    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4908    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4909      return LHS;
4910    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4911      return RHS;
4912    if (LVAT) {
4913      // FIXME: This isn't correct! But tricky to implement because
4914      // the array's size has to be the size of LHS, but the type
4915      // has to be different.
4916      return LHS;
4917    }
4918    if (RVAT) {
4919      // FIXME: This isn't correct! But tricky to implement because
4920      // the array's size has to be the size of RHS, but the type
4921      // has to be different.
4922      return RHS;
4923    }
4924    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4925    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4926    return getIncompleteArrayType(ResultType,
4927                                  ArrayType::ArraySizeModifier(), 0);
4928  }
4929  case Type::FunctionNoProto:
4930    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
4931  case Type::Record:
4932  case Type::Enum:
4933    return QualType();
4934  case Type::Builtin:
4935    // Only exactly equal builtin types are compatible, which is tested above.
4936    return QualType();
4937  case Type::Complex:
4938    // Distinct complex types are incompatible.
4939    return QualType();
4940  case Type::Vector:
4941    // FIXME: The merged type should be an ExtVector!
4942    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
4943                             RHSCan->getAs<VectorType>()))
4944      return LHS;
4945    return QualType();
4946  case Type::ObjCObject: {
4947    // Check if the types are assignment compatible.
4948    // FIXME: This should be type compatibility, e.g. whether
4949    // "LHS x; RHS x;" at global scope is legal.
4950    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
4951    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
4952    if (canAssignObjCInterfaces(LHSIface, RHSIface))
4953      return LHS;
4954
4955    return QualType();
4956  }
4957  case Type::ObjCObjectPointer: {
4958    if (OfBlockPointer) {
4959      if (canAssignObjCInterfacesInBlockPointer(
4960                                          LHS->getAs<ObjCObjectPointerType>(),
4961                                          RHS->getAs<ObjCObjectPointerType>()))
4962      return LHS;
4963      return QualType();
4964    }
4965    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4966                                RHS->getAs<ObjCObjectPointerType>()))
4967      return LHS;
4968
4969    return QualType();
4970    }
4971  }
4972
4973  return QualType();
4974}
4975
4976/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
4977/// 'RHS' attributes and returns the merged version; including for function
4978/// return types.
4979QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
4980  QualType LHSCan = getCanonicalType(LHS),
4981  RHSCan = getCanonicalType(RHS);
4982  // If two types are identical, they are compatible.
4983  if (LHSCan == RHSCan)
4984    return LHS;
4985  if (RHSCan->isFunctionType()) {
4986    if (!LHSCan->isFunctionType())
4987      return QualType();
4988    QualType OldReturnType =
4989      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
4990    QualType NewReturnType =
4991      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
4992    QualType ResReturnType =
4993      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
4994    if (ResReturnType.isNull())
4995      return QualType();
4996    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
4997      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
4998      // In either case, use OldReturnType to build the new function type.
4999      const FunctionType *F = LHS->getAs<FunctionType>();
5000      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5001        FunctionType::ExtInfo Info = getFunctionExtInfo(LHS);
5002        QualType ResultType
5003          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5004                                  FPT->getNumArgs(), FPT->isVariadic(),
5005                                  FPT->getTypeQuals(),
5006                                  FPT->hasExceptionSpec(),
5007                                  FPT->hasAnyExceptionSpec(),
5008                                  FPT->getNumExceptions(),
5009                                  FPT->exception_begin(),
5010                                  Info);
5011        return ResultType;
5012      }
5013    }
5014    return QualType();
5015  }
5016
5017  // If the qualifiers are different, the types can still be merged.
5018  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5019  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5020  if (LQuals != RQuals) {
5021    // If any of these qualifiers are different, we have a type mismatch.
5022    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5023        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5024      return QualType();
5025
5026    // Exactly one GC qualifier difference is allowed: __strong is
5027    // okay if the other type has no GC qualifier but is an Objective
5028    // C object pointer (i.e. implicitly strong by default).  We fix
5029    // this by pretending that the unqualified type was actually
5030    // qualified __strong.
5031    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5032    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5033    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5034
5035    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5036      return QualType();
5037
5038    if (GC_L == Qualifiers::Strong)
5039      return LHS;
5040    if (GC_R == Qualifiers::Strong)
5041      return RHS;
5042    return QualType();
5043  }
5044
5045  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5046    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5047    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5048    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5049    if (ResQT == LHSBaseQT)
5050      return LHS;
5051    if (ResQT == RHSBaseQT)
5052      return RHS;
5053  }
5054  return QualType();
5055}
5056
5057//===----------------------------------------------------------------------===//
5058//                         Integer Predicates
5059//===----------------------------------------------------------------------===//
5060
5061unsigned ASTContext::getIntWidth(QualType T) {
5062  if (T->isBooleanType())
5063    return 1;
5064  if (EnumType *ET = dyn_cast<EnumType>(T))
5065    T = ET->getDecl()->getIntegerType();
5066  // For builtin types, just use the standard type sizing method
5067  return (unsigned)getTypeSize(T);
5068}
5069
5070QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5071  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5072
5073  // Turn <4 x signed int> -> <4 x unsigned int>
5074  if (const VectorType *VTy = T->getAs<VectorType>())
5075    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5076             VTy->getNumElements(), VTy->getAltiVecSpecific());
5077
5078  // For enums, we return the unsigned version of the base type.
5079  if (const EnumType *ETy = T->getAs<EnumType>())
5080    T = ETy->getDecl()->getIntegerType();
5081
5082  const BuiltinType *BTy = T->getAs<BuiltinType>();
5083  assert(BTy && "Unexpected signed integer type");
5084  switch (BTy->getKind()) {
5085  case BuiltinType::Char_S:
5086  case BuiltinType::SChar:
5087    return UnsignedCharTy;
5088  case BuiltinType::Short:
5089    return UnsignedShortTy;
5090  case BuiltinType::Int:
5091    return UnsignedIntTy;
5092  case BuiltinType::Long:
5093    return UnsignedLongTy;
5094  case BuiltinType::LongLong:
5095    return UnsignedLongLongTy;
5096  case BuiltinType::Int128:
5097    return UnsignedInt128Ty;
5098  default:
5099    assert(0 && "Unexpected signed integer type");
5100    return QualType();
5101  }
5102}
5103
5104ExternalASTSource::~ExternalASTSource() { }
5105
5106void ExternalASTSource::PrintStats() { }
5107
5108
5109//===----------------------------------------------------------------------===//
5110//                          Builtin Type Computation
5111//===----------------------------------------------------------------------===//
5112
5113/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5114/// pointer over the consumed characters.  This returns the resultant type.
5115static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
5116                                  ASTContext::GetBuiltinTypeError &Error,
5117                                  bool AllowTypeModifiers = true) {
5118  // Modifiers.
5119  int HowLong = 0;
5120  bool Signed = false, Unsigned = false;
5121
5122  // Read the modifiers first.
5123  bool Done = false;
5124  while (!Done) {
5125    switch (*Str++) {
5126    default: Done = true; --Str; break;
5127    case 'S':
5128      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5129      assert(!Signed && "Can't use 'S' modifier multiple times!");
5130      Signed = true;
5131      break;
5132    case 'U':
5133      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5134      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5135      Unsigned = true;
5136      break;
5137    case 'L':
5138      assert(HowLong <= 2 && "Can't have LLLL modifier");
5139      ++HowLong;
5140      break;
5141    }
5142  }
5143
5144  QualType Type;
5145
5146  // Read the base type.
5147  switch (*Str++) {
5148  default: assert(0 && "Unknown builtin type letter!");
5149  case 'v':
5150    assert(HowLong == 0 && !Signed && !Unsigned &&
5151           "Bad modifiers used with 'v'!");
5152    Type = Context.VoidTy;
5153    break;
5154  case 'f':
5155    assert(HowLong == 0 && !Signed && !Unsigned &&
5156           "Bad modifiers used with 'f'!");
5157    Type = Context.FloatTy;
5158    break;
5159  case 'd':
5160    assert(HowLong < 2 && !Signed && !Unsigned &&
5161           "Bad modifiers used with 'd'!");
5162    if (HowLong)
5163      Type = Context.LongDoubleTy;
5164    else
5165      Type = Context.DoubleTy;
5166    break;
5167  case 's':
5168    assert(HowLong == 0 && "Bad modifiers used with 's'!");
5169    if (Unsigned)
5170      Type = Context.UnsignedShortTy;
5171    else
5172      Type = Context.ShortTy;
5173    break;
5174  case 'i':
5175    if (HowLong == 3)
5176      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
5177    else if (HowLong == 2)
5178      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
5179    else if (HowLong == 1)
5180      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
5181    else
5182      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
5183    break;
5184  case 'c':
5185    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
5186    if (Signed)
5187      Type = Context.SignedCharTy;
5188    else if (Unsigned)
5189      Type = Context.UnsignedCharTy;
5190    else
5191      Type = Context.CharTy;
5192    break;
5193  case 'b': // boolean
5194    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
5195    Type = Context.BoolTy;
5196    break;
5197  case 'z':  // size_t.
5198    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
5199    Type = Context.getSizeType();
5200    break;
5201  case 'F':
5202    Type = Context.getCFConstantStringType();
5203    break;
5204  case 'a':
5205    Type = Context.getBuiltinVaListType();
5206    assert(!Type.isNull() && "builtin va list type not initialized!");
5207    break;
5208  case 'A':
5209    // This is a "reference" to a va_list; however, what exactly
5210    // this means depends on how va_list is defined. There are two
5211    // different kinds of va_list: ones passed by value, and ones
5212    // passed by reference.  An example of a by-value va_list is
5213    // x86, where va_list is a char*. An example of by-ref va_list
5214    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
5215    // we want this argument to be a char*&; for x86-64, we want
5216    // it to be a __va_list_tag*.
5217    Type = Context.getBuiltinVaListType();
5218    assert(!Type.isNull() && "builtin va list type not initialized!");
5219    if (Type->isArrayType()) {
5220      Type = Context.getArrayDecayedType(Type);
5221    } else {
5222      Type = Context.getLValueReferenceType(Type);
5223    }
5224    break;
5225  case 'V': {
5226    char *End;
5227    unsigned NumElements = strtoul(Str, &End, 10);
5228    assert(End != Str && "Missing vector size");
5229
5230    Str = End;
5231
5232    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
5233    // FIXME: Don't know what to do about AltiVec.
5234    Type = Context.getVectorType(ElementType, NumElements,
5235                                 VectorType::NotAltiVec);
5236    break;
5237  }
5238  case 'X': {
5239    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
5240    Type = Context.getComplexType(ElementType);
5241    break;
5242  }
5243  case 'P':
5244    Type = Context.getFILEType();
5245    if (Type.isNull()) {
5246      Error = ASTContext::GE_Missing_stdio;
5247      return QualType();
5248    }
5249    break;
5250  case 'J':
5251    if (Signed)
5252      Type = Context.getsigjmp_bufType();
5253    else
5254      Type = Context.getjmp_bufType();
5255
5256    if (Type.isNull()) {
5257      Error = ASTContext::GE_Missing_setjmp;
5258      return QualType();
5259    }
5260    break;
5261  }
5262
5263  if (!AllowTypeModifiers)
5264    return Type;
5265
5266  Done = false;
5267  while (!Done) {
5268    switch (char c = *Str++) {
5269      default: Done = true; --Str; break;
5270      case '*':
5271      case '&':
5272        {
5273          // Both pointers and references can have their pointee types
5274          // qualified with an address space.
5275          char *End;
5276          unsigned AddrSpace = strtoul(Str, &End, 10);
5277          if (End != Str && AddrSpace != 0) {
5278            Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5279            Str = End;
5280          }
5281        }
5282        if (c == '*')
5283          Type = Context.getPointerType(Type);
5284        else
5285          Type = Context.getLValueReferenceType(Type);
5286        break;
5287      // FIXME: There's no way to have a built-in with an rvalue ref arg.
5288      case 'C':
5289        Type = Type.withConst();
5290        break;
5291      case 'D':
5292        Type = Context.getVolatileType(Type);
5293        break;
5294    }
5295  }
5296
5297  return Type;
5298}
5299
5300/// GetBuiltinType - Return the type for the specified builtin.
5301QualType ASTContext::GetBuiltinType(unsigned id,
5302                                    GetBuiltinTypeError &Error) {
5303  const char *TypeStr = BuiltinInfo.GetTypeString(id);
5304
5305  llvm::SmallVector<QualType, 8> ArgTypes;
5306
5307  Error = GE_None;
5308  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
5309  if (Error != GE_None)
5310    return QualType();
5311  while (TypeStr[0] && TypeStr[0] != '.') {
5312    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
5313    if (Error != GE_None)
5314      return QualType();
5315
5316    // Do array -> pointer decay.  The builtin should use the decayed type.
5317    if (Ty->isArrayType())
5318      Ty = getArrayDecayedType(Ty);
5319
5320    ArgTypes.push_back(Ty);
5321  }
5322
5323  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5324         "'.' should only occur at end of builtin type list!");
5325
5326  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
5327  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
5328    return getFunctionNoProtoType(ResType);
5329
5330  // FIXME: Should we create noreturn types?
5331  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
5332                         TypeStr[0] == '.', 0, false, false, 0, 0,
5333                         FunctionType::ExtInfo());
5334}
5335
5336QualType
5337ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
5338  // Perform the usual unary conversions. We do this early so that
5339  // integral promotions to "int" can allow us to exit early, in the
5340  // lhs == rhs check. Also, for conversion purposes, we ignore any
5341  // qualifiers.  For example, "const float" and "float" are
5342  // equivalent.
5343  if (lhs->isPromotableIntegerType())
5344    lhs = getPromotedIntegerType(lhs);
5345  else
5346    lhs = lhs.getUnqualifiedType();
5347  if (rhs->isPromotableIntegerType())
5348    rhs = getPromotedIntegerType(rhs);
5349  else
5350    rhs = rhs.getUnqualifiedType();
5351
5352  // If both types are identical, no conversion is needed.
5353  if (lhs == rhs)
5354    return lhs;
5355
5356  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
5357  // The caller can deal with this (e.g. pointer + int).
5358  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
5359    return lhs;
5360
5361  // At this point, we have two different arithmetic types.
5362
5363  // Handle complex types first (C99 6.3.1.8p1).
5364  if (lhs->isComplexType() || rhs->isComplexType()) {
5365    // if we have an integer operand, the result is the complex type.
5366    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
5367      // convert the rhs to the lhs complex type.
5368      return lhs;
5369    }
5370    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
5371      // convert the lhs to the rhs complex type.
5372      return rhs;
5373    }
5374    // This handles complex/complex, complex/float, or float/complex.
5375    // When both operands are complex, the shorter operand is converted to the
5376    // type of the longer, and that is the type of the result. This corresponds
5377    // to what is done when combining two real floating-point operands.
5378    // The fun begins when size promotion occur across type domains.
5379    // From H&S 6.3.4: When one operand is complex and the other is a real
5380    // floating-point type, the less precise type is converted, within it's
5381    // real or complex domain, to the precision of the other type. For example,
5382    // when combining a "long double" with a "double _Complex", the
5383    // "double _Complex" is promoted to "long double _Complex".
5384    int result = getFloatingTypeOrder(lhs, rhs);
5385
5386    if (result > 0) { // The left side is bigger, convert rhs.
5387      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
5388    } else if (result < 0) { // The right side is bigger, convert lhs.
5389      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
5390    }
5391    // At this point, lhs and rhs have the same rank/size. Now, make sure the
5392    // domains match. This is a requirement for our implementation, C99
5393    // does not require this promotion.
5394    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
5395      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
5396        return rhs;
5397      } else { // handle "_Complex double, double".
5398        return lhs;
5399      }
5400    }
5401    return lhs; // The domain/size match exactly.
5402  }
5403  // Now handle "real" floating types (i.e. float, double, long double).
5404  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
5405    // if we have an integer operand, the result is the real floating type.
5406    if (rhs->isIntegerType()) {
5407      // convert rhs to the lhs floating point type.
5408      return lhs;
5409    }
5410    if (rhs->isComplexIntegerType()) {
5411      // convert rhs to the complex floating point type.
5412      return getComplexType(lhs);
5413    }
5414    if (lhs->isIntegerType()) {
5415      // convert lhs to the rhs floating point type.
5416      return rhs;
5417    }
5418    if (lhs->isComplexIntegerType()) {
5419      // convert lhs to the complex floating point type.
5420      return getComplexType(rhs);
5421    }
5422    // We have two real floating types, float/complex combos were handled above.
5423    // Convert the smaller operand to the bigger result.
5424    int result = getFloatingTypeOrder(lhs, rhs);
5425    if (result > 0) // convert the rhs
5426      return lhs;
5427    assert(result < 0 && "illegal float comparison");
5428    return rhs;   // convert the lhs
5429  }
5430  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5431    // Handle GCC complex int extension.
5432    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5433    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5434
5435    if (lhsComplexInt && rhsComplexInt) {
5436      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5437                              rhsComplexInt->getElementType()) >= 0)
5438        return lhs; // convert the rhs
5439      return rhs;
5440    } else if (lhsComplexInt && rhs->isIntegerType()) {
5441      // convert the rhs to the lhs complex type.
5442      return lhs;
5443    } else if (rhsComplexInt && lhs->isIntegerType()) {
5444      // convert the lhs to the rhs complex type.
5445      return rhs;
5446    }
5447  }
5448  // Finally, we have two differing integer types.
5449  // The rules for this case are in C99 6.3.1.8
5450  int compare = getIntegerTypeOrder(lhs, rhs);
5451  bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
5452       rhsSigned = rhs->hasSignedIntegerRepresentation();
5453  QualType destType;
5454  if (lhsSigned == rhsSigned) {
5455    // Same signedness; use the higher-ranked type
5456    destType = compare >= 0 ? lhs : rhs;
5457  } else if (compare != (lhsSigned ? 1 : -1)) {
5458    // The unsigned type has greater than or equal rank to the
5459    // signed type, so use the unsigned type
5460    destType = lhsSigned ? rhs : lhs;
5461  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5462    // The two types are different widths; if we are here, that
5463    // means the signed type is larger than the unsigned type, so
5464    // use the signed type.
5465    destType = lhsSigned ? lhs : rhs;
5466  } else {
5467    // The signed type is higher-ranked than the unsigned type,
5468    // but isn't actually any bigger (like unsigned int and long
5469    // on most 32-bit systems).  Use the unsigned type corresponding
5470    // to the signed type.
5471    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5472  }
5473  return destType;
5474}
5475
5476GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
5477  GVALinkage External = GVA_StrongExternal;
5478
5479  Linkage L = FD->getLinkage();
5480  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5481      FD->getType()->getLinkage() == UniqueExternalLinkage)
5482    L = UniqueExternalLinkage;
5483
5484  switch (L) {
5485  case NoLinkage:
5486  case InternalLinkage:
5487  case UniqueExternalLinkage:
5488    return GVA_Internal;
5489
5490  case ExternalLinkage:
5491    switch (FD->getTemplateSpecializationKind()) {
5492    case TSK_Undeclared:
5493    case TSK_ExplicitSpecialization:
5494      External = GVA_StrongExternal;
5495      break;
5496
5497    case TSK_ExplicitInstantiationDefinition:
5498      return GVA_ExplicitTemplateInstantiation;
5499
5500    case TSK_ExplicitInstantiationDeclaration:
5501    case TSK_ImplicitInstantiation:
5502      External = GVA_TemplateInstantiation;
5503      break;
5504    }
5505  }
5506
5507  if (!FD->isInlined())
5508    return External;
5509
5510  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
5511    // GNU or C99 inline semantics. Determine whether this symbol should be
5512    // externally visible.
5513    if (FD->isInlineDefinitionExternallyVisible())
5514      return External;
5515
5516    // C99 inline semantics, where the symbol is not externally visible.
5517    return GVA_C99Inline;
5518  }
5519
5520  // C++0x [temp.explicit]p9:
5521  //   [ Note: The intent is that an inline function that is the subject of
5522  //   an explicit instantiation declaration will still be implicitly
5523  //   instantiated when used so that the body can be considered for
5524  //   inlining, but that no out-of-line copy of the inline function would be
5525  //   generated in the translation unit. -- end note ]
5526  if (FD->getTemplateSpecializationKind()
5527                                       == TSK_ExplicitInstantiationDeclaration)
5528    return GVA_C99Inline;
5529
5530  return GVA_CXXInline;
5531}
5532
5533GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
5534  // If this is a static data member, compute the kind of template
5535  // specialization. Otherwise, this variable is not part of a
5536  // template.
5537  TemplateSpecializationKind TSK = TSK_Undeclared;
5538  if (VD->isStaticDataMember())
5539    TSK = VD->getTemplateSpecializationKind();
5540
5541  Linkage L = VD->getLinkage();
5542  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5543      VD->getType()->getLinkage() == UniqueExternalLinkage)
5544    L = UniqueExternalLinkage;
5545
5546  switch (L) {
5547  case NoLinkage:
5548  case InternalLinkage:
5549  case UniqueExternalLinkage:
5550    return GVA_Internal;
5551
5552  case ExternalLinkage:
5553    switch (TSK) {
5554    case TSK_Undeclared:
5555    case TSK_ExplicitSpecialization:
5556      return GVA_StrongExternal;
5557
5558    case TSK_ExplicitInstantiationDeclaration:
5559      llvm_unreachable("Variable should not be instantiated");
5560      // Fall through to treat this like any other instantiation.
5561
5562    case TSK_ExplicitInstantiationDefinition:
5563      return GVA_ExplicitTemplateInstantiation;
5564
5565    case TSK_ImplicitInstantiation:
5566      return GVA_TemplateInstantiation;
5567    }
5568  }
5569
5570  return GVA_StrongExternal;
5571}
5572
5573bool ASTContext::DeclMustBeEmitted(const Decl *D) {
5574  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
5575    if (!VD->isFileVarDecl())
5576      return false;
5577  } else if (!isa<FunctionDecl>(D))
5578    return false;
5579
5580  // Weak references don't produce any output by themselves.
5581  if (D->hasAttr<WeakRefAttr>())
5582    return false;
5583
5584  // Aliases and used decls are required.
5585  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
5586    return true;
5587
5588  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5589    // Forward declarations aren't required.
5590    if (!FD->isThisDeclarationADefinition())
5591      return false;
5592
5593    // Constructors and destructors are required.
5594    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
5595      return true;
5596
5597    // The key function for a class is required.
5598    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5599      const CXXRecordDecl *RD = MD->getParent();
5600      if (MD->isOutOfLine() && RD->isDynamicClass()) {
5601        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
5602        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
5603          return true;
5604      }
5605    }
5606
5607    GVALinkage Linkage = GetGVALinkageForFunction(FD);
5608
5609    // static, static inline, always_inline, and extern inline functions can
5610    // always be deferred.  Normal inline functions can be deferred in C99/C++.
5611    // Implicit template instantiations can also be deferred in C++.
5612    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
5613        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
5614      return false;
5615    return true;
5616  }
5617
5618  const VarDecl *VD = cast<VarDecl>(D);
5619  assert(VD->isFileVarDecl() && "Expected file scoped var");
5620
5621  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
5622    return false;
5623
5624  // Structs that have non-trivial constructors or destructors are required.
5625
5626  // FIXME: Handle references.
5627  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
5628    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5629      if (RD->hasDefinition() &&
5630          (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()))
5631        return true;
5632    }
5633  }
5634
5635  GVALinkage L = GetGVALinkageForVariable(VD);
5636  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
5637    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
5638      return false;
5639  }
5640
5641  return true;
5642}
5643