ASTContext.cpp revision cfe9af250f466e7e38becea4428990448ae07737
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "CXXABI.h"
34
35using namespace clang;
36
37unsigned ASTContext::NumImplicitDefaultConstructors;
38unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
39unsigned ASTContext::NumImplicitCopyConstructors;
40unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyAssignmentOperators;
42unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
43unsigned ASTContext::NumImplicitDestructors;
44unsigned ASTContext::NumImplicitDestructorsDeclared;
45
46enum FloatingRank {
47  FloatRank, DoubleRank, LongDoubleRank
48};
49
50void
51ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
52                                               TemplateTemplateParmDecl *Parm) {
53  ID.AddInteger(Parm->getDepth());
54  ID.AddInteger(Parm->getPosition());
55  ID.AddBoolean(Parm->isParameterPack());
56
57  TemplateParameterList *Params = Parm->getTemplateParameters();
58  ID.AddInteger(Params->size());
59  for (TemplateParameterList::const_iterator P = Params->begin(),
60                                          PEnd = Params->end();
61       P != PEnd; ++P) {
62    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
63      ID.AddInteger(0);
64      ID.AddBoolean(TTP->isParameterPack());
65      continue;
66    }
67
68    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
69      ID.AddInteger(1);
70      ID.AddBoolean(NTTP->isParameterPack());
71      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
72      if (NTTP->isExpandedParameterPack()) {
73        ID.AddBoolean(true);
74        ID.AddInteger(NTTP->getNumExpansionTypes());
75        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
76          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
77      } else
78        ID.AddBoolean(false);
79      continue;
80    }
81
82    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
83    ID.AddInteger(2);
84    Profile(ID, TTP);
85  }
86}
87
88TemplateTemplateParmDecl *
89ASTContext::getCanonicalTemplateTemplateParmDecl(
90                                          TemplateTemplateParmDecl *TTP) const {
91  // Check if we already have a canonical template template parameter.
92  llvm::FoldingSetNodeID ID;
93  CanonicalTemplateTemplateParm::Profile(ID, TTP);
94  void *InsertPos = 0;
95  CanonicalTemplateTemplateParm *Canonical
96    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
97  if (Canonical)
98    return Canonical->getParam();
99
100  // Build a canonical template parameter list.
101  TemplateParameterList *Params = TTP->getTemplateParameters();
102  llvm::SmallVector<NamedDecl *, 4> CanonParams;
103  CanonParams.reserve(Params->size());
104  for (TemplateParameterList::const_iterator P = Params->begin(),
105                                          PEnd = Params->end();
106       P != PEnd; ++P) {
107    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
108      CanonParams.push_back(
109                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
110                                               SourceLocation(), TTP->getDepth(),
111                                               TTP->getIndex(), 0, false,
112                                               TTP->isParameterPack()));
113    else if (NonTypeTemplateParmDecl *NTTP
114             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
115      QualType T = getCanonicalType(NTTP->getType());
116      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
117      NonTypeTemplateParmDecl *Param;
118      if (NTTP->isExpandedParameterPack()) {
119        llvm::SmallVector<QualType, 2> ExpandedTypes;
120        llvm::SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
121        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
122          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
123          ExpandedTInfos.push_back(
124                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
125        }
126
127        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
128                                                SourceLocation(),
129                                                NTTP->getDepth(),
130                                                NTTP->getPosition(), 0,
131                                                T,
132                                                TInfo,
133                                                ExpandedTypes.data(),
134                                                ExpandedTypes.size(),
135                                                ExpandedTInfos.data());
136      } else {
137        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
138                                                SourceLocation(),
139                                                NTTP->getDepth(),
140                                                NTTP->getPosition(), 0,
141                                                T,
142                                                NTTP->isParameterPack(),
143                                                TInfo);
144      }
145      CanonParams.push_back(Param);
146
147    } else
148      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
149                                           cast<TemplateTemplateParmDecl>(*P)));
150  }
151
152  TemplateTemplateParmDecl *CanonTTP
153    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
154                                       SourceLocation(), TTP->getDepth(),
155                                       TTP->getPosition(),
156                                       TTP->isParameterPack(),
157                                       0,
158                         TemplateParameterList::Create(*this, SourceLocation(),
159                                                       SourceLocation(),
160                                                       CanonParams.data(),
161                                                       CanonParams.size(),
162                                                       SourceLocation()));
163
164  // Get the new insert position for the node we care about.
165  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
166  assert(Canonical == 0 && "Shouldn't be in the map!");
167  (void)Canonical;
168
169  // Create the canonical template template parameter entry.
170  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
171  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
172  return CanonTTP;
173}
174
175CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
176  if (!LangOpts.CPlusPlus) return 0;
177
178  switch (T.getCXXABI()) {
179  case CXXABI_ARM:
180    return CreateARMCXXABI(*this);
181  case CXXABI_Itanium:
182    return CreateItaniumCXXABI(*this);
183  case CXXABI_Microsoft:
184    return CreateMicrosoftCXXABI(*this);
185  }
186  return 0;
187}
188
189ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
190                       const TargetInfo &t,
191                       IdentifierTable &idents, SelectorTable &sels,
192                       Builtin::Context &builtins,
193                       unsigned size_reserve) :
194  TemplateSpecializationTypes(this_()),
195  DependentTemplateSpecializationTypes(this_()),
196  GlobalNestedNameSpecifier(0), IsInt128Installed(false),
197  CFConstantStringTypeDecl(0), NSConstantStringTypeDecl(0),
198  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
199  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
200  cudaConfigureCallDecl(0),
201  NullTypeSourceInfo(QualType()),
202  SourceMgr(SM), LangOpts(LOpts), ABI(createCXXABI(t)), Target(t),
203  Idents(idents), Selectors(sels),
204  BuiltinInfo(builtins),
205  DeclarationNames(*this),
206  ExternalSource(0), Listener(0), PrintingPolicy(LOpts),
207  LastSDM(0, 0),
208  UniqueBlockByRefTypeID(0) {
209  ObjCIdRedefinitionType = QualType();
210  ObjCClassRedefinitionType = QualType();
211  ObjCSelRedefinitionType = QualType();
212  if (size_reserve > 0) Types.reserve(size_reserve);
213  TUDecl = TranslationUnitDecl::Create(*this);
214  InitBuiltinTypes();
215}
216
217ASTContext::~ASTContext() {
218  // Release the DenseMaps associated with DeclContext objects.
219  // FIXME: Is this the ideal solution?
220  ReleaseDeclContextMaps();
221
222  // Call all of the deallocation functions.
223  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
224    Deallocations[I].first(Deallocations[I].second);
225
226  // Release all of the memory associated with overridden C++ methods.
227  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
228         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
229       OM != OMEnd; ++OM)
230    OM->second.Destroy();
231
232  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
233  // because they can contain DenseMaps.
234  for (llvm::DenseMap<const ObjCContainerDecl*,
235       const ASTRecordLayout*>::iterator
236       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
237    // Increment in loop to prevent using deallocated memory.
238    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
239      R->Destroy(*this);
240
241  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
242       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
243    // Increment in loop to prevent using deallocated memory.
244    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
245      R->Destroy(*this);
246  }
247
248  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
249                                                    AEnd = DeclAttrs.end();
250       A != AEnd; ++A)
251    A->second->~AttrVec();
252}
253
254void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
255  Deallocations.push_back(std::make_pair(Callback, Data));
256}
257
258void
259ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
260  ExternalSource.reset(Source.take());
261}
262
263void ASTContext::PrintStats() const {
264  fprintf(stderr, "*** AST Context Stats:\n");
265  fprintf(stderr, "  %d types total.\n", (int)Types.size());
266
267  unsigned counts[] = {
268#define TYPE(Name, Parent) 0,
269#define ABSTRACT_TYPE(Name, Parent)
270#include "clang/AST/TypeNodes.def"
271    0 // Extra
272  };
273
274  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
275    Type *T = Types[i];
276    counts[(unsigned)T->getTypeClass()]++;
277  }
278
279  unsigned Idx = 0;
280  unsigned TotalBytes = 0;
281#define TYPE(Name, Parent)                                              \
282  if (counts[Idx])                                                      \
283    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
284  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
285  ++Idx;
286#define ABSTRACT_TYPE(Name, Parent)
287#include "clang/AST/TypeNodes.def"
288
289  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
290
291  // Implicit special member functions.
292  fprintf(stderr, "  %u/%u implicit default constructors created\n",
293          NumImplicitDefaultConstructorsDeclared,
294          NumImplicitDefaultConstructors);
295  fprintf(stderr, "  %u/%u implicit copy constructors created\n",
296          NumImplicitCopyConstructorsDeclared,
297          NumImplicitCopyConstructors);
298  fprintf(stderr, "  %u/%u implicit copy assignment operators created\n",
299          NumImplicitCopyAssignmentOperatorsDeclared,
300          NumImplicitCopyAssignmentOperators);
301  fprintf(stderr, "  %u/%u implicit destructors created\n",
302          NumImplicitDestructorsDeclared, NumImplicitDestructors);
303
304  if (ExternalSource.get()) {
305    fprintf(stderr, "\n");
306    ExternalSource->PrintStats();
307  }
308
309  BumpAlloc.PrintStats();
310}
311
312
313void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
314  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
315  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
316  Types.push_back(Ty);
317}
318
319void ASTContext::InitBuiltinTypes() {
320  assert(VoidTy.isNull() && "Context reinitialized?");
321
322  // C99 6.2.5p19.
323  InitBuiltinType(VoidTy,              BuiltinType::Void);
324
325  // C99 6.2.5p2.
326  InitBuiltinType(BoolTy,              BuiltinType::Bool);
327  // C99 6.2.5p3.
328  if (LangOpts.CharIsSigned)
329    InitBuiltinType(CharTy,            BuiltinType::Char_S);
330  else
331    InitBuiltinType(CharTy,            BuiltinType::Char_U);
332  // C99 6.2.5p4.
333  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
334  InitBuiltinType(ShortTy,             BuiltinType::Short);
335  InitBuiltinType(IntTy,               BuiltinType::Int);
336  InitBuiltinType(LongTy,              BuiltinType::Long);
337  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
338
339  // C99 6.2.5p6.
340  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
341  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
342  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
343  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
344  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
345
346  // C99 6.2.5p10.
347  InitBuiltinType(FloatTy,             BuiltinType::Float);
348  InitBuiltinType(DoubleTy,            BuiltinType::Double);
349  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
350
351  // GNU extension, 128-bit integers.
352  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
353  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
354
355  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
356    if (!LangOpts.ShortWChar)
357      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
358    else  // -fshort-wchar makes wchar_t be unsigned.
359      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
360  } else // C99
361    WCharTy = getFromTargetType(Target.getWCharType());
362
363  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
364    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
365  else // C99
366    Char16Ty = getFromTargetType(Target.getChar16Type());
367
368  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
369    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
370  else // C99
371    Char32Ty = getFromTargetType(Target.getChar32Type());
372
373  // Placeholder type for type-dependent expressions whose type is
374  // completely unknown. No code should ever check a type against
375  // DependentTy and users should never see it; however, it is here to
376  // help diagnose failures to properly check for type-dependent
377  // expressions.
378  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
379
380  // Placeholder type for functions.
381  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
382
383  // C99 6.2.5p11.
384  FloatComplexTy      = getComplexType(FloatTy);
385  DoubleComplexTy     = getComplexType(DoubleTy);
386  LongDoubleComplexTy = getComplexType(LongDoubleTy);
387
388  BuiltinVaListType = QualType();
389
390  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
391  ObjCIdTypedefType = QualType();
392  ObjCClassTypedefType = QualType();
393  ObjCSelTypedefType = QualType();
394
395  // Builtin types for 'id', 'Class', and 'SEL'.
396  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
397  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
398  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
399
400  ObjCConstantStringType = QualType();
401
402  // void * type
403  VoidPtrTy = getPointerType(VoidTy);
404
405  // nullptr type (C++0x 2.14.7)
406  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
407}
408
409Diagnostic &ASTContext::getDiagnostics() const {
410  return SourceMgr.getDiagnostics();
411}
412
413AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
414  AttrVec *&Result = DeclAttrs[D];
415  if (!Result) {
416    void *Mem = Allocate(sizeof(AttrVec));
417    Result = new (Mem) AttrVec;
418  }
419
420  return *Result;
421}
422
423/// \brief Erase the attributes corresponding to the given declaration.
424void ASTContext::eraseDeclAttrs(const Decl *D) {
425  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
426  if (Pos != DeclAttrs.end()) {
427    Pos->second->~AttrVec();
428    DeclAttrs.erase(Pos);
429  }
430}
431
432
433MemberSpecializationInfo *
434ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
435  assert(Var->isStaticDataMember() && "Not a static data member");
436  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
437    = InstantiatedFromStaticDataMember.find(Var);
438  if (Pos == InstantiatedFromStaticDataMember.end())
439    return 0;
440
441  return Pos->second;
442}
443
444void
445ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
446                                                TemplateSpecializationKind TSK,
447                                          SourceLocation PointOfInstantiation) {
448  assert(Inst->isStaticDataMember() && "Not a static data member");
449  assert(Tmpl->isStaticDataMember() && "Not a static data member");
450  assert(!InstantiatedFromStaticDataMember[Inst] &&
451         "Already noted what static data member was instantiated from");
452  InstantiatedFromStaticDataMember[Inst]
453    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
454}
455
456NamedDecl *
457ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
458  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
459    = InstantiatedFromUsingDecl.find(UUD);
460  if (Pos == InstantiatedFromUsingDecl.end())
461    return 0;
462
463  return Pos->second;
464}
465
466void
467ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
468  assert((isa<UsingDecl>(Pattern) ||
469          isa<UnresolvedUsingValueDecl>(Pattern) ||
470          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
471         "pattern decl is not a using decl");
472  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
473  InstantiatedFromUsingDecl[Inst] = Pattern;
474}
475
476UsingShadowDecl *
477ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
478  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
479    = InstantiatedFromUsingShadowDecl.find(Inst);
480  if (Pos == InstantiatedFromUsingShadowDecl.end())
481    return 0;
482
483  return Pos->second;
484}
485
486void
487ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
488                                               UsingShadowDecl *Pattern) {
489  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
490  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
491}
492
493FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
494  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
495    = InstantiatedFromUnnamedFieldDecl.find(Field);
496  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
497    return 0;
498
499  return Pos->second;
500}
501
502void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
503                                                     FieldDecl *Tmpl) {
504  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
505  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
506  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
507         "Already noted what unnamed field was instantiated from");
508
509  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
510}
511
512ASTContext::overridden_cxx_method_iterator
513ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
514  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
515    = OverriddenMethods.find(Method);
516  if (Pos == OverriddenMethods.end())
517    return 0;
518
519  return Pos->second.begin();
520}
521
522ASTContext::overridden_cxx_method_iterator
523ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
524  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
525    = OverriddenMethods.find(Method);
526  if (Pos == OverriddenMethods.end())
527    return 0;
528
529  return Pos->second.end();
530}
531
532unsigned
533ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
534  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
535    = OverriddenMethods.find(Method);
536  if (Pos == OverriddenMethods.end())
537    return 0;
538
539  return Pos->second.size();
540}
541
542void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
543                                     const CXXMethodDecl *Overridden) {
544  OverriddenMethods[Method].push_back(Overridden);
545}
546
547//===----------------------------------------------------------------------===//
548//                         Type Sizing and Analysis
549//===----------------------------------------------------------------------===//
550
551/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
552/// scalar floating point type.
553const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
554  const BuiltinType *BT = T->getAs<BuiltinType>();
555  assert(BT && "Not a floating point type!");
556  switch (BT->getKind()) {
557  default: assert(0 && "Not a floating point type!");
558  case BuiltinType::Float:      return Target.getFloatFormat();
559  case BuiltinType::Double:     return Target.getDoubleFormat();
560  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
561  }
562}
563
564/// getDeclAlign - Return a conservative estimate of the alignment of the
565/// specified decl.  Note that bitfields do not have a valid alignment, so
566/// this method will assert on them.
567/// If @p RefAsPointee, references are treated like their underlying type
568/// (for alignof), else they're treated like pointers (for CodeGen).
569CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
570  unsigned Align = Target.getCharWidth();
571
572  bool UseAlignAttrOnly = false;
573  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
574    Align = AlignFromAttr;
575
576    // __attribute__((aligned)) can increase or decrease alignment
577    // *except* on a struct or struct member, where it only increases
578    // alignment unless 'packed' is also specified.
579    //
580    // It is an error for [[align]] to decrease alignment, so we can
581    // ignore that possibility;  Sema should diagnose it.
582    if (isa<FieldDecl>(D)) {
583      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
584        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
585    } else {
586      UseAlignAttrOnly = true;
587    }
588  }
589
590  // If we're using the align attribute only, just ignore everything
591  // else about the declaration and its type.
592  if (UseAlignAttrOnly) {
593    // do nothing
594
595  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
596    QualType T = VD->getType();
597    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
598      if (RefAsPointee)
599        T = RT->getPointeeType();
600      else
601        T = getPointerType(RT->getPointeeType());
602    }
603    if (!T->isIncompleteType() && !T->isFunctionType()) {
604      // Adjust alignments of declarations with array type by the
605      // large-array alignment on the target.
606      unsigned MinWidth = Target.getLargeArrayMinWidth();
607      const ArrayType *arrayType;
608      if (MinWidth && (arrayType = getAsArrayType(T))) {
609        if (isa<VariableArrayType>(arrayType))
610          Align = std::max(Align, Target.getLargeArrayAlign());
611        else if (isa<ConstantArrayType>(arrayType) &&
612                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
613          Align = std::max(Align, Target.getLargeArrayAlign());
614
615        // Walk through any array types while we're at it.
616        T = getBaseElementType(arrayType);
617      }
618      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
619    }
620
621    // Fields can be subject to extra alignment constraints, like if
622    // the field is packed, the struct is packed, or the struct has a
623    // a max-field-alignment constraint (#pragma pack).  So calculate
624    // the actual alignment of the field within the struct, and then
625    // (as we're expected to) constrain that by the alignment of the type.
626    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
627      // So calculate the alignment of the field.
628      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
629
630      // Start with the record's overall alignment.
631      unsigned fieldAlign = toBits(layout.getAlignment());
632
633      // Use the GCD of that and the offset within the record.
634      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
635      if (offset > 0) {
636        // Alignment is always a power of 2, so the GCD will be a power of 2,
637        // which means we get to do this crazy thing instead of Euclid's.
638        uint64_t lowBitOfOffset = offset & (~offset + 1);
639        if (lowBitOfOffset < fieldAlign)
640          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
641      }
642
643      Align = std::min(Align, fieldAlign);
644    }
645  }
646
647  return toCharUnitsFromBits(Align);
648}
649
650std::pair<CharUnits, CharUnits>
651ASTContext::getTypeInfoInChars(const Type *T) const {
652  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
653  return std::make_pair(toCharUnitsFromBits(Info.first),
654                        toCharUnitsFromBits(Info.second));
655}
656
657std::pair<CharUnits, CharUnits>
658ASTContext::getTypeInfoInChars(QualType T) const {
659  return getTypeInfoInChars(T.getTypePtr());
660}
661
662/// getTypeSize - Return the size of the specified type, in bits.  This method
663/// does not work on incomplete types.
664///
665/// FIXME: Pointers into different addr spaces could have different sizes and
666/// alignment requirements: getPointerInfo should take an AddrSpace, this
667/// should take a QualType, &c.
668std::pair<uint64_t, unsigned>
669ASTContext::getTypeInfo(const Type *T) const {
670  uint64_t Width=0;
671  unsigned Align=8;
672  switch (T->getTypeClass()) {
673#define TYPE(Class, Base)
674#define ABSTRACT_TYPE(Class, Base)
675#define NON_CANONICAL_TYPE(Class, Base)
676#define DEPENDENT_TYPE(Class, Base) case Type::Class:
677#include "clang/AST/TypeNodes.def"
678    assert(false && "Should not see dependent types");
679    break;
680
681  case Type::FunctionNoProto:
682  case Type::FunctionProto:
683    // GCC extension: alignof(function) = 32 bits
684    Width = 0;
685    Align = 32;
686    break;
687
688  case Type::IncompleteArray:
689  case Type::VariableArray:
690    Width = 0;
691    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
692    break;
693
694  case Type::ConstantArray: {
695    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
696
697    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
698    Width = EltInfo.first*CAT->getSize().getZExtValue();
699    Align = EltInfo.second;
700    break;
701  }
702  case Type::ExtVector:
703  case Type::Vector: {
704    const VectorType *VT = cast<VectorType>(T);
705    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
706    Width = EltInfo.first*VT->getNumElements();
707    Align = Width;
708    // If the alignment is not a power of 2, round up to the next power of 2.
709    // This happens for non-power-of-2 length vectors.
710    if (Align & (Align-1)) {
711      Align = llvm::NextPowerOf2(Align);
712      Width = llvm::RoundUpToAlignment(Width, Align);
713    }
714    break;
715  }
716
717  case Type::Builtin:
718    switch (cast<BuiltinType>(T)->getKind()) {
719    default: assert(0 && "Unknown builtin type!");
720    case BuiltinType::Void:
721      // GCC extension: alignof(void) = 8 bits.
722      Width = 0;
723      Align = 8;
724      break;
725
726    case BuiltinType::Bool:
727      Width = Target.getBoolWidth();
728      Align = Target.getBoolAlign();
729      break;
730    case BuiltinType::Char_S:
731    case BuiltinType::Char_U:
732    case BuiltinType::UChar:
733    case BuiltinType::SChar:
734      Width = Target.getCharWidth();
735      Align = Target.getCharAlign();
736      break;
737    case BuiltinType::WChar_S:
738    case BuiltinType::WChar_U:
739      Width = Target.getWCharWidth();
740      Align = Target.getWCharAlign();
741      break;
742    case BuiltinType::Char16:
743      Width = Target.getChar16Width();
744      Align = Target.getChar16Align();
745      break;
746    case BuiltinType::Char32:
747      Width = Target.getChar32Width();
748      Align = Target.getChar32Align();
749      break;
750    case BuiltinType::UShort:
751    case BuiltinType::Short:
752      Width = Target.getShortWidth();
753      Align = Target.getShortAlign();
754      break;
755    case BuiltinType::UInt:
756    case BuiltinType::Int:
757      Width = Target.getIntWidth();
758      Align = Target.getIntAlign();
759      break;
760    case BuiltinType::ULong:
761    case BuiltinType::Long:
762      Width = Target.getLongWidth();
763      Align = Target.getLongAlign();
764      break;
765    case BuiltinType::ULongLong:
766    case BuiltinType::LongLong:
767      Width = Target.getLongLongWidth();
768      Align = Target.getLongLongAlign();
769      break;
770    case BuiltinType::Int128:
771    case BuiltinType::UInt128:
772      Width = 128;
773      Align = 128; // int128_t is 128-bit aligned on all targets.
774      break;
775    case BuiltinType::Float:
776      Width = Target.getFloatWidth();
777      Align = Target.getFloatAlign();
778      break;
779    case BuiltinType::Double:
780      Width = Target.getDoubleWidth();
781      Align = Target.getDoubleAlign();
782      break;
783    case BuiltinType::LongDouble:
784      Width = Target.getLongDoubleWidth();
785      Align = Target.getLongDoubleAlign();
786      break;
787    case BuiltinType::NullPtr:
788      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
789      Align = Target.getPointerAlign(0); //   == sizeof(void*)
790      break;
791    case BuiltinType::ObjCId:
792    case BuiltinType::ObjCClass:
793    case BuiltinType::ObjCSel:
794      Width = Target.getPointerWidth(0);
795      Align = Target.getPointerAlign(0);
796      break;
797    }
798    break;
799  case Type::ObjCObjectPointer:
800    Width = Target.getPointerWidth(0);
801    Align = Target.getPointerAlign(0);
802    break;
803  case Type::BlockPointer: {
804    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
805    Width = Target.getPointerWidth(AS);
806    Align = Target.getPointerAlign(AS);
807    break;
808  }
809  case Type::LValueReference:
810  case Type::RValueReference: {
811    // alignof and sizeof should never enter this code path here, so we go
812    // the pointer route.
813    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
814    Width = Target.getPointerWidth(AS);
815    Align = Target.getPointerAlign(AS);
816    break;
817  }
818  case Type::Pointer: {
819    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
820    Width = Target.getPointerWidth(AS);
821    Align = Target.getPointerAlign(AS);
822    break;
823  }
824  case Type::MemberPointer: {
825    const MemberPointerType *MPT = cast<MemberPointerType>(T);
826    std::pair<uint64_t, unsigned> PtrDiffInfo =
827      getTypeInfo(getPointerDiffType());
828    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
829    Align = PtrDiffInfo.second;
830    break;
831  }
832  case Type::Complex: {
833    // Complex types have the same alignment as their elements, but twice the
834    // size.
835    std::pair<uint64_t, unsigned> EltInfo =
836      getTypeInfo(cast<ComplexType>(T)->getElementType());
837    Width = EltInfo.first*2;
838    Align = EltInfo.second;
839    break;
840  }
841  case Type::ObjCObject:
842    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
843  case Type::ObjCInterface: {
844    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
845    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
846    Width = toBits(Layout.getSize());
847    Align = toBits(Layout.getAlignment());
848    break;
849  }
850  case Type::Record:
851  case Type::Enum: {
852    const TagType *TT = cast<TagType>(T);
853
854    if (TT->getDecl()->isInvalidDecl()) {
855      Width = 1;
856      Align = 1;
857      break;
858    }
859
860    if (const EnumType *ET = dyn_cast<EnumType>(TT))
861      return getTypeInfo(ET->getDecl()->getIntegerType());
862
863    const RecordType *RT = cast<RecordType>(TT);
864    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
865    Width = toBits(Layout.getSize());
866    Align = toBits(Layout.getAlignment());
867    break;
868  }
869
870  case Type::SubstTemplateTypeParm:
871    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
872                       getReplacementType().getTypePtr());
873
874  case Type::Auto: {
875    const AutoType *A = cast<AutoType>(T);
876    assert(A->isDeduced() && "Cannot request the size of a dependent type");
877    return getTypeInfo(A->getDeducedType().getTypePtr());
878  }
879
880  case Type::Paren:
881    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
882
883  case Type::Typedef: {
884    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
885    std::pair<uint64_t, unsigned> Info
886      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
887    // If the typedef has an aligned attribute on it, it overrides any computed
888    // alignment we have.  This violates the GCC documentation (which says that
889    // attribute(aligned) can only round up) but matches its implementation.
890    if (unsigned AttrAlign = Typedef->getMaxAlignment())
891      Align = AttrAlign;
892    else
893      Align = Info.second;
894    Width = Info.first;
895    break;
896  }
897
898  case Type::TypeOfExpr:
899    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
900                         .getTypePtr());
901
902  case Type::TypeOf:
903    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
904
905  case Type::Decltype:
906    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
907                        .getTypePtr());
908
909  case Type::Elaborated:
910    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
911
912  case Type::Attributed:
913    return getTypeInfo(
914                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
915
916  case Type::TemplateSpecialization:
917    assert(getCanonicalType(T) != T &&
918           "Cannot request the size of a dependent type");
919    // FIXME: this is likely to be wrong once we support template
920    // aliases, since a template alias could refer to a typedef that
921    // has an __aligned__ attribute on it.
922    return getTypeInfo(getCanonicalType(T));
923  }
924
925  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
926  return std::make_pair(Width, Align);
927}
928
929/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
930CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
931  return CharUnits::fromQuantity(BitSize / getCharWidth());
932}
933
934/// toBits - Convert a size in characters to a size in characters.
935int64_t ASTContext::toBits(CharUnits CharSize) const {
936  return CharSize.getQuantity() * getCharWidth();
937}
938
939/// getTypeSizeInChars - Return the size of the specified type, in characters.
940/// This method does not work on incomplete types.
941CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
942  return toCharUnitsFromBits(getTypeSize(T));
943}
944CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
945  return toCharUnitsFromBits(getTypeSize(T));
946}
947
948/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
949/// characters. This method does not work on incomplete types.
950CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
951  return toCharUnitsFromBits(getTypeAlign(T));
952}
953CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
954  return toCharUnitsFromBits(getTypeAlign(T));
955}
956
957/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
958/// type for the current target in bits.  This can be different than the ABI
959/// alignment in cases where it is beneficial for performance to overalign
960/// a data type.
961unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
962  unsigned ABIAlign = getTypeAlign(T);
963
964  // Double and long long should be naturally aligned if possible.
965  if (const ComplexType* CT = T->getAs<ComplexType>())
966    T = CT->getElementType().getTypePtr();
967  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
968      T->isSpecificBuiltinType(BuiltinType::LongLong))
969    return std::max(ABIAlign, (unsigned)getTypeSize(T));
970
971  return ABIAlign;
972}
973
974/// ShallowCollectObjCIvars -
975/// Collect all ivars, including those synthesized, in the current class.
976///
977void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
978                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
979  // FIXME. This need be removed but there are two many places which
980  // assume const-ness of ObjCInterfaceDecl
981  ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
982  for (ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
983        Iv= Iv->getNextIvar())
984    Ivars.push_back(Iv);
985}
986
987/// DeepCollectObjCIvars -
988/// This routine first collects all declared, but not synthesized, ivars in
989/// super class and then collects all ivars, including those synthesized for
990/// current class. This routine is used for implementation of current class
991/// when all ivars, declared and synthesized are known.
992///
993void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
994                                      bool leafClass,
995                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const {
996  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
997    DeepCollectObjCIvars(SuperClass, false, Ivars);
998  if (!leafClass) {
999    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1000         E = OI->ivar_end(); I != E; ++I)
1001      Ivars.push_back(*I);
1002  }
1003  else
1004    ShallowCollectObjCIvars(OI, Ivars);
1005}
1006
1007/// CollectInheritedProtocols - Collect all protocols in current class and
1008/// those inherited by it.
1009void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1010                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1011  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1012    // We can use protocol_iterator here instead of
1013    // all_referenced_protocol_iterator since we are walking all categories.
1014    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1015         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1016      ObjCProtocolDecl *Proto = (*P);
1017      Protocols.insert(Proto);
1018      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1019           PE = Proto->protocol_end(); P != PE; ++P) {
1020        Protocols.insert(*P);
1021        CollectInheritedProtocols(*P, Protocols);
1022      }
1023    }
1024
1025    // Categories of this Interface.
1026    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1027         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1028      CollectInheritedProtocols(CDeclChain, Protocols);
1029    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1030      while (SD) {
1031        CollectInheritedProtocols(SD, Protocols);
1032        SD = SD->getSuperClass();
1033      }
1034  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1035    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1036         PE = OC->protocol_end(); P != PE; ++P) {
1037      ObjCProtocolDecl *Proto = (*P);
1038      Protocols.insert(Proto);
1039      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1040           PE = Proto->protocol_end(); P != PE; ++P)
1041        CollectInheritedProtocols(*P, Protocols);
1042    }
1043  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1044    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1045         PE = OP->protocol_end(); P != PE; ++P) {
1046      ObjCProtocolDecl *Proto = (*P);
1047      Protocols.insert(Proto);
1048      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1049           PE = Proto->protocol_end(); P != PE; ++P)
1050        CollectInheritedProtocols(*P, Protocols);
1051    }
1052  }
1053}
1054
1055unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1056  unsigned count = 0;
1057  // Count ivars declared in class extension.
1058  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1059       CDecl = CDecl->getNextClassExtension())
1060    count += CDecl->ivar_size();
1061
1062  // Count ivar defined in this class's implementation.  This
1063  // includes synthesized ivars.
1064  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1065    count += ImplDecl->ivar_size();
1066
1067  return count;
1068}
1069
1070/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1071ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1072  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1073    I = ObjCImpls.find(D);
1074  if (I != ObjCImpls.end())
1075    return cast<ObjCImplementationDecl>(I->second);
1076  return 0;
1077}
1078/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1079ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1080  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1081    I = ObjCImpls.find(D);
1082  if (I != ObjCImpls.end())
1083    return cast<ObjCCategoryImplDecl>(I->second);
1084  return 0;
1085}
1086
1087/// \brief Set the implementation of ObjCInterfaceDecl.
1088void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1089                           ObjCImplementationDecl *ImplD) {
1090  assert(IFaceD && ImplD && "Passed null params");
1091  ObjCImpls[IFaceD] = ImplD;
1092}
1093/// \brief Set the implementation of ObjCCategoryDecl.
1094void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1095                           ObjCCategoryImplDecl *ImplD) {
1096  assert(CatD && ImplD && "Passed null params");
1097  ObjCImpls[CatD] = ImplD;
1098}
1099
1100/// \brief Get the copy initialization expression of VarDecl,or NULL if
1101/// none exists.
1102Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1103  assert(VD && "Passed null params");
1104  assert(VD->hasAttr<BlocksAttr>() &&
1105         "getBlockVarCopyInits - not __block var");
1106  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1107    I = BlockVarCopyInits.find(VD);
1108  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1109}
1110
1111/// \brief Set the copy inialization expression of a block var decl.
1112void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1113  assert(VD && Init && "Passed null params");
1114  assert(VD->hasAttr<BlocksAttr>() &&
1115         "setBlockVarCopyInits - not __block var");
1116  BlockVarCopyInits[VD] = Init;
1117}
1118
1119/// \brief Allocate an uninitialized TypeSourceInfo.
1120///
1121/// The caller should initialize the memory held by TypeSourceInfo using
1122/// the TypeLoc wrappers.
1123///
1124/// \param T the type that will be the basis for type source info. This type
1125/// should refer to how the declarator was written in source code, not to
1126/// what type semantic analysis resolved the declarator to.
1127TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1128                                                 unsigned DataSize) const {
1129  if (!DataSize)
1130    DataSize = TypeLoc::getFullDataSizeForType(T);
1131  else
1132    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1133           "incorrect data size provided to CreateTypeSourceInfo!");
1134
1135  TypeSourceInfo *TInfo =
1136    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1137  new (TInfo) TypeSourceInfo(T);
1138  return TInfo;
1139}
1140
1141TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1142                                                     SourceLocation L) const {
1143  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1144  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1145  return DI;
1146}
1147
1148const ASTRecordLayout &
1149ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1150  return getObjCLayout(D, 0);
1151}
1152
1153const ASTRecordLayout &
1154ASTContext::getASTObjCImplementationLayout(
1155                                        const ObjCImplementationDecl *D) const {
1156  return getObjCLayout(D->getClassInterface(), D);
1157}
1158
1159//===----------------------------------------------------------------------===//
1160//                   Type creation/memoization methods
1161//===----------------------------------------------------------------------===//
1162
1163QualType
1164ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1165  unsigned fastQuals = quals.getFastQualifiers();
1166  quals.removeFastQualifiers();
1167
1168  // Check if we've already instantiated this type.
1169  llvm::FoldingSetNodeID ID;
1170  ExtQuals::Profile(ID, baseType, quals);
1171  void *insertPos = 0;
1172  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1173    assert(eq->getQualifiers() == quals);
1174    return QualType(eq, fastQuals);
1175  }
1176
1177  // If the base type is not canonical, make the appropriate canonical type.
1178  QualType canon;
1179  if (!baseType->isCanonicalUnqualified()) {
1180    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1181    canonSplit.second.addConsistentQualifiers(quals);
1182    canon = getExtQualType(canonSplit.first, canonSplit.second);
1183
1184    // Re-find the insert position.
1185    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1186  }
1187
1188  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1189  ExtQualNodes.InsertNode(eq, insertPos);
1190  return QualType(eq, fastQuals);
1191}
1192
1193QualType
1194ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1195  QualType CanT = getCanonicalType(T);
1196  if (CanT.getAddressSpace() == AddressSpace)
1197    return T;
1198
1199  // If we are composing extended qualifiers together, merge together
1200  // into one ExtQuals node.
1201  QualifierCollector Quals;
1202  const Type *TypeNode = Quals.strip(T);
1203
1204  // If this type already has an address space specified, it cannot get
1205  // another one.
1206  assert(!Quals.hasAddressSpace() &&
1207         "Type cannot be in multiple addr spaces!");
1208  Quals.addAddressSpace(AddressSpace);
1209
1210  return getExtQualType(TypeNode, Quals);
1211}
1212
1213QualType ASTContext::getObjCGCQualType(QualType T,
1214                                       Qualifiers::GC GCAttr) const {
1215  QualType CanT = getCanonicalType(T);
1216  if (CanT.getObjCGCAttr() == GCAttr)
1217    return T;
1218
1219  if (const PointerType *ptr = T->getAs<PointerType>()) {
1220    QualType Pointee = ptr->getPointeeType();
1221    if (Pointee->isAnyPointerType()) {
1222      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1223      return getPointerType(ResultType);
1224    }
1225  }
1226
1227  // If we are composing extended qualifiers together, merge together
1228  // into one ExtQuals node.
1229  QualifierCollector Quals;
1230  const Type *TypeNode = Quals.strip(T);
1231
1232  // If this type already has an ObjCGC specified, it cannot get
1233  // another one.
1234  assert(!Quals.hasObjCGCAttr() &&
1235         "Type cannot have multiple ObjCGCs!");
1236  Quals.addObjCGCAttr(GCAttr);
1237
1238  return getExtQualType(TypeNode, Quals);
1239}
1240
1241const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1242                                                   FunctionType::ExtInfo Info) {
1243  if (T->getExtInfo() == Info)
1244    return T;
1245
1246  QualType Result;
1247  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1248    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1249  } else {
1250    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1251    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1252    EPI.ExtInfo = Info;
1253    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1254                             FPT->getNumArgs(), EPI);
1255  }
1256
1257  return cast<FunctionType>(Result.getTypePtr());
1258}
1259
1260/// getComplexType - Return the uniqued reference to the type for a complex
1261/// number with the specified element type.
1262QualType ASTContext::getComplexType(QualType T) const {
1263  // Unique pointers, to guarantee there is only one pointer of a particular
1264  // structure.
1265  llvm::FoldingSetNodeID ID;
1266  ComplexType::Profile(ID, T);
1267
1268  void *InsertPos = 0;
1269  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1270    return QualType(CT, 0);
1271
1272  // If the pointee type isn't canonical, this won't be a canonical type either,
1273  // so fill in the canonical type field.
1274  QualType Canonical;
1275  if (!T.isCanonical()) {
1276    Canonical = getComplexType(getCanonicalType(T));
1277
1278    // Get the new insert position for the node we care about.
1279    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1280    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1281  }
1282  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1283  Types.push_back(New);
1284  ComplexTypes.InsertNode(New, InsertPos);
1285  return QualType(New, 0);
1286}
1287
1288/// getPointerType - Return the uniqued reference to the type for a pointer to
1289/// the specified type.
1290QualType ASTContext::getPointerType(QualType T) const {
1291  // Unique pointers, to guarantee there is only one pointer of a particular
1292  // structure.
1293  llvm::FoldingSetNodeID ID;
1294  PointerType::Profile(ID, T);
1295
1296  void *InsertPos = 0;
1297  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1298    return QualType(PT, 0);
1299
1300  // If the pointee type isn't canonical, this won't be a canonical type either,
1301  // so fill in the canonical type field.
1302  QualType Canonical;
1303  if (!T.isCanonical()) {
1304    Canonical = getPointerType(getCanonicalType(T));
1305
1306    // Get the new insert position for the node we care about.
1307    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1308    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1309  }
1310  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1311  Types.push_back(New);
1312  PointerTypes.InsertNode(New, InsertPos);
1313  return QualType(New, 0);
1314}
1315
1316/// getBlockPointerType - Return the uniqued reference to the type for
1317/// a pointer to the specified block.
1318QualType ASTContext::getBlockPointerType(QualType T) const {
1319  assert(T->isFunctionType() && "block of function types only");
1320  // Unique pointers, to guarantee there is only one block of a particular
1321  // structure.
1322  llvm::FoldingSetNodeID ID;
1323  BlockPointerType::Profile(ID, T);
1324
1325  void *InsertPos = 0;
1326  if (BlockPointerType *PT =
1327        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1328    return QualType(PT, 0);
1329
1330  // If the block pointee type isn't canonical, this won't be a canonical
1331  // type either so fill in the canonical type field.
1332  QualType Canonical;
1333  if (!T.isCanonical()) {
1334    Canonical = getBlockPointerType(getCanonicalType(T));
1335
1336    // Get the new insert position for the node we care about.
1337    BlockPointerType *NewIP =
1338      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1339    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1340  }
1341  BlockPointerType *New
1342    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1343  Types.push_back(New);
1344  BlockPointerTypes.InsertNode(New, InsertPos);
1345  return QualType(New, 0);
1346}
1347
1348/// getLValueReferenceType - Return the uniqued reference to the type for an
1349/// lvalue reference to the specified type.
1350QualType
1351ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1352  // Unique pointers, to guarantee there is only one pointer of a particular
1353  // structure.
1354  llvm::FoldingSetNodeID ID;
1355  ReferenceType::Profile(ID, T, SpelledAsLValue);
1356
1357  void *InsertPos = 0;
1358  if (LValueReferenceType *RT =
1359        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1360    return QualType(RT, 0);
1361
1362  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1363
1364  // If the referencee type isn't canonical, this won't be a canonical type
1365  // either, so fill in the canonical type field.
1366  QualType Canonical;
1367  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1368    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1369    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1370
1371    // Get the new insert position for the node we care about.
1372    LValueReferenceType *NewIP =
1373      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1374    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1375  }
1376
1377  LValueReferenceType *New
1378    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1379                                                     SpelledAsLValue);
1380  Types.push_back(New);
1381  LValueReferenceTypes.InsertNode(New, InsertPos);
1382
1383  return QualType(New, 0);
1384}
1385
1386/// getRValueReferenceType - Return the uniqued reference to the type for an
1387/// rvalue reference to the specified type.
1388QualType ASTContext::getRValueReferenceType(QualType T) const {
1389  // Unique pointers, to guarantee there is only one pointer of a particular
1390  // structure.
1391  llvm::FoldingSetNodeID ID;
1392  ReferenceType::Profile(ID, T, false);
1393
1394  void *InsertPos = 0;
1395  if (RValueReferenceType *RT =
1396        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1397    return QualType(RT, 0);
1398
1399  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1400
1401  // If the referencee type isn't canonical, this won't be a canonical type
1402  // either, so fill in the canonical type field.
1403  QualType Canonical;
1404  if (InnerRef || !T.isCanonical()) {
1405    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1406    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1407
1408    // Get the new insert position for the node we care about.
1409    RValueReferenceType *NewIP =
1410      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1411    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1412  }
1413
1414  RValueReferenceType *New
1415    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1416  Types.push_back(New);
1417  RValueReferenceTypes.InsertNode(New, InsertPos);
1418  return QualType(New, 0);
1419}
1420
1421/// getMemberPointerType - Return the uniqued reference to the type for a
1422/// member pointer to the specified type, in the specified class.
1423QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1424  // Unique pointers, to guarantee there is only one pointer of a particular
1425  // structure.
1426  llvm::FoldingSetNodeID ID;
1427  MemberPointerType::Profile(ID, T, Cls);
1428
1429  void *InsertPos = 0;
1430  if (MemberPointerType *PT =
1431      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1432    return QualType(PT, 0);
1433
1434  // If the pointee or class type isn't canonical, this won't be a canonical
1435  // type either, so fill in the canonical type field.
1436  QualType Canonical;
1437  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1438    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1439
1440    // Get the new insert position for the node we care about.
1441    MemberPointerType *NewIP =
1442      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1443    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1444  }
1445  MemberPointerType *New
1446    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1447  Types.push_back(New);
1448  MemberPointerTypes.InsertNode(New, InsertPos);
1449  return QualType(New, 0);
1450}
1451
1452/// getConstantArrayType - Return the unique reference to the type for an
1453/// array of the specified element type.
1454QualType ASTContext::getConstantArrayType(QualType EltTy,
1455                                          const llvm::APInt &ArySizeIn,
1456                                          ArrayType::ArraySizeModifier ASM,
1457                                          unsigned IndexTypeQuals) const {
1458  assert((EltTy->isDependentType() ||
1459          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1460         "Constant array of VLAs is illegal!");
1461
1462  // Convert the array size into a canonical width matching the pointer size for
1463  // the target.
1464  llvm::APInt ArySize(ArySizeIn);
1465  ArySize =
1466    ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1467
1468  llvm::FoldingSetNodeID ID;
1469  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1470
1471  void *InsertPos = 0;
1472  if (ConstantArrayType *ATP =
1473      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1474    return QualType(ATP, 0);
1475
1476  // If the element type isn't canonical or has qualifiers, this won't
1477  // be a canonical type either, so fill in the canonical type field.
1478  QualType Canon;
1479  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1480    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1481    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1482                                 ASM, IndexTypeQuals);
1483    Canon = getQualifiedType(Canon, canonSplit.second);
1484
1485    // Get the new insert position for the node we care about.
1486    ConstantArrayType *NewIP =
1487      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1488    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1489  }
1490
1491  ConstantArrayType *New = new(*this,TypeAlignment)
1492    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1493  ConstantArrayTypes.InsertNode(New, InsertPos);
1494  Types.push_back(New);
1495  return QualType(New, 0);
1496}
1497
1498/// getVariableArrayDecayedType - Turns the given type, which may be
1499/// variably-modified, into the corresponding type with all the known
1500/// sizes replaced with [*].
1501QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1502  // Vastly most common case.
1503  if (!type->isVariablyModifiedType()) return type;
1504
1505  QualType result;
1506
1507  SplitQualType split = type.getSplitDesugaredType();
1508  const Type *ty = split.first;
1509  switch (ty->getTypeClass()) {
1510#define TYPE(Class, Base)
1511#define ABSTRACT_TYPE(Class, Base)
1512#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1513#include "clang/AST/TypeNodes.def"
1514    llvm_unreachable("didn't desugar past all non-canonical types?");
1515
1516  // These types should never be variably-modified.
1517  case Type::Builtin:
1518  case Type::Complex:
1519  case Type::Vector:
1520  case Type::ExtVector:
1521  case Type::DependentSizedExtVector:
1522  case Type::ObjCObject:
1523  case Type::ObjCInterface:
1524  case Type::ObjCObjectPointer:
1525  case Type::Record:
1526  case Type::Enum:
1527  case Type::UnresolvedUsing:
1528  case Type::TypeOfExpr:
1529  case Type::TypeOf:
1530  case Type::Decltype:
1531  case Type::DependentName:
1532  case Type::InjectedClassName:
1533  case Type::TemplateSpecialization:
1534  case Type::DependentTemplateSpecialization:
1535  case Type::TemplateTypeParm:
1536  case Type::SubstTemplateTypeParmPack:
1537  case Type::Auto:
1538  case Type::PackExpansion:
1539    llvm_unreachable("type should never be variably-modified");
1540
1541  // These types can be variably-modified but should never need to
1542  // further decay.
1543  case Type::FunctionNoProto:
1544  case Type::FunctionProto:
1545  case Type::BlockPointer:
1546  case Type::MemberPointer:
1547    return type;
1548
1549  // These types can be variably-modified.  All these modifications
1550  // preserve structure except as noted by comments.
1551  // TODO: if we ever care about optimizing VLAs, there are no-op
1552  // optimizations available here.
1553  case Type::Pointer:
1554    result = getPointerType(getVariableArrayDecayedType(
1555                              cast<PointerType>(ty)->getPointeeType()));
1556    break;
1557
1558  case Type::LValueReference: {
1559    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1560    result = getLValueReferenceType(
1561                 getVariableArrayDecayedType(lv->getPointeeType()),
1562                                    lv->isSpelledAsLValue());
1563    break;
1564  }
1565
1566  case Type::RValueReference: {
1567    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1568    result = getRValueReferenceType(
1569                 getVariableArrayDecayedType(lv->getPointeeType()));
1570    break;
1571  }
1572
1573  case Type::ConstantArray: {
1574    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1575    result = getConstantArrayType(
1576                 getVariableArrayDecayedType(cat->getElementType()),
1577                                  cat->getSize(),
1578                                  cat->getSizeModifier(),
1579                                  cat->getIndexTypeCVRQualifiers());
1580    break;
1581  }
1582
1583  case Type::DependentSizedArray: {
1584    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1585    result = getDependentSizedArrayType(
1586                 getVariableArrayDecayedType(dat->getElementType()),
1587                                        dat->getSizeExpr(),
1588                                        dat->getSizeModifier(),
1589                                        dat->getIndexTypeCVRQualifiers(),
1590                                        dat->getBracketsRange());
1591    break;
1592  }
1593
1594  // Turn incomplete types into [*] types.
1595  case Type::IncompleteArray: {
1596    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1597    result = getVariableArrayType(
1598                 getVariableArrayDecayedType(iat->getElementType()),
1599                                  /*size*/ 0,
1600                                  ArrayType::Normal,
1601                                  iat->getIndexTypeCVRQualifiers(),
1602                                  SourceRange());
1603    break;
1604  }
1605
1606  // Turn VLA types into [*] types.
1607  case Type::VariableArray: {
1608    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1609    result = getVariableArrayType(
1610                 getVariableArrayDecayedType(vat->getElementType()),
1611                                  /*size*/ 0,
1612                                  ArrayType::Star,
1613                                  vat->getIndexTypeCVRQualifiers(),
1614                                  vat->getBracketsRange());
1615    break;
1616  }
1617  }
1618
1619  // Apply the top-level qualifiers from the original.
1620  return getQualifiedType(result, split.second);
1621}
1622
1623/// getVariableArrayType - Returns a non-unique reference to the type for a
1624/// variable array of the specified element type.
1625QualType ASTContext::getVariableArrayType(QualType EltTy,
1626                                          Expr *NumElts,
1627                                          ArrayType::ArraySizeModifier ASM,
1628                                          unsigned IndexTypeQuals,
1629                                          SourceRange Brackets) const {
1630  // Since we don't unique expressions, it isn't possible to unique VLA's
1631  // that have an expression provided for their size.
1632  QualType Canon;
1633
1634  // Be sure to pull qualifiers off the element type.
1635  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1636    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1637    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1638                                 IndexTypeQuals, Brackets);
1639    Canon = getQualifiedType(Canon, canonSplit.second);
1640  }
1641
1642  VariableArrayType *New = new(*this, TypeAlignment)
1643    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1644
1645  VariableArrayTypes.push_back(New);
1646  Types.push_back(New);
1647  return QualType(New, 0);
1648}
1649
1650/// getDependentSizedArrayType - Returns a non-unique reference to
1651/// the type for a dependently-sized array of the specified element
1652/// type.
1653QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1654                                                Expr *numElements,
1655                                                ArrayType::ArraySizeModifier ASM,
1656                                                unsigned elementTypeQuals,
1657                                                SourceRange brackets) const {
1658  assert((!numElements || numElements->isTypeDependent() ||
1659          numElements->isValueDependent()) &&
1660         "Size must be type- or value-dependent!");
1661
1662  // Dependently-sized array types that do not have a specified number
1663  // of elements will have their sizes deduced from a dependent
1664  // initializer.  We do no canonicalization here at all, which is okay
1665  // because they can't be used in most locations.
1666  if (!numElements) {
1667    DependentSizedArrayType *newType
1668      = new (*this, TypeAlignment)
1669          DependentSizedArrayType(*this, elementType, QualType(),
1670                                  numElements, ASM, elementTypeQuals,
1671                                  brackets);
1672    Types.push_back(newType);
1673    return QualType(newType, 0);
1674  }
1675
1676  // Otherwise, we actually build a new type every time, but we
1677  // also build a canonical type.
1678
1679  SplitQualType canonElementType = getCanonicalType(elementType).split();
1680
1681  void *insertPos = 0;
1682  llvm::FoldingSetNodeID ID;
1683  DependentSizedArrayType::Profile(ID, *this,
1684                                   QualType(canonElementType.first, 0),
1685                                   ASM, elementTypeQuals, numElements);
1686
1687  // Look for an existing type with these properties.
1688  DependentSizedArrayType *canonTy =
1689    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1690
1691  // If we don't have one, build one.
1692  if (!canonTy) {
1693    canonTy = new (*this, TypeAlignment)
1694      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1695                              QualType(), numElements, ASM, elementTypeQuals,
1696                              brackets);
1697    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1698    Types.push_back(canonTy);
1699  }
1700
1701  // Apply qualifiers from the element type to the array.
1702  QualType canon = getQualifiedType(QualType(canonTy,0),
1703                                    canonElementType.second);
1704
1705  // If we didn't need extra canonicalization for the element type,
1706  // then just use that as our result.
1707  if (QualType(canonElementType.first, 0) == elementType)
1708    return canon;
1709
1710  // Otherwise, we need to build a type which follows the spelling
1711  // of the element type.
1712  DependentSizedArrayType *sugaredType
1713    = new (*this, TypeAlignment)
1714        DependentSizedArrayType(*this, elementType, canon, numElements,
1715                                ASM, elementTypeQuals, brackets);
1716  Types.push_back(sugaredType);
1717  return QualType(sugaredType, 0);
1718}
1719
1720QualType ASTContext::getIncompleteArrayType(QualType elementType,
1721                                            ArrayType::ArraySizeModifier ASM,
1722                                            unsigned elementTypeQuals) const {
1723  llvm::FoldingSetNodeID ID;
1724  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1725
1726  void *insertPos = 0;
1727  if (IncompleteArrayType *iat =
1728       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1729    return QualType(iat, 0);
1730
1731  // If the element type isn't canonical, this won't be a canonical type
1732  // either, so fill in the canonical type field.  We also have to pull
1733  // qualifiers off the element type.
1734  QualType canon;
1735
1736  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1737    SplitQualType canonSplit = getCanonicalType(elementType).split();
1738    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1739                                   ASM, elementTypeQuals);
1740    canon = getQualifiedType(canon, canonSplit.second);
1741
1742    // Get the new insert position for the node we care about.
1743    IncompleteArrayType *existing =
1744      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1745    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1746  }
1747
1748  IncompleteArrayType *newType = new (*this, TypeAlignment)
1749    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1750
1751  IncompleteArrayTypes.InsertNode(newType, insertPos);
1752  Types.push_back(newType);
1753  return QualType(newType, 0);
1754}
1755
1756/// getVectorType - Return the unique reference to a vector type of
1757/// the specified element type and size. VectorType must be a built-in type.
1758QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1759                                   VectorType::VectorKind VecKind) const {
1760  assert(vecType->isBuiltinType());
1761
1762  // Check if we've already instantiated a vector of this type.
1763  llvm::FoldingSetNodeID ID;
1764  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1765
1766  void *InsertPos = 0;
1767  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1768    return QualType(VTP, 0);
1769
1770  // If the element type isn't canonical, this won't be a canonical type either,
1771  // so fill in the canonical type field.
1772  QualType Canonical;
1773  if (!vecType.isCanonical()) {
1774    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1775
1776    // Get the new insert position for the node we care about.
1777    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1778    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1779  }
1780  VectorType *New = new (*this, TypeAlignment)
1781    VectorType(vecType, NumElts, Canonical, VecKind);
1782  VectorTypes.InsertNode(New, InsertPos);
1783  Types.push_back(New);
1784  return QualType(New, 0);
1785}
1786
1787/// getExtVectorType - Return the unique reference to an extended vector type of
1788/// the specified element type and size. VectorType must be a built-in type.
1789QualType
1790ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1791  assert(vecType->isBuiltinType());
1792
1793  // Check if we've already instantiated a vector of this type.
1794  llvm::FoldingSetNodeID ID;
1795  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1796                      VectorType::GenericVector);
1797  void *InsertPos = 0;
1798  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1799    return QualType(VTP, 0);
1800
1801  // If the element type isn't canonical, this won't be a canonical type either,
1802  // so fill in the canonical type field.
1803  QualType Canonical;
1804  if (!vecType.isCanonical()) {
1805    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1806
1807    // Get the new insert position for the node we care about.
1808    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1809    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1810  }
1811  ExtVectorType *New = new (*this, TypeAlignment)
1812    ExtVectorType(vecType, NumElts, Canonical);
1813  VectorTypes.InsertNode(New, InsertPos);
1814  Types.push_back(New);
1815  return QualType(New, 0);
1816}
1817
1818QualType
1819ASTContext::getDependentSizedExtVectorType(QualType vecType,
1820                                           Expr *SizeExpr,
1821                                           SourceLocation AttrLoc) const {
1822  llvm::FoldingSetNodeID ID;
1823  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1824                                       SizeExpr);
1825
1826  void *InsertPos = 0;
1827  DependentSizedExtVectorType *Canon
1828    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1829  DependentSizedExtVectorType *New;
1830  if (Canon) {
1831    // We already have a canonical version of this array type; use it as
1832    // the canonical type for a newly-built type.
1833    New = new (*this, TypeAlignment)
1834      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1835                                  SizeExpr, AttrLoc);
1836  } else {
1837    QualType CanonVecTy = getCanonicalType(vecType);
1838    if (CanonVecTy == vecType) {
1839      New = new (*this, TypeAlignment)
1840        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1841                                    AttrLoc);
1842
1843      DependentSizedExtVectorType *CanonCheck
1844        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1845      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
1846      (void)CanonCheck;
1847      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1848    } else {
1849      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1850                                                      SourceLocation());
1851      New = new (*this, TypeAlignment)
1852        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1853    }
1854  }
1855
1856  Types.push_back(New);
1857  return QualType(New, 0);
1858}
1859
1860/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1861///
1862QualType
1863ASTContext::getFunctionNoProtoType(QualType ResultTy,
1864                                   const FunctionType::ExtInfo &Info) const {
1865  const CallingConv DefaultCC = Info.getCC();
1866  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1867                               CC_X86StdCall : DefaultCC;
1868  // Unique functions, to guarantee there is only one function of a particular
1869  // structure.
1870  llvm::FoldingSetNodeID ID;
1871  FunctionNoProtoType::Profile(ID, ResultTy, Info);
1872
1873  void *InsertPos = 0;
1874  if (FunctionNoProtoType *FT =
1875        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1876    return QualType(FT, 0);
1877
1878  QualType Canonical;
1879  if (!ResultTy.isCanonical() ||
1880      getCanonicalCallConv(CallConv) != CallConv) {
1881    Canonical =
1882      getFunctionNoProtoType(getCanonicalType(ResultTy),
1883                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
1884
1885    // Get the new insert position for the node we care about.
1886    FunctionNoProtoType *NewIP =
1887      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1888    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1889  }
1890
1891  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
1892  FunctionNoProtoType *New = new (*this, TypeAlignment)
1893    FunctionNoProtoType(ResultTy, Canonical, newInfo);
1894  Types.push_back(New);
1895  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1896  return QualType(New, 0);
1897}
1898
1899/// getFunctionType - Return a normal function type with a typed argument
1900/// list.  isVariadic indicates whether the argument list includes '...'.
1901QualType
1902ASTContext::getFunctionType(QualType ResultTy,
1903                            const QualType *ArgArray, unsigned NumArgs,
1904                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1905  // Unique functions, to guarantee there is only one function of a particular
1906  // structure.
1907  llvm::FoldingSetNodeID ID;
1908  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI);
1909
1910  void *InsertPos = 0;
1911  if (FunctionProtoType *FTP =
1912        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1913    return QualType(FTP, 0);
1914
1915  // Determine whether the type being created is already canonical or not.
1916  bool isCanonical = !EPI.HasExceptionSpec && ResultTy.isCanonical();
1917  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1918    if (!ArgArray[i].isCanonicalAsParam())
1919      isCanonical = false;
1920
1921  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
1922  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
1923                               CC_X86StdCall : DefaultCC;
1924
1925  // If this type isn't canonical, get the canonical version of it.
1926  // The exception spec is not part of the canonical type.
1927  QualType Canonical;
1928  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
1929    llvm::SmallVector<QualType, 16> CanonicalArgs;
1930    CanonicalArgs.reserve(NumArgs);
1931    for (unsigned i = 0; i != NumArgs; ++i)
1932      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
1933
1934    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
1935    if (CanonicalEPI.HasExceptionSpec) {
1936      CanonicalEPI.HasExceptionSpec = false;
1937      CanonicalEPI.HasAnyExceptionSpec = false;
1938      CanonicalEPI.NumExceptions = 0;
1939    }
1940    CanonicalEPI.ExtInfo
1941      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
1942
1943    Canonical = getFunctionType(getCanonicalType(ResultTy),
1944                                CanonicalArgs.data(), NumArgs,
1945                                CanonicalEPI);
1946
1947    // Get the new insert position for the node we care about.
1948    FunctionProtoType *NewIP =
1949      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1950    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1951  }
1952
1953  // FunctionProtoType objects are allocated with extra bytes after them
1954  // for two variable size arrays (for parameter and exception types) at the
1955  // end of them.
1956  size_t Size = sizeof(FunctionProtoType) +
1957                NumArgs * sizeof(QualType) +
1958                EPI.NumExceptions * sizeof(QualType);
1959  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
1960  FunctionProtoType::ExtProtoInfo newEPI = EPI;
1961  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
1962  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
1963  Types.push_back(FTP);
1964  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1965  return QualType(FTP, 0);
1966}
1967
1968#ifndef NDEBUG
1969static bool NeedsInjectedClassNameType(const RecordDecl *D) {
1970  if (!isa<CXXRecordDecl>(D)) return false;
1971  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
1972  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
1973    return true;
1974  if (RD->getDescribedClassTemplate() &&
1975      !isa<ClassTemplateSpecializationDecl>(RD))
1976    return true;
1977  return false;
1978}
1979#endif
1980
1981/// getInjectedClassNameType - Return the unique reference to the
1982/// injected class name type for the specified templated declaration.
1983QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
1984                                              QualType TST) const {
1985  assert(NeedsInjectedClassNameType(Decl));
1986  if (Decl->TypeForDecl) {
1987    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1988  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
1989    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
1990    Decl->TypeForDecl = PrevDecl->TypeForDecl;
1991    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
1992  } else {
1993    Type *newType =
1994      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
1995    Decl->TypeForDecl = newType;
1996    Types.push_back(newType);
1997  }
1998  return QualType(Decl->TypeForDecl, 0);
1999}
2000
2001/// getTypeDeclType - Return the unique reference to the type for the
2002/// specified type declaration.
2003QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2004  assert(Decl && "Passed null for Decl param");
2005  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2006
2007  if (const TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
2008    return getTypedefType(Typedef);
2009
2010  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2011         "Template type parameter types are always available.");
2012
2013  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2014    assert(!Record->getPreviousDeclaration() &&
2015           "struct/union has previous declaration");
2016    assert(!NeedsInjectedClassNameType(Record));
2017    return getRecordType(Record);
2018  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2019    assert(!Enum->getPreviousDeclaration() &&
2020           "enum has previous declaration");
2021    return getEnumType(Enum);
2022  } else if (const UnresolvedUsingTypenameDecl *Using =
2023               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2024    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2025    Decl->TypeForDecl = newType;
2026    Types.push_back(newType);
2027  } else
2028    llvm_unreachable("TypeDecl without a type?");
2029
2030  return QualType(Decl->TypeForDecl, 0);
2031}
2032
2033/// getTypedefType - Return the unique reference to the type for the
2034/// specified typename decl.
2035QualType
2036ASTContext::getTypedefType(const TypedefDecl *Decl, QualType Canonical) const {
2037  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2038
2039  if (Canonical.isNull())
2040    Canonical = getCanonicalType(Decl->getUnderlyingType());
2041  TypedefType *newType = new(*this, TypeAlignment)
2042    TypedefType(Type::Typedef, Decl, Canonical);
2043  Decl->TypeForDecl = newType;
2044  Types.push_back(newType);
2045  return QualType(newType, 0);
2046}
2047
2048QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2049  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2050
2051  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2052    if (PrevDecl->TypeForDecl)
2053      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2054
2055  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2056  Decl->TypeForDecl = newType;
2057  Types.push_back(newType);
2058  return QualType(newType, 0);
2059}
2060
2061QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2062  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2063
2064  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2065    if (PrevDecl->TypeForDecl)
2066      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2067
2068  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2069  Decl->TypeForDecl = newType;
2070  Types.push_back(newType);
2071  return QualType(newType, 0);
2072}
2073
2074QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2075                                       QualType modifiedType,
2076                                       QualType equivalentType) {
2077  llvm::FoldingSetNodeID id;
2078  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2079
2080  void *insertPos = 0;
2081  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2082  if (type) return QualType(type, 0);
2083
2084  QualType canon = getCanonicalType(equivalentType);
2085  type = new (*this, TypeAlignment)
2086           AttributedType(canon, attrKind, modifiedType, equivalentType);
2087
2088  Types.push_back(type);
2089  AttributedTypes.InsertNode(type, insertPos);
2090
2091  return QualType(type, 0);
2092}
2093
2094
2095/// \brief Retrieve a substitution-result type.
2096QualType
2097ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2098                                         QualType Replacement) const {
2099  assert(Replacement.isCanonical()
2100         && "replacement types must always be canonical");
2101
2102  llvm::FoldingSetNodeID ID;
2103  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2104  void *InsertPos = 0;
2105  SubstTemplateTypeParmType *SubstParm
2106    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2107
2108  if (!SubstParm) {
2109    SubstParm = new (*this, TypeAlignment)
2110      SubstTemplateTypeParmType(Parm, Replacement);
2111    Types.push_back(SubstParm);
2112    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2113  }
2114
2115  return QualType(SubstParm, 0);
2116}
2117
2118/// \brief Retrieve a
2119QualType ASTContext::getSubstTemplateTypeParmPackType(
2120                                          const TemplateTypeParmType *Parm,
2121                                              const TemplateArgument &ArgPack) {
2122#ifndef NDEBUG
2123  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2124                                    PEnd = ArgPack.pack_end();
2125       P != PEnd; ++P) {
2126    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2127    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2128  }
2129#endif
2130
2131  llvm::FoldingSetNodeID ID;
2132  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2133  void *InsertPos = 0;
2134  if (SubstTemplateTypeParmPackType *SubstParm
2135        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2136    return QualType(SubstParm, 0);
2137
2138  QualType Canon;
2139  if (!Parm->isCanonicalUnqualified()) {
2140    Canon = getCanonicalType(QualType(Parm, 0));
2141    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2142                                             ArgPack);
2143    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2144  }
2145
2146  SubstTemplateTypeParmPackType *SubstParm
2147    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2148                                                               ArgPack);
2149  Types.push_back(SubstParm);
2150  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2151  return QualType(SubstParm, 0);
2152}
2153
2154/// \brief Retrieve the template type parameter type for a template
2155/// parameter or parameter pack with the given depth, index, and (optionally)
2156/// name.
2157QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2158                                             bool ParameterPack,
2159                                             IdentifierInfo *Name) const {
2160  llvm::FoldingSetNodeID ID;
2161  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
2162  void *InsertPos = 0;
2163  TemplateTypeParmType *TypeParm
2164    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2165
2166  if (TypeParm)
2167    return QualType(TypeParm, 0);
2168
2169  if (Name) {
2170    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2171    TypeParm = new (*this, TypeAlignment)
2172      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
2173
2174    TemplateTypeParmType *TypeCheck
2175      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2176    assert(!TypeCheck && "Template type parameter canonical type broken");
2177    (void)TypeCheck;
2178  } else
2179    TypeParm = new (*this, TypeAlignment)
2180      TemplateTypeParmType(Depth, Index, ParameterPack);
2181
2182  Types.push_back(TypeParm);
2183  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2184
2185  return QualType(TypeParm, 0);
2186}
2187
2188TypeSourceInfo *
2189ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2190                                              SourceLocation NameLoc,
2191                                        const TemplateArgumentListInfo &Args,
2192                                              QualType CanonType) const {
2193  assert(!Name.getAsDependentTemplateName() &&
2194         "No dependent template names here!");
2195  QualType TST = getTemplateSpecializationType(Name, Args, CanonType);
2196
2197  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2198  TemplateSpecializationTypeLoc TL
2199    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2200  TL.setTemplateNameLoc(NameLoc);
2201  TL.setLAngleLoc(Args.getLAngleLoc());
2202  TL.setRAngleLoc(Args.getRAngleLoc());
2203  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2204    TL.setArgLocInfo(i, Args[i].getLocInfo());
2205  return DI;
2206}
2207
2208QualType
2209ASTContext::getTemplateSpecializationType(TemplateName Template,
2210                                          const TemplateArgumentListInfo &Args,
2211                                          QualType Canon) const {
2212  assert(!Template.getAsDependentTemplateName() &&
2213         "No dependent template names here!");
2214
2215  unsigned NumArgs = Args.size();
2216
2217  llvm::SmallVector<TemplateArgument, 4> ArgVec;
2218  ArgVec.reserve(NumArgs);
2219  for (unsigned i = 0; i != NumArgs; ++i)
2220    ArgVec.push_back(Args[i].getArgument());
2221
2222  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2223                                       Canon);
2224}
2225
2226QualType
2227ASTContext::getTemplateSpecializationType(TemplateName Template,
2228                                          const TemplateArgument *Args,
2229                                          unsigned NumArgs,
2230                                          QualType Canon) const {
2231  assert(!Template.getAsDependentTemplateName() &&
2232         "No dependent template names here!");
2233
2234  if (!Canon.isNull())
2235    Canon = getCanonicalType(Canon);
2236  else
2237    Canon = getCanonicalTemplateSpecializationType(Template, Args, NumArgs);
2238
2239  // Allocate the (non-canonical) template specialization type, but don't
2240  // try to unique it: these types typically have location information that
2241  // we don't unique and don't want to lose.
2242  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2243                        sizeof(TemplateArgument) * NumArgs),
2244                       TypeAlignment);
2245  TemplateSpecializationType *Spec
2246    = new (Mem) TemplateSpecializationType(Template,
2247                                           Args, NumArgs,
2248                                           Canon);
2249
2250  Types.push_back(Spec);
2251  return QualType(Spec, 0);
2252}
2253
2254QualType
2255ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2256                                                   const TemplateArgument *Args,
2257                                                   unsigned NumArgs) const {
2258  assert(!Template.getAsDependentTemplateName() &&
2259         "No dependent template names here!");
2260
2261  // Build the canonical template specialization type.
2262  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2263  llvm::SmallVector<TemplateArgument, 4> CanonArgs;
2264  CanonArgs.reserve(NumArgs);
2265  for (unsigned I = 0; I != NumArgs; ++I)
2266    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2267
2268  // Determine whether this canonical template specialization type already
2269  // exists.
2270  llvm::FoldingSetNodeID ID;
2271  TemplateSpecializationType::Profile(ID, CanonTemplate,
2272                                      CanonArgs.data(), NumArgs, *this);
2273
2274  void *InsertPos = 0;
2275  TemplateSpecializationType *Spec
2276    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2277
2278  if (!Spec) {
2279    // Allocate a new canonical template specialization type.
2280    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2281                          sizeof(TemplateArgument) * NumArgs),
2282                         TypeAlignment);
2283    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2284                                                CanonArgs.data(), NumArgs,
2285                                                QualType());
2286    Types.push_back(Spec);
2287    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2288  }
2289
2290  assert(Spec->isDependentType() &&
2291         "Non-dependent template-id type must have a canonical type");
2292  return QualType(Spec, 0);
2293}
2294
2295QualType
2296ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2297                              NestedNameSpecifier *NNS,
2298                              QualType NamedType) const {
2299  llvm::FoldingSetNodeID ID;
2300  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2301
2302  void *InsertPos = 0;
2303  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2304  if (T)
2305    return QualType(T, 0);
2306
2307  QualType Canon = NamedType;
2308  if (!Canon.isCanonical()) {
2309    Canon = getCanonicalType(NamedType);
2310    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2311    assert(!CheckT && "Elaborated canonical type broken");
2312    (void)CheckT;
2313  }
2314
2315  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2316  Types.push_back(T);
2317  ElaboratedTypes.InsertNode(T, InsertPos);
2318  return QualType(T, 0);
2319}
2320
2321QualType
2322ASTContext::getParenType(QualType InnerType) const {
2323  llvm::FoldingSetNodeID ID;
2324  ParenType::Profile(ID, InnerType);
2325
2326  void *InsertPos = 0;
2327  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2328  if (T)
2329    return QualType(T, 0);
2330
2331  QualType Canon = InnerType;
2332  if (!Canon.isCanonical()) {
2333    Canon = getCanonicalType(InnerType);
2334    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2335    assert(!CheckT && "Paren canonical type broken");
2336    (void)CheckT;
2337  }
2338
2339  T = new (*this) ParenType(InnerType, Canon);
2340  Types.push_back(T);
2341  ParenTypes.InsertNode(T, InsertPos);
2342  return QualType(T, 0);
2343}
2344
2345QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2346                                          NestedNameSpecifier *NNS,
2347                                          const IdentifierInfo *Name,
2348                                          QualType Canon) const {
2349  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2350
2351  if (Canon.isNull()) {
2352    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2353    ElaboratedTypeKeyword CanonKeyword = Keyword;
2354    if (Keyword == ETK_None)
2355      CanonKeyword = ETK_Typename;
2356
2357    if (CanonNNS != NNS || CanonKeyword != Keyword)
2358      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2359  }
2360
2361  llvm::FoldingSetNodeID ID;
2362  DependentNameType::Profile(ID, Keyword, NNS, Name);
2363
2364  void *InsertPos = 0;
2365  DependentNameType *T
2366    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2367  if (T)
2368    return QualType(T, 0);
2369
2370  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2371  Types.push_back(T);
2372  DependentNameTypes.InsertNode(T, InsertPos);
2373  return QualType(T, 0);
2374}
2375
2376QualType
2377ASTContext::getDependentTemplateSpecializationType(
2378                                 ElaboratedTypeKeyword Keyword,
2379                                 NestedNameSpecifier *NNS,
2380                                 const IdentifierInfo *Name,
2381                                 const TemplateArgumentListInfo &Args) const {
2382  // TODO: avoid this copy
2383  llvm::SmallVector<TemplateArgument, 16> ArgCopy;
2384  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2385    ArgCopy.push_back(Args[I].getArgument());
2386  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2387                                                ArgCopy.size(),
2388                                                ArgCopy.data());
2389}
2390
2391QualType
2392ASTContext::getDependentTemplateSpecializationType(
2393                                 ElaboratedTypeKeyword Keyword,
2394                                 NestedNameSpecifier *NNS,
2395                                 const IdentifierInfo *Name,
2396                                 unsigned NumArgs,
2397                                 const TemplateArgument *Args) const {
2398  assert((!NNS || NNS->isDependent()) &&
2399         "nested-name-specifier must be dependent");
2400
2401  llvm::FoldingSetNodeID ID;
2402  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2403                                               Name, NumArgs, Args);
2404
2405  void *InsertPos = 0;
2406  DependentTemplateSpecializationType *T
2407    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2408  if (T)
2409    return QualType(T, 0);
2410
2411  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2412
2413  ElaboratedTypeKeyword CanonKeyword = Keyword;
2414  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2415
2416  bool AnyNonCanonArgs = false;
2417  llvm::SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2418  for (unsigned I = 0; I != NumArgs; ++I) {
2419    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2420    if (!CanonArgs[I].structurallyEquals(Args[I]))
2421      AnyNonCanonArgs = true;
2422  }
2423
2424  QualType Canon;
2425  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2426    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2427                                                   Name, NumArgs,
2428                                                   CanonArgs.data());
2429
2430    // Find the insert position again.
2431    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2432  }
2433
2434  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2435                        sizeof(TemplateArgument) * NumArgs),
2436                       TypeAlignment);
2437  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2438                                                    Name, NumArgs, Args, Canon);
2439  Types.push_back(T);
2440  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2441  return QualType(T, 0);
2442}
2443
2444QualType ASTContext::getPackExpansionType(QualType Pattern,
2445                                      llvm::Optional<unsigned> NumExpansions) {
2446  llvm::FoldingSetNodeID ID;
2447  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2448
2449  assert(Pattern->containsUnexpandedParameterPack() &&
2450         "Pack expansions must expand one or more parameter packs");
2451  void *InsertPos = 0;
2452  PackExpansionType *T
2453    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2454  if (T)
2455    return QualType(T, 0);
2456
2457  QualType Canon;
2458  if (!Pattern.isCanonical()) {
2459    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2460
2461    // Find the insert position again.
2462    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2463  }
2464
2465  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2466  Types.push_back(T);
2467  PackExpansionTypes.InsertNode(T, InsertPos);
2468  return QualType(T, 0);
2469}
2470
2471/// CmpProtocolNames - Comparison predicate for sorting protocols
2472/// alphabetically.
2473static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2474                            const ObjCProtocolDecl *RHS) {
2475  return LHS->getDeclName() < RHS->getDeclName();
2476}
2477
2478static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2479                                unsigned NumProtocols) {
2480  if (NumProtocols == 0) return true;
2481
2482  for (unsigned i = 1; i != NumProtocols; ++i)
2483    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2484      return false;
2485  return true;
2486}
2487
2488static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2489                                   unsigned &NumProtocols) {
2490  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2491
2492  // Sort protocols, keyed by name.
2493  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2494
2495  // Remove duplicates.
2496  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2497  NumProtocols = ProtocolsEnd-Protocols;
2498}
2499
2500QualType ASTContext::getObjCObjectType(QualType BaseType,
2501                                       ObjCProtocolDecl * const *Protocols,
2502                                       unsigned NumProtocols) const {
2503  // If the base type is an interface and there aren't any protocols
2504  // to add, then the interface type will do just fine.
2505  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2506    return BaseType;
2507
2508  // Look in the folding set for an existing type.
2509  llvm::FoldingSetNodeID ID;
2510  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2511  void *InsertPos = 0;
2512  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2513    return QualType(QT, 0);
2514
2515  // Build the canonical type, which has the canonical base type and
2516  // a sorted-and-uniqued list of protocols.
2517  QualType Canonical;
2518  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2519  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2520    if (!ProtocolsSorted) {
2521      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2522                                                     Protocols + NumProtocols);
2523      unsigned UniqueCount = NumProtocols;
2524
2525      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2526      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2527                                    &Sorted[0], UniqueCount);
2528    } else {
2529      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2530                                    Protocols, NumProtocols);
2531    }
2532
2533    // Regenerate InsertPos.
2534    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2535  }
2536
2537  unsigned Size = sizeof(ObjCObjectTypeImpl);
2538  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2539  void *Mem = Allocate(Size, TypeAlignment);
2540  ObjCObjectTypeImpl *T =
2541    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2542
2543  Types.push_back(T);
2544  ObjCObjectTypes.InsertNode(T, InsertPos);
2545  return QualType(T, 0);
2546}
2547
2548/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2549/// the given object type.
2550QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2551  llvm::FoldingSetNodeID ID;
2552  ObjCObjectPointerType::Profile(ID, ObjectT);
2553
2554  void *InsertPos = 0;
2555  if (ObjCObjectPointerType *QT =
2556              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2557    return QualType(QT, 0);
2558
2559  // Find the canonical object type.
2560  QualType Canonical;
2561  if (!ObjectT.isCanonical()) {
2562    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2563
2564    // Regenerate InsertPos.
2565    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2566  }
2567
2568  // No match.
2569  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2570  ObjCObjectPointerType *QType =
2571    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2572
2573  Types.push_back(QType);
2574  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2575  return QualType(QType, 0);
2576}
2577
2578/// getObjCInterfaceType - Return the unique reference to the type for the
2579/// specified ObjC interface decl. The list of protocols is optional.
2580QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2581  if (Decl->TypeForDecl)
2582    return QualType(Decl->TypeForDecl, 0);
2583
2584  // FIXME: redeclarations?
2585  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2586  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2587  Decl->TypeForDecl = T;
2588  Types.push_back(T);
2589  return QualType(T, 0);
2590}
2591
2592/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2593/// TypeOfExprType AST's (since expression's are never shared). For example,
2594/// multiple declarations that refer to "typeof(x)" all contain different
2595/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2596/// on canonical type's (which are always unique).
2597QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2598  TypeOfExprType *toe;
2599  if (tofExpr->isTypeDependent()) {
2600    llvm::FoldingSetNodeID ID;
2601    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2602
2603    void *InsertPos = 0;
2604    DependentTypeOfExprType *Canon
2605      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2606    if (Canon) {
2607      // We already have a "canonical" version of an identical, dependent
2608      // typeof(expr) type. Use that as our canonical type.
2609      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2610                                          QualType((TypeOfExprType*)Canon, 0));
2611    }
2612    else {
2613      // Build a new, canonical typeof(expr) type.
2614      Canon
2615        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2616      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2617      toe = Canon;
2618    }
2619  } else {
2620    QualType Canonical = getCanonicalType(tofExpr->getType());
2621    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2622  }
2623  Types.push_back(toe);
2624  return QualType(toe, 0);
2625}
2626
2627/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2628/// TypeOfType AST's. The only motivation to unique these nodes would be
2629/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2630/// an issue. This doesn't effect the type checker, since it operates
2631/// on canonical type's (which are always unique).
2632QualType ASTContext::getTypeOfType(QualType tofType) const {
2633  QualType Canonical = getCanonicalType(tofType);
2634  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2635  Types.push_back(tot);
2636  return QualType(tot, 0);
2637}
2638
2639/// getDecltypeForExpr - Given an expr, will return the decltype for that
2640/// expression, according to the rules in C++0x [dcl.type.simple]p4
2641static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2642  if (e->isTypeDependent())
2643    return Context.DependentTy;
2644
2645  // If e is an id expression or a class member access, decltype(e) is defined
2646  // as the type of the entity named by e.
2647  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2648    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2649      return VD->getType();
2650  }
2651  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2652    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2653      return FD->getType();
2654  }
2655  // If e is a function call or an invocation of an overloaded operator,
2656  // (parentheses around e are ignored), decltype(e) is defined as the
2657  // return type of that function.
2658  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2659    return CE->getCallReturnType();
2660
2661  QualType T = e->getType();
2662
2663  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2664  // defined as T&, otherwise decltype(e) is defined as T.
2665  if (e->isLValue())
2666    T = Context.getLValueReferenceType(T);
2667
2668  return T;
2669}
2670
2671/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2672/// DecltypeType AST's. The only motivation to unique these nodes would be
2673/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2674/// an issue. This doesn't effect the type checker, since it operates
2675/// on canonical type's (which are always unique).
2676QualType ASTContext::getDecltypeType(Expr *e) const {
2677  DecltypeType *dt;
2678  if (e->isTypeDependent()) {
2679    llvm::FoldingSetNodeID ID;
2680    DependentDecltypeType::Profile(ID, *this, e);
2681
2682    void *InsertPos = 0;
2683    DependentDecltypeType *Canon
2684      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2685    if (Canon) {
2686      // We already have a "canonical" version of an equivalent, dependent
2687      // decltype type. Use that as our canonical type.
2688      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2689                                       QualType((DecltypeType*)Canon, 0));
2690    }
2691    else {
2692      // Build a new, canonical typeof(expr) type.
2693      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2694      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2695      dt = Canon;
2696    }
2697  } else {
2698    QualType T = getDecltypeForExpr(e, *this);
2699    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2700  }
2701  Types.push_back(dt);
2702  return QualType(dt, 0);
2703}
2704
2705/// getAutoType - We only unique auto types after they've been deduced.
2706QualType ASTContext::getAutoType(QualType DeducedType) const {
2707  void *InsertPos = 0;
2708  if (!DeducedType.isNull()) {
2709    // Look in the folding set for an existing type.
2710    llvm::FoldingSetNodeID ID;
2711    AutoType::Profile(ID, DeducedType);
2712    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2713      return QualType(AT, 0);
2714  }
2715
2716  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2717  Types.push_back(AT);
2718  if (InsertPos)
2719    AutoTypes.InsertNode(AT, InsertPos);
2720  return QualType(AT, 0);
2721}
2722
2723/// getTagDeclType - Return the unique reference to the type for the
2724/// specified TagDecl (struct/union/class/enum) decl.
2725QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
2726  assert (Decl);
2727  // FIXME: What is the design on getTagDeclType when it requires casting
2728  // away const?  mutable?
2729  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2730}
2731
2732/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2733/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2734/// needs to agree with the definition in <stddef.h>.
2735CanQualType ASTContext::getSizeType() const {
2736  return getFromTargetType(Target.getSizeType());
2737}
2738
2739/// getSignedWCharType - Return the type of "signed wchar_t".
2740/// Used when in C++, as a GCC extension.
2741QualType ASTContext::getSignedWCharType() const {
2742  // FIXME: derive from "Target" ?
2743  return WCharTy;
2744}
2745
2746/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2747/// Used when in C++, as a GCC extension.
2748QualType ASTContext::getUnsignedWCharType() const {
2749  // FIXME: derive from "Target" ?
2750  return UnsignedIntTy;
2751}
2752
2753/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2754/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2755QualType ASTContext::getPointerDiffType() const {
2756  return getFromTargetType(Target.getPtrDiffType(0));
2757}
2758
2759//===----------------------------------------------------------------------===//
2760//                              Type Operators
2761//===----------------------------------------------------------------------===//
2762
2763CanQualType ASTContext::getCanonicalParamType(QualType T) const {
2764  // Push qualifiers into arrays, and then discard any remaining
2765  // qualifiers.
2766  T = getCanonicalType(T);
2767  T = getVariableArrayDecayedType(T);
2768  const Type *Ty = T.getTypePtr();
2769  QualType Result;
2770  if (isa<ArrayType>(Ty)) {
2771    Result = getArrayDecayedType(QualType(Ty,0));
2772  } else if (isa<FunctionType>(Ty)) {
2773    Result = getPointerType(QualType(Ty, 0));
2774  } else {
2775    Result = QualType(Ty, 0);
2776  }
2777
2778  return CanQualType::CreateUnsafe(Result);
2779}
2780
2781
2782QualType ASTContext::getUnqualifiedArrayType(QualType type,
2783                                             Qualifiers &quals) {
2784  SplitQualType splitType = type.getSplitUnqualifiedType();
2785
2786  // FIXME: getSplitUnqualifiedType() actually walks all the way to
2787  // the unqualified desugared type and then drops it on the floor.
2788  // We then have to strip that sugar back off with
2789  // getUnqualifiedDesugaredType(), which is silly.
2790  const ArrayType *AT =
2791    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
2792
2793  // If we don't have an array, just use the results in splitType.
2794  if (!AT) {
2795    quals = splitType.second;
2796    return QualType(splitType.first, 0);
2797  }
2798
2799  // Otherwise, recurse on the array's element type.
2800  QualType elementType = AT->getElementType();
2801  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
2802
2803  // If that didn't change the element type, AT has no qualifiers, so we
2804  // can just use the results in splitType.
2805  if (elementType == unqualElementType) {
2806    assert(quals.empty()); // from the recursive call
2807    quals = splitType.second;
2808    return QualType(splitType.first, 0);
2809  }
2810
2811  // Otherwise, add in the qualifiers from the outermost type, then
2812  // build the type back up.
2813  quals.addConsistentQualifiers(splitType.second);
2814
2815  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
2816    return getConstantArrayType(unqualElementType, CAT->getSize(),
2817                                CAT->getSizeModifier(), 0);
2818  }
2819
2820  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
2821    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
2822  }
2823
2824  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
2825    return getVariableArrayType(unqualElementType,
2826                                VAT->getSizeExpr(),
2827                                VAT->getSizeModifier(),
2828                                VAT->getIndexTypeCVRQualifiers(),
2829                                VAT->getBracketsRange());
2830  }
2831
2832  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
2833  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
2834                                    DSAT->getSizeModifier(), 0,
2835                                    SourceRange());
2836}
2837
2838/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
2839/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
2840/// they point to and return true. If T1 and T2 aren't pointer types
2841/// or pointer-to-member types, or if they are not similar at this
2842/// level, returns false and leaves T1 and T2 unchanged. Top-level
2843/// qualifiers on T1 and T2 are ignored. This function will typically
2844/// be called in a loop that successively "unwraps" pointer and
2845/// pointer-to-member types to compare them at each level.
2846bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
2847  const PointerType *T1PtrType = T1->getAs<PointerType>(),
2848                    *T2PtrType = T2->getAs<PointerType>();
2849  if (T1PtrType && T2PtrType) {
2850    T1 = T1PtrType->getPointeeType();
2851    T2 = T2PtrType->getPointeeType();
2852    return true;
2853  }
2854
2855  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
2856                          *T2MPType = T2->getAs<MemberPointerType>();
2857  if (T1MPType && T2MPType &&
2858      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
2859                             QualType(T2MPType->getClass(), 0))) {
2860    T1 = T1MPType->getPointeeType();
2861    T2 = T2MPType->getPointeeType();
2862    return true;
2863  }
2864
2865  if (getLangOptions().ObjC1) {
2866    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
2867                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
2868    if (T1OPType && T2OPType) {
2869      T1 = T1OPType->getPointeeType();
2870      T2 = T2OPType->getPointeeType();
2871      return true;
2872    }
2873  }
2874
2875  // FIXME: Block pointers, too?
2876
2877  return false;
2878}
2879
2880DeclarationNameInfo
2881ASTContext::getNameForTemplate(TemplateName Name,
2882                               SourceLocation NameLoc) const {
2883  if (TemplateDecl *TD = Name.getAsTemplateDecl())
2884    // DNInfo work in progress: CHECKME: what about DNLoc?
2885    return DeclarationNameInfo(TD->getDeclName(), NameLoc);
2886
2887  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
2888    DeclarationName DName;
2889    if (DTN->isIdentifier()) {
2890      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
2891      return DeclarationNameInfo(DName, NameLoc);
2892    } else {
2893      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
2894      // DNInfo work in progress: FIXME: source locations?
2895      DeclarationNameLoc DNLoc;
2896      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
2897      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
2898      return DeclarationNameInfo(DName, NameLoc, DNLoc);
2899    }
2900  }
2901
2902  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
2903  assert(Storage);
2904  // DNInfo work in progress: CHECKME: what about DNLoc?
2905  return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
2906}
2907
2908TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
2909  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2910    if (TemplateTemplateParmDecl *TTP
2911                              = dyn_cast<TemplateTemplateParmDecl>(Template))
2912      Template = getCanonicalTemplateTemplateParmDecl(TTP);
2913
2914    // The canonical template name is the canonical template declaration.
2915    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2916  }
2917
2918  if (SubstTemplateTemplateParmPackStorage *SubstPack
2919                                  = Name.getAsSubstTemplateTemplateParmPack()) {
2920    TemplateTemplateParmDecl *CanonParam
2921      = getCanonicalTemplateTemplateParmDecl(SubstPack->getParameterPack());
2922    TemplateArgument CanonArgPack
2923      = getCanonicalTemplateArgument(SubstPack->getArgumentPack());
2924    return getSubstTemplateTemplateParmPack(CanonParam, CanonArgPack);
2925  }
2926
2927  assert(!Name.getAsOverloadedTemplate());
2928
2929  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2930  assert(DTN && "Non-dependent template names must refer to template decls.");
2931  return DTN->CanonicalTemplateName;
2932}
2933
2934bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
2935  X = getCanonicalTemplateName(X);
2936  Y = getCanonicalTemplateName(Y);
2937  return X.getAsVoidPointer() == Y.getAsVoidPointer();
2938}
2939
2940TemplateArgument
2941ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
2942  switch (Arg.getKind()) {
2943    case TemplateArgument::Null:
2944      return Arg;
2945
2946    case TemplateArgument::Expression:
2947      return Arg;
2948
2949    case TemplateArgument::Declaration:
2950      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
2951
2952    case TemplateArgument::Template:
2953      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
2954
2955    case TemplateArgument::TemplateExpansion:
2956      return TemplateArgument(getCanonicalTemplateName(
2957                                         Arg.getAsTemplateOrTemplatePattern()),
2958                              Arg.getNumTemplateExpansions());
2959
2960    case TemplateArgument::Integral:
2961      return TemplateArgument(*Arg.getAsIntegral(),
2962                              getCanonicalType(Arg.getIntegralType()));
2963
2964    case TemplateArgument::Type:
2965      return TemplateArgument(getCanonicalType(Arg.getAsType()));
2966
2967    case TemplateArgument::Pack: {
2968      if (Arg.pack_size() == 0)
2969        return Arg;
2970
2971      TemplateArgument *CanonArgs
2972        = new (*this) TemplateArgument[Arg.pack_size()];
2973      unsigned Idx = 0;
2974      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2975                                        AEnd = Arg.pack_end();
2976           A != AEnd; (void)++A, ++Idx)
2977        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2978
2979      return TemplateArgument(CanonArgs, Arg.pack_size());
2980    }
2981  }
2982
2983  // Silence GCC warning
2984  assert(false && "Unhandled template argument kind");
2985  return TemplateArgument();
2986}
2987
2988NestedNameSpecifier *
2989ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
2990  if (!NNS)
2991    return 0;
2992
2993  switch (NNS->getKind()) {
2994  case NestedNameSpecifier::Identifier:
2995    // Canonicalize the prefix but keep the identifier the same.
2996    return NestedNameSpecifier::Create(*this,
2997                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2998                                       NNS->getAsIdentifier());
2999
3000  case NestedNameSpecifier::Namespace:
3001    // A namespace is canonical; build a nested-name-specifier with
3002    // this namespace and no prefix.
3003    return NestedNameSpecifier::Create(*this, 0,
3004                                 NNS->getAsNamespace()->getOriginalNamespace());
3005
3006  case NestedNameSpecifier::NamespaceAlias:
3007    // A namespace is canonical; build a nested-name-specifier with
3008    // this namespace and no prefix.
3009    return NestedNameSpecifier::Create(*this, 0,
3010                                    NNS->getAsNamespaceAlias()->getNamespace()
3011                                                      ->getOriginalNamespace());
3012
3013  case NestedNameSpecifier::TypeSpec:
3014  case NestedNameSpecifier::TypeSpecWithTemplate: {
3015    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3016
3017    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3018    // break it apart into its prefix and identifier, then reconsititute those
3019    // as the canonical nested-name-specifier. This is required to canonicalize
3020    // a dependent nested-name-specifier involving typedefs of dependent-name
3021    // types, e.g.,
3022    //   typedef typename T::type T1;
3023    //   typedef typename T1::type T2;
3024    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3025      NestedNameSpecifier *Prefix
3026        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3027      return NestedNameSpecifier::Create(*this, Prefix,
3028                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3029    }
3030
3031    // Do the same thing as above, but with dependent-named specializations.
3032    if (const DependentTemplateSpecializationType *DTST
3033          = T->getAs<DependentTemplateSpecializationType>()) {
3034      NestedNameSpecifier *Prefix
3035        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3036
3037      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3038                                                 Prefix, DTST->getIdentifier(),
3039                                                 DTST->getNumArgs(),
3040                                                 DTST->getArgs());
3041      T = getCanonicalType(T);
3042    }
3043
3044    return NestedNameSpecifier::Create(*this, 0, false,
3045                                       const_cast<Type*>(T.getTypePtr()));
3046  }
3047
3048  case NestedNameSpecifier::Global:
3049    // The global specifier is canonical and unique.
3050    return NNS;
3051  }
3052
3053  // Required to silence a GCC warning
3054  return 0;
3055}
3056
3057
3058const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3059  // Handle the non-qualified case efficiently.
3060  if (!T.hasLocalQualifiers()) {
3061    // Handle the common positive case fast.
3062    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3063      return AT;
3064  }
3065
3066  // Handle the common negative case fast.
3067  if (!isa<ArrayType>(T.getCanonicalType()))
3068    return 0;
3069
3070  // Apply any qualifiers from the array type to the element type.  This
3071  // implements C99 6.7.3p8: "If the specification of an array type includes
3072  // any type qualifiers, the element type is so qualified, not the array type."
3073
3074  // If we get here, we either have type qualifiers on the type, or we have
3075  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3076  // we must propagate them down into the element type.
3077
3078  SplitQualType split = T.getSplitDesugaredType();
3079  Qualifiers qs = split.second;
3080
3081  // If we have a simple case, just return now.
3082  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3083  if (ATy == 0 || qs.empty())
3084    return ATy;
3085
3086  // Otherwise, we have an array and we have qualifiers on it.  Push the
3087  // qualifiers into the array element type and return a new array type.
3088  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3089
3090  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3091    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3092                                                CAT->getSizeModifier(),
3093                                           CAT->getIndexTypeCVRQualifiers()));
3094  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3095    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3096                                                  IAT->getSizeModifier(),
3097                                           IAT->getIndexTypeCVRQualifiers()));
3098
3099  if (const DependentSizedArrayType *DSAT
3100        = dyn_cast<DependentSizedArrayType>(ATy))
3101    return cast<ArrayType>(
3102                     getDependentSizedArrayType(NewEltTy,
3103                                                DSAT->getSizeExpr(),
3104                                                DSAT->getSizeModifier(),
3105                                              DSAT->getIndexTypeCVRQualifiers(),
3106                                                DSAT->getBracketsRange()));
3107
3108  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3109  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3110                                              VAT->getSizeExpr(),
3111                                              VAT->getSizeModifier(),
3112                                              VAT->getIndexTypeCVRQualifiers(),
3113                                              VAT->getBracketsRange()));
3114}
3115
3116/// getArrayDecayedType - Return the properly qualified result of decaying the
3117/// specified array type to a pointer.  This operation is non-trivial when
3118/// handling typedefs etc.  The canonical type of "T" must be an array type,
3119/// this returns a pointer to a properly qualified element of the array.
3120///
3121/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3122QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3123  // Get the element type with 'getAsArrayType' so that we don't lose any
3124  // typedefs in the element type of the array.  This also handles propagation
3125  // of type qualifiers from the array type into the element type if present
3126  // (C99 6.7.3p8).
3127  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3128  assert(PrettyArrayType && "Not an array type!");
3129
3130  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3131
3132  // int x[restrict 4] ->  int *restrict
3133  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3134}
3135
3136QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3137  return getBaseElementType(array->getElementType());
3138}
3139
3140QualType ASTContext::getBaseElementType(QualType type) const {
3141  Qualifiers qs;
3142  while (true) {
3143    SplitQualType split = type.getSplitDesugaredType();
3144    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3145    if (!array) break;
3146
3147    type = array->getElementType();
3148    qs.addConsistentQualifiers(split.second);
3149  }
3150
3151  return getQualifiedType(type, qs);
3152}
3153
3154/// getConstantArrayElementCount - Returns number of constant array elements.
3155uint64_t
3156ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3157  uint64_t ElementCount = 1;
3158  do {
3159    ElementCount *= CA->getSize().getZExtValue();
3160    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3161  } while (CA);
3162  return ElementCount;
3163}
3164
3165/// getFloatingRank - Return a relative rank for floating point types.
3166/// This routine will assert if passed a built-in type that isn't a float.
3167static FloatingRank getFloatingRank(QualType T) {
3168  if (const ComplexType *CT = T->getAs<ComplexType>())
3169    return getFloatingRank(CT->getElementType());
3170
3171  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3172  switch (T->getAs<BuiltinType>()->getKind()) {
3173  default: assert(0 && "getFloatingRank(): not a floating type");
3174  case BuiltinType::Float:      return FloatRank;
3175  case BuiltinType::Double:     return DoubleRank;
3176  case BuiltinType::LongDouble: return LongDoubleRank;
3177  }
3178}
3179
3180/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3181/// point or a complex type (based on typeDomain/typeSize).
3182/// 'typeDomain' is a real floating point or complex type.
3183/// 'typeSize' is a real floating point or complex type.
3184QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3185                                                       QualType Domain) const {
3186  FloatingRank EltRank = getFloatingRank(Size);
3187  if (Domain->isComplexType()) {
3188    switch (EltRank) {
3189    default: assert(0 && "getFloatingRank(): illegal value for rank");
3190    case FloatRank:      return FloatComplexTy;
3191    case DoubleRank:     return DoubleComplexTy;
3192    case LongDoubleRank: return LongDoubleComplexTy;
3193    }
3194  }
3195
3196  assert(Domain->isRealFloatingType() && "Unknown domain!");
3197  switch (EltRank) {
3198  default: assert(0 && "getFloatingRank(): illegal value for rank");
3199  case FloatRank:      return FloatTy;
3200  case DoubleRank:     return DoubleTy;
3201  case LongDoubleRank: return LongDoubleTy;
3202  }
3203}
3204
3205/// getFloatingTypeOrder - Compare the rank of the two specified floating
3206/// point types, ignoring the domain of the type (i.e. 'double' ==
3207/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3208/// LHS < RHS, return -1.
3209int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3210  FloatingRank LHSR = getFloatingRank(LHS);
3211  FloatingRank RHSR = getFloatingRank(RHS);
3212
3213  if (LHSR == RHSR)
3214    return 0;
3215  if (LHSR > RHSR)
3216    return 1;
3217  return -1;
3218}
3219
3220/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3221/// routine will assert if passed a built-in type that isn't an integer or enum,
3222/// or if it is not canonicalized.
3223unsigned ASTContext::getIntegerRank(const Type *T) const {
3224  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3225  if (const EnumType* ET = dyn_cast<EnumType>(T))
3226    T = ET->getDecl()->getPromotionType().getTypePtr();
3227
3228  if (T->isSpecificBuiltinType(BuiltinType::WChar_S) ||
3229      T->isSpecificBuiltinType(BuiltinType::WChar_U))
3230    T = getFromTargetType(Target.getWCharType()).getTypePtr();
3231
3232  if (T->isSpecificBuiltinType(BuiltinType::Char16))
3233    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
3234
3235  if (T->isSpecificBuiltinType(BuiltinType::Char32))
3236    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
3237
3238  switch (cast<BuiltinType>(T)->getKind()) {
3239  default: assert(0 && "getIntegerRank(): not a built-in integer");
3240  case BuiltinType::Bool:
3241    return 1 + (getIntWidth(BoolTy) << 3);
3242  case BuiltinType::Char_S:
3243  case BuiltinType::Char_U:
3244  case BuiltinType::SChar:
3245  case BuiltinType::UChar:
3246    return 2 + (getIntWidth(CharTy) << 3);
3247  case BuiltinType::Short:
3248  case BuiltinType::UShort:
3249    return 3 + (getIntWidth(ShortTy) << 3);
3250  case BuiltinType::Int:
3251  case BuiltinType::UInt:
3252    return 4 + (getIntWidth(IntTy) << 3);
3253  case BuiltinType::Long:
3254  case BuiltinType::ULong:
3255    return 5 + (getIntWidth(LongTy) << 3);
3256  case BuiltinType::LongLong:
3257  case BuiltinType::ULongLong:
3258    return 6 + (getIntWidth(LongLongTy) << 3);
3259  case BuiltinType::Int128:
3260  case BuiltinType::UInt128:
3261    return 7 + (getIntWidth(Int128Ty) << 3);
3262  }
3263}
3264
3265/// \brief Whether this is a promotable bitfield reference according
3266/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3267///
3268/// \returns the type this bit-field will promote to, or NULL if no
3269/// promotion occurs.
3270QualType ASTContext::isPromotableBitField(Expr *E) const {
3271  if (E->isTypeDependent() || E->isValueDependent())
3272    return QualType();
3273
3274  FieldDecl *Field = E->getBitField();
3275  if (!Field)
3276    return QualType();
3277
3278  QualType FT = Field->getType();
3279
3280  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
3281  uint64_t BitWidth = BitWidthAP.getZExtValue();
3282  uint64_t IntSize = getTypeSize(IntTy);
3283  // GCC extension compatibility: if the bit-field size is less than or equal
3284  // to the size of int, it gets promoted no matter what its type is.
3285  // For instance, unsigned long bf : 4 gets promoted to signed int.
3286  if (BitWidth < IntSize)
3287    return IntTy;
3288
3289  if (BitWidth == IntSize)
3290    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3291
3292  // Types bigger than int are not subject to promotions, and therefore act
3293  // like the base type.
3294  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3295  // is ridiculous.
3296  return QualType();
3297}
3298
3299/// getPromotedIntegerType - Returns the type that Promotable will
3300/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3301/// integer type.
3302QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3303  assert(!Promotable.isNull());
3304  assert(Promotable->isPromotableIntegerType());
3305  if (const EnumType *ET = Promotable->getAs<EnumType>())
3306    return ET->getDecl()->getPromotionType();
3307  if (Promotable->isSignedIntegerType())
3308    return IntTy;
3309  uint64_t PromotableSize = getTypeSize(Promotable);
3310  uint64_t IntSize = getTypeSize(IntTy);
3311  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3312  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3313}
3314
3315/// getIntegerTypeOrder - Returns the highest ranked integer type:
3316/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3317/// LHS < RHS, return -1.
3318int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3319  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3320  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3321  if (LHSC == RHSC) return 0;
3322
3323  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3324  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3325
3326  unsigned LHSRank = getIntegerRank(LHSC);
3327  unsigned RHSRank = getIntegerRank(RHSC);
3328
3329  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3330    if (LHSRank == RHSRank) return 0;
3331    return LHSRank > RHSRank ? 1 : -1;
3332  }
3333
3334  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3335  if (LHSUnsigned) {
3336    // If the unsigned [LHS] type is larger, return it.
3337    if (LHSRank >= RHSRank)
3338      return 1;
3339
3340    // If the signed type can represent all values of the unsigned type, it
3341    // wins.  Because we are dealing with 2's complement and types that are
3342    // powers of two larger than each other, this is always safe.
3343    return -1;
3344  }
3345
3346  // If the unsigned [RHS] type is larger, return it.
3347  if (RHSRank >= LHSRank)
3348    return -1;
3349
3350  // If the signed type can represent all values of the unsigned type, it
3351  // wins.  Because we are dealing with 2's complement and types that are
3352  // powers of two larger than each other, this is always safe.
3353  return 1;
3354}
3355
3356static RecordDecl *
3357CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
3358                 SourceLocation L, IdentifierInfo *Id) {
3359  if (Ctx.getLangOptions().CPlusPlus)
3360    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
3361  else
3362    return RecordDecl::Create(Ctx, TK, DC, L, Id);
3363}
3364
3365// getCFConstantStringType - Return the type used for constant CFStrings.
3366QualType ASTContext::getCFConstantStringType() const {
3367  if (!CFConstantStringTypeDecl) {
3368    CFConstantStringTypeDecl =
3369      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3370                       &Idents.get("NSConstantString"));
3371    CFConstantStringTypeDecl->startDefinition();
3372
3373    QualType FieldTypes[4];
3374
3375    // const int *isa;
3376    FieldTypes[0] = getPointerType(IntTy.withConst());
3377    // int flags;
3378    FieldTypes[1] = IntTy;
3379    // const char *str;
3380    FieldTypes[2] = getPointerType(CharTy.withConst());
3381    // long length;
3382    FieldTypes[3] = LongTy;
3383
3384    // Create fields
3385    for (unsigned i = 0; i < 4; ++i) {
3386      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3387                                           SourceLocation(), 0,
3388                                           FieldTypes[i], /*TInfo=*/0,
3389                                           /*BitWidth=*/0,
3390                                           /*Mutable=*/false);
3391      Field->setAccess(AS_public);
3392      CFConstantStringTypeDecl->addDecl(Field);
3393    }
3394
3395    CFConstantStringTypeDecl->completeDefinition();
3396  }
3397
3398  return getTagDeclType(CFConstantStringTypeDecl);
3399}
3400
3401void ASTContext::setCFConstantStringType(QualType T) {
3402  const RecordType *Rec = T->getAs<RecordType>();
3403  assert(Rec && "Invalid CFConstantStringType");
3404  CFConstantStringTypeDecl = Rec->getDecl();
3405}
3406
3407// getNSConstantStringType - Return the type used for constant NSStrings.
3408QualType ASTContext::getNSConstantStringType() const {
3409  if (!NSConstantStringTypeDecl) {
3410    NSConstantStringTypeDecl =
3411    CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3412                     &Idents.get("__builtin_NSString"));
3413    NSConstantStringTypeDecl->startDefinition();
3414
3415    QualType FieldTypes[3];
3416
3417    // const int *isa;
3418    FieldTypes[0] = getPointerType(IntTy.withConst());
3419    // const char *str;
3420    FieldTypes[1] = getPointerType(CharTy.withConst());
3421    // unsigned int length;
3422    FieldTypes[2] = UnsignedIntTy;
3423
3424    // Create fields
3425    for (unsigned i = 0; i < 3; ++i) {
3426      FieldDecl *Field = FieldDecl::Create(*this, NSConstantStringTypeDecl,
3427                                           SourceLocation(), 0,
3428                                           FieldTypes[i], /*TInfo=*/0,
3429                                           /*BitWidth=*/0,
3430                                           /*Mutable=*/false);
3431      Field->setAccess(AS_public);
3432      NSConstantStringTypeDecl->addDecl(Field);
3433    }
3434
3435    NSConstantStringTypeDecl->completeDefinition();
3436  }
3437
3438  return getTagDeclType(NSConstantStringTypeDecl);
3439}
3440
3441void ASTContext::setNSConstantStringType(QualType T) {
3442  const RecordType *Rec = T->getAs<RecordType>();
3443  assert(Rec && "Invalid NSConstantStringType");
3444  NSConstantStringTypeDecl = Rec->getDecl();
3445}
3446
3447QualType ASTContext::getObjCFastEnumerationStateType() const {
3448  if (!ObjCFastEnumerationStateTypeDecl) {
3449    ObjCFastEnumerationStateTypeDecl =
3450      CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3451                       &Idents.get("__objcFastEnumerationState"));
3452    ObjCFastEnumerationStateTypeDecl->startDefinition();
3453
3454    QualType FieldTypes[] = {
3455      UnsignedLongTy,
3456      getPointerType(ObjCIdTypedefType),
3457      getPointerType(UnsignedLongTy),
3458      getConstantArrayType(UnsignedLongTy,
3459                           llvm::APInt(32, 5), ArrayType::Normal, 0)
3460    };
3461
3462    for (size_t i = 0; i < 4; ++i) {
3463      FieldDecl *Field = FieldDecl::Create(*this,
3464                                           ObjCFastEnumerationStateTypeDecl,
3465                                           SourceLocation(), 0,
3466                                           FieldTypes[i], /*TInfo=*/0,
3467                                           /*BitWidth=*/0,
3468                                           /*Mutable=*/false);
3469      Field->setAccess(AS_public);
3470      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
3471    }
3472
3473    ObjCFastEnumerationStateTypeDecl->completeDefinition();
3474  }
3475
3476  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
3477}
3478
3479QualType ASTContext::getBlockDescriptorType() const {
3480  if (BlockDescriptorType)
3481    return getTagDeclType(BlockDescriptorType);
3482
3483  RecordDecl *T;
3484  // FIXME: Needs the FlagAppleBlock bit.
3485  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3486                       &Idents.get("__block_descriptor"));
3487  T->startDefinition();
3488
3489  QualType FieldTypes[] = {
3490    UnsignedLongTy,
3491    UnsignedLongTy,
3492  };
3493
3494  const char *FieldNames[] = {
3495    "reserved",
3496    "Size"
3497  };
3498
3499  for (size_t i = 0; i < 2; ++i) {
3500    FieldDecl *Field = FieldDecl::Create(*this,
3501                                         T,
3502                                         SourceLocation(),
3503                                         &Idents.get(FieldNames[i]),
3504                                         FieldTypes[i], /*TInfo=*/0,
3505                                         /*BitWidth=*/0,
3506                                         /*Mutable=*/false);
3507    Field->setAccess(AS_public);
3508    T->addDecl(Field);
3509  }
3510
3511  T->completeDefinition();
3512
3513  BlockDescriptorType = T;
3514
3515  return getTagDeclType(BlockDescriptorType);
3516}
3517
3518void ASTContext::setBlockDescriptorType(QualType T) {
3519  const RecordType *Rec = T->getAs<RecordType>();
3520  assert(Rec && "Invalid BlockDescriptorType");
3521  BlockDescriptorType = Rec->getDecl();
3522}
3523
3524QualType ASTContext::getBlockDescriptorExtendedType() const {
3525  if (BlockDescriptorExtendedType)
3526    return getTagDeclType(BlockDescriptorExtendedType);
3527
3528  RecordDecl *T;
3529  // FIXME: Needs the FlagAppleBlock bit.
3530  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3531                       &Idents.get("__block_descriptor_withcopydispose"));
3532  T->startDefinition();
3533
3534  QualType FieldTypes[] = {
3535    UnsignedLongTy,
3536    UnsignedLongTy,
3537    getPointerType(VoidPtrTy),
3538    getPointerType(VoidPtrTy)
3539  };
3540
3541  const char *FieldNames[] = {
3542    "reserved",
3543    "Size",
3544    "CopyFuncPtr",
3545    "DestroyFuncPtr"
3546  };
3547
3548  for (size_t i = 0; i < 4; ++i) {
3549    FieldDecl *Field = FieldDecl::Create(*this,
3550                                         T,
3551                                         SourceLocation(),
3552                                         &Idents.get(FieldNames[i]),
3553                                         FieldTypes[i], /*TInfo=*/0,
3554                                         /*BitWidth=*/0,
3555                                         /*Mutable=*/false);
3556    Field->setAccess(AS_public);
3557    T->addDecl(Field);
3558  }
3559
3560  T->completeDefinition();
3561
3562  BlockDescriptorExtendedType = T;
3563
3564  return getTagDeclType(BlockDescriptorExtendedType);
3565}
3566
3567void ASTContext::setBlockDescriptorExtendedType(QualType T) {
3568  const RecordType *Rec = T->getAs<RecordType>();
3569  assert(Rec && "Invalid BlockDescriptorType");
3570  BlockDescriptorExtendedType = Rec->getDecl();
3571}
3572
3573bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3574  if (Ty->isBlockPointerType())
3575    return true;
3576  if (isObjCNSObjectType(Ty))
3577    return true;
3578  if (Ty->isObjCObjectPointerType())
3579    return true;
3580  if (getLangOptions().CPlusPlus) {
3581    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3582      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3583      return RD->hasConstCopyConstructor(*this);
3584
3585    }
3586  }
3587  return false;
3588}
3589
3590QualType
3591ASTContext::BuildByRefType(llvm::StringRef DeclName, QualType Ty) const {
3592  //  type = struct __Block_byref_1_X {
3593  //    void *__isa;
3594  //    struct __Block_byref_1_X *__forwarding;
3595  //    unsigned int __flags;
3596  //    unsigned int __size;
3597  //    void *__copy_helper;            // as needed
3598  //    void *__destroy_help            // as needed
3599  //    int X;
3600  //  } *
3601
3602  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3603
3604  // FIXME: Move up
3605  llvm::SmallString<36> Name;
3606  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3607                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3608  RecordDecl *T;
3609  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, SourceLocation(),
3610                       &Idents.get(Name.str()));
3611  T->startDefinition();
3612  QualType Int32Ty = IntTy;
3613  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3614  QualType FieldTypes[] = {
3615    getPointerType(VoidPtrTy),
3616    getPointerType(getTagDeclType(T)),
3617    Int32Ty,
3618    Int32Ty,
3619    getPointerType(VoidPtrTy),
3620    getPointerType(VoidPtrTy),
3621    Ty
3622  };
3623
3624  llvm::StringRef FieldNames[] = {
3625    "__isa",
3626    "__forwarding",
3627    "__flags",
3628    "__size",
3629    "__copy_helper",
3630    "__destroy_helper",
3631    DeclName,
3632  };
3633
3634  for (size_t i = 0; i < 7; ++i) {
3635    if (!HasCopyAndDispose && i >=4 && i <= 5)
3636      continue;
3637    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3638                                         &Idents.get(FieldNames[i]),
3639                                         FieldTypes[i], /*TInfo=*/0,
3640                                         /*BitWidth=*/0, /*Mutable=*/false);
3641    Field->setAccess(AS_public);
3642    T->addDecl(Field);
3643  }
3644
3645  T->completeDefinition();
3646
3647  return getPointerType(getTagDeclType(T));
3648}
3649
3650void ASTContext::setObjCFastEnumerationStateType(QualType T) {
3651  const RecordType *Rec = T->getAs<RecordType>();
3652  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
3653  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
3654}
3655
3656// This returns true if a type has been typedefed to BOOL:
3657// typedef <type> BOOL;
3658static bool isTypeTypedefedAsBOOL(QualType T) {
3659  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3660    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3661      return II->isStr("BOOL");
3662
3663  return false;
3664}
3665
3666/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3667/// purpose.
3668CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3669  CharUnits sz = getTypeSizeInChars(type);
3670
3671  // Make all integer and enum types at least as large as an int
3672  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3673    sz = std::max(sz, getTypeSizeInChars(IntTy));
3674  // Treat arrays as pointers, since that's how they're passed in.
3675  else if (type->isArrayType())
3676    sz = getTypeSizeInChars(VoidPtrTy);
3677  return sz;
3678}
3679
3680static inline
3681std::string charUnitsToString(const CharUnits &CU) {
3682  return llvm::itostr(CU.getQuantity());
3683}
3684
3685/// getObjCEncodingForBlock - Return the encoded type for this block
3686/// declaration.
3687std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3688  std::string S;
3689
3690  const BlockDecl *Decl = Expr->getBlockDecl();
3691  QualType BlockTy =
3692      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
3693  // Encode result type.
3694  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
3695  // Compute size of all parameters.
3696  // Start with computing size of a pointer in number of bytes.
3697  // FIXME: There might(should) be a better way of doing this computation!
3698  SourceLocation Loc;
3699  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3700  CharUnits ParmOffset = PtrSize;
3701  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
3702       E = Decl->param_end(); PI != E; ++PI) {
3703    QualType PType = (*PI)->getType();
3704    CharUnits sz = getObjCEncodingTypeSize(PType);
3705    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
3706    ParmOffset += sz;
3707  }
3708  // Size of the argument frame
3709  S += charUnitsToString(ParmOffset);
3710  // Block pointer and offset.
3711  S += "@?0";
3712  ParmOffset = PtrSize;
3713
3714  // Argument types.
3715  ParmOffset = PtrSize;
3716  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
3717       Decl->param_end(); PI != E; ++PI) {
3718    ParmVarDecl *PVDecl = *PI;
3719    QualType PType = PVDecl->getOriginalType();
3720    if (const ArrayType *AT =
3721          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3722      // Use array's original type only if it has known number of
3723      // elements.
3724      if (!isa<ConstantArrayType>(AT))
3725        PType = PVDecl->getType();
3726    } else if (PType->isFunctionType())
3727      PType = PVDecl->getType();
3728    getObjCEncodingForType(PType, S);
3729    S += charUnitsToString(ParmOffset);
3730    ParmOffset += getObjCEncodingTypeSize(PType);
3731  }
3732
3733  return S;
3734}
3735
3736void ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
3737                                                std::string& S) {
3738  // Encode result type.
3739  getObjCEncodingForType(Decl->getResultType(), S);
3740  CharUnits ParmOffset;
3741  // Compute size of all parameters.
3742  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3743       E = Decl->param_end(); PI != E; ++PI) {
3744    QualType PType = (*PI)->getType();
3745    CharUnits sz = getObjCEncodingTypeSize(PType);
3746    assert (sz.isPositive() &&
3747        "getObjCEncodingForMethodDecl - Incomplete param type");
3748    ParmOffset += sz;
3749  }
3750  S += charUnitsToString(ParmOffset);
3751  ParmOffset = CharUnits::Zero();
3752
3753  // Argument types.
3754  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
3755       E = Decl->param_end(); PI != E; ++PI) {
3756    ParmVarDecl *PVDecl = *PI;
3757    QualType PType = PVDecl->getOriginalType();
3758    if (const ArrayType *AT =
3759          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3760      // Use array's original type only if it has known number of
3761      // elements.
3762      if (!isa<ConstantArrayType>(AT))
3763        PType = PVDecl->getType();
3764    } else if (PType->isFunctionType())
3765      PType = PVDecl->getType();
3766    getObjCEncodingForType(PType, S);
3767    S += charUnitsToString(ParmOffset);
3768    ParmOffset += getObjCEncodingTypeSize(PType);
3769  }
3770}
3771
3772/// getObjCEncodingForMethodDecl - Return the encoded type for this method
3773/// declaration.
3774void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
3775                                              std::string& S) const {
3776  // FIXME: This is not very efficient.
3777  // Encode type qualifer, 'in', 'inout', etc. for the return type.
3778  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
3779  // Encode result type.
3780  getObjCEncodingForType(Decl->getResultType(), S);
3781  // Compute size of all parameters.
3782  // Start with computing size of a pointer in number of bytes.
3783  // FIXME: There might(should) be a better way of doing this computation!
3784  SourceLocation Loc;
3785  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
3786  // The first two arguments (self and _cmd) are pointers; account for
3787  // their size.
3788  CharUnits ParmOffset = 2 * PtrSize;
3789  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3790       E = Decl->sel_param_end(); PI != E; ++PI) {
3791    QualType PType = (*PI)->getType();
3792    CharUnits sz = getObjCEncodingTypeSize(PType);
3793    assert (sz.isPositive() &&
3794        "getObjCEncodingForMethodDecl - Incomplete param type");
3795    ParmOffset += sz;
3796  }
3797  S += charUnitsToString(ParmOffset);
3798  S += "@0:";
3799  S += charUnitsToString(PtrSize);
3800
3801  // Argument types.
3802  ParmOffset = 2 * PtrSize;
3803  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
3804       E = Decl->sel_param_end(); PI != E; ++PI) {
3805    ParmVarDecl *PVDecl = *PI;
3806    QualType PType = PVDecl->getOriginalType();
3807    if (const ArrayType *AT =
3808          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
3809      // Use array's original type only if it has known number of
3810      // elements.
3811      if (!isa<ConstantArrayType>(AT))
3812        PType = PVDecl->getType();
3813    } else if (PType->isFunctionType())
3814      PType = PVDecl->getType();
3815    // Process argument qualifiers for user supplied arguments; such as,
3816    // 'in', 'inout', etc.
3817    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
3818    getObjCEncodingForType(PType, S);
3819    S += charUnitsToString(ParmOffset);
3820    ParmOffset += getObjCEncodingTypeSize(PType);
3821  }
3822}
3823
3824/// getObjCEncodingForPropertyDecl - Return the encoded type for this
3825/// property declaration. If non-NULL, Container must be either an
3826/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
3827/// NULL when getting encodings for protocol properties.
3828/// Property attributes are stored as a comma-delimited C string. The simple
3829/// attributes readonly and bycopy are encoded as single characters. The
3830/// parametrized attributes, getter=name, setter=name, and ivar=name, are
3831/// encoded as single characters, followed by an identifier. Property types
3832/// are also encoded as a parametrized attribute. The characters used to encode
3833/// these attributes are defined by the following enumeration:
3834/// @code
3835/// enum PropertyAttributes {
3836/// kPropertyReadOnly = 'R',   // property is read-only.
3837/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
3838/// kPropertyByref = '&',  // property is a reference to the value last assigned
3839/// kPropertyDynamic = 'D',    // property is dynamic
3840/// kPropertyGetter = 'G',     // followed by getter selector name
3841/// kPropertySetter = 'S',     // followed by setter selector name
3842/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
3843/// kPropertyType = 't'              // followed by old-style type encoding.
3844/// kPropertyWeak = 'W'              // 'weak' property
3845/// kPropertyStrong = 'P'            // property GC'able
3846/// kPropertyNonAtomic = 'N'         // property non-atomic
3847/// };
3848/// @endcode
3849void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
3850                                                const Decl *Container,
3851                                                std::string& S) const {
3852  // Collect information from the property implementation decl(s).
3853  bool Dynamic = false;
3854  ObjCPropertyImplDecl *SynthesizePID = 0;
3855
3856  // FIXME: Duplicated code due to poor abstraction.
3857  if (Container) {
3858    if (const ObjCCategoryImplDecl *CID =
3859        dyn_cast<ObjCCategoryImplDecl>(Container)) {
3860      for (ObjCCategoryImplDecl::propimpl_iterator
3861             i = CID->propimpl_begin(), e = CID->propimpl_end();
3862           i != e; ++i) {
3863        ObjCPropertyImplDecl *PID = *i;
3864        if (PID->getPropertyDecl() == PD) {
3865          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3866            Dynamic = true;
3867          } else {
3868            SynthesizePID = PID;
3869          }
3870        }
3871      }
3872    } else {
3873      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
3874      for (ObjCCategoryImplDecl::propimpl_iterator
3875             i = OID->propimpl_begin(), e = OID->propimpl_end();
3876           i != e; ++i) {
3877        ObjCPropertyImplDecl *PID = *i;
3878        if (PID->getPropertyDecl() == PD) {
3879          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
3880            Dynamic = true;
3881          } else {
3882            SynthesizePID = PID;
3883          }
3884        }
3885      }
3886    }
3887  }
3888
3889  // FIXME: This is not very efficient.
3890  S = "T";
3891
3892  // Encode result type.
3893  // GCC has some special rules regarding encoding of properties which
3894  // closely resembles encoding of ivars.
3895  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
3896                             true /* outermost type */,
3897                             true /* encoding for property */);
3898
3899  if (PD->isReadOnly()) {
3900    S += ",R";
3901  } else {
3902    switch (PD->getSetterKind()) {
3903    case ObjCPropertyDecl::Assign: break;
3904    case ObjCPropertyDecl::Copy:   S += ",C"; break;
3905    case ObjCPropertyDecl::Retain: S += ",&"; break;
3906    }
3907  }
3908
3909  // It really isn't clear at all what this means, since properties
3910  // are "dynamic by default".
3911  if (Dynamic)
3912    S += ",D";
3913
3914  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
3915    S += ",N";
3916
3917  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
3918    S += ",G";
3919    S += PD->getGetterName().getAsString();
3920  }
3921
3922  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
3923    S += ",S";
3924    S += PD->getSetterName().getAsString();
3925  }
3926
3927  if (SynthesizePID) {
3928    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3929    S += ",V";
3930    S += OID->getNameAsString();
3931  }
3932
3933  // FIXME: OBJCGC: weak & strong
3934}
3935
3936/// getLegacyIntegralTypeEncoding -
3937/// Another legacy compatibility encoding: 32-bit longs are encoded as
3938/// 'l' or 'L' , but not always.  For typedefs, we need to use
3939/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3940///
3941void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3942  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3943    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3944      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
3945        PointeeTy = UnsignedIntTy;
3946      else
3947        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
3948          PointeeTy = IntTy;
3949    }
3950  }
3951}
3952
3953void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3954                                        const FieldDecl *Field) const {
3955  // We follow the behavior of gcc, expanding structures which are
3956  // directly pointed to, and expanding embedded structures. Note that
3957  // these rules are sufficient to prevent recursive encoding of the
3958  // same type.
3959  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3960                             true /* outermost type */);
3961}
3962
3963static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
3964    switch (T->getAs<BuiltinType>()->getKind()) {
3965    default: assert(0 && "Unhandled builtin type kind");
3966    case BuiltinType::Void:       return 'v';
3967    case BuiltinType::Bool:       return 'B';
3968    case BuiltinType::Char_U:
3969    case BuiltinType::UChar:      return 'C';
3970    case BuiltinType::UShort:     return 'S';
3971    case BuiltinType::UInt:       return 'I';
3972    case BuiltinType::ULong:
3973        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
3974    case BuiltinType::UInt128:    return 'T';
3975    case BuiltinType::ULongLong:  return 'Q';
3976    case BuiltinType::Char_S:
3977    case BuiltinType::SChar:      return 'c';
3978    case BuiltinType::Short:      return 's';
3979    case BuiltinType::WChar_S:
3980    case BuiltinType::WChar_U:
3981    case BuiltinType::Int:        return 'i';
3982    case BuiltinType::Long:
3983      return C->getIntWidth(T) == 32 ? 'l' : 'q';
3984    case BuiltinType::LongLong:   return 'q';
3985    case BuiltinType::Int128:     return 't';
3986    case BuiltinType::Float:      return 'f';
3987    case BuiltinType::Double:     return 'd';
3988    case BuiltinType::LongDouble: return 'D';
3989    }
3990}
3991
3992static void EncodeBitField(const ASTContext *Ctx, std::string& S,
3993                           QualType T, const FieldDecl *FD) {
3994  const Expr *E = FD->getBitWidth();
3995  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3996  S += 'b';
3997  // The NeXT runtime encodes bit fields as b followed by the number of bits.
3998  // The GNU runtime requires more information; bitfields are encoded as b,
3999  // then the offset (in bits) of the first element, then the type of the
4000  // bitfield, then the size in bits.  For example, in this structure:
4001  //
4002  // struct
4003  // {
4004  //    int integer;
4005  //    int flags:2;
4006  // };
4007  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4008  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4009  // information is not especially sensible, but we're stuck with it for
4010  // compatibility with GCC, although providing it breaks anything that
4011  // actually uses runtime introspection and wants to work on both runtimes...
4012  if (!Ctx->getLangOptions().NeXTRuntime) {
4013    const RecordDecl *RD = FD->getParent();
4014    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4015    // FIXME: This same linear search is also used in ExprConstant - it might
4016    // be better if the FieldDecl stored its offset.  We'd be increasing the
4017    // size of the object slightly, but saving some time every time it is used.
4018    unsigned i = 0;
4019    for (RecordDecl::field_iterator Field = RD->field_begin(),
4020                                 FieldEnd = RD->field_end();
4021         Field != FieldEnd; (void)++Field, ++i) {
4022      if (*Field == FD)
4023        break;
4024    }
4025    S += llvm::utostr(RL.getFieldOffset(i));
4026    if (T->isEnumeralType())
4027      S += 'i';
4028    else
4029      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4030  }
4031  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
4032  S += llvm::utostr(N);
4033}
4034
4035// FIXME: Use SmallString for accumulating string.
4036void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4037                                            bool ExpandPointedToStructures,
4038                                            bool ExpandStructures,
4039                                            const FieldDecl *FD,
4040                                            bool OutermostType,
4041                                            bool EncodingProperty) const {
4042  if (T->getAs<BuiltinType>()) {
4043    if (FD && FD->isBitField())
4044      return EncodeBitField(this, S, T, FD);
4045    S += ObjCEncodingForPrimitiveKind(this, T);
4046    return;
4047  }
4048
4049  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4050    S += 'j';
4051    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4052                               false);
4053    return;
4054  }
4055
4056  // encoding for pointer or r3eference types.
4057  QualType PointeeTy;
4058  if (const PointerType *PT = T->getAs<PointerType>()) {
4059    if (PT->isObjCSelType()) {
4060      S += ':';
4061      return;
4062    }
4063    PointeeTy = PT->getPointeeType();
4064  }
4065  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4066    PointeeTy = RT->getPointeeType();
4067  if (!PointeeTy.isNull()) {
4068    bool isReadOnly = false;
4069    // For historical/compatibility reasons, the read-only qualifier of the
4070    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4071    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4072    // Also, do not emit the 'r' for anything but the outermost type!
4073    if (isa<TypedefType>(T.getTypePtr())) {
4074      if (OutermostType && T.isConstQualified()) {
4075        isReadOnly = true;
4076        S += 'r';
4077      }
4078    } else if (OutermostType) {
4079      QualType P = PointeeTy;
4080      while (P->getAs<PointerType>())
4081        P = P->getAs<PointerType>()->getPointeeType();
4082      if (P.isConstQualified()) {
4083        isReadOnly = true;
4084        S += 'r';
4085      }
4086    }
4087    if (isReadOnly) {
4088      // Another legacy compatibility encoding. Some ObjC qualifier and type
4089      // combinations need to be rearranged.
4090      // Rewrite "in const" from "nr" to "rn"
4091      if (llvm::StringRef(S).endswith("nr"))
4092        S.replace(S.end()-2, S.end(), "rn");
4093    }
4094
4095    if (PointeeTy->isCharType()) {
4096      // char pointer types should be encoded as '*' unless it is a
4097      // type that has been typedef'd to 'BOOL'.
4098      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4099        S += '*';
4100        return;
4101      }
4102    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4103      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4104      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4105        S += '#';
4106        return;
4107      }
4108      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4109      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4110        S += '@';
4111        return;
4112      }
4113      // fall through...
4114    }
4115    S += '^';
4116    getLegacyIntegralTypeEncoding(PointeeTy);
4117
4118    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4119                               NULL);
4120    return;
4121  }
4122
4123  if (const ArrayType *AT =
4124      // Ignore type qualifiers etc.
4125        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4126    if (isa<IncompleteArrayType>(AT)) {
4127      // Incomplete arrays are encoded as a pointer to the array element.
4128      S += '^';
4129
4130      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4131                                 false, ExpandStructures, FD);
4132    } else {
4133      S += '[';
4134
4135      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
4136        S += llvm::utostr(CAT->getSize().getZExtValue());
4137      else {
4138        //Variable length arrays are encoded as a regular array with 0 elements.
4139        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
4140        S += '0';
4141      }
4142
4143      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4144                                 false, ExpandStructures, FD);
4145      S += ']';
4146    }
4147    return;
4148  }
4149
4150  if (T->getAs<FunctionType>()) {
4151    S += '?';
4152    return;
4153  }
4154
4155  if (const RecordType *RTy = T->getAs<RecordType>()) {
4156    RecordDecl *RDecl = RTy->getDecl();
4157    S += RDecl->isUnion() ? '(' : '{';
4158    // Anonymous structures print as '?'
4159    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4160      S += II->getName();
4161      if (ClassTemplateSpecializationDecl *Spec
4162          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4163        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4164        std::string TemplateArgsStr
4165          = TemplateSpecializationType::PrintTemplateArgumentList(
4166                                            TemplateArgs.data(),
4167                                            TemplateArgs.size(),
4168                                            (*this).PrintingPolicy);
4169
4170        S += TemplateArgsStr;
4171      }
4172    } else {
4173      S += '?';
4174    }
4175    if (ExpandStructures) {
4176      S += '=';
4177      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4178                                   FieldEnd = RDecl->field_end();
4179           Field != FieldEnd; ++Field) {
4180        if (FD) {
4181          S += '"';
4182          S += Field->getNameAsString();
4183          S += '"';
4184        }
4185
4186        // Special case bit-fields.
4187        if (Field->isBitField()) {
4188          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4189                                     (*Field));
4190        } else {
4191          QualType qt = Field->getType();
4192          getLegacyIntegralTypeEncoding(qt);
4193          getObjCEncodingForTypeImpl(qt, S, false, true,
4194                                     FD);
4195        }
4196      }
4197    }
4198    S += RDecl->isUnion() ? ')' : '}';
4199    return;
4200  }
4201
4202  if (T->isEnumeralType()) {
4203    if (FD && FD->isBitField())
4204      EncodeBitField(this, S, T, FD);
4205    else
4206      S += 'i';
4207    return;
4208  }
4209
4210  if (T->isBlockPointerType()) {
4211    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4212    return;
4213  }
4214
4215  // Ignore protocol qualifiers when mangling at this level.
4216  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4217    T = OT->getBaseType();
4218
4219  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4220    // @encode(class_name)
4221    ObjCInterfaceDecl *OI = OIT->getDecl();
4222    S += '{';
4223    const IdentifierInfo *II = OI->getIdentifier();
4224    S += II->getName();
4225    S += '=';
4226    llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
4227    DeepCollectObjCIvars(OI, true, Ivars);
4228    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4229      FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4230      if (Field->isBitField())
4231        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4232      else
4233        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4234    }
4235    S += '}';
4236    return;
4237  }
4238
4239  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4240    if (OPT->isObjCIdType()) {
4241      S += '@';
4242      return;
4243    }
4244
4245    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4246      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4247      // Since this is a binary compatibility issue, need to consult with runtime
4248      // folks. Fortunately, this is a *very* obsure construct.
4249      S += '#';
4250      return;
4251    }
4252
4253    if (OPT->isObjCQualifiedIdType()) {
4254      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4255                                 ExpandPointedToStructures,
4256                                 ExpandStructures, FD);
4257      if (FD || EncodingProperty) {
4258        // Note that we do extended encoding of protocol qualifer list
4259        // Only when doing ivar or property encoding.
4260        S += '"';
4261        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4262             E = OPT->qual_end(); I != E; ++I) {
4263          S += '<';
4264          S += (*I)->getNameAsString();
4265          S += '>';
4266        }
4267        S += '"';
4268      }
4269      return;
4270    }
4271
4272    QualType PointeeTy = OPT->getPointeeType();
4273    if (!EncodingProperty &&
4274        isa<TypedefType>(PointeeTy.getTypePtr())) {
4275      // Another historical/compatibility reason.
4276      // We encode the underlying type which comes out as
4277      // {...};
4278      S += '^';
4279      getObjCEncodingForTypeImpl(PointeeTy, S,
4280                                 false, ExpandPointedToStructures,
4281                                 NULL);
4282      return;
4283    }
4284
4285    S += '@';
4286    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4287      S += '"';
4288      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4289      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4290           E = OPT->qual_end(); I != E; ++I) {
4291        S += '<';
4292        S += (*I)->getNameAsString();
4293        S += '>';
4294      }
4295      S += '"';
4296    }
4297    return;
4298  }
4299
4300  // gcc just blithely ignores member pointers.
4301  // TODO: maybe there should be a mangling for these
4302  if (T->getAs<MemberPointerType>())
4303    return;
4304
4305  if (T->isVectorType()) {
4306    // This matches gcc's encoding, even though technically it is
4307    // insufficient.
4308    // FIXME. We should do a better job than gcc.
4309    return;
4310  }
4311
4312  assert(0 && "@encode for type not implemented!");
4313}
4314
4315void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4316                                                 std::string& S) const {
4317  if (QT & Decl::OBJC_TQ_In)
4318    S += 'n';
4319  if (QT & Decl::OBJC_TQ_Inout)
4320    S += 'N';
4321  if (QT & Decl::OBJC_TQ_Out)
4322    S += 'o';
4323  if (QT & Decl::OBJC_TQ_Bycopy)
4324    S += 'O';
4325  if (QT & Decl::OBJC_TQ_Byref)
4326    S += 'R';
4327  if (QT & Decl::OBJC_TQ_Oneway)
4328    S += 'V';
4329}
4330
4331void ASTContext::setBuiltinVaListType(QualType T) {
4332  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4333
4334  BuiltinVaListType = T;
4335}
4336
4337void ASTContext::setObjCIdType(QualType T) {
4338  ObjCIdTypedefType = T;
4339}
4340
4341void ASTContext::setObjCSelType(QualType T) {
4342  ObjCSelTypedefType = T;
4343}
4344
4345void ASTContext::setObjCProtoType(QualType QT) {
4346  ObjCProtoType = QT;
4347}
4348
4349void ASTContext::setObjCClassType(QualType T) {
4350  ObjCClassTypedefType = T;
4351}
4352
4353void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4354  assert(ObjCConstantStringType.isNull() &&
4355         "'NSConstantString' type already set!");
4356
4357  ObjCConstantStringType = getObjCInterfaceType(Decl);
4358}
4359
4360/// \brief Retrieve the template name that corresponds to a non-empty
4361/// lookup.
4362TemplateName
4363ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4364                                      UnresolvedSetIterator End) const {
4365  unsigned size = End - Begin;
4366  assert(size > 1 && "set is not overloaded!");
4367
4368  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4369                          size * sizeof(FunctionTemplateDecl*));
4370  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4371
4372  NamedDecl **Storage = OT->getStorage();
4373  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4374    NamedDecl *D = *I;
4375    assert(isa<FunctionTemplateDecl>(D) ||
4376           (isa<UsingShadowDecl>(D) &&
4377            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4378    *Storage++ = D;
4379  }
4380
4381  return TemplateName(OT);
4382}
4383
4384/// \brief Retrieve the template name that represents a qualified
4385/// template name such as \c std::vector.
4386TemplateName
4387ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4388                                     bool TemplateKeyword,
4389                                     TemplateDecl *Template) const {
4390  // FIXME: Canonicalization?
4391  llvm::FoldingSetNodeID ID;
4392  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4393
4394  void *InsertPos = 0;
4395  QualifiedTemplateName *QTN =
4396    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4397  if (!QTN) {
4398    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4399    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4400  }
4401
4402  return TemplateName(QTN);
4403}
4404
4405/// \brief Retrieve the template name that represents a dependent
4406/// template name such as \c MetaFun::template apply.
4407TemplateName
4408ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4409                                     const IdentifierInfo *Name) const {
4410  assert((!NNS || NNS->isDependent()) &&
4411         "Nested name specifier must be dependent");
4412
4413  llvm::FoldingSetNodeID ID;
4414  DependentTemplateName::Profile(ID, NNS, Name);
4415
4416  void *InsertPos = 0;
4417  DependentTemplateName *QTN =
4418    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4419
4420  if (QTN)
4421    return TemplateName(QTN);
4422
4423  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4424  if (CanonNNS == NNS) {
4425    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4426  } else {
4427    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4428    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4429    DependentTemplateName *CheckQTN =
4430      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4431    assert(!CheckQTN && "Dependent type name canonicalization broken");
4432    (void)CheckQTN;
4433  }
4434
4435  DependentTemplateNames.InsertNode(QTN, InsertPos);
4436  return TemplateName(QTN);
4437}
4438
4439/// \brief Retrieve the template name that represents a dependent
4440/// template name such as \c MetaFun::template operator+.
4441TemplateName
4442ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4443                                     OverloadedOperatorKind Operator) const {
4444  assert((!NNS || NNS->isDependent()) &&
4445         "Nested name specifier must be dependent");
4446
4447  llvm::FoldingSetNodeID ID;
4448  DependentTemplateName::Profile(ID, NNS, Operator);
4449
4450  void *InsertPos = 0;
4451  DependentTemplateName *QTN
4452    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4453
4454  if (QTN)
4455    return TemplateName(QTN);
4456
4457  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4458  if (CanonNNS == NNS) {
4459    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4460  } else {
4461    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4462    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4463
4464    DependentTemplateName *CheckQTN
4465      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4466    assert(!CheckQTN && "Dependent template name canonicalization broken");
4467    (void)CheckQTN;
4468  }
4469
4470  DependentTemplateNames.InsertNode(QTN, InsertPos);
4471  return TemplateName(QTN);
4472}
4473
4474TemplateName
4475ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4476                                       const TemplateArgument &ArgPack) const {
4477  ASTContext &Self = const_cast<ASTContext &>(*this);
4478  llvm::FoldingSetNodeID ID;
4479  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4480
4481  void *InsertPos = 0;
4482  SubstTemplateTemplateParmPackStorage *Subst
4483    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4484
4485  if (!Subst) {
4486    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Self, Param,
4487                                                           ArgPack.pack_size(),
4488                                                         ArgPack.pack_begin());
4489    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
4490  }
4491
4492  return TemplateName(Subst);
4493}
4494
4495/// getFromTargetType - Given one of the integer types provided by
4496/// TargetInfo, produce the corresponding type. The unsigned @p Type
4497/// is actually a value of type @c TargetInfo::IntType.
4498CanQualType ASTContext::getFromTargetType(unsigned Type) const {
4499  switch (Type) {
4500  case TargetInfo::NoInt: return CanQualType();
4501  case TargetInfo::SignedShort: return ShortTy;
4502  case TargetInfo::UnsignedShort: return UnsignedShortTy;
4503  case TargetInfo::SignedInt: return IntTy;
4504  case TargetInfo::UnsignedInt: return UnsignedIntTy;
4505  case TargetInfo::SignedLong: return LongTy;
4506  case TargetInfo::UnsignedLong: return UnsignedLongTy;
4507  case TargetInfo::SignedLongLong: return LongLongTy;
4508  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
4509  }
4510
4511  assert(false && "Unhandled TargetInfo::IntType value");
4512  return CanQualType();
4513}
4514
4515//===----------------------------------------------------------------------===//
4516//                        Type Predicates.
4517//===----------------------------------------------------------------------===//
4518
4519/// isObjCNSObjectType - Return true if this is an NSObject object using
4520/// NSObject attribute on a c-style pointer type.
4521/// FIXME - Make it work directly on types.
4522/// FIXME: Move to Type.
4523///
4524bool ASTContext::isObjCNSObjectType(QualType Ty) const {
4525  if (const TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
4526    if (TypedefDecl *TD = TDT->getDecl())
4527      if (TD->getAttr<ObjCNSObjectAttr>())
4528        return true;
4529  }
4530  return false;
4531}
4532
4533/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
4534/// garbage collection attribute.
4535///
4536Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
4537  if (getLangOptions().getGCMode() == LangOptions::NonGC)
4538    return Qualifiers::GCNone;
4539
4540  assert(getLangOptions().ObjC1);
4541  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
4542
4543  // Default behaviour under objective-C's gc is for ObjC pointers
4544  // (or pointers to them) be treated as though they were declared
4545  // as __strong.
4546  if (GCAttrs == Qualifiers::GCNone) {
4547    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4548      return Qualifiers::Strong;
4549    else if (Ty->isPointerType())
4550      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
4551  } else {
4552    // It's not valid to set GC attributes on anything that isn't a
4553    // pointer.
4554#ifndef NDEBUG
4555    QualType CT = Ty->getCanonicalTypeInternal();
4556    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
4557      CT = AT->getElementType();
4558    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
4559#endif
4560  }
4561  return GCAttrs;
4562}
4563
4564//===----------------------------------------------------------------------===//
4565//                        Type Compatibility Testing
4566//===----------------------------------------------------------------------===//
4567
4568/// areCompatVectorTypes - Return true if the two specified vector types are
4569/// compatible.
4570static bool areCompatVectorTypes(const VectorType *LHS,
4571                                 const VectorType *RHS) {
4572  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
4573  return LHS->getElementType() == RHS->getElementType() &&
4574         LHS->getNumElements() == RHS->getNumElements();
4575}
4576
4577bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
4578                                          QualType SecondVec) {
4579  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
4580  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
4581
4582  if (hasSameUnqualifiedType(FirstVec, SecondVec))
4583    return true;
4584
4585  // Treat Neon vector types and most AltiVec vector types as if they are the
4586  // equivalent GCC vector types.
4587  const VectorType *First = FirstVec->getAs<VectorType>();
4588  const VectorType *Second = SecondVec->getAs<VectorType>();
4589  if (First->getNumElements() == Second->getNumElements() &&
4590      hasSameType(First->getElementType(), Second->getElementType()) &&
4591      First->getVectorKind() != VectorType::AltiVecPixel &&
4592      First->getVectorKind() != VectorType::AltiVecBool &&
4593      Second->getVectorKind() != VectorType::AltiVecPixel &&
4594      Second->getVectorKind() != VectorType::AltiVecBool)
4595    return true;
4596
4597  return false;
4598}
4599
4600//===----------------------------------------------------------------------===//
4601// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
4602//===----------------------------------------------------------------------===//
4603
4604/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
4605/// inheritance hierarchy of 'rProto'.
4606bool
4607ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
4608                                           ObjCProtocolDecl *rProto) const {
4609  if (lProto == rProto)
4610    return true;
4611  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
4612       E = rProto->protocol_end(); PI != E; ++PI)
4613    if (ProtocolCompatibleWithProtocol(lProto, *PI))
4614      return true;
4615  return false;
4616}
4617
4618/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
4619/// return true if lhs's protocols conform to rhs's protocol; false
4620/// otherwise.
4621bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
4622  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
4623    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
4624  return false;
4625}
4626
4627/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
4628/// Class<p1, ...>.
4629bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
4630                                                      QualType rhs) {
4631  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
4632  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4633  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
4634
4635  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4636       E = lhsQID->qual_end(); I != E; ++I) {
4637    bool match = false;
4638    ObjCProtocolDecl *lhsProto = *I;
4639    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4640         E = rhsOPT->qual_end(); J != E; ++J) {
4641      ObjCProtocolDecl *rhsProto = *J;
4642      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
4643        match = true;
4644        break;
4645      }
4646    }
4647    if (!match)
4648      return false;
4649  }
4650  return true;
4651}
4652
4653/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
4654/// ObjCQualifiedIDType.
4655bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
4656                                                   bool compare) {
4657  // Allow id<P..> and an 'id' or void* type in all cases.
4658  if (lhs->isVoidPointerType() ||
4659      lhs->isObjCIdType() || lhs->isObjCClassType())
4660    return true;
4661  else if (rhs->isVoidPointerType() ||
4662           rhs->isObjCIdType() || rhs->isObjCClassType())
4663    return true;
4664
4665  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
4666    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
4667
4668    if (!rhsOPT) return false;
4669
4670    if (rhsOPT->qual_empty()) {
4671      // If the RHS is a unqualified interface pointer "NSString*",
4672      // make sure we check the class hierarchy.
4673      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4674        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4675             E = lhsQID->qual_end(); I != E; ++I) {
4676          // when comparing an id<P> on lhs with a static type on rhs,
4677          // see if static class implements all of id's protocols, directly or
4678          // through its super class and categories.
4679          if (!rhsID->ClassImplementsProtocol(*I, true))
4680            return false;
4681        }
4682      }
4683      // If there are no qualifiers and no interface, we have an 'id'.
4684      return true;
4685    }
4686    // Both the right and left sides have qualifiers.
4687    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4688         E = lhsQID->qual_end(); I != E; ++I) {
4689      ObjCProtocolDecl *lhsProto = *I;
4690      bool match = false;
4691
4692      // when comparing an id<P> on lhs with a static type on rhs,
4693      // see if static class implements all of id's protocols, directly or
4694      // through its super class and categories.
4695      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
4696           E = rhsOPT->qual_end(); J != E; ++J) {
4697        ObjCProtocolDecl *rhsProto = *J;
4698        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4699            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4700          match = true;
4701          break;
4702        }
4703      }
4704      // If the RHS is a qualified interface pointer "NSString<P>*",
4705      // make sure we check the class hierarchy.
4706      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
4707        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
4708             E = lhsQID->qual_end(); I != E; ++I) {
4709          // when comparing an id<P> on lhs with a static type on rhs,
4710          // see if static class implements all of id's protocols, directly or
4711          // through its super class and categories.
4712          if (rhsID->ClassImplementsProtocol(*I, true)) {
4713            match = true;
4714            break;
4715          }
4716        }
4717      }
4718      if (!match)
4719        return false;
4720    }
4721
4722    return true;
4723  }
4724
4725  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
4726  assert(rhsQID && "One of the LHS/RHS should be id<x>");
4727
4728  if (const ObjCObjectPointerType *lhsOPT =
4729        lhs->getAsObjCInterfacePointerType()) {
4730    // If both the right and left sides have qualifiers.
4731    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
4732         E = lhsOPT->qual_end(); I != E; ++I) {
4733      ObjCProtocolDecl *lhsProto = *I;
4734      bool match = false;
4735
4736      // when comparing an id<P> on rhs with a static type on lhs,
4737      // see if static class implements all of id's protocols, directly or
4738      // through its super class and categories.
4739      // First, lhs protocols in the qualifier list must be found, direct
4740      // or indirect in rhs's qualifier list or it is a mismatch.
4741      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4742           E = rhsQID->qual_end(); J != E; ++J) {
4743        ObjCProtocolDecl *rhsProto = *J;
4744        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4745            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4746          match = true;
4747          break;
4748        }
4749      }
4750      if (!match)
4751        return false;
4752    }
4753
4754    // Static class's protocols, or its super class or category protocols
4755    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
4756    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
4757      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4758      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
4759      // This is rather dubious but matches gcc's behavior. If lhs has
4760      // no type qualifier and its class has no static protocol(s)
4761      // assume that it is mismatch.
4762      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
4763        return false;
4764      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4765           LHSInheritedProtocols.begin(),
4766           E = LHSInheritedProtocols.end(); I != E; ++I) {
4767        bool match = false;
4768        ObjCProtocolDecl *lhsProto = (*I);
4769        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
4770             E = rhsQID->qual_end(); J != E; ++J) {
4771          ObjCProtocolDecl *rhsProto = *J;
4772          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
4773              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
4774            match = true;
4775            break;
4776          }
4777        }
4778        if (!match)
4779          return false;
4780      }
4781    }
4782    return true;
4783  }
4784  return false;
4785}
4786
4787/// canAssignObjCInterfaces - Return true if the two interface types are
4788/// compatible for assignment from RHS to LHS.  This handles validation of any
4789/// protocol qualifiers on the LHS or RHS.
4790///
4791bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
4792                                         const ObjCObjectPointerType *RHSOPT) {
4793  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4794  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4795
4796  // If either type represents the built-in 'id' or 'Class' types, return true.
4797  if (LHS->isObjCUnqualifiedIdOrClass() ||
4798      RHS->isObjCUnqualifiedIdOrClass())
4799    return true;
4800
4801  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
4802    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4803                                             QualType(RHSOPT,0),
4804                                             false);
4805
4806  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
4807    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
4808                                                QualType(RHSOPT,0));
4809
4810  // If we have 2 user-defined types, fall into that path.
4811  if (LHS->getInterface() && RHS->getInterface())
4812    return canAssignObjCInterfaces(LHS, RHS);
4813
4814  return false;
4815}
4816
4817/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
4818/// for providing type-safty for objective-c pointers used to pass/return
4819/// arguments in block literals. When passed as arguments, passing 'A*' where
4820/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
4821/// not OK. For the return type, the opposite is not OK.
4822bool ASTContext::canAssignObjCInterfacesInBlockPointer(
4823                                         const ObjCObjectPointerType *LHSOPT,
4824                                         const ObjCObjectPointerType *RHSOPT) {
4825  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
4826    return true;
4827
4828  if (LHSOPT->isObjCBuiltinType()) {
4829    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
4830  }
4831
4832  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
4833    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
4834                                             QualType(RHSOPT,0),
4835                                             false);
4836
4837  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
4838  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
4839  if (LHS && RHS)  { // We have 2 user-defined types.
4840    if (LHS != RHS) {
4841      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
4842        return false;
4843      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
4844        return true;
4845    }
4846    else
4847      return true;
4848  }
4849  return false;
4850}
4851
4852/// getIntersectionOfProtocols - This routine finds the intersection of set
4853/// of protocols inherited from two distinct objective-c pointer objects.
4854/// It is used to build composite qualifier list of the composite type of
4855/// the conditional expression involving two objective-c pointer objects.
4856static
4857void getIntersectionOfProtocols(ASTContext &Context,
4858                                const ObjCObjectPointerType *LHSOPT,
4859                                const ObjCObjectPointerType *RHSOPT,
4860      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
4861
4862  const ObjCObjectType* LHS = LHSOPT->getObjectType();
4863  const ObjCObjectType* RHS = RHSOPT->getObjectType();
4864  assert(LHS->getInterface() && "LHS must have an interface base");
4865  assert(RHS->getInterface() && "RHS must have an interface base");
4866
4867  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
4868  unsigned LHSNumProtocols = LHS->getNumProtocols();
4869  if (LHSNumProtocols > 0)
4870    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
4871  else {
4872    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
4873    Context.CollectInheritedProtocols(LHS->getInterface(),
4874                                      LHSInheritedProtocols);
4875    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
4876                                LHSInheritedProtocols.end());
4877  }
4878
4879  unsigned RHSNumProtocols = RHS->getNumProtocols();
4880  if (RHSNumProtocols > 0) {
4881    ObjCProtocolDecl **RHSProtocols =
4882      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
4883    for (unsigned i = 0; i < RHSNumProtocols; ++i)
4884      if (InheritedProtocolSet.count(RHSProtocols[i]))
4885        IntersectionOfProtocols.push_back(RHSProtocols[i]);
4886  }
4887  else {
4888    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
4889    Context.CollectInheritedProtocols(RHS->getInterface(),
4890                                      RHSInheritedProtocols);
4891    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
4892         RHSInheritedProtocols.begin(),
4893         E = RHSInheritedProtocols.end(); I != E; ++I)
4894      if (InheritedProtocolSet.count((*I)))
4895        IntersectionOfProtocols.push_back((*I));
4896  }
4897}
4898
4899/// areCommonBaseCompatible - Returns common base class of the two classes if
4900/// one found. Note that this is O'2 algorithm. But it will be called as the
4901/// last type comparison in a ?-exp of ObjC pointer types before a
4902/// warning is issued. So, its invokation is extremely rare.
4903QualType ASTContext::areCommonBaseCompatible(
4904                                          const ObjCObjectPointerType *Lptr,
4905                                          const ObjCObjectPointerType *Rptr) {
4906  const ObjCObjectType *LHS = Lptr->getObjectType();
4907  const ObjCObjectType *RHS = Rptr->getObjectType();
4908  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
4909  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
4910  if (!LDecl || !RDecl)
4911    return QualType();
4912
4913  while ((LDecl = LDecl->getSuperClass())) {
4914    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
4915    if (canAssignObjCInterfaces(LHS, RHS)) {
4916      llvm::SmallVector<ObjCProtocolDecl *, 8> Protocols;
4917      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
4918
4919      QualType Result = QualType(LHS, 0);
4920      if (!Protocols.empty())
4921        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
4922      Result = getObjCObjectPointerType(Result);
4923      return Result;
4924    }
4925  }
4926
4927  return QualType();
4928}
4929
4930bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
4931                                         const ObjCObjectType *RHS) {
4932  assert(LHS->getInterface() && "LHS is not an interface type");
4933  assert(RHS->getInterface() && "RHS is not an interface type");
4934
4935  // Verify that the base decls are compatible: the RHS must be a subclass of
4936  // the LHS.
4937  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
4938    return false;
4939
4940  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
4941  // protocol qualified at all, then we are good.
4942  if (LHS->getNumProtocols() == 0)
4943    return true;
4944
4945  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
4946  // isn't a superset.
4947  if (RHS->getNumProtocols() == 0)
4948    return true;  // FIXME: should return false!
4949
4950  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
4951                                     LHSPE = LHS->qual_end();
4952       LHSPI != LHSPE; LHSPI++) {
4953    bool RHSImplementsProtocol = false;
4954
4955    // If the RHS doesn't implement the protocol on the left, the types
4956    // are incompatible.
4957    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
4958                                       RHSPE = RHS->qual_end();
4959         RHSPI != RHSPE; RHSPI++) {
4960      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
4961        RHSImplementsProtocol = true;
4962        break;
4963      }
4964    }
4965    // FIXME: For better diagnostics, consider passing back the protocol name.
4966    if (!RHSImplementsProtocol)
4967      return false;
4968  }
4969  // The RHS implements all protocols listed on the LHS.
4970  return true;
4971}
4972
4973bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
4974  // get the "pointed to" types
4975  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
4976  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
4977
4978  if (!LHSOPT || !RHSOPT)
4979    return false;
4980
4981  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
4982         canAssignObjCInterfaces(RHSOPT, LHSOPT);
4983}
4984
4985bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
4986  return canAssignObjCInterfaces(
4987                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
4988                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
4989}
4990
4991/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
4992/// both shall have the identically qualified version of a compatible type.
4993/// C99 6.2.7p1: Two types have compatible types if their types are the
4994/// same. See 6.7.[2,3,5] for additional rules.
4995bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
4996                                    bool CompareUnqualified) {
4997  if (getLangOptions().CPlusPlus)
4998    return hasSameType(LHS, RHS);
4999
5000  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5001}
5002
5003bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5004  return !mergeTypes(LHS, RHS, true).isNull();
5005}
5006
5007/// mergeTransparentUnionType - if T is a transparent union type and a member
5008/// of T is compatible with SubType, return the merged type, else return
5009/// QualType()
5010QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5011                                               bool OfBlockPointer,
5012                                               bool Unqualified) {
5013  if (const RecordType *UT = T->getAsUnionType()) {
5014    RecordDecl *UD = UT->getDecl();
5015    if (UD->hasAttr<TransparentUnionAttr>()) {
5016      for (RecordDecl::field_iterator it = UD->field_begin(),
5017           itend = UD->field_end(); it != itend; ++it) {
5018        QualType ET = it->getType().getUnqualifiedType();
5019        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5020        if (!MT.isNull())
5021          return MT;
5022      }
5023    }
5024  }
5025
5026  return QualType();
5027}
5028
5029/// mergeFunctionArgumentTypes - merge two types which appear as function
5030/// argument types
5031QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5032                                                bool OfBlockPointer,
5033                                                bool Unqualified) {
5034  // GNU extension: two types are compatible if they appear as a function
5035  // argument, one of the types is a transparent union type and the other
5036  // type is compatible with a union member
5037  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5038                                              Unqualified);
5039  if (!lmerge.isNull())
5040    return lmerge;
5041
5042  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5043                                              Unqualified);
5044  if (!rmerge.isNull())
5045    return rmerge;
5046
5047  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5048}
5049
5050QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5051                                        bool OfBlockPointer,
5052                                        bool Unqualified) {
5053  const FunctionType *lbase = lhs->getAs<FunctionType>();
5054  const FunctionType *rbase = rhs->getAs<FunctionType>();
5055  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5056  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5057  bool allLTypes = true;
5058  bool allRTypes = true;
5059
5060  // Check return type
5061  QualType retType;
5062  if (OfBlockPointer) {
5063    QualType RHS = rbase->getResultType();
5064    QualType LHS = lbase->getResultType();
5065    bool UnqualifiedResult = Unqualified;
5066    if (!UnqualifiedResult)
5067      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5068    retType = mergeTypes(RHS, LHS, true, UnqualifiedResult);
5069  }
5070  else
5071    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5072                         Unqualified);
5073  if (retType.isNull()) return QualType();
5074
5075  if (Unqualified)
5076    retType = retType.getUnqualifiedType();
5077
5078  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5079  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5080  if (Unqualified) {
5081    LRetType = LRetType.getUnqualifiedType();
5082    RRetType = RRetType.getUnqualifiedType();
5083  }
5084
5085  if (getCanonicalType(retType) != LRetType)
5086    allLTypes = false;
5087  if (getCanonicalType(retType) != RRetType)
5088    allRTypes = false;
5089
5090  // FIXME: double check this
5091  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5092  //                           rbase->getRegParmAttr() != 0 &&
5093  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5094  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5095  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5096
5097  // Compatible functions must have compatible calling conventions
5098  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5099    return QualType();
5100
5101  // Regparm is part of the calling convention.
5102  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5103    return QualType();
5104
5105  // It's noreturn if either type is.
5106  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5107  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5108  if (NoReturn != lbaseInfo.getNoReturn())
5109    allLTypes = false;
5110  if (NoReturn != rbaseInfo.getNoReturn())
5111    allRTypes = false;
5112
5113  FunctionType::ExtInfo einfo(NoReturn,
5114                              lbaseInfo.getRegParm(),
5115                              lbaseInfo.getCC());
5116
5117  if (lproto && rproto) { // two C99 style function prototypes
5118    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5119           "C++ shouldn't be here");
5120    unsigned lproto_nargs = lproto->getNumArgs();
5121    unsigned rproto_nargs = rproto->getNumArgs();
5122
5123    // Compatible functions must have the same number of arguments
5124    if (lproto_nargs != rproto_nargs)
5125      return QualType();
5126
5127    // Variadic and non-variadic functions aren't compatible
5128    if (lproto->isVariadic() != rproto->isVariadic())
5129      return QualType();
5130
5131    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5132      return QualType();
5133
5134    // Check argument compatibility
5135    llvm::SmallVector<QualType, 10> types;
5136    for (unsigned i = 0; i < lproto_nargs; i++) {
5137      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5138      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5139      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5140                                                    OfBlockPointer,
5141                                                    Unqualified);
5142      if (argtype.isNull()) return QualType();
5143
5144      if (Unqualified)
5145        argtype = argtype.getUnqualifiedType();
5146
5147      types.push_back(argtype);
5148      if (Unqualified) {
5149        largtype = largtype.getUnqualifiedType();
5150        rargtype = rargtype.getUnqualifiedType();
5151      }
5152
5153      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5154        allLTypes = false;
5155      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5156        allRTypes = false;
5157    }
5158    if (allLTypes) return lhs;
5159    if (allRTypes) return rhs;
5160
5161    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5162    EPI.ExtInfo = einfo;
5163    return getFunctionType(retType, types.begin(), types.size(), EPI);
5164  }
5165
5166  if (lproto) allRTypes = false;
5167  if (rproto) allLTypes = false;
5168
5169  const FunctionProtoType *proto = lproto ? lproto : rproto;
5170  if (proto) {
5171    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5172    if (proto->isVariadic()) return QualType();
5173    // Check that the types are compatible with the types that
5174    // would result from default argument promotions (C99 6.7.5.3p15).
5175    // The only types actually affected are promotable integer
5176    // types and floats, which would be passed as a different
5177    // type depending on whether the prototype is visible.
5178    unsigned proto_nargs = proto->getNumArgs();
5179    for (unsigned i = 0; i < proto_nargs; ++i) {
5180      QualType argTy = proto->getArgType(i);
5181
5182      // Look at the promotion type of enum types, since that is the type used
5183      // to pass enum values.
5184      if (const EnumType *Enum = argTy->getAs<EnumType>())
5185        argTy = Enum->getDecl()->getPromotionType();
5186
5187      if (argTy->isPromotableIntegerType() ||
5188          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5189        return QualType();
5190    }
5191
5192    if (allLTypes) return lhs;
5193    if (allRTypes) return rhs;
5194
5195    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5196    EPI.ExtInfo = einfo;
5197    return getFunctionType(retType, proto->arg_type_begin(),
5198                           proto->getNumArgs(), EPI);
5199  }
5200
5201  if (allLTypes) return lhs;
5202  if (allRTypes) return rhs;
5203  return getFunctionNoProtoType(retType, einfo);
5204}
5205
5206QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5207                                bool OfBlockPointer,
5208                                bool Unqualified) {
5209  // C++ [expr]: If an expression initially has the type "reference to T", the
5210  // type is adjusted to "T" prior to any further analysis, the expression
5211  // designates the object or function denoted by the reference, and the
5212  // expression is an lvalue unless the reference is an rvalue reference and
5213  // the expression is a function call (possibly inside parentheses).
5214  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5215  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5216
5217  if (Unqualified) {
5218    LHS = LHS.getUnqualifiedType();
5219    RHS = RHS.getUnqualifiedType();
5220  }
5221
5222  QualType LHSCan = getCanonicalType(LHS),
5223           RHSCan = getCanonicalType(RHS);
5224
5225  // If two types are identical, they are compatible.
5226  if (LHSCan == RHSCan)
5227    return LHS;
5228
5229  // If the qualifiers are different, the types aren't compatible... mostly.
5230  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5231  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5232  if (LQuals != RQuals) {
5233    // If any of these qualifiers are different, we have a type
5234    // mismatch.
5235    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5236        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5237      return QualType();
5238
5239    // Exactly one GC qualifier difference is allowed: __strong is
5240    // okay if the other type has no GC qualifier but is an Objective
5241    // C object pointer (i.e. implicitly strong by default).  We fix
5242    // this by pretending that the unqualified type was actually
5243    // qualified __strong.
5244    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5245    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5246    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5247
5248    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5249      return QualType();
5250
5251    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5252      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5253    }
5254    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5255      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5256    }
5257    return QualType();
5258  }
5259
5260  // Okay, qualifiers are equal.
5261
5262  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5263  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5264
5265  // We want to consider the two function types to be the same for these
5266  // comparisons, just force one to the other.
5267  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5268  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5269
5270  // Same as above for arrays
5271  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5272    LHSClass = Type::ConstantArray;
5273  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5274    RHSClass = Type::ConstantArray;
5275
5276  // ObjCInterfaces are just specialized ObjCObjects.
5277  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5278  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5279
5280  // Canonicalize ExtVector -> Vector.
5281  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5282  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5283
5284  // If the canonical type classes don't match.
5285  if (LHSClass != RHSClass) {
5286    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5287    // a signed integer type, or an unsigned integer type.
5288    // Compatibility is based on the underlying type, not the promotion
5289    // type.
5290    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5291      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5292        return RHS;
5293    }
5294    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5295      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5296        return LHS;
5297    }
5298
5299    return QualType();
5300  }
5301
5302  // The canonical type classes match.
5303  switch (LHSClass) {
5304#define TYPE(Class, Base)
5305#define ABSTRACT_TYPE(Class, Base)
5306#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5307#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5308#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5309#include "clang/AST/TypeNodes.def"
5310    assert(false && "Non-canonical and dependent types shouldn't get here");
5311    return QualType();
5312
5313  case Type::LValueReference:
5314  case Type::RValueReference:
5315  case Type::MemberPointer:
5316    assert(false && "C++ should never be in mergeTypes");
5317    return QualType();
5318
5319  case Type::ObjCInterface:
5320  case Type::IncompleteArray:
5321  case Type::VariableArray:
5322  case Type::FunctionProto:
5323  case Type::ExtVector:
5324    assert(false && "Types are eliminated above");
5325    return QualType();
5326
5327  case Type::Pointer:
5328  {
5329    // Merge two pointer types, while trying to preserve typedef info
5330    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5331    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5332    if (Unqualified) {
5333      LHSPointee = LHSPointee.getUnqualifiedType();
5334      RHSPointee = RHSPointee.getUnqualifiedType();
5335    }
5336    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5337                                     Unqualified);
5338    if (ResultType.isNull()) return QualType();
5339    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5340      return LHS;
5341    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5342      return RHS;
5343    return getPointerType(ResultType);
5344  }
5345  case Type::BlockPointer:
5346  {
5347    // Merge two block pointer types, while trying to preserve typedef info
5348    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5349    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5350    if (Unqualified) {
5351      LHSPointee = LHSPointee.getUnqualifiedType();
5352      RHSPointee = RHSPointee.getUnqualifiedType();
5353    }
5354    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5355                                     Unqualified);
5356    if (ResultType.isNull()) return QualType();
5357    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5358      return LHS;
5359    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5360      return RHS;
5361    return getBlockPointerType(ResultType);
5362  }
5363  case Type::ConstantArray:
5364  {
5365    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5366    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5367    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5368      return QualType();
5369
5370    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5371    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5372    if (Unqualified) {
5373      LHSElem = LHSElem.getUnqualifiedType();
5374      RHSElem = RHSElem.getUnqualifiedType();
5375    }
5376
5377    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5378    if (ResultType.isNull()) return QualType();
5379    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5380      return LHS;
5381    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5382      return RHS;
5383    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5384                                          ArrayType::ArraySizeModifier(), 0);
5385    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5386                                          ArrayType::ArraySizeModifier(), 0);
5387    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5388    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5389    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5390      return LHS;
5391    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5392      return RHS;
5393    if (LVAT) {
5394      // FIXME: This isn't correct! But tricky to implement because
5395      // the array's size has to be the size of LHS, but the type
5396      // has to be different.
5397      return LHS;
5398    }
5399    if (RVAT) {
5400      // FIXME: This isn't correct! But tricky to implement because
5401      // the array's size has to be the size of RHS, but the type
5402      // has to be different.
5403      return RHS;
5404    }
5405    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5406    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5407    return getIncompleteArrayType(ResultType,
5408                                  ArrayType::ArraySizeModifier(), 0);
5409  }
5410  case Type::FunctionNoProto:
5411    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5412  case Type::Record:
5413  case Type::Enum:
5414    return QualType();
5415  case Type::Builtin:
5416    // Only exactly equal builtin types are compatible, which is tested above.
5417    return QualType();
5418  case Type::Complex:
5419    // Distinct complex types are incompatible.
5420    return QualType();
5421  case Type::Vector:
5422    // FIXME: The merged type should be an ExtVector!
5423    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5424                             RHSCan->getAs<VectorType>()))
5425      return LHS;
5426    return QualType();
5427  case Type::ObjCObject: {
5428    // Check if the types are assignment compatible.
5429    // FIXME: This should be type compatibility, e.g. whether
5430    // "LHS x; RHS x;" at global scope is legal.
5431    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5432    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5433    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5434      return LHS;
5435
5436    return QualType();
5437  }
5438  case Type::ObjCObjectPointer: {
5439    if (OfBlockPointer) {
5440      if (canAssignObjCInterfacesInBlockPointer(
5441                                          LHS->getAs<ObjCObjectPointerType>(),
5442                                          RHS->getAs<ObjCObjectPointerType>()))
5443      return LHS;
5444      return QualType();
5445    }
5446    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
5447                                RHS->getAs<ObjCObjectPointerType>()))
5448      return LHS;
5449
5450    return QualType();
5451    }
5452  }
5453
5454  return QualType();
5455}
5456
5457/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
5458/// 'RHS' attributes and returns the merged version; including for function
5459/// return types.
5460QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
5461  QualType LHSCan = getCanonicalType(LHS),
5462  RHSCan = getCanonicalType(RHS);
5463  // If two types are identical, they are compatible.
5464  if (LHSCan == RHSCan)
5465    return LHS;
5466  if (RHSCan->isFunctionType()) {
5467    if (!LHSCan->isFunctionType())
5468      return QualType();
5469    QualType OldReturnType =
5470      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
5471    QualType NewReturnType =
5472      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
5473    QualType ResReturnType =
5474      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
5475    if (ResReturnType.isNull())
5476      return QualType();
5477    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
5478      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
5479      // In either case, use OldReturnType to build the new function type.
5480      const FunctionType *F = LHS->getAs<FunctionType>();
5481      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
5482        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5483        EPI.ExtInfo = getFunctionExtInfo(LHS);
5484        QualType ResultType
5485          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
5486                            FPT->getNumArgs(), EPI);
5487        return ResultType;
5488      }
5489    }
5490    return QualType();
5491  }
5492
5493  // If the qualifiers are different, the types can still be merged.
5494  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5495  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5496  if (LQuals != RQuals) {
5497    // If any of these qualifiers are different, we have a type mismatch.
5498    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5499        LQuals.getAddressSpace() != RQuals.getAddressSpace())
5500      return QualType();
5501
5502    // Exactly one GC qualifier difference is allowed: __strong is
5503    // okay if the other type has no GC qualifier but is an Objective
5504    // C object pointer (i.e. implicitly strong by default).  We fix
5505    // this by pretending that the unqualified type was actually
5506    // qualified __strong.
5507    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5508    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5509    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5510
5511    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5512      return QualType();
5513
5514    if (GC_L == Qualifiers::Strong)
5515      return LHS;
5516    if (GC_R == Qualifiers::Strong)
5517      return RHS;
5518    return QualType();
5519  }
5520
5521  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
5522    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5523    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
5524    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
5525    if (ResQT == LHSBaseQT)
5526      return LHS;
5527    if (ResQT == RHSBaseQT)
5528      return RHS;
5529  }
5530  return QualType();
5531}
5532
5533//===----------------------------------------------------------------------===//
5534//                         Integer Predicates
5535//===----------------------------------------------------------------------===//
5536
5537unsigned ASTContext::getIntWidth(QualType T) const {
5538  if (const EnumType *ET = dyn_cast<EnumType>(T))
5539    T = ET->getDecl()->getIntegerType();
5540  if (T->isBooleanType())
5541    return 1;
5542  // For builtin types, just use the standard type sizing method
5543  return (unsigned)getTypeSize(T);
5544}
5545
5546QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
5547  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
5548
5549  // Turn <4 x signed int> -> <4 x unsigned int>
5550  if (const VectorType *VTy = T->getAs<VectorType>())
5551    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
5552                         VTy->getNumElements(), VTy->getVectorKind());
5553
5554  // For enums, we return the unsigned version of the base type.
5555  if (const EnumType *ETy = T->getAs<EnumType>())
5556    T = ETy->getDecl()->getIntegerType();
5557
5558  const BuiltinType *BTy = T->getAs<BuiltinType>();
5559  assert(BTy && "Unexpected signed integer type");
5560  switch (BTy->getKind()) {
5561  case BuiltinType::Char_S:
5562  case BuiltinType::SChar:
5563    return UnsignedCharTy;
5564  case BuiltinType::Short:
5565    return UnsignedShortTy;
5566  case BuiltinType::Int:
5567    return UnsignedIntTy;
5568  case BuiltinType::Long:
5569    return UnsignedLongTy;
5570  case BuiltinType::LongLong:
5571    return UnsignedLongLongTy;
5572  case BuiltinType::Int128:
5573    return UnsignedInt128Ty;
5574  default:
5575    assert(0 && "Unexpected signed integer type");
5576    return QualType();
5577  }
5578}
5579
5580ASTMutationListener::~ASTMutationListener() { }
5581
5582
5583//===----------------------------------------------------------------------===//
5584//                          Builtin Type Computation
5585//===----------------------------------------------------------------------===//
5586
5587/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
5588/// pointer over the consumed characters.  This returns the resultant type.  If
5589/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
5590/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
5591/// a vector of "i*".
5592///
5593/// RequiresICE is filled in on return to indicate whether the value is required
5594/// to be an Integer Constant Expression.
5595static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
5596                                  ASTContext::GetBuiltinTypeError &Error,
5597                                  bool &RequiresICE,
5598                                  bool AllowTypeModifiers) {
5599  // Modifiers.
5600  int HowLong = 0;
5601  bool Signed = false, Unsigned = false;
5602  RequiresICE = false;
5603
5604  // Read the prefixed modifiers first.
5605  bool Done = false;
5606  while (!Done) {
5607    switch (*Str++) {
5608    default: Done = true; --Str; break;
5609    case 'I':
5610      RequiresICE = true;
5611      break;
5612    case 'S':
5613      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
5614      assert(!Signed && "Can't use 'S' modifier multiple times!");
5615      Signed = true;
5616      break;
5617    case 'U':
5618      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
5619      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
5620      Unsigned = true;
5621      break;
5622    case 'L':
5623      assert(HowLong <= 2 && "Can't have LLLL modifier");
5624      ++HowLong;
5625      break;
5626    }
5627  }
5628
5629  QualType Type;
5630
5631  // Read the base type.
5632  switch (*Str++) {
5633  default: assert(0 && "Unknown builtin type letter!");
5634  case 'v':
5635    assert(HowLong == 0 && !Signed && !Unsigned &&
5636           "Bad modifiers used with 'v'!");
5637    Type = Context.VoidTy;
5638    break;
5639  case 'f':
5640    assert(HowLong == 0 && !Signed && !Unsigned &&
5641           "Bad modifiers used with 'f'!");
5642    Type = Context.FloatTy;
5643    break;
5644  case 'd':
5645    assert(HowLong < 2 && !Signed && !Unsigned &&
5646           "Bad modifiers used with 'd'!");
5647    if (HowLong)
5648      Type = Context.LongDoubleTy;
5649    else
5650      Type = Context.DoubleTy;
5651    break;
5652  case 's':
5653    assert(HowLong == 0 && "Bad modifiers used with 's'!");
5654    if (Unsigned)
5655      Type = Context.UnsignedShortTy;
5656    else
5657      Type = Context.ShortTy;
5658    break;
5659  case 'i':
5660    if (HowLong == 3)
5661      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
5662    else if (HowLong == 2)
5663      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
5664    else if (HowLong == 1)
5665      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
5666    else
5667      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
5668    break;
5669  case 'c':
5670    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
5671    if (Signed)
5672      Type = Context.SignedCharTy;
5673    else if (Unsigned)
5674      Type = Context.UnsignedCharTy;
5675    else
5676      Type = Context.CharTy;
5677    break;
5678  case 'b': // boolean
5679    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
5680    Type = Context.BoolTy;
5681    break;
5682  case 'z':  // size_t.
5683    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
5684    Type = Context.getSizeType();
5685    break;
5686  case 'F':
5687    Type = Context.getCFConstantStringType();
5688    break;
5689  case 'G':
5690    Type = Context.getObjCIdType();
5691    break;
5692  case 'H':
5693    Type = Context.getObjCSelType();
5694    break;
5695  case 'a':
5696    Type = Context.getBuiltinVaListType();
5697    assert(!Type.isNull() && "builtin va list type not initialized!");
5698    break;
5699  case 'A':
5700    // This is a "reference" to a va_list; however, what exactly
5701    // this means depends on how va_list is defined. There are two
5702    // different kinds of va_list: ones passed by value, and ones
5703    // passed by reference.  An example of a by-value va_list is
5704    // x86, where va_list is a char*. An example of by-ref va_list
5705    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
5706    // we want this argument to be a char*&; for x86-64, we want
5707    // it to be a __va_list_tag*.
5708    Type = Context.getBuiltinVaListType();
5709    assert(!Type.isNull() && "builtin va list type not initialized!");
5710    if (Type->isArrayType())
5711      Type = Context.getArrayDecayedType(Type);
5712    else
5713      Type = Context.getLValueReferenceType(Type);
5714    break;
5715  case 'V': {
5716    char *End;
5717    unsigned NumElements = strtoul(Str, &End, 10);
5718    assert(End != Str && "Missing vector size");
5719    Str = End;
5720
5721    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
5722                                             RequiresICE, false);
5723    assert(!RequiresICE && "Can't require vector ICE");
5724
5725    // TODO: No way to make AltiVec vectors in builtins yet.
5726    Type = Context.getVectorType(ElementType, NumElements,
5727                                 VectorType::GenericVector);
5728    break;
5729  }
5730  case 'X': {
5731    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
5732                                             false);
5733    assert(!RequiresICE && "Can't require complex ICE");
5734    Type = Context.getComplexType(ElementType);
5735    break;
5736  }
5737  case 'P':
5738    Type = Context.getFILEType();
5739    if (Type.isNull()) {
5740      Error = ASTContext::GE_Missing_stdio;
5741      return QualType();
5742    }
5743    break;
5744  case 'J':
5745    if (Signed)
5746      Type = Context.getsigjmp_bufType();
5747    else
5748      Type = Context.getjmp_bufType();
5749
5750    if (Type.isNull()) {
5751      Error = ASTContext::GE_Missing_setjmp;
5752      return QualType();
5753    }
5754    break;
5755  }
5756
5757  // If there are modifiers and if we're allowed to parse them, go for it.
5758  Done = !AllowTypeModifiers;
5759  while (!Done) {
5760    switch (char c = *Str++) {
5761    default: Done = true; --Str; break;
5762    case '*':
5763    case '&': {
5764      // Both pointers and references can have their pointee types
5765      // qualified with an address space.
5766      char *End;
5767      unsigned AddrSpace = strtoul(Str, &End, 10);
5768      if (End != Str && AddrSpace != 0) {
5769        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
5770        Str = End;
5771      }
5772      if (c == '*')
5773        Type = Context.getPointerType(Type);
5774      else
5775        Type = Context.getLValueReferenceType(Type);
5776      break;
5777    }
5778    // FIXME: There's no way to have a built-in with an rvalue ref arg.
5779    case 'C':
5780      Type = Type.withConst();
5781      break;
5782    case 'D':
5783      Type = Context.getVolatileType(Type);
5784      break;
5785    }
5786  }
5787
5788  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
5789         "Integer constant 'I' type must be an integer");
5790
5791  return Type;
5792}
5793
5794/// GetBuiltinType - Return the type for the specified builtin.
5795QualType ASTContext::GetBuiltinType(unsigned Id,
5796                                    GetBuiltinTypeError &Error,
5797                                    unsigned *IntegerConstantArgs) const {
5798  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
5799
5800  llvm::SmallVector<QualType, 8> ArgTypes;
5801
5802  bool RequiresICE = false;
5803  Error = GE_None;
5804  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
5805                                       RequiresICE, true);
5806  if (Error != GE_None)
5807    return QualType();
5808
5809  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
5810
5811  while (TypeStr[0] && TypeStr[0] != '.') {
5812    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
5813    if (Error != GE_None)
5814      return QualType();
5815
5816    // If this argument is required to be an IntegerConstantExpression and the
5817    // caller cares, fill in the bitmask we return.
5818    if (RequiresICE && IntegerConstantArgs)
5819      *IntegerConstantArgs |= 1 << ArgTypes.size();
5820
5821    // Do array -> pointer decay.  The builtin should use the decayed type.
5822    if (Ty->isArrayType())
5823      Ty = getArrayDecayedType(Ty);
5824
5825    ArgTypes.push_back(Ty);
5826  }
5827
5828  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
5829         "'.' should only occur at end of builtin type list!");
5830
5831  FunctionType::ExtInfo EI;
5832  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
5833
5834  bool Variadic = (TypeStr[0] == '.');
5835
5836  // We really shouldn't be making a no-proto type here, especially in C++.
5837  if (ArgTypes.empty() && Variadic)
5838    return getFunctionNoProtoType(ResType, EI);
5839
5840  FunctionProtoType::ExtProtoInfo EPI;
5841  EPI.ExtInfo = EI;
5842  EPI.Variadic = Variadic;
5843
5844  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
5845}
5846
5847GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
5848  GVALinkage External = GVA_StrongExternal;
5849
5850  Linkage L = FD->getLinkage();
5851  switch (L) {
5852  case NoLinkage:
5853  case InternalLinkage:
5854  case UniqueExternalLinkage:
5855    return GVA_Internal;
5856
5857  case ExternalLinkage:
5858    switch (FD->getTemplateSpecializationKind()) {
5859    case TSK_Undeclared:
5860    case TSK_ExplicitSpecialization:
5861      External = GVA_StrongExternal;
5862      break;
5863
5864    case TSK_ExplicitInstantiationDefinition:
5865      return GVA_ExplicitTemplateInstantiation;
5866
5867    case TSK_ExplicitInstantiationDeclaration:
5868    case TSK_ImplicitInstantiation:
5869      External = GVA_TemplateInstantiation;
5870      break;
5871    }
5872  }
5873
5874  if (!FD->isInlined())
5875    return External;
5876
5877  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
5878    // GNU or C99 inline semantics. Determine whether this symbol should be
5879    // externally visible.
5880    if (FD->isInlineDefinitionExternallyVisible())
5881      return External;
5882
5883    // C99 inline semantics, where the symbol is not externally visible.
5884    return GVA_C99Inline;
5885  }
5886
5887  // C++0x [temp.explicit]p9:
5888  //   [ Note: The intent is that an inline function that is the subject of
5889  //   an explicit instantiation declaration will still be implicitly
5890  //   instantiated when used so that the body can be considered for
5891  //   inlining, but that no out-of-line copy of the inline function would be
5892  //   generated in the translation unit. -- end note ]
5893  if (FD->getTemplateSpecializationKind()
5894                                       == TSK_ExplicitInstantiationDeclaration)
5895    return GVA_C99Inline;
5896
5897  return GVA_CXXInline;
5898}
5899
5900GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
5901  // If this is a static data member, compute the kind of template
5902  // specialization. Otherwise, this variable is not part of a
5903  // template.
5904  TemplateSpecializationKind TSK = TSK_Undeclared;
5905  if (VD->isStaticDataMember())
5906    TSK = VD->getTemplateSpecializationKind();
5907
5908  Linkage L = VD->getLinkage();
5909  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
5910      VD->getType()->getLinkage() == UniqueExternalLinkage)
5911    L = UniqueExternalLinkage;
5912
5913  switch (L) {
5914  case NoLinkage:
5915  case InternalLinkage:
5916  case UniqueExternalLinkage:
5917    return GVA_Internal;
5918
5919  case ExternalLinkage:
5920    switch (TSK) {
5921    case TSK_Undeclared:
5922    case TSK_ExplicitSpecialization:
5923      return GVA_StrongExternal;
5924
5925    case TSK_ExplicitInstantiationDeclaration:
5926      llvm_unreachable("Variable should not be instantiated");
5927      // Fall through to treat this like any other instantiation.
5928
5929    case TSK_ExplicitInstantiationDefinition:
5930      return GVA_ExplicitTemplateInstantiation;
5931
5932    case TSK_ImplicitInstantiation:
5933      return GVA_TemplateInstantiation;
5934    }
5935  }
5936
5937  return GVA_StrongExternal;
5938}
5939
5940bool ASTContext::DeclMustBeEmitted(const Decl *D) {
5941  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
5942    if (!VD->isFileVarDecl())
5943      return false;
5944  } else if (!isa<FunctionDecl>(D))
5945    return false;
5946
5947  // Weak references don't produce any output by themselves.
5948  if (D->hasAttr<WeakRefAttr>())
5949    return false;
5950
5951  // Aliases and used decls are required.
5952  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
5953    return true;
5954
5955  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5956    // Forward declarations aren't required.
5957    if (!FD->isThisDeclarationADefinition())
5958      return false;
5959
5960    // Constructors and destructors are required.
5961    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
5962      return true;
5963
5964    // The key function for a class is required.
5965    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5966      const CXXRecordDecl *RD = MD->getParent();
5967      if (MD->isOutOfLine() && RD->isDynamicClass()) {
5968        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
5969        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
5970          return true;
5971      }
5972    }
5973
5974    GVALinkage Linkage = GetGVALinkageForFunction(FD);
5975
5976    // static, static inline, always_inline, and extern inline functions can
5977    // always be deferred.  Normal inline functions can be deferred in C99/C++.
5978    // Implicit template instantiations can also be deferred in C++.
5979    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
5980        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
5981      return false;
5982    return true;
5983  }
5984
5985  const VarDecl *VD = cast<VarDecl>(D);
5986  assert(VD->isFileVarDecl() && "Expected file scoped var");
5987
5988  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
5989    return false;
5990
5991  // Structs that have non-trivial constructors or destructors are required.
5992
5993  // FIXME: Handle references.
5994  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
5995    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5996      if (RD->hasDefinition() &&
5997          (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()))
5998        return true;
5999    }
6000  }
6001
6002  GVALinkage L = GetGVALinkageForVariable(VD);
6003  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6004    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6005      return false;
6006  }
6007
6008  return true;
6009}
6010
6011CallingConv ASTContext::getDefaultMethodCallConv() {
6012  // Pass through to the C++ ABI object
6013  return ABI->getDefaultMethodCallConv();
6014}
6015
6016bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6017  // Pass through to the C++ ABI object
6018  return ABI->isNearlyEmpty(RD);
6019}
6020
6021MangleContext *ASTContext::createMangleContext() {
6022  switch (Target.getCXXABI()) {
6023  case CXXABI_ARM:
6024  case CXXABI_Itanium:
6025    return createItaniumMangleContext(*this, getDiagnostics());
6026  case CXXABI_Microsoft:
6027    return createMicrosoftMangleContext(*this, getDiagnostics());
6028  }
6029  assert(0 && "Unsupported ABI");
6030  return 0;
6031}
6032
6033CXXABI::~CXXABI() {}
6034