ASTContext.cpp revision ce056bcaa1c97b89a4b2de2112c62d060863be2b
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "RecordLayoutBuilder.h"
31
32using namespace clang;
33
34enum FloatingRank {
35  FloatRank, DoubleRank, LongDoubleRank
36};
37
38ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
39                       const TargetInfo &t,
40                       IdentifierTable &idents, SelectorTable &sels,
41                       Builtin::Context &builtins,
42                       bool FreeMem, unsigned size_reserve) :
43  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
44  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
45  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
46  SourceMgr(SM), LangOpts(LOpts),
47  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
48  Idents(idents), Selectors(sels),
49  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
50  ObjCIdRedefinitionType = QualType();
51  ObjCClassRedefinitionType = QualType();
52  ObjCSelRedefinitionType = QualType();
53  if (size_reserve > 0) Types.reserve(size_reserve);
54  TUDecl = TranslationUnitDecl::Create(*this);
55  InitBuiltinTypes();
56}
57
58ASTContext::~ASTContext() {
59  // Release the DenseMaps associated with DeclContext objects.
60  // FIXME: Is this the ideal solution?
61  ReleaseDeclContextMaps();
62
63  if (FreeMemory) {
64    // Deallocate all the types.
65    while (!Types.empty()) {
66      Types.back()->Destroy(*this);
67      Types.pop_back();
68    }
69
70    for (llvm::FoldingSet<ExtQuals>::iterator
71         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
72      // Increment in loop to prevent using deallocated memory.
73      Deallocate(&*I++);
74    }
75  }
76
77  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
78       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
79    // Increment in loop to prevent using deallocated memory.
80    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
81    delete R;
82  }
83
84  for (llvm::DenseMap<const ObjCContainerDecl*,
85                      const ASTRecordLayout*>::iterator
86       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
87    // Increment in loop to prevent using deallocated memory.
88    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
89    delete R;
90  }
91
92  // Destroy nested-name-specifiers.
93  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
94         NNS = NestedNameSpecifiers.begin(),
95         NNSEnd = NestedNameSpecifiers.end();
96       NNS != NNSEnd; ) {
97    // Increment in loop to prevent using deallocated memory.
98    (*NNS++).Destroy(*this);
99  }
100
101  if (GlobalNestedNameSpecifier)
102    GlobalNestedNameSpecifier->Destroy(*this);
103
104  TUDecl->Destroy(*this);
105}
106
107void
108ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
109  ExternalSource.reset(Source.take());
110}
111
112void ASTContext::PrintStats() const {
113  fprintf(stderr, "*** AST Context Stats:\n");
114  fprintf(stderr, "  %d types total.\n", (int)Types.size());
115
116  unsigned counts[] = {
117#define TYPE(Name, Parent) 0,
118#define ABSTRACT_TYPE(Name, Parent)
119#include "clang/AST/TypeNodes.def"
120    0 // Extra
121  };
122
123  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
124    Type *T = Types[i];
125    counts[(unsigned)T->getTypeClass()]++;
126  }
127
128  unsigned Idx = 0;
129  unsigned TotalBytes = 0;
130#define TYPE(Name, Parent)                                              \
131  if (counts[Idx])                                                      \
132    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
133  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
134  ++Idx;
135#define ABSTRACT_TYPE(Name, Parent)
136#include "clang/AST/TypeNodes.def"
137
138  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
139
140  if (ExternalSource.get()) {
141    fprintf(stderr, "\n");
142    ExternalSource->PrintStats();
143  }
144}
145
146
147void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
148  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
149  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
150  Types.push_back(Ty);
151}
152
153void ASTContext::InitBuiltinTypes() {
154  assert(VoidTy.isNull() && "Context reinitialized?");
155
156  // C99 6.2.5p19.
157  InitBuiltinType(VoidTy,              BuiltinType::Void);
158
159  // C99 6.2.5p2.
160  InitBuiltinType(BoolTy,              BuiltinType::Bool);
161  // C99 6.2.5p3.
162  if (LangOpts.CharIsSigned)
163    InitBuiltinType(CharTy,            BuiltinType::Char_S);
164  else
165    InitBuiltinType(CharTy,            BuiltinType::Char_U);
166  // C99 6.2.5p4.
167  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
168  InitBuiltinType(ShortTy,             BuiltinType::Short);
169  InitBuiltinType(IntTy,               BuiltinType::Int);
170  InitBuiltinType(LongTy,              BuiltinType::Long);
171  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
172
173  // C99 6.2.5p6.
174  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
175  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
176  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
177  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
178  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
179
180  // C99 6.2.5p10.
181  InitBuiltinType(FloatTy,             BuiltinType::Float);
182  InitBuiltinType(DoubleTy,            BuiltinType::Double);
183  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
184
185  // GNU extension, 128-bit integers.
186  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
187  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
188
189  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
190    InitBuiltinType(WCharTy,           BuiltinType::WChar);
191  else // C99
192    WCharTy = getFromTargetType(Target.getWCharType());
193
194  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
195    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
196  else // C99
197    Char16Ty = getFromTargetType(Target.getChar16Type());
198
199  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
200    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
201  else // C99
202    Char32Ty = getFromTargetType(Target.getChar32Type());
203
204  // Placeholder type for functions.
205  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
206
207  // Placeholder type for type-dependent expressions whose type is
208  // completely unknown. No code should ever check a type against
209  // DependentTy and users should never see it; however, it is here to
210  // help diagnose failures to properly check for type-dependent
211  // expressions.
212  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
213
214  // Placeholder type for C++0x auto declarations whose real type has
215  // not yet been deduced.
216  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
217
218  // C99 6.2.5p11.
219  FloatComplexTy      = getComplexType(FloatTy);
220  DoubleComplexTy     = getComplexType(DoubleTy);
221  LongDoubleComplexTy = getComplexType(LongDoubleTy);
222
223  BuiltinVaListType = QualType();
224
225  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
226  ObjCIdTypedefType = QualType();
227  ObjCClassTypedefType = QualType();
228  ObjCSelTypedefType = QualType();
229
230  // Builtin types for 'id', 'Class', and 'SEL'.
231  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
232  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
233  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
234
235  ObjCConstantStringType = QualType();
236
237  // void * type
238  VoidPtrTy = getPointerType(VoidTy);
239
240  // nullptr type (C++0x 2.14.7)
241  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
242}
243
244MemberSpecializationInfo *
245ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
246  assert(Var->isStaticDataMember() && "Not a static data member");
247  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
248    = InstantiatedFromStaticDataMember.find(Var);
249  if (Pos == InstantiatedFromStaticDataMember.end())
250    return 0;
251
252  return Pos->second;
253}
254
255void
256ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
257                                                TemplateSpecializationKind TSK) {
258  assert(Inst->isStaticDataMember() && "Not a static data member");
259  assert(Tmpl->isStaticDataMember() && "Not a static data member");
260  assert(!InstantiatedFromStaticDataMember[Inst] &&
261         "Already noted what static data member was instantiated from");
262  InstantiatedFromStaticDataMember[Inst]
263    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
264}
265
266NamedDecl *
267ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
268  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
269    = InstantiatedFromUsingDecl.find(UUD);
270  if (Pos == InstantiatedFromUsingDecl.end())
271    return 0;
272
273  return Pos->second;
274}
275
276void
277ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
278  assert((isa<UsingDecl>(Pattern) ||
279          isa<UnresolvedUsingValueDecl>(Pattern) ||
280          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
281         "pattern decl is not a using decl");
282  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
283  InstantiatedFromUsingDecl[Inst] = Pattern;
284}
285
286UsingShadowDecl *
287ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
288  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
289    = InstantiatedFromUsingShadowDecl.find(Inst);
290  if (Pos == InstantiatedFromUsingShadowDecl.end())
291    return 0;
292
293  return Pos->second;
294}
295
296void
297ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
298                                               UsingShadowDecl *Pattern) {
299  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
300  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
301}
302
303FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
304  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
305    = InstantiatedFromUnnamedFieldDecl.find(Field);
306  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
307    return 0;
308
309  return Pos->second;
310}
311
312void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
313                                                     FieldDecl *Tmpl) {
314  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
315  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
316  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
317         "Already noted what unnamed field was instantiated from");
318
319  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
320}
321
322namespace {
323  class BeforeInTranslationUnit
324    : std::binary_function<SourceRange, SourceRange, bool> {
325    SourceManager *SourceMgr;
326
327  public:
328    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
329
330    bool operator()(SourceRange X, SourceRange Y) {
331      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
332    }
333  };
334}
335
336/// \brief Determine whether the given comment is a Doxygen-style comment.
337///
338/// \param Start the start of the comment text.
339///
340/// \param End the end of the comment text.
341///
342/// \param Member whether we want to check whether this is a member comment
343/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
344/// we only return true when we find a non-member comment.
345static bool
346isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
347                 bool Member = false) {
348  const char *BufferStart
349    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
350  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
351  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
352
353  if (End - Start < 4)
354    return false;
355
356  assert(Start[0] == '/' && "Not a comment?");
357  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
358    return false;
359  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
360    return false;
361
362  return (Start[3] == '<') == Member;
363}
364
365/// \brief Retrieve the comment associated with the given declaration, if
366/// it has one.
367const char *ASTContext::getCommentForDecl(const Decl *D) {
368  if (!D)
369    return 0;
370
371  // Check whether we have cached a comment string for this declaration
372  // already.
373  llvm::DenseMap<const Decl *, std::string>::iterator Pos
374    = DeclComments.find(D);
375  if (Pos != DeclComments.end())
376    return Pos->second.c_str();
377
378  // If we have an external AST source and have not yet loaded comments from
379  // that source, do so now.
380  if (ExternalSource && !LoadedExternalComments) {
381    std::vector<SourceRange> LoadedComments;
382    ExternalSource->ReadComments(LoadedComments);
383
384    if (!LoadedComments.empty())
385      Comments.insert(Comments.begin(), LoadedComments.begin(),
386                      LoadedComments.end());
387
388    LoadedExternalComments = true;
389  }
390
391  // If there are no comments anywhere, we won't find anything.
392  if (Comments.empty())
393    return 0;
394
395  // If the declaration doesn't map directly to a location in a file, we
396  // can't find the comment.
397  SourceLocation DeclStartLoc = D->getLocStart();
398  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
399    return 0;
400
401  // Find the comment that occurs just before this declaration.
402  std::vector<SourceRange>::iterator LastComment
403    = std::lower_bound(Comments.begin(), Comments.end(),
404                       SourceRange(DeclStartLoc),
405                       BeforeInTranslationUnit(&SourceMgr));
406
407  // Decompose the location for the start of the declaration and find the
408  // beginning of the file buffer.
409  std::pair<FileID, unsigned> DeclStartDecomp
410    = SourceMgr.getDecomposedLoc(DeclStartLoc);
411  const char *FileBufferStart
412    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
413
414  // First check whether we have a comment for a member.
415  if (LastComment != Comments.end() &&
416      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
417      isDoxygenComment(SourceMgr, *LastComment, true)) {
418    std::pair<FileID, unsigned> LastCommentEndDecomp
419      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
420    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
421        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
422          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
423                                     LastCommentEndDecomp.second)) {
424      // The Doxygen member comment comes after the declaration starts and
425      // is on the same line and in the same file as the declaration. This
426      // is the comment we want.
427      std::string &Result = DeclComments[D];
428      Result.append(FileBufferStart +
429                      SourceMgr.getFileOffset(LastComment->getBegin()),
430                    FileBufferStart + LastCommentEndDecomp.second + 1);
431      return Result.c_str();
432    }
433  }
434
435  if (LastComment == Comments.begin())
436    return 0;
437  --LastComment;
438
439  // Decompose the end of the comment.
440  std::pair<FileID, unsigned> LastCommentEndDecomp
441    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
442
443  // If the comment and the declaration aren't in the same file, then they
444  // aren't related.
445  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
446    return 0;
447
448  // Check that we actually have a Doxygen comment.
449  if (!isDoxygenComment(SourceMgr, *LastComment))
450    return 0;
451
452  // Compute the starting line for the declaration and for the end of the
453  // comment (this is expensive).
454  unsigned DeclStartLine
455    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
456  unsigned CommentEndLine
457    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
458                              LastCommentEndDecomp.second);
459
460  // If the comment does not end on the line prior to the declaration, then
461  // the comment is not associated with the declaration at all.
462  if (CommentEndLine + 1 != DeclStartLine)
463    return 0;
464
465  // We have a comment, but there may be more comments on the previous lines.
466  // Keep looking so long as the comments are still Doxygen comments and are
467  // still adjacent.
468  unsigned ExpectedLine
469    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
470  std::vector<SourceRange>::iterator FirstComment = LastComment;
471  while (FirstComment != Comments.begin()) {
472    // Look at the previous comment
473    --FirstComment;
474    std::pair<FileID, unsigned> Decomp
475      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
476
477    // If this previous comment is in a different file, we're done.
478    if (Decomp.first != DeclStartDecomp.first) {
479      ++FirstComment;
480      break;
481    }
482
483    // If this comment is not a Doxygen comment, we're done.
484    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
485      ++FirstComment;
486      break;
487    }
488
489    // If the line number is not what we expected, we're done.
490    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
491    if (Line != ExpectedLine) {
492      ++FirstComment;
493      break;
494    }
495
496    // Set the next expected line number.
497    ExpectedLine
498      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
499  }
500
501  // The iterator range [FirstComment, LastComment] contains all of the
502  // BCPL comments that, together, are associated with this declaration.
503  // Form a single comment block string for this declaration that concatenates
504  // all of these comments.
505  std::string &Result = DeclComments[D];
506  while (FirstComment != LastComment) {
507    std::pair<FileID, unsigned> DecompStart
508      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
509    std::pair<FileID, unsigned> DecompEnd
510      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
511    Result.append(FileBufferStart + DecompStart.second,
512                  FileBufferStart + DecompEnd.second + 1);
513    ++FirstComment;
514  }
515
516  // Append the last comment line.
517  Result.append(FileBufferStart +
518                  SourceMgr.getFileOffset(LastComment->getBegin()),
519                FileBufferStart + LastCommentEndDecomp.second + 1);
520  return Result.c_str();
521}
522
523//===----------------------------------------------------------------------===//
524//                         Type Sizing and Analysis
525//===----------------------------------------------------------------------===//
526
527/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
528/// scalar floating point type.
529const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
530  const BuiltinType *BT = T->getAs<BuiltinType>();
531  assert(BT && "Not a floating point type!");
532  switch (BT->getKind()) {
533  default: assert(0 && "Not a floating point type!");
534  case BuiltinType::Float:      return Target.getFloatFormat();
535  case BuiltinType::Double:     return Target.getDoubleFormat();
536  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
537  }
538}
539
540/// getDeclAlign - Return a conservative estimate of the alignment of the
541/// specified decl.  Note that bitfields do not have a valid alignment, so
542/// this method will assert on them.
543/// If @p RefAsPointee, references are treated like their underlying type
544/// (for alignof), else they're treated like pointers (for CodeGen).
545CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
546  unsigned Align = Target.getCharWidth();
547
548  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
549    Align = std::max(Align, AA->getMaxAlignment());
550
551  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
552    QualType T = VD->getType();
553    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
554      if (RefAsPointee)
555        T = RT->getPointeeType();
556      else
557        T = getPointerType(RT->getPointeeType());
558    }
559    if (!T->isIncompleteType() && !T->isFunctionType()) {
560      // Incomplete or function types default to 1.
561      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
562        T = cast<ArrayType>(T)->getElementType();
563
564      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
565    }
566  }
567
568  return CharUnits::fromQuantity(Align / Target.getCharWidth());
569}
570
571/// getTypeSize - Return the size of the specified type, in bits.  This method
572/// does not work on incomplete types.
573///
574/// FIXME: Pointers into different addr spaces could have different sizes and
575/// alignment requirements: getPointerInfo should take an AddrSpace, this
576/// should take a QualType, &c.
577std::pair<uint64_t, unsigned>
578ASTContext::getTypeInfo(const Type *T) {
579  uint64_t Width=0;
580  unsigned Align=8;
581  switch (T->getTypeClass()) {
582#define TYPE(Class, Base)
583#define ABSTRACT_TYPE(Class, Base)
584#define NON_CANONICAL_TYPE(Class, Base)
585#define DEPENDENT_TYPE(Class, Base) case Type::Class:
586#include "clang/AST/TypeNodes.def"
587    assert(false && "Should not see dependent types");
588    break;
589
590  case Type::FunctionNoProto:
591  case Type::FunctionProto:
592    // GCC extension: alignof(function) = 32 bits
593    Width = 0;
594    Align = 32;
595    break;
596
597  case Type::IncompleteArray:
598  case Type::VariableArray:
599    Width = 0;
600    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
601    break;
602
603  case Type::ConstantArray: {
604    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
605
606    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
607    Width = EltInfo.first*CAT->getSize().getZExtValue();
608    Align = EltInfo.second;
609    break;
610  }
611  case Type::ExtVector:
612  case Type::Vector: {
613    const VectorType *VT = cast<VectorType>(T);
614    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
615    Width = EltInfo.first*VT->getNumElements();
616    Align = Width;
617    // If the alignment is not a power of 2, round up to the next power of 2.
618    // This happens for non-power-of-2 length vectors.
619    if (VT->getNumElements() & (VT->getNumElements()-1)) {
620      Align = llvm::NextPowerOf2(Align);
621      Width = llvm::RoundUpToAlignment(Width, Align);
622    }
623    break;
624  }
625
626  case Type::Builtin:
627    switch (cast<BuiltinType>(T)->getKind()) {
628    default: assert(0 && "Unknown builtin type!");
629    case BuiltinType::Void:
630      // GCC extension: alignof(void) = 8 bits.
631      Width = 0;
632      Align = 8;
633      break;
634
635    case BuiltinType::Bool:
636      Width = Target.getBoolWidth();
637      Align = Target.getBoolAlign();
638      break;
639    case BuiltinType::Char_S:
640    case BuiltinType::Char_U:
641    case BuiltinType::UChar:
642    case BuiltinType::SChar:
643      Width = Target.getCharWidth();
644      Align = Target.getCharAlign();
645      break;
646    case BuiltinType::WChar:
647      Width = Target.getWCharWidth();
648      Align = Target.getWCharAlign();
649      break;
650    case BuiltinType::Char16:
651      Width = Target.getChar16Width();
652      Align = Target.getChar16Align();
653      break;
654    case BuiltinType::Char32:
655      Width = Target.getChar32Width();
656      Align = Target.getChar32Align();
657      break;
658    case BuiltinType::UShort:
659    case BuiltinType::Short:
660      Width = Target.getShortWidth();
661      Align = Target.getShortAlign();
662      break;
663    case BuiltinType::UInt:
664    case BuiltinType::Int:
665      Width = Target.getIntWidth();
666      Align = Target.getIntAlign();
667      break;
668    case BuiltinType::ULong:
669    case BuiltinType::Long:
670      Width = Target.getLongWidth();
671      Align = Target.getLongAlign();
672      break;
673    case BuiltinType::ULongLong:
674    case BuiltinType::LongLong:
675      Width = Target.getLongLongWidth();
676      Align = Target.getLongLongAlign();
677      break;
678    case BuiltinType::Int128:
679    case BuiltinType::UInt128:
680      Width = 128;
681      Align = 128; // int128_t is 128-bit aligned on all targets.
682      break;
683    case BuiltinType::Float:
684      Width = Target.getFloatWidth();
685      Align = Target.getFloatAlign();
686      break;
687    case BuiltinType::Double:
688      Width = Target.getDoubleWidth();
689      Align = Target.getDoubleAlign();
690      break;
691    case BuiltinType::LongDouble:
692      Width = Target.getLongDoubleWidth();
693      Align = Target.getLongDoubleAlign();
694      break;
695    case BuiltinType::NullPtr:
696      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
697      Align = Target.getPointerAlign(0); //   == sizeof(void*)
698      break;
699    }
700    break;
701  case Type::ObjCObjectPointer:
702    Width = Target.getPointerWidth(0);
703    Align = Target.getPointerAlign(0);
704    break;
705  case Type::BlockPointer: {
706    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
707    Width = Target.getPointerWidth(AS);
708    Align = Target.getPointerAlign(AS);
709    break;
710  }
711  case Type::LValueReference:
712  case Type::RValueReference: {
713    // alignof and sizeof should never enter this code path here, so we go
714    // the pointer route.
715    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
716    Width = Target.getPointerWidth(AS);
717    Align = Target.getPointerAlign(AS);
718    break;
719  }
720  case Type::Pointer: {
721    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
722    Width = Target.getPointerWidth(AS);
723    Align = Target.getPointerAlign(AS);
724    break;
725  }
726  case Type::MemberPointer: {
727    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
728    std::pair<uint64_t, unsigned> PtrDiffInfo =
729      getTypeInfo(getPointerDiffType());
730    Width = PtrDiffInfo.first;
731    if (Pointee->isFunctionType())
732      Width *= 2;
733    Align = PtrDiffInfo.second;
734    break;
735  }
736  case Type::Complex: {
737    // Complex types have the same alignment as their elements, but twice the
738    // size.
739    std::pair<uint64_t, unsigned> EltInfo =
740      getTypeInfo(cast<ComplexType>(T)->getElementType());
741    Width = EltInfo.first*2;
742    Align = EltInfo.second;
743    break;
744  }
745  case Type::ObjCInterface: {
746    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
747    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
748    Width = Layout.getSize();
749    Align = Layout.getAlignment();
750    break;
751  }
752  case Type::Record:
753  case Type::Enum: {
754    const TagType *TT = cast<TagType>(T);
755
756    if (TT->getDecl()->isInvalidDecl()) {
757      Width = 1;
758      Align = 1;
759      break;
760    }
761
762    if (const EnumType *ET = dyn_cast<EnumType>(TT))
763      return getTypeInfo(ET->getDecl()->getIntegerType());
764
765    const RecordType *RT = cast<RecordType>(TT);
766    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
767    Width = Layout.getSize();
768    Align = Layout.getAlignment();
769    break;
770  }
771
772  case Type::SubstTemplateTypeParm:
773    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
774                       getReplacementType().getTypePtr());
775
776  case Type::Elaborated:
777    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
778                         .getTypePtr());
779
780  case Type::Typedef: {
781    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
782    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
783      Align = std::max(Aligned->getMaxAlignment(),
784                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
785      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
786    } else
787      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
788    break;
789  }
790
791  case Type::TypeOfExpr:
792    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
793                         .getTypePtr());
794
795  case Type::TypeOf:
796    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
797
798  case Type::Decltype:
799    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
800                        .getTypePtr());
801
802  case Type::QualifiedName:
803    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
804
805  case Type::TemplateSpecialization:
806    assert(getCanonicalType(T) != T &&
807           "Cannot request the size of a dependent type");
808    // FIXME: this is likely to be wrong once we support template
809    // aliases, since a template alias could refer to a typedef that
810    // has an __aligned__ attribute on it.
811    return getTypeInfo(getCanonicalType(T));
812  }
813
814  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
815  return std::make_pair(Width, Align);
816}
817
818/// getTypeSizeInChars - Return the size of the specified type, in characters.
819/// This method does not work on incomplete types.
820CharUnits ASTContext::getTypeSizeInChars(QualType T) {
821  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
822}
823CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
824  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
825}
826
827/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
828/// characters. This method does not work on incomplete types.
829CharUnits ASTContext::getTypeAlignInChars(QualType T) {
830  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
831}
832CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
833  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
834}
835
836/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
837/// type for the current target in bits.  This can be different than the ABI
838/// alignment in cases where it is beneficial for performance to overalign
839/// a data type.
840unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
841  unsigned ABIAlign = getTypeAlign(T);
842
843  // Double and long long should be naturally aligned if possible.
844  if (const ComplexType* CT = T->getAs<ComplexType>())
845    T = CT->getElementType().getTypePtr();
846  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
847      T->isSpecificBuiltinType(BuiltinType::LongLong))
848    return std::max(ABIAlign, (unsigned)getTypeSize(T));
849
850  return ABIAlign;
851}
852
853static void CollectLocalObjCIvars(ASTContext *Ctx,
854                                  const ObjCInterfaceDecl *OI,
855                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
856  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
857       E = OI->ivar_end(); I != E; ++I) {
858    ObjCIvarDecl *IVDecl = *I;
859    if (!IVDecl->isInvalidDecl())
860      Fields.push_back(cast<FieldDecl>(IVDecl));
861  }
862}
863
864void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
865                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
866  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
867    CollectObjCIvars(SuperClass, Fields);
868  CollectLocalObjCIvars(this, OI, Fields);
869}
870
871/// ShallowCollectObjCIvars -
872/// Collect all ivars, including those synthesized, in the current class.
873///
874void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
875                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
876  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
877         E = OI->ivar_end(); I != E; ++I) {
878     Ivars.push_back(*I);
879  }
880
881  CollectNonClassIvars(OI, Ivars);
882}
883
884void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
885                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
886  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
887       E = PD->prop_end(); I != E; ++I)
888    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
889      Ivars.push_back(Ivar);
890
891  // Also look into nested protocols.
892  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
893       E = PD->protocol_end(); P != E; ++P)
894    CollectProtocolSynthesizedIvars(*P, Ivars);
895}
896
897/// CollectNonClassIvars -
898/// This routine collects all other ivars which are not declared in the class.
899/// This includes synthesized ivars and those in class's implementation.
900///
901void ASTContext::CollectNonClassIvars(const ObjCInterfaceDecl *OI,
902                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
903  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
904       E = OI->prop_end(); I != E; ++I) {
905    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
906      Ivars.push_back(Ivar);
907  }
908  // Also look into interface's protocol list for properties declared
909  // in the protocol and whose ivars are synthesized.
910  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
911       PE = OI->protocol_end(); P != PE; ++P) {
912    ObjCProtocolDecl *PD = (*P);
913    CollectProtocolSynthesizedIvars(PD, Ivars);
914  }
915
916  // Also add any ivar defined in this class's implementation
917  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) {
918    for (ObjCImplementationDecl::ivar_iterator I = ImplDecl->ivar_begin(),
919         E = ImplDecl->ivar_end(); I != E; ++I)
920      Ivars.push_back(*I);
921  }
922}
923
924/// CollectInheritedProtocols - Collect all protocols in current class and
925/// those inherited by it.
926void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
927                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
928  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
929    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
930         PE = OI->protocol_end(); P != PE; ++P) {
931      ObjCProtocolDecl *Proto = (*P);
932      Protocols.insert(Proto);
933      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
934           PE = Proto->protocol_end(); P != PE; ++P)
935        CollectInheritedProtocols(*P, Protocols);
936      }
937
938    // Categories of this Interface.
939    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
940         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
941      CollectInheritedProtocols(CDeclChain, Protocols);
942    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
943      while (SD) {
944        CollectInheritedProtocols(SD, Protocols);
945        SD = SD->getSuperClass();
946      }
947    return;
948  }
949  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
950    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
951         PE = OC->protocol_end(); P != PE; ++P) {
952      ObjCProtocolDecl *Proto = (*P);
953      Protocols.insert(Proto);
954      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
955           PE = Proto->protocol_end(); P != PE; ++P)
956        CollectInheritedProtocols(*P, Protocols);
957    }
958    return;
959  }
960  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
961    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
962         PE = OP->protocol_end(); P != PE; ++P) {
963      ObjCProtocolDecl *Proto = (*P);
964      Protocols.insert(Proto);
965      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
966           PE = Proto->protocol_end(); P != PE; ++P)
967        CollectInheritedProtocols(*P, Protocols);
968    }
969    return;
970  }
971}
972
973unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
974  unsigned count = 0;
975  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
976       E = PD->prop_end(); I != E; ++I)
977    if ((*I)->getPropertyIvarDecl())
978      ++count;
979
980  // Also look into nested protocols.
981  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
982       E = PD->protocol_end(); P != E; ++P)
983    count += CountProtocolSynthesizedIvars(*P);
984  return count;
985}
986
987unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
988  unsigned count = 0;
989  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
990       E = OI->prop_end(); I != E; ++I) {
991    if ((*I)->getPropertyIvarDecl())
992      ++count;
993  }
994  // Also look into interface's protocol list for properties declared
995  // in the protocol and whose ivars are synthesized.
996  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
997       PE = OI->protocol_end(); P != PE; ++P) {
998    ObjCProtocolDecl *PD = (*P);
999    count += CountProtocolSynthesizedIvars(PD);
1000  }
1001  return count;
1002}
1003
1004/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1005ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1006  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1007    I = ObjCImpls.find(D);
1008  if (I != ObjCImpls.end())
1009    return cast<ObjCImplementationDecl>(I->second);
1010  return 0;
1011}
1012/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1013ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1014  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1015    I = ObjCImpls.find(D);
1016  if (I != ObjCImpls.end())
1017    return cast<ObjCCategoryImplDecl>(I->second);
1018  return 0;
1019}
1020
1021/// \brief Set the implementation of ObjCInterfaceDecl.
1022void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1023                           ObjCImplementationDecl *ImplD) {
1024  assert(IFaceD && ImplD && "Passed null params");
1025  ObjCImpls[IFaceD] = ImplD;
1026}
1027/// \brief Set the implementation of ObjCCategoryDecl.
1028void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1029                           ObjCCategoryImplDecl *ImplD) {
1030  assert(CatD && ImplD && "Passed null params");
1031  ObjCImpls[CatD] = ImplD;
1032}
1033
1034/// \brief Allocate an uninitialized TypeSourceInfo.
1035///
1036/// The caller should initialize the memory held by TypeSourceInfo using
1037/// the TypeLoc wrappers.
1038///
1039/// \param T the type that will be the basis for type source info. This type
1040/// should refer to how the declarator was written in source code, not to
1041/// what type semantic analysis resolved the declarator to.
1042TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1043                                                 unsigned DataSize) {
1044  if (!DataSize)
1045    DataSize = TypeLoc::getFullDataSizeForType(T);
1046  else
1047    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1048           "incorrect data size provided to CreateTypeSourceInfo!");
1049
1050  TypeSourceInfo *TInfo =
1051    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1052  new (TInfo) TypeSourceInfo(T);
1053  return TInfo;
1054}
1055
1056TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1057                                                     SourceLocation L) {
1058  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1059  DI->getTypeLoc().initialize(L);
1060  return DI;
1061}
1062
1063/// getInterfaceLayoutImpl - Get or compute information about the
1064/// layout of the given interface.
1065///
1066/// \param Impl - If given, also include the layout of the interface's
1067/// implementation. This may differ by including synthesized ivars.
1068const ASTRecordLayout &
1069ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
1070                          const ObjCImplementationDecl *Impl) {
1071  assert(!D->isForwardDecl() && "Invalid interface decl!");
1072
1073  // Look up this layout, if already laid out, return what we have.
1074  ObjCContainerDecl *Key =
1075    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
1076  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
1077    return *Entry;
1078
1079  // Add in synthesized ivar count if laying out an implementation.
1080  if (Impl) {
1081    unsigned SynthCount = CountSynthesizedIvars(D);
1082    // If there aren't any sythesized ivars then reuse the interface
1083    // entry. Note we can't cache this because we simply free all
1084    // entries later; however we shouldn't look up implementations
1085    // frequently.
1086    if (SynthCount == 0)
1087      return getObjCLayout(D, 0);
1088  }
1089
1090  const ASTRecordLayout *NewEntry =
1091    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
1092  ObjCLayouts[Key] = NewEntry;
1093
1094  return *NewEntry;
1095}
1096
1097const ASTRecordLayout &
1098ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
1099  return getObjCLayout(D, 0);
1100}
1101
1102const ASTRecordLayout &
1103ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1104  return getObjCLayout(D->getClassInterface(), D);
1105}
1106
1107/// getASTRecordLayout - Get or compute information about the layout of the
1108/// specified record (struct/union/class), which indicates its size and field
1109/// position information.
1110const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1111  D = D->getDefinition();
1112  assert(D && "Cannot get layout of forward declarations!");
1113
1114  // Look up this layout, if already laid out, return what we have.
1115  // Note that we can't save a reference to the entry because this function
1116  // is recursive.
1117  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1118  if (Entry) return *Entry;
1119
1120  const ASTRecordLayout *NewEntry =
1121    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1122  ASTRecordLayouts[D] = NewEntry;
1123
1124  return *NewEntry;
1125}
1126
1127const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
1128  RD = cast<CXXRecordDecl>(RD->getDefinition());
1129  assert(RD && "Cannot get key function for forward declarations!");
1130
1131  const CXXMethodDecl *&Entry = KeyFunctions[RD];
1132  if (!Entry)
1133    Entry = ASTRecordLayoutBuilder::ComputeKeyFunction(RD);
1134  else
1135    assert(Entry == ASTRecordLayoutBuilder::ComputeKeyFunction(RD) &&
1136           "Key function changed!");
1137
1138  return Entry;
1139}
1140
1141//===----------------------------------------------------------------------===//
1142//                   Type creation/memoization methods
1143//===----------------------------------------------------------------------===//
1144
1145QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1146  unsigned Fast = Quals.getFastQualifiers();
1147  Quals.removeFastQualifiers();
1148
1149  // Check if we've already instantiated this type.
1150  llvm::FoldingSetNodeID ID;
1151  ExtQuals::Profile(ID, TypeNode, Quals);
1152  void *InsertPos = 0;
1153  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1154    assert(EQ->getQualifiers() == Quals);
1155    QualType T = QualType(EQ, Fast);
1156    return T;
1157  }
1158
1159  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1160  ExtQualNodes.InsertNode(New, InsertPos);
1161  QualType T = QualType(New, Fast);
1162  return T;
1163}
1164
1165QualType ASTContext::getVolatileType(QualType T) {
1166  QualType CanT = getCanonicalType(T);
1167  if (CanT.isVolatileQualified()) return T;
1168
1169  QualifierCollector Quals;
1170  const Type *TypeNode = Quals.strip(T);
1171  Quals.addVolatile();
1172
1173  return getExtQualType(TypeNode, Quals);
1174}
1175
1176QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1177  QualType CanT = getCanonicalType(T);
1178  if (CanT.getAddressSpace() == AddressSpace)
1179    return T;
1180
1181  // If we are composing extended qualifiers together, merge together
1182  // into one ExtQuals node.
1183  QualifierCollector Quals;
1184  const Type *TypeNode = Quals.strip(T);
1185
1186  // If this type already has an address space specified, it cannot get
1187  // another one.
1188  assert(!Quals.hasAddressSpace() &&
1189         "Type cannot be in multiple addr spaces!");
1190  Quals.addAddressSpace(AddressSpace);
1191
1192  return getExtQualType(TypeNode, Quals);
1193}
1194
1195QualType ASTContext::getObjCGCQualType(QualType T,
1196                                       Qualifiers::GC GCAttr) {
1197  QualType CanT = getCanonicalType(T);
1198  if (CanT.getObjCGCAttr() == GCAttr)
1199    return T;
1200
1201  if (T->isPointerType()) {
1202    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1203    if (Pointee->isAnyPointerType()) {
1204      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1205      return getPointerType(ResultType);
1206    }
1207  }
1208
1209  // If we are composing extended qualifiers together, merge together
1210  // into one ExtQuals node.
1211  QualifierCollector Quals;
1212  const Type *TypeNode = Quals.strip(T);
1213
1214  // If this type already has an ObjCGC specified, it cannot get
1215  // another one.
1216  assert(!Quals.hasObjCGCAttr() &&
1217         "Type cannot have multiple ObjCGCs!");
1218  Quals.addObjCGCAttr(GCAttr);
1219
1220  return getExtQualType(TypeNode, Quals);
1221}
1222
1223static QualType getNoReturnCallConvType(ASTContext& Context, QualType T,
1224                                        bool AddNoReturn,
1225                                        CallingConv CallConv) {
1226  QualType ResultType;
1227  if (const PointerType *Pointer = T->getAs<PointerType>()) {
1228    QualType Pointee = Pointer->getPointeeType();
1229    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1230                                         CallConv);
1231    if (ResultType == Pointee)
1232      return T;
1233
1234    ResultType = Context.getPointerType(ResultType);
1235  } else if (const BlockPointerType *BlockPointer
1236                                              = T->getAs<BlockPointerType>()) {
1237    QualType Pointee = BlockPointer->getPointeeType();
1238    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
1239                                         CallConv);
1240    if (ResultType == Pointee)
1241      return T;
1242
1243    ResultType = Context.getBlockPointerType(ResultType);
1244   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
1245    if (F->getNoReturnAttr() == AddNoReturn && F->getCallConv() == CallConv)
1246      return T;
1247
1248    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
1249      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
1250                                                  AddNoReturn, CallConv);
1251    } else {
1252      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
1253      ResultType
1254        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1255                                  FPT->getNumArgs(), FPT->isVariadic(),
1256                                  FPT->getTypeQuals(),
1257                                  FPT->hasExceptionSpec(),
1258                                  FPT->hasAnyExceptionSpec(),
1259                                  FPT->getNumExceptions(),
1260                                  FPT->exception_begin(),
1261                                  AddNoReturn, CallConv);
1262    }
1263  } else
1264    return T;
1265
1266  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
1267}
1268
1269QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
1270  return getNoReturnCallConvType(*this, T, AddNoReturn, T.getCallConv());
1271}
1272
1273QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
1274  return getNoReturnCallConvType(*this, T, T.getNoReturnAttr(), CallConv);
1275}
1276
1277/// getComplexType - Return the uniqued reference to the type for a complex
1278/// number with the specified element type.
1279QualType ASTContext::getComplexType(QualType T) {
1280  // Unique pointers, to guarantee there is only one pointer of a particular
1281  // structure.
1282  llvm::FoldingSetNodeID ID;
1283  ComplexType::Profile(ID, T);
1284
1285  void *InsertPos = 0;
1286  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1287    return QualType(CT, 0);
1288
1289  // If the pointee type isn't canonical, this won't be a canonical type either,
1290  // so fill in the canonical type field.
1291  QualType Canonical;
1292  if (!T.isCanonical()) {
1293    Canonical = getComplexType(getCanonicalType(T));
1294
1295    // Get the new insert position for the node we care about.
1296    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1297    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1298  }
1299  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1300  Types.push_back(New);
1301  ComplexTypes.InsertNode(New, InsertPos);
1302  return QualType(New, 0);
1303}
1304
1305/// getPointerType - Return the uniqued reference to the type for a pointer to
1306/// the specified type.
1307QualType ASTContext::getPointerType(QualType T) {
1308  // Unique pointers, to guarantee there is only one pointer of a particular
1309  // structure.
1310  llvm::FoldingSetNodeID ID;
1311  PointerType::Profile(ID, T);
1312
1313  void *InsertPos = 0;
1314  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1315    return QualType(PT, 0);
1316
1317  // If the pointee type isn't canonical, this won't be a canonical type either,
1318  // so fill in the canonical type field.
1319  QualType Canonical;
1320  if (!T.isCanonical()) {
1321    Canonical = getPointerType(getCanonicalType(T));
1322
1323    // Get the new insert position for the node we care about.
1324    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1325    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1326  }
1327  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1328  Types.push_back(New);
1329  PointerTypes.InsertNode(New, InsertPos);
1330  return QualType(New, 0);
1331}
1332
1333/// getBlockPointerType - Return the uniqued reference to the type for
1334/// a pointer to the specified block.
1335QualType ASTContext::getBlockPointerType(QualType T) {
1336  assert(T->isFunctionType() && "block of function types only");
1337  // Unique pointers, to guarantee there is only one block of a particular
1338  // structure.
1339  llvm::FoldingSetNodeID ID;
1340  BlockPointerType::Profile(ID, T);
1341
1342  void *InsertPos = 0;
1343  if (BlockPointerType *PT =
1344        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1345    return QualType(PT, 0);
1346
1347  // If the block pointee type isn't canonical, this won't be a canonical
1348  // type either so fill in the canonical type field.
1349  QualType Canonical;
1350  if (!T.isCanonical()) {
1351    Canonical = getBlockPointerType(getCanonicalType(T));
1352
1353    // Get the new insert position for the node we care about.
1354    BlockPointerType *NewIP =
1355      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1356    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1357  }
1358  BlockPointerType *New
1359    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1360  Types.push_back(New);
1361  BlockPointerTypes.InsertNode(New, InsertPos);
1362  return QualType(New, 0);
1363}
1364
1365/// getLValueReferenceType - Return the uniqued reference to the type for an
1366/// lvalue reference to the specified type.
1367QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
1368  // Unique pointers, to guarantee there is only one pointer of a particular
1369  // structure.
1370  llvm::FoldingSetNodeID ID;
1371  ReferenceType::Profile(ID, T, SpelledAsLValue);
1372
1373  void *InsertPos = 0;
1374  if (LValueReferenceType *RT =
1375        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1376    return QualType(RT, 0);
1377
1378  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1379
1380  // If the referencee type isn't canonical, this won't be a canonical type
1381  // either, so fill in the canonical type field.
1382  QualType Canonical;
1383  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1384    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1385    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1386
1387    // Get the new insert position for the node we care about.
1388    LValueReferenceType *NewIP =
1389      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1390    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1391  }
1392
1393  LValueReferenceType *New
1394    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1395                                                     SpelledAsLValue);
1396  Types.push_back(New);
1397  LValueReferenceTypes.InsertNode(New, InsertPos);
1398
1399  return QualType(New, 0);
1400}
1401
1402/// getRValueReferenceType - Return the uniqued reference to the type for an
1403/// rvalue reference to the specified type.
1404QualType ASTContext::getRValueReferenceType(QualType T) {
1405  // Unique pointers, to guarantee there is only one pointer of a particular
1406  // structure.
1407  llvm::FoldingSetNodeID ID;
1408  ReferenceType::Profile(ID, T, false);
1409
1410  void *InsertPos = 0;
1411  if (RValueReferenceType *RT =
1412        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1413    return QualType(RT, 0);
1414
1415  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1416
1417  // If the referencee type isn't canonical, this won't be a canonical type
1418  // either, so fill in the canonical type field.
1419  QualType Canonical;
1420  if (InnerRef || !T.isCanonical()) {
1421    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1422    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1423
1424    // Get the new insert position for the node we care about.
1425    RValueReferenceType *NewIP =
1426      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1427    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1428  }
1429
1430  RValueReferenceType *New
1431    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1432  Types.push_back(New);
1433  RValueReferenceTypes.InsertNode(New, InsertPos);
1434  return QualType(New, 0);
1435}
1436
1437/// getMemberPointerType - Return the uniqued reference to the type for a
1438/// member pointer to the specified type, in the specified class.
1439QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1440  // Unique pointers, to guarantee there is only one pointer of a particular
1441  // structure.
1442  llvm::FoldingSetNodeID ID;
1443  MemberPointerType::Profile(ID, T, Cls);
1444
1445  void *InsertPos = 0;
1446  if (MemberPointerType *PT =
1447      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1448    return QualType(PT, 0);
1449
1450  // If the pointee or class type isn't canonical, this won't be a canonical
1451  // type either, so fill in the canonical type field.
1452  QualType Canonical;
1453  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1454    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1455
1456    // Get the new insert position for the node we care about.
1457    MemberPointerType *NewIP =
1458      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1459    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1460  }
1461  MemberPointerType *New
1462    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1463  Types.push_back(New);
1464  MemberPointerTypes.InsertNode(New, InsertPos);
1465  return QualType(New, 0);
1466}
1467
1468/// getConstantArrayType - Return the unique reference to the type for an
1469/// array of the specified element type.
1470QualType ASTContext::getConstantArrayType(QualType EltTy,
1471                                          const llvm::APInt &ArySizeIn,
1472                                          ArrayType::ArraySizeModifier ASM,
1473                                          unsigned EltTypeQuals) {
1474  assert((EltTy->isDependentType() ||
1475          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1476         "Constant array of VLAs is illegal!");
1477
1478  // Convert the array size into a canonical width matching the pointer size for
1479  // the target.
1480  llvm::APInt ArySize(ArySizeIn);
1481  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1482
1483  llvm::FoldingSetNodeID ID;
1484  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1485
1486  void *InsertPos = 0;
1487  if (ConstantArrayType *ATP =
1488      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1489    return QualType(ATP, 0);
1490
1491  // If the element type isn't canonical, this won't be a canonical type either,
1492  // so fill in the canonical type field.
1493  QualType Canonical;
1494  if (!EltTy.isCanonical()) {
1495    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1496                                     ASM, EltTypeQuals);
1497    // Get the new insert position for the node we care about.
1498    ConstantArrayType *NewIP =
1499      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1500    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1501  }
1502
1503  ConstantArrayType *New = new(*this,TypeAlignment)
1504    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1505  ConstantArrayTypes.InsertNode(New, InsertPos);
1506  Types.push_back(New);
1507  return QualType(New, 0);
1508}
1509
1510/// getVariableArrayType - Returns a non-unique reference to the type for a
1511/// variable array of the specified element type.
1512QualType ASTContext::getVariableArrayType(QualType EltTy,
1513                                          Expr *NumElts,
1514                                          ArrayType::ArraySizeModifier ASM,
1515                                          unsigned EltTypeQuals,
1516                                          SourceRange Brackets) {
1517  // Since we don't unique expressions, it isn't possible to unique VLA's
1518  // that have an expression provided for their size.
1519
1520  VariableArrayType *New = new(*this, TypeAlignment)
1521    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1522
1523  VariableArrayTypes.push_back(New);
1524  Types.push_back(New);
1525  return QualType(New, 0);
1526}
1527
1528/// getDependentSizedArrayType - Returns a non-unique reference to
1529/// the type for a dependently-sized array of the specified element
1530/// type.
1531QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1532                                                Expr *NumElts,
1533                                                ArrayType::ArraySizeModifier ASM,
1534                                                unsigned EltTypeQuals,
1535                                                SourceRange Brackets) {
1536  assert((!NumElts || NumElts->isTypeDependent() ||
1537          NumElts->isValueDependent()) &&
1538         "Size must be type- or value-dependent!");
1539
1540  void *InsertPos = 0;
1541  DependentSizedArrayType *Canon = 0;
1542  llvm::FoldingSetNodeID ID;
1543
1544  if (NumElts) {
1545    // Dependently-sized array types that do not have a specified
1546    // number of elements will have their sizes deduced from an
1547    // initializer.
1548    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1549                                     EltTypeQuals, NumElts);
1550
1551    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1552  }
1553
1554  DependentSizedArrayType *New;
1555  if (Canon) {
1556    // We already have a canonical version of this array type; use it as
1557    // the canonical type for a newly-built type.
1558    New = new (*this, TypeAlignment)
1559      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1560                              NumElts, ASM, EltTypeQuals, Brackets);
1561  } else {
1562    QualType CanonEltTy = getCanonicalType(EltTy);
1563    if (CanonEltTy == EltTy) {
1564      New = new (*this, TypeAlignment)
1565        DependentSizedArrayType(*this, EltTy, QualType(),
1566                                NumElts, ASM, EltTypeQuals, Brackets);
1567
1568      if (NumElts) {
1569        DependentSizedArrayType *CanonCheck
1570          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1571        assert(!CanonCheck && "Dependent-sized canonical array type broken");
1572        (void)CanonCheck;
1573        DependentSizedArrayTypes.InsertNode(New, InsertPos);
1574      }
1575    } else {
1576      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1577                                                  ASM, EltTypeQuals,
1578                                                  SourceRange());
1579      New = new (*this, TypeAlignment)
1580        DependentSizedArrayType(*this, EltTy, Canon,
1581                                NumElts, ASM, EltTypeQuals, Brackets);
1582    }
1583  }
1584
1585  Types.push_back(New);
1586  return QualType(New, 0);
1587}
1588
1589QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1590                                            ArrayType::ArraySizeModifier ASM,
1591                                            unsigned EltTypeQuals) {
1592  llvm::FoldingSetNodeID ID;
1593  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1594
1595  void *InsertPos = 0;
1596  if (IncompleteArrayType *ATP =
1597       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1598    return QualType(ATP, 0);
1599
1600  // If the element type isn't canonical, this won't be a canonical type
1601  // either, so fill in the canonical type field.
1602  QualType Canonical;
1603
1604  if (!EltTy.isCanonical()) {
1605    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1606                                       ASM, EltTypeQuals);
1607
1608    // Get the new insert position for the node we care about.
1609    IncompleteArrayType *NewIP =
1610      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1611    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1612  }
1613
1614  IncompleteArrayType *New = new (*this, TypeAlignment)
1615    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1616
1617  IncompleteArrayTypes.InsertNode(New, InsertPos);
1618  Types.push_back(New);
1619  return QualType(New, 0);
1620}
1621
1622/// getVectorType - Return the unique reference to a vector type of
1623/// the specified element type and size. VectorType must be a built-in type.
1624QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1625                                   bool IsAltiVec, bool IsPixel) {
1626  BuiltinType *baseType;
1627
1628  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1629  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1630
1631  // Check if we've already instantiated a vector of this type.
1632  llvm::FoldingSetNodeID ID;
1633  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
1634    IsAltiVec, IsPixel);
1635  void *InsertPos = 0;
1636  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1637    return QualType(VTP, 0);
1638
1639  // If the element type isn't canonical, this won't be a canonical type either,
1640  // so fill in the canonical type field.
1641  QualType Canonical;
1642  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
1643    Canonical = getVectorType(getCanonicalType(vecType),
1644      NumElts, false, false);
1645
1646    // Get the new insert position for the node we care about.
1647    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1648    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1649  }
1650  VectorType *New = new (*this, TypeAlignment)
1651    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
1652  VectorTypes.InsertNode(New, InsertPos);
1653  Types.push_back(New);
1654  return QualType(New, 0);
1655}
1656
1657/// getExtVectorType - Return the unique reference to an extended vector type of
1658/// the specified element type and size. VectorType must be a built-in type.
1659QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1660  BuiltinType *baseType;
1661
1662  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1663  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1664
1665  // Check if we've already instantiated a vector of this type.
1666  llvm::FoldingSetNodeID ID;
1667  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
1668  void *InsertPos = 0;
1669  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1670    return QualType(VTP, 0);
1671
1672  // If the element type isn't canonical, this won't be a canonical type either,
1673  // so fill in the canonical type field.
1674  QualType Canonical;
1675  if (!vecType.isCanonical()) {
1676    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1677
1678    // Get the new insert position for the node we care about.
1679    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1680    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1681  }
1682  ExtVectorType *New = new (*this, TypeAlignment)
1683    ExtVectorType(vecType, NumElts, Canonical);
1684  VectorTypes.InsertNode(New, InsertPos);
1685  Types.push_back(New);
1686  return QualType(New, 0);
1687}
1688
1689QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1690                                                    Expr *SizeExpr,
1691                                                    SourceLocation AttrLoc) {
1692  llvm::FoldingSetNodeID ID;
1693  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1694                                       SizeExpr);
1695
1696  void *InsertPos = 0;
1697  DependentSizedExtVectorType *Canon
1698    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1699  DependentSizedExtVectorType *New;
1700  if (Canon) {
1701    // We already have a canonical version of this array type; use it as
1702    // the canonical type for a newly-built type.
1703    New = new (*this, TypeAlignment)
1704      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1705                                  SizeExpr, AttrLoc);
1706  } else {
1707    QualType CanonVecTy = getCanonicalType(vecType);
1708    if (CanonVecTy == vecType) {
1709      New = new (*this, TypeAlignment)
1710        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1711                                    AttrLoc);
1712
1713      DependentSizedExtVectorType *CanonCheck
1714        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1715      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1716      (void)CanonCheck;
1717      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1718    } else {
1719      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1720                                                      SourceLocation());
1721      New = new (*this, TypeAlignment)
1722        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1723    }
1724  }
1725
1726  Types.push_back(New);
1727  return QualType(New, 0);
1728}
1729
1730/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1731///
1732QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn,
1733                                            CallingConv CallConv) {
1734  // Unique functions, to guarantee there is only one function of a particular
1735  // structure.
1736  llvm::FoldingSetNodeID ID;
1737  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn, CallConv);
1738
1739  void *InsertPos = 0;
1740  if (FunctionNoProtoType *FT =
1741        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1742    return QualType(FT, 0);
1743
1744  QualType Canonical;
1745  if (!ResultTy.isCanonical() ||
1746      getCanonicalCallConv(CallConv) != CallConv) {
1747    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn,
1748                                       getCanonicalCallConv(CallConv));
1749
1750    // Get the new insert position for the node we care about.
1751    FunctionNoProtoType *NewIP =
1752      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1753    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1754  }
1755
1756  FunctionNoProtoType *New = new (*this, TypeAlignment)
1757    FunctionNoProtoType(ResultTy, Canonical, NoReturn, CallConv);
1758  Types.push_back(New);
1759  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1760  return QualType(New, 0);
1761}
1762
1763/// getFunctionType - Return a normal function type with a typed argument
1764/// list.  isVariadic indicates whether the argument list includes '...'.
1765QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1766                                     unsigned NumArgs, bool isVariadic,
1767                                     unsigned TypeQuals, bool hasExceptionSpec,
1768                                     bool hasAnyExceptionSpec, unsigned NumExs,
1769                                     const QualType *ExArray, bool NoReturn,
1770                                     CallingConv CallConv) {
1771  // Unique functions, to guarantee there is only one function of a particular
1772  // structure.
1773  llvm::FoldingSetNodeID ID;
1774  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1775                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1776                             NumExs, ExArray, NoReturn, CallConv);
1777
1778  void *InsertPos = 0;
1779  if (FunctionProtoType *FTP =
1780        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1781    return QualType(FTP, 0);
1782
1783  // Determine whether the type being created is already canonical or not.
1784  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
1785  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1786    if (!ArgArray[i].isCanonicalAsParam())
1787      isCanonical = false;
1788
1789  // If this type isn't canonical, get the canonical version of it.
1790  // The exception spec is not part of the canonical type.
1791  QualType Canonical;
1792  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1793    llvm::SmallVector<QualType, 16> CanonicalArgs;
1794    CanonicalArgs.reserve(NumArgs);
1795    for (unsigned i = 0; i != NumArgs; ++i)
1796      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1797
1798    Canonical = getFunctionType(getCanonicalType(ResultTy),
1799                                CanonicalArgs.data(), NumArgs,
1800                                isVariadic, TypeQuals, false,
1801                                false, 0, 0, NoReturn,
1802                                getCanonicalCallConv(CallConv));
1803
1804    // Get the new insert position for the node we care about.
1805    FunctionProtoType *NewIP =
1806      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1807    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1808  }
1809
1810  // FunctionProtoType objects are allocated with extra bytes after them
1811  // for two variable size arrays (for parameter and exception types) at the
1812  // end of them.
1813  FunctionProtoType *FTP =
1814    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1815                                 NumArgs*sizeof(QualType) +
1816                                 NumExs*sizeof(QualType), TypeAlignment);
1817  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1818                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1819                              ExArray, NumExs, Canonical, NoReturn, CallConv);
1820  Types.push_back(FTP);
1821  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1822  return QualType(FTP, 0);
1823}
1824
1825/// getTypeDeclType - Return the unique reference to the type for the
1826/// specified type declaration.
1827QualType ASTContext::getTypeDeclType(const TypeDecl *Decl,
1828                                     const TypeDecl* PrevDecl) {
1829  assert(Decl && "Passed null for Decl param");
1830  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1831
1832  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1833    return getTypedefType(Typedef);
1834  else if (isa<TemplateTypeParmDecl>(Decl)) {
1835    assert(false && "Template type parameter types are always available.");
1836  } else if (const ObjCInterfaceDecl *ObjCInterface
1837               = dyn_cast<ObjCInterfaceDecl>(Decl))
1838    return getObjCInterfaceType(ObjCInterface);
1839
1840  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1841    if (PrevDecl)
1842      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1843    else
1844      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1845  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1846    if (PrevDecl)
1847      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1848    else
1849      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1850  } else if (const UnresolvedUsingTypenameDecl *Using =
1851               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
1852    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
1853  } else
1854    assert(false && "TypeDecl without a type?");
1855
1856  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1857  return QualType(Decl->TypeForDecl, 0);
1858}
1859
1860/// getTypedefType - Return the unique reference to the type for the
1861/// specified typename decl.
1862QualType ASTContext::getTypedefType(const TypedefDecl *Decl) {
1863  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1864
1865  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1866  Decl->TypeForDecl = new(*this, TypeAlignment)
1867    TypedefType(Type::Typedef, Decl, Canonical);
1868  Types.push_back(Decl->TypeForDecl);
1869  return QualType(Decl->TypeForDecl, 0);
1870}
1871
1872/// \brief Retrieve a substitution-result type.
1873QualType
1874ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1875                                         QualType Replacement) {
1876  assert(Replacement.isCanonical()
1877         && "replacement types must always be canonical");
1878
1879  llvm::FoldingSetNodeID ID;
1880  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1881  void *InsertPos = 0;
1882  SubstTemplateTypeParmType *SubstParm
1883    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1884
1885  if (!SubstParm) {
1886    SubstParm = new (*this, TypeAlignment)
1887      SubstTemplateTypeParmType(Parm, Replacement);
1888    Types.push_back(SubstParm);
1889    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1890  }
1891
1892  return QualType(SubstParm, 0);
1893}
1894
1895/// \brief Retrieve the template type parameter type for a template
1896/// parameter or parameter pack with the given depth, index, and (optionally)
1897/// name.
1898QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1899                                             bool ParameterPack,
1900                                             IdentifierInfo *Name) {
1901  llvm::FoldingSetNodeID ID;
1902  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1903  void *InsertPos = 0;
1904  TemplateTypeParmType *TypeParm
1905    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1906
1907  if (TypeParm)
1908    return QualType(TypeParm, 0);
1909
1910  if (Name) {
1911    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1912    TypeParm = new (*this, TypeAlignment)
1913      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1914
1915    TemplateTypeParmType *TypeCheck
1916      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1917    assert(!TypeCheck && "Template type parameter canonical type broken");
1918    (void)TypeCheck;
1919  } else
1920    TypeParm = new (*this, TypeAlignment)
1921      TemplateTypeParmType(Depth, Index, ParameterPack);
1922
1923  Types.push_back(TypeParm);
1924  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1925
1926  return QualType(TypeParm, 0);
1927}
1928
1929QualType
1930ASTContext::getTemplateSpecializationType(TemplateName Template,
1931                                          const TemplateArgumentListInfo &Args,
1932                                          QualType Canon) {
1933  unsigned NumArgs = Args.size();
1934
1935  llvm::SmallVector<TemplateArgument, 4> ArgVec;
1936  ArgVec.reserve(NumArgs);
1937  for (unsigned i = 0; i != NumArgs; ++i)
1938    ArgVec.push_back(Args[i].getArgument());
1939
1940  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
1941}
1942
1943QualType
1944ASTContext::getTemplateSpecializationType(TemplateName Template,
1945                                          const TemplateArgument *Args,
1946                                          unsigned NumArgs,
1947                                          QualType Canon) {
1948  if (!Canon.isNull())
1949    Canon = getCanonicalType(Canon);
1950  else {
1951    // Build the canonical template specialization type.
1952    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1953    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1954    CanonArgs.reserve(NumArgs);
1955    for (unsigned I = 0; I != NumArgs; ++I)
1956      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1957
1958    // Determine whether this canonical template specialization type already
1959    // exists.
1960    llvm::FoldingSetNodeID ID;
1961    TemplateSpecializationType::Profile(ID, CanonTemplate,
1962                                        CanonArgs.data(), NumArgs, *this);
1963
1964    void *InsertPos = 0;
1965    TemplateSpecializationType *Spec
1966      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1967
1968    if (!Spec) {
1969      // Allocate a new canonical template specialization type.
1970      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1971                            sizeof(TemplateArgument) * NumArgs),
1972                           TypeAlignment);
1973      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1974                                                  CanonArgs.data(), NumArgs,
1975                                                  Canon);
1976      Types.push_back(Spec);
1977      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1978    }
1979
1980    if (Canon.isNull())
1981      Canon = QualType(Spec, 0);
1982    assert(Canon->isDependentType() &&
1983           "Non-dependent template-id type must have a canonical type");
1984  }
1985
1986  // Allocate the (non-canonical) template specialization type, but don't
1987  // try to unique it: these types typically have location information that
1988  // we don't unique and don't want to lose.
1989  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1990                        sizeof(TemplateArgument) * NumArgs),
1991                       TypeAlignment);
1992  TemplateSpecializationType *Spec
1993    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1994                                           Canon);
1995
1996  Types.push_back(Spec);
1997  return QualType(Spec, 0);
1998}
1999
2000QualType
2001ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
2002                                 QualType NamedType) {
2003  llvm::FoldingSetNodeID ID;
2004  QualifiedNameType::Profile(ID, NNS, NamedType);
2005
2006  void *InsertPos = 0;
2007  QualifiedNameType *T
2008    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2009  if (T)
2010    return QualType(T, 0);
2011
2012  QualType Canon = NamedType;
2013  if (!Canon.isCanonical()) {
2014    Canon = getCanonicalType(NamedType);
2015    QualifiedNameType *CheckT
2016      = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2017    assert(!CheckT && "Qualified name canonical type broken");
2018    (void)CheckT;
2019  }
2020
2021  T = new (*this) QualifiedNameType(NNS, NamedType, Canon);
2022  Types.push_back(T);
2023  QualifiedNameTypes.InsertNode(T, InsertPos);
2024  return QualType(T, 0);
2025}
2026
2027QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2028                                     const IdentifierInfo *Name,
2029                                     QualType Canon) {
2030  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2031
2032  if (Canon.isNull()) {
2033    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2034    if (CanonNNS != NNS)
2035      Canon = getTypenameType(CanonNNS, Name);
2036  }
2037
2038  llvm::FoldingSetNodeID ID;
2039  TypenameType::Profile(ID, NNS, Name);
2040
2041  void *InsertPos = 0;
2042  TypenameType *T
2043    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2044  if (T)
2045    return QualType(T, 0);
2046
2047  T = new (*this) TypenameType(NNS, Name, Canon);
2048  Types.push_back(T);
2049  TypenameTypes.InsertNode(T, InsertPos);
2050  return QualType(T, 0);
2051}
2052
2053QualType
2054ASTContext::getTypenameType(NestedNameSpecifier *NNS,
2055                            const TemplateSpecializationType *TemplateId,
2056                            QualType Canon) {
2057  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2058
2059  llvm::FoldingSetNodeID ID;
2060  TypenameType::Profile(ID, NNS, TemplateId);
2061
2062  void *InsertPos = 0;
2063  TypenameType *T
2064    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2065  if (T)
2066    return QualType(T, 0);
2067
2068  if (Canon.isNull()) {
2069    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2070    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
2071    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
2072      const TemplateSpecializationType *CanonTemplateId
2073        = CanonType->getAs<TemplateSpecializationType>();
2074      assert(CanonTemplateId &&
2075             "Canonical type must also be a template specialization type");
2076      Canon = getTypenameType(CanonNNS, CanonTemplateId);
2077    }
2078
2079    TypenameType *CheckT
2080      = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
2081    assert(!CheckT && "Typename canonical type is broken"); (void)CheckT;
2082  }
2083
2084  T = new (*this) TypenameType(NNS, TemplateId, Canon);
2085  Types.push_back(T);
2086  TypenameTypes.InsertNode(T, InsertPos);
2087  return QualType(T, 0);
2088}
2089
2090QualType
2091ASTContext::getElaboratedType(QualType UnderlyingType,
2092                              ElaboratedType::TagKind Tag) {
2093  llvm::FoldingSetNodeID ID;
2094  ElaboratedType::Profile(ID, UnderlyingType, Tag);
2095
2096  void *InsertPos = 0;
2097  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2098  if (T)
2099    return QualType(T, 0);
2100
2101  QualType Canon = UnderlyingType;
2102  if (!Canon.isCanonical()) {
2103    Canon = getCanonicalType(Canon);
2104    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2105    assert(!CheckT && "Elaborated canonical type is broken"); (void)CheckT;
2106  }
2107
2108  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
2109  Types.push_back(T);
2110  ElaboratedTypes.InsertNode(T, InsertPos);
2111  return QualType(T, 0);
2112}
2113
2114/// CmpProtocolNames - Comparison predicate for sorting protocols
2115/// alphabetically.
2116static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2117                            const ObjCProtocolDecl *RHS) {
2118  return LHS->getDeclName() < RHS->getDeclName();
2119}
2120
2121static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
2122                                unsigned NumProtocols) {
2123  if (NumProtocols == 0) return true;
2124
2125  for (unsigned i = 1; i != NumProtocols; ++i)
2126    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2127      return false;
2128  return true;
2129}
2130
2131static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2132                                   unsigned &NumProtocols) {
2133  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2134
2135  // Sort protocols, keyed by name.
2136  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2137
2138  // Remove duplicates.
2139  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2140  NumProtocols = ProtocolsEnd-Protocols;
2141}
2142
2143/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2144/// the given interface decl and the conforming protocol list.
2145QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
2146                                              ObjCProtocolDecl **Protocols,
2147                                              unsigned NumProtocols) {
2148  llvm::FoldingSetNodeID ID;
2149  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
2150
2151  void *InsertPos = 0;
2152  if (ObjCObjectPointerType *QT =
2153              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2154    return QualType(QT, 0);
2155
2156  // Sort the protocol list alphabetically to canonicalize it.
2157  QualType Canonical;
2158  if (!InterfaceT.isCanonical() ||
2159      !areSortedAndUniqued(Protocols, NumProtocols)) {
2160    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
2161      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2162      unsigned UniqueCount = NumProtocols;
2163
2164      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2165      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2166
2167      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2168                                           &Sorted[0], UniqueCount);
2169    } else {
2170      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
2171                                           Protocols, NumProtocols);
2172    }
2173
2174    // Regenerate InsertPos.
2175    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2176  }
2177
2178  // No match.
2179  unsigned Size = sizeof(ObjCObjectPointerType)
2180                + NumProtocols * sizeof(ObjCProtocolDecl *);
2181  void *Mem = Allocate(Size, TypeAlignment);
2182  ObjCObjectPointerType *QType = new (Mem) ObjCObjectPointerType(Canonical,
2183                                                                 InterfaceT,
2184                                                                 Protocols,
2185                                                                 NumProtocols);
2186
2187  Types.push_back(QType);
2188  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2189  return QualType(QType, 0);
2190}
2191
2192/// getObjCInterfaceType - Return the unique reference to the type for the
2193/// specified ObjC interface decl. The list of protocols is optional.
2194QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
2195                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
2196  llvm::FoldingSetNodeID ID;
2197  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
2198
2199  void *InsertPos = 0;
2200  if (ObjCInterfaceType *QT =
2201      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
2202    return QualType(QT, 0);
2203
2204  // Sort the protocol list alphabetically to canonicalize it.
2205  QualType Canonical;
2206  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
2207    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
2208    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
2209
2210    unsigned UniqueCount = NumProtocols;
2211    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2212
2213    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
2214
2215    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
2216  }
2217
2218  unsigned Size = sizeof(ObjCInterfaceType)
2219    + NumProtocols * sizeof(ObjCProtocolDecl *);
2220  void *Mem = Allocate(Size, TypeAlignment);
2221  ObjCInterfaceType *QType = new (Mem) ObjCInterfaceType(Canonical,
2222                                        const_cast<ObjCInterfaceDecl*>(Decl),
2223                                                         Protocols,
2224                                                         NumProtocols);
2225
2226  Types.push_back(QType);
2227  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
2228  return QualType(QType, 0);
2229}
2230
2231/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2232/// TypeOfExprType AST's (since expression's are never shared). For example,
2233/// multiple declarations that refer to "typeof(x)" all contain different
2234/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2235/// on canonical type's (which are always unique).
2236QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2237  TypeOfExprType *toe;
2238  if (tofExpr->isTypeDependent()) {
2239    llvm::FoldingSetNodeID ID;
2240    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2241
2242    void *InsertPos = 0;
2243    DependentTypeOfExprType *Canon
2244      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2245    if (Canon) {
2246      // We already have a "canonical" version of an identical, dependent
2247      // typeof(expr) type. Use that as our canonical type.
2248      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2249                                          QualType((TypeOfExprType*)Canon, 0));
2250    }
2251    else {
2252      // Build a new, canonical typeof(expr) type.
2253      Canon
2254        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2255      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2256      toe = Canon;
2257    }
2258  } else {
2259    QualType Canonical = getCanonicalType(tofExpr->getType());
2260    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2261  }
2262  Types.push_back(toe);
2263  return QualType(toe, 0);
2264}
2265
2266/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2267/// TypeOfType AST's. The only motivation to unique these nodes would be
2268/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2269/// an issue. This doesn't effect the type checker, since it operates
2270/// on canonical type's (which are always unique).
2271QualType ASTContext::getTypeOfType(QualType tofType) {
2272  QualType Canonical = getCanonicalType(tofType);
2273  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2274  Types.push_back(tot);
2275  return QualType(tot, 0);
2276}
2277
2278/// getDecltypeForExpr - Given an expr, will return the decltype for that
2279/// expression, according to the rules in C++0x [dcl.type.simple]p4
2280static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2281  if (e->isTypeDependent())
2282    return Context.DependentTy;
2283
2284  // If e is an id expression or a class member access, decltype(e) is defined
2285  // as the type of the entity named by e.
2286  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2287    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2288      return VD->getType();
2289  }
2290  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2291    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2292      return FD->getType();
2293  }
2294  // If e is a function call or an invocation of an overloaded operator,
2295  // (parentheses around e are ignored), decltype(e) is defined as the
2296  // return type of that function.
2297  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2298    return CE->getCallReturnType();
2299
2300  QualType T = e->getType();
2301
2302  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2303  // defined as T&, otherwise decltype(e) is defined as T.
2304  if (e->isLvalue(Context) == Expr::LV_Valid)
2305    T = Context.getLValueReferenceType(T);
2306
2307  return T;
2308}
2309
2310/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2311/// DecltypeType AST's. The only motivation to unique these nodes would be
2312/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2313/// an issue. This doesn't effect the type checker, since it operates
2314/// on canonical type's (which are always unique).
2315QualType ASTContext::getDecltypeType(Expr *e) {
2316  DecltypeType *dt;
2317  if (e->isTypeDependent()) {
2318    llvm::FoldingSetNodeID ID;
2319    DependentDecltypeType::Profile(ID, *this, e);
2320
2321    void *InsertPos = 0;
2322    DependentDecltypeType *Canon
2323      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2324    if (Canon) {
2325      // We already have a "canonical" version of an equivalent, dependent
2326      // decltype type. Use that as our canonical type.
2327      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2328                                       QualType((DecltypeType*)Canon, 0));
2329    }
2330    else {
2331      // Build a new, canonical typeof(expr) type.
2332      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2333      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2334      dt = Canon;
2335    }
2336  } else {
2337    QualType T = getDecltypeForExpr(e, *this);
2338    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2339  }
2340  Types.push_back(dt);
2341  return QualType(dt, 0);
2342}
2343
2344/// getTagDeclType - Return the unique reference to the type for the
2345/// specified TagDecl (struct/union/class/enum) decl.
2346QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2347  assert (Decl);
2348  // FIXME: What is the design on getTagDeclType when it requires casting
2349  // away const?  mutable?
2350  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2351}
2352
2353/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2354/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2355/// needs to agree with the definition in <stddef.h>.
2356CanQualType ASTContext::getSizeType() const {
2357  return getFromTargetType(Target.getSizeType());
2358}
2359
2360/// getSignedWCharType - Return the type of "signed wchar_t".
2361/// Used when in C++, as a GCC extension.
2362QualType ASTContext::getSignedWCharType() const {
2363  // FIXME: derive from "Target" ?
2364  return WCharTy;
2365}
2366
2367/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2368/// Used when in C++, as a GCC extension.
2369QualType ASTContext::getUnsignedWCharType() const {
2370  // FIXME: derive from "Target" ?
2371  return UnsignedIntTy;
2372}
2373
2374/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2375/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2376QualType ASTContext::getPointerDiffType() const {
2377  return getFromTargetType(Target.getPtrDiffType(0));
2378}
2379
2380//===----------------------------------------------------------------------===//
2381//                              Type Operators
2382//===----------------------------------------------------------------------===//
2383
2384CanQualType ASTContext::getCanonicalParamType(QualType T) {
2385  // Push qualifiers into arrays, and then discard any remaining
2386  // qualifiers.
2387  T = getCanonicalType(T);
2388  const Type *Ty = T.getTypePtr();
2389
2390  QualType Result;
2391  if (isa<ArrayType>(Ty)) {
2392    Result = getArrayDecayedType(QualType(Ty,0));
2393  } else if (isa<FunctionType>(Ty)) {
2394    Result = getPointerType(QualType(Ty, 0));
2395  } else {
2396    Result = QualType(Ty, 0);
2397  }
2398
2399  return CanQualType::CreateUnsafe(Result);
2400}
2401
2402/// getCanonicalType - Return the canonical (structural) type corresponding to
2403/// the specified potentially non-canonical type.  The non-canonical version
2404/// of a type may have many "decorated" versions of types.  Decorators can
2405/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2406/// to be free of any of these, allowing two canonical types to be compared
2407/// for exact equality with a simple pointer comparison.
2408CanQualType ASTContext::getCanonicalType(QualType T) {
2409  QualifierCollector Quals;
2410  const Type *Ptr = Quals.strip(T);
2411  QualType CanType = Ptr->getCanonicalTypeInternal();
2412
2413  // The canonical internal type will be the canonical type *except*
2414  // that we push type qualifiers down through array types.
2415
2416  // If there are no new qualifiers to push down, stop here.
2417  if (!Quals.hasQualifiers())
2418    return CanQualType::CreateUnsafe(CanType);
2419
2420  // If the type qualifiers are on an array type, get the canonical
2421  // type of the array with the qualifiers applied to the element
2422  // type.
2423  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2424  if (!AT)
2425    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2426
2427  // Get the canonical version of the element with the extra qualifiers on it.
2428  // This can recursively sink qualifiers through multiple levels of arrays.
2429  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2430  NewEltTy = getCanonicalType(NewEltTy);
2431
2432  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2433    return CanQualType::CreateUnsafe(
2434             getConstantArrayType(NewEltTy, CAT->getSize(),
2435                                  CAT->getSizeModifier(),
2436                                  CAT->getIndexTypeCVRQualifiers()));
2437  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2438    return CanQualType::CreateUnsafe(
2439             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2440                                    IAT->getIndexTypeCVRQualifiers()));
2441
2442  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2443    return CanQualType::CreateUnsafe(
2444             getDependentSizedArrayType(NewEltTy,
2445                                        DSAT->getSizeExpr() ?
2446                                          DSAT->getSizeExpr()->Retain() : 0,
2447                                        DSAT->getSizeModifier(),
2448                                        DSAT->getIndexTypeCVRQualifiers(),
2449                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
2450
2451  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2452  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2453                                                        VAT->getSizeExpr() ?
2454                                              VAT->getSizeExpr()->Retain() : 0,
2455                                                        VAT->getSizeModifier(),
2456                                              VAT->getIndexTypeCVRQualifiers(),
2457                                                     VAT->getBracketsRange()));
2458}
2459
2460QualType ASTContext::getUnqualifiedArrayType(QualType T,
2461                                             Qualifiers &Quals) {
2462  Quals = T.getQualifiers();
2463  if (!isa<ArrayType>(T)) {
2464    return T.getUnqualifiedType();
2465  }
2466
2467  const ArrayType *AT = cast<ArrayType>(T);
2468  QualType Elt = AT->getElementType();
2469  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
2470  if (Elt == UnqualElt)
2471    return T;
2472
2473  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) {
2474    return getConstantArrayType(UnqualElt, CAT->getSize(),
2475                                CAT->getSizeModifier(), 0);
2476  }
2477
2478  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) {
2479    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
2480  }
2481
2482  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T);
2483  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
2484                                    DSAT->getSizeModifier(), 0,
2485                                    SourceRange());
2486}
2487
2488DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
2489  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2490    return TD->getDeclName();
2491
2492  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2493    if (DTN->isIdentifier()) {
2494      return DeclarationNames.getIdentifier(DTN->getIdentifier());
2495    } else {
2496      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
2497    }
2498  }
2499
2500  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2501  assert(Storage);
2502  return (*Storage->begin())->getDeclName();
2503}
2504
2505TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2506  // If this template name refers to a template, the canonical
2507  // template name merely stores the template itself.
2508  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2509    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2510
2511  assert(!Name.getAsOverloadedTemplate());
2512
2513  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2514  assert(DTN && "Non-dependent template names must refer to template decls.");
2515  return DTN->CanonicalTemplateName;
2516}
2517
2518bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2519  X = getCanonicalTemplateName(X);
2520  Y = getCanonicalTemplateName(Y);
2521  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2522}
2523
2524TemplateArgument
2525ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2526  switch (Arg.getKind()) {
2527    case TemplateArgument::Null:
2528      return Arg;
2529
2530    case TemplateArgument::Expression:
2531      return Arg;
2532
2533    case TemplateArgument::Declaration:
2534      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2535
2536    case TemplateArgument::Template:
2537      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2538
2539    case TemplateArgument::Integral:
2540      return TemplateArgument(*Arg.getAsIntegral(),
2541                              getCanonicalType(Arg.getIntegralType()));
2542
2543    case TemplateArgument::Type:
2544      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2545
2546    case TemplateArgument::Pack: {
2547      // FIXME: Allocate in ASTContext
2548      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2549      unsigned Idx = 0;
2550      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2551                                        AEnd = Arg.pack_end();
2552           A != AEnd; (void)++A, ++Idx)
2553        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2554
2555      TemplateArgument Result;
2556      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2557      return Result;
2558    }
2559  }
2560
2561  // Silence GCC warning
2562  assert(false && "Unhandled template argument kind");
2563  return TemplateArgument();
2564}
2565
2566NestedNameSpecifier *
2567ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2568  if (!NNS)
2569    return 0;
2570
2571  switch (NNS->getKind()) {
2572  case NestedNameSpecifier::Identifier:
2573    // Canonicalize the prefix but keep the identifier the same.
2574    return NestedNameSpecifier::Create(*this,
2575                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2576                                       NNS->getAsIdentifier());
2577
2578  case NestedNameSpecifier::Namespace:
2579    // A namespace is canonical; build a nested-name-specifier with
2580    // this namespace and no prefix.
2581    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2582
2583  case NestedNameSpecifier::TypeSpec:
2584  case NestedNameSpecifier::TypeSpecWithTemplate: {
2585    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2586    return NestedNameSpecifier::Create(*this, 0,
2587                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2588                                       T.getTypePtr());
2589  }
2590
2591  case NestedNameSpecifier::Global:
2592    // The global specifier is canonical and unique.
2593    return NNS;
2594  }
2595
2596  // Required to silence a GCC warning
2597  return 0;
2598}
2599
2600
2601const ArrayType *ASTContext::getAsArrayType(QualType T) {
2602  // Handle the non-qualified case efficiently.
2603  if (!T.hasLocalQualifiers()) {
2604    // Handle the common positive case fast.
2605    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2606      return AT;
2607  }
2608
2609  // Handle the common negative case fast.
2610  QualType CType = T->getCanonicalTypeInternal();
2611  if (!isa<ArrayType>(CType))
2612    return 0;
2613
2614  // Apply any qualifiers from the array type to the element type.  This
2615  // implements C99 6.7.3p8: "If the specification of an array type includes
2616  // any type qualifiers, the element type is so qualified, not the array type."
2617
2618  // If we get here, we either have type qualifiers on the type, or we have
2619  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2620  // we must propagate them down into the element type.
2621
2622  QualifierCollector Qs;
2623  const Type *Ty = Qs.strip(T.getDesugaredType());
2624
2625  // If we have a simple case, just return now.
2626  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2627  if (ATy == 0 || Qs.empty())
2628    return ATy;
2629
2630  // Otherwise, we have an array and we have qualifiers on it.  Push the
2631  // qualifiers into the array element type and return a new array type.
2632  // Get the canonical version of the element with the extra qualifiers on it.
2633  // This can recursively sink qualifiers through multiple levels of arrays.
2634  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2635
2636  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2637    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2638                                                CAT->getSizeModifier(),
2639                                           CAT->getIndexTypeCVRQualifiers()));
2640  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2641    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2642                                                  IAT->getSizeModifier(),
2643                                           IAT->getIndexTypeCVRQualifiers()));
2644
2645  if (const DependentSizedArrayType *DSAT
2646        = dyn_cast<DependentSizedArrayType>(ATy))
2647    return cast<ArrayType>(
2648                     getDependentSizedArrayType(NewEltTy,
2649                                                DSAT->getSizeExpr() ?
2650                                              DSAT->getSizeExpr()->Retain() : 0,
2651                                                DSAT->getSizeModifier(),
2652                                              DSAT->getIndexTypeCVRQualifiers(),
2653                                                DSAT->getBracketsRange()));
2654
2655  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2656  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2657                                              VAT->getSizeExpr() ?
2658                                              VAT->getSizeExpr()->Retain() : 0,
2659                                              VAT->getSizeModifier(),
2660                                              VAT->getIndexTypeCVRQualifiers(),
2661                                              VAT->getBracketsRange()));
2662}
2663
2664
2665/// getArrayDecayedType - Return the properly qualified result of decaying the
2666/// specified array type to a pointer.  This operation is non-trivial when
2667/// handling typedefs etc.  The canonical type of "T" must be an array type,
2668/// this returns a pointer to a properly qualified element of the array.
2669///
2670/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2671QualType ASTContext::getArrayDecayedType(QualType Ty) {
2672  // Get the element type with 'getAsArrayType' so that we don't lose any
2673  // typedefs in the element type of the array.  This also handles propagation
2674  // of type qualifiers from the array type into the element type if present
2675  // (C99 6.7.3p8).
2676  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2677  assert(PrettyArrayType && "Not an array type!");
2678
2679  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2680
2681  // int x[restrict 4] ->  int *restrict
2682  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2683}
2684
2685QualType ASTContext::getBaseElementType(QualType QT) {
2686  QualifierCollector Qs;
2687  while (true) {
2688    const Type *UT = Qs.strip(QT);
2689    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2690      QT = AT->getElementType();
2691    } else {
2692      return Qs.apply(QT);
2693    }
2694  }
2695}
2696
2697QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2698  QualType ElemTy = AT->getElementType();
2699
2700  if (const ArrayType *AT = getAsArrayType(ElemTy))
2701    return getBaseElementType(AT);
2702
2703  return ElemTy;
2704}
2705
2706/// getConstantArrayElementCount - Returns number of constant array elements.
2707uint64_t
2708ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2709  uint64_t ElementCount = 1;
2710  do {
2711    ElementCount *= CA->getSize().getZExtValue();
2712    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2713  } while (CA);
2714  return ElementCount;
2715}
2716
2717/// getFloatingRank - Return a relative rank for floating point types.
2718/// This routine will assert if passed a built-in type that isn't a float.
2719static FloatingRank getFloatingRank(QualType T) {
2720  if (const ComplexType *CT = T->getAs<ComplexType>())
2721    return getFloatingRank(CT->getElementType());
2722
2723  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2724  switch (T->getAs<BuiltinType>()->getKind()) {
2725  default: assert(0 && "getFloatingRank(): not a floating type");
2726  case BuiltinType::Float:      return FloatRank;
2727  case BuiltinType::Double:     return DoubleRank;
2728  case BuiltinType::LongDouble: return LongDoubleRank;
2729  }
2730}
2731
2732/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2733/// point or a complex type (based on typeDomain/typeSize).
2734/// 'typeDomain' is a real floating point or complex type.
2735/// 'typeSize' is a real floating point or complex type.
2736QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2737                                                       QualType Domain) const {
2738  FloatingRank EltRank = getFloatingRank(Size);
2739  if (Domain->isComplexType()) {
2740    switch (EltRank) {
2741    default: assert(0 && "getFloatingRank(): illegal value for rank");
2742    case FloatRank:      return FloatComplexTy;
2743    case DoubleRank:     return DoubleComplexTy;
2744    case LongDoubleRank: return LongDoubleComplexTy;
2745    }
2746  }
2747
2748  assert(Domain->isRealFloatingType() && "Unknown domain!");
2749  switch (EltRank) {
2750  default: assert(0 && "getFloatingRank(): illegal value for rank");
2751  case FloatRank:      return FloatTy;
2752  case DoubleRank:     return DoubleTy;
2753  case LongDoubleRank: return LongDoubleTy;
2754  }
2755}
2756
2757/// getFloatingTypeOrder - Compare the rank of the two specified floating
2758/// point types, ignoring the domain of the type (i.e. 'double' ==
2759/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2760/// LHS < RHS, return -1.
2761int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2762  FloatingRank LHSR = getFloatingRank(LHS);
2763  FloatingRank RHSR = getFloatingRank(RHS);
2764
2765  if (LHSR == RHSR)
2766    return 0;
2767  if (LHSR > RHSR)
2768    return 1;
2769  return -1;
2770}
2771
2772/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2773/// routine will assert if passed a built-in type that isn't an integer or enum,
2774/// or if it is not canonicalized.
2775unsigned ASTContext::getIntegerRank(Type *T) {
2776  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
2777  if (EnumType* ET = dyn_cast<EnumType>(T))
2778    T = ET->getDecl()->getPromotionType().getTypePtr();
2779
2780  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2781    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2782
2783  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2784    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2785
2786  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2787    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2788
2789  switch (cast<BuiltinType>(T)->getKind()) {
2790  default: assert(0 && "getIntegerRank(): not a built-in integer");
2791  case BuiltinType::Bool:
2792    return 1 + (getIntWidth(BoolTy) << 3);
2793  case BuiltinType::Char_S:
2794  case BuiltinType::Char_U:
2795  case BuiltinType::SChar:
2796  case BuiltinType::UChar:
2797    return 2 + (getIntWidth(CharTy) << 3);
2798  case BuiltinType::Short:
2799  case BuiltinType::UShort:
2800    return 3 + (getIntWidth(ShortTy) << 3);
2801  case BuiltinType::Int:
2802  case BuiltinType::UInt:
2803    return 4 + (getIntWidth(IntTy) << 3);
2804  case BuiltinType::Long:
2805  case BuiltinType::ULong:
2806    return 5 + (getIntWidth(LongTy) << 3);
2807  case BuiltinType::LongLong:
2808  case BuiltinType::ULongLong:
2809    return 6 + (getIntWidth(LongLongTy) << 3);
2810  case BuiltinType::Int128:
2811  case BuiltinType::UInt128:
2812    return 7 + (getIntWidth(Int128Ty) << 3);
2813  }
2814}
2815
2816/// \brief Whether this is a promotable bitfield reference according
2817/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2818///
2819/// \returns the type this bit-field will promote to, or NULL if no
2820/// promotion occurs.
2821QualType ASTContext::isPromotableBitField(Expr *E) {
2822  FieldDecl *Field = E->getBitField();
2823  if (!Field)
2824    return QualType();
2825
2826  QualType FT = Field->getType();
2827
2828  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2829  uint64_t BitWidth = BitWidthAP.getZExtValue();
2830  uint64_t IntSize = getTypeSize(IntTy);
2831  // GCC extension compatibility: if the bit-field size is less than or equal
2832  // to the size of int, it gets promoted no matter what its type is.
2833  // For instance, unsigned long bf : 4 gets promoted to signed int.
2834  if (BitWidth < IntSize)
2835    return IntTy;
2836
2837  if (BitWidth == IntSize)
2838    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2839
2840  // Types bigger than int are not subject to promotions, and therefore act
2841  // like the base type.
2842  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2843  // is ridiculous.
2844  return QualType();
2845}
2846
2847/// getPromotedIntegerType - Returns the type that Promotable will
2848/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2849/// integer type.
2850QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2851  assert(!Promotable.isNull());
2852  assert(Promotable->isPromotableIntegerType());
2853  if (const EnumType *ET = Promotable->getAs<EnumType>())
2854    return ET->getDecl()->getPromotionType();
2855  if (Promotable->isSignedIntegerType())
2856    return IntTy;
2857  uint64_t PromotableSize = getTypeSize(Promotable);
2858  uint64_t IntSize = getTypeSize(IntTy);
2859  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2860  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2861}
2862
2863/// getIntegerTypeOrder - Returns the highest ranked integer type:
2864/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2865/// LHS < RHS, return -1.
2866int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2867  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2868  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2869  if (LHSC == RHSC) return 0;
2870
2871  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2872  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2873
2874  unsigned LHSRank = getIntegerRank(LHSC);
2875  unsigned RHSRank = getIntegerRank(RHSC);
2876
2877  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2878    if (LHSRank == RHSRank) return 0;
2879    return LHSRank > RHSRank ? 1 : -1;
2880  }
2881
2882  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2883  if (LHSUnsigned) {
2884    // If the unsigned [LHS] type is larger, return it.
2885    if (LHSRank >= RHSRank)
2886      return 1;
2887
2888    // If the signed type can represent all values of the unsigned type, it
2889    // wins.  Because we are dealing with 2's complement and types that are
2890    // powers of two larger than each other, this is always safe.
2891    return -1;
2892  }
2893
2894  // If the unsigned [RHS] type is larger, return it.
2895  if (RHSRank >= LHSRank)
2896    return -1;
2897
2898  // If the signed type can represent all values of the unsigned type, it
2899  // wins.  Because we are dealing with 2's complement and types that are
2900  // powers of two larger than each other, this is always safe.
2901  return 1;
2902}
2903
2904static RecordDecl *
2905CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
2906                 SourceLocation L, IdentifierInfo *Id) {
2907  if (Ctx.getLangOptions().CPlusPlus)
2908    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
2909  else
2910    return RecordDecl::Create(Ctx, TK, DC, L, Id);
2911}
2912
2913// getCFConstantStringType - Return the type used for constant CFStrings.
2914QualType ASTContext::getCFConstantStringType() {
2915  if (!CFConstantStringTypeDecl) {
2916    CFConstantStringTypeDecl =
2917      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2918                       &Idents.get("NSConstantString"));
2919    CFConstantStringTypeDecl->startDefinition();
2920
2921    QualType FieldTypes[4];
2922
2923    // const int *isa;
2924    FieldTypes[0] = getPointerType(IntTy.withConst());
2925    // int flags;
2926    FieldTypes[1] = IntTy;
2927    // const char *str;
2928    FieldTypes[2] = getPointerType(CharTy.withConst());
2929    // long length;
2930    FieldTypes[3] = LongTy;
2931
2932    // Create fields
2933    for (unsigned i = 0; i < 4; ++i) {
2934      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2935                                           SourceLocation(), 0,
2936                                           FieldTypes[i], /*TInfo=*/0,
2937                                           /*BitWidth=*/0,
2938                                           /*Mutable=*/false);
2939      CFConstantStringTypeDecl->addDecl(Field);
2940    }
2941
2942    CFConstantStringTypeDecl->completeDefinition();
2943  }
2944
2945  return getTagDeclType(CFConstantStringTypeDecl);
2946}
2947
2948void ASTContext::setCFConstantStringType(QualType T) {
2949  const RecordType *Rec = T->getAs<RecordType>();
2950  assert(Rec && "Invalid CFConstantStringType");
2951  CFConstantStringTypeDecl = Rec->getDecl();
2952}
2953
2954QualType ASTContext::getObjCFastEnumerationStateType() {
2955  if (!ObjCFastEnumerationStateTypeDecl) {
2956    ObjCFastEnumerationStateTypeDecl =
2957      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2958                       &Idents.get("__objcFastEnumerationState"));
2959    ObjCFastEnumerationStateTypeDecl->startDefinition();
2960
2961    QualType FieldTypes[] = {
2962      UnsignedLongTy,
2963      getPointerType(ObjCIdTypedefType),
2964      getPointerType(UnsignedLongTy),
2965      getConstantArrayType(UnsignedLongTy,
2966                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2967    };
2968
2969    for (size_t i = 0; i < 4; ++i) {
2970      FieldDecl *Field = FieldDecl::Create(*this,
2971                                           ObjCFastEnumerationStateTypeDecl,
2972                                           SourceLocation(), 0,
2973                                           FieldTypes[i], /*TInfo=*/0,
2974                                           /*BitWidth=*/0,
2975                                           /*Mutable=*/false);
2976      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2977    }
2978
2979    ObjCFastEnumerationStateTypeDecl->completeDefinition();
2980  }
2981
2982  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2983}
2984
2985QualType ASTContext::getBlockDescriptorType() {
2986  if (BlockDescriptorType)
2987    return getTagDeclType(BlockDescriptorType);
2988
2989  RecordDecl *T;
2990  // FIXME: Needs the FlagAppleBlock bit.
2991  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2992                       &Idents.get("__block_descriptor"));
2993  T->startDefinition();
2994
2995  QualType FieldTypes[] = {
2996    UnsignedLongTy,
2997    UnsignedLongTy,
2998  };
2999
3000  const char *FieldNames[] = {
3001    "reserved",
3002    "Size"
3003  };
3004
3005  for (size_t i = 0; i < 2; ++i) {
3006    FieldDecl *Field = FieldDecl::Create(*this,
3007                                         T,
3008                                         SourceLocation(),
3009                                         &Idents.get(FieldNames[i]),
3010                                         FieldTypes[i], /*TInfo=*/0,
3011                                         /*BitWidth=*/0,
3012                                         /*Mutable=*/false);
3013    T->addDecl(Field);
3014  }
3015
3016  T->completeDefinition();
3017
3018  BlockDescriptorType = T;
3019
3020  return getTagDeclType(BlockDescriptorType);
3021}
3022
3023void ASTContext::setBlockDescriptorType(QualType T) {
3024  const RecordType *Rec = T->getAs<RecordType>();
3025  assert(Rec && "Invalid BlockDescriptorType");
3026  BlockDescriptorType = Rec->getDecl();
3027}
3028
3029QualType ASTContext::getBlockDescriptorExtendedType() {
3030  if (BlockDescriptorExtendedType)
3031    return getTagDeclType(BlockDescriptorExtendedType);
3032
3033  RecordDecl *T;
3034  // FIXME: Needs the FlagAppleBlock bit.
3035  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3036                       &Idents.get("__block_descriptor_withcopydispose"));
3037  T->startDefinition();
3038
3039  QualType FieldTypes[] = {
3040    UnsignedLongTy,
3041    UnsignedLongTy,
3042    getPointerType(VoidPtrTy),
3043    getPointerType(VoidPtrTy)
3044  };
3045
3046  const char *FieldNames[] = {
3047    "reserved",
3048    "Size",
3049    "CopyFuncPtr",
3050    "DestroyFuncPtr"
3051  };
3052
3053  for (size_t i = 0; i < 4; ++i) {
3054    FieldDecl *Field = FieldDecl::Create(*this,
3055                                         T,
3056                                         SourceLocation(),
3057                                         &Idents.get(FieldNames[i]),
3058                                         FieldTypes[i], /*TInfo=*/0,
3059                                         /*BitWidth=*/0,
3060                                         /*Mutable=*/false);
3061    T->addDecl(Field);
3062  }
3063
3064  T->completeDefinition();
3065
3066  BlockDescriptorExtendedType = T;
3067
3068  return getTagDeclType(BlockDescriptorExtendedType);
3069}
3070
3071void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3072  const RecordType *Rec = T->getAs<RecordType>();
3073  assert(Rec && "Invalid BlockDescriptorType");
3074  BlockDescriptorExtendedType = Rec->getDecl();
3075}
3076
3077bool ASTContext::BlockRequiresCopying(QualType Ty) {
3078  if (Ty->isBlockPointerType())
3079    return true;
3080  if (isObjCNSObjectType(Ty))
3081    return true;
3082  if (Ty->isObjCObjectPointerType())
3083    return true;
3084  return false;
3085}
3086
3087QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
3088  //  type = struct __Block_byref_1_X {
3089  //    void *__isa;
3090  //    struct __Block_byref_1_X *__forwarding;
3091  //    unsigned int __flags;
3092  //    unsigned int __size;
3093  //    void *__copy_helper;		// as needed
3094  //    void *__destroy_help		// as needed
3095  //    int X;
3096  //  } *
3097
3098  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3099
3100  // FIXME: Move up
3101  static unsigned int UniqueBlockByRefTypeID = 0;
3102  llvm::SmallString<36> Name;
3103  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3104                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3105  RecordDecl *T;
3106  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3107                       &Idents.get(Name.str()));
3108  T->startDefinition();
3109  QualType Int32Ty = IntTy;
3110  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3111  QualType FieldTypes[] = {
3112    getPointerType(VoidPtrTy),
3113    getPointerType(getTagDeclType(T)),
3114    Int32Ty,
3115    Int32Ty,
3116    getPointerType(VoidPtrTy),
3117    getPointerType(VoidPtrTy),
3118    Ty
3119  };
3120
3121  const char *FieldNames[] = {
3122    "__isa",
3123    "__forwarding",
3124    "__flags",
3125    "__size",
3126    "__copy_helper",
3127    "__destroy_helper",
3128    DeclName,
3129  };
3130
3131  for (size_t i = 0; i < 7; ++i) {
3132    if (!HasCopyAndDispose && i >=4 && i <= 5)
3133      continue;
3134    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3135                                         &Idents.get(FieldNames[i]),
3136                                         FieldTypes[i], /*TInfo=*/0,
3137                                         /*BitWidth=*/0, /*Mutable=*/false);
3138    T->addDecl(Field);
3139  }
3140
3141  T->completeDefinition();
3142
3143  return getPointerType(getTagDeclType(T));
3144}
3145
3146
3147QualType ASTContext::getBlockParmType(
3148  bool BlockHasCopyDispose,
3149  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
3150  // FIXME: Move up
3151  static unsigned int UniqueBlockParmTypeID = 0;
3152  llvm::SmallString<36> Name;
3153  llvm::raw_svector_ostream(Name) << "__block_literal_"
3154                                  << ++UniqueBlockParmTypeID;
3155  RecordDecl *T;
3156  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
3157                       &Idents.get(Name.str()));
3158  T->startDefinition();
3159  QualType FieldTypes[] = {
3160    getPointerType(VoidPtrTy),
3161    IntTy,
3162    IntTy,
3163    getPointerType(VoidPtrTy),
3164    (BlockHasCopyDispose ?
3165     getPointerType(getBlockDescriptorExtendedType()) :
3166     getPointerType(getBlockDescriptorType()))
3167  };
3168
3169  const char *FieldNames[] = {
3170    "__isa",
3171    "__flags",
3172    "__reserved",
3173    "__FuncPtr",
3174    "__descriptor"
3175  };
3176
3177  for (size_t i = 0; i < 5; ++i) {
3178    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3179                                         &Idents.get(FieldNames[i]),
3180                                         FieldTypes[i], /*TInfo=*/0,
3181                                         /*BitWidth=*/0, /*Mutable=*/false);
3182    T->addDecl(Field);
3183  }
3184
3185  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
3186    const Expr *E = BlockDeclRefDecls[i];
3187    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
3188    clang::IdentifierInfo *Name = 0;
3189    if (BDRE) {
3190      const ValueDecl *D = BDRE->getDecl();
3191      Name = &Idents.get(D->getName());
3192    }
3193    QualType FieldType = E->getType();
3194
3195    if (BDRE && BDRE->isByRef())
3196      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
3197                                 FieldType);
3198
3199    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3200                                         Name, FieldType, /*TInfo=*/0,
3201                                         /*BitWidth=*/0, /*Mutable=*/false);
3202    T->addDecl(Field);
3203  }
3204
3205  T->completeDefinition();
3206
3207  return getPointerType(getTagDeclType(T));
3208}
3209
3210void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3211  const RecordType *Rec = T->getAs<RecordType>();
3212  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3213  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3214}
3215
3216// This returns true if a type has been typedefed to BOOL:
3217// typedef <type> BOOL;
3218static bool isTypeTypedefedAsBOOL(QualType T) {
3219  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3220    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3221      return II->isStr("BOOL");
3222
3223  return false;
3224}
3225
3226/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3227/// purpose.
3228CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
3229  CharUnits sz = getTypeSizeInChars(type);
3230
3231  // Make all integer and enum types at least as large as an int
3232  if (sz.isPositive() && type->isIntegralType())
3233    sz = std::max(sz, getTypeSizeInChars(IntTy));
3234  // Treat arrays as pointers, since that's how they're passed in.
3235  else if (type->isArrayType())
3236    sz = getTypeSizeInChars(VoidPtrTy);
3237  return sz;
3238}
3239
3240static inline
3241std::string charUnitsToString(const CharUnits &CU) {
3242  return llvm::itostr(CU.getQuantity());
3243}
3244
3245/// getObjCEncodingForBlockDecl - Return the encoded type for this method
3246/// declaration.
3247void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr,
3248                                             std::string& S) {
3249  const BlockDecl *Decl = Expr->getBlockDecl();
3250  QualType BlockTy =
3251      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3252  // Encode result type.
3253  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
3254  // Compute size of all parameters.
3255  // Start with computing size of a pointer in number of bytes.
3256  // FIXME: There might(should) be a better way of doing this computation!
3257  SourceLocation Loc;
3258  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3259  CharUnits ParmOffset = PtrSize;
3260  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3261       E = Decl->param_end(); PI != E; ++PI) {
3262    QualType PType = (*PI)->getType();
3263    CharUnits sz = getObjCEncodingTypeSize(PType);
3264    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3265    ParmOffset += sz;
3266  }
3267  // Size of the argument frame
3268  S += charUnitsToString(ParmOffset);
3269  // Block pointer and offset.
3270  S += "@?0";
3271  ParmOffset = PtrSize;
3272
3273  // Argument types.
3274  ParmOffset = PtrSize;
3275  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3276       Decl->param_end(); PI != E; ++PI) {
3277    ParmVarDecl *PVDecl = *PI;
3278    QualType PType = PVDecl->getOriginalType();
3279    if (const ArrayType *AT =
3280          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3281      // Use array's original type only if it has known number of
3282      // elements.
3283      if (!isa<ConstantArrayType>(AT))
3284        PType = PVDecl->getType();
3285    } else if (PType->isFunctionType())
3286      PType = PVDecl->getType();
3287    getObjCEncodingForType(PType, S);
3288    S += charUnitsToString(ParmOffset);
3289    ParmOffset += getObjCEncodingTypeSize(PType);
3290  }
3291}
3292
3293/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3294/// declaration.
3295void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3296                                              std::string& S) {
3297  // FIXME: This is not very efficient.
3298  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3299  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3300  // Encode result type.
3301  getObjCEncodingForType(Decl->getResultType(), S);
3302  // Compute size of all parameters.
3303  // Start with computing size of a pointer in number of bytes.
3304  // FIXME: There might(should) be a better way of doing this computation!
3305  SourceLocation Loc;
3306  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3307  // The first two arguments (self and _cmd) are pointers; account for
3308  // their size.
3309  CharUnits ParmOffset = 2 * PtrSize;
3310  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3311       E = Decl->param_end(); PI != E; ++PI) {
3312    QualType PType = (*PI)->getType();
3313    CharUnits sz = getObjCEncodingTypeSize(PType);
3314    assert (sz.isPositive() &&
3315        "getObjCEncodingForMethodDecl - Incomplete param type");
3316    ParmOffset += sz;
3317  }
3318  S += charUnitsToString(ParmOffset);
3319  S += "@0:";
3320  S += charUnitsToString(PtrSize);
3321
3322  // Argument types.
3323  ParmOffset = 2 * PtrSize;
3324  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3325       E = Decl->param_end(); PI != E; ++PI) {
3326    ParmVarDecl *PVDecl = *PI;
3327    QualType PType = PVDecl->getOriginalType();
3328    if (const ArrayType *AT =
3329          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3330      // Use array's original type only if it has known number of
3331      // elements.
3332      if (!isa<ConstantArrayType>(AT))
3333        PType = PVDecl->getType();
3334    } else if (PType->isFunctionType())
3335      PType = PVDecl->getType();
3336    // Process argument qualifiers for user supplied arguments; such as,
3337    // 'in', 'inout', etc.
3338    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3339    getObjCEncodingForType(PType, S);
3340    S += charUnitsToString(ParmOffset);
3341    ParmOffset += getObjCEncodingTypeSize(PType);
3342  }
3343}
3344
3345/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3346/// property declaration. If non-NULL, Container must be either an
3347/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3348/// NULL when getting encodings for protocol properties.
3349/// Property attributes are stored as a comma-delimited C string. The simple
3350/// attributes readonly and bycopy are encoded as single characters. The
3351/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3352/// encoded as single characters, followed by an identifier. Property types
3353/// are also encoded as a parametrized attribute. The characters used to encode
3354/// these attributes are defined by the following enumeration:
3355/// @code
3356/// enum PropertyAttributes {
3357/// kPropertyReadOnly = 'R',   // property is read-only.
3358/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3359/// kPropertyByref = '&',  // property is a reference to the value last assigned
3360/// kPropertyDynamic = 'D',    // property is dynamic
3361/// kPropertyGetter = 'G',     // followed by getter selector name
3362/// kPropertySetter = 'S',     // followed by setter selector name
3363/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3364/// kPropertyType = 't'              // followed by old-style type encoding.
3365/// kPropertyWeak = 'W'              // 'weak' property
3366/// kPropertyStrong = 'P'            // property GC'able
3367/// kPropertyNonAtomic = 'N'         // property non-atomic
3368/// };
3369/// @endcode
3370void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3371                                                const Decl *Container,
3372                                                std::string& S) {
3373  // Collect information from the property implementation decl(s).
3374  bool Dynamic = false;
3375  ObjCPropertyImplDecl *SynthesizePID = 0;
3376
3377  // FIXME: Duplicated code due to poor abstraction.
3378  if (Container) {
3379    if (const ObjCCategoryImplDecl *CID =
3380        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3381      for (ObjCCategoryImplDecl::propimpl_iterator
3382             i = CID->propimpl_begin(), e = CID->propimpl_end();
3383           i != e; ++i) {
3384        ObjCPropertyImplDecl *PID = *i;
3385        if (PID->getPropertyDecl() == PD) {
3386          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3387            Dynamic = true;
3388          } else {
3389            SynthesizePID = PID;
3390          }
3391        }
3392      }
3393    } else {
3394      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3395      for (ObjCCategoryImplDecl::propimpl_iterator
3396             i = OID->propimpl_begin(), e = OID->propimpl_end();
3397           i != e; ++i) {
3398        ObjCPropertyImplDecl *PID = *i;
3399        if (PID->getPropertyDecl() == PD) {
3400          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3401            Dynamic = true;
3402          } else {
3403            SynthesizePID = PID;
3404          }
3405        }
3406      }
3407    }
3408  }
3409
3410  // FIXME: This is not very efficient.
3411  S = "T";
3412
3413  // Encode result type.
3414  // GCC has some special rules regarding encoding of properties which
3415  // closely resembles encoding of ivars.
3416  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3417                             true /* outermost type */,
3418                             true /* encoding for property */);
3419
3420  if (PD->isReadOnly()) {
3421    S += ",R";
3422  } else {
3423    switch (PD->getSetterKind()) {
3424    case ObjCPropertyDecl::Assign: break;
3425    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3426    case ObjCPropertyDecl::Retain: S += ",&"; break;
3427    }
3428  }
3429
3430  // It really isn't clear at all what this means, since properties
3431  // are "dynamic by default".
3432  if (Dynamic)
3433    S += ",D";
3434
3435  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3436    S += ",N";
3437
3438  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3439    S += ",G";
3440    S += PD->getGetterName().getAsString();
3441  }
3442
3443  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3444    S += ",S";
3445    S += PD->getSetterName().getAsString();
3446  }
3447
3448  if (SynthesizePID) {
3449    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3450    S += ",V";
3451    S += OID->getNameAsString();
3452  }
3453
3454  // FIXME: OBJCGC: weak & strong
3455}
3456
3457/// getLegacyIntegralTypeEncoding -
3458/// Another legacy compatibility encoding: 32-bit longs are encoded as
3459/// 'l' or 'L' , but not always.  For typedefs, we need to use
3460/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3461///
3462void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3463  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3464    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3465      if (BT->getKind() == BuiltinType::ULong &&
3466          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3467        PointeeTy = UnsignedIntTy;
3468      else
3469        if (BT->getKind() == BuiltinType::Long &&
3470            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3471          PointeeTy = IntTy;
3472    }
3473  }
3474}
3475
3476void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3477                                        const FieldDecl *Field) {
3478  // We follow the behavior of gcc, expanding structures which are
3479  // directly pointed to, and expanding embedded structures. Note that
3480  // these rules are sufficient to prevent recursive encoding of the
3481  // same type.
3482  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3483                             true /* outermost type */);
3484}
3485
3486static void EncodeBitField(const ASTContext *Context, std::string& S,
3487                           const FieldDecl *FD) {
3488  const Expr *E = FD->getBitWidth();
3489  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3490  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3491  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3492  S += 'b';
3493  S += llvm::utostr(N);
3494}
3495
3496// FIXME: Use SmallString for accumulating string.
3497void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3498                                            bool ExpandPointedToStructures,
3499                                            bool ExpandStructures,
3500                                            const FieldDecl *FD,
3501                                            bool OutermostType,
3502                                            bool EncodingProperty) {
3503  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3504    if (FD && FD->isBitField())
3505      return EncodeBitField(this, S, FD);
3506    char encoding;
3507    switch (BT->getKind()) {
3508    default: assert(0 && "Unhandled builtin type kind");
3509    case BuiltinType::Void:       encoding = 'v'; break;
3510    case BuiltinType::Bool:       encoding = 'B'; break;
3511    case BuiltinType::Char_U:
3512    case BuiltinType::UChar:      encoding = 'C'; break;
3513    case BuiltinType::UShort:     encoding = 'S'; break;
3514    case BuiltinType::UInt:       encoding = 'I'; break;
3515    case BuiltinType::ULong:
3516        encoding =
3517          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3518        break;
3519    case BuiltinType::UInt128:    encoding = 'T'; break;
3520    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3521    case BuiltinType::Char_S:
3522    case BuiltinType::SChar:      encoding = 'c'; break;
3523    case BuiltinType::Short:      encoding = 's'; break;
3524    case BuiltinType::Int:        encoding = 'i'; break;
3525    case BuiltinType::Long:
3526      encoding =
3527        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3528      break;
3529    case BuiltinType::LongLong:   encoding = 'q'; break;
3530    case BuiltinType::Int128:     encoding = 't'; break;
3531    case BuiltinType::Float:      encoding = 'f'; break;
3532    case BuiltinType::Double:     encoding = 'd'; break;
3533    case BuiltinType::LongDouble: encoding = 'd'; break;
3534    }
3535
3536    S += encoding;
3537    return;
3538  }
3539
3540  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3541    S += 'j';
3542    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3543                               false);
3544    return;
3545  }
3546
3547  if (const PointerType *PT = T->getAs<PointerType>()) {
3548    if (PT->isObjCSelType()) {
3549      S += ':';
3550      return;
3551    }
3552    QualType PointeeTy = PT->getPointeeType();
3553
3554    bool isReadOnly = false;
3555    // For historical/compatibility reasons, the read-only qualifier of the
3556    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3557    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3558    // Also, do not emit the 'r' for anything but the outermost type!
3559    if (isa<TypedefType>(T.getTypePtr())) {
3560      if (OutermostType && T.isConstQualified()) {
3561        isReadOnly = true;
3562        S += 'r';
3563      }
3564    } else if (OutermostType) {
3565      QualType P = PointeeTy;
3566      while (P->getAs<PointerType>())
3567        P = P->getAs<PointerType>()->getPointeeType();
3568      if (P.isConstQualified()) {
3569        isReadOnly = true;
3570        S += 'r';
3571      }
3572    }
3573    if (isReadOnly) {
3574      // Another legacy compatibility encoding. Some ObjC qualifier and type
3575      // combinations need to be rearranged.
3576      // Rewrite "in const" from "nr" to "rn"
3577      const char * s = S.c_str();
3578      int len = S.length();
3579      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3580        std::string replace = "rn";
3581        S.replace(S.end()-2, S.end(), replace);
3582      }
3583    }
3584
3585    if (PointeeTy->isCharType()) {
3586      // char pointer types should be encoded as '*' unless it is a
3587      // type that has been typedef'd to 'BOOL'.
3588      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3589        S += '*';
3590        return;
3591      }
3592    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3593      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3594      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3595        S += '#';
3596        return;
3597      }
3598      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3599      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3600        S += '@';
3601        return;
3602      }
3603      // fall through...
3604    }
3605    S += '^';
3606    getLegacyIntegralTypeEncoding(PointeeTy);
3607
3608    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3609                               NULL);
3610    return;
3611  }
3612
3613  if (const ArrayType *AT =
3614      // Ignore type qualifiers etc.
3615        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3616    if (isa<IncompleteArrayType>(AT)) {
3617      // Incomplete arrays are encoded as a pointer to the array element.
3618      S += '^';
3619
3620      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3621                                 false, ExpandStructures, FD);
3622    } else {
3623      S += '[';
3624
3625      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3626        S += llvm::utostr(CAT->getSize().getZExtValue());
3627      else {
3628        //Variable length arrays are encoded as a regular array with 0 elements.
3629        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3630        S += '0';
3631      }
3632
3633      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3634                                 false, ExpandStructures, FD);
3635      S += ']';
3636    }
3637    return;
3638  }
3639
3640  if (T->getAs<FunctionType>()) {
3641    S += '?';
3642    return;
3643  }
3644
3645  if (const RecordType *RTy = T->getAs<RecordType>()) {
3646    RecordDecl *RDecl = RTy->getDecl();
3647    S += RDecl->isUnion() ? '(' : '{';
3648    // Anonymous structures print as '?'
3649    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3650      S += II->getName();
3651    } else {
3652      S += '?';
3653    }
3654    if (ExpandStructures) {
3655      S += '=';
3656      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3657                                   FieldEnd = RDecl->field_end();
3658           Field != FieldEnd; ++Field) {
3659        if (FD) {
3660          S += '"';
3661          S += Field->getNameAsString();
3662          S += '"';
3663        }
3664
3665        // Special case bit-fields.
3666        if (Field->isBitField()) {
3667          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3668                                     (*Field));
3669        } else {
3670          QualType qt = Field->getType();
3671          getLegacyIntegralTypeEncoding(qt);
3672          getObjCEncodingForTypeImpl(qt, S, false, true,
3673                                     FD);
3674        }
3675      }
3676    }
3677    S += RDecl->isUnion() ? ')' : '}';
3678    return;
3679  }
3680
3681  if (T->isEnumeralType()) {
3682    if (FD && FD->isBitField())
3683      EncodeBitField(this, S, FD);
3684    else
3685      S += 'i';
3686    return;
3687  }
3688
3689  if (T->isBlockPointerType()) {
3690    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3691    return;
3692  }
3693
3694  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3695    // @encode(class_name)
3696    ObjCInterfaceDecl *OI = OIT->getDecl();
3697    S += '{';
3698    const IdentifierInfo *II = OI->getIdentifier();
3699    S += II->getName();
3700    S += '=';
3701    llvm::SmallVector<FieldDecl*, 32> RecFields;
3702    CollectObjCIvars(OI, RecFields);
3703    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3704      if (RecFields[i]->isBitField())
3705        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3706                                   RecFields[i]);
3707      else
3708        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3709                                   FD);
3710    }
3711    S += '}';
3712    return;
3713  }
3714
3715  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3716    if (OPT->isObjCIdType()) {
3717      S += '@';
3718      return;
3719    }
3720
3721    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
3722      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
3723      // Since this is a binary compatibility issue, need to consult with runtime
3724      // folks. Fortunately, this is a *very* obsure construct.
3725      S += '#';
3726      return;
3727    }
3728
3729    if (OPT->isObjCQualifiedIdType()) {
3730      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3731                                 ExpandPointedToStructures,
3732                                 ExpandStructures, FD);
3733      if (FD || EncodingProperty) {
3734        // Note that we do extended encoding of protocol qualifer list
3735        // Only when doing ivar or property encoding.
3736        S += '"';
3737        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3738             E = OPT->qual_end(); I != E; ++I) {
3739          S += '<';
3740          S += (*I)->getNameAsString();
3741          S += '>';
3742        }
3743        S += '"';
3744      }
3745      return;
3746    }
3747
3748    QualType PointeeTy = OPT->getPointeeType();
3749    if (!EncodingProperty &&
3750        isa<TypedefType>(PointeeTy.getTypePtr())) {
3751      // Another historical/compatibility reason.
3752      // We encode the underlying type which comes out as
3753      // {...};
3754      S += '^';
3755      getObjCEncodingForTypeImpl(PointeeTy, S,
3756                                 false, ExpandPointedToStructures,
3757                                 NULL);
3758      return;
3759    }
3760
3761    S += '@';
3762    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
3763      S += '"';
3764      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
3765      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3766           E = OPT->qual_end(); I != E; ++I) {
3767        S += '<';
3768        S += (*I)->getNameAsString();
3769        S += '>';
3770      }
3771      S += '"';
3772    }
3773    return;
3774  }
3775
3776  assert(0 && "@encode for type not implemented!");
3777}
3778
3779void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3780                                                 std::string& S) const {
3781  if (QT & Decl::OBJC_TQ_In)
3782    S += 'n';
3783  if (QT & Decl::OBJC_TQ_Inout)
3784    S += 'N';
3785  if (QT & Decl::OBJC_TQ_Out)
3786    S += 'o';
3787  if (QT & Decl::OBJC_TQ_Bycopy)
3788    S += 'O';
3789  if (QT & Decl::OBJC_TQ_Byref)
3790    S += 'R';
3791  if (QT & Decl::OBJC_TQ_Oneway)
3792    S += 'V';
3793}
3794
3795void ASTContext::setBuiltinVaListType(QualType T) {
3796  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3797
3798  BuiltinVaListType = T;
3799}
3800
3801void ASTContext::setObjCIdType(QualType T) {
3802  ObjCIdTypedefType = T;
3803}
3804
3805void ASTContext::setObjCSelType(QualType T) {
3806  ObjCSelTypedefType = T;
3807}
3808
3809void ASTContext::setObjCProtoType(QualType QT) {
3810  ObjCProtoType = QT;
3811}
3812
3813void ASTContext::setObjCClassType(QualType T) {
3814  ObjCClassTypedefType = T;
3815}
3816
3817void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3818  assert(ObjCConstantStringType.isNull() &&
3819         "'NSConstantString' type already set!");
3820
3821  ObjCConstantStringType = getObjCInterfaceType(Decl);
3822}
3823
3824/// \brief Retrieve the template name that corresponds to a non-empty
3825/// lookup.
3826TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
3827                                                   UnresolvedSetIterator End) {
3828  unsigned size = End - Begin;
3829  assert(size > 1 && "set is not overloaded!");
3830
3831  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
3832                          size * sizeof(FunctionTemplateDecl*));
3833  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
3834
3835  NamedDecl **Storage = OT->getStorage();
3836  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
3837    NamedDecl *D = *I;
3838    assert(isa<FunctionTemplateDecl>(D) ||
3839           (isa<UsingShadowDecl>(D) &&
3840            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
3841    *Storage++ = D;
3842  }
3843
3844  return TemplateName(OT);
3845}
3846
3847/// \brief Retrieve the template name that represents a qualified
3848/// template name such as \c std::vector.
3849TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3850                                                  bool TemplateKeyword,
3851                                                  TemplateDecl *Template) {
3852  // FIXME: Canonicalization?
3853  llvm::FoldingSetNodeID ID;
3854  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3855
3856  void *InsertPos = 0;
3857  QualifiedTemplateName *QTN =
3858    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3859  if (!QTN) {
3860    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3861    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3862  }
3863
3864  return TemplateName(QTN);
3865}
3866
3867/// \brief Retrieve the template name that represents a dependent
3868/// template name such as \c MetaFun::template apply.
3869TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3870                                                  const IdentifierInfo *Name) {
3871  assert((!NNS || NNS->isDependent()) &&
3872         "Nested name specifier must be dependent");
3873
3874  llvm::FoldingSetNodeID ID;
3875  DependentTemplateName::Profile(ID, NNS, Name);
3876
3877  void *InsertPos = 0;
3878  DependentTemplateName *QTN =
3879    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3880
3881  if (QTN)
3882    return TemplateName(QTN);
3883
3884  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3885  if (CanonNNS == NNS) {
3886    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3887  } else {
3888    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3889    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3890    DependentTemplateName *CheckQTN =
3891      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3892    assert(!CheckQTN && "Dependent type name canonicalization broken");
3893    (void)CheckQTN;
3894  }
3895
3896  DependentTemplateNames.InsertNode(QTN, InsertPos);
3897  return TemplateName(QTN);
3898}
3899
3900/// \brief Retrieve the template name that represents a dependent
3901/// template name such as \c MetaFun::template operator+.
3902TemplateName
3903ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3904                                     OverloadedOperatorKind Operator) {
3905  assert((!NNS || NNS->isDependent()) &&
3906         "Nested name specifier must be dependent");
3907
3908  llvm::FoldingSetNodeID ID;
3909  DependentTemplateName::Profile(ID, NNS, Operator);
3910
3911  void *InsertPos = 0;
3912  DependentTemplateName *QTN
3913    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3914
3915  if (QTN)
3916    return TemplateName(QTN);
3917
3918  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3919  if (CanonNNS == NNS) {
3920    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
3921  } else {
3922    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
3923    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
3924
3925    DependentTemplateName *CheckQTN
3926      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3927    assert(!CheckQTN && "Dependent template name canonicalization broken");
3928    (void)CheckQTN;
3929  }
3930
3931  DependentTemplateNames.InsertNode(QTN, InsertPos);
3932  return TemplateName(QTN);
3933}
3934
3935/// getFromTargetType - Given one of the integer types provided by
3936/// TargetInfo, produce the corresponding type. The unsigned @p Type
3937/// is actually a value of type @c TargetInfo::IntType.
3938CanQualType ASTContext::getFromTargetType(unsigned Type) const {
3939  switch (Type) {
3940  case TargetInfo::NoInt: return CanQualType();
3941  case TargetInfo::SignedShort: return ShortTy;
3942  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3943  case TargetInfo::SignedInt: return IntTy;
3944  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3945  case TargetInfo::SignedLong: return LongTy;
3946  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3947  case TargetInfo::SignedLongLong: return LongLongTy;
3948  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3949  }
3950
3951  assert(false && "Unhandled TargetInfo::IntType value");
3952  return CanQualType();
3953}
3954
3955//===----------------------------------------------------------------------===//
3956//                        Type Predicates.
3957//===----------------------------------------------------------------------===//
3958
3959/// isObjCNSObjectType - Return true if this is an NSObject object using
3960/// NSObject attribute on a c-style pointer type.
3961/// FIXME - Make it work directly on types.
3962/// FIXME: Move to Type.
3963///
3964bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3965  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3966    if (TypedefDecl *TD = TDT->getDecl())
3967      if (TD->getAttr<ObjCNSObjectAttr>())
3968        return true;
3969  }
3970  return false;
3971}
3972
3973/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3974/// garbage collection attribute.
3975///
3976Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3977  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3978  if (getLangOptions().ObjC1 &&
3979      getLangOptions().getGCMode() != LangOptions::NonGC) {
3980    GCAttrs = Ty.getObjCGCAttr();
3981    // Default behavious under objective-c's gc is for objective-c pointers
3982    // (or pointers to them) be treated as though they were declared
3983    // as __strong.
3984    if (GCAttrs == Qualifiers::GCNone) {
3985      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3986        GCAttrs = Qualifiers::Strong;
3987      else if (Ty->isPointerType())
3988        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3989    }
3990    // Non-pointers have none gc'able attribute regardless of the attribute
3991    // set on them.
3992    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3993      return Qualifiers::GCNone;
3994  }
3995  return GCAttrs;
3996}
3997
3998//===----------------------------------------------------------------------===//
3999//                        Type Compatibility Testing
4000//===----------------------------------------------------------------------===//
4001
4002/// areCompatVectorTypes - Return true if the two specified vector types are
4003/// compatible.
4004static bool areCompatVectorTypes(const VectorType *LHS,
4005                                 const VectorType *RHS) {
4006  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4007  return LHS->getElementType() == RHS->getElementType() &&
4008         LHS->getNumElements() == RHS->getNumElements();
4009}
4010
4011//===----------------------------------------------------------------------===//
4012// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4013//===----------------------------------------------------------------------===//
4014
4015/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4016/// inheritance hierarchy of 'rProto'.
4017bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4018                                                ObjCProtocolDecl *rProto) {
4019  if (lProto == rProto)
4020    return true;
4021  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4022       E = rProto->protocol_end(); PI != E; ++PI)
4023    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4024      return true;
4025  return false;
4026}
4027
4028/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4029/// return true if lhs's protocols conform to rhs's protocol; false
4030/// otherwise.
4031bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4032  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4033    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4034  return false;
4035}
4036
4037/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4038/// ObjCQualifiedIDType.
4039bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4040                                                   bool compare) {
4041  // Allow id<P..> and an 'id' or void* type in all cases.
4042  if (lhs->isVoidPointerType() ||
4043      lhs->isObjCIdType() || lhs->isObjCClassType())
4044    return true;
4045  else if (rhs->isVoidPointerType() ||
4046           rhs->isObjCIdType() || rhs->isObjCClassType())
4047    return true;
4048
4049  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4050    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4051
4052    if (!rhsOPT) return false;
4053
4054    if (rhsOPT->qual_empty()) {
4055      // If the RHS is a unqualified interface pointer "NSString*",
4056      // make sure we check the class hierarchy.
4057      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4058        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4059             E = lhsQID->qual_end(); I != E; ++I) {
4060          // when comparing an id<P> on lhs with a static type on rhs,
4061          // see if static class implements all of id's protocols, directly or
4062          // through its super class and categories.
4063          if (!rhsID->ClassImplementsProtocol(*I, true))
4064            return false;
4065        }
4066      }
4067      // If there are no qualifiers and no interface, we have an 'id'.
4068      return true;
4069    }
4070    // Both the right and left sides have qualifiers.
4071    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4072         E = lhsQID->qual_end(); I != E; ++I) {
4073      ObjCProtocolDecl *lhsProto = *I;
4074      bool match = false;
4075
4076      // when comparing an id<P> on lhs with a static type on rhs,
4077      // see if static class implements all of id's protocols, directly or
4078      // through its super class and categories.
4079      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4080           E = rhsOPT->qual_end(); J != E; ++J) {
4081        ObjCProtocolDecl *rhsProto = *J;
4082        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4083            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4084          match = true;
4085          break;
4086        }
4087      }
4088      // If the RHS is a qualified interface pointer "NSString<P>*",
4089      // make sure we check the class hierarchy.
4090      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4091        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4092             E = lhsQID->qual_end(); I != E; ++I) {
4093          // when comparing an id<P> on lhs with a static type on rhs,
4094          // see if static class implements all of id's protocols, directly or
4095          // through its super class and categories.
4096          if (rhsID->ClassImplementsProtocol(*I, true)) {
4097            match = true;
4098            break;
4099          }
4100        }
4101      }
4102      if (!match)
4103        return false;
4104    }
4105
4106    return true;
4107  }
4108
4109  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4110  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4111
4112  if (const ObjCObjectPointerType *lhsOPT =
4113        lhs->getAsObjCInterfacePointerType()) {
4114    if (lhsOPT->qual_empty()) {
4115      bool match = false;
4116      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4117        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
4118             E = rhsQID->qual_end(); I != E; ++I) {
4119          // when comparing an id<P> on lhs with a static type on rhs,
4120          // see if static class implements all of id's protocols, directly or
4121          // through its super class and categories.
4122          if (lhsID->ClassImplementsProtocol(*I, true)) {
4123            match = true;
4124            break;
4125          }
4126        }
4127        if (!match)
4128          return false;
4129      }
4130      return true;
4131    }
4132    // Both the right and left sides have qualifiers.
4133    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4134         E = lhsOPT->qual_end(); I != E; ++I) {
4135      ObjCProtocolDecl *lhsProto = *I;
4136      bool match = false;
4137
4138      // when comparing an id<P> on lhs with a static type on rhs,
4139      // see if static class implements all of id's protocols, directly or
4140      // through its super class and categories.
4141      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4142           E = rhsQID->qual_end(); J != E; ++J) {
4143        ObjCProtocolDecl *rhsProto = *J;
4144        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4145            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4146          match = true;
4147          break;
4148        }
4149      }
4150      if (!match)
4151        return false;
4152    }
4153    return true;
4154  }
4155  return false;
4156}
4157
4158/// canAssignObjCInterfaces - Return true if the two interface types are
4159/// compatible for assignment from RHS to LHS.  This handles validation of any
4160/// protocol qualifiers on the LHS or RHS.
4161///
4162bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4163                                         const ObjCObjectPointerType *RHSOPT) {
4164  // If either type represents the built-in 'id' or 'Class' types, return true.
4165  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
4166    return true;
4167
4168  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4169    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4170                                             QualType(RHSOPT,0),
4171                                             false);
4172
4173  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4174  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4175  if (LHS && RHS) // We have 2 user-defined types.
4176    return canAssignObjCInterfaces(LHS, RHS);
4177
4178  return false;
4179}
4180
4181/// getIntersectionOfProtocols - This routine finds the intersection of set
4182/// of protocols inherited from two distinct objective-c pointer objects.
4183/// It is used to build composite qualifier list of the composite type of
4184/// the conditional expression involving two objective-c pointer objects.
4185static
4186void getIntersectionOfProtocols(ASTContext &Context,
4187                                const ObjCObjectPointerType *LHSOPT,
4188                                const ObjCObjectPointerType *RHSOPT,
4189      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4190
4191  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4192  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4193
4194  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4195  unsigned LHSNumProtocols = LHS->getNumProtocols();
4196  if (LHSNumProtocols > 0)
4197    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4198  else {
4199    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4200    Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
4201    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4202                                LHSInheritedProtocols.end());
4203  }
4204
4205  unsigned RHSNumProtocols = RHS->getNumProtocols();
4206  if (RHSNumProtocols > 0) {
4207    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
4208    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4209      if (InheritedProtocolSet.count(RHSProtocols[i]))
4210        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4211  }
4212  else {
4213    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4214    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
4215    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4216         RHSInheritedProtocols.begin(),
4217         E = RHSInheritedProtocols.end(); I != E; ++I)
4218      if (InheritedProtocolSet.count((*I)))
4219        IntersectionOfProtocols.push_back((*I));
4220  }
4221}
4222
4223/// areCommonBaseCompatible - Returns common base class of the two classes if
4224/// one found. Note that this is O'2 algorithm. But it will be called as the
4225/// last type comparison in a ?-exp of ObjC pointer types before a
4226/// warning is issued. So, its invokation is extremely rare.
4227QualType ASTContext::areCommonBaseCompatible(
4228                                          const ObjCObjectPointerType *LHSOPT,
4229                                          const ObjCObjectPointerType *RHSOPT) {
4230  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4231  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4232  if (!LHS || !RHS)
4233    return QualType();
4234
4235  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
4236    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
4237    LHS = LHSTy->getAs<ObjCInterfaceType>();
4238    if (canAssignObjCInterfaces(LHS, RHS)) {
4239      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
4240      getIntersectionOfProtocols(*this,
4241                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
4242      if (IntersectionOfProtocols.empty())
4243        LHSTy = getObjCObjectPointerType(LHSTy);
4244      else
4245        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
4246                                                IntersectionOfProtocols.size());
4247      return LHSTy;
4248    }
4249  }
4250
4251  return QualType();
4252}
4253
4254bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
4255                                         const ObjCInterfaceType *RHS) {
4256  // Verify that the base decls are compatible: the RHS must be a subclass of
4257  // the LHS.
4258  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4259    return false;
4260
4261  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4262  // protocol qualified at all, then we are good.
4263  if (LHS->getNumProtocols() == 0)
4264    return true;
4265
4266  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4267  // isn't a superset.
4268  if (RHS->getNumProtocols() == 0)
4269    return true;  // FIXME: should return false!
4270
4271  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
4272                                        LHSPE = LHS->qual_end();
4273       LHSPI != LHSPE; LHSPI++) {
4274    bool RHSImplementsProtocol = false;
4275
4276    // If the RHS doesn't implement the protocol on the left, the types
4277    // are incompatible.
4278    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
4279                                          RHSPE = RHS->qual_end();
4280         RHSPI != RHSPE; RHSPI++) {
4281      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4282        RHSImplementsProtocol = true;
4283        break;
4284      }
4285    }
4286    // FIXME: For better diagnostics, consider passing back the protocol name.
4287    if (!RHSImplementsProtocol)
4288      return false;
4289  }
4290  // The RHS implements all protocols listed on the LHS.
4291  return true;
4292}
4293
4294bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4295  // get the "pointed to" types
4296  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4297  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4298
4299  if (!LHSOPT || !RHSOPT)
4300    return false;
4301
4302  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4303         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4304}
4305
4306/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4307/// both shall have the identically qualified version of a compatible type.
4308/// C99 6.2.7p1: Two types have compatible types if their types are the
4309/// same. See 6.7.[2,3,5] for additional rules.
4310bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
4311  if (getLangOptions().CPlusPlus)
4312    return hasSameType(LHS, RHS);
4313
4314  return !mergeTypes(LHS, RHS).isNull();
4315}
4316
4317QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
4318  const FunctionType *lbase = lhs->getAs<FunctionType>();
4319  const FunctionType *rbase = rhs->getAs<FunctionType>();
4320  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
4321  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
4322  bool allLTypes = true;
4323  bool allRTypes = true;
4324
4325  // Check return type
4326  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
4327  if (retType.isNull()) return QualType();
4328  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
4329    allLTypes = false;
4330  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
4331    allRTypes = false;
4332  // FIXME: double check this
4333  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
4334  if (NoReturn != lbase->getNoReturnAttr())
4335    allLTypes = false;
4336  if (NoReturn != rbase->getNoReturnAttr())
4337    allRTypes = false;
4338  CallingConv lcc = lbase->getCallConv();
4339  CallingConv rcc = rbase->getCallConv();
4340  // Compatible functions must have compatible calling conventions
4341  if (!isSameCallConv(lcc, rcc))
4342    return QualType();
4343
4344  if (lproto && rproto) { // two C99 style function prototypes
4345    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
4346           "C++ shouldn't be here");
4347    unsigned lproto_nargs = lproto->getNumArgs();
4348    unsigned rproto_nargs = rproto->getNumArgs();
4349
4350    // Compatible functions must have the same number of arguments
4351    if (lproto_nargs != rproto_nargs)
4352      return QualType();
4353
4354    // Variadic and non-variadic functions aren't compatible
4355    if (lproto->isVariadic() != rproto->isVariadic())
4356      return QualType();
4357
4358    if (lproto->getTypeQuals() != rproto->getTypeQuals())
4359      return QualType();
4360
4361    // Check argument compatibility
4362    llvm::SmallVector<QualType, 10> types;
4363    for (unsigned i = 0; i < lproto_nargs; i++) {
4364      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
4365      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
4366      QualType argtype = mergeTypes(largtype, rargtype);
4367      if (argtype.isNull()) return QualType();
4368      types.push_back(argtype);
4369      if (getCanonicalType(argtype) != getCanonicalType(largtype))
4370        allLTypes = false;
4371      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
4372        allRTypes = false;
4373    }
4374    if (allLTypes) return lhs;
4375    if (allRTypes) return rhs;
4376    return getFunctionType(retType, types.begin(), types.size(),
4377                           lproto->isVariadic(), lproto->getTypeQuals(),
4378                           false, false, 0, 0, NoReturn, lcc);
4379  }
4380
4381  if (lproto) allRTypes = false;
4382  if (rproto) allLTypes = false;
4383
4384  const FunctionProtoType *proto = lproto ? lproto : rproto;
4385  if (proto) {
4386    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
4387    if (proto->isVariadic()) return QualType();
4388    // Check that the types are compatible with the types that
4389    // would result from default argument promotions (C99 6.7.5.3p15).
4390    // The only types actually affected are promotable integer
4391    // types and floats, which would be passed as a different
4392    // type depending on whether the prototype is visible.
4393    unsigned proto_nargs = proto->getNumArgs();
4394    for (unsigned i = 0; i < proto_nargs; ++i) {
4395      QualType argTy = proto->getArgType(i);
4396
4397      // Look at the promotion type of enum types, since that is the type used
4398      // to pass enum values.
4399      if (const EnumType *Enum = argTy->getAs<EnumType>())
4400        argTy = Enum->getDecl()->getPromotionType();
4401
4402      if (argTy->isPromotableIntegerType() ||
4403          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
4404        return QualType();
4405    }
4406
4407    if (allLTypes) return lhs;
4408    if (allRTypes) return rhs;
4409    return getFunctionType(retType, proto->arg_type_begin(),
4410                           proto->getNumArgs(), proto->isVariadic(),
4411                           proto->getTypeQuals(),
4412                           false, false, 0, 0, NoReturn, lcc);
4413  }
4414
4415  if (allLTypes) return lhs;
4416  if (allRTypes) return rhs;
4417  return getFunctionNoProtoType(retType, NoReturn, lcc);
4418}
4419
4420QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
4421  // C++ [expr]: If an expression initially has the type "reference to T", the
4422  // type is adjusted to "T" prior to any further analysis, the expression
4423  // designates the object or function denoted by the reference, and the
4424  // expression is an lvalue unless the reference is an rvalue reference and
4425  // the expression is a function call (possibly inside parentheses).
4426  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
4427  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
4428
4429  QualType LHSCan = getCanonicalType(LHS),
4430           RHSCan = getCanonicalType(RHS);
4431
4432  // If two types are identical, they are compatible.
4433  if (LHSCan == RHSCan)
4434    return LHS;
4435
4436  // If the qualifiers are different, the types aren't compatible... mostly.
4437  Qualifiers LQuals = LHSCan.getLocalQualifiers();
4438  Qualifiers RQuals = RHSCan.getLocalQualifiers();
4439  if (LQuals != RQuals) {
4440    // If any of these qualifiers are different, we have a type
4441    // mismatch.
4442    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
4443        LQuals.getAddressSpace() != RQuals.getAddressSpace())
4444      return QualType();
4445
4446    // Exactly one GC qualifier difference is allowed: __strong is
4447    // okay if the other type has no GC qualifier but is an Objective
4448    // C object pointer (i.e. implicitly strong by default).  We fix
4449    // this by pretending that the unqualified type was actually
4450    // qualified __strong.
4451    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
4452    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
4453    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
4454
4455    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
4456      return QualType();
4457
4458    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
4459      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
4460    }
4461    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
4462      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
4463    }
4464    return QualType();
4465  }
4466
4467  // Okay, qualifiers are equal.
4468
4469  Type::TypeClass LHSClass = LHSCan->getTypeClass();
4470  Type::TypeClass RHSClass = RHSCan->getTypeClass();
4471
4472  // We want to consider the two function types to be the same for these
4473  // comparisons, just force one to the other.
4474  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
4475  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
4476
4477  // Same as above for arrays
4478  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
4479    LHSClass = Type::ConstantArray;
4480  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
4481    RHSClass = Type::ConstantArray;
4482
4483  // Canonicalize ExtVector -> Vector.
4484  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
4485  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
4486
4487  // If the canonical type classes don't match.
4488  if (LHSClass != RHSClass) {
4489    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
4490    // a signed integer type, or an unsigned integer type.
4491    // Compatibility is based on the underlying type, not the promotion
4492    // type.
4493    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
4494      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
4495        return RHS;
4496    }
4497    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
4498      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
4499        return LHS;
4500    }
4501
4502    return QualType();
4503  }
4504
4505  // The canonical type classes match.
4506  switch (LHSClass) {
4507#define TYPE(Class, Base)
4508#define ABSTRACT_TYPE(Class, Base)
4509#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
4510#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4511#include "clang/AST/TypeNodes.def"
4512    assert(false && "Non-canonical and dependent types shouldn't get here");
4513    return QualType();
4514
4515  case Type::LValueReference:
4516  case Type::RValueReference:
4517  case Type::MemberPointer:
4518    assert(false && "C++ should never be in mergeTypes");
4519    return QualType();
4520
4521  case Type::IncompleteArray:
4522  case Type::VariableArray:
4523  case Type::FunctionProto:
4524  case Type::ExtVector:
4525    assert(false && "Types are eliminated above");
4526    return QualType();
4527
4528  case Type::Pointer:
4529  {
4530    // Merge two pointer types, while trying to preserve typedef info
4531    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
4532    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
4533    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4534    if (ResultType.isNull()) return QualType();
4535    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4536      return LHS;
4537    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4538      return RHS;
4539    return getPointerType(ResultType);
4540  }
4541  case Type::BlockPointer:
4542  {
4543    // Merge two block pointer types, while trying to preserve typedef info
4544    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
4545    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
4546    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
4547    if (ResultType.isNull()) return QualType();
4548    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
4549      return LHS;
4550    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
4551      return RHS;
4552    return getBlockPointerType(ResultType);
4553  }
4554  case Type::ConstantArray:
4555  {
4556    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
4557    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
4558    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
4559      return QualType();
4560
4561    QualType LHSElem = getAsArrayType(LHS)->getElementType();
4562    QualType RHSElem = getAsArrayType(RHS)->getElementType();
4563    QualType ResultType = mergeTypes(LHSElem, RHSElem);
4564    if (ResultType.isNull()) return QualType();
4565    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4566      return LHS;
4567    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4568      return RHS;
4569    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4570                                          ArrayType::ArraySizeModifier(), 0);
4571    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4572                                          ArrayType::ArraySizeModifier(), 0);
4573    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4574    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4575    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4576      return LHS;
4577    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4578      return RHS;
4579    if (LVAT) {
4580      // FIXME: This isn't correct! But tricky to implement because
4581      // the array's size has to be the size of LHS, but the type
4582      // has to be different.
4583      return LHS;
4584    }
4585    if (RVAT) {
4586      // FIXME: This isn't correct! But tricky to implement because
4587      // the array's size has to be the size of RHS, but the type
4588      // has to be different.
4589      return RHS;
4590    }
4591    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4592    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4593    return getIncompleteArrayType(ResultType,
4594                                  ArrayType::ArraySizeModifier(), 0);
4595  }
4596  case Type::FunctionNoProto:
4597    return mergeFunctionTypes(LHS, RHS);
4598  case Type::Record:
4599  case Type::Enum:
4600    return QualType();
4601  case Type::Builtin:
4602    // Only exactly equal builtin types are compatible, which is tested above.
4603    return QualType();
4604  case Type::Complex:
4605    // Distinct complex types are incompatible.
4606    return QualType();
4607  case Type::Vector:
4608    // FIXME: The merged type should be an ExtVector!
4609    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4610      return LHS;
4611    return QualType();
4612  case Type::ObjCInterface: {
4613    // Check if the interfaces are assignment compatible.
4614    // FIXME: This should be type compatibility, e.g. whether
4615    // "LHS x; RHS x;" at global scope is legal.
4616    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4617    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4618    if (LHSIface && RHSIface &&
4619        canAssignObjCInterfaces(LHSIface, RHSIface))
4620      return LHS;
4621
4622    return QualType();
4623  }
4624  case Type::ObjCObjectPointer: {
4625    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4626                                RHS->getAs<ObjCObjectPointerType>()))
4627      return LHS;
4628
4629    return QualType();
4630  }
4631  case Type::TemplateSpecialization:
4632    assert(false && "Dependent types have no size");
4633    break;
4634  }
4635
4636  return QualType();
4637}
4638
4639//===----------------------------------------------------------------------===//
4640//                         Integer Predicates
4641//===----------------------------------------------------------------------===//
4642
4643unsigned ASTContext::getIntWidth(QualType T) {
4644  if (T->isBooleanType())
4645    return 1;
4646  if (EnumType *ET = dyn_cast<EnumType>(T))
4647    T = ET->getDecl()->getIntegerType();
4648  // For builtin types, just use the standard type sizing method
4649  return (unsigned)getTypeSize(T);
4650}
4651
4652QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4653  assert(T->isSignedIntegerType() && "Unexpected type");
4654
4655  // Turn <4 x signed int> -> <4 x unsigned int>
4656  if (const VectorType *VTy = T->getAs<VectorType>())
4657    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4658             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
4659
4660  // For enums, we return the unsigned version of the base type.
4661  if (const EnumType *ETy = T->getAs<EnumType>())
4662    T = ETy->getDecl()->getIntegerType();
4663
4664  const BuiltinType *BTy = T->getAs<BuiltinType>();
4665  assert(BTy && "Unexpected signed integer type");
4666  switch (BTy->getKind()) {
4667  case BuiltinType::Char_S:
4668  case BuiltinType::SChar:
4669    return UnsignedCharTy;
4670  case BuiltinType::Short:
4671    return UnsignedShortTy;
4672  case BuiltinType::Int:
4673    return UnsignedIntTy;
4674  case BuiltinType::Long:
4675    return UnsignedLongTy;
4676  case BuiltinType::LongLong:
4677    return UnsignedLongLongTy;
4678  case BuiltinType::Int128:
4679    return UnsignedInt128Ty;
4680  default:
4681    assert(0 && "Unexpected signed integer type");
4682    return QualType();
4683  }
4684}
4685
4686ExternalASTSource::~ExternalASTSource() { }
4687
4688void ExternalASTSource::PrintStats() { }
4689
4690
4691//===----------------------------------------------------------------------===//
4692//                          Builtin Type Computation
4693//===----------------------------------------------------------------------===//
4694
4695/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4696/// pointer over the consumed characters.  This returns the resultant type.
4697static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4698                                  ASTContext::GetBuiltinTypeError &Error,
4699                                  bool AllowTypeModifiers = true) {
4700  // Modifiers.
4701  int HowLong = 0;
4702  bool Signed = false, Unsigned = false;
4703
4704  // Read the modifiers first.
4705  bool Done = false;
4706  while (!Done) {
4707    switch (*Str++) {
4708    default: Done = true; --Str; break;
4709    case 'S':
4710      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4711      assert(!Signed && "Can't use 'S' modifier multiple times!");
4712      Signed = true;
4713      break;
4714    case 'U':
4715      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4716      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4717      Unsigned = true;
4718      break;
4719    case 'L':
4720      assert(HowLong <= 2 && "Can't have LLLL modifier");
4721      ++HowLong;
4722      break;
4723    }
4724  }
4725
4726  QualType Type;
4727
4728  // Read the base type.
4729  switch (*Str++) {
4730  default: assert(0 && "Unknown builtin type letter!");
4731  case 'v':
4732    assert(HowLong == 0 && !Signed && !Unsigned &&
4733           "Bad modifiers used with 'v'!");
4734    Type = Context.VoidTy;
4735    break;
4736  case 'f':
4737    assert(HowLong == 0 && !Signed && !Unsigned &&
4738           "Bad modifiers used with 'f'!");
4739    Type = Context.FloatTy;
4740    break;
4741  case 'd':
4742    assert(HowLong < 2 && !Signed && !Unsigned &&
4743           "Bad modifiers used with 'd'!");
4744    if (HowLong)
4745      Type = Context.LongDoubleTy;
4746    else
4747      Type = Context.DoubleTy;
4748    break;
4749  case 's':
4750    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4751    if (Unsigned)
4752      Type = Context.UnsignedShortTy;
4753    else
4754      Type = Context.ShortTy;
4755    break;
4756  case 'i':
4757    if (HowLong == 3)
4758      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4759    else if (HowLong == 2)
4760      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4761    else if (HowLong == 1)
4762      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4763    else
4764      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4765    break;
4766  case 'c':
4767    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4768    if (Signed)
4769      Type = Context.SignedCharTy;
4770    else if (Unsigned)
4771      Type = Context.UnsignedCharTy;
4772    else
4773      Type = Context.CharTy;
4774    break;
4775  case 'b': // boolean
4776    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4777    Type = Context.BoolTy;
4778    break;
4779  case 'z':  // size_t.
4780    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4781    Type = Context.getSizeType();
4782    break;
4783  case 'F':
4784    Type = Context.getCFConstantStringType();
4785    break;
4786  case 'a':
4787    Type = Context.getBuiltinVaListType();
4788    assert(!Type.isNull() && "builtin va list type not initialized!");
4789    break;
4790  case 'A':
4791    // This is a "reference" to a va_list; however, what exactly
4792    // this means depends on how va_list is defined. There are two
4793    // different kinds of va_list: ones passed by value, and ones
4794    // passed by reference.  An example of a by-value va_list is
4795    // x86, where va_list is a char*. An example of by-ref va_list
4796    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4797    // we want this argument to be a char*&; for x86-64, we want
4798    // it to be a __va_list_tag*.
4799    Type = Context.getBuiltinVaListType();
4800    assert(!Type.isNull() && "builtin va list type not initialized!");
4801    if (Type->isArrayType()) {
4802      Type = Context.getArrayDecayedType(Type);
4803    } else {
4804      Type = Context.getLValueReferenceType(Type);
4805    }
4806    break;
4807  case 'V': {
4808    char *End;
4809    unsigned NumElements = strtoul(Str, &End, 10);
4810    assert(End != Str && "Missing vector size");
4811
4812    Str = End;
4813
4814    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4815    // FIXME: Don't know what to do about AltiVec.
4816    Type = Context.getVectorType(ElementType, NumElements, false, false);
4817    break;
4818  }
4819  case 'X': {
4820    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4821    Type = Context.getComplexType(ElementType);
4822    break;
4823  }
4824  case 'P':
4825    Type = Context.getFILEType();
4826    if (Type.isNull()) {
4827      Error = ASTContext::GE_Missing_stdio;
4828      return QualType();
4829    }
4830    break;
4831  case 'J':
4832    if (Signed)
4833      Type = Context.getsigjmp_bufType();
4834    else
4835      Type = Context.getjmp_bufType();
4836
4837    if (Type.isNull()) {
4838      Error = ASTContext::GE_Missing_setjmp;
4839      return QualType();
4840    }
4841    break;
4842  }
4843
4844  if (!AllowTypeModifiers)
4845    return Type;
4846
4847  Done = false;
4848  while (!Done) {
4849    switch (*Str++) {
4850      default: Done = true; --Str; break;
4851      case '*':
4852        Type = Context.getPointerType(Type);
4853        break;
4854      case '&':
4855        Type = Context.getLValueReferenceType(Type);
4856        break;
4857      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4858      case 'C':
4859        Type = Type.withConst();
4860        break;
4861      case 'D':
4862        Type = Context.getVolatileType(Type);
4863        break;
4864    }
4865  }
4866
4867  return Type;
4868}
4869
4870/// GetBuiltinType - Return the type for the specified builtin.
4871QualType ASTContext::GetBuiltinType(unsigned id,
4872                                    GetBuiltinTypeError &Error) {
4873  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4874
4875  llvm::SmallVector<QualType, 8> ArgTypes;
4876
4877  Error = GE_None;
4878  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4879  if (Error != GE_None)
4880    return QualType();
4881  while (TypeStr[0] && TypeStr[0] != '.') {
4882    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4883    if (Error != GE_None)
4884      return QualType();
4885
4886    // Do array -> pointer decay.  The builtin should use the decayed type.
4887    if (Ty->isArrayType())
4888      Ty = getArrayDecayedType(Ty);
4889
4890    ArgTypes.push_back(Ty);
4891  }
4892
4893  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4894         "'.' should only occur at end of builtin type list!");
4895
4896  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4897  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4898    return getFunctionNoProtoType(ResType);
4899
4900  // FIXME: Should we create noreturn types?
4901  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4902                         TypeStr[0] == '.', 0, false, false, 0, 0,
4903                         false, CC_Default);
4904}
4905
4906QualType
4907ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4908  // Perform the usual unary conversions. We do this early so that
4909  // integral promotions to "int" can allow us to exit early, in the
4910  // lhs == rhs check. Also, for conversion purposes, we ignore any
4911  // qualifiers.  For example, "const float" and "float" are
4912  // equivalent.
4913  if (lhs->isPromotableIntegerType())
4914    lhs = getPromotedIntegerType(lhs);
4915  else
4916    lhs = lhs.getUnqualifiedType();
4917  if (rhs->isPromotableIntegerType())
4918    rhs = getPromotedIntegerType(rhs);
4919  else
4920    rhs = rhs.getUnqualifiedType();
4921
4922  // If both types are identical, no conversion is needed.
4923  if (lhs == rhs)
4924    return lhs;
4925
4926  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4927  // The caller can deal with this (e.g. pointer + int).
4928  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4929    return lhs;
4930
4931  // At this point, we have two different arithmetic types.
4932
4933  // Handle complex types first (C99 6.3.1.8p1).
4934  if (lhs->isComplexType() || rhs->isComplexType()) {
4935    // if we have an integer operand, the result is the complex type.
4936    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4937      // convert the rhs to the lhs complex type.
4938      return lhs;
4939    }
4940    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4941      // convert the lhs to the rhs complex type.
4942      return rhs;
4943    }
4944    // This handles complex/complex, complex/float, or float/complex.
4945    // When both operands are complex, the shorter operand is converted to the
4946    // type of the longer, and that is the type of the result. This corresponds
4947    // to what is done when combining two real floating-point operands.
4948    // The fun begins when size promotion occur across type domains.
4949    // From H&S 6.3.4: When one operand is complex and the other is a real
4950    // floating-point type, the less precise type is converted, within it's
4951    // real or complex domain, to the precision of the other type. For example,
4952    // when combining a "long double" with a "double _Complex", the
4953    // "double _Complex" is promoted to "long double _Complex".
4954    int result = getFloatingTypeOrder(lhs, rhs);
4955
4956    if (result > 0) { // The left side is bigger, convert rhs.
4957      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4958    } else if (result < 0) { // The right side is bigger, convert lhs.
4959      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4960    }
4961    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4962    // domains match. This is a requirement for our implementation, C99
4963    // does not require this promotion.
4964    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4965      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4966        return rhs;
4967      } else { // handle "_Complex double, double".
4968        return lhs;
4969      }
4970    }
4971    return lhs; // The domain/size match exactly.
4972  }
4973  // Now handle "real" floating types (i.e. float, double, long double).
4974  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4975    // if we have an integer operand, the result is the real floating type.
4976    if (rhs->isIntegerType()) {
4977      // convert rhs to the lhs floating point type.
4978      return lhs;
4979    }
4980    if (rhs->isComplexIntegerType()) {
4981      // convert rhs to the complex floating point type.
4982      return getComplexType(lhs);
4983    }
4984    if (lhs->isIntegerType()) {
4985      // convert lhs to the rhs floating point type.
4986      return rhs;
4987    }
4988    if (lhs->isComplexIntegerType()) {
4989      // convert lhs to the complex floating point type.
4990      return getComplexType(rhs);
4991    }
4992    // We have two real floating types, float/complex combos were handled above.
4993    // Convert the smaller operand to the bigger result.
4994    int result = getFloatingTypeOrder(lhs, rhs);
4995    if (result > 0) // convert the rhs
4996      return lhs;
4997    assert(result < 0 && "illegal float comparison");
4998    return rhs;   // convert the lhs
4999  }
5000  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
5001    // Handle GCC complex int extension.
5002    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
5003    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
5004
5005    if (lhsComplexInt && rhsComplexInt) {
5006      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
5007                              rhsComplexInt->getElementType()) >= 0)
5008        return lhs; // convert the rhs
5009      return rhs;
5010    } else if (lhsComplexInt && rhs->isIntegerType()) {
5011      // convert the rhs to the lhs complex type.
5012      return lhs;
5013    } else if (rhsComplexInt && lhs->isIntegerType()) {
5014      // convert the lhs to the rhs complex type.
5015      return rhs;
5016    }
5017  }
5018  // Finally, we have two differing integer types.
5019  // The rules for this case are in C99 6.3.1.8
5020  int compare = getIntegerTypeOrder(lhs, rhs);
5021  bool lhsSigned = lhs->isSignedIntegerType(),
5022       rhsSigned = rhs->isSignedIntegerType();
5023  QualType destType;
5024  if (lhsSigned == rhsSigned) {
5025    // Same signedness; use the higher-ranked type
5026    destType = compare >= 0 ? lhs : rhs;
5027  } else if (compare != (lhsSigned ? 1 : -1)) {
5028    // The unsigned type has greater than or equal rank to the
5029    // signed type, so use the unsigned type
5030    destType = lhsSigned ? rhs : lhs;
5031  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
5032    // The two types are different widths; if we are here, that
5033    // means the signed type is larger than the unsigned type, so
5034    // use the signed type.
5035    destType = lhsSigned ? lhs : rhs;
5036  } else {
5037    // The signed type is higher-ranked than the unsigned type,
5038    // but isn't actually any bigger (like unsigned int and long
5039    // on most 32-bit systems).  Use the unsigned type corresponding
5040    // to the signed type.
5041    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
5042  }
5043  return destType;
5044}
5045