ASTContext.cpp revision cded4f649cd4b7ba7d461c25c6482ef52b8d3a2a
1324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
3324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//                     The LLVM Compiler Infrastructure
4324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
5324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// This file is distributed under the University of Illinois Open Source
6324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver// License. See LICENSE.TXT for details.
7324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
8324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//===----------------------------------------------------------------------===//
9324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
10324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//  This file implements the ASTContext interface.
11324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//
12324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//===----------------------------------------------------------------------===//
13324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
14324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/ASTContext.h"
15324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/CharUnits.h"
16324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/DeclCXX.h"
17324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/DeclObjC.h"
18324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/DeclTemplate.h"
19324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/TypeLoc.h"
20324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/Expr.h"
21324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/ExprCXX.h"
22324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/ExternalASTSource.h"
23324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/ASTMutationListener.h"
24324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/RecordLayout.h"
25324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/Mangle.h"
26324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/Basic/Builtins.h"
27324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/Basic/SourceManager.h"
28324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/Basic/TargetInfo.h"
29324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/ADT/SmallString.h"
30324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/ADT/StringExtras.h"
31324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/Support/MathExtras.h"
32324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "llvm/Support/raw_ostream.h"
33324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "CXXABI.h"
34324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
35324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverusing namespace clang;
36324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
37324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverunsigned ASTContext::NumImplicitDefaultConstructors;
38324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverunsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
39324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverunsigned ASTContext::NumImplicitCopyConstructors;
40324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverunsigned ASTContext::NumImplicitCopyConstructorsDeclared;
41324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverunsigned ASTContext::NumImplicitCopyAssignmentOperators;
42324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverunsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
43324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverunsigned ASTContext::NumImplicitDestructors;
44324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverunsigned ASTContext::NumImplicitDestructorsDeclared;
45324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
46324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverenum FloatingRank {
47324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  FloatRank, DoubleRank, LongDoubleRank
48324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver};
49324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
50324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid
51324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
52324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                               TemplateTemplateParmDecl *Parm) {
53324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ID.AddInteger(Parm->getDepth());
54324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ID.AddInteger(Parm->getPosition());
55324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ID.AddBoolean(Parm->isParameterPack());
56324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
57324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  TemplateParameterList *Params = Parm->getTemplateParameters();
58324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ID.AddInteger(Params->size());
59324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  for (TemplateParameterList::const_iterator P = Params->begin(),
60324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                          PEnd = Params->end();
61324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver       P != PEnd; ++P) {
62324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
63324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      ID.AddInteger(0);
64324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      ID.AddBoolean(TTP->isParameterPack());
65324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      continue;
66324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    }
67324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
68324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
69324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      ID.AddInteger(1);
70324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      ID.AddBoolean(NTTP->isParameterPack());
71324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
72324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      continue;
73324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    }
74324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
75324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
76324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    ID.AddInteger(2);
77324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Profile(ID, TTP);
78324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
79324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
80324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
81324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverTemplateTemplateParmDecl *
82324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::getCanonicalTemplateTemplateParmDecl(
83324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                          TemplateTemplateParmDecl *TTP) const {
84324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Check if we already have a canonical template template parameter.
85324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  llvm::FoldingSetNodeID ID;
86324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  CanonicalTemplateTemplateParm::Profile(ID, TTP);
87324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  void *InsertPos = 0;
88324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  CanonicalTemplateTemplateParm *Canonical
89324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
90324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (Canonical)
91324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return Canonical->getParam();
92324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
93324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Build a canonical template parameter list.
94324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  TemplateParameterList *Params = TTP->getTemplateParameters();
95324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  llvm::SmallVector<NamedDecl *, 4> CanonParams;
96324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  CanonParams.reserve(Params->size());
97324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  for (TemplateParameterList::const_iterator P = Params->begin(),
98324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                          PEnd = Params->end();
99324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver       P != PEnd; ++P) {
100324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
101324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      CanonParams.push_back(
102324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
103324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                               SourceLocation(), TTP->getDepth(),
104324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                               TTP->getIndex(), 0, false,
105324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                               TTP->isParameterPack()));
106324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    else if (NonTypeTemplateParmDecl *NTTP
107324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver             = dyn_cast<NonTypeTemplateParmDecl>(*P))
108324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      CanonParams.push_back(
109324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver            NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
110324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                            SourceLocation(), NTTP->getDepth(),
111324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                            NTTP->getPosition(), 0,
112324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                            getCanonicalType(NTTP->getType()),
113324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                            NTTP->isParameterPack(),
114324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                            0));
115324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    else
116324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
117324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                           cast<TemplateTemplateParmDecl>(*P)));
118324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
119324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
120324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  TemplateTemplateParmDecl *CanonTTP
121324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
122324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                       SourceLocation(), TTP->getDepth(),
123324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                       TTP->getPosition(),
124324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                       TTP->isParameterPack(),
125324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                       0,
126324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                         TemplateParameterList::Create(*this, SourceLocation(),
127324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                                       SourceLocation(),
128324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                                       CanonParams.data(),
129324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                                       CanonParams.size(),
130324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                                       SourceLocation()));
131324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
132324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Get the new insert position for the node we care about.
133324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
134324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  assert(Canonical == 0 && "Shouldn't be in the map!");
135324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  (void)Canonical;
136324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
137324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Create the canonical template template parameter entry.
138324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
139324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
140324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return CanonTTP;
141324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
142324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
143324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverCXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
144324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (!LangOpts.CPlusPlus) return 0;
145324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
146324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  switch (T.getCXXABI()) {
147324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case CXXABI_ARM:
148324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return CreateARMCXXABI(*this);
149324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case CXXABI_Itanium:
150324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return CreateItaniumCXXABI(*this);
151324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case CXXABI_Microsoft:
152324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return CreateMicrosoftCXXABI(*this);
153324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
154324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return 0;
155324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
156324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
157324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
158324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                       const TargetInfo &t,
159324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                       IdentifierTable &idents, SelectorTable &sels,
160324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                       Builtin::Context &builtins,
161324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                       unsigned size_reserve) :
162324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  TemplateSpecializationTypes(this_()),
163324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  DependentTemplateSpecializationTypes(this_()),
164324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
165324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
166324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
167324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
168324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  NullTypeSourceInfo(QualType()),
169324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)), Target(t),
170324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  Idents(idents), Selectors(sels),
171324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  BuiltinInfo(builtins),
172324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  DeclarationNames(*this),
173324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
174324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  LastSDM(0, 0),
175324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  UniqueBlockByRefTypeID(0), UniqueBlockParmTypeID(0) {
176324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ObjCIdRedefinitionType = QualType();
177324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ObjCClassRedefinitionType = QualType();
178324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ObjCSelRedefinitionType = QualType();
179324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (size_reserve > 0) Types.reserve(size_reserve);
180324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  TUDecl = TranslationUnitDecl::Create(*this);
181324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinTypes();
182324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
183324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
184324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::~ASTContext() {
185324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Release the DenseMaps associated with DeclContext objects.
186324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // FIXME: Is this the ideal solution?
187324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ReleaseDeclContextMaps();
188324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
189324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Call all of the deallocation functions.
190324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
191324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Deallocations[I].first(Deallocations[I].second);
192324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
193324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Release all of the memory associated with overridden C++ methods.
194324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
195324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
196324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver       OM != OMEnd; ++OM)
197324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    OM->second.Destroy();
198324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
199324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
200324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // because they can contain DenseMaps.
201324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  for (llvm::DenseMap<const ObjCContainerDecl*,
202324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver       const ASTRecordLayout*>::iterator
203324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
204324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // Increment in loop to prevent using deallocated memory.
205324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
206324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      R->Destroy(*this);
207324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
208324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
209324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
210324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // Increment in loop to prevent using deallocated memory.
211324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
212324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      R->Destroy(*this);
213324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
214324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
215324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
216324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                                    AEnd = DeclAttrs.end();
217324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver       A != AEnd; ++A)
218324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    A->second->~AttrVec();
219324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
220324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
221324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
222324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  Deallocations.push_back(std::make_pair(Callback, Data));
223324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
224324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
225324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid
226324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
227324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ExternalSource.reset(Source.take());
228324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
229324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
230324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid ASTContext::PrintStats() const {
231324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  fprintf(stderr, "*** AST Context Stats:\n");
232324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  fprintf(stderr, "  %d types total.\n", (int)Types.size());
233324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
234324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  unsigned counts[] = {
235324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#define TYPE(Name, Parent) 0,
236324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#define ABSTRACT_TYPE(Name, Parent)
237324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/TypeNodes.def"
238324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    0 // Extra
239324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  };
240324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
241324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
242324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Type *T = Types[i];
243324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    counts[(unsigned)T->getTypeClass()]++;
244324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
245324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
246324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  unsigned Idx = 0;
247324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  unsigned TotalBytes = 0;
248324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#define TYPE(Name, Parent)                                              \
249324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (counts[Idx])                                                      \
250324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
251324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
252324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ++Idx;
253324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#define ABSTRACT_TYPE(Name, Parent)
254324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/TypeNodes.def"
255324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
256324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
257324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
258324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Implicit special member functions.
259324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  fprintf(stderr, "  %u/%u implicit default constructors created\n",
260324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver          NumImplicitDefaultConstructorsDeclared,
261324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver          NumImplicitDefaultConstructors);
262324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
263324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver          NumImplicitCopyConstructorsDeclared,
264324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver          NumImplicitCopyConstructors);
265324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
266324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver          NumImplicitCopyAssignmentOperatorsDeclared,
267324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver          NumImplicitCopyAssignmentOperators);
268324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  fprintf(stderr, "  %u/%u implicit destructors created\n",
269324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver          NumImplicitDestructorsDeclared, NumImplicitDestructors);
270324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
271324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (ExternalSource.get()) {
272324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    fprintf(stderr, "\n");
273324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    ExternalSource->PrintStats();
274324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
275324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
276324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  BumpAlloc.PrintStats();
277324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
278324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
279324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
280324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
281324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
282324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
283324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  Types.push_back(Ty);
284324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
285324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
286324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid ASTContext::InitBuiltinTypes() {
287324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  assert(VoidTy.isNull() && "Context reinitialized?");
288324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
289324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // C99 6.2.5p19.
290324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(VoidTy,              BuiltinType::Void);
291324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
292324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // C99 6.2.5p2.
293324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(BoolTy,              BuiltinType::Bool);
294324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // C99 6.2.5p3.
295324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (LangOpts.CharIsSigned)
296324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    InitBuiltinType(CharTy,            BuiltinType::Char_S);
297324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  else
298324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    InitBuiltinType(CharTy,            BuiltinType::Char_U);
299324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // C99 6.2.5p4.
300324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
301324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(ShortTy,             BuiltinType::Short);
302324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(IntTy,               BuiltinType::Int);
303324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(LongTy,              BuiltinType::Long);
304324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
305324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
306324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // C99 6.2.5p6.
307324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
308324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
309324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
310324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
311324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
312324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
313324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // C99 6.2.5p10.
314324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(FloatTy,             BuiltinType::Float);
315324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(DoubleTy,            BuiltinType::Double);
316324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
317324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
318324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // GNU extension, 128-bit integers.
319324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
320324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
321324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
322324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
323324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    if (!LangOpts.ShortWChar)
324324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
325324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    else  // -fshort-wchar makes wchar_t be unsigned.
326324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
327324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  } else // C99
328324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    WCharTy = getFromTargetType(Target.getWCharType());
329324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
330324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
331324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
332324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  else // C99
333324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Char16Ty = getFromTargetType(Target.getChar16Type());
334324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
335324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
336324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
337324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  else // C99
338324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Char32Ty = getFromTargetType(Target.getChar32Type());
339324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
340324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Placeholder type for type-dependent expressions whose type is
341324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // completely unknown. No code should ever check a type against
342324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // DependentTy and users should never see it; however, it is here to
343324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // help diagnose failures to properly check for type-dependent
344324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // expressions.
345324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
346324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
347324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Placeholder type for functions.
348324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
349324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
350324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Placeholder type for C++0x auto declarations whose real type has
351324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // not yet been deduced.
352324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(UndeducedAutoTy,     BuiltinType::UndeducedAuto);
353324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
354324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // C99 6.2.5p11.
355324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  FloatComplexTy      = getComplexType(FloatTy);
356324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  DoubleComplexTy     = getComplexType(DoubleTy);
357324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  LongDoubleComplexTy = getComplexType(LongDoubleTy);
358324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
359324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  BuiltinVaListType = QualType();
360324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
361324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
362324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ObjCIdTypedefType = QualType();
363324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ObjCClassTypedefType = QualType();
364324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ObjCSelTypedefType = QualType();
365324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
366324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Builtin types for 'id', 'Class', and 'SEL'.
367324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
368324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
369324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
370324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
371324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ObjCConstantStringType = QualType();
372324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
373324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // void * type
374324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  VoidPtrTy = getPointerType(VoidTy);
375324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
376324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // nullptr type (C++0x 2.14.7)
377324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
378324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
379324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
380324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverDiagnostic &ASTContext::getDiagnostics() const {
381324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return SourceMgr.getDiagnostics();
382324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
383324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
384324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverAttrVec& ASTContext::getDeclAttrs(const Decl *D) {
385324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  AttrVec *&Result = DeclAttrs[D];
386324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (!Result) {
387324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    void *Mem = Allocate(sizeof(AttrVec));
388324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Result = new (Mem) AttrVec;
389324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
390324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
391324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return *Result;
392324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
393324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
394324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// \brief Erase the attributes corresponding to the given declaration.
395324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid ASTContext::eraseDeclAttrs(const Decl *D) {
396324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
397324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (Pos != DeclAttrs.end()) {
398324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Pos->second->~AttrVec();
399324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    DeclAttrs.erase(Pos);
400324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
401324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
402324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
403324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
404324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverMemberSpecializationInfo *
405324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
406324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  assert(Var->isStaticDataMember() && "Not a static data member");
407324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
408324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    = InstantiatedFromStaticDataMember.find(Var);
409324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (Pos == InstantiatedFromStaticDataMember.end())
410324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return 0;
411324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
412324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return Pos->second;
413324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
414324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
415324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid
416324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
417324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                                TemplateSpecializationKind TSK,
418324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                          SourceLocation PointOfInstantiation) {
419324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  assert(Inst->isStaticDataMember() && "Not a static data member");
420324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  assert(Tmpl->isStaticDataMember() && "Not a static data member");
421324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  assert(!InstantiatedFromStaticDataMember[Inst] &&
422324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver         "Already noted what static data member was instantiated from");
423324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InstantiatedFromStaticDataMember[Inst]
424324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
425324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
426324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
427324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverNamedDecl *
428324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
429324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
430324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    = InstantiatedFromUsingDecl.find(UUD);
431324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (Pos == InstantiatedFromUsingDecl.end())
432324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return 0;
433324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
434324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return Pos->second;
435324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
436324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
437324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid
438324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
439324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  assert((isa<UsingDecl>(Pattern) ||
440324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver          isa<UnresolvedUsingValueDecl>(Pattern) ||
441324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
442324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver         "pattern decl is not a using decl");
443324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
444324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InstantiatedFromUsingDecl[Inst] = Pattern;
445324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
446324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
447324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverUsingShadowDecl *
448324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
449324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
450324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    = InstantiatedFromUsingShadowDecl.find(Inst);
451324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (Pos == InstantiatedFromUsingShadowDecl.end())
452324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return 0;
453324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
454324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return Pos->second;
455324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
456324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
457324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid
458324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
459324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                               UsingShadowDecl *Pattern) {
460324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
461324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
462324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
463324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
464324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverFieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
465324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
466324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    = InstantiatedFromUnnamedFieldDecl.find(Field);
467324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
468324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return 0;
469324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
470324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return Pos->second;
471324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
472324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
473324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
474324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                                     FieldDecl *Tmpl) {
475324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
476324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
477324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
478324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver         "Already noted what unnamed field was instantiated from");
479324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
480324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
481324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
482324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
483324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::overridden_cxx_method_iterator
484324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
485324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
486324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    = OverriddenMethods.find(Method);
487324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (Pos == OverriddenMethods.end())
488324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return 0;
489324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
490324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return Pos->second.begin();
491324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
492324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
493324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::overridden_cxx_method_iterator
494324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
495324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
496324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    = OverriddenMethods.find(Method);
497324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (Pos == OverriddenMethods.end())
498324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return 0;
499324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
500324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return Pos->second.end();
501324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
502324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
503324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverunsigned
504324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
505324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
506324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    = OverriddenMethods.find(Method);
507324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (Pos == OverriddenMethods.end())
508324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return 0;
509324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
510324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return Pos->second.size();
511324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
512324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
513324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
514324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                     const CXXMethodDecl *Overridden) {
515324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  OverriddenMethods[Method].push_back(Overridden);
516324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
517324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
518324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//===----------------------------------------------------------------------===//
519324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//                         Type Sizing and Analysis
520324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver//===----------------------------------------------------------------------===//
521324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
522324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
523324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// scalar floating point type.
524324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverconst llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
525324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  const BuiltinType *BT = T->getAs<BuiltinType>();
526324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  assert(BT && "Not a floating point type!");
527324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  switch (BT->getKind()) {
528324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  default: assert(0 && "Not a floating point type!");
529324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case BuiltinType::Float:      return Target.getFloatFormat();
530324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case BuiltinType::Double:     return Target.getDoubleFormat();
531324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
532324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
533324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
534324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
535324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// getDeclAlign - Return a conservative estimate of the alignment of the
536324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// specified decl.  Note that bitfields do not have a valid alignment, so
537324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// this method will assert on them.
538324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// If @p RefAsPointee, references are treated like their underlying type
539324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// (for alignof), else they're treated like pointers (for CodeGen).
540324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverCharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
541324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  unsigned Align = Target.getCharWidth();
542324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
543324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  bool UseAlignAttrOnly = false;
544324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
545324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Align = AlignFromAttr;
546324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
547324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // __attribute__((aligned)) can increase or decrease alignment
548324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // *except* on a struct or struct member, where it only increases
549324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // alignment unless 'packed' is also specified.
550324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    //
551324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // It is an error for [[align]] to decrease alignment, so we can
552324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // ignore that possibility;  Sema should diagnose it.
553324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    if (isa<FieldDecl>(D)) {
554324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
555324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
556324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    } else {
557324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      UseAlignAttrOnly = true;
558324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    }
559324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
560324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
561324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (UseAlignAttrOnly) {
562324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // ignore type of value
563324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
564324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    QualType T = VD->getType();
565324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
566324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      if (RefAsPointee)
567324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        T = RT->getPointeeType();
568324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      else
569324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        T = getPointerType(RT->getPointeeType());
570324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    }
571324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    if (!T->isIncompleteType() && !T->isFunctionType()) {
572324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      unsigned MinWidth = Target.getLargeArrayMinWidth();
573324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      unsigned ArrayAlign = Target.getLargeArrayAlign();
574324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      if (isa<VariableArrayType>(T) && MinWidth != 0)
575324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        Align = std::max(Align, ArrayAlign);
576324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      if (ConstantArrayType *CT = dyn_cast<ConstantArrayType>(T)) {
577324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        unsigned Size = getTypeSize(CT);
578324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        if (MinWidth != 0 && MinWidth <= Size)
579324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver          Align = std::max(Align, ArrayAlign);
580324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      }
581324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      // Incomplete or function types default to 1.
582324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
583324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        T = cast<ArrayType>(T)->getElementType();
584324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
585324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
586324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    }
587324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
588324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      // In the case of a field in a packed struct, we want the minimum
589324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      // of the alignment of the field and the alignment of the struct.
590324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = std::min(Align,
591324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        getPreferredTypeAlign(FD->getParent()->getTypeForDecl()));
592324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    }
593324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
594324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
595324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return CharUnits::fromQuantity(Align / Target.getCharWidth());
596324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
597324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
598324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverstd::pair<CharUnits, CharUnits>
599324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::getTypeInfoInChars(const Type *T) {
600324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
601324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return std::make_pair(CharUnits::fromQuantity(Info.first / getCharWidth()),
602324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                        CharUnits::fromQuantity(Info.second / getCharWidth()));
603324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
604324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
605324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverstd::pair<CharUnits, CharUnits>
606324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::getTypeInfoInChars(QualType T) {
607324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return getTypeInfoInChars(T.getTypePtr());
608324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
609324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
610324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// getTypeSize - Return the size of the specified type, in bits.  This method
611324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// does not work on incomplete types.
612324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver///
613324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// FIXME: Pointers into different addr spaces could have different sizes and
614324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// alignment requirements: getPointerInfo should take an AddrSpace, this
615324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// should take a QualType, &c.
616324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverstd::pair<uint64_t, unsigned>
617324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverASTContext::getTypeInfo(const Type *T) const {
618324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  uint64_t Width=0;
619324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  unsigned Align=8;
620324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  switch (T->getTypeClass()) {
621324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#define TYPE(Class, Base)
622324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#define ABSTRACT_TYPE(Class, Base)
623324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#define NON_CANONICAL_TYPE(Class, Base)
624324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#define DEPENDENT_TYPE(Class, Base) case Type::Class:
625324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver#include "clang/AST/TypeNodes.def"
626324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    assert(false && "Should not see dependent types");
627324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
628324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
629324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::FunctionNoProto:
630324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::FunctionProto:
631324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // GCC extension: alignof(function) = 32 bits
632324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Width = 0;
633324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Align = 32;
634324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
635324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
636324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::IncompleteArray:
637324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::VariableArray:
638324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Width = 0;
639324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
640324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
641324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
642324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::ConstantArray: {
643324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
644324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
645324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
646324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Width = EltInfo.first*CAT->getSize().getZExtValue();
647324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Align = EltInfo.second;
648324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
649324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
650324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::ExtVector:
651324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::Vector: {
652324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    const VectorType *VT = cast<VectorType>(T);
653324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
654324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Width = EltInfo.first*VT->getNumElements();
655324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Align = Width;
656324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // If the alignment is not a power of 2, round up to the next power of 2.
657324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // This happens for non-power-of-2 length vectors.
658324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    if (Align & (Align-1)) {
659324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = llvm::NextPowerOf2(Align);
660324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = llvm::RoundUpToAlignment(Width, Align);
661324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    }
662324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
663324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
664324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
665324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::Builtin:
666324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    switch (cast<BuiltinType>(T)->getKind()) {
667324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    default: assert(0 && "Unknown builtin type!");
668324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::Void:
669324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      // GCC extension: alignof(void) = 8 bits.
670324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = 0;
671324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = 8;
672324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
673324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
674324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::Bool:
675324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = Target.getBoolWidth();
676324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = Target.getBoolAlign();
677324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
678324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::Char_S:
679324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::Char_U:
680324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::UChar:
681324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::SChar:
682324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = Target.getCharWidth();
683324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = Target.getCharAlign();
684324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
685324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::WChar_S:
686324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::WChar_U:
687324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = Target.getWCharWidth();
688324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = Target.getWCharAlign();
689324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
690324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::Char16:
691324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = Target.getChar16Width();
692324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = Target.getChar16Align();
693324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
694324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::Char32:
695324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = Target.getChar32Width();
696324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = Target.getChar32Align();
697324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
698324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::UShort:
699324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::Short:
700324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = Target.getShortWidth();
701324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = Target.getShortAlign();
702324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
703324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::UInt:
704324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::Int:
705324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = Target.getIntWidth();
706324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = Target.getIntAlign();
707324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
708324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::ULong:
709324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::Long:
710324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = Target.getLongWidth();
711324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = Target.getLongAlign();
712324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
713324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::ULongLong:
714324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::LongLong:
715324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = Target.getLongLongWidth();
716324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = Target.getLongLongAlign();
717324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
718324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::Int128:
719324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::UInt128:
720324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = 128;
721324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = 128; // int128_t is 128-bit aligned on all targets.
722324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
723324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::Float:
724324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = Target.getFloatWidth();
725324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = Target.getFloatAlign();
726324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
727324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::Double:
728324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = Target.getDoubleWidth();
729324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = Target.getDoubleAlign();
730324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
731324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::LongDouble:
732324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = Target.getLongDoubleWidth();
733324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = Target.getLongDoubleAlign();
734324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
735324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::NullPtr:
736324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
737324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = Target.getPointerAlign(0); //   == sizeof(void*)
738324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
739324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::ObjCId:
740324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::ObjCClass:
741324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    case BuiltinType::ObjCSel:
742324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = Target.getPointerWidth(0);
743324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = Target.getPointerAlign(0);
744324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
745324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    }
746324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
747324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::ObjCObjectPointer:
748324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Width = Target.getPointerWidth(0);
749324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Align = Target.getPointerAlign(0);
750324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
751324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::BlockPointer: {
752324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
753324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Width = Target.getPointerWidth(AS);
754324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Align = Target.getPointerAlign(AS);
755324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
756324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
757324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::LValueReference:
758324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::RValueReference: {
759324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // alignof and sizeof should never enter this code path here, so we go
760324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // the pointer route.
761324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
762324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Width = Target.getPointerWidth(AS);
763324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Align = Target.getPointerAlign(AS);
764324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
765324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
766324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::Pointer: {
767324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
768324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Width = Target.getPointerWidth(AS);
769324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Align = Target.getPointerAlign(AS);
770324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
771324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
772324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::MemberPointer: {
773324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    const MemberPointerType *MPT = cast<MemberPointerType>(T);
774324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    std::pair<uint64_t, unsigned> PtrDiffInfo =
775324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      getTypeInfo(getPointerDiffType());
776324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
777324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Align = PtrDiffInfo.second;
778324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
779324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
780324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::Complex: {
781324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // Complex types have the same alignment as their elements, but twice the
782324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // size.
783324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    std::pair<uint64_t, unsigned> EltInfo =
784324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      getTypeInfo(cast<ComplexType>(T)->getElementType());
785324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Width = EltInfo.first*2;
786324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Align = EltInfo.second;
787324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
788324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
789324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::ObjCObject:
790324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
791324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::ObjCInterface: {
792324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
793324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
794324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Width = Layout.getSize();
795324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Align = Layout.getAlignment();
796324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
797324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
798324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::Record:
799324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::Enum: {
800324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    const TagType *TT = cast<TagType>(T);
801324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
802324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    if (TT->getDecl()->isInvalidDecl()) {
803324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Width = 1;
804324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Align = 1;
805324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      break;
806324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    }
807324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
808324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    if (const EnumType *ET = dyn_cast<EnumType>(TT))
809324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      return getTypeInfo(ET->getDecl()->getIntegerType());
810324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
811324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    const RecordType *RT = cast<RecordType>(TT);
812324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
813324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Width = Layout.getSize();
814324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Align = Layout.getAlignment();
815324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
816324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
817324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
818324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::SubstTemplateTypeParm:
819324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
820324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                       getReplacementType().getTypePtr());
821324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
822324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::Paren:
823324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
824324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
825324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::Typedef: {
826324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
827324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    std::pair<uint64_t, unsigned> Info
828324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
829324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Align = std::max(Typedef->getMaxAlignment(), Info.second);
830324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Width = Info.first;
831324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    break;
832324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
833324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
834324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::TypeOfExpr:
835324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
836324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                         .getTypePtr());
837324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
838324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::TypeOf:
839324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
840324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
841324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::Decltype:
842324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
843324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                        .getTypePtr());
844324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
845324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::Elaborated:
846324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
847324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
848324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::Attributed:
849324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return getTypeInfo(
850324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
851324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
852324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  case Type::TemplateSpecialization:
853324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    assert(getCanonicalType(T) != T &&
854324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver           "Cannot request the size of a dependent type");
855324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // FIXME: this is likely to be wrong once we support template
856324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // aliases, since a template alias could refer to a typedef that
857324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // has an __aligned__ attribute on it.
858324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return getTypeInfo(getCanonicalType(T));
859324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
860324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
861324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
862324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return std::make_pair(Width, Align);
863324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
864324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
865324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// getTypeSizeInChars - Return the size of the specified type, in characters.
866324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// This method does not work on incomplete types.
867324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverCharUnits ASTContext::getTypeSizeInChars(QualType T) const {
868324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
869324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
870324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverCharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
871324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
872324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
873324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
874324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
875324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// characters. This method does not work on incomplete types.
876324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverCharUnits ASTContext::getTypeAlignInChars(QualType T) const {
877324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
878324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
879324c4644fee44b9898524c09511bd33c3f12e2dfBen GruverCharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
880324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
881324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
882324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
883324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
884324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// type for the current target in bits.  This can be different than the ABI
885324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// alignment in cases where it is beneficial for performance to overalign
886324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// a data type.
887324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverunsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
888324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  unsigned ABIAlign = getTypeAlign(T);
889324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
890324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Double and long long should be naturally aligned if possible.
891324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (const ComplexType* CT = T->getAs<ComplexType>())
892324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    T = CT->getElementType().getTypePtr();
893324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
894324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      T->isSpecificBuiltinType(BuiltinType::LongLong))
895324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    return std::max(ABIAlign, (unsigned)getTypeSize(T));
896324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
897324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  return ABIAlign;
898324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
899324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
900324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// ShallowCollectObjCIvars -
901324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// Collect all ivars, including those synthesized, in the current class.
902324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver///
903324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
904324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
905324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // FIXME. This need be removed but there are two many places which
906324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // assume const-ness of ObjCInterfaceDecl
907324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
908324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
909324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        Iv= Iv->getNextIvar())
910324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    Ivars.push_back(Iv);
911324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
912324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
913324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// DeepCollectObjCIvars -
914324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// This routine first collects all declared, but not synthesized, ivars in
915324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// super class and then collects all ivars, including those synthesized for
916324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// current class. This routine is used for implementation of current class
917324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// when all ivars, declared and synthesized are known.
918324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver///
919324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
920324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                                      bool leafClass,
921324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
922324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
923324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    DeepCollectObjCIvars(SuperClass, false, Ivars);
924324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (!leafClass) {
925324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
926324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver         E = OI->ivar_end(); I != E; ++I)
927324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Ivars.push_back(*I);
928324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
929324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  else
930324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    ShallowCollectObjCIvars(OI, Ivars);
931324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
932324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
933324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// CollectInheritedProtocols - Collect all protocols in current class and
934324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver/// those inherited by it.
935324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruvervoid ASTContext::CollectInheritedProtocols(const Decl *CDecl,
936324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
937324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
938324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // We can use protocol_iterator here instead of
939324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // all_referenced_protocol_iterator since we are walking all categories.
940324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
941324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
942324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      ObjCProtocolDecl *Proto = (*P);
943324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Protocols.insert(Proto);
944324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
945324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver           PE = Proto->protocol_end(); P != PE; ++P) {
946324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        Protocols.insert(*P);
947324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        CollectInheritedProtocols(*P, Protocols);
948324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      }
949324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    }
950324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
951324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    // Categories of this Interface.
952324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
953324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
954324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      CollectInheritedProtocols(CDeclChain, Protocols);
955324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
956324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      while (SD) {
957324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        CollectInheritedProtocols(SD, Protocols);
958324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        SD = SD->getSuperClass();
959324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      }
960324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
961324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
962324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver         PE = OC->protocol_end(); P != PE; ++P) {
963324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      ObjCProtocolDecl *Proto = (*P);
964324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Protocols.insert(Proto);
965324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
966324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver           PE = Proto->protocol_end(); P != PE; ++P)
967324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        CollectInheritedProtocols(*P, Protocols);
968324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    }
969324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
970324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
971324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver         PE = OP->protocol_end(); P != PE; ++P) {
972324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      ObjCProtocolDecl *Proto = (*P);
973324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      Protocols.insert(Proto);
974324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
975324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver           PE = Proto->protocol_end(); P != PE; ++P)
976324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver        CollectInheritedProtocols(*P, Protocols);
977324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    }
978324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  }
979324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver}
980324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
981324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruverunsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
982324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  unsigned count = 0;
983324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Count ivars declared in class extension.
984324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
985324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver       CDecl = CDecl->getNextClassExtension())
986324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver    count += CDecl->ivar_size();
987324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver
988324c4644fee44b9898524c09511bd33c3f12e2dfBen Gruver  // Count ivar defined in this class's implementation.  This
989  // includes synthesized ivars.
990  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
991    count += ImplDecl->ivar_size();
992
993  return count;
994}
995
996/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
997ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
998  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
999    I = ObjCImpls.find(D);
1000  if (I != ObjCImpls.end())
1001    return cast<ObjCImplementationDecl>(I->second);
1002  return 0;
1003}
1004/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1005ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1006  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1007    I = ObjCImpls.find(D);
1008  if (I != ObjCImpls.end())
1009    return cast<ObjCCategoryImplDecl>(I->second);
1010  return 0;
1011}
1012
1013/// \brief Set the implementation of ObjCInterfaceDecl.
1014void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1015                           ObjCImplementationDecl *ImplD) {
1016  assert(IFaceD && ImplD && "Passed null params");
1017  ObjCImpls[IFaceD] = ImplD;
1018}
1019/// \brief Set the implementation of ObjCCategoryDecl.
1020void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1021                           ObjCCategoryImplDecl *ImplD) {
1022  assert(CatD && ImplD && "Passed null params");
1023  ObjCImpls[CatD] = ImplD;
1024}
1025
1026/// \brief Get the copy initialization expression of VarDecl,or NULL if
1027/// none exists.
1028Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1029  assert(VD && "Passed null params");
1030  assert(VD->hasAttr<BlocksAttr>() &&
1031         "getBlockVarCopyInits - not __block var");
1032  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1033    I = BlockVarCopyInits.find(VD);
1034  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1035}
1036
1037/// \brief Set the copy inialization expression of a block var decl.
1038void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1039  assert(VD && Init && "Passed null params");
1040  assert(VD->hasAttr<BlocksAttr>() &&
1041         "setBlockVarCopyInits - not __block var");
1042  BlockVarCopyInits[VD] = Init;
1043}
1044
1045/// \brief Allocate an uninitialized TypeSourceInfo.
1046///
1047/// The caller should initialize the memory held by TypeSourceInfo using
1048/// the TypeLoc wrappers.
1049///
1050/// \param T the type that will be the basis for type source info. This type
1051/// should refer to how the declarator was written in source code, not to
1052/// what type semantic analysis resolved the declarator to.
1053TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1054                                                 unsigned DataSize) const {
1055  if (!DataSize)
1056    DataSize = TypeLoc::getFullDataSizeForType(T);
1057  else
1058    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1059           "incorrect data size provided to CreateTypeSourceInfo!");
1060
1061  TypeSourceInfo *TInfo =
1062    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1063  new (TInfo) TypeSourceInfo(T);
1064  return TInfo;
1065}
1066
1067TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1068                                                     SourceLocation L) {
1069  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1070  DI->getTypeLoc().initialize(L);
1071  return DI;
1072}
1073
1074const ASTRecordLayout &
1075ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1076  return getObjCLayout(D, 0);
1077}
1078
1079const ASTRecordLayout &
1080ASTContext::getASTObjCImplementationLayout(
1081                                        const ObjCImplementationDecl *D) const {
1082  return getObjCLayout(D->getClassInterface(), D);
1083}
1084
1085//===----------------------------------------------------------------------===//
1086//                   Type creation/memoization methods
1087//===----------------------------------------------------------------------===//
1088
1089QualType
1090ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) const {
1091  unsigned Fast = Quals.getFastQualifiers();
1092  Quals.removeFastQualifiers();
1093
1094  // Check if we've already instantiated this type.
1095  llvm::FoldingSetNodeID ID;
1096  ExtQuals::Profile(ID, TypeNode, Quals);
1097  void *InsertPos = 0;
1098  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1099    assert(EQ->getQualifiers() == Quals);
1100    QualType T = QualType(EQ, Fast);
1101    return T;
1102  }
1103
1104  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(TypeNode, Quals);
1105  ExtQualNodes.InsertNode(New, InsertPos);
1106  QualType T = QualType(New, Fast);
1107  return T;
1108}
1109
1110QualType
1111ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1112  QualType CanT = getCanonicalType(T);
1113  if (CanT.getAddressSpace() == AddressSpace)
1114    return T;
1115
1116  // If we are composing extended qualifiers together, merge together
1117  // into one ExtQuals node.
1118  QualifierCollector Quals;
1119  const Type *TypeNode = Quals.strip(T);
1120
1121  // If this type already has an address space specified, it cannot get
1122  // another one.
1123  assert(!Quals.hasAddressSpace() &&
1124         "Type cannot be in multiple addr spaces!");
1125  Quals.addAddressSpace(AddressSpace);
1126
1127  return getExtQualType(TypeNode, Quals);
1128}
1129
1130QualType ASTContext::getObjCGCQualType(QualType T,
1131                                       Qualifiers::GC GCAttr) const {
1132  QualType CanT = getCanonicalType(T);
1133  if (CanT.getObjCGCAttr() == GCAttr)
1134    return T;
1135
1136  if (const PointerType *ptr = T->getAs<PointerType>()) {
1137    QualType Pointee = ptr->getPointeeType();
1138    if (Pointee->isAnyPointerType()) {
1139      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1140      return getPointerType(ResultType);
1141    }
1142  }
1143
1144  // If we are composing extended qualifiers together, merge together
1145  // into one ExtQuals node.
1146  QualifierCollector Quals;
1147  const Type *TypeNode = Quals.strip(T);
1148
1149  // If this type already has an ObjCGC specified, it cannot get
1150  // another one.
1151  assert(!Quals.hasObjCGCAttr() &&
1152         "Type cannot have multiple ObjCGCs!");
1153  Quals.addObjCGCAttr(GCAttr);
1154
1155  return getExtQualType(TypeNode, Quals);
1156}
1157
1158const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1159                                                   FunctionType::ExtInfo Info) {
1160  if (T->getExtInfo() == Info)
1161    return T;
1162
1163  QualType Result;
1164  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1165    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1166  } else {
1167    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1168    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1169    EPI.ExtInfo = Info;
1170    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1171                             FPT->getNumArgs(), EPI);
1172  }
1173
1174  return cast<FunctionType>(Result.getTypePtr());
1175}
1176
1177/// getComplexType - Return the uniqued reference to the type for a complex
1178/// number with the specified element type.
1179QualType ASTContext::getComplexType(QualType T) const {
1180  // Unique pointers, to guarantee there is only one pointer of a particular
1181  // structure.
1182  llvm::FoldingSetNodeID ID;
1183  ComplexType::Profile(ID, T);
1184
1185  void *InsertPos = 0;
1186  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1187    return QualType(CT, 0);
1188
1189  // If the pointee type isn't canonical, this won't be a canonical type either,
1190  // so fill in the canonical type field.
1191  QualType Canonical;
1192  if (!T.isCanonical()) {
1193    Canonical = getComplexType(getCanonicalType(T));
1194
1195    // Get the new insert position for the node we care about.
1196    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1197    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1198  }
1199  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1200  Types.push_back(New);
1201  ComplexTypes.InsertNode(New, InsertPos);
1202  return QualType(New, 0);
1203}
1204
1205/// getPointerType - Return the uniqued reference to the type for a pointer to
1206/// the specified type.
1207QualType ASTContext::getPointerType(QualType T) const {
1208  // Unique pointers, to guarantee there is only one pointer of a particular
1209  // structure.
1210  llvm::FoldingSetNodeID ID;
1211  PointerType::Profile(ID, T);
1212
1213  void *InsertPos = 0;
1214  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1215    return QualType(PT, 0);
1216
1217  // If the pointee type isn't canonical, this won't be a canonical type either,
1218  // so fill in the canonical type field.
1219  QualType Canonical;
1220  if (!T.isCanonical()) {
1221    Canonical = getPointerType(getCanonicalType(T));
1222
1223    // Get the new insert position for the node we care about.
1224    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1225    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1226  }
1227  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1228  Types.push_back(New);
1229  PointerTypes.InsertNode(New, InsertPos);
1230  return QualType(New, 0);
1231}
1232
1233/// getBlockPointerType - Return the uniqued reference to the type for
1234/// a pointer to the specified block.
1235QualType ASTContext::getBlockPointerType(QualType T) const {
1236  assert(T->isFunctionType() && "block of function types only");
1237  // Unique pointers, to guarantee there is only one block of a particular
1238  // structure.
1239  llvm::FoldingSetNodeID ID;
1240  BlockPointerType::Profile(ID, T);
1241
1242  void *InsertPos = 0;
1243  if (BlockPointerType *PT =
1244        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1245    return QualType(PT, 0);
1246
1247  // If the block pointee type isn't canonical, this won't be a canonical
1248  // type either so fill in the canonical type field.
1249  QualType Canonical;
1250  if (!T.isCanonical()) {
1251    Canonical = getBlockPointerType(getCanonicalType(T));
1252
1253    // Get the new insert position for the node we care about.
1254    BlockPointerType *NewIP =
1255      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1256    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1257  }
1258  BlockPointerType *New
1259    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1260  Types.push_back(New);
1261  BlockPointerTypes.InsertNode(New, InsertPos);
1262  return QualType(New, 0);
1263}
1264
1265/// getLValueReferenceType - Return the uniqued reference to the type for an
1266/// lvalue reference to the specified type.
1267QualType
1268ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1269  // Unique pointers, to guarantee there is only one pointer of a particular
1270  // structure.
1271  llvm::FoldingSetNodeID ID;
1272  ReferenceType::Profile(ID, T, SpelledAsLValue);
1273
1274  void *InsertPos = 0;
1275  if (LValueReferenceType *RT =
1276        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1277    return QualType(RT, 0);
1278
1279  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1280
1281  // If the referencee type isn't canonical, this won't be a canonical type
1282  // either, so fill in the canonical type field.
1283  QualType Canonical;
1284  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1285    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1286    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1287
1288    // Get the new insert position for the node we care about.
1289    LValueReferenceType *NewIP =
1290      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1291    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1292  }
1293
1294  LValueReferenceType *New
1295    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1296                                                     SpelledAsLValue);
1297  Types.push_back(New);
1298  LValueReferenceTypes.InsertNode(New, InsertPos);
1299
1300  return QualType(New, 0);
1301}
1302
1303/// getRValueReferenceType - Return the uniqued reference to the type for an
1304/// rvalue reference to the specified type.
1305QualType ASTContext::getRValueReferenceType(QualType T) const {
1306  // Unique pointers, to guarantee there is only one pointer of a particular
1307  // structure.
1308  llvm::FoldingSetNodeID ID;
1309  ReferenceType::Profile(ID, T, false);
1310
1311  void *InsertPos = 0;
1312  if (RValueReferenceType *RT =
1313        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1314    return QualType(RT, 0);
1315
1316  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1317
1318  // If the referencee type isn't canonical, this won't be a canonical type
1319  // either, so fill in the canonical type field.
1320  QualType Canonical;
1321  if (InnerRef || !T.isCanonical()) {
1322    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1323    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1324
1325    // Get the new insert position for the node we care about.
1326    RValueReferenceType *NewIP =
1327      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1328    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1329  }
1330
1331  RValueReferenceType *New
1332    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1333  Types.push_back(New);
1334  RValueReferenceTypes.InsertNode(New, InsertPos);
1335  return QualType(New, 0);
1336}
1337
1338/// getMemberPointerType - Return the uniqued reference to the type for a
1339/// member pointer to the specified type, in the specified class.
1340QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1341  // Unique pointers, to guarantee there is only one pointer of a particular
1342  // structure.
1343  llvm::FoldingSetNodeID ID;
1344  MemberPointerType::Profile(ID, T, Cls);
1345
1346  void *InsertPos = 0;
1347  if (MemberPointerType *PT =
1348      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1349    return QualType(PT, 0);
1350
1351  // If the pointee or class type isn't canonical, this won't be a canonical
1352  // type either, so fill in the canonical type field.
1353  QualType Canonical;
1354  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1355    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1356
1357    // Get the new insert position for the node we care about.
1358    MemberPointerType *NewIP =
1359      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1360    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1361  }
1362  MemberPointerType *New
1363    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1364  Types.push_back(New);
1365  MemberPointerTypes.InsertNode(New, InsertPos);
1366  return QualType(New, 0);
1367}
1368
1369/// getConstantArrayType - Return the unique reference to the type for an
1370/// array of the specified element type.
1371QualType ASTContext::getConstantArrayType(QualType EltTy,
1372                                          const llvm::APInt &ArySizeIn,
1373                                          ArrayType::ArraySizeModifier ASM,
1374                                          unsigned EltTypeQuals) const {
1375  assert((EltTy->isDependentType() ||
1376          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1377         "Constant array of VLAs is illegal!");
1378
1379  // Convert the array size into a canonical width matching the pointer size for
1380  // the target.
1381  llvm::APInt ArySize(ArySizeIn);
1382  ArySize =
1383    ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1384
1385  llvm::FoldingSetNodeID ID;
1386  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1387
1388  void *InsertPos = 0;
1389  if (ConstantArrayType *ATP =
1390      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1391    return QualType(ATP, 0);
1392
1393  // If the element type isn't canonical, this won't be a canonical type either,
1394  // so fill in the canonical type field.
1395  QualType Canonical;
1396  if (!EltTy.isCanonical()) {
1397    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1398                                     ASM, EltTypeQuals);
1399    // Get the new insert position for the node we care about.
1400    ConstantArrayType *NewIP =
1401      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1402    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1403  }
1404
1405  ConstantArrayType *New = new(*this,TypeAlignment)
1406    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1407  ConstantArrayTypes.InsertNode(New, InsertPos);
1408  Types.push_back(New);
1409  return QualType(New, 0);
1410}
1411
1412/// getIncompleteArrayType - Returns a unique reference to the type for a
1413/// incomplete array of the specified element type.
1414QualType ASTContext::getUnknownSizeVariableArrayType(QualType Ty) const {
1415  QualType ElemTy = getBaseElementType(Ty);
1416  DeclarationName Name;
1417  llvm::SmallVector<QualType, 8> ATypes;
1418  QualType ATy = Ty;
1419  while (const ArrayType *AT = getAsArrayType(ATy)) {
1420    ATypes.push_back(ATy);
1421    ATy = AT->getElementType();
1422  }
1423  for (int i = ATypes.size() - 1; i >= 0; i--) {
1424    if (const VariableArrayType *VAT = getAsVariableArrayType(ATypes[i])) {
1425      ElemTy = getVariableArrayType(ElemTy, /*ArraySize*/0, ArrayType::Star,
1426                                    0, VAT->getBracketsRange());
1427    }
1428    else if (const ConstantArrayType *CAT = getAsConstantArrayType(ATypes[i])) {
1429      llvm::APSInt ConstVal(CAT->getSize());
1430      ElemTy = getConstantArrayType(ElemTy, ConstVal, ArrayType::Normal, 0);
1431    }
1432    else if (getAsIncompleteArrayType(ATypes[i])) {
1433      ElemTy = getVariableArrayType(ElemTy, /*ArraySize*/0, ArrayType::Normal,
1434                                    0, SourceRange());
1435    }
1436    else
1437      assert(false && "DependentArrayType is seen");
1438  }
1439  return ElemTy;
1440}
1441
1442/// getVariableArrayDecayedType - Returns a vla type where known sizes
1443/// are replaced with [*]
1444QualType ASTContext::getVariableArrayDecayedType(QualType Ty) const {
1445  if (Ty->isPointerType()) {
1446    QualType BaseType = Ty->getAs<PointerType>()->getPointeeType();
1447    if (isa<VariableArrayType>(BaseType)) {
1448      ArrayType *AT = dyn_cast<ArrayType>(BaseType);
1449      VariableArrayType *VAT = cast<VariableArrayType>(AT);
1450      if (VAT->getSizeExpr()) {
1451        Ty = getUnknownSizeVariableArrayType(BaseType);
1452        Ty = getPointerType(Ty);
1453      }
1454    }
1455  }
1456  return Ty;
1457}
1458
1459
1460/// getVariableArrayType - Returns a non-unique reference to the type for a
1461/// variable array of the specified element type.
1462QualType ASTContext::getVariableArrayType(QualType EltTy,
1463                                          Expr *NumElts,
1464                                          ArrayType::ArraySizeModifier ASM,
1465                                          unsigned EltTypeQuals,
1466                                          SourceRange Brackets) const {
1467  // Since we don't unique expressions, it isn't possible to unique VLA's
1468  // that have an expression provided for their size.
1469  QualType CanonType;
1470
1471  if (!EltTy.isCanonical()) {
1472    CanonType = getVariableArrayType(getCanonicalType(EltTy), NumElts, ASM,
1473                                     EltTypeQuals, Brackets);
1474  }
1475
1476  VariableArrayType *New = new(*this, TypeAlignment)
1477    VariableArrayType(EltTy, CanonType, NumElts, ASM, EltTypeQuals, Brackets);
1478
1479  VariableArrayTypes.push_back(New);
1480  Types.push_back(New);
1481  return QualType(New, 0);
1482}
1483
1484/// getDependentSizedArrayType - Returns a non-unique reference to
1485/// the type for a dependently-sized array of the specified element
1486/// type.
1487QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1488                                                Expr *NumElts,
1489                                                ArrayType::ArraySizeModifier ASM,
1490                                                unsigned EltTypeQuals,
1491                                                SourceRange Brackets) const {
1492  assert((!NumElts || NumElts->isTypeDependent() ||
1493          NumElts->isValueDependent()) &&
1494         "Size must be type- or value-dependent!");
1495
1496  void *InsertPos = 0;
1497  DependentSizedArrayType *Canon = 0;
1498  llvm::FoldingSetNodeID ID;
1499
1500  QualType CanonicalEltTy = getCanonicalType(EltTy);
1501  if (NumElts) {
1502    // Dependently-sized array types that do not have a specified
1503    // number of elements will have their sizes deduced from an
1504    // initializer.
1505    DependentSizedArrayType::Profile(ID, *this, CanonicalEltTy, ASM,
1506                                     EltTypeQuals, NumElts);
1507
1508    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1509  }
1510
1511  DependentSizedArrayType *New;
1512  if (Canon) {
1513    // We already have a canonical version of this array type; use it as
1514    // the canonical type for a newly-built type.
1515    New = new (*this, TypeAlignment)
1516      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1517                              NumElts, ASM, EltTypeQuals, Brackets);
1518  } else if (CanonicalEltTy == EltTy) {
1519    // This is a canonical type. Record it.
1520    New = new (*this, TypeAlignment)
1521      DependentSizedArrayType(*this, EltTy, QualType(),
1522                              NumElts, ASM, EltTypeQuals, Brackets);
1523
1524    if (NumElts) {
1525#ifndef NDEBUG
1526      DependentSizedArrayType *CanonCheck
1527        = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1528      assert(!CanonCheck && "Dependent-sized canonical array type broken");
1529      (void)CanonCheck;
1530#endif
1531      DependentSizedArrayTypes.InsertNode(New, InsertPos);
1532    }
1533  } else {
1534    QualType Canon = getDependentSizedArrayType(CanonicalEltTy, NumElts,
1535                                                ASM, EltTypeQuals,
1536                                                SourceRange());
1537    New = new (*this, TypeAlignment)
1538      DependentSizedArrayType(*this, EltTy, Canon,
1539                              NumElts, ASM, EltTypeQuals, Brackets);
1540  }
1541
1542  Types.push_back(New);
1543  return QualType(New, 0);
1544}
1545
1546QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1547                                            ArrayType::ArraySizeModifier ASM,
1548                                            unsigned EltTypeQuals) const {
1549  llvm::FoldingSetNodeID ID;
1550  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1551
1552  void *InsertPos = 0;
1553  if (IncompleteArrayType *ATP =
1554       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1555    return QualType(ATP, 0);
1556
1557  // If the element type isn't canonical, this won't be a canonical type
1558  // either, so fill in the canonical type field.
1559  QualType Canonical;
1560
1561  if (!EltTy.isCanonical()) {
1562    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1563                                       ASM, EltTypeQuals);
1564
1565    // Get the new insert position for the node we care about.
1566    IncompleteArrayType *NewIP =
1567      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1568    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1569  }
1570
1571  IncompleteArrayType *New = new (*this, TypeAlignment)
1572    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1573
1574  IncompleteArrayTypes.InsertNode(New, InsertPos);
1575  Types.push_back(New);
1576  return QualType(New, 0);
1577}
1578
1579/// getVectorType - Return the unique reference to a vector type of
1580/// the specified element type and size. VectorType must be a built-in type.
1581QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1582                                   VectorType::VectorKind VecKind) const {
1583  BuiltinType *BaseType;
1584
1585  BaseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1586  assert(BaseType != 0 && "getVectorType(): Expecting a built-in type");
1587
1588  // Check if we've already instantiated a vector of this type.
1589  llvm::FoldingSetNodeID ID;
1590  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1591
1592  void *InsertPos = 0;
1593  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1594    return QualType(VTP, 0);
1595
1596  // If the element type isn't canonical, this won't be a canonical type either,
1597  // so fill in the canonical type field.
1598  QualType Canonical;
1599  if (!vecType.isCanonical()) {
1600    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1601
1602    // Get the new insert position for the node we care about.
1603    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1604    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1605  }
1606  VectorType *New = new (*this, TypeAlignment)
1607    VectorType(vecType, NumElts, Canonical, VecKind);
1608  VectorTypes.InsertNode(New, InsertPos);
1609  Types.push_back(New);
1610  return QualType(New, 0);
1611}
1612
1613/// getExtVectorType - Return the unique reference to an extended vector type of
1614/// the specified element type and size. VectorType must be a built-in type.
1615QualType
1616ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1617  BuiltinType *baseType;
1618
1619  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1620  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1621
1622  // Check if we've already instantiated a vector of this type.
1623  llvm::FoldingSetNodeID ID;
1624  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1625                      VectorType::GenericVector);
1626  void *InsertPos = 0;
1627  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1628    return QualType(VTP, 0);
1629
1630  // If the element type isn't canonical, this won't be a canonical type either,
1631  // so fill in the canonical type field.
1632  QualType Canonical;
1633  if (!vecType.isCanonical()) {
1634    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1635
1636    // Get the new insert position for the node we care about.
1637    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1638    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1639  }
1640  ExtVectorType *New = new (*this, TypeAlignment)
1641    ExtVectorType(vecType, NumElts, Canonical);
1642  VectorTypes.InsertNode(New, InsertPos);
1643  Types.push_back(New);
1644  return QualType(New, 0);
1645}
1646
1647QualType
1648ASTContext::getDependentSizedExtVectorType(QualType vecType,
1649                                           Expr *SizeExpr,
1650                                           SourceLocation AttrLoc) const {
1651  llvm::FoldingSetNodeID ID;
1652  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1653                                       SizeExpr);
1654
1655  void *InsertPos = 0;
1656  DependentSizedExtVectorType *Canon
1657    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1658  DependentSizedExtVectorType *New;
1659  if (Canon) {
1660    // We already have a canonical version of this array type; use it as
1661    // the canonical type for a newly-built type.
1662    New = new (*this, TypeAlignment)
1663      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1664                                  SizeExpr, AttrLoc);
1665  } else {
1666    QualType CanonVecTy = getCanonicalType(vecType);
1667    if (CanonVecTy == vecType) {
1668      New = new (*this, TypeAlignment)
1669        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1670                                    AttrLoc);
1671
1672      DependentSizedExtVectorType *CanonCheck
1673        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1674      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1675      (void)CanonCheck;
1676      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1677    } else {
1678      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1679                                                      SourceLocation());
1680      New = new (*this, TypeAlignment)
1681        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1682    }
1683  }
1684
1685  Types.push_back(New);
1686  return QualType(New, 0);
1687}
1688
1689/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1690///
1691QualType
1692ASTContext::getFunctionNoProtoType(QualType ResultTy,
1693                                   const FunctionType::ExtInfo &Info) const {
1694  const CallingConv CallConv = Info.getCC();
1695  // Unique functions, to guarantee there is only one function of a particular
1696  // structure.
1697  llvm::FoldingSetNodeID ID;
1698  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1699
1700  void *InsertPos = 0;
1701  if (FunctionNoProtoType *FT =
1702        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1703    return QualType(FT, 0);
1704
1705  QualType Canonical;
1706  if (!ResultTy.isCanonical() ||
1707      getCanonicalCallConv(CallConv) != CallConv) {
1708    Canonical =
1709      getFunctionNoProtoType(getCanonicalType(ResultTy),
1710                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1711
1712    // Get the new insert position for the node we care about.
1713    FunctionNoProtoType *NewIP =
1714      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1715    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1716  }
1717
1718  FunctionNoProtoType *New = new (*this, TypeAlignment)
1719    FunctionNoProtoType(ResultTy, Canonical, Info);
1720  Types.push_back(New);
1721  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1722  return QualType(New, 0);
1723}
1724
1725/// getFunctionType - Return a normal function type with a typed argument
1726/// list.  isVariadic indicates whether the argument list includes '...'.
1727QualType
1728ASTContext::getFunctionType(QualType ResultTy,
1729                            const QualType *ArgArray, unsigned NumArgs,
1730                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1731  // Unique functions, to guarantee there is only one function of a particular
1732  // structure.
1733  llvm::FoldingSetNodeID ID;
1734  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI);
1735
1736  void *InsertPos = 0;
1737  if (FunctionProtoType *FTP =
1738        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1739    return QualType(FTP, 0);
1740
1741  // Determine whether the type being created is already canonical or not.
1742  bool isCanonical = !EPI.HasExceptionSpec && ResultTy.isCanonical();
1743  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1744    if (!ArgArray[i].isCanonicalAsParam())
1745      isCanonical = false;
1746
1747  const CallingConv CallConv = EPI.ExtInfo.getCC();
1748
1749  // If this type isn't canonical, get the canonical version of it.
1750  // The exception spec is not part of the canonical type.
1751  QualType Canonical;
1752  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1753    llvm::SmallVector<QualType, 16> CanonicalArgs;
1754    CanonicalArgs.reserve(NumArgs);
1755    for (unsigned i = 0; i != NumArgs; ++i)
1756      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1757
1758    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
1759    if (CanonicalEPI.HasExceptionSpec) {
1760      CanonicalEPI.HasExceptionSpec = false;
1761      CanonicalEPI.HasAnyExceptionSpec = false;
1762      CanonicalEPI.NumExceptions = 0;
1763    }
1764    CanonicalEPI.ExtInfo
1765      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
1766
1767    Canonical = getFunctionType(getCanonicalType(ResultTy),
1768                                CanonicalArgs.data(), NumArgs,
1769                                CanonicalEPI);
1770
1771    // Get the new insert position for the node we care about.
1772    FunctionProtoType *NewIP =
1773      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1774    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1775  }
1776
1777  // FunctionProtoType objects are allocated with extra bytes after them
1778  // for two variable size arrays (for parameter and exception types) at the
1779  // end of them.
1780  size_t Size = sizeof(FunctionProtoType) +
1781                NumArgs * sizeof(QualType) +
1782                EPI.NumExceptions * sizeof(QualType);
1783  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
1784  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, EPI);
1785  Types.push_back(FTP);
1786  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1787  return QualType(FTP, 0);
1788}
1789
1790#ifndef NDEBUG
1791static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1792  if (!isa<CXXRecordDecl>(D)) return false;
1793  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1794  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1795    return true;
1796  if (RD->getDescribedClassTemplate() &&
1797      !isa<ClassTemplateSpecializationDecl>(RD))
1798    return true;
1799  return false;
1800}
1801#endif
1802
1803/// getInjectedClassNameType - Return the unique reference to the
1804/// injected class name type for the specified templated declaration.
1805QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1806                                              QualType TST) const {
1807  assert(NeedsInjectedClassNameType(Decl));
1808  if (Decl->TypeForDecl) {
1809    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1810  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
1811    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1812    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1813    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1814  } else {
1815    Decl->TypeForDecl =
1816      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1817    Types.push_back(Decl->TypeForDecl);
1818  }
1819  return QualType(Decl->TypeForDecl, 0);
1820}
1821
1822/// getTypeDeclType - Return the unique reference to the type for the
1823/// specified type declaration.
1824QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
1825  assert(Decl && "Passed null for Decl param");
1826  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
1827
1828  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1829    return getTypedefType(Typedef);
1830
1831  assert(!isa<TemplateTypeParmDecl>(Decl) &&
1832         "Template type parameter types are always available.");
1833
1834  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1835    assert(!Record->getPreviousDeclaration() &&
1836           "struct/union has previous declaration");
1837    assert(!NeedsInjectedClassNameType(Record));
1838    return getRecordType(Record);
1839  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1840    assert(!Enum->getPreviousDeclaration() &&
1841           "enum has previous declaration");
1842    return getEnumType(Enum);
1843  } else if (const UnresolvedUsingTypenameDecl *Using =
1844               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1845    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1846  } else
1847    llvm_unreachable("TypeDecl without a type?");
1848
1849  Types.push_back(Decl->TypeForDecl);
1850  return QualType(Decl->TypeForDecl, 0);
1851}
1852
1853/// getTypedefType - Return the unique reference to the type for the
1854/// specified typename decl.
1855QualType
1856ASTContext::getTypedefType(const TypedefDecl *Decl, QualType Canonical) const {
1857  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1858
1859  if (Canonical.isNull())
1860    Canonical = getCanonicalType(Decl->getUnderlyingType());
1861  Decl->TypeForDecl = new(*this, TypeAlignment)
1862    TypedefType(Type::Typedef, Decl, Canonical);
1863  Types.push_back(Decl->TypeForDecl);
1864  return QualType(Decl->TypeForDecl, 0);
1865}
1866
1867QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
1868  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1869
1870  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
1871    if (PrevDecl->TypeForDecl)
1872      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
1873
1874  Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Decl);
1875  Types.push_back(Decl->TypeForDecl);
1876  return QualType(Decl->TypeForDecl, 0);
1877}
1878
1879QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
1880  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1881
1882  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
1883    if (PrevDecl->TypeForDecl)
1884      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
1885
1886  Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Decl);
1887  Types.push_back(Decl->TypeForDecl);
1888  return QualType(Decl->TypeForDecl, 0);
1889}
1890
1891QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
1892                                       QualType modifiedType,
1893                                       QualType equivalentType) {
1894  llvm::FoldingSetNodeID id;
1895  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
1896
1897  void *insertPos = 0;
1898  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
1899  if (type) return QualType(type, 0);
1900
1901  QualType canon = getCanonicalType(equivalentType);
1902  type = new (*this, TypeAlignment)
1903           AttributedType(canon, attrKind, modifiedType, equivalentType);
1904
1905  Types.push_back(type);
1906  AttributedTypes.InsertNode(type, insertPos);
1907
1908  return QualType(type, 0);
1909}
1910
1911
1912/// \brief Retrieve a substitution-result type.
1913QualType
1914ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1915                                         QualType Replacement) const {
1916  assert(Replacement.isCanonical()
1917         && "replacement types must always be canonical");
1918
1919  llvm::FoldingSetNodeID ID;
1920  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1921  void *InsertPos = 0;
1922  SubstTemplateTypeParmType *SubstParm
1923    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1924
1925  if (!SubstParm) {
1926    SubstParm = new (*this, TypeAlignment)
1927      SubstTemplateTypeParmType(Parm, Replacement);
1928    Types.push_back(SubstParm);
1929    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1930  }
1931
1932  return QualType(SubstParm, 0);
1933}
1934
1935/// \brief Retrieve a
1936QualType ASTContext::getSubstTemplateTypeParmPackType(
1937                                          const TemplateTypeParmType *Parm,
1938                                              const TemplateArgument &ArgPack) {
1939#ifndef NDEBUG
1940  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
1941                                    PEnd = ArgPack.pack_end();
1942       P != PEnd; ++P) {
1943    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
1944    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
1945  }
1946#endif
1947
1948  llvm::FoldingSetNodeID ID;
1949  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
1950  void *InsertPos = 0;
1951  if (SubstTemplateTypeParmPackType *SubstParm
1952        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
1953    return QualType(SubstParm, 0);
1954
1955  QualType Canon;
1956  if (!Parm->isCanonicalUnqualified()) {
1957    Canon = getCanonicalType(QualType(Parm, 0));
1958    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
1959                                             ArgPack);
1960    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
1961  }
1962
1963  SubstTemplateTypeParmPackType *SubstParm
1964    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
1965                                                               ArgPack);
1966  Types.push_back(SubstParm);
1967  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1968  return QualType(SubstParm, 0);
1969}
1970
1971/// \brief Retrieve the template type parameter type for a template
1972/// parameter or parameter pack with the given depth, index, and (optionally)
1973/// name.
1974QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1975                                             bool ParameterPack,
1976                                             IdentifierInfo *Name) const {
1977  llvm::FoldingSetNodeID ID;
1978  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1979  void *InsertPos = 0;
1980  TemplateTypeParmType *TypeParm
1981    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1982
1983  if (TypeParm)
1984    return QualType(TypeParm, 0);
1985
1986  if (Name) {
1987    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1988    TypeParm = new (*this, TypeAlignment)
1989      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1990
1991    TemplateTypeParmType *TypeCheck
1992      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1993    assert(!TypeCheck && "Template type parameter canonical type broken");
1994    (void)TypeCheck;
1995  } else
1996    TypeParm = new (*this, TypeAlignment)
1997      TemplateTypeParmType(Depth, Index, ParameterPack);
1998
1999  Types.push_back(TypeParm);
2000  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2001
2002  return QualType(TypeParm, 0);
2003}
2004
2005TypeSourceInfo *
2006ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2007                                              SourceLocation NameLoc,
2008                                        const TemplateArgumentListInfo &Args,
2009                                              QualType CanonType) const {
2010  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
2011
2012  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2013  TemplateSpecializationTypeLoc TL
2014    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2015  TL.setTemplateNameLoc(NameLoc);
2016  TL.setLAngleLoc(Args.getLAngleLoc());
2017  TL.setRAngleLoc(Args.getRAngleLoc());
2018  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2019    TL.setArgLocInfo(i, Args[i].getLocInfo());
2020  return DI;
2021}
2022
2023QualType
2024ASTContext::getTemplateSpecializationType(TemplateName Template,
2025                                          const TemplateArgumentListInfo &Args,
2026                                          QualType Canon) const {
2027  unsigned NumArgs = Args.size();
2028
2029  llvm::SmallVector<TemplateArgument, 4> ArgVec;
2030  ArgVec.reserve(NumArgs);
2031  for (unsigned i = 0; i != NumArgs; ++i)
2032    ArgVec.push_back(Args[i].getArgument());
2033
2034  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2035                                       Canon);
2036}
2037
2038QualType
2039ASTContext::getTemplateSpecializationType(TemplateName Template,
2040                                          const TemplateArgument *Args,
2041                                          unsigned NumArgs,
2042                                          QualType Canon) const {
2043  if (!Canon.isNull())
2044    Canon = getCanonicalType(Canon);
2045  else
2046    Canon = getCanonicalTemplateSpecializationType(Template, Args, NumArgs);
2047
2048  // Allocate the (non-canonical) template specialization type, but don't
2049  // try to unique it: these types typically have location information that
2050  // we don't unique and don't want to lose.
2051  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2052                        sizeof(TemplateArgument) * NumArgs),
2053                       TypeAlignment);
2054  TemplateSpecializationType *Spec
2055    = new (Mem) TemplateSpecializationType(Template,
2056                                           Args, NumArgs,
2057                                           Canon);
2058
2059  Types.push_back(Spec);
2060  return QualType(Spec, 0);
2061}
2062
2063QualType
2064ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2065                                                   const TemplateArgument *Args,
2066                                                   unsigned NumArgs) const {
2067  // Build the canonical template specialization type.
2068  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2069  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2070  CanonArgs.reserve(NumArgs);
2071  for (unsigned I = 0; I != NumArgs; ++I)
2072    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2073
2074  // Determine whether this canonical template specialization type already
2075  // exists.
2076  llvm::FoldingSetNodeID ID;
2077  TemplateSpecializationType::Profile(ID, CanonTemplate,
2078                                      CanonArgs.data(), NumArgs, *this);
2079
2080  void *InsertPos = 0;
2081  TemplateSpecializationType *Spec
2082    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2083
2084  if (!Spec) {
2085    // Allocate a new canonical template specialization type.
2086    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2087                          sizeof(TemplateArgument) * NumArgs),
2088                         TypeAlignment);
2089    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2090                                                CanonArgs.data(), NumArgs,
2091                                                QualType());
2092    Types.push_back(Spec);
2093    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2094  }
2095
2096  assert(Spec->isDependentType() &&
2097         "Non-dependent template-id type must have a canonical type");
2098  return QualType(Spec, 0);
2099}
2100
2101QualType
2102ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2103                              NestedNameSpecifier *NNS,
2104                              QualType NamedType) const {
2105  llvm::FoldingSetNodeID ID;
2106  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2107
2108  void *InsertPos = 0;
2109  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2110  if (T)
2111    return QualType(T, 0);
2112
2113  QualType Canon = NamedType;
2114  if (!Canon.isCanonical()) {
2115    Canon = getCanonicalType(NamedType);
2116    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2117    assert(!CheckT && "Elaborated canonical type broken");
2118    (void)CheckT;
2119  }
2120
2121  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2122  Types.push_back(T);
2123  ElaboratedTypes.InsertNode(T, InsertPos);
2124  return QualType(T, 0);
2125}
2126
2127QualType
2128ASTContext::getParenType(QualType InnerType) const {
2129  llvm::FoldingSetNodeID ID;
2130  ParenType::Profile(ID, InnerType);
2131
2132  void *InsertPos = 0;
2133  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2134  if (T)
2135    return QualType(T, 0);
2136
2137  QualType Canon = InnerType;
2138  if (!Canon.isCanonical()) {
2139    Canon = getCanonicalType(InnerType);
2140    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2141    assert(!CheckT && "Paren canonical type broken");
2142    (void)CheckT;
2143  }
2144
2145  T = new (*this) ParenType(InnerType, Canon);
2146  Types.push_back(T);
2147  ParenTypes.InsertNode(T, InsertPos);
2148  return QualType(T, 0);
2149}
2150
2151QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2152                                          NestedNameSpecifier *NNS,
2153                                          const IdentifierInfo *Name,
2154                                          QualType Canon) const {
2155  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2156
2157  if (Canon.isNull()) {
2158    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2159    ElaboratedTypeKeyword CanonKeyword = Keyword;
2160    if (Keyword == ETK_None)
2161      CanonKeyword = ETK_Typename;
2162
2163    if (CanonNNS != NNS || CanonKeyword != Keyword)
2164      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2165  }
2166
2167  llvm::FoldingSetNodeID ID;
2168  DependentNameType::Profile(ID, Keyword, NNS, Name);
2169
2170  void *InsertPos = 0;
2171  DependentNameType *T
2172    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2173  if (T)
2174    return QualType(T, 0);
2175
2176  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2177  Types.push_back(T);
2178  DependentNameTypes.InsertNode(T, InsertPos);
2179  return QualType(T, 0);
2180}
2181
2182QualType
2183ASTContext::getDependentTemplateSpecializationType(
2184                                 ElaboratedTypeKeyword Keyword,
2185                                 NestedNameSpecifier *NNS,
2186                                 const IdentifierInfo *Name,
2187                                 const TemplateArgumentListInfo &Args) const {
2188  // TODO: avoid this copy
2189  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2190  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2191    ArgCopy.push_back(Args[I].getArgument());
2192  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2193                                                ArgCopy.size(),
2194                                                ArgCopy.data());
2195}
2196
2197QualType
2198ASTContext::getDependentTemplateSpecializationType(
2199                                 ElaboratedTypeKeyword Keyword,
2200                                 NestedNameSpecifier *NNS,
2201                                 const IdentifierInfo *Name,
2202                                 unsigned NumArgs,
2203                                 const TemplateArgument *Args) const {
2204  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2205
2206  llvm::FoldingSetNodeID ID;
2207  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2208                                               Name, NumArgs, Args);
2209
2210  void *InsertPos = 0;
2211  DependentTemplateSpecializationType *T
2212    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2213  if (T)
2214    return QualType(T, 0);
2215
2216  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2217
2218  ElaboratedTypeKeyword CanonKeyword = Keyword;
2219  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2220
2221  bool AnyNonCanonArgs = false;
2222  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2223  for (unsigned I = 0; I != NumArgs; ++I) {
2224    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2225    if (!CanonArgs[I].structurallyEquals(Args[I]))
2226      AnyNonCanonArgs = true;
2227  }
2228
2229  QualType Canon;
2230  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2231    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2232                                                   Name, NumArgs,
2233                                                   CanonArgs.data());
2234
2235    // Find the insert position again.
2236    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2237  }
2238
2239  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2240                        sizeof(TemplateArgument) * NumArgs),
2241                       TypeAlignment);
2242  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2243                                                    Name, NumArgs, Args, Canon);
2244  Types.push_back(T);
2245  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2246  return QualType(T, 0);
2247}
2248
2249QualType ASTContext::getPackExpansionType(QualType Pattern,
2250                                      llvm::Optional<unsigned> NumExpansions) {
2251  llvm::FoldingSetNodeID ID;
2252  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2253
2254  assert(Pattern->containsUnexpandedParameterPack() &&
2255         "Pack expansions must expand one or more parameter packs");
2256  void *InsertPos = 0;
2257  PackExpansionType *T
2258    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2259  if (T)
2260    return QualType(T, 0);
2261
2262  QualType Canon;
2263  if (!Pattern.isCanonical()) {
2264    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2265
2266    // Find the insert position again.
2267    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2268  }
2269
2270  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2271  Types.push_back(T);
2272  PackExpansionTypes.InsertNode(T, InsertPos);
2273  return QualType(T, 0);
2274}
2275
2276/// CmpProtocolNames - Comparison predicate for sorting protocols
2277/// alphabetically.
2278static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2279                            const ObjCProtocolDecl *RHS) {
2280  return LHS->getDeclName() < RHS->getDeclName();
2281}
2282
2283static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2284                                unsigned NumProtocols) {
2285  if (NumProtocols == 0) return true;
2286
2287  for (unsigned i = 1; i != NumProtocols; ++i)
2288    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2289      return false;
2290  return true;
2291}
2292
2293static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2294                                   unsigned &NumProtocols) {
2295  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2296
2297  // Sort protocols, keyed by name.
2298  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2299
2300  // Remove duplicates.
2301  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2302  NumProtocols = ProtocolsEnd-Protocols;
2303}
2304
2305QualType ASTContext::getObjCObjectType(QualType BaseType,
2306                                       ObjCProtocolDecl * const *Protocols,
2307                                       unsigned NumProtocols) const {
2308  // If the base type is an interface and there aren't any protocols
2309  // to add, then the interface type will do just fine.
2310  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2311    return BaseType;
2312
2313  // Look in the folding set for an existing type.
2314  llvm::FoldingSetNodeID ID;
2315  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2316  void *InsertPos = 0;
2317  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2318    return QualType(QT, 0);
2319
2320  // Build the canonical type, which has the canonical base type and
2321  // a sorted-and-uniqued list of protocols.
2322  QualType Canonical;
2323  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2324  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2325    if (!ProtocolsSorted) {
2326      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2327                                                     Protocols + NumProtocols);
2328      unsigned UniqueCount = NumProtocols;
2329
2330      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2331      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2332                                    &Sorted[0], UniqueCount);
2333    } else {
2334      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2335                                    Protocols, NumProtocols);
2336    }
2337
2338    // Regenerate InsertPos.
2339    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2340  }
2341
2342  unsigned Size = sizeof(ObjCObjectTypeImpl);
2343  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2344  void *Mem = Allocate(Size, TypeAlignment);
2345  ObjCObjectTypeImpl *T =
2346    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2347
2348  Types.push_back(T);
2349  ObjCObjectTypes.InsertNode(T, InsertPos);
2350  return QualType(T, 0);
2351}
2352
2353/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2354/// the given object type.
2355QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2356  llvm::FoldingSetNodeID ID;
2357  ObjCObjectPointerType::Profile(ID, ObjectT);
2358
2359  void *InsertPos = 0;
2360  if (ObjCObjectPointerType *QT =
2361              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2362    return QualType(QT, 0);
2363
2364  // Find the canonical object type.
2365  QualType Canonical;
2366  if (!ObjectT.isCanonical()) {
2367    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2368
2369    // Regenerate InsertPos.
2370    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2371  }
2372
2373  // No match.
2374  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2375  ObjCObjectPointerType *QType =
2376    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2377
2378  Types.push_back(QType);
2379  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2380  return QualType(QType, 0);
2381}
2382
2383/// getObjCInterfaceType - Return the unique reference to the type for the
2384/// specified ObjC interface decl. The list of protocols is optional.
2385QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2386  if (Decl->TypeForDecl)
2387    return QualType(Decl->TypeForDecl, 0);
2388
2389  // FIXME: redeclarations?
2390  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2391  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2392  Decl->TypeForDecl = T;
2393  Types.push_back(T);
2394  return QualType(T, 0);
2395}
2396
2397/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2398/// TypeOfExprType AST's (since expression's are never shared). For example,
2399/// multiple declarations that refer to "typeof(x)" all contain different
2400/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2401/// on canonical type's (which are always unique).
2402QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2403  TypeOfExprType *toe;
2404  if (tofExpr->isTypeDependent()) {
2405    llvm::FoldingSetNodeID ID;
2406    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2407
2408    void *InsertPos = 0;
2409    DependentTypeOfExprType *Canon
2410      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2411    if (Canon) {
2412      // We already have a "canonical" version of an identical, dependent
2413      // typeof(expr) type. Use that as our canonical type.
2414      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2415                                          QualType((TypeOfExprType*)Canon, 0));
2416    }
2417    else {
2418      // Build a new, canonical typeof(expr) type.
2419      Canon
2420        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2421      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2422      toe = Canon;
2423    }
2424  } else {
2425    QualType Canonical = getCanonicalType(tofExpr->getType());
2426    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2427  }
2428  Types.push_back(toe);
2429  return QualType(toe, 0);
2430}
2431
2432/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2433/// TypeOfType AST's. The only motivation to unique these nodes would be
2434/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2435/// an issue. This doesn't effect the type checker, since it operates
2436/// on canonical type's (which are always unique).
2437QualType ASTContext::getTypeOfType(QualType tofType) const {
2438  QualType Canonical = getCanonicalType(tofType);
2439  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2440  Types.push_back(tot);
2441  return QualType(tot, 0);
2442}
2443
2444/// getDecltypeForExpr - Given an expr, will return the decltype for that
2445/// expression, according to the rules in C++0x [dcl.type.simple]p4
2446static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2447  if (e->isTypeDependent())
2448    return Context.DependentTy;
2449
2450  // If e is an id expression or a class member access, decltype(e) is defined
2451  // as the type of the entity named by e.
2452  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2453    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2454      return VD->getType();
2455  }
2456  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2457    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2458      return FD->getType();
2459  }
2460  // If e is a function call or an invocation of an overloaded operator,
2461  // (parentheses around e are ignored), decltype(e) is defined as the
2462  // return type of that function.
2463  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2464    return CE->getCallReturnType();
2465
2466  QualType T = e->getType();
2467
2468  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2469  // defined as T&, otherwise decltype(e) is defined as T.
2470  if (e->isLValue())
2471    T = Context.getLValueReferenceType(T);
2472
2473  return T;
2474}
2475
2476/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2477/// DecltypeType AST's. The only motivation to unique these nodes would be
2478/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2479/// an issue. This doesn't effect the type checker, since it operates
2480/// on canonical type's (which are always unique).
2481QualType ASTContext::getDecltypeType(Expr *e) const {
2482  DecltypeType *dt;
2483  if (e->isTypeDependent()) {
2484    llvm::FoldingSetNodeID ID;
2485    DependentDecltypeType::Profile(ID, *this, e);
2486
2487    void *InsertPos = 0;
2488    DependentDecltypeType *Canon
2489      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2490    if (Canon) {
2491      // We already have a "canonical" version of an equivalent, dependent
2492      // decltype type. Use that as our canonical type.
2493      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2494                                       QualType((DecltypeType*)Canon, 0));
2495    }
2496    else {
2497      // Build a new, canonical typeof(expr) type.
2498      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2499      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2500      dt = Canon;
2501    }
2502  } else {
2503    QualType T = getDecltypeForExpr(e, *this);
2504    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2505  }
2506  Types.push_back(dt);
2507  return QualType(dt, 0);
2508}
2509
2510/// getTagDeclType - Return the unique reference to the type for the
2511/// specified TagDecl (struct/union/class/enum) decl.
2512QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2513  assert (Decl);
2514  // FIXME: What is the design on getTagDeclType when it requires casting
2515  // away const?  mutable?
2516  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2517}
2518
2519/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2520/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2521/// needs to agree with the definition in <stddef.h>.
2522CanQualType ASTContext::getSizeType() const {
2523  return getFromTargetType(Target.getSizeType());
2524}
2525
2526/// getSignedWCharType - Return the type of "signed wchar_t".
2527/// Used when in C++, as a GCC extension.
2528QualType ASTContext::getSignedWCharType() const {
2529  // FIXME: derive from "Target" ?
2530  return WCharTy;
2531}
2532
2533/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2534/// Used when in C++, as a GCC extension.
2535QualType ASTContext::getUnsignedWCharType() const {
2536  // FIXME: derive from "Target" ?
2537  return UnsignedIntTy;
2538}
2539
2540/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2541/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2542QualType ASTContext::getPointerDiffType() const {
2543  return getFromTargetType(Target.getPtrDiffType(0));
2544}
2545
2546//===----------------------------------------------------------------------===//
2547//                              Type Operators
2548//===----------------------------------------------------------------------===//
2549
2550CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2551  // Push qualifiers into arrays, and then discard any remaining
2552  // qualifiers.
2553  T = getCanonicalType(T);
2554  T = getVariableArrayDecayedType(T);
2555  const Type *Ty = T.getTypePtr();
2556  QualType Result;
2557  if (isa<ArrayType>(Ty)) {
2558    Result = getArrayDecayedType(QualType(Ty,0));
2559  } else if (isa<FunctionType>(Ty)) {
2560    Result = getPointerType(QualType(Ty, 0));
2561  } else {
2562    Result = QualType(Ty, 0);
2563  }
2564
2565  return CanQualType::CreateUnsafe(Result);
2566}
2567
2568/// getCanonicalType - Return the canonical (structural) type corresponding to
2569/// the specified potentially non-canonical type.  The non-canonical version
2570/// of a type may have many "decorated" versions of types.  Decorators can
2571/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2572/// to be free of any of these, allowing two canonical types to be compared
2573/// for exact equality with a simple pointer comparison.
2574CanQualType ASTContext::getCanonicalType(QualType T) const {
2575  QualifierCollector Quals;
2576  const Type *Ptr = Quals.strip(T);
2577  QualType CanType = Ptr->getCanonicalTypeInternal();
2578
2579  // The canonical internal type will be the canonical type *except*
2580  // that we push type qualifiers down through array types.
2581
2582  // If there are no new qualifiers to push down, stop here.
2583  if (!Quals.hasQualifiers())
2584    return CanQualType::CreateUnsafe(CanType);
2585
2586  // If the type qualifiers are on an array type, get the canonical
2587  // type of the array with the qualifiers applied to the element
2588  // type.
2589  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2590  if (!AT)
2591    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2592
2593  // Get the canonical version of the element with the extra qualifiers on it.
2594  // This can recursively sink qualifiers through multiple levels of arrays.
2595  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2596  NewEltTy = getCanonicalType(NewEltTy);
2597
2598  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2599    return CanQualType::CreateUnsafe(
2600             getConstantArrayType(NewEltTy, CAT->getSize(),
2601                                  CAT->getSizeModifier(),
2602                                  CAT->getIndexTypeCVRQualifiers()));
2603  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2604    return CanQualType::CreateUnsafe(
2605             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2606                                    IAT->getIndexTypeCVRQualifiers()));
2607
2608  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2609    return CanQualType::CreateUnsafe(
2610             getDependentSizedArrayType(NewEltTy,
2611                                        DSAT->getSizeExpr(),
2612                                        DSAT->getSizeModifier(),
2613                                        DSAT->getIndexTypeCVRQualifiers(),
2614                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2615
2616  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2617  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2618                                                        VAT->getSizeExpr(),
2619                                                        VAT->getSizeModifier(),
2620                                              VAT->getIndexTypeCVRQualifiers(),
2621                                                     VAT->getBracketsRange()));
2622}
2623
2624QualType ASTContext::getUnqualifiedArrayType(QualType T,
2625                                             Qualifiers &Quals) {
2626  Quals = T.getQualifiers();
2627  const ArrayType *AT = getAsArrayType(T);
2628  if (!AT) {
2629    return T.getUnqualifiedType();
2630  }
2631
2632  QualType Elt = AT->getElementType();
2633  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2634  if (Elt == UnqualElt)
2635    return T;
2636
2637  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2638    return getConstantArrayType(UnqualElt, CAT->getSize(),
2639                                CAT->getSizeModifier(), 0);
2640  }
2641
2642  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2643    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2644  }
2645
2646  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2647    return getVariableArrayType(UnqualElt,
2648                                VAT->getSizeExpr(),
2649                                VAT->getSizeModifier(),
2650                                VAT->getIndexTypeCVRQualifiers(),
2651                                VAT->getBracketsRange());
2652  }
2653
2654  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2655  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr(),
2656                                    DSAT->getSizeModifier(), 0,
2657                                    SourceRange());
2658}
2659
2660/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2661/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2662/// they point to and return true. If T1 and T2 aren't pointer types
2663/// or pointer-to-member types, or if they are not similar at this
2664/// level, returns false and leaves T1 and T2 unchanged. Top-level
2665/// qualifiers on T1 and T2 are ignored. This function will typically
2666/// be called in a loop that successively "unwraps" pointer and
2667/// pointer-to-member types to compare them at each level.
2668bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2669  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2670                    *T2PtrType = T2->getAs<PointerType>();
2671  if (T1PtrType && T2PtrType) {
2672    T1 = T1PtrType->getPointeeType();
2673    T2 = T2PtrType->getPointeeType();
2674    return true;
2675  }
2676
2677  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2678                          *T2MPType = T2->getAs<MemberPointerType>();
2679  if (T1MPType && T2MPType &&
2680      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2681                             QualType(T2MPType->getClass(), 0))) {
2682    T1 = T1MPType->getPointeeType();
2683    T2 = T2MPType->getPointeeType();
2684    return true;
2685  }
2686
2687  if (getLangOptions().ObjC1) {
2688    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2689                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2690    if (T1OPType && T2OPType) {
2691      T1 = T1OPType->getPointeeType();
2692      T2 = T2OPType->getPointeeType();
2693      return true;
2694    }
2695  }
2696
2697  // FIXME: Block pointers, too?
2698
2699  return false;
2700}
2701
2702DeclarationNameInfo
2703ASTContext::getNameForTemplate(TemplateName Name,
2704                               SourceLocation NameLoc) const {
2705  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2706    // DNInfo work in progress: CHECKME: what about DNLoc?
2707    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
2708
2709  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2710    DeclarationName DName;
2711    if (DTN->isIdentifier()) {
2712      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
2713      return DeclarationNameInfo(DName, NameLoc);
2714    } else {
2715      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
2716      // DNInfo work in progress: FIXME: source locations?
2717      DeclarationNameLoc DNLoc;
2718      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
2719      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
2720      return DeclarationNameInfo(DName, NameLoc, DNLoc);
2721    }
2722  }
2723
2724  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2725  assert(Storage);
2726  // DNInfo work in progress: CHECKME: what about DNLoc?
2727  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
2728}
2729
2730TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
2731  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2732    if (TemplateTemplateParmDecl *TTP
2733                              = dyn_cast<TemplateTemplateParmDecl>(Template))
2734      Template = getCanonicalTemplateTemplateParmDecl(TTP);
2735
2736    // The canonical template name is the canonical template declaration.
2737    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2738  }
2739
2740  assert(!Name.getAsOverloadedTemplate());
2741
2742  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2743  assert(DTN && "Non-dependent template names must refer to template decls.");
2744  return DTN->CanonicalTemplateName;
2745}
2746
2747bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2748  X = getCanonicalTemplateName(X);
2749  Y = getCanonicalTemplateName(Y);
2750  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2751}
2752
2753TemplateArgument
2754ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
2755  switch (Arg.getKind()) {
2756    case TemplateArgument::Null:
2757      return Arg;
2758
2759    case TemplateArgument::Expression:
2760      return Arg;
2761
2762    case TemplateArgument::Declaration:
2763      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2764
2765    case TemplateArgument::Template:
2766      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2767
2768    case TemplateArgument::TemplateExpansion:
2769      return TemplateArgument(getCanonicalTemplateName(
2770                                         Arg.getAsTemplateOrTemplatePattern()),
2771                              true);
2772
2773    case TemplateArgument::Integral:
2774      return TemplateArgument(*Arg.getAsIntegral(),
2775                              getCanonicalType(Arg.getIntegralType()));
2776
2777    case TemplateArgument::Type:
2778      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2779
2780    case TemplateArgument::Pack: {
2781      if (Arg.pack_size() == 0)
2782        return Arg;
2783
2784      TemplateArgument *CanonArgs
2785        = new (*this) TemplateArgument[Arg.pack_size()];
2786      unsigned Idx = 0;
2787      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2788                                        AEnd = Arg.pack_end();
2789           A != AEnd; (void)++A, ++Idx)
2790        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2791
2792      return TemplateArgument(CanonArgs, Arg.pack_size());
2793    }
2794  }
2795
2796  // Silence GCC warning
2797  assert(false && "Unhandled template argument kind");
2798  return TemplateArgument();
2799}
2800
2801NestedNameSpecifier *
2802ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
2803  if (!NNS)
2804    return 0;
2805
2806  switch (NNS->getKind()) {
2807  case NestedNameSpecifier::Identifier:
2808    // Canonicalize the prefix but keep the identifier the same.
2809    return NestedNameSpecifier::Create(*this,
2810                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2811                                       NNS->getAsIdentifier());
2812
2813  case NestedNameSpecifier::Namespace:
2814    // A namespace is canonical; build a nested-name-specifier with
2815    // this namespace and no prefix.
2816    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2817
2818  case NestedNameSpecifier::TypeSpec:
2819  case NestedNameSpecifier::TypeSpecWithTemplate: {
2820    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2821
2822    // If we have some kind of dependent-named type (e.g., "typename T::type"),
2823    // break it apart into its prefix and identifier, then reconsititute those
2824    // as the canonical nested-name-specifier. This is required to canonicalize
2825    // a dependent nested-name-specifier involving typedefs of dependent-name
2826    // types, e.g.,
2827    //   typedef typename T::type T1;
2828    //   typedef typename T1::type T2;
2829    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
2830      NestedNameSpecifier *Prefix
2831        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
2832      return NestedNameSpecifier::Create(*this, Prefix,
2833                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
2834    }
2835
2836    // Do the same thing as above, but with dependent-named specializations.
2837    if (const DependentTemplateSpecializationType *DTST
2838          = T->getAs<DependentTemplateSpecializationType>()) {
2839      NestedNameSpecifier *Prefix
2840        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
2841      TemplateName Name
2842        = getDependentTemplateName(Prefix, DTST->getIdentifier());
2843      T = getTemplateSpecializationType(Name,
2844                                        DTST->getArgs(), DTST->getNumArgs());
2845      T = getCanonicalType(T);
2846    }
2847
2848    return NestedNameSpecifier::Create(*this, 0, false, T.getTypePtr());
2849  }
2850
2851  case NestedNameSpecifier::Global:
2852    // The global specifier is canonical and unique.
2853    return NNS;
2854  }
2855
2856  // Required to silence a GCC warning
2857  return 0;
2858}
2859
2860
2861const ArrayType *ASTContext::getAsArrayType(QualType T) const {
2862  // Handle the non-qualified case efficiently.
2863  if (!T.hasLocalQualifiers()) {
2864    // Handle the common positive case fast.
2865    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2866      return AT;
2867  }
2868
2869  // Handle the common negative case fast.
2870  QualType CType = T->getCanonicalTypeInternal();
2871  if (!isa<ArrayType>(CType))
2872    return 0;
2873
2874  // Apply any qualifiers from the array type to the element type.  This
2875  // implements C99 6.7.3p8: "If the specification of an array type includes
2876  // any type qualifiers, the element type is so qualified, not the array type."
2877
2878  // If we get here, we either have type qualifiers on the type, or we have
2879  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2880  // we must propagate them down into the element type.
2881
2882  QualifierCollector Qs;
2883  const Type *Ty = Qs.strip(T.getDesugaredType(*this));
2884
2885  // If we have a simple case, just return now.
2886  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2887  if (ATy == 0 || Qs.empty())
2888    return ATy;
2889
2890  // Otherwise, we have an array and we have qualifiers on it.  Push the
2891  // qualifiers into the array element type and return a new array type.
2892  // Get the canonical version of the element with the extra qualifiers on it.
2893  // This can recursively sink qualifiers through multiple levels of arrays.
2894  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2895
2896  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2897    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2898                                                CAT->getSizeModifier(),
2899                                           CAT->getIndexTypeCVRQualifiers()));
2900  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2901    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2902                                                  IAT->getSizeModifier(),
2903                                           IAT->getIndexTypeCVRQualifiers()));
2904
2905  if (const DependentSizedArrayType *DSAT
2906        = dyn_cast<DependentSizedArrayType>(ATy))
2907    return cast<ArrayType>(
2908                     getDependentSizedArrayType(NewEltTy,
2909                                                DSAT->getSizeExpr(),
2910                                                DSAT->getSizeModifier(),
2911                                              DSAT->getIndexTypeCVRQualifiers(),
2912                                                DSAT->getBracketsRange()));
2913
2914  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2915  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2916                                              VAT->getSizeExpr(),
2917                                              VAT->getSizeModifier(),
2918                                              VAT->getIndexTypeCVRQualifiers(),
2919                                              VAT->getBracketsRange()));
2920}
2921
2922/// getArrayDecayedType - Return the properly qualified result of decaying the
2923/// specified array type to a pointer.  This operation is non-trivial when
2924/// handling typedefs etc.  The canonical type of "T" must be an array type,
2925/// this returns a pointer to a properly qualified element of the array.
2926///
2927/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2928QualType ASTContext::getArrayDecayedType(QualType Ty) const {
2929  // Get the element type with 'getAsArrayType' so that we don't lose any
2930  // typedefs in the element type of the array.  This also handles propagation
2931  // of type qualifiers from the array type into the element type if present
2932  // (C99 6.7.3p8).
2933  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2934  assert(PrettyArrayType && "Not an array type!");
2935
2936  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2937
2938  // int x[restrict 4] ->  int *restrict
2939  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2940}
2941
2942QualType ASTContext::getBaseElementType(QualType QT) const {
2943  QualifierCollector Qs;
2944  while (const ArrayType *AT = getAsArrayType(QualType(Qs.strip(QT), 0)))
2945    QT = AT->getElementType();
2946  return Qs.apply(*this, QT);
2947}
2948
2949QualType ASTContext::getBaseElementType(const ArrayType *AT) const {
2950  QualType ElemTy = AT->getElementType();
2951
2952  if (const ArrayType *AT = getAsArrayType(ElemTy))
2953    return getBaseElementType(AT);
2954
2955  return ElemTy;
2956}
2957
2958/// getConstantArrayElementCount - Returns number of constant array elements.
2959uint64_t
2960ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2961  uint64_t ElementCount = 1;
2962  do {
2963    ElementCount *= CA->getSize().getZExtValue();
2964    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2965  } while (CA);
2966  return ElementCount;
2967}
2968
2969/// getFloatingRank - Return a relative rank for floating point types.
2970/// This routine will assert if passed a built-in type that isn't a float.
2971static FloatingRank getFloatingRank(QualType T) {
2972  if (const ComplexType *CT = T->getAs<ComplexType>())
2973    return getFloatingRank(CT->getElementType());
2974
2975  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2976  switch (T->getAs<BuiltinType>()->getKind()) {
2977  default: assert(0 && "getFloatingRank(): not a floating type");
2978  case BuiltinType::Float:      return FloatRank;
2979  case BuiltinType::Double:     return DoubleRank;
2980  case BuiltinType::LongDouble: return LongDoubleRank;
2981  }
2982}
2983
2984/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2985/// point or a complex type (based on typeDomain/typeSize).
2986/// 'typeDomain' is a real floating point or complex type.
2987/// 'typeSize' is a real floating point or complex type.
2988QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2989                                                       QualType Domain) const {
2990  FloatingRank EltRank = getFloatingRank(Size);
2991  if (Domain->isComplexType()) {
2992    switch (EltRank) {
2993    default: assert(0 && "getFloatingRank(): illegal value for rank");
2994    case FloatRank:      return FloatComplexTy;
2995    case DoubleRank:     return DoubleComplexTy;
2996    case LongDoubleRank: return LongDoubleComplexTy;
2997    }
2998  }
2999
3000  assert(Domain->isRealFloatingType() && "Unknown domain!");
3001  switch (EltRank) {
3002  default: assert(0 && "getFloatingRank(): illegal value for rank");
3003  case FloatRank:      return FloatTy;
3004  case DoubleRank:     return DoubleTy;
3005  case LongDoubleRank: return LongDoubleTy;
3006  }
3007}
3008
3009/// getFloatingTypeOrder - Compare the rank of the two specified floating
3010/// point types, ignoring the domain of the type (i.e. 'double' ==
3011/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3012/// LHS < RHS, return -1.
3013int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3014  FloatingRank LHSR = getFloatingRank(LHS);
3015  FloatingRank RHSR = getFloatingRank(RHS);
3016
3017  if (LHSR == RHSR)
3018    return 0;
3019  if (LHSR > RHSR)
3020    return 1;
3021  return -1;
3022}
3023
3024/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3025/// routine will assert if passed a built-in type that isn't an integer or enum,
3026/// or if it is not canonicalized.
3027unsigned ASTContext::getIntegerRank(Type *T) const {
3028  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3029  if (EnumType* ET = dyn_cast<EnumType>(T))
3030    T = ET->getDecl()->getPromotionType().getTypePtr();
3031
3032  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3033      T->isSpecificBuiltinType(BuiltinType::WChar_U))
3034    T = getFromTargetType(Target.getWCharType()).getTypePtr();
3035
3036  if (T->isSpecificBuiltinType(BuiltinType::Char16))
3037    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3038
3039  if (T->isSpecificBuiltinType(BuiltinType::Char32))
3040    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3041
3042  switch (cast<BuiltinType>(T)->getKind()) {
3043  default: assert(0 && "getIntegerRank(): not a built-in integer");
3044  case BuiltinType::Bool:
3045    return 1 + (getIntWidth(BoolTy) << 3);
3046  case BuiltinType::Char_S:
3047  case BuiltinType::Char_U:
3048  case BuiltinType::SChar:
3049  case BuiltinType::UChar:
3050    return 2 + (getIntWidth(CharTy) << 3);
3051  case BuiltinType::Short:
3052  case BuiltinType::UShort:
3053    return 3 + (getIntWidth(ShortTy) << 3);
3054  case BuiltinType::Int:
3055  case BuiltinType::UInt:
3056    return 4 + (getIntWidth(IntTy) << 3);
3057  case BuiltinType::Long:
3058  case BuiltinType::ULong:
3059    return 5 + (getIntWidth(LongTy) << 3);
3060  case BuiltinType::LongLong:
3061  case BuiltinType::ULongLong:
3062    return 6 + (getIntWidth(LongLongTy) << 3);
3063  case BuiltinType::Int128:
3064  case BuiltinType::UInt128:
3065    return 7 + (getIntWidth(Int128Ty) << 3);
3066  }
3067}
3068
3069/// \brief Whether this is a promotable bitfield reference according
3070/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3071///
3072/// \returns the type this bit-field will promote to, or NULL if no
3073/// promotion occurs.
3074QualType ASTContext::isPromotableBitField(Expr *E) const {
3075  if (E->isTypeDependent() || E->isValueDependent())
3076    return QualType();
3077
3078  FieldDecl *Field = E->getBitField();
3079  if (!Field)
3080    return QualType();
3081
3082  QualType FT = Field->getType();
3083
3084  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3085  uint64_t BitWidth = BitWidthAP.getZExtValue();
3086  uint64_t IntSize = getTypeSize(IntTy);
3087  // GCC extension compatibility: if the bit-field size is less than or equal
3088  // to the size of int, it gets promoted no matter what its type is.
3089  // For instance, unsigned long bf : 4 gets promoted to signed int.
3090  if (BitWidth < IntSize)
3091    return IntTy;
3092
3093  if (BitWidth == IntSize)
3094    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3095
3096  // Types bigger than int are not subject to promotions, and therefore act
3097  // like the base type.
3098  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3099  // is ridiculous.
3100  return QualType();
3101}
3102
3103/// getPromotedIntegerType - Returns the type that Promotable will
3104/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3105/// integer type.
3106QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3107  assert(!Promotable.isNull());
3108  assert(Promotable->isPromotableIntegerType());
3109  if (const EnumType *ET = Promotable->getAs<EnumType>())
3110    return ET->getDecl()->getPromotionType();
3111  if (Promotable->isSignedIntegerType())
3112    return IntTy;
3113  uint64_t PromotableSize = getTypeSize(Promotable);
3114  uint64_t IntSize = getTypeSize(IntTy);
3115  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3116  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3117}
3118
3119/// getIntegerTypeOrder - Returns the highest ranked integer type:
3120/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3121/// LHS < RHS, return -1.
3122int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3123  Type *LHSC = getCanonicalType(LHS).getTypePtr();
3124  Type *RHSC = getCanonicalType(RHS).getTypePtr();
3125  if (LHSC == RHSC) return 0;
3126
3127  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3128  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3129
3130  unsigned LHSRank = getIntegerRank(LHSC);
3131  unsigned RHSRank = getIntegerRank(RHSC);
3132
3133  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3134    if (LHSRank == RHSRank) return 0;
3135    return LHSRank > RHSRank ? 1 : -1;
3136  }
3137
3138  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3139  if (LHSUnsigned) {
3140    // If the unsigned [LHS] type is larger, return it.
3141    if (LHSRank >= RHSRank)
3142      return 1;
3143
3144    // If the signed type can represent all values of the unsigned type, it
3145    // wins.  Because we are dealing with 2's complement and types that are
3146    // powers of two larger than each other, this is always safe.
3147    return -1;
3148  }
3149
3150  // If the unsigned [RHS] type is larger, return it.
3151  if (RHSRank >= LHSRank)
3152    return -1;
3153
3154  // If the signed type can represent all values of the unsigned type, it
3155  // wins.  Because we are dealing with 2's complement and types that are
3156  // powers of two larger than each other, this is always safe.
3157  return 1;
3158}
3159
3160static RecordDecl *
3161CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
3162                 SourceLocation L, IdentifierInfo *Id) {
3163  if (Ctx.getLangOptions().CPlusPlus)
3164    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
3165  else
3166    return RecordDecl::Create(Ctx, TK, DC, L, Id);
3167}
3168
3169// getCFConstantStringType - Return the type used for constant CFStrings.
3170QualType ASTContext::getCFConstantStringType() const {
3171  if (!CFConstantStringTypeDecl) {
3172    CFConstantStringTypeDecl =
3173      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3174                       &Idents.get("NSConstantString"));
3175    CFConstantStringTypeDecl->startDefinition();
3176
3177    QualType FieldTypes[4];
3178
3179    // const int *isa;
3180    FieldTypes[0] = getPointerType(IntTy.withConst());
3181    // int flags;
3182    FieldTypes[1] = IntTy;
3183    // const char *str;
3184    FieldTypes[2] = getPointerType(CharTy.withConst());
3185    // long length;
3186    FieldTypes[3] = LongTy;
3187
3188    // Create fields
3189    for (unsigned i = 0; i < 4; ++i) {
3190      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3191                                           SourceLocation(), 0,
3192                                           FieldTypes[i], /*TInfo=*/0,
3193                                           /*BitWidth=*/0,
3194                                           /*Mutable=*/false);
3195      Field->setAccess(AS_public);
3196      CFConstantStringTypeDecl->addDecl(Field);
3197    }
3198
3199    CFConstantStringTypeDecl->completeDefinition();
3200  }
3201
3202  return getTagDeclType(CFConstantStringTypeDecl);
3203}
3204
3205void ASTContext::setCFConstantStringType(QualType T) {
3206  const RecordType *Rec = T->getAs<RecordType>();
3207  assert(Rec && "Invalid CFConstantStringType");
3208  CFConstantStringTypeDecl = Rec->getDecl();
3209}
3210
3211// getNSConstantStringType - Return the type used for constant NSStrings.
3212QualType ASTContext::getNSConstantStringType() const {
3213  if (!NSConstantStringTypeDecl) {
3214    NSConstantStringTypeDecl =
3215    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3216                     &Idents.get("__builtin_NSString"));
3217    NSConstantStringTypeDecl->startDefinition();
3218
3219    QualType FieldTypes[3];
3220
3221    // const int *isa;
3222    FieldTypes[0] = getPointerType(IntTy.withConst());
3223    // const char *str;
3224    FieldTypes[1] = getPointerType(CharTy.withConst());
3225    // unsigned int length;
3226    FieldTypes[2] = UnsignedIntTy;
3227
3228    // Create fields
3229    for (unsigned i = 0; i < 3; ++i) {
3230      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3231                                           SourceLocation(), 0,
3232                                           FieldTypes[i], /*TInfo=*/0,
3233                                           /*BitWidth=*/0,
3234                                           /*Mutable=*/false);
3235      Field->setAccess(AS_public);
3236      NSConstantStringTypeDecl->addDecl(Field);
3237    }
3238
3239    NSConstantStringTypeDecl->completeDefinition();
3240  }
3241
3242  return getTagDeclType(NSConstantStringTypeDecl);
3243}
3244
3245void ASTContext::setNSConstantStringType(QualType T) {
3246  const RecordType *Rec = T->getAs<RecordType>();
3247  assert(Rec && "Invalid NSConstantStringType");
3248  NSConstantStringTypeDecl = Rec->getDecl();
3249}
3250
3251QualType ASTContext::getObjCFastEnumerationStateType() const {
3252  if (!ObjCFastEnumerationStateTypeDecl) {
3253    ObjCFastEnumerationStateTypeDecl =
3254      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3255                       &Idents.get("__objcFastEnumerationState"));
3256    ObjCFastEnumerationStateTypeDecl->startDefinition();
3257
3258    QualType FieldTypes[] = {
3259      UnsignedLongTy,
3260      getPointerType(ObjCIdTypedefType),
3261      getPointerType(UnsignedLongTy),
3262      getConstantArrayType(UnsignedLongTy,
3263                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3264    };
3265
3266    for (size_t i = 0; i < 4; ++i) {
3267      FieldDecl *Field = FieldDecl::Create(*this,
3268                                           ObjCFastEnumerationStateTypeDecl,
3269                                           SourceLocation(), 0,
3270                                           FieldTypes[i], /*TInfo=*/0,
3271                                           /*BitWidth=*/0,
3272                                           /*Mutable=*/false);
3273      Field->setAccess(AS_public);
3274      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3275    }
3276
3277    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3278  }
3279
3280  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3281}
3282
3283QualType ASTContext::getBlockDescriptorType() const {
3284  if (BlockDescriptorType)
3285    return getTagDeclType(BlockDescriptorType);
3286
3287  RecordDecl *T;
3288  // FIXME: Needs the FlagAppleBlock bit.
3289  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3290                       &Idents.get("__block_descriptor"));
3291  T->startDefinition();
3292
3293  QualType FieldTypes[] = {
3294    UnsignedLongTy,
3295    UnsignedLongTy,
3296  };
3297
3298  const char *FieldNames[] = {
3299    "reserved",
3300    "Size"
3301  };
3302
3303  for (size_t i = 0; i < 2; ++i) {
3304    FieldDecl *Field = FieldDecl::Create(*this,
3305                                         T,
3306                                         SourceLocation(),
3307                                         &Idents.get(FieldNames[i]),
3308                                         FieldTypes[i], /*TInfo=*/0,
3309                                         /*BitWidth=*/0,
3310                                         /*Mutable=*/false);
3311    Field->setAccess(AS_public);
3312    T->addDecl(Field);
3313  }
3314
3315  T->completeDefinition();
3316
3317  BlockDescriptorType = T;
3318
3319  return getTagDeclType(BlockDescriptorType);
3320}
3321
3322void ASTContext::setBlockDescriptorType(QualType T) {
3323  const RecordType *Rec = T->getAs<RecordType>();
3324  assert(Rec && "Invalid BlockDescriptorType");
3325  BlockDescriptorType = Rec->getDecl();
3326}
3327
3328QualType ASTContext::getBlockDescriptorExtendedType() const {
3329  if (BlockDescriptorExtendedType)
3330    return getTagDeclType(BlockDescriptorExtendedType);
3331
3332  RecordDecl *T;
3333  // FIXME: Needs the FlagAppleBlock bit.
3334  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3335                       &Idents.get("__block_descriptor_withcopydispose"));
3336  T->startDefinition();
3337
3338  QualType FieldTypes[] = {
3339    UnsignedLongTy,
3340    UnsignedLongTy,
3341    getPointerType(VoidPtrTy),
3342    getPointerType(VoidPtrTy)
3343  };
3344
3345  const char *FieldNames[] = {
3346    "reserved",
3347    "Size",
3348    "CopyFuncPtr",
3349    "DestroyFuncPtr"
3350  };
3351
3352  for (size_t i = 0; i < 4; ++i) {
3353    FieldDecl *Field = FieldDecl::Create(*this,
3354                                         T,
3355                                         SourceLocation(),
3356                                         &Idents.get(FieldNames[i]),
3357                                         FieldTypes[i], /*TInfo=*/0,
3358                                         /*BitWidth=*/0,
3359                                         /*Mutable=*/false);
3360    Field->setAccess(AS_public);
3361    T->addDecl(Field);
3362  }
3363
3364  T->completeDefinition();
3365
3366  BlockDescriptorExtendedType = T;
3367
3368  return getTagDeclType(BlockDescriptorExtendedType);
3369}
3370
3371void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3372  const RecordType *Rec = T->getAs<RecordType>();
3373  assert(Rec && "Invalid BlockDescriptorType");
3374  BlockDescriptorExtendedType = Rec->getDecl();
3375}
3376
3377bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3378  if (Ty->isBlockPointerType())
3379    return true;
3380  if (isObjCNSObjectType(Ty))
3381    return true;
3382  if (Ty->isObjCObjectPointerType())
3383    return true;
3384  if (getLangOptions().CPlusPlus) {
3385    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3386      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3387      return RD->hasConstCopyConstructor(*this);
3388
3389    }
3390  }
3391  return false;
3392}
3393
3394QualType
3395ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) const {
3396  //  type = struct __Block_byref_1_X {
3397  //    void *__isa;
3398  //    struct __Block_byref_1_X *__forwarding;
3399  //    unsigned int __flags;
3400  //    unsigned int __size;
3401  //    void *__copy_helper;            // as needed
3402  //    void *__destroy_help            // as needed
3403  //    int X;
3404  //  } *
3405
3406  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3407
3408  // FIXME: Move up
3409  llvm::SmallString<36> Name;
3410  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3411                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3412  RecordDecl *T;
3413  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3414                       &Idents.get(Name.str()));
3415  T->startDefinition();
3416  QualType Int32Ty = IntTy;
3417  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3418  QualType FieldTypes[] = {
3419    getPointerType(VoidPtrTy),
3420    getPointerType(getTagDeclType(T)),
3421    Int32Ty,
3422    Int32Ty,
3423    getPointerType(VoidPtrTy),
3424    getPointerType(VoidPtrTy),
3425    Ty
3426  };
3427
3428  llvm::StringRef FieldNames[] = {
3429    "__isa",
3430    "__forwarding",
3431    "__flags",
3432    "__size",
3433    "__copy_helper",
3434    "__destroy_helper",
3435    DeclName,
3436  };
3437
3438  for (size_t i = 0; i < 7; ++i) {
3439    if (!HasCopyAndDispose && i >=4 && i <= 5)
3440      continue;
3441    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3442                                         &Idents.get(FieldNames[i]),
3443                                         FieldTypes[i], /*TInfo=*/0,
3444                                         /*BitWidth=*/0, /*Mutable=*/false);
3445    Field->setAccess(AS_public);
3446    T->addDecl(Field);
3447  }
3448
3449  T->completeDefinition();
3450
3451  return getPointerType(getTagDeclType(T));
3452}
3453
3454
3455QualType ASTContext::getBlockParmType(
3456  bool BlockHasCopyDispose,
3457  llvm::SmallVectorImpl<const Expr *> &Layout) const {
3458
3459  // FIXME: Move up
3460  llvm::SmallString<36> Name;
3461  llvm::raw_svector_ostream(Name) << "__block_literal_"
3462                                  << ++UniqueBlockParmTypeID;
3463  RecordDecl *T;
3464  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3465                       &Idents.get(Name.str()));
3466  T->startDefinition();
3467  QualType FieldTypes[] = {
3468    getPointerType(VoidPtrTy),
3469    IntTy,
3470    IntTy,
3471    getPointerType(VoidPtrTy),
3472    (BlockHasCopyDispose ?
3473     getPointerType(getBlockDescriptorExtendedType()) :
3474     getPointerType(getBlockDescriptorType()))
3475  };
3476
3477  const char *FieldNames[] = {
3478    "__isa",
3479    "__flags",
3480    "__reserved",
3481    "__FuncPtr",
3482    "__descriptor"
3483  };
3484
3485  for (size_t i = 0; i < 5; ++i) {
3486    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3487                                         &Idents.get(FieldNames[i]),
3488                                         FieldTypes[i], /*TInfo=*/0,
3489                                         /*BitWidth=*/0, /*Mutable=*/false);
3490    Field->setAccess(AS_public);
3491    T->addDecl(Field);
3492  }
3493
3494  for (unsigned i = 0; i < Layout.size(); ++i) {
3495    const Expr *E = Layout[i];
3496
3497    QualType FieldType = E->getType();
3498    IdentifierInfo *FieldName = 0;
3499    if (isa<CXXThisExpr>(E)) {
3500      FieldName = &Idents.get("this");
3501    } else if (const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E)) {
3502      const ValueDecl *D = BDRE->getDecl();
3503      FieldName = D->getIdentifier();
3504      if (BDRE->isByRef())
3505        FieldType = BuildByRefType(D->getName(), FieldType);
3506    } else {
3507      // Padding.
3508      assert(isa<ConstantArrayType>(FieldType) &&
3509             isa<DeclRefExpr>(E) &&
3510             !cast<DeclRefExpr>(E)->getDecl()->getDeclName() &&
3511             "doesn't match characteristics of padding decl");
3512    }
3513
3514    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3515                                         FieldName, FieldType, /*TInfo=*/0,
3516                                         /*BitWidth=*/0, /*Mutable=*/false);
3517    Field->setAccess(AS_public);
3518    T->addDecl(Field);
3519  }
3520
3521  T->completeDefinition();
3522
3523  return getPointerType(getTagDeclType(T));
3524}
3525
3526void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3527  const RecordType *Rec = T->getAs<RecordType>();
3528  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3529  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3530}
3531
3532// This returns true if a type has been typedefed to BOOL:
3533// typedef <type> BOOL;
3534static bool isTypeTypedefedAsBOOL(QualType T) {
3535  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3536    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3537      return II->isStr("BOOL");
3538
3539  return false;
3540}
3541
3542/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3543/// purpose.
3544CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3545  CharUnits sz = getTypeSizeInChars(type);
3546
3547  // Make all integer and enum types at least as large as an int
3548  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3549    sz = std::max(sz, getTypeSizeInChars(IntTy));
3550  // Treat arrays as pointers, since that's how they're passed in.
3551  else if (type->isArrayType())
3552    sz = getTypeSizeInChars(VoidPtrTy);
3553  return sz;
3554}
3555
3556static inline
3557std::string charUnitsToString(const CharUnits &CU) {
3558  return llvm::itostr(CU.getQuantity());
3559}
3560
3561/// getObjCEncodingForBlockDecl - Return the encoded type for this block
3562/// declaration.
3563void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3564                                             std::string& S) const {
3565  const BlockDecl *Decl = Expr->getBlockDecl();
3566  QualType BlockTy =
3567      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3568  // Encode result type.
3569  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3570  // Compute size of all parameters.
3571  // Start with computing size of a pointer in number of bytes.
3572  // FIXME: There might(should) be a better way of doing this computation!
3573  SourceLocation Loc;
3574  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3575  CharUnits ParmOffset = PtrSize;
3576  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3577       E = Decl->param_end(); PI != E; ++PI) {
3578    QualType PType = (*PI)->getType();
3579    CharUnits sz = getObjCEncodingTypeSize(PType);
3580    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3581    ParmOffset += sz;
3582  }
3583  // Size of the argument frame
3584  S += charUnitsToString(ParmOffset);
3585  // Block pointer and offset.
3586  S += "@?0";
3587  ParmOffset = PtrSize;
3588
3589  // Argument types.
3590  ParmOffset = PtrSize;
3591  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3592       Decl->param_end(); PI != E; ++PI) {
3593    ParmVarDecl *PVDecl = *PI;
3594    QualType PType = PVDecl->getOriginalType();
3595    if (const ArrayType *AT =
3596          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3597      // Use array's original type only if it has known number of
3598      // elements.
3599      if (!isa<ConstantArrayType>(AT))
3600        PType = PVDecl->getType();
3601    } else if (PType->isFunctionType())
3602      PType = PVDecl->getType();
3603    getObjCEncodingForType(PType, S);
3604    S += charUnitsToString(ParmOffset);
3605    ParmOffset += getObjCEncodingTypeSize(PType);
3606  }
3607}
3608
3609void ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3610                                                std::string& S) {
3611  // Encode result type.
3612  getObjCEncodingForType(Decl->getResultType(), S);
3613  CharUnits ParmOffset;
3614  // Compute size of all parameters.
3615  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3616       E = Decl->param_end(); PI != E; ++PI) {
3617    QualType PType = (*PI)->getType();
3618    CharUnits sz = getObjCEncodingTypeSize(PType);
3619    assert (sz.isPositive() &&
3620        "getObjCEncodingForMethodDecl - Incomplete param type");
3621    ParmOffset += sz;
3622  }
3623  S += charUnitsToString(ParmOffset);
3624  ParmOffset = CharUnits::Zero();
3625
3626  // Argument types.
3627  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3628       E = Decl->param_end(); PI != E; ++PI) {
3629    ParmVarDecl *PVDecl = *PI;
3630    QualType PType = PVDecl->getOriginalType();
3631    if (const ArrayType *AT =
3632          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3633      // Use array's original type only if it has known number of
3634      // elements.
3635      if (!isa<ConstantArrayType>(AT))
3636        PType = PVDecl->getType();
3637    } else if (PType->isFunctionType())
3638      PType = PVDecl->getType();
3639    getObjCEncodingForType(PType, S);
3640    S += charUnitsToString(ParmOffset);
3641    ParmOffset += getObjCEncodingTypeSize(PType);
3642  }
3643}
3644
3645/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3646/// declaration.
3647void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3648                                              std::string& S) const {
3649  // FIXME: This is not very efficient.
3650  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3651  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3652  // Encode result type.
3653  getObjCEncodingForType(Decl->getResultType(), S);
3654  // Compute size of all parameters.
3655  // Start with computing size of a pointer in number of bytes.
3656  // FIXME: There might(should) be a better way of doing this computation!
3657  SourceLocation Loc;
3658  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3659  // The first two arguments (self and _cmd) are pointers; account for
3660  // their size.
3661  CharUnits ParmOffset = 2 * PtrSize;
3662  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3663       E = Decl->sel_param_end(); PI != E; ++PI) {
3664    QualType PType = (*PI)->getType();
3665    CharUnits sz = getObjCEncodingTypeSize(PType);
3666    assert (sz.isPositive() &&
3667        "getObjCEncodingForMethodDecl - Incomplete param type");
3668    ParmOffset += sz;
3669  }
3670  S += charUnitsToString(ParmOffset);
3671  S += "@0:";
3672  S += charUnitsToString(PtrSize);
3673
3674  // Argument types.
3675  ParmOffset = 2 * PtrSize;
3676  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3677       E = Decl->sel_param_end(); PI != E; ++PI) {
3678    ParmVarDecl *PVDecl = *PI;
3679    QualType PType = PVDecl->getOriginalType();
3680    if (const ArrayType *AT =
3681          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3682      // Use array's original type only if it has known number of
3683      // elements.
3684      if (!isa<ConstantArrayType>(AT))
3685        PType = PVDecl->getType();
3686    } else if (PType->isFunctionType())
3687      PType = PVDecl->getType();
3688    // Process argument qualifiers for user supplied arguments; such as,
3689    // 'in', 'inout', etc.
3690    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3691    getObjCEncodingForType(PType, S);
3692    S += charUnitsToString(ParmOffset);
3693    ParmOffset += getObjCEncodingTypeSize(PType);
3694  }
3695}
3696
3697/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3698/// property declaration. If non-NULL, Container must be either an
3699/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3700/// NULL when getting encodings for protocol properties.
3701/// Property attributes are stored as a comma-delimited C string. The simple
3702/// attributes readonly and bycopy are encoded as single characters. The
3703/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3704/// encoded as single characters, followed by an identifier. Property types
3705/// are also encoded as a parametrized attribute. The characters used to encode
3706/// these attributes are defined by the following enumeration:
3707/// @code
3708/// enum PropertyAttributes {
3709/// kPropertyReadOnly = 'R',   // property is read-only.
3710/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3711/// kPropertyByref = '&',  // property is a reference to the value last assigned
3712/// kPropertyDynamic = 'D',    // property is dynamic
3713/// kPropertyGetter = 'G',     // followed by getter selector name
3714/// kPropertySetter = 'S',     // followed by setter selector name
3715/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3716/// kPropertyType = 't'              // followed by old-style type encoding.
3717/// kPropertyWeak = 'W'              // 'weak' property
3718/// kPropertyStrong = 'P'            // property GC'able
3719/// kPropertyNonAtomic = 'N'         // property non-atomic
3720/// };
3721/// @endcode
3722void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3723                                                const Decl *Container,
3724                                                std::string& S) const {
3725  // Collect information from the property implementation decl(s).
3726  bool Dynamic = false;
3727  ObjCPropertyImplDecl *SynthesizePID = 0;
3728
3729  // FIXME: Duplicated code due to poor abstraction.
3730  if (Container) {
3731    if (const ObjCCategoryImplDecl *CID =
3732        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3733      for (ObjCCategoryImplDecl::propimpl_iterator
3734             i = CID->propimpl_begin(), e = CID->propimpl_end();
3735           i != e; ++i) {
3736        ObjCPropertyImplDecl *PID = *i;
3737        if (PID->getPropertyDecl() == PD) {
3738          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3739            Dynamic = true;
3740          } else {
3741            SynthesizePID = PID;
3742          }
3743        }
3744      }
3745    } else {
3746      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3747      for (ObjCCategoryImplDecl::propimpl_iterator
3748             i = OID->propimpl_begin(), e = OID->propimpl_end();
3749           i != e; ++i) {
3750        ObjCPropertyImplDecl *PID = *i;
3751        if (PID->getPropertyDecl() == PD) {
3752          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3753            Dynamic = true;
3754          } else {
3755            SynthesizePID = PID;
3756          }
3757        }
3758      }
3759    }
3760  }
3761
3762  // FIXME: This is not very efficient.
3763  S = "T";
3764
3765  // Encode result type.
3766  // GCC has some special rules regarding encoding of properties which
3767  // closely resembles encoding of ivars.
3768  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3769                             true /* outermost type */,
3770                             true /* encoding for property */);
3771
3772  if (PD->isReadOnly()) {
3773    S += ",R";
3774  } else {
3775    switch (PD->getSetterKind()) {
3776    case ObjCPropertyDecl::Assign: break;
3777    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3778    case ObjCPropertyDecl::Retain: S += ",&"; break;
3779    }
3780  }
3781
3782  // It really isn't clear at all what this means, since properties
3783  // are "dynamic by default".
3784  if (Dynamic)
3785    S += ",D";
3786
3787  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3788    S += ",N";
3789
3790  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3791    S += ",G";
3792    S += PD->getGetterName().getAsString();
3793  }
3794
3795  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3796    S += ",S";
3797    S += PD->getSetterName().getAsString();
3798  }
3799
3800  if (SynthesizePID) {
3801    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3802    S += ",V";
3803    S += OID->getNameAsString();
3804  }
3805
3806  // FIXME: OBJCGC: weak & strong
3807}
3808
3809/// getLegacyIntegralTypeEncoding -
3810/// Another legacy compatibility encoding: 32-bit longs are encoded as
3811/// 'l' or 'L' , but not always.  For typedefs, we need to use
3812/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3813///
3814void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3815  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3816    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3817      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
3818        PointeeTy = UnsignedIntTy;
3819      else
3820        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
3821          PointeeTy = IntTy;
3822    }
3823  }
3824}
3825
3826void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3827                                        const FieldDecl *Field) const {
3828  // We follow the behavior of gcc, expanding structures which are
3829  // directly pointed to, and expanding embedded structures. Note that
3830  // these rules are sufficient to prevent recursive encoding of the
3831  // same type.
3832  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3833                             true /* outermost type */);
3834}
3835
3836static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3837    switch (T->getAs<BuiltinType>()->getKind()) {
3838    default: assert(0 && "Unhandled builtin type kind");
3839    case BuiltinType::Void:       return 'v';
3840    case BuiltinType::Bool:       return 'B';
3841    case BuiltinType::Char_U:
3842    case BuiltinType::UChar:      return 'C';
3843    case BuiltinType::UShort:     return 'S';
3844    case BuiltinType::UInt:       return 'I';
3845    case BuiltinType::ULong:
3846        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
3847    case BuiltinType::UInt128:    return 'T';
3848    case BuiltinType::ULongLong:  return 'Q';
3849    case BuiltinType::Char_S:
3850    case BuiltinType::SChar:      return 'c';
3851    case BuiltinType::Short:      return 's';
3852    case BuiltinType::WChar_S:
3853    case BuiltinType::WChar_U:
3854    case BuiltinType::Int:        return 'i';
3855    case BuiltinType::Long:
3856      return C->getIntWidth(T) == 32 ? 'l' : 'q';
3857    case BuiltinType::LongLong:   return 'q';
3858    case BuiltinType::Int128:     return 't';
3859    case BuiltinType::Float:      return 'f';
3860    case BuiltinType::Double:     return 'd';
3861    case BuiltinType::LongDouble: return 'D';
3862    }
3863}
3864
3865static void EncodeBitField(const ASTContext *Ctx, std::string& S,
3866                           QualType T, const FieldDecl *FD) {
3867  const Expr *E = FD->getBitWidth();
3868  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3869  S += 'b';
3870  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3871  // The GNU runtime requires more information; bitfields are encoded as b,
3872  // then the offset (in bits) of the first element, then the type of the
3873  // bitfield, then the size in bits.  For example, in this structure:
3874  //
3875  // struct
3876  // {
3877  //    int integer;
3878  //    int flags:2;
3879  // };
3880  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
3881  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
3882  // information is not especially sensible, but we're stuck with it for
3883  // compatibility with GCC, although providing it breaks anything that
3884  // actually uses runtime introspection and wants to work on both runtimes...
3885  if (!Ctx->getLangOptions().NeXTRuntime) {
3886    const RecordDecl *RD = FD->getParent();
3887    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
3888    // FIXME: This same linear search is also used in ExprConstant - it might
3889    // be better if the FieldDecl stored its offset.  We'd be increasing the
3890    // size of the object slightly, but saving some time every time it is used.
3891    unsigned i = 0;
3892    for (RecordDecl::field_iterator Field = RD->field_begin(),
3893                                 FieldEnd = RD->field_end();
3894         Field != FieldEnd; (void)++Field, ++i) {
3895      if (*Field == FD)
3896        break;
3897    }
3898    S += llvm::utostr(RL.getFieldOffset(i));
3899    if (T->isEnumeralType())
3900      S += 'i';
3901    else
3902      S += ObjCEncodingForPrimitiveKind(Ctx, T);
3903  }
3904  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3905  S += llvm::utostr(N);
3906}
3907
3908// FIXME: Use SmallString for accumulating string.
3909void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3910                                            bool ExpandPointedToStructures,
3911                                            bool ExpandStructures,
3912                                            const FieldDecl *FD,
3913                                            bool OutermostType,
3914                                            bool EncodingProperty) const {
3915  if (T->getAs<BuiltinType>()) {
3916    if (FD && FD->isBitField())
3917      return EncodeBitField(this, S, T, FD);
3918    S += ObjCEncodingForPrimitiveKind(this, T);
3919    return;
3920  }
3921
3922  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3923    S += 'j';
3924    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3925                               false);
3926    return;
3927  }
3928
3929  // encoding for pointer or r3eference types.
3930  QualType PointeeTy;
3931  if (const PointerType *PT = T->getAs<PointerType>()) {
3932    if (PT->isObjCSelType()) {
3933      S += ':';
3934      return;
3935    }
3936    PointeeTy = PT->getPointeeType();
3937  }
3938  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3939    PointeeTy = RT->getPointeeType();
3940  if (!PointeeTy.isNull()) {
3941    bool isReadOnly = false;
3942    // For historical/compatibility reasons, the read-only qualifier of the
3943    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3944    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3945    // Also, do not emit the 'r' for anything but the outermost type!
3946    if (isa<TypedefType>(T.getTypePtr())) {
3947      if (OutermostType && T.isConstQualified()) {
3948        isReadOnly = true;
3949        S += 'r';
3950      }
3951    } else if (OutermostType) {
3952      QualType P = PointeeTy;
3953      while (P->getAs<PointerType>())
3954        P = P->getAs<PointerType>()->getPointeeType();
3955      if (P.isConstQualified()) {
3956        isReadOnly = true;
3957        S += 'r';
3958      }
3959    }
3960    if (isReadOnly) {
3961      // Another legacy compatibility encoding. Some ObjC qualifier and type
3962      // combinations need to be rearranged.
3963      // Rewrite "in const" from "nr" to "rn"
3964      if (llvm::StringRef(S).endswith("nr"))
3965        S.replace(S.end()-2, S.end(), "rn");
3966    }
3967
3968    if (PointeeTy->isCharType()) {
3969      // char pointer types should be encoded as '*' unless it is a
3970      // type that has been typedef'd to 'BOOL'.
3971      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3972        S += '*';
3973        return;
3974      }
3975    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3976      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3977      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3978        S += '#';
3979        return;
3980      }
3981      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3982      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3983        S += '@';
3984        return;
3985      }
3986      // fall through...
3987    }
3988    S += '^';
3989    getLegacyIntegralTypeEncoding(PointeeTy);
3990
3991    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3992                               NULL);
3993    return;
3994  }
3995
3996  if (const ArrayType *AT =
3997      // Ignore type qualifiers etc.
3998        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3999    if (isa<IncompleteArrayType>(AT)) {
4000      // Incomplete arrays are encoded as a pointer to the array element.
4001      S += '^';
4002
4003      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4004                                 false, ExpandStructures, FD);
4005    } else {
4006      S += '[';
4007
4008      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
4009        S += llvm::utostr(CAT->getSize().getZExtValue());
4010      else {
4011        //Variable length arrays are encoded as a regular array with 0 elements.
4012        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
4013        S += '0';
4014      }
4015
4016      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4017                                 false, ExpandStructures, FD);
4018      S += ']';
4019    }
4020    return;
4021  }
4022
4023  if (T->getAs<FunctionType>()) {
4024    S += '?';
4025    return;
4026  }
4027
4028  if (const RecordType *RTy = T->getAs<RecordType>()) {
4029    RecordDecl *RDecl = RTy->getDecl();
4030    S += RDecl->isUnion() ? '(' : '{';
4031    // Anonymous structures print as '?'
4032    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4033      S += II->getName();
4034      if (ClassTemplateSpecializationDecl *Spec
4035          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4036        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4037        std::string TemplateArgsStr
4038          = TemplateSpecializationType::PrintTemplateArgumentList(
4039                                            TemplateArgs.data(),
4040                                            TemplateArgs.size(),
4041                                            (*this).PrintingPolicy);
4042
4043        S += TemplateArgsStr;
4044      }
4045    } else {
4046      S += '?';
4047    }
4048    if (ExpandStructures) {
4049      S += '=';
4050      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4051                                   FieldEnd = RDecl->field_end();
4052           Field != FieldEnd; ++Field) {
4053        if (FD) {
4054          S += '"';
4055          S += Field->getNameAsString();
4056          S += '"';
4057        }
4058
4059        // Special case bit-fields.
4060        if (Field->isBitField()) {
4061          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4062                                     (*Field));
4063        } else {
4064          QualType qt = Field->getType();
4065          getLegacyIntegralTypeEncoding(qt);
4066          getObjCEncodingForTypeImpl(qt, S, false, true,
4067                                     FD);
4068        }
4069      }
4070    }
4071    S += RDecl->isUnion() ? ')' : '}';
4072    return;
4073  }
4074
4075  if (T->isEnumeralType()) {
4076    if (FD && FD->isBitField())
4077      EncodeBitField(this, S, T, FD);
4078    else
4079      S += 'i';
4080    return;
4081  }
4082
4083  if (T->isBlockPointerType()) {
4084    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4085    return;
4086  }
4087
4088  // Ignore protocol qualifiers when mangling at this level.
4089  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4090    T = OT->getBaseType();
4091
4092  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4093    // @encode(class_name)
4094    ObjCInterfaceDecl *OI = OIT->getDecl();
4095    S += '{';
4096    const IdentifierInfo *II = OI->getIdentifier();
4097    S += II->getName();
4098    S += '=';
4099    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
4100    DeepCollectObjCIvars(OI, true, Ivars);
4101    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4102      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4103      if (Field->isBitField())
4104        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4105      else
4106        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4107    }
4108    S += '}';
4109    return;
4110  }
4111
4112  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4113    if (OPT->isObjCIdType()) {
4114      S += '@';
4115      return;
4116    }
4117
4118    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4119      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4120      // Since this is a binary compatibility issue, need to consult with runtime
4121      // folks. Fortunately, this is a *very* obsure construct.
4122      S += '#';
4123      return;
4124    }
4125
4126    if (OPT->isObjCQualifiedIdType()) {
4127      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4128                                 ExpandPointedToStructures,
4129                                 ExpandStructures, FD);
4130      if (FD || EncodingProperty) {
4131        // Note that we do extended encoding of protocol qualifer list
4132        // Only when doing ivar or property encoding.
4133        S += '"';
4134        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4135             E = OPT->qual_end(); I != E; ++I) {
4136          S += '<';
4137          S += (*I)->getNameAsString();
4138          S += '>';
4139        }
4140        S += '"';
4141      }
4142      return;
4143    }
4144
4145    QualType PointeeTy = OPT->getPointeeType();
4146    if (!EncodingProperty &&
4147        isa<TypedefType>(PointeeTy.getTypePtr())) {
4148      // Another historical/compatibility reason.
4149      // We encode the underlying type which comes out as
4150      // {...};
4151      S += '^';
4152      getObjCEncodingForTypeImpl(PointeeTy, S,
4153                                 false, ExpandPointedToStructures,
4154                                 NULL);
4155      return;
4156    }
4157
4158    S += '@';
4159    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4160      S += '"';
4161      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4162      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4163           E = OPT->qual_end(); I != E; ++I) {
4164        S += '<';
4165        S += (*I)->getNameAsString();
4166        S += '>';
4167      }
4168      S += '"';
4169    }
4170    return;
4171  }
4172
4173  // gcc just blithely ignores member pointers.
4174  // TODO: maybe there should be a mangling for these
4175  if (T->getAs<MemberPointerType>())
4176    return;
4177
4178  if (T->isVectorType()) {
4179    // This matches gcc's encoding, even though technically it is
4180    // insufficient.
4181    // FIXME. We should do a better job than gcc.
4182    return;
4183  }
4184
4185  assert(0 && "@encode for type not implemented!");
4186}
4187
4188void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4189                                                 std::string& S) const {
4190  if (QT & Decl::OBJC_TQ_In)
4191    S += 'n';
4192  if (QT & Decl::OBJC_TQ_Inout)
4193    S += 'N';
4194  if (QT & Decl::OBJC_TQ_Out)
4195    S += 'o';
4196  if (QT & Decl::OBJC_TQ_Bycopy)
4197    S += 'O';
4198  if (QT & Decl::OBJC_TQ_Byref)
4199    S += 'R';
4200  if (QT & Decl::OBJC_TQ_Oneway)
4201    S += 'V';
4202}
4203
4204void ASTContext::setBuiltinVaListType(QualType T) {
4205  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4206
4207  BuiltinVaListType = T;
4208}
4209
4210void ASTContext::setObjCIdType(QualType T) {
4211  ObjCIdTypedefType = T;
4212}
4213
4214void ASTContext::setObjCSelType(QualType T) {
4215  ObjCSelTypedefType = T;
4216}
4217
4218void ASTContext::setObjCProtoType(QualType QT) {
4219  ObjCProtoType = QT;
4220}
4221
4222void ASTContext::setObjCClassType(QualType T) {
4223  ObjCClassTypedefType = T;
4224}
4225
4226void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4227  assert(ObjCConstantStringType.isNull() &&
4228         "'NSConstantString' type already set!");
4229
4230  ObjCConstantStringType = getObjCInterfaceType(Decl);
4231}
4232
4233/// \brief Retrieve the template name that corresponds to a non-empty
4234/// lookup.
4235TemplateName
4236ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4237                                      UnresolvedSetIterator End) const {
4238  unsigned size = End - Begin;
4239  assert(size > 1 && "set is not overloaded!");
4240
4241  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4242                          size * sizeof(FunctionTemplateDecl*));
4243  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4244
4245  NamedDecl **Storage = OT->getStorage();
4246  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4247    NamedDecl *D = *I;
4248    assert(isa<FunctionTemplateDecl>(D) ||
4249           (isa<UsingShadowDecl>(D) &&
4250            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4251    *Storage++ = D;
4252  }
4253
4254  return TemplateName(OT);
4255}
4256
4257/// \brief Retrieve the template name that represents a qualified
4258/// template name such as \c std::vector.
4259TemplateName
4260ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4261                                     bool TemplateKeyword,
4262                                     TemplateDecl *Template) const {
4263  // FIXME: Canonicalization?
4264  llvm::FoldingSetNodeID ID;
4265  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4266
4267  void *InsertPos = 0;
4268  QualifiedTemplateName *QTN =
4269    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4270  if (!QTN) {
4271    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4272    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4273  }
4274
4275  return TemplateName(QTN);
4276}
4277
4278/// \brief Retrieve the template name that represents a dependent
4279/// template name such as \c MetaFun::template apply.
4280TemplateName
4281ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4282                                     const IdentifierInfo *Name) const {
4283  assert((!NNS || NNS->isDependent()) &&
4284         "Nested name specifier must be dependent");
4285
4286  llvm::FoldingSetNodeID ID;
4287  DependentTemplateName::Profile(ID, NNS, Name);
4288
4289  void *InsertPos = 0;
4290  DependentTemplateName *QTN =
4291    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4292
4293  if (QTN)
4294    return TemplateName(QTN);
4295
4296  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4297  if (CanonNNS == NNS) {
4298    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4299  } else {
4300    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4301    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4302    DependentTemplateName *CheckQTN =
4303      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4304    assert(!CheckQTN && "Dependent type name canonicalization broken");
4305    (void)CheckQTN;
4306  }
4307
4308  DependentTemplateNames.InsertNode(QTN, InsertPos);
4309  return TemplateName(QTN);
4310}
4311
4312/// \brief Retrieve the template name that represents a dependent
4313/// template name such as \c MetaFun::template operator+.
4314TemplateName
4315ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4316                                     OverloadedOperatorKind Operator) const {
4317  assert((!NNS || NNS->isDependent()) &&
4318         "Nested name specifier must be dependent");
4319
4320  llvm::FoldingSetNodeID ID;
4321  DependentTemplateName::Profile(ID, NNS, Operator);
4322
4323  void *InsertPos = 0;
4324  DependentTemplateName *QTN
4325    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4326
4327  if (QTN)
4328    return TemplateName(QTN);
4329
4330  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4331  if (CanonNNS == NNS) {
4332    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4333  } else {
4334    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4335    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4336
4337    DependentTemplateName *CheckQTN
4338      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4339    assert(!CheckQTN && "Dependent template name canonicalization broken");
4340    (void)CheckQTN;
4341  }
4342
4343  DependentTemplateNames.InsertNode(QTN, InsertPos);
4344  return TemplateName(QTN);
4345}
4346
4347/// getFromTargetType - Given one of the integer types provided by
4348/// TargetInfo, produce the corresponding type. The unsigned @p Type
4349/// is actually a value of type @c TargetInfo::IntType.
4350CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4351  switch (Type) {
4352  case TargetInfo::NoInt: return CanQualType();
4353  case TargetInfo::SignedShort: return ShortTy;
4354  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4355  case TargetInfo::SignedInt: return IntTy;
4356  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4357  case TargetInfo::SignedLong: return LongTy;
4358  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4359  case TargetInfo::SignedLongLong: return LongLongTy;
4360  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4361  }
4362
4363  assert(false && "Unhandled TargetInfo::IntType value");
4364  return CanQualType();
4365}
4366
4367//===----------------------------------------------------------------------===//
4368//                        Type Predicates.
4369//===----------------------------------------------------------------------===//
4370
4371/// isObjCNSObjectType - Return true if this is an NSObject object using
4372/// NSObject attribute on a c-style pointer type.
4373/// FIXME - Make it work directly on types.
4374/// FIXME: Move to Type.
4375///
4376bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4377  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4378    if (TypedefDecl *TD = TDT->getDecl())
4379      if (TD->getAttr<ObjCNSObjectAttr>())
4380        return true;
4381  }
4382  return false;
4383}
4384
4385/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4386/// garbage collection attribute.
4387///
4388Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4389  if (getLangOptions().getGCMode() == LangOptions::NonGC)
4390    return Qualifiers::GCNone;
4391
4392  assert(getLangOptions().ObjC1);
4393  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4394
4395  // Default behaviour under objective-C's gc is for ObjC pointers
4396  // (or pointers to them) be treated as though they were declared
4397  // as __strong.
4398  if (GCAttrs == Qualifiers::GCNone) {
4399    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4400      return Qualifiers::Strong;
4401    else if (Ty->isPointerType())
4402      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4403  } else {
4404    // It's not valid to set GC attributes on anything that isn't a
4405    // pointer.
4406#ifndef NDEBUG
4407    QualType CT = Ty->getCanonicalTypeInternal();
4408    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4409      CT = AT->getElementType();
4410    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4411#endif
4412  }
4413  return GCAttrs;
4414}
4415
4416//===----------------------------------------------------------------------===//
4417//                        Type Compatibility Testing
4418//===----------------------------------------------------------------------===//
4419
4420/// areCompatVectorTypes - Return true if the two specified vector types are
4421/// compatible.
4422static bool areCompatVectorTypes(const VectorType *LHS,
4423                                 const VectorType *RHS) {
4424  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4425  return LHS->getElementType() == RHS->getElementType() &&
4426         LHS->getNumElements() == RHS->getNumElements();
4427}
4428
4429bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4430                                          QualType SecondVec) {
4431  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4432  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4433
4434  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4435    return true;
4436
4437  // Treat Neon vector types and most AltiVec vector types as if they are the
4438  // equivalent GCC vector types.
4439  const VectorType *First = FirstVec->getAs<VectorType>();
4440  const VectorType *Second = SecondVec->getAs<VectorType>();
4441  if (First->getNumElements() == Second->getNumElements() &&
4442      hasSameType(First->getElementType(), Second->getElementType()) &&
4443      First->getVectorKind() != VectorType::AltiVecPixel &&
4444      First->getVectorKind() != VectorType::AltiVecBool &&
4445      Second->getVectorKind() != VectorType::AltiVecPixel &&
4446      Second->getVectorKind() != VectorType::AltiVecBool)
4447    return true;
4448
4449  return false;
4450}
4451
4452//===----------------------------------------------------------------------===//
4453// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4454//===----------------------------------------------------------------------===//
4455
4456/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4457/// inheritance hierarchy of 'rProto'.
4458bool
4459ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4460                                           ObjCProtocolDecl *rProto) const {
4461  if (lProto == rProto)
4462    return true;
4463  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4464       E = rProto->protocol_end(); PI != E; ++PI)
4465    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4466      return true;
4467  return false;
4468}
4469
4470/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4471/// return true if lhs's protocols conform to rhs's protocol; false
4472/// otherwise.
4473bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4474  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4475    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4476  return false;
4477}
4478
4479/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4480/// Class<p1, ...>.
4481bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4482                                                      QualType rhs) {
4483  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4484  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4485  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4486
4487  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4488       E = lhsQID->qual_end(); I != E; ++I) {
4489    bool match = false;
4490    ObjCProtocolDecl *lhsProto = *I;
4491    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4492         E = rhsOPT->qual_end(); J != E; ++J) {
4493      ObjCProtocolDecl *rhsProto = *J;
4494      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4495        match = true;
4496        break;
4497      }
4498    }
4499    if (!match)
4500      return false;
4501  }
4502  return true;
4503}
4504
4505/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4506/// ObjCQualifiedIDType.
4507bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4508                                                   bool compare) {
4509  // Allow id<P..> and an 'id' or void* type in all cases.
4510  if (lhs->isVoidPointerType() ||
4511      lhs->isObjCIdType() || lhs->isObjCClassType())
4512    return true;
4513  else if (rhs->isVoidPointerType() ||
4514           rhs->isObjCIdType() || rhs->isObjCClassType())
4515    return true;
4516
4517  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4518    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4519
4520    if (!rhsOPT) return false;
4521
4522    if (rhsOPT->qual_empty()) {
4523      // If the RHS is a unqualified interface pointer "NSString*",
4524      // make sure we check the class hierarchy.
4525      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4526        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4527             E = lhsQID->qual_end(); I != E; ++I) {
4528          // when comparing an id<P> on lhs with a static type on rhs,
4529          // see if static class implements all of id's protocols, directly or
4530          // through its super class and categories.
4531          if (!rhsID->ClassImplementsProtocol(*I, true))
4532            return false;
4533        }
4534      }
4535      // If there are no qualifiers and no interface, we have an 'id'.
4536      return true;
4537    }
4538    // Both the right and left sides have qualifiers.
4539    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4540         E = lhsQID->qual_end(); I != E; ++I) {
4541      ObjCProtocolDecl *lhsProto = *I;
4542      bool match = false;
4543
4544      // when comparing an id<P> on lhs with a static type on rhs,
4545      // see if static class implements all of id's protocols, directly or
4546      // through its super class and categories.
4547      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4548           E = rhsOPT->qual_end(); J != E; ++J) {
4549        ObjCProtocolDecl *rhsProto = *J;
4550        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4551            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4552          match = true;
4553          break;
4554        }
4555      }
4556      // If the RHS is a qualified interface pointer "NSString<P>*",
4557      // make sure we check the class hierarchy.
4558      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4559        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4560             E = lhsQID->qual_end(); I != E; ++I) {
4561          // when comparing an id<P> on lhs with a static type on rhs,
4562          // see if static class implements all of id's protocols, directly or
4563          // through its super class and categories.
4564          if (rhsID->ClassImplementsProtocol(*I, true)) {
4565            match = true;
4566            break;
4567          }
4568        }
4569      }
4570      if (!match)
4571        return false;
4572    }
4573
4574    return true;
4575  }
4576
4577  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4578  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4579
4580  if (const ObjCObjectPointerType *lhsOPT =
4581        lhs->getAsObjCInterfacePointerType()) {
4582    // If both the right and left sides have qualifiers.
4583    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4584         E = lhsOPT->qual_end(); I != E; ++I) {
4585      ObjCProtocolDecl *lhsProto = *I;
4586      bool match = false;
4587
4588      // when comparing an id<P> on rhs with a static type on lhs,
4589      // see if static class implements all of id's protocols, directly or
4590      // through its super class and categories.
4591      // First, lhs protocols in the qualifier list must be found, direct
4592      // or indirect in rhs's qualifier list or it is a mismatch.
4593      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4594           E = rhsQID->qual_end(); J != E; ++J) {
4595        ObjCProtocolDecl *rhsProto = *J;
4596        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4597            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4598          match = true;
4599          break;
4600        }
4601      }
4602      if (!match)
4603        return false;
4604    }
4605
4606    // Static class's protocols, or its super class or category protocols
4607    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
4608    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4609      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4610      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
4611      // This is rather dubious but matches gcc's behavior. If lhs has
4612      // no type qualifier and its class has no static protocol(s)
4613      // assume that it is mismatch.
4614      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
4615        return false;
4616      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4617           LHSInheritedProtocols.begin(),
4618           E = LHSInheritedProtocols.end(); I != E; ++I) {
4619        bool match = false;
4620        ObjCProtocolDecl *lhsProto = (*I);
4621        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4622             E = rhsQID->qual_end(); J != E; ++J) {
4623          ObjCProtocolDecl *rhsProto = *J;
4624          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4625              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4626            match = true;
4627            break;
4628          }
4629        }
4630        if (!match)
4631          return false;
4632      }
4633    }
4634    return true;
4635  }
4636  return false;
4637}
4638
4639/// canAssignObjCInterfaces - Return true if the two interface types are
4640/// compatible for assignment from RHS to LHS.  This handles validation of any
4641/// protocol qualifiers on the LHS or RHS.
4642///
4643bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4644                                         const ObjCObjectPointerType *RHSOPT) {
4645  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4646  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4647
4648  // If either type represents the built-in 'id' or 'Class' types, return true.
4649  if (LHS->isObjCUnqualifiedIdOrClass() ||
4650      RHS->isObjCUnqualifiedIdOrClass())
4651    return true;
4652
4653  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4654    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4655                                             QualType(RHSOPT,0),
4656                                             false);
4657
4658  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
4659    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
4660                                                QualType(RHSOPT,0));
4661
4662  // If we have 2 user-defined types, fall into that path.
4663  if (LHS->getInterface() && RHS->getInterface())
4664    return canAssignObjCInterfaces(LHS, RHS);
4665
4666  return false;
4667}
4668
4669/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4670/// for providing type-safty for objective-c pointers used to pass/return
4671/// arguments in block literals. When passed as arguments, passing 'A*' where
4672/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4673/// not OK. For the return type, the opposite is not OK.
4674bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4675                                         const ObjCObjectPointerType *LHSOPT,
4676                                         const ObjCObjectPointerType *RHSOPT) {
4677  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4678    return true;
4679
4680  if (LHSOPT->isObjCBuiltinType()) {
4681    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4682  }
4683
4684  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4685    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4686                                             QualType(RHSOPT,0),
4687                                             false);
4688
4689  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4690  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4691  if (LHS && RHS)  { // We have 2 user-defined types.
4692    if (LHS != RHS) {
4693      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4694        return false;
4695      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4696        return true;
4697    }
4698    else
4699      return true;
4700  }
4701  return false;
4702}
4703
4704/// getIntersectionOfProtocols - This routine finds the intersection of set
4705/// of protocols inherited from two distinct objective-c pointer objects.
4706/// It is used to build composite qualifier list of the composite type of
4707/// the conditional expression involving two objective-c pointer objects.
4708static
4709void getIntersectionOfProtocols(ASTContext &Context,
4710                                const ObjCObjectPointerType *LHSOPT,
4711                                const ObjCObjectPointerType *RHSOPT,
4712      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4713
4714  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4715  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4716  assert(LHS->getInterface() && "LHS must have an interface base");
4717  assert(RHS->getInterface() && "RHS must have an interface base");
4718
4719  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4720  unsigned LHSNumProtocols = LHS->getNumProtocols();
4721  if (LHSNumProtocols > 0)
4722    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4723  else {
4724    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4725    Context.CollectInheritedProtocols(LHS->getInterface(),
4726                                      LHSInheritedProtocols);
4727    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4728                                LHSInheritedProtocols.end());
4729  }
4730
4731  unsigned RHSNumProtocols = RHS->getNumProtocols();
4732  if (RHSNumProtocols > 0) {
4733    ObjCProtocolDecl **RHSProtocols =
4734      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4735    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4736      if (InheritedProtocolSet.count(RHSProtocols[i]))
4737        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4738  }
4739  else {
4740    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4741    Context.CollectInheritedProtocols(RHS->getInterface(),
4742                                      RHSInheritedProtocols);
4743    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4744         RHSInheritedProtocols.begin(),
4745         E = RHSInheritedProtocols.end(); I != E; ++I)
4746      if (InheritedProtocolSet.count((*I)))
4747        IntersectionOfProtocols.push_back((*I));
4748  }
4749}
4750
4751/// areCommonBaseCompatible - Returns common base class of the two classes if
4752/// one found. Note that this is O'2 algorithm. But it will be called as the
4753/// last type comparison in a ?-exp of ObjC pointer types before a
4754/// warning is issued. So, its invokation is extremely rare.
4755QualType ASTContext::areCommonBaseCompatible(
4756                                          const ObjCObjectPointerType *Lptr,
4757                                          const ObjCObjectPointerType *Rptr) {
4758  const ObjCObjectType *LHS = Lptr->getObjectType();
4759  const ObjCObjectType *RHS = Rptr->getObjectType();
4760  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4761  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4762  if (!LDecl || !RDecl)
4763    return QualType();
4764
4765  while ((LDecl = LDecl->getSuperClass())) {
4766    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4767    if (canAssignObjCInterfaces(LHS, RHS)) {
4768      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4769      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4770
4771      QualType Result = QualType(LHS, 0);
4772      if (!Protocols.empty())
4773        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4774      Result = getObjCObjectPointerType(Result);
4775      return Result;
4776    }
4777  }
4778
4779  return QualType();
4780}
4781
4782bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4783                                         const ObjCObjectType *RHS) {
4784  assert(LHS->getInterface() && "LHS is not an interface type");
4785  assert(RHS->getInterface() && "RHS is not an interface type");
4786
4787  // Verify that the base decls are compatible: the RHS must be a subclass of
4788  // the LHS.
4789  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4790    return false;
4791
4792  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4793  // protocol qualified at all, then we are good.
4794  if (LHS->getNumProtocols() == 0)
4795    return true;
4796
4797  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4798  // isn't a superset.
4799  if (RHS->getNumProtocols() == 0)
4800    return true;  // FIXME: should return false!
4801
4802  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4803                                     LHSPE = LHS->qual_end();
4804       LHSPI != LHSPE; LHSPI++) {
4805    bool RHSImplementsProtocol = false;
4806
4807    // If the RHS doesn't implement the protocol on the left, the types
4808    // are incompatible.
4809    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4810                                       RHSPE = RHS->qual_end();
4811         RHSPI != RHSPE; RHSPI++) {
4812      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4813        RHSImplementsProtocol = true;
4814        break;
4815      }
4816    }
4817    // FIXME: For better diagnostics, consider passing back the protocol name.
4818    if (!RHSImplementsProtocol)
4819      return false;
4820  }
4821  // The RHS implements all protocols listed on the LHS.
4822  return true;
4823}
4824
4825bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4826  // get the "pointed to" types
4827  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4828  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4829
4830  if (!LHSOPT || !RHSOPT)
4831    return false;
4832
4833  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4834         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4835}
4836
4837bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
4838  return canAssignObjCInterfaces(
4839                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
4840                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
4841}
4842
4843/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4844/// both shall have the identically qualified version of a compatible type.
4845/// C99 6.2.7p1: Two types have compatible types if their types are the
4846/// same. See 6.7.[2,3,5] for additional rules.
4847bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
4848                                    bool CompareUnqualified) {
4849  if (getLangOptions().CPlusPlus)
4850    return hasSameType(LHS, RHS);
4851
4852  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
4853}
4854
4855bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
4856  return !mergeTypes(LHS, RHS, true).isNull();
4857}
4858
4859/// mergeTransparentUnionType - if T is a transparent union type and a member
4860/// of T is compatible with SubType, return the merged type, else return
4861/// QualType()
4862QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
4863                                               bool OfBlockPointer,
4864                                               bool Unqualified) {
4865  if (const RecordType *UT = T->getAsUnionType()) {
4866    RecordDecl *UD = UT->getDecl();
4867    if (UD->hasAttr<TransparentUnionAttr>()) {
4868      for (RecordDecl::field_iterator it = UD->field_begin(),
4869           itend = UD->field_end(); it != itend; ++it) {
4870        QualType ET = it->getType().getUnqualifiedType();
4871        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
4872        if (!MT.isNull())
4873          return MT;
4874      }
4875    }
4876  }
4877
4878  return QualType();
4879}
4880
4881/// mergeFunctionArgumentTypes - merge two types which appear as function
4882/// argument types
4883QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
4884                                                bool OfBlockPointer,
4885                                                bool Unqualified) {
4886  // GNU extension: two types are compatible if they appear as a function
4887  // argument, one of the types is a transparent union type and the other
4888  // type is compatible with a union member
4889  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
4890                                              Unqualified);
4891  if (!lmerge.isNull())
4892    return lmerge;
4893
4894  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
4895                                              Unqualified);
4896  if (!rmerge.isNull())
4897    return rmerge;
4898
4899  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
4900}
4901
4902QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
4903                                        bool OfBlockPointer,
4904                                        bool Unqualified) {
4905  const FunctionType *lbase = lhs->getAs<FunctionType>();
4906  const FunctionType *rbase = rhs->getAs<FunctionType>();
4907  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4908  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4909  bool allLTypes = true;
4910  bool allRTypes = true;
4911
4912  // Check return type
4913  QualType retType;
4914  if (OfBlockPointer)
4915    retType = mergeTypes(rbase->getResultType(), lbase->getResultType(), true,
4916                         Unqualified);
4917  else
4918    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
4919                         Unqualified);
4920  if (retType.isNull()) return QualType();
4921
4922  if (Unqualified)
4923    retType = retType.getUnqualifiedType();
4924
4925  CanQualType LRetType = getCanonicalType(lbase->getResultType());
4926  CanQualType RRetType = getCanonicalType(rbase->getResultType());
4927  if (Unqualified) {
4928    LRetType = LRetType.getUnqualifiedType();
4929    RRetType = RRetType.getUnqualifiedType();
4930  }
4931
4932  if (getCanonicalType(retType) != LRetType)
4933    allLTypes = false;
4934  if (getCanonicalType(retType) != RRetType)
4935    allRTypes = false;
4936
4937  // FIXME: double check this
4938  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
4939  //                           rbase->getRegParmAttr() != 0 &&
4940  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
4941  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
4942  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
4943
4944  // Compatible functions must have compatible calling conventions
4945  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
4946    return QualType();
4947
4948  // Regparm is part of the calling convention.
4949  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
4950    return QualType();
4951
4952  // It's noreturn if either type is.
4953  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
4954  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
4955  if (NoReturn != lbaseInfo.getNoReturn())
4956    allLTypes = false;
4957  if (NoReturn != rbaseInfo.getNoReturn())
4958    allRTypes = false;
4959
4960  FunctionType::ExtInfo einfo(NoReturn,
4961                              lbaseInfo.getRegParm(),
4962                              lbaseInfo.getCC());
4963
4964  if (lproto && rproto) { // two C99 style function prototypes
4965    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4966           "C++ shouldn't be here");
4967    unsigned lproto_nargs = lproto->getNumArgs();
4968    unsigned rproto_nargs = rproto->getNumArgs();
4969
4970    // Compatible functions must have the same number of arguments
4971    if (lproto_nargs != rproto_nargs)
4972      return QualType();
4973
4974    // Variadic and non-variadic functions aren't compatible
4975    if (lproto->isVariadic() != rproto->isVariadic())
4976      return QualType();
4977
4978    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4979      return QualType();
4980
4981    // Check argument compatibility
4982    llvm::SmallVector<QualType, 10> types;
4983    for (unsigned i = 0; i < lproto_nargs; i++) {
4984      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4985      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4986      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
4987                                                    OfBlockPointer,
4988                                                    Unqualified);
4989      if (argtype.isNull()) return QualType();
4990
4991      if (Unqualified)
4992        argtype = argtype.getUnqualifiedType();
4993
4994      types.push_back(argtype);
4995      if (Unqualified) {
4996        largtype = largtype.getUnqualifiedType();
4997        rargtype = rargtype.getUnqualifiedType();
4998      }
4999
5000      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5001        allLTypes = false;
5002      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5003        allRTypes = false;
5004    }
5005    if (allLTypes) return lhs;
5006    if (allRTypes) return rhs;
5007
5008    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5009    EPI.ExtInfo = einfo;
5010    return getFunctionType(retType, types.begin(), types.size(), EPI);
5011  }
5012
5013  if (lproto) allRTypes = false;
5014  if (rproto) allLTypes = false;
5015
5016  const FunctionProtoType *proto = lproto ? lproto : rproto;
5017  if (proto) {
5018    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5019    if (proto->isVariadic()) return QualType();
5020    // Check that the types are compatible with the types that
5021    // would result from default argument promotions (C99 6.7.5.3p15).
5022    // The only types actually affected are promotable integer
5023    // types and floats, which would be passed as a different
5024    // type depending on whether the prototype is visible.
5025    unsigned proto_nargs = proto->getNumArgs();
5026    for (unsigned i = 0; i < proto_nargs; ++i) {
5027      QualType argTy = proto->getArgType(i);
5028
5029      // Look at the promotion type of enum types, since that is the type used
5030      // to pass enum values.
5031      if (const EnumType *Enum = argTy->getAs<EnumType>())
5032        argTy = Enum->getDecl()->getPromotionType();
5033
5034      if (argTy->isPromotableIntegerType() ||
5035          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5036        return QualType();
5037    }
5038
5039    if (allLTypes) return lhs;
5040    if (allRTypes) return rhs;
5041
5042    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5043    EPI.ExtInfo = einfo;
5044    return getFunctionType(retType, proto->arg_type_begin(),
5045                           proto->getNumArgs(), EPI);
5046  }
5047
5048  if (allLTypes) return lhs;
5049  if (allRTypes) return rhs;
5050  return getFunctionNoProtoType(retType, einfo);
5051}
5052
5053QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5054                                bool OfBlockPointer,
5055                                bool Unqualified) {
5056  // C++ [expr]: If an expression initially has the type "reference to T", the
5057  // type is adjusted to "T" prior to any further analysis, the expression
5058  // designates the object or function denoted by the reference, and the
5059  // expression is an lvalue unless the reference is an rvalue reference and
5060  // the expression is a function call (possibly inside parentheses).
5061  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5062  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5063
5064  if (Unqualified) {
5065    LHS = LHS.getUnqualifiedType();
5066    RHS = RHS.getUnqualifiedType();
5067  }
5068
5069  QualType LHSCan = getCanonicalType(LHS),
5070           RHSCan = getCanonicalType(RHS);
5071
5072  // If two types are identical, they are compatible.
5073  if (LHSCan == RHSCan)
5074    return LHS;
5075
5076  // If the qualifiers are different, the types aren't compatible... mostly.
5077  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5078  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5079  if (LQuals != RQuals) {
5080    // If any of these qualifiers are different, we have a type
5081    // mismatch.
5082    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5083        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5084      return QualType();
5085
5086    // Exactly one GC qualifier difference is allowed: __strong is
5087    // okay if the other type has no GC qualifier but is an Objective
5088    // C object pointer (i.e. implicitly strong by default).  We fix
5089    // this by pretending that the unqualified type was actually
5090    // qualified __strong.
5091    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5092    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5093    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5094
5095    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5096      return QualType();
5097
5098    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5099      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5100    }
5101    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5102      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5103    }
5104    return QualType();
5105  }
5106
5107  // Okay, qualifiers are equal.
5108
5109  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5110  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5111
5112  // We want to consider the two function types to be the same for these
5113  // comparisons, just force one to the other.
5114  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5115  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5116
5117  // Same as above for arrays
5118  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5119    LHSClass = Type::ConstantArray;
5120  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5121    RHSClass = Type::ConstantArray;
5122
5123  // ObjCInterfaces are just specialized ObjCObjects.
5124  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5125  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5126
5127  // Canonicalize ExtVector -> Vector.
5128  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5129  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5130
5131  // If the canonical type classes don't match.
5132  if (LHSClass != RHSClass) {
5133    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5134    // a signed integer type, or an unsigned integer type.
5135    // Compatibility is based on the underlying type, not the promotion
5136    // type.
5137    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5138      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5139        return RHS;
5140    }
5141    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5142      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5143        return LHS;
5144    }
5145
5146    return QualType();
5147  }
5148
5149  // The canonical type classes match.
5150  switch (LHSClass) {
5151#define TYPE(Class, Base)
5152#define ABSTRACT_TYPE(Class, Base)
5153#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5154#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5155#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5156#include "clang/AST/TypeNodes.def"
5157    assert(false && "Non-canonical and dependent types shouldn't get here");
5158    return QualType();
5159
5160  case Type::LValueReference:
5161  case Type::RValueReference:
5162  case Type::MemberPointer:
5163    assert(false && "C++ should never be in mergeTypes");
5164    return QualType();
5165
5166  case Type::ObjCInterface:
5167  case Type::IncompleteArray:
5168  case Type::VariableArray:
5169  case Type::FunctionProto:
5170  case Type::ExtVector:
5171    assert(false && "Types are eliminated above");
5172    return QualType();
5173
5174  case Type::Pointer:
5175  {
5176    // Merge two pointer types, while trying to preserve typedef info
5177    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5178    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5179    if (Unqualified) {
5180      LHSPointee = LHSPointee.getUnqualifiedType();
5181      RHSPointee = RHSPointee.getUnqualifiedType();
5182    }
5183    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5184                                     Unqualified);
5185    if (ResultType.isNull()) return QualType();
5186    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5187      return LHS;
5188    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5189      return RHS;
5190    return getPointerType(ResultType);
5191  }
5192  case Type::BlockPointer:
5193  {
5194    // Merge two block pointer types, while trying to preserve typedef info
5195    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5196    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5197    if (Unqualified) {
5198      LHSPointee = LHSPointee.getUnqualifiedType();
5199      RHSPointee = RHSPointee.getUnqualifiedType();
5200    }
5201    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5202                                     Unqualified);
5203    if (ResultType.isNull()) return QualType();
5204    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5205      return LHS;
5206    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5207      return RHS;
5208    return getBlockPointerType(ResultType);
5209  }
5210  case Type::ConstantArray:
5211  {
5212    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5213    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5214    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5215      return QualType();
5216
5217    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5218    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5219    if (Unqualified) {
5220      LHSElem = LHSElem.getUnqualifiedType();
5221      RHSElem = RHSElem.getUnqualifiedType();
5222    }
5223
5224    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5225    if (ResultType.isNull()) return QualType();
5226    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5227      return LHS;
5228    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5229      return RHS;
5230    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5231                                          ArrayType::ArraySizeModifier(), 0);
5232    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5233                                          ArrayType::ArraySizeModifier(), 0);
5234    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5235    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5236    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5237      return LHS;
5238    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5239      return RHS;
5240    if (LVAT) {
5241      // FIXME: This isn't correct! But tricky to implement because
5242      // the array's size has to be the size of LHS, but the type
5243      // has to be different.
5244      return LHS;
5245    }
5246    if (RVAT) {
5247      // FIXME: This isn't correct! But tricky to implement because
5248      // the array's size has to be the size of RHS, but the type
5249      // has to be different.
5250      return RHS;
5251    }
5252    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5253    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5254    return getIncompleteArrayType(ResultType,
5255                                  ArrayType::ArraySizeModifier(), 0);
5256  }
5257  case Type::FunctionNoProto:
5258    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5259  case Type::Record:
5260  case Type::Enum:
5261    return QualType();
5262  case Type::Builtin:
5263    // Only exactly equal builtin types are compatible, which is tested above.
5264    return QualType();
5265  case Type::Complex:
5266    // Distinct complex types are incompatible.
5267    return QualType();
5268  case Type::Vector:
5269    // FIXME: The merged type should be an ExtVector!
5270    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5271                             RHSCan->getAs<VectorType>()))
5272      return LHS;
5273    return QualType();
5274  case Type::ObjCObject: {
5275    // Check if the types are assignment compatible.
5276    // FIXME: This should be type compatibility, e.g. whether
5277    // "LHS x; RHS x;" at global scope is legal.
5278    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5279    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5280    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5281      return LHS;
5282
5283    return QualType();
5284  }
5285  case Type::ObjCObjectPointer: {
5286    if (OfBlockPointer) {
5287      if (canAssignObjCInterfacesInBlockPointer(
5288                                          LHS->getAs<ObjCObjectPointerType>(),
5289                                          RHS->getAs<ObjCObjectPointerType>()))
5290      return LHS;
5291      return QualType();
5292    }
5293    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5294                                RHS->getAs<ObjCObjectPointerType>()))
5295      return LHS;
5296
5297    return QualType();
5298    }
5299  }
5300
5301  return QualType();
5302}
5303
5304/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5305/// 'RHS' attributes and returns the merged version; including for function
5306/// return types.
5307QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5308  QualType LHSCan = getCanonicalType(LHS),
5309  RHSCan = getCanonicalType(RHS);
5310  // If two types are identical, they are compatible.
5311  if (LHSCan == RHSCan)
5312    return LHS;
5313  if (RHSCan->isFunctionType()) {
5314    if (!LHSCan->isFunctionType())
5315      return QualType();
5316    QualType OldReturnType =
5317      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5318    QualType NewReturnType =
5319      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5320    QualType ResReturnType =
5321      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5322    if (ResReturnType.isNull())
5323      return QualType();
5324    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5325      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5326      // In either case, use OldReturnType to build the new function type.
5327      const FunctionType *F = LHS->getAs<FunctionType>();
5328      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5329        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5330        EPI.ExtInfo = getFunctionExtInfo(LHS);
5331        QualType ResultType
5332          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5333                            FPT->getNumArgs(), EPI);
5334        return ResultType;
5335      }
5336    }
5337    return QualType();
5338  }
5339
5340  // If the qualifiers are different, the types can still be merged.
5341  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5342  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5343  if (LQuals != RQuals) {
5344    // If any of these qualifiers are different, we have a type mismatch.
5345    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5346        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5347      return QualType();
5348
5349    // Exactly one GC qualifier difference is allowed: __strong is
5350    // okay if the other type has no GC qualifier but is an Objective
5351    // C object pointer (i.e. implicitly strong by default).  We fix
5352    // this by pretending that the unqualified type was actually
5353    // qualified __strong.
5354    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5355    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5356    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5357
5358    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5359      return QualType();
5360
5361    if (GC_L == Qualifiers::Strong)
5362      return LHS;
5363    if (GC_R == Qualifiers::Strong)
5364      return RHS;
5365    return QualType();
5366  }
5367
5368  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5369    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5370    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5371    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5372    if (ResQT == LHSBaseQT)
5373      return LHS;
5374    if (ResQT == RHSBaseQT)
5375      return RHS;
5376  }
5377  return QualType();
5378}
5379
5380//===----------------------------------------------------------------------===//
5381//                         Integer Predicates
5382//===----------------------------------------------------------------------===//
5383
5384unsigned ASTContext::getIntWidth(QualType T) const {
5385  if (EnumType *ET = dyn_cast<EnumType>(T))
5386    T = ET->getDecl()->getIntegerType();
5387  if (T->isBooleanType())
5388    return 1;
5389  // For builtin types, just use the standard type sizing method
5390  return (unsigned)getTypeSize(T);
5391}
5392
5393QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5394  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5395
5396  // Turn <4 x signed int> -> <4 x unsigned int>
5397  if (const VectorType *VTy = T->getAs<VectorType>())
5398    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5399                         VTy->getNumElements(), VTy->getVectorKind());
5400
5401  // For enums, we return the unsigned version of the base type.
5402  if (const EnumType *ETy = T->getAs<EnumType>())
5403    T = ETy->getDecl()->getIntegerType();
5404
5405  const BuiltinType *BTy = T->getAs<BuiltinType>();
5406  assert(BTy && "Unexpected signed integer type");
5407  switch (BTy->getKind()) {
5408  case BuiltinType::Char_S:
5409  case BuiltinType::SChar:
5410    return UnsignedCharTy;
5411  case BuiltinType::Short:
5412    return UnsignedShortTy;
5413  case BuiltinType::Int:
5414    return UnsignedIntTy;
5415  case BuiltinType::Long:
5416    return UnsignedLongTy;
5417  case BuiltinType::LongLong:
5418    return UnsignedLongLongTy;
5419  case BuiltinType::Int128:
5420    return UnsignedInt128Ty;
5421  default:
5422    assert(0 && "Unexpected signed integer type");
5423    return QualType();
5424  }
5425}
5426
5427ExternalASTSource::~ExternalASTSource() { }
5428
5429void ExternalASTSource::PrintStats() { }
5430
5431ASTMutationListener::~ASTMutationListener() { }
5432
5433
5434//===----------------------------------------------------------------------===//
5435//                          Builtin Type Computation
5436//===----------------------------------------------------------------------===//
5437
5438/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5439/// pointer over the consumed characters.  This returns the resultant type.  If
5440/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
5441/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
5442/// a vector of "i*".
5443///
5444/// RequiresICE is filled in on return to indicate whether the value is required
5445/// to be an Integer Constant Expression.
5446static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
5447                                  ASTContext::GetBuiltinTypeError &Error,
5448                                  bool &RequiresICE,
5449                                  bool AllowTypeModifiers) {
5450  // Modifiers.
5451  int HowLong = 0;
5452  bool Signed = false, Unsigned = false;
5453  RequiresICE = false;
5454
5455  // Read the prefixed modifiers first.
5456  bool Done = false;
5457  while (!Done) {
5458    switch (*Str++) {
5459    default: Done = true; --Str; break;
5460    case 'I':
5461      RequiresICE = true;
5462      break;
5463    case 'S':
5464      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5465      assert(!Signed && "Can't use 'S' modifier multiple times!");
5466      Signed = true;
5467      break;
5468    case 'U':
5469      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5470      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5471      Unsigned = true;
5472      break;
5473    case 'L':
5474      assert(HowLong <= 2 && "Can't have LLLL modifier");
5475      ++HowLong;
5476      break;
5477    }
5478  }
5479
5480  QualType Type;
5481
5482  // Read the base type.
5483  switch (*Str++) {
5484  default: assert(0 && "Unknown builtin type letter!");
5485  case 'v':
5486    assert(HowLong == 0 && !Signed && !Unsigned &&
5487           "Bad modifiers used with 'v'!");
5488    Type = Context.VoidTy;
5489    break;
5490  case 'f':
5491    assert(HowLong == 0 && !Signed && !Unsigned &&
5492           "Bad modifiers used with 'f'!");
5493    Type = Context.FloatTy;
5494    break;
5495  case 'd':
5496    assert(HowLong < 2 && !Signed && !Unsigned &&
5497           "Bad modifiers used with 'd'!");
5498    if (HowLong)
5499      Type = Context.LongDoubleTy;
5500    else
5501      Type = Context.DoubleTy;
5502    break;
5503  case 's':
5504    assert(HowLong == 0 && "Bad modifiers used with 's'!");
5505    if (Unsigned)
5506      Type = Context.UnsignedShortTy;
5507    else
5508      Type = Context.ShortTy;
5509    break;
5510  case 'i':
5511    if (HowLong == 3)
5512      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
5513    else if (HowLong == 2)
5514      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
5515    else if (HowLong == 1)
5516      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
5517    else
5518      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
5519    break;
5520  case 'c':
5521    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
5522    if (Signed)
5523      Type = Context.SignedCharTy;
5524    else if (Unsigned)
5525      Type = Context.UnsignedCharTy;
5526    else
5527      Type = Context.CharTy;
5528    break;
5529  case 'b': // boolean
5530    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
5531    Type = Context.BoolTy;
5532    break;
5533  case 'z':  // size_t.
5534    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
5535    Type = Context.getSizeType();
5536    break;
5537  case 'F':
5538    Type = Context.getCFConstantStringType();
5539    break;
5540  case 'G':
5541    Type = Context.getObjCIdType();
5542    break;
5543  case 'H':
5544    Type = Context.getObjCSelType();
5545    break;
5546  case 'a':
5547    Type = Context.getBuiltinVaListType();
5548    assert(!Type.isNull() && "builtin va list type not initialized!");
5549    break;
5550  case 'A':
5551    // This is a "reference" to a va_list; however, what exactly
5552    // this means depends on how va_list is defined. There are two
5553    // different kinds of va_list: ones passed by value, and ones
5554    // passed by reference.  An example of a by-value va_list is
5555    // x86, where va_list is a char*. An example of by-ref va_list
5556    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
5557    // we want this argument to be a char*&; for x86-64, we want
5558    // it to be a __va_list_tag*.
5559    Type = Context.getBuiltinVaListType();
5560    assert(!Type.isNull() && "builtin va list type not initialized!");
5561    if (Type->isArrayType())
5562      Type = Context.getArrayDecayedType(Type);
5563    else
5564      Type = Context.getLValueReferenceType(Type);
5565    break;
5566  case 'V': {
5567    char *End;
5568    unsigned NumElements = strtoul(Str, &End, 10);
5569    assert(End != Str && "Missing vector size");
5570    Str = End;
5571
5572    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
5573                                             RequiresICE, false);
5574    assert(!RequiresICE && "Can't require vector ICE");
5575
5576    // TODO: No way to make AltiVec vectors in builtins yet.
5577    Type = Context.getVectorType(ElementType, NumElements,
5578                                 VectorType::GenericVector);
5579    break;
5580  }
5581  case 'X': {
5582    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
5583                                             false);
5584    assert(!RequiresICE && "Can't require complex ICE");
5585    Type = Context.getComplexType(ElementType);
5586    break;
5587  }
5588  case 'P':
5589    Type = Context.getFILEType();
5590    if (Type.isNull()) {
5591      Error = ASTContext::GE_Missing_stdio;
5592      return QualType();
5593    }
5594    break;
5595  case 'J':
5596    if (Signed)
5597      Type = Context.getsigjmp_bufType();
5598    else
5599      Type = Context.getjmp_bufType();
5600
5601    if (Type.isNull()) {
5602      Error = ASTContext::GE_Missing_setjmp;
5603      return QualType();
5604    }
5605    break;
5606  }
5607
5608  // If there are modifiers and if we're allowed to parse them, go for it.
5609  Done = !AllowTypeModifiers;
5610  while (!Done) {
5611    switch (char c = *Str++) {
5612    default: Done = true; --Str; break;
5613    case '*':
5614    case '&': {
5615      // Both pointers and references can have their pointee types
5616      // qualified with an address space.
5617      char *End;
5618      unsigned AddrSpace = strtoul(Str, &End, 10);
5619      if (End != Str && AddrSpace != 0) {
5620        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5621        Str = End;
5622      }
5623      if (c == '*')
5624        Type = Context.getPointerType(Type);
5625      else
5626        Type = Context.getLValueReferenceType(Type);
5627      break;
5628    }
5629    // FIXME: There's no way to have a built-in with an rvalue ref arg.
5630    case 'C':
5631      Type = Type.withConst();
5632      break;
5633    case 'D':
5634      Type = Context.getVolatileType(Type);
5635      break;
5636    }
5637  }
5638
5639  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
5640         "Integer constant 'I' type must be an integer");
5641
5642  return Type;
5643}
5644
5645/// GetBuiltinType - Return the type for the specified builtin.
5646QualType ASTContext::GetBuiltinType(unsigned Id,
5647                                    GetBuiltinTypeError &Error,
5648                                    unsigned *IntegerConstantArgs) const {
5649  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
5650
5651  llvm::SmallVector<QualType, 8> ArgTypes;
5652
5653  bool RequiresICE = false;
5654  Error = GE_None;
5655  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
5656                                       RequiresICE, true);
5657  if (Error != GE_None)
5658    return QualType();
5659
5660  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
5661
5662  while (TypeStr[0] && TypeStr[0] != '.') {
5663    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
5664    if (Error != GE_None)
5665      return QualType();
5666
5667    // If this argument is required to be an IntegerConstantExpression and the
5668    // caller cares, fill in the bitmask we return.
5669    if (RequiresICE && IntegerConstantArgs)
5670      *IntegerConstantArgs |= 1 << ArgTypes.size();
5671
5672    // Do array -> pointer decay.  The builtin should use the decayed type.
5673    if (Ty->isArrayType())
5674      Ty = getArrayDecayedType(Ty);
5675
5676    ArgTypes.push_back(Ty);
5677  }
5678
5679  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5680         "'.' should only occur at end of builtin type list!");
5681
5682  FunctionType::ExtInfo EI;
5683  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
5684
5685  bool Variadic = (TypeStr[0] == '.');
5686
5687  // We really shouldn't be making a no-proto type here, especially in C++.
5688  if (ArgTypes.empty() && Variadic)
5689    return getFunctionNoProtoType(ResType, EI);
5690
5691  FunctionProtoType::ExtProtoInfo EPI;
5692  EPI.ExtInfo = EI;
5693  EPI.Variadic = Variadic;
5694
5695  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
5696}
5697
5698GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
5699  GVALinkage External = GVA_StrongExternal;
5700
5701  Linkage L = FD->getLinkage();
5702  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5703      FD->getType()->getLinkage() == UniqueExternalLinkage)
5704    L = UniqueExternalLinkage;
5705
5706  switch (L) {
5707  case NoLinkage:
5708  case InternalLinkage:
5709  case UniqueExternalLinkage:
5710    return GVA_Internal;
5711
5712  case ExternalLinkage:
5713    switch (FD->getTemplateSpecializationKind()) {
5714    case TSK_Undeclared:
5715    case TSK_ExplicitSpecialization:
5716      External = GVA_StrongExternal;
5717      break;
5718
5719    case TSK_ExplicitInstantiationDefinition:
5720      return GVA_ExplicitTemplateInstantiation;
5721
5722    case TSK_ExplicitInstantiationDeclaration:
5723    case TSK_ImplicitInstantiation:
5724      External = GVA_TemplateInstantiation;
5725      break;
5726    }
5727  }
5728
5729  if (!FD->isInlined())
5730    return External;
5731
5732  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
5733    // GNU or C99 inline semantics. Determine whether this symbol should be
5734    // externally visible.
5735    if (FD->isInlineDefinitionExternallyVisible())
5736      return External;
5737
5738    // C99 inline semantics, where the symbol is not externally visible.
5739    return GVA_C99Inline;
5740  }
5741
5742  // C++0x [temp.explicit]p9:
5743  //   [ Note: The intent is that an inline function that is the subject of
5744  //   an explicit instantiation declaration will still be implicitly
5745  //   instantiated when used so that the body can be considered for
5746  //   inlining, but that no out-of-line copy of the inline function would be
5747  //   generated in the translation unit. -- end note ]
5748  if (FD->getTemplateSpecializationKind()
5749                                       == TSK_ExplicitInstantiationDeclaration)
5750    return GVA_C99Inline;
5751
5752  return GVA_CXXInline;
5753}
5754
5755GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
5756  // If this is a static data member, compute the kind of template
5757  // specialization. Otherwise, this variable is not part of a
5758  // template.
5759  TemplateSpecializationKind TSK = TSK_Undeclared;
5760  if (VD->isStaticDataMember())
5761    TSK = VD->getTemplateSpecializationKind();
5762
5763  Linkage L = VD->getLinkage();
5764  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5765      VD->getType()->getLinkage() == UniqueExternalLinkage)
5766    L = UniqueExternalLinkage;
5767
5768  switch (L) {
5769  case NoLinkage:
5770  case InternalLinkage:
5771  case UniqueExternalLinkage:
5772    return GVA_Internal;
5773
5774  case ExternalLinkage:
5775    switch (TSK) {
5776    case TSK_Undeclared:
5777    case TSK_ExplicitSpecialization:
5778      return GVA_StrongExternal;
5779
5780    case TSK_ExplicitInstantiationDeclaration:
5781      llvm_unreachable("Variable should not be instantiated");
5782      // Fall through to treat this like any other instantiation.
5783
5784    case TSK_ExplicitInstantiationDefinition:
5785      return GVA_ExplicitTemplateInstantiation;
5786
5787    case TSK_ImplicitInstantiation:
5788      return GVA_TemplateInstantiation;
5789    }
5790  }
5791
5792  return GVA_StrongExternal;
5793}
5794
5795bool ASTContext::DeclMustBeEmitted(const Decl *D) {
5796  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
5797    if (!VD->isFileVarDecl())
5798      return false;
5799  } else if (!isa<FunctionDecl>(D))
5800    return false;
5801
5802  // Weak references don't produce any output by themselves.
5803  if (D->hasAttr<WeakRefAttr>())
5804    return false;
5805
5806  // Aliases and used decls are required.
5807  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
5808    return true;
5809
5810  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5811    // Forward declarations aren't required.
5812    if (!FD->isThisDeclarationADefinition())
5813      return false;
5814
5815    // Constructors and destructors are required.
5816    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
5817      return true;
5818
5819    // The key function for a class is required.
5820    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5821      const CXXRecordDecl *RD = MD->getParent();
5822      if (MD->isOutOfLine() && RD->isDynamicClass()) {
5823        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
5824        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
5825          return true;
5826      }
5827    }
5828
5829    GVALinkage Linkage = GetGVALinkageForFunction(FD);
5830
5831    // static, static inline, always_inline, and extern inline functions can
5832    // always be deferred.  Normal inline functions can be deferred in C99/C++.
5833    // Implicit template instantiations can also be deferred in C++.
5834    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
5835        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
5836      return false;
5837    return true;
5838  }
5839
5840  const VarDecl *VD = cast<VarDecl>(D);
5841  assert(VD->isFileVarDecl() && "Expected file scoped var");
5842
5843  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
5844    return false;
5845
5846  // Structs that have non-trivial constructors or destructors are required.
5847
5848  // FIXME: Handle references.
5849  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
5850    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5851      if (RD->hasDefinition() &&
5852          (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()))
5853        return true;
5854    }
5855  }
5856
5857  GVALinkage L = GetGVALinkageForVariable(VD);
5858  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
5859    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
5860      return false;
5861  }
5862
5863  return true;
5864}
5865
5866CallingConv ASTContext::getDefaultMethodCallConv() {
5867  // Pass through to the C++ ABI object
5868  return ABI->getDefaultMethodCallConv();
5869}
5870
5871bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
5872  // Pass through to the C++ ABI object
5873  return ABI->isNearlyEmpty(RD);
5874}
5875
5876MangleContext *ASTContext::createMangleContext() {
5877  switch (Target.getCXXABI()) {
5878  case CXXABI_ARM:
5879  case CXXABI_Itanium:
5880    return createItaniumMangleContext(*this, getDiagnostics());
5881  case CXXABI_Microsoft:
5882    return createMicrosoftMangleContext(*this, getDiagnostics());
5883  }
5884  assert(0 && "Unsupported ABI");
5885  return 0;
5886}
5887
5888CXXABI::~CXXABI() {}
5889