ASTContext.cpp revision d329724745b49f894b768d47275b7c2713106e89
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
89    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
90      return NULL;
91  }
92
93  // TODO: handle comments for function parameters properly.
94  if (isa<ParmVarDecl>(D))
95    return NULL;
96
97  // TODO: we could look up template parameter documentation in the template
98  // documentation.
99  if (isa<TemplateTypeParmDecl>(D) ||
100      isa<NonTypeTemplateParmDecl>(D) ||
101      isa<TemplateTemplateParmDecl>(D))
102    return NULL;
103
104  ArrayRef<RawComment *> RawComments = Comments.getComments();
105
106  // If there are no comments anywhere, we won't find anything.
107  if (RawComments.empty())
108    return NULL;
109
110  // Find declaration location.
111  // For Objective-C declarations we generally don't expect to have multiple
112  // declarators, thus use declaration starting location as the "declaration
113  // location".
114  // For all other declarations multiple declarators are used quite frequently,
115  // so we use the location of the identifier as the "declaration location".
116  SourceLocation DeclLoc;
117  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
118      isa<ObjCPropertyDecl>(D) ||
119      isa<RedeclarableTemplateDecl>(D) ||
120      isa<ClassTemplateSpecializationDecl>(D))
121    DeclLoc = D->getLocStart();
122  else
123    DeclLoc = D->getLocation();
124
125  // If the declaration doesn't map directly to a location in a file, we
126  // can't find the comment.
127  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
128    return NULL;
129
130  // Find the comment that occurs just after this declaration.
131  ArrayRef<RawComment *>::iterator Comment;
132  {
133    // When searching for comments during parsing, the comment we are looking
134    // for is usually among the last two comments we parsed -- check them
135    // first.
136    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
137    BeforeThanCompare<RawComment> Compare(SourceMgr);
138    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
139    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
140    if (!Found && RawComments.size() >= 2) {
141      MaybeBeforeDecl--;
142      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
143    }
144
145    if (Found) {
146      Comment = MaybeBeforeDecl + 1;
147      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
148                                         &CommentAtDeclLoc, Compare));
149    } else {
150      // Slow path.
151      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
152                                 &CommentAtDeclLoc, Compare);
153    }
154  }
155
156  // Decompose the location for the declaration and find the beginning of the
157  // file buffer.
158  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
159
160  // First check whether we have a trailing comment.
161  if (Comment != RawComments.end() &&
162      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
163      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
164    std::pair<FileID, unsigned> CommentBeginDecomp
165      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
166    // Check that Doxygen trailing comment comes after the declaration, starts
167    // on the same line and in the same file as the declaration.
168    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
169        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
170          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
171                                     CommentBeginDecomp.second)) {
172      return *Comment;
173    }
174  }
175
176  // The comment just after the declaration was not a trailing comment.
177  // Let's look at the previous comment.
178  if (Comment == RawComments.begin())
179    return NULL;
180  --Comment;
181
182  // Check that we actually have a non-member Doxygen comment.
183  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
184    return NULL;
185
186  // Decompose the end of the comment.
187  std::pair<FileID, unsigned> CommentEndDecomp
188    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
189
190  // If the comment and the declaration aren't in the same file, then they
191  // aren't related.
192  if (DeclLocDecomp.first != CommentEndDecomp.first)
193    return NULL;
194
195  // Get the corresponding buffer.
196  bool Invalid = false;
197  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
198                                               &Invalid).data();
199  if (Invalid)
200    return NULL;
201
202  // Extract text between the comment and declaration.
203  StringRef Text(Buffer + CommentEndDecomp.second,
204                 DeclLocDecomp.second - CommentEndDecomp.second);
205
206  // There should be no other declarations or preprocessor directives between
207  // comment and declaration.
208  if (Text.find_first_of(",;{}#@") != StringRef::npos)
209    return NULL;
210
211  return *Comment;
212}
213
214namespace {
215/// If we have a 'templated' declaration for a template, adjust 'D' to
216/// refer to the actual template.
217/// If we have an implicit instantiation, adjust 'D' to refer to template.
218const Decl *adjustDeclToTemplate(const Decl *D) {
219  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
220    // Is this function declaration part of a function template?
221    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
222      return FTD;
223
224    // Nothing to do if function is not an implicit instantiation.
225    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
226      return D;
227
228    // Function is an implicit instantiation of a function template?
229    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
230      return FTD;
231
232    // Function is instantiated from a member definition of a class template?
233    if (const FunctionDecl *MemberDecl =
234            FD->getInstantiatedFromMemberFunction())
235      return MemberDecl;
236
237    return D;
238  }
239  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
240    // Static data member is instantiated from a member definition of a class
241    // template?
242    if (VD->isStaticDataMember())
243      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
244        return MemberDecl;
245
246    return D;
247  }
248  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
249    // Is this class declaration part of a class template?
250    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
251      return CTD;
252
253    // Class is an implicit instantiation of a class template or partial
254    // specialization?
255    if (const ClassTemplateSpecializationDecl *CTSD =
256            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
257      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
258        return D;
259      llvm::PointerUnion<ClassTemplateDecl *,
260                         ClassTemplatePartialSpecializationDecl *>
261          PU = CTSD->getSpecializedTemplateOrPartial();
262      return PU.is<ClassTemplateDecl*>() ?
263          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
264          static_cast<const Decl*>(
265              PU.get<ClassTemplatePartialSpecializationDecl *>());
266    }
267
268    // Class is instantiated from a member definition of a class template?
269    if (const MemberSpecializationInfo *Info =
270                   CRD->getMemberSpecializationInfo())
271      return Info->getInstantiatedFrom();
272
273    return D;
274  }
275  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
276    // Enum is instantiated from a member definition of a class template?
277    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
278      return MemberDecl;
279
280    return D;
281  }
282  // FIXME: Adjust alias templates?
283  return D;
284}
285} // unnamed namespace
286
287const RawComment *ASTContext::getRawCommentForAnyRedecl(
288                                                const Decl *D,
289                                                const Decl **OriginalDecl) const {
290  D = adjustDeclToTemplate(D);
291
292  // Check whether we have cached a comment for this declaration already.
293  {
294    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
295        RedeclComments.find(D);
296    if (Pos != RedeclComments.end()) {
297      const RawCommentAndCacheFlags &Raw = Pos->second;
298      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
299        if (OriginalDecl)
300          *OriginalDecl = Raw.getOriginalDecl();
301        return Raw.getRaw();
302      }
303    }
304  }
305
306  // Search for comments attached to declarations in the redeclaration chain.
307  const RawComment *RC = NULL;
308  const Decl *OriginalDeclForRC = NULL;
309  for (Decl::redecl_iterator I = D->redecls_begin(),
310                             E = D->redecls_end();
311       I != E; ++I) {
312    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
313        RedeclComments.find(*I);
314    if (Pos != RedeclComments.end()) {
315      const RawCommentAndCacheFlags &Raw = Pos->second;
316      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
317        RC = Raw.getRaw();
318        OriginalDeclForRC = Raw.getOriginalDecl();
319        break;
320      }
321    } else {
322      RC = getRawCommentForDeclNoCache(*I);
323      OriginalDeclForRC = *I;
324      RawCommentAndCacheFlags Raw;
325      if (RC) {
326        Raw.setRaw(RC);
327        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
328      } else
329        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
330      Raw.setOriginalDecl(*I);
331      RedeclComments[*I] = Raw;
332      if (RC)
333        break;
334    }
335  }
336
337  // If we found a comment, it should be a documentation comment.
338  assert(!RC || RC->isDocumentation());
339
340  if (OriginalDecl)
341    *OriginalDecl = OriginalDeclForRC;
342
343  // Update cache for every declaration in the redeclaration chain.
344  RawCommentAndCacheFlags Raw;
345  Raw.setRaw(RC);
346  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
347  Raw.setOriginalDecl(OriginalDeclForRC);
348
349  for (Decl::redecl_iterator I = D->redecls_begin(),
350                             E = D->redecls_end();
351       I != E; ++I) {
352    RawCommentAndCacheFlags &R = RedeclComments[*I];
353    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
354      R = Raw;
355  }
356
357  return RC;
358}
359
360static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
361                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
362  const DeclContext *DC = ObjCMethod->getDeclContext();
363  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
364    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
365    if (!ID)
366      return;
367    // Add redeclared method here.
368    for (ObjCInterfaceDecl::known_extensions_iterator
369           Ext = ID->known_extensions_begin(),
370           ExtEnd = ID->known_extensions_end();
371         Ext != ExtEnd; ++Ext) {
372      if (ObjCMethodDecl *RedeclaredMethod =
373            Ext->getMethod(ObjCMethod->getSelector(),
374                                  ObjCMethod->isInstanceMethod()))
375        Redeclared.push_back(RedeclaredMethod);
376    }
377  }
378}
379
380comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
381                                                    const Decl *D) const {
382  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
383  ThisDeclInfo->CommentDecl = D;
384  ThisDeclInfo->IsFilled = false;
385  ThisDeclInfo->fill();
386  ThisDeclInfo->CommentDecl = FC->getDecl();
387  comments::FullComment *CFC =
388    new (*this) comments::FullComment(FC->getBlocks(),
389                                      ThisDeclInfo);
390  return CFC;
391
392}
393
394comments::FullComment *ASTContext::getCommentForDecl(
395                                              const Decl *D,
396                                              const Preprocessor *PP) const {
397  D = adjustDeclToTemplate(D);
398
399  const Decl *Canonical = D->getCanonicalDecl();
400  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
401      ParsedComments.find(Canonical);
402
403  if (Pos != ParsedComments.end()) {
404    if (Canonical != D) {
405      comments::FullComment *FC = Pos->second;
406      comments::FullComment *CFC = cloneFullComment(FC, D);
407      return CFC;
408    }
409    return Pos->second;
410  }
411
412  const Decl *OriginalDecl;
413
414  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
415  if (!RC) {
416    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
417      SmallVector<const NamedDecl*, 8> Overridden;
418      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
419      if (OMD && OMD->isPropertyAccessor()) {
420        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) {
421          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) {
422            comments::FullComment *CFC = cloneFullComment(FC, D);
423            return CFC;
424          }
425        }
426      }
427      if (OMD)
428        addRedeclaredMethods(OMD, Overridden);
429      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
430      for (unsigned i = 0, e = Overridden.size(); i < e; i++) {
431        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) {
432          comments::FullComment *CFC = cloneFullComment(FC, D);
433          return CFC;
434        }
435      }
436    }
437    return NULL;
438  }
439
440  // If the RawComment was attached to other redeclaration of this Decl, we
441  // should parse the comment in context of that other Decl.  This is important
442  // because comments can contain references to parameter names which can be
443  // different across redeclarations.
444  if (D != OriginalDecl)
445    return getCommentForDecl(OriginalDecl, PP);
446
447  comments::FullComment *FC = RC->parse(*this, PP, D);
448  ParsedComments[Canonical] = FC;
449  return FC;
450}
451
452void
453ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
454                                               TemplateTemplateParmDecl *Parm) {
455  ID.AddInteger(Parm->getDepth());
456  ID.AddInteger(Parm->getPosition());
457  ID.AddBoolean(Parm->isParameterPack());
458
459  TemplateParameterList *Params = Parm->getTemplateParameters();
460  ID.AddInteger(Params->size());
461  for (TemplateParameterList::const_iterator P = Params->begin(),
462                                          PEnd = Params->end();
463       P != PEnd; ++P) {
464    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
465      ID.AddInteger(0);
466      ID.AddBoolean(TTP->isParameterPack());
467      continue;
468    }
469
470    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
471      ID.AddInteger(1);
472      ID.AddBoolean(NTTP->isParameterPack());
473      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
474      if (NTTP->isExpandedParameterPack()) {
475        ID.AddBoolean(true);
476        ID.AddInteger(NTTP->getNumExpansionTypes());
477        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
478          QualType T = NTTP->getExpansionType(I);
479          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
480        }
481      } else
482        ID.AddBoolean(false);
483      continue;
484    }
485
486    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
487    ID.AddInteger(2);
488    Profile(ID, TTP);
489  }
490}
491
492TemplateTemplateParmDecl *
493ASTContext::getCanonicalTemplateTemplateParmDecl(
494                                          TemplateTemplateParmDecl *TTP) const {
495  // Check if we already have a canonical template template parameter.
496  llvm::FoldingSetNodeID ID;
497  CanonicalTemplateTemplateParm::Profile(ID, TTP);
498  void *InsertPos = 0;
499  CanonicalTemplateTemplateParm *Canonical
500    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
501  if (Canonical)
502    return Canonical->getParam();
503
504  // Build a canonical template parameter list.
505  TemplateParameterList *Params = TTP->getTemplateParameters();
506  SmallVector<NamedDecl *, 4> CanonParams;
507  CanonParams.reserve(Params->size());
508  for (TemplateParameterList::const_iterator P = Params->begin(),
509                                          PEnd = Params->end();
510       P != PEnd; ++P) {
511    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
512      CanonParams.push_back(
513                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
514                                               SourceLocation(),
515                                               SourceLocation(),
516                                               TTP->getDepth(),
517                                               TTP->getIndex(), 0, false,
518                                               TTP->isParameterPack()));
519    else if (NonTypeTemplateParmDecl *NTTP
520             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
521      QualType T = getCanonicalType(NTTP->getType());
522      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
523      NonTypeTemplateParmDecl *Param;
524      if (NTTP->isExpandedParameterPack()) {
525        SmallVector<QualType, 2> ExpandedTypes;
526        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
527        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
528          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
529          ExpandedTInfos.push_back(
530                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
531        }
532
533        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
534                                                SourceLocation(),
535                                                SourceLocation(),
536                                                NTTP->getDepth(),
537                                                NTTP->getPosition(), 0,
538                                                T,
539                                                TInfo,
540                                                ExpandedTypes.data(),
541                                                ExpandedTypes.size(),
542                                                ExpandedTInfos.data());
543      } else {
544        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
545                                                SourceLocation(),
546                                                SourceLocation(),
547                                                NTTP->getDepth(),
548                                                NTTP->getPosition(), 0,
549                                                T,
550                                                NTTP->isParameterPack(),
551                                                TInfo);
552      }
553      CanonParams.push_back(Param);
554
555    } else
556      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
557                                           cast<TemplateTemplateParmDecl>(*P)));
558  }
559
560  TemplateTemplateParmDecl *CanonTTP
561    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
562                                       SourceLocation(), TTP->getDepth(),
563                                       TTP->getPosition(),
564                                       TTP->isParameterPack(),
565                                       0,
566                         TemplateParameterList::Create(*this, SourceLocation(),
567                                                       SourceLocation(),
568                                                       CanonParams.data(),
569                                                       CanonParams.size(),
570                                                       SourceLocation()));
571
572  // Get the new insert position for the node we care about.
573  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
574  assert(Canonical == 0 && "Shouldn't be in the map!");
575  (void)Canonical;
576
577  // Create the canonical template template parameter entry.
578  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
579  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
580  return CanonTTP;
581}
582
583CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
584  if (!LangOpts.CPlusPlus) return 0;
585
586  switch (T.getCXXABI()) {
587  case CXXABI_ARM:
588    return CreateARMCXXABI(*this);
589  case CXXABI_Itanium:
590    return CreateItaniumCXXABI(*this);
591  case CXXABI_Microsoft:
592    return CreateMicrosoftCXXABI(*this);
593  }
594  llvm_unreachable("Invalid CXXABI type!");
595}
596
597static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
598                                             const LangOptions &LOpts) {
599  if (LOpts.FakeAddressSpaceMap) {
600    // The fake address space map must have a distinct entry for each
601    // language-specific address space.
602    static const unsigned FakeAddrSpaceMap[] = {
603      1, // opencl_global
604      2, // opencl_local
605      3, // opencl_constant
606      4, // cuda_device
607      5, // cuda_constant
608      6  // cuda_shared
609    };
610    return &FakeAddrSpaceMap;
611  } else {
612    return &T.getAddressSpaceMap();
613  }
614}
615
616ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
617                       const TargetInfo *t,
618                       IdentifierTable &idents, SelectorTable &sels,
619                       Builtin::Context &builtins,
620                       unsigned size_reserve,
621                       bool DelayInitialization)
622  : FunctionProtoTypes(this_()),
623    TemplateSpecializationTypes(this_()),
624    DependentTemplateSpecializationTypes(this_()),
625    SubstTemplateTemplateParmPacks(this_()),
626    GlobalNestedNameSpecifier(0),
627    Int128Decl(0), UInt128Decl(0),
628    BuiltinVaListDecl(0),
629    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
630    BOOLDecl(0),
631    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
632    FILEDecl(0),
633    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
634    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
635    cudaConfigureCallDecl(0),
636    NullTypeSourceInfo(QualType()),
637    FirstLocalImport(), LastLocalImport(),
638    SourceMgr(SM), LangOpts(LOpts),
639    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
640    Idents(idents), Selectors(sels),
641    BuiltinInfo(builtins),
642    DeclarationNames(*this),
643    ExternalSource(0), Listener(0),
644    Comments(SM), CommentsLoaded(false),
645    CommentCommandTraits(BumpAlloc),
646    LastSDM(0, 0),
647    UniqueBlockByRefTypeID(0)
648{
649  if (size_reserve > 0) Types.reserve(size_reserve);
650  TUDecl = TranslationUnitDecl::Create(*this);
651
652  if (!DelayInitialization) {
653    assert(t && "No target supplied for ASTContext initialization");
654    InitBuiltinTypes(*t);
655  }
656}
657
658ASTContext::~ASTContext() {
659  // Release the DenseMaps associated with DeclContext objects.
660  // FIXME: Is this the ideal solution?
661  ReleaseDeclContextMaps();
662
663  // Call all of the deallocation functions.
664  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
665    Deallocations[I].first(Deallocations[I].second);
666
667  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
668  // because they can contain DenseMaps.
669  for (llvm::DenseMap<const ObjCContainerDecl*,
670       const ASTRecordLayout*>::iterator
671       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
672    // Increment in loop to prevent using deallocated memory.
673    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
674      R->Destroy(*this);
675
676  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
677       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
678    // Increment in loop to prevent using deallocated memory.
679    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
680      R->Destroy(*this);
681  }
682
683  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
684                                                    AEnd = DeclAttrs.end();
685       A != AEnd; ++A)
686    A->second->~AttrVec();
687}
688
689void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
690  Deallocations.push_back(std::make_pair(Callback, Data));
691}
692
693void
694ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
695  ExternalSource.reset(Source.take());
696}
697
698void ASTContext::PrintStats() const {
699  llvm::errs() << "\n*** AST Context Stats:\n";
700  llvm::errs() << "  " << Types.size() << " types total.\n";
701
702  unsigned counts[] = {
703#define TYPE(Name, Parent) 0,
704#define ABSTRACT_TYPE(Name, Parent)
705#include "clang/AST/TypeNodes.def"
706    0 // Extra
707  };
708
709  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
710    Type *T = Types[i];
711    counts[(unsigned)T->getTypeClass()]++;
712  }
713
714  unsigned Idx = 0;
715  unsigned TotalBytes = 0;
716#define TYPE(Name, Parent)                                              \
717  if (counts[Idx])                                                      \
718    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
719                 << " types\n";                                         \
720  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
721  ++Idx;
722#define ABSTRACT_TYPE(Name, Parent)
723#include "clang/AST/TypeNodes.def"
724
725  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
726
727  // Implicit special member functions.
728  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
729               << NumImplicitDefaultConstructors
730               << " implicit default constructors created\n";
731  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
732               << NumImplicitCopyConstructors
733               << " implicit copy constructors created\n";
734  if (getLangOpts().CPlusPlus)
735    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
736                 << NumImplicitMoveConstructors
737                 << " implicit move constructors created\n";
738  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
739               << NumImplicitCopyAssignmentOperators
740               << " implicit copy assignment operators created\n";
741  if (getLangOpts().CPlusPlus)
742    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
743                 << NumImplicitMoveAssignmentOperators
744                 << " implicit move assignment operators created\n";
745  llvm::errs() << NumImplicitDestructorsDeclared << "/"
746               << NumImplicitDestructors
747               << " implicit destructors created\n";
748
749  if (ExternalSource.get()) {
750    llvm::errs() << "\n";
751    ExternalSource->PrintStats();
752  }
753
754  BumpAlloc.PrintStats();
755}
756
757TypedefDecl *ASTContext::getInt128Decl() const {
758  if (!Int128Decl) {
759    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
760    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
761                                     getTranslationUnitDecl(),
762                                     SourceLocation(),
763                                     SourceLocation(),
764                                     &Idents.get("__int128_t"),
765                                     TInfo);
766  }
767
768  return Int128Decl;
769}
770
771TypedefDecl *ASTContext::getUInt128Decl() const {
772  if (!UInt128Decl) {
773    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
774    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
775                                     getTranslationUnitDecl(),
776                                     SourceLocation(),
777                                     SourceLocation(),
778                                     &Idents.get("__uint128_t"),
779                                     TInfo);
780  }
781
782  return UInt128Decl;
783}
784
785void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
786  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
787  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
788  Types.push_back(Ty);
789}
790
791void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
792  assert((!this->Target || this->Target == &Target) &&
793         "Incorrect target reinitialization");
794  assert(VoidTy.isNull() && "Context reinitialized?");
795
796  this->Target = &Target;
797
798  ABI.reset(createCXXABI(Target));
799  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
800
801  // C99 6.2.5p19.
802  InitBuiltinType(VoidTy,              BuiltinType::Void);
803
804  // C99 6.2.5p2.
805  InitBuiltinType(BoolTy,              BuiltinType::Bool);
806  // C99 6.2.5p3.
807  if (LangOpts.CharIsSigned)
808    InitBuiltinType(CharTy,            BuiltinType::Char_S);
809  else
810    InitBuiltinType(CharTy,            BuiltinType::Char_U);
811  // C99 6.2.5p4.
812  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
813  InitBuiltinType(ShortTy,             BuiltinType::Short);
814  InitBuiltinType(IntTy,               BuiltinType::Int);
815  InitBuiltinType(LongTy,              BuiltinType::Long);
816  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
817
818  // C99 6.2.5p6.
819  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
820  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
821  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
822  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
823  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
824
825  // C99 6.2.5p10.
826  InitBuiltinType(FloatTy,             BuiltinType::Float);
827  InitBuiltinType(DoubleTy,            BuiltinType::Double);
828  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
829
830  // GNU extension, 128-bit integers.
831  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
832  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
833
834  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
835    if (TargetInfo::isTypeSigned(Target.getWCharType()))
836      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
837    else  // -fshort-wchar makes wchar_t be unsigned.
838      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
839  } else // C99 (or C++ using -fno-wchar)
840    WCharTy = getFromTargetType(Target.getWCharType());
841
842  WIntTy = getFromTargetType(Target.getWIntType());
843
844  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
845    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
846  else // C99
847    Char16Ty = getFromTargetType(Target.getChar16Type());
848
849  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
850    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
851  else // C99
852    Char32Ty = getFromTargetType(Target.getChar32Type());
853
854  // Placeholder type for type-dependent expressions whose type is
855  // completely unknown. No code should ever check a type against
856  // DependentTy and users should never see it; however, it is here to
857  // help diagnose failures to properly check for type-dependent
858  // expressions.
859  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
860
861  // Placeholder type for functions.
862  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
863
864  // Placeholder type for bound members.
865  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
866
867  // Placeholder type for pseudo-objects.
868  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
869
870  // "any" type; useful for debugger-like clients.
871  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
872
873  // Placeholder type for unbridged ARC casts.
874  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
875
876  // Placeholder type for builtin functions.
877  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
878
879  // C99 6.2.5p11.
880  FloatComplexTy      = getComplexType(FloatTy);
881  DoubleComplexTy     = getComplexType(DoubleTy);
882  LongDoubleComplexTy = getComplexType(LongDoubleTy);
883
884  // Builtin types for 'id', 'Class', and 'SEL'.
885  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
886  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
887  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
888
889  if (LangOpts.OpenCL) {
890    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
891    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
892    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
893    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
894    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
895    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
896  }
897
898  // Builtin type for __objc_yes and __objc_no
899  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
900                       SignedCharTy : BoolTy);
901
902  ObjCConstantStringType = QualType();
903
904  ObjCSuperType = QualType();
905
906  // void * type
907  VoidPtrTy = getPointerType(VoidTy);
908
909  // nullptr type (C++0x 2.14.7)
910  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
911
912  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
913  InitBuiltinType(HalfTy, BuiltinType::Half);
914
915  // Builtin type used to help define __builtin_va_list.
916  VaListTagTy = QualType();
917}
918
919DiagnosticsEngine &ASTContext::getDiagnostics() const {
920  return SourceMgr.getDiagnostics();
921}
922
923AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
924  AttrVec *&Result = DeclAttrs[D];
925  if (!Result) {
926    void *Mem = Allocate(sizeof(AttrVec));
927    Result = new (Mem) AttrVec;
928  }
929
930  return *Result;
931}
932
933/// \brief Erase the attributes corresponding to the given declaration.
934void ASTContext::eraseDeclAttrs(const Decl *D) {
935  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
936  if (Pos != DeclAttrs.end()) {
937    Pos->second->~AttrVec();
938    DeclAttrs.erase(Pos);
939  }
940}
941
942MemberSpecializationInfo *
943ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
944  assert(Var->isStaticDataMember() && "Not a static data member");
945  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
946    = InstantiatedFromStaticDataMember.find(Var);
947  if (Pos == InstantiatedFromStaticDataMember.end())
948    return 0;
949
950  return Pos->second;
951}
952
953void
954ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
955                                                TemplateSpecializationKind TSK,
956                                          SourceLocation PointOfInstantiation) {
957  assert(Inst->isStaticDataMember() && "Not a static data member");
958  assert(Tmpl->isStaticDataMember() && "Not a static data member");
959  assert(!InstantiatedFromStaticDataMember[Inst] &&
960         "Already noted what static data member was instantiated from");
961  InstantiatedFromStaticDataMember[Inst]
962    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
963}
964
965FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
966                                                     const FunctionDecl *FD){
967  assert(FD && "Specialization is 0");
968  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
969    = ClassScopeSpecializationPattern.find(FD);
970  if (Pos == ClassScopeSpecializationPattern.end())
971    return 0;
972
973  return Pos->second;
974}
975
976void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
977                                        FunctionDecl *Pattern) {
978  assert(FD && "Specialization is 0");
979  assert(Pattern && "Class scope specialization pattern is 0");
980  ClassScopeSpecializationPattern[FD] = Pattern;
981}
982
983NamedDecl *
984ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
985  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
986    = InstantiatedFromUsingDecl.find(UUD);
987  if (Pos == InstantiatedFromUsingDecl.end())
988    return 0;
989
990  return Pos->second;
991}
992
993void
994ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
995  assert((isa<UsingDecl>(Pattern) ||
996          isa<UnresolvedUsingValueDecl>(Pattern) ||
997          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
998         "pattern decl is not a using decl");
999  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1000  InstantiatedFromUsingDecl[Inst] = Pattern;
1001}
1002
1003UsingShadowDecl *
1004ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1005  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1006    = InstantiatedFromUsingShadowDecl.find(Inst);
1007  if (Pos == InstantiatedFromUsingShadowDecl.end())
1008    return 0;
1009
1010  return Pos->second;
1011}
1012
1013void
1014ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1015                                               UsingShadowDecl *Pattern) {
1016  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1017  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1018}
1019
1020FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1021  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1022    = InstantiatedFromUnnamedFieldDecl.find(Field);
1023  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1024    return 0;
1025
1026  return Pos->second;
1027}
1028
1029void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1030                                                     FieldDecl *Tmpl) {
1031  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1032  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1033  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1034         "Already noted what unnamed field was instantiated from");
1035
1036  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1037}
1038
1039bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1040                                    const FieldDecl *LastFD) const {
1041  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1042          FD->getBitWidthValue(*this) == 0);
1043}
1044
1045bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1046                                             const FieldDecl *LastFD) const {
1047  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1048          FD->getBitWidthValue(*this) == 0 &&
1049          LastFD->getBitWidthValue(*this) != 0);
1050}
1051
1052bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1053                                         const FieldDecl *LastFD) const {
1054  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1055          FD->getBitWidthValue(*this) &&
1056          LastFD->getBitWidthValue(*this));
1057}
1058
1059bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1060                                         const FieldDecl *LastFD) const {
1061  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1062          LastFD->getBitWidthValue(*this));
1063}
1064
1065bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1066                                             const FieldDecl *LastFD) const {
1067  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1068          FD->getBitWidthValue(*this));
1069}
1070
1071ASTContext::overridden_cxx_method_iterator
1072ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1073  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1074    = OverriddenMethods.find(Method->getCanonicalDecl());
1075  if (Pos == OverriddenMethods.end())
1076    return 0;
1077
1078  return Pos->second.begin();
1079}
1080
1081ASTContext::overridden_cxx_method_iterator
1082ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1083  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1084    = OverriddenMethods.find(Method->getCanonicalDecl());
1085  if (Pos == OverriddenMethods.end())
1086    return 0;
1087
1088  return Pos->second.end();
1089}
1090
1091unsigned
1092ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1093  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1094    = OverriddenMethods.find(Method->getCanonicalDecl());
1095  if (Pos == OverriddenMethods.end())
1096    return 0;
1097
1098  return Pos->second.size();
1099}
1100
1101void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1102                                     const CXXMethodDecl *Overridden) {
1103  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1104  OverriddenMethods[Method].push_back(Overridden);
1105}
1106
1107void ASTContext::getOverriddenMethods(
1108                      const NamedDecl *D,
1109                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1110  assert(D);
1111
1112  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1113    Overridden.append(CXXMethod->begin_overridden_methods(),
1114                      CXXMethod->end_overridden_methods());
1115    return;
1116  }
1117
1118  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1119  if (!Method)
1120    return;
1121
1122  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1123  Method->getOverriddenMethods(OverDecls);
1124  Overridden.append(OverDecls.begin(), OverDecls.end());
1125}
1126
1127void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1128  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1129  assert(!Import->isFromASTFile() && "Non-local import declaration");
1130  if (!FirstLocalImport) {
1131    FirstLocalImport = Import;
1132    LastLocalImport = Import;
1133    return;
1134  }
1135
1136  LastLocalImport->NextLocalImport = Import;
1137  LastLocalImport = Import;
1138}
1139
1140//===----------------------------------------------------------------------===//
1141//                         Type Sizing and Analysis
1142//===----------------------------------------------------------------------===//
1143
1144/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1145/// scalar floating point type.
1146const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1147  const BuiltinType *BT = T->getAs<BuiltinType>();
1148  assert(BT && "Not a floating point type!");
1149  switch (BT->getKind()) {
1150  default: llvm_unreachable("Not a floating point type!");
1151  case BuiltinType::Half:       return Target->getHalfFormat();
1152  case BuiltinType::Float:      return Target->getFloatFormat();
1153  case BuiltinType::Double:     return Target->getDoubleFormat();
1154  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1155  }
1156}
1157
1158/// getDeclAlign - Return a conservative estimate of the alignment of the
1159/// specified decl.  Note that bitfields do not have a valid alignment, so
1160/// this method will assert on them.
1161/// If @p RefAsPointee, references are treated like their underlying type
1162/// (for alignof), else they're treated like pointers (for CodeGen).
1163CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1164  unsigned Align = Target->getCharWidth();
1165
1166  bool UseAlignAttrOnly = false;
1167  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1168    Align = AlignFromAttr;
1169
1170    // __attribute__((aligned)) can increase or decrease alignment
1171    // *except* on a struct or struct member, where it only increases
1172    // alignment unless 'packed' is also specified.
1173    //
1174    // It is an error for alignas to decrease alignment, so we can
1175    // ignore that possibility;  Sema should diagnose it.
1176    if (isa<FieldDecl>(D)) {
1177      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1178        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1179    } else {
1180      UseAlignAttrOnly = true;
1181    }
1182  }
1183  else if (isa<FieldDecl>(D))
1184      UseAlignAttrOnly =
1185        D->hasAttr<PackedAttr>() ||
1186        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1187
1188  // If we're using the align attribute only, just ignore everything
1189  // else about the declaration and its type.
1190  if (UseAlignAttrOnly) {
1191    // do nothing
1192
1193  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1194    QualType T = VD->getType();
1195    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1196      if (RefAsPointee)
1197        T = RT->getPointeeType();
1198      else
1199        T = getPointerType(RT->getPointeeType());
1200    }
1201    if (!T->isIncompleteType() && !T->isFunctionType()) {
1202      // Adjust alignments of declarations with array type by the
1203      // large-array alignment on the target.
1204      unsigned MinWidth = Target->getLargeArrayMinWidth();
1205      const ArrayType *arrayType;
1206      if (MinWidth && (arrayType = getAsArrayType(T))) {
1207        if (isa<VariableArrayType>(arrayType))
1208          Align = std::max(Align, Target->getLargeArrayAlign());
1209        else if (isa<ConstantArrayType>(arrayType) &&
1210                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1211          Align = std::max(Align, Target->getLargeArrayAlign());
1212
1213        // Walk through any array types while we're at it.
1214        T = getBaseElementType(arrayType);
1215      }
1216      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1217    }
1218
1219    // Fields can be subject to extra alignment constraints, like if
1220    // the field is packed, the struct is packed, or the struct has a
1221    // a max-field-alignment constraint (#pragma pack).  So calculate
1222    // the actual alignment of the field within the struct, and then
1223    // (as we're expected to) constrain that by the alignment of the type.
1224    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1225      // So calculate the alignment of the field.
1226      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1227
1228      // Start with the record's overall alignment.
1229      unsigned fieldAlign = toBits(layout.getAlignment());
1230
1231      // Use the GCD of that and the offset within the record.
1232      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1233      if (offset > 0) {
1234        // Alignment is always a power of 2, so the GCD will be a power of 2,
1235        // which means we get to do this crazy thing instead of Euclid's.
1236        uint64_t lowBitOfOffset = offset & (~offset + 1);
1237        if (lowBitOfOffset < fieldAlign)
1238          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1239      }
1240
1241      Align = std::min(Align, fieldAlign);
1242    }
1243  }
1244
1245  return toCharUnitsFromBits(Align);
1246}
1247
1248// getTypeInfoDataSizeInChars - Return the size of a type, in
1249// chars. If the type is a record, its data size is returned.  This is
1250// the size of the memcpy that's performed when assigning this type
1251// using a trivial copy/move assignment operator.
1252std::pair<CharUnits, CharUnits>
1253ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1254  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1255
1256  // In C++, objects can sometimes be allocated into the tail padding
1257  // of a base-class subobject.  We decide whether that's possible
1258  // during class layout, so here we can just trust the layout results.
1259  if (getLangOpts().CPlusPlus) {
1260    if (const RecordType *RT = T->getAs<RecordType>()) {
1261      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1262      sizeAndAlign.first = layout.getDataSize();
1263    }
1264  }
1265
1266  return sizeAndAlign;
1267}
1268
1269std::pair<CharUnits, CharUnits>
1270ASTContext::getTypeInfoInChars(const Type *T) const {
1271  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1272  return std::make_pair(toCharUnitsFromBits(Info.first),
1273                        toCharUnitsFromBits(Info.second));
1274}
1275
1276std::pair<CharUnits, CharUnits>
1277ASTContext::getTypeInfoInChars(QualType T) const {
1278  return getTypeInfoInChars(T.getTypePtr());
1279}
1280
1281std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1282  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1283  if (it != MemoizedTypeInfo.end())
1284    return it->second;
1285
1286  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1287  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1288  return Info;
1289}
1290
1291/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1292/// method does not work on incomplete types.
1293///
1294/// FIXME: Pointers into different addr spaces could have different sizes and
1295/// alignment requirements: getPointerInfo should take an AddrSpace, this
1296/// should take a QualType, &c.
1297std::pair<uint64_t, unsigned>
1298ASTContext::getTypeInfoImpl(const Type *T) const {
1299  uint64_t Width=0;
1300  unsigned Align=8;
1301  switch (T->getTypeClass()) {
1302#define TYPE(Class, Base)
1303#define ABSTRACT_TYPE(Class, Base)
1304#define NON_CANONICAL_TYPE(Class, Base)
1305#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1306#include "clang/AST/TypeNodes.def"
1307    llvm_unreachable("Should not see dependent types");
1308
1309  case Type::FunctionNoProto:
1310  case Type::FunctionProto:
1311    // GCC extension: alignof(function) = 32 bits
1312    Width = 0;
1313    Align = 32;
1314    break;
1315
1316  case Type::IncompleteArray:
1317  case Type::VariableArray:
1318    Width = 0;
1319    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1320    break;
1321
1322  case Type::ConstantArray: {
1323    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1324
1325    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1326    uint64_t Size = CAT->getSize().getZExtValue();
1327    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1328           "Overflow in array type bit size evaluation");
1329    Width = EltInfo.first*Size;
1330    Align = EltInfo.second;
1331    Width = llvm::RoundUpToAlignment(Width, Align);
1332    break;
1333  }
1334  case Type::ExtVector:
1335  case Type::Vector: {
1336    const VectorType *VT = cast<VectorType>(T);
1337    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1338    Width = EltInfo.first*VT->getNumElements();
1339    Align = Width;
1340    // If the alignment is not a power of 2, round up to the next power of 2.
1341    // This happens for non-power-of-2 length vectors.
1342    if (Align & (Align-1)) {
1343      Align = llvm::NextPowerOf2(Align);
1344      Width = llvm::RoundUpToAlignment(Width, Align);
1345    }
1346    // Adjust the alignment based on the target max.
1347    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1348    if (TargetVectorAlign && TargetVectorAlign < Align)
1349      Align = TargetVectorAlign;
1350    break;
1351  }
1352
1353  case Type::Builtin:
1354    switch (cast<BuiltinType>(T)->getKind()) {
1355    default: llvm_unreachable("Unknown builtin type!");
1356    case BuiltinType::Void:
1357      // GCC extension: alignof(void) = 8 bits.
1358      Width = 0;
1359      Align = 8;
1360      break;
1361
1362    case BuiltinType::Bool:
1363      Width = Target->getBoolWidth();
1364      Align = Target->getBoolAlign();
1365      break;
1366    case BuiltinType::Char_S:
1367    case BuiltinType::Char_U:
1368    case BuiltinType::UChar:
1369    case BuiltinType::SChar:
1370      Width = Target->getCharWidth();
1371      Align = Target->getCharAlign();
1372      break;
1373    case BuiltinType::WChar_S:
1374    case BuiltinType::WChar_U:
1375      Width = Target->getWCharWidth();
1376      Align = Target->getWCharAlign();
1377      break;
1378    case BuiltinType::Char16:
1379      Width = Target->getChar16Width();
1380      Align = Target->getChar16Align();
1381      break;
1382    case BuiltinType::Char32:
1383      Width = Target->getChar32Width();
1384      Align = Target->getChar32Align();
1385      break;
1386    case BuiltinType::UShort:
1387    case BuiltinType::Short:
1388      Width = Target->getShortWidth();
1389      Align = Target->getShortAlign();
1390      break;
1391    case BuiltinType::UInt:
1392    case BuiltinType::Int:
1393      Width = Target->getIntWidth();
1394      Align = Target->getIntAlign();
1395      break;
1396    case BuiltinType::ULong:
1397    case BuiltinType::Long:
1398      Width = Target->getLongWidth();
1399      Align = Target->getLongAlign();
1400      break;
1401    case BuiltinType::ULongLong:
1402    case BuiltinType::LongLong:
1403      Width = Target->getLongLongWidth();
1404      Align = Target->getLongLongAlign();
1405      break;
1406    case BuiltinType::Int128:
1407    case BuiltinType::UInt128:
1408      Width = 128;
1409      Align = 128; // int128_t is 128-bit aligned on all targets.
1410      break;
1411    case BuiltinType::Half:
1412      Width = Target->getHalfWidth();
1413      Align = Target->getHalfAlign();
1414      break;
1415    case BuiltinType::Float:
1416      Width = Target->getFloatWidth();
1417      Align = Target->getFloatAlign();
1418      break;
1419    case BuiltinType::Double:
1420      Width = Target->getDoubleWidth();
1421      Align = Target->getDoubleAlign();
1422      break;
1423    case BuiltinType::LongDouble:
1424      Width = Target->getLongDoubleWidth();
1425      Align = Target->getLongDoubleAlign();
1426      break;
1427    case BuiltinType::NullPtr:
1428      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1429      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1430      break;
1431    case BuiltinType::ObjCId:
1432    case BuiltinType::ObjCClass:
1433    case BuiltinType::ObjCSel:
1434      Width = Target->getPointerWidth(0);
1435      Align = Target->getPointerAlign(0);
1436      break;
1437    case BuiltinType::OCLImage1d:
1438    case BuiltinType::OCLImage1dArray:
1439    case BuiltinType::OCLImage1dBuffer:
1440    case BuiltinType::OCLImage2d:
1441    case BuiltinType::OCLImage2dArray:
1442    case BuiltinType::OCLImage3d:
1443      // Currently these types are pointers to opaque types.
1444      Width = Target->getPointerWidth(0);
1445      Align = Target->getPointerAlign(0);
1446      break;
1447    }
1448    break;
1449  case Type::ObjCObjectPointer:
1450    Width = Target->getPointerWidth(0);
1451    Align = Target->getPointerAlign(0);
1452    break;
1453  case Type::BlockPointer: {
1454    unsigned AS = getTargetAddressSpace(
1455        cast<BlockPointerType>(T)->getPointeeType());
1456    Width = Target->getPointerWidth(AS);
1457    Align = Target->getPointerAlign(AS);
1458    break;
1459  }
1460  case Type::LValueReference:
1461  case Type::RValueReference: {
1462    // alignof and sizeof should never enter this code path here, so we go
1463    // the pointer route.
1464    unsigned AS = getTargetAddressSpace(
1465        cast<ReferenceType>(T)->getPointeeType());
1466    Width = Target->getPointerWidth(AS);
1467    Align = Target->getPointerAlign(AS);
1468    break;
1469  }
1470  case Type::Pointer: {
1471    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1472    Width = Target->getPointerWidth(AS);
1473    Align = Target->getPointerAlign(AS);
1474    break;
1475  }
1476  case Type::MemberPointer: {
1477    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1478    std::pair<uint64_t, unsigned> PtrDiffInfo =
1479      getTypeInfo(getPointerDiffType());
1480    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1481    Align = PtrDiffInfo.second;
1482    break;
1483  }
1484  case Type::Complex: {
1485    // Complex types have the same alignment as their elements, but twice the
1486    // size.
1487    std::pair<uint64_t, unsigned> EltInfo =
1488      getTypeInfo(cast<ComplexType>(T)->getElementType());
1489    Width = EltInfo.first*2;
1490    Align = EltInfo.second;
1491    break;
1492  }
1493  case Type::ObjCObject:
1494    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1495  case Type::ObjCInterface: {
1496    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1497    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1498    Width = toBits(Layout.getSize());
1499    Align = toBits(Layout.getAlignment());
1500    break;
1501  }
1502  case Type::Record:
1503  case Type::Enum: {
1504    const TagType *TT = cast<TagType>(T);
1505
1506    if (TT->getDecl()->isInvalidDecl()) {
1507      Width = 8;
1508      Align = 8;
1509      break;
1510    }
1511
1512    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1513      return getTypeInfo(ET->getDecl()->getIntegerType());
1514
1515    const RecordType *RT = cast<RecordType>(TT);
1516    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1517    Width = toBits(Layout.getSize());
1518    Align = toBits(Layout.getAlignment());
1519    break;
1520  }
1521
1522  case Type::SubstTemplateTypeParm:
1523    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1524                       getReplacementType().getTypePtr());
1525
1526  case Type::Auto: {
1527    const AutoType *A = cast<AutoType>(T);
1528    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1529    return getTypeInfo(A->getDeducedType().getTypePtr());
1530  }
1531
1532  case Type::Paren:
1533    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1534
1535  case Type::Typedef: {
1536    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1537    std::pair<uint64_t, unsigned> Info
1538      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1539    // If the typedef has an aligned attribute on it, it overrides any computed
1540    // alignment we have.  This violates the GCC documentation (which says that
1541    // attribute(aligned) can only round up) but matches its implementation.
1542    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1543      Align = AttrAlign;
1544    else
1545      Align = Info.second;
1546    Width = Info.first;
1547    break;
1548  }
1549
1550  case Type::TypeOfExpr:
1551    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1552                         .getTypePtr());
1553
1554  case Type::TypeOf:
1555    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1556
1557  case Type::Decltype:
1558    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1559                        .getTypePtr());
1560
1561  case Type::UnaryTransform:
1562    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1563
1564  case Type::Elaborated:
1565    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1566
1567  case Type::Attributed:
1568    return getTypeInfo(
1569                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1570
1571  case Type::TemplateSpecialization: {
1572    assert(getCanonicalType(T) != T &&
1573           "Cannot request the size of a dependent type");
1574    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1575    // A type alias template specialization may refer to a typedef with the
1576    // aligned attribute on it.
1577    if (TST->isTypeAlias())
1578      return getTypeInfo(TST->getAliasedType().getTypePtr());
1579    else
1580      return getTypeInfo(getCanonicalType(T));
1581  }
1582
1583  case Type::Atomic: {
1584    std::pair<uint64_t, unsigned> Info
1585      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1586    Width = Info.first;
1587    Align = Info.second;
1588    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1589        llvm::isPowerOf2_64(Width)) {
1590      // We can potentially perform lock-free atomic operations for this
1591      // type; promote the alignment appropriately.
1592      // FIXME: We could potentially promote the width here as well...
1593      // is that worthwhile?  (Non-struct atomic types generally have
1594      // power-of-two size anyway, but structs might not.  Requires a bit
1595      // of implementation work to make sure we zero out the extra bits.)
1596      Align = static_cast<unsigned>(Width);
1597    }
1598  }
1599
1600  }
1601
1602  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1603  return std::make_pair(Width, Align);
1604}
1605
1606/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1607CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1608  return CharUnits::fromQuantity(BitSize / getCharWidth());
1609}
1610
1611/// toBits - Convert a size in characters to a size in characters.
1612int64_t ASTContext::toBits(CharUnits CharSize) const {
1613  return CharSize.getQuantity() * getCharWidth();
1614}
1615
1616/// getTypeSizeInChars - Return the size of the specified type, in characters.
1617/// This method does not work on incomplete types.
1618CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1619  return toCharUnitsFromBits(getTypeSize(T));
1620}
1621CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1622  return toCharUnitsFromBits(getTypeSize(T));
1623}
1624
1625/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1626/// characters. This method does not work on incomplete types.
1627CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1628  return toCharUnitsFromBits(getTypeAlign(T));
1629}
1630CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1631  return toCharUnitsFromBits(getTypeAlign(T));
1632}
1633
1634/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1635/// type for the current target in bits.  This can be different than the ABI
1636/// alignment in cases where it is beneficial for performance to overalign
1637/// a data type.
1638unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1639  unsigned ABIAlign = getTypeAlign(T);
1640
1641  // Double and long long should be naturally aligned if possible.
1642  if (const ComplexType* CT = T->getAs<ComplexType>())
1643    T = CT->getElementType().getTypePtr();
1644  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1645      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1646      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1647    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1648
1649  return ABIAlign;
1650}
1651
1652/// DeepCollectObjCIvars -
1653/// This routine first collects all declared, but not synthesized, ivars in
1654/// super class and then collects all ivars, including those synthesized for
1655/// current class. This routine is used for implementation of current class
1656/// when all ivars, declared and synthesized are known.
1657///
1658void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1659                                      bool leafClass,
1660                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1661  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1662    DeepCollectObjCIvars(SuperClass, false, Ivars);
1663  if (!leafClass) {
1664    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1665         E = OI->ivar_end(); I != E; ++I)
1666      Ivars.push_back(*I);
1667  } else {
1668    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1669    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1670         Iv= Iv->getNextIvar())
1671      Ivars.push_back(Iv);
1672  }
1673}
1674
1675/// CollectInheritedProtocols - Collect all protocols in current class and
1676/// those inherited by it.
1677void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1678                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1679  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1680    // We can use protocol_iterator here instead of
1681    // all_referenced_protocol_iterator since we are walking all categories.
1682    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1683         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1684      ObjCProtocolDecl *Proto = (*P);
1685      Protocols.insert(Proto->getCanonicalDecl());
1686      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1687           PE = Proto->protocol_end(); P != PE; ++P) {
1688        Protocols.insert((*P)->getCanonicalDecl());
1689        CollectInheritedProtocols(*P, Protocols);
1690      }
1691    }
1692
1693    // Categories of this Interface.
1694    for (ObjCInterfaceDecl::visible_categories_iterator
1695           Cat = OI->visible_categories_begin(),
1696           CatEnd = OI->visible_categories_end();
1697         Cat != CatEnd; ++Cat) {
1698      CollectInheritedProtocols(*Cat, Protocols);
1699    }
1700
1701    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1702      while (SD) {
1703        CollectInheritedProtocols(SD, Protocols);
1704        SD = SD->getSuperClass();
1705      }
1706  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1707    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1708         PE = OC->protocol_end(); P != PE; ++P) {
1709      ObjCProtocolDecl *Proto = (*P);
1710      Protocols.insert(Proto->getCanonicalDecl());
1711      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1712           PE = Proto->protocol_end(); P != PE; ++P)
1713        CollectInheritedProtocols(*P, Protocols);
1714    }
1715  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1716    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1717         PE = OP->protocol_end(); P != PE; ++P) {
1718      ObjCProtocolDecl *Proto = (*P);
1719      Protocols.insert(Proto->getCanonicalDecl());
1720      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1721           PE = Proto->protocol_end(); P != PE; ++P)
1722        CollectInheritedProtocols(*P, Protocols);
1723    }
1724  }
1725}
1726
1727unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1728  unsigned count = 0;
1729  // Count ivars declared in class extension.
1730  for (ObjCInterfaceDecl::known_extensions_iterator
1731         Ext = OI->known_extensions_begin(),
1732         ExtEnd = OI->known_extensions_end();
1733       Ext != ExtEnd; ++Ext) {
1734    count += Ext->ivar_size();
1735  }
1736
1737  // Count ivar defined in this class's implementation.  This
1738  // includes synthesized ivars.
1739  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1740    count += ImplDecl->ivar_size();
1741
1742  return count;
1743}
1744
1745bool ASTContext::isSentinelNullExpr(const Expr *E) {
1746  if (!E)
1747    return false;
1748
1749  // nullptr_t is always treated as null.
1750  if (E->getType()->isNullPtrType()) return true;
1751
1752  if (E->getType()->isAnyPointerType() &&
1753      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1754                                                Expr::NPC_ValueDependentIsNull))
1755    return true;
1756
1757  // Unfortunately, __null has type 'int'.
1758  if (isa<GNUNullExpr>(E)) return true;
1759
1760  return false;
1761}
1762
1763/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1764ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1765  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1766    I = ObjCImpls.find(D);
1767  if (I != ObjCImpls.end())
1768    return cast<ObjCImplementationDecl>(I->second);
1769  return 0;
1770}
1771/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1772ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1773  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1774    I = ObjCImpls.find(D);
1775  if (I != ObjCImpls.end())
1776    return cast<ObjCCategoryImplDecl>(I->second);
1777  return 0;
1778}
1779
1780/// \brief Set the implementation of ObjCInterfaceDecl.
1781void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1782                           ObjCImplementationDecl *ImplD) {
1783  assert(IFaceD && ImplD && "Passed null params");
1784  ObjCImpls[IFaceD] = ImplD;
1785}
1786/// \brief Set the implementation of ObjCCategoryDecl.
1787void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1788                           ObjCCategoryImplDecl *ImplD) {
1789  assert(CatD && ImplD && "Passed null params");
1790  ObjCImpls[CatD] = ImplD;
1791}
1792
1793ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1794  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1795    return ID;
1796  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1797    return CD->getClassInterface();
1798  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1799    return IMD->getClassInterface();
1800
1801  return 0;
1802}
1803
1804/// \brief Get the copy initialization expression of VarDecl,or NULL if
1805/// none exists.
1806Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1807  assert(VD && "Passed null params");
1808  assert(VD->hasAttr<BlocksAttr>() &&
1809         "getBlockVarCopyInits - not __block var");
1810  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1811    I = BlockVarCopyInits.find(VD);
1812  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1813}
1814
1815/// \brief Set the copy inialization expression of a block var decl.
1816void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1817  assert(VD && Init && "Passed null params");
1818  assert(VD->hasAttr<BlocksAttr>() &&
1819         "setBlockVarCopyInits - not __block var");
1820  BlockVarCopyInits[VD] = Init;
1821}
1822
1823TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1824                                                 unsigned DataSize) const {
1825  if (!DataSize)
1826    DataSize = TypeLoc::getFullDataSizeForType(T);
1827  else
1828    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1829           "incorrect data size provided to CreateTypeSourceInfo!");
1830
1831  TypeSourceInfo *TInfo =
1832    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1833  new (TInfo) TypeSourceInfo(T);
1834  return TInfo;
1835}
1836
1837TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1838                                                     SourceLocation L) const {
1839  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1840  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1841  return DI;
1842}
1843
1844const ASTRecordLayout &
1845ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1846  return getObjCLayout(D, 0);
1847}
1848
1849const ASTRecordLayout &
1850ASTContext::getASTObjCImplementationLayout(
1851                                        const ObjCImplementationDecl *D) const {
1852  return getObjCLayout(D->getClassInterface(), D);
1853}
1854
1855//===----------------------------------------------------------------------===//
1856//                   Type creation/memoization methods
1857//===----------------------------------------------------------------------===//
1858
1859QualType
1860ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1861  unsigned fastQuals = quals.getFastQualifiers();
1862  quals.removeFastQualifiers();
1863
1864  // Check if we've already instantiated this type.
1865  llvm::FoldingSetNodeID ID;
1866  ExtQuals::Profile(ID, baseType, quals);
1867  void *insertPos = 0;
1868  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1869    assert(eq->getQualifiers() == quals);
1870    return QualType(eq, fastQuals);
1871  }
1872
1873  // If the base type is not canonical, make the appropriate canonical type.
1874  QualType canon;
1875  if (!baseType->isCanonicalUnqualified()) {
1876    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1877    canonSplit.Quals.addConsistentQualifiers(quals);
1878    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1879
1880    // Re-find the insert position.
1881    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1882  }
1883
1884  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1885  ExtQualNodes.InsertNode(eq, insertPos);
1886  return QualType(eq, fastQuals);
1887}
1888
1889QualType
1890ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1891  QualType CanT = getCanonicalType(T);
1892  if (CanT.getAddressSpace() == AddressSpace)
1893    return T;
1894
1895  // If we are composing extended qualifiers together, merge together
1896  // into one ExtQuals node.
1897  QualifierCollector Quals;
1898  const Type *TypeNode = Quals.strip(T);
1899
1900  // If this type already has an address space specified, it cannot get
1901  // another one.
1902  assert(!Quals.hasAddressSpace() &&
1903         "Type cannot be in multiple addr spaces!");
1904  Quals.addAddressSpace(AddressSpace);
1905
1906  return getExtQualType(TypeNode, Quals);
1907}
1908
1909QualType ASTContext::getObjCGCQualType(QualType T,
1910                                       Qualifiers::GC GCAttr) const {
1911  QualType CanT = getCanonicalType(T);
1912  if (CanT.getObjCGCAttr() == GCAttr)
1913    return T;
1914
1915  if (const PointerType *ptr = T->getAs<PointerType>()) {
1916    QualType Pointee = ptr->getPointeeType();
1917    if (Pointee->isAnyPointerType()) {
1918      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1919      return getPointerType(ResultType);
1920    }
1921  }
1922
1923  // If we are composing extended qualifiers together, merge together
1924  // into one ExtQuals node.
1925  QualifierCollector Quals;
1926  const Type *TypeNode = Quals.strip(T);
1927
1928  // If this type already has an ObjCGC specified, it cannot get
1929  // another one.
1930  assert(!Quals.hasObjCGCAttr() &&
1931         "Type cannot have multiple ObjCGCs!");
1932  Quals.addObjCGCAttr(GCAttr);
1933
1934  return getExtQualType(TypeNode, Quals);
1935}
1936
1937const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1938                                                   FunctionType::ExtInfo Info) {
1939  if (T->getExtInfo() == Info)
1940    return T;
1941
1942  QualType Result;
1943  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1944    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1945  } else {
1946    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1947    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1948    EPI.ExtInfo = Info;
1949    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1950                             FPT->getNumArgs(), EPI);
1951  }
1952
1953  return cast<FunctionType>(Result.getTypePtr());
1954}
1955
1956/// getComplexType - Return the uniqued reference to the type for a complex
1957/// number with the specified element type.
1958QualType ASTContext::getComplexType(QualType T) const {
1959  // Unique pointers, to guarantee there is only one pointer of a particular
1960  // structure.
1961  llvm::FoldingSetNodeID ID;
1962  ComplexType::Profile(ID, T);
1963
1964  void *InsertPos = 0;
1965  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1966    return QualType(CT, 0);
1967
1968  // If the pointee type isn't canonical, this won't be a canonical type either,
1969  // so fill in the canonical type field.
1970  QualType Canonical;
1971  if (!T.isCanonical()) {
1972    Canonical = getComplexType(getCanonicalType(T));
1973
1974    // Get the new insert position for the node we care about.
1975    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1976    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1977  }
1978  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1979  Types.push_back(New);
1980  ComplexTypes.InsertNode(New, InsertPos);
1981  return QualType(New, 0);
1982}
1983
1984/// getPointerType - Return the uniqued reference to the type for a pointer to
1985/// the specified type.
1986QualType ASTContext::getPointerType(QualType T) const {
1987  // Unique pointers, to guarantee there is only one pointer of a particular
1988  // structure.
1989  llvm::FoldingSetNodeID ID;
1990  PointerType::Profile(ID, T);
1991
1992  void *InsertPos = 0;
1993  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1994    return QualType(PT, 0);
1995
1996  // If the pointee type isn't canonical, this won't be a canonical type either,
1997  // so fill in the canonical type field.
1998  QualType Canonical;
1999  if (!T.isCanonical()) {
2000    Canonical = getPointerType(getCanonicalType(T));
2001
2002    // Get the new insert position for the node we care about.
2003    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2004    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2005  }
2006  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2007  Types.push_back(New);
2008  PointerTypes.InsertNode(New, InsertPos);
2009  return QualType(New, 0);
2010}
2011
2012/// getBlockPointerType - Return the uniqued reference to the type for
2013/// a pointer to the specified block.
2014QualType ASTContext::getBlockPointerType(QualType T) const {
2015  assert(T->isFunctionType() && "block of function types only");
2016  // Unique pointers, to guarantee there is only one block of a particular
2017  // structure.
2018  llvm::FoldingSetNodeID ID;
2019  BlockPointerType::Profile(ID, T);
2020
2021  void *InsertPos = 0;
2022  if (BlockPointerType *PT =
2023        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2024    return QualType(PT, 0);
2025
2026  // If the block pointee type isn't canonical, this won't be a canonical
2027  // type either so fill in the canonical type field.
2028  QualType Canonical;
2029  if (!T.isCanonical()) {
2030    Canonical = getBlockPointerType(getCanonicalType(T));
2031
2032    // Get the new insert position for the node we care about.
2033    BlockPointerType *NewIP =
2034      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2035    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2036  }
2037  BlockPointerType *New
2038    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2039  Types.push_back(New);
2040  BlockPointerTypes.InsertNode(New, InsertPos);
2041  return QualType(New, 0);
2042}
2043
2044/// getLValueReferenceType - Return the uniqued reference to the type for an
2045/// lvalue reference to the specified type.
2046QualType
2047ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2048  assert(getCanonicalType(T) != OverloadTy &&
2049         "Unresolved overloaded function type");
2050
2051  // Unique pointers, to guarantee there is only one pointer of a particular
2052  // structure.
2053  llvm::FoldingSetNodeID ID;
2054  ReferenceType::Profile(ID, T, SpelledAsLValue);
2055
2056  void *InsertPos = 0;
2057  if (LValueReferenceType *RT =
2058        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2059    return QualType(RT, 0);
2060
2061  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2062
2063  // If the referencee type isn't canonical, this won't be a canonical type
2064  // either, so fill in the canonical type field.
2065  QualType Canonical;
2066  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2067    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2068    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2069
2070    // Get the new insert position for the node we care about.
2071    LValueReferenceType *NewIP =
2072      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2073    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2074  }
2075
2076  LValueReferenceType *New
2077    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2078                                                     SpelledAsLValue);
2079  Types.push_back(New);
2080  LValueReferenceTypes.InsertNode(New, InsertPos);
2081
2082  return QualType(New, 0);
2083}
2084
2085/// getRValueReferenceType - Return the uniqued reference to the type for an
2086/// rvalue reference to the specified type.
2087QualType ASTContext::getRValueReferenceType(QualType T) const {
2088  // Unique pointers, to guarantee there is only one pointer of a particular
2089  // structure.
2090  llvm::FoldingSetNodeID ID;
2091  ReferenceType::Profile(ID, T, false);
2092
2093  void *InsertPos = 0;
2094  if (RValueReferenceType *RT =
2095        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2096    return QualType(RT, 0);
2097
2098  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2099
2100  // If the referencee type isn't canonical, this won't be a canonical type
2101  // either, so fill in the canonical type field.
2102  QualType Canonical;
2103  if (InnerRef || !T.isCanonical()) {
2104    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2105    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2106
2107    // Get the new insert position for the node we care about.
2108    RValueReferenceType *NewIP =
2109      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2110    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2111  }
2112
2113  RValueReferenceType *New
2114    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2115  Types.push_back(New);
2116  RValueReferenceTypes.InsertNode(New, InsertPos);
2117  return QualType(New, 0);
2118}
2119
2120/// getMemberPointerType - Return the uniqued reference to the type for a
2121/// member pointer to the specified type, in the specified class.
2122QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2123  // Unique pointers, to guarantee there is only one pointer of a particular
2124  // structure.
2125  llvm::FoldingSetNodeID ID;
2126  MemberPointerType::Profile(ID, T, Cls);
2127
2128  void *InsertPos = 0;
2129  if (MemberPointerType *PT =
2130      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2131    return QualType(PT, 0);
2132
2133  // If the pointee or class type isn't canonical, this won't be a canonical
2134  // type either, so fill in the canonical type field.
2135  QualType Canonical;
2136  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2137    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2138
2139    // Get the new insert position for the node we care about.
2140    MemberPointerType *NewIP =
2141      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2142    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2143  }
2144  MemberPointerType *New
2145    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2146  Types.push_back(New);
2147  MemberPointerTypes.InsertNode(New, InsertPos);
2148  return QualType(New, 0);
2149}
2150
2151/// getConstantArrayType - Return the unique reference to the type for an
2152/// array of the specified element type.
2153QualType ASTContext::getConstantArrayType(QualType EltTy,
2154                                          const llvm::APInt &ArySizeIn,
2155                                          ArrayType::ArraySizeModifier ASM,
2156                                          unsigned IndexTypeQuals) const {
2157  assert((EltTy->isDependentType() ||
2158          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2159         "Constant array of VLAs is illegal!");
2160
2161  // Convert the array size into a canonical width matching the pointer size for
2162  // the target.
2163  llvm::APInt ArySize(ArySizeIn);
2164  ArySize =
2165    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2166
2167  llvm::FoldingSetNodeID ID;
2168  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2169
2170  void *InsertPos = 0;
2171  if (ConstantArrayType *ATP =
2172      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2173    return QualType(ATP, 0);
2174
2175  // If the element type isn't canonical or has qualifiers, this won't
2176  // be a canonical type either, so fill in the canonical type field.
2177  QualType Canon;
2178  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2179    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2180    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2181                                 ASM, IndexTypeQuals);
2182    Canon = getQualifiedType(Canon, canonSplit.Quals);
2183
2184    // Get the new insert position for the node we care about.
2185    ConstantArrayType *NewIP =
2186      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2187    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2188  }
2189
2190  ConstantArrayType *New = new(*this,TypeAlignment)
2191    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2192  ConstantArrayTypes.InsertNode(New, InsertPos);
2193  Types.push_back(New);
2194  return QualType(New, 0);
2195}
2196
2197/// getVariableArrayDecayedType - Turns the given type, which may be
2198/// variably-modified, into the corresponding type with all the known
2199/// sizes replaced with [*].
2200QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2201  // Vastly most common case.
2202  if (!type->isVariablyModifiedType()) return type;
2203
2204  QualType result;
2205
2206  SplitQualType split = type.getSplitDesugaredType();
2207  const Type *ty = split.Ty;
2208  switch (ty->getTypeClass()) {
2209#define TYPE(Class, Base)
2210#define ABSTRACT_TYPE(Class, Base)
2211#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2212#include "clang/AST/TypeNodes.def"
2213    llvm_unreachable("didn't desugar past all non-canonical types?");
2214
2215  // These types should never be variably-modified.
2216  case Type::Builtin:
2217  case Type::Complex:
2218  case Type::Vector:
2219  case Type::ExtVector:
2220  case Type::DependentSizedExtVector:
2221  case Type::ObjCObject:
2222  case Type::ObjCInterface:
2223  case Type::ObjCObjectPointer:
2224  case Type::Record:
2225  case Type::Enum:
2226  case Type::UnresolvedUsing:
2227  case Type::TypeOfExpr:
2228  case Type::TypeOf:
2229  case Type::Decltype:
2230  case Type::UnaryTransform:
2231  case Type::DependentName:
2232  case Type::InjectedClassName:
2233  case Type::TemplateSpecialization:
2234  case Type::DependentTemplateSpecialization:
2235  case Type::TemplateTypeParm:
2236  case Type::SubstTemplateTypeParmPack:
2237  case Type::Auto:
2238  case Type::PackExpansion:
2239    llvm_unreachable("type should never be variably-modified");
2240
2241  // These types can be variably-modified but should never need to
2242  // further decay.
2243  case Type::FunctionNoProto:
2244  case Type::FunctionProto:
2245  case Type::BlockPointer:
2246  case Type::MemberPointer:
2247    return type;
2248
2249  // These types can be variably-modified.  All these modifications
2250  // preserve structure except as noted by comments.
2251  // TODO: if we ever care about optimizing VLAs, there are no-op
2252  // optimizations available here.
2253  case Type::Pointer:
2254    result = getPointerType(getVariableArrayDecayedType(
2255                              cast<PointerType>(ty)->getPointeeType()));
2256    break;
2257
2258  case Type::LValueReference: {
2259    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2260    result = getLValueReferenceType(
2261                 getVariableArrayDecayedType(lv->getPointeeType()),
2262                                    lv->isSpelledAsLValue());
2263    break;
2264  }
2265
2266  case Type::RValueReference: {
2267    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2268    result = getRValueReferenceType(
2269                 getVariableArrayDecayedType(lv->getPointeeType()));
2270    break;
2271  }
2272
2273  case Type::Atomic: {
2274    const AtomicType *at = cast<AtomicType>(ty);
2275    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2276    break;
2277  }
2278
2279  case Type::ConstantArray: {
2280    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2281    result = getConstantArrayType(
2282                 getVariableArrayDecayedType(cat->getElementType()),
2283                                  cat->getSize(),
2284                                  cat->getSizeModifier(),
2285                                  cat->getIndexTypeCVRQualifiers());
2286    break;
2287  }
2288
2289  case Type::DependentSizedArray: {
2290    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2291    result = getDependentSizedArrayType(
2292                 getVariableArrayDecayedType(dat->getElementType()),
2293                                        dat->getSizeExpr(),
2294                                        dat->getSizeModifier(),
2295                                        dat->getIndexTypeCVRQualifiers(),
2296                                        dat->getBracketsRange());
2297    break;
2298  }
2299
2300  // Turn incomplete types into [*] types.
2301  case Type::IncompleteArray: {
2302    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2303    result = getVariableArrayType(
2304                 getVariableArrayDecayedType(iat->getElementType()),
2305                                  /*size*/ 0,
2306                                  ArrayType::Normal,
2307                                  iat->getIndexTypeCVRQualifiers(),
2308                                  SourceRange());
2309    break;
2310  }
2311
2312  // Turn VLA types into [*] types.
2313  case Type::VariableArray: {
2314    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2315    result = getVariableArrayType(
2316                 getVariableArrayDecayedType(vat->getElementType()),
2317                                  /*size*/ 0,
2318                                  ArrayType::Star,
2319                                  vat->getIndexTypeCVRQualifiers(),
2320                                  vat->getBracketsRange());
2321    break;
2322  }
2323  }
2324
2325  // Apply the top-level qualifiers from the original.
2326  return getQualifiedType(result, split.Quals);
2327}
2328
2329/// getVariableArrayType - Returns a non-unique reference to the type for a
2330/// variable array of the specified element type.
2331QualType ASTContext::getVariableArrayType(QualType EltTy,
2332                                          Expr *NumElts,
2333                                          ArrayType::ArraySizeModifier ASM,
2334                                          unsigned IndexTypeQuals,
2335                                          SourceRange Brackets) const {
2336  // Since we don't unique expressions, it isn't possible to unique VLA's
2337  // that have an expression provided for their size.
2338  QualType Canon;
2339
2340  // Be sure to pull qualifiers off the element type.
2341  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2342    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2343    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2344                                 IndexTypeQuals, Brackets);
2345    Canon = getQualifiedType(Canon, canonSplit.Quals);
2346  }
2347
2348  VariableArrayType *New = new(*this, TypeAlignment)
2349    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2350
2351  VariableArrayTypes.push_back(New);
2352  Types.push_back(New);
2353  return QualType(New, 0);
2354}
2355
2356/// getDependentSizedArrayType - Returns a non-unique reference to
2357/// the type for a dependently-sized array of the specified element
2358/// type.
2359QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2360                                                Expr *numElements,
2361                                                ArrayType::ArraySizeModifier ASM,
2362                                                unsigned elementTypeQuals,
2363                                                SourceRange brackets) const {
2364  assert((!numElements || numElements->isTypeDependent() ||
2365          numElements->isValueDependent()) &&
2366         "Size must be type- or value-dependent!");
2367
2368  // Dependently-sized array types that do not have a specified number
2369  // of elements will have their sizes deduced from a dependent
2370  // initializer.  We do no canonicalization here at all, which is okay
2371  // because they can't be used in most locations.
2372  if (!numElements) {
2373    DependentSizedArrayType *newType
2374      = new (*this, TypeAlignment)
2375          DependentSizedArrayType(*this, elementType, QualType(),
2376                                  numElements, ASM, elementTypeQuals,
2377                                  brackets);
2378    Types.push_back(newType);
2379    return QualType(newType, 0);
2380  }
2381
2382  // Otherwise, we actually build a new type every time, but we
2383  // also build a canonical type.
2384
2385  SplitQualType canonElementType = getCanonicalType(elementType).split();
2386
2387  void *insertPos = 0;
2388  llvm::FoldingSetNodeID ID;
2389  DependentSizedArrayType::Profile(ID, *this,
2390                                   QualType(canonElementType.Ty, 0),
2391                                   ASM, elementTypeQuals, numElements);
2392
2393  // Look for an existing type with these properties.
2394  DependentSizedArrayType *canonTy =
2395    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2396
2397  // If we don't have one, build one.
2398  if (!canonTy) {
2399    canonTy = new (*this, TypeAlignment)
2400      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2401                              QualType(), numElements, ASM, elementTypeQuals,
2402                              brackets);
2403    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2404    Types.push_back(canonTy);
2405  }
2406
2407  // Apply qualifiers from the element type to the array.
2408  QualType canon = getQualifiedType(QualType(canonTy,0),
2409                                    canonElementType.Quals);
2410
2411  // If we didn't need extra canonicalization for the element type,
2412  // then just use that as our result.
2413  if (QualType(canonElementType.Ty, 0) == elementType)
2414    return canon;
2415
2416  // Otherwise, we need to build a type which follows the spelling
2417  // of the element type.
2418  DependentSizedArrayType *sugaredType
2419    = new (*this, TypeAlignment)
2420        DependentSizedArrayType(*this, elementType, canon, numElements,
2421                                ASM, elementTypeQuals, brackets);
2422  Types.push_back(sugaredType);
2423  return QualType(sugaredType, 0);
2424}
2425
2426QualType ASTContext::getIncompleteArrayType(QualType elementType,
2427                                            ArrayType::ArraySizeModifier ASM,
2428                                            unsigned elementTypeQuals) const {
2429  llvm::FoldingSetNodeID ID;
2430  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2431
2432  void *insertPos = 0;
2433  if (IncompleteArrayType *iat =
2434       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2435    return QualType(iat, 0);
2436
2437  // If the element type isn't canonical, this won't be a canonical type
2438  // either, so fill in the canonical type field.  We also have to pull
2439  // qualifiers off the element type.
2440  QualType canon;
2441
2442  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2443    SplitQualType canonSplit = getCanonicalType(elementType).split();
2444    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2445                                   ASM, elementTypeQuals);
2446    canon = getQualifiedType(canon, canonSplit.Quals);
2447
2448    // Get the new insert position for the node we care about.
2449    IncompleteArrayType *existing =
2450      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2451    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2452  }
2453
2454  IncompleteArrayType *newType = new (*this, TypeAlignment)
2455    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2456
2457  IncompleteArrayTypes.InsertNode(newType, insertPos);
2458  Types.push_back(newType);
2459  return QualType(newType, 0);
2460}
2461
2462/// getVectorType - Return the unique reference to a vector type of
2463/// the specified element type and size. VectorType must be a built-in type.
2464QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2465                                   VectorType::VectorKind VecKind) const {
2466  assert(vecType->isBuiltinType());
2467
2468  // Check if we've already instantiated a vector of this type.
2469  llvm::FoldingSetNodeID ID;
2470  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2471
2472  void *InsertPos = 0;
2473  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2474    return QualType(VTP, 0);
2475
2476  // If the element type isn't canonical, this won't be a canonical type either,
2477  // so fill in the canonical type field.
2478  QualType Canonical;
2479  if (!vecType.isCanonical()) {
2480    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2481
2482    // Get the new insert position for the node we care about.
2483    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2484    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2485  }
2486  VectorType *New = new (*this, TypeAlignment)
2487    VectorType(vecType, NumElts, Canonical, VecKind);
2488  VectorTypes.InsertNode(New, InsertPos);
2489  Types.push_back(New);
2490  return QualType(New, 0);
2491}
2492
2493/// getExtVectorType - Return the unique reference to an extended vector type of
2494/// the specified element type and size. VectorType must be a built-in type.
2495QualType
2496ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2497  assert(vecType->isBuiltinType() || vecType->isDependentType());
2498
2499  // Check if we've already instantiated a vector of this type.
2500  llvm::FoldingSetNodeID ID;
2501  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2502                      VectorType::GenericVector);
2503  void *InsertPos = 0;
2504  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2505    return QualType(VTP, 0);
2506
2507  // If the element type isn't canonical, this won't be a canonical type either,
2508  // so fill in the canonical type field.
2509  QualType Canonical;
2510  if (!vecType.isCanonical()) {
2511    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2512
2513    // Get the new insert position for the node we care about.
2514    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2515    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2516  }
2517  ExtVectorType *New = new (*this, TypeAlignment)
2518    ExtVectorType(vecType, NumElts, Canonical);
2519  VectorTypes.InsertNode(New, InsertPos);
2520  Types.push_back(New);
2521  return QualType(New, 0);
2522}
2523
2524QualType
2525ASTContext::getDependentSizedExtVectorType(QualType vecType,
2526                                           Expr *SizeExpr,
2527                                           SourceLocation AttrLoc) const {
2528  llvm::FoldingSetNodeID ID;
2529  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2530                                       SizeExpr);
2531
2532  void *InsertPos = 0;
2533  DependentSizedExtVectorType *Canon
2534    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2535  DependentSizedExtVectorType *New;
2536  if (Canon) {
2537    // We already have a canonical version of this array type; use it as
2538    // the canonical type for a newly-built type.
2539    New = new (*this, TypeAlignment)
2540      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2541                                  SizeExpr, AttrLoc);
2542  } else {
2543    QualType CanonVecTy = getCanonicalType(vecType);
2544    if (CanonVecTy == vecType) {
2545      New = new (*this, TypeAlignment)
2546        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2547                                    AttrLoc);
2548
2549      DependentSizedExtVectorType *CanonCheck
2550        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2551      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2552      (void)CanonCheck;
2553      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2554    } else {
2555      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2556                                                      SourceLocation());
2557      New = new (*this, TypeAlignment)
2558        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2559    }
2560  }
2561
2562  Types.push_back(New);
2563  return QualType(New, 0);
2564}
2565
2566/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2567///
2568QualType
2569ASTContext::getFunctionNoProtoType(QualType ResultTy,
2570                                   const FunctionType::ExtInfo &Info) const {
2571  const CallingConv DefaultCC = Info.getCC();
2572  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2573                               CC_X86StdCall : DefaultCC;
2574  // Unique functions, to guarantee there is only one function of a particular
2575  // structure.
2576  llvm::FoldingSetNodeID ID;
2577  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2578
2579  void *InsertPos = 0;
2580  if (FunctionNoProtoType *FT =
2581        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2582    return QualType(FT, 0);
2583
2584  QualType Canonical;
2585  if (!ResultTy.isCanonical() ||
2586      getCanonicalCallConv(CallConv) != CallConv) {
2587    Canonical =
2588      getFunctionNoProtoType(getCanonicalType(ResultTy),
2589                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2590
2591    // Get the new insert position for the node we care about.
2592    FunctionNoProtoType *NewIP =
2593      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2594    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2595  }
2596
2597  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2598  FunctionNoProtoType *New = new (*this, TypeAlignment)
2599    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2600  Types.push_back(New);
2601  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2602  return QualType(New, 0);
2603}
2604
2605/// getFunctionType - Return a normal function type with a typed argument
2606/// list.  isVariadic indicates whether the argument list includes '...'.
2607QualType
2608ASTContext::getFunctionType(QualType ResultTy,
2609                            const QualType *ArgArray, unsigned NumArgs,
2610                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2611  // Unique functions, to guarantee there is only one function of a particular
2612  // structure.
2613  llvm::FoldingSetNodeID ID;
2614  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2615
2616  void *InsertPos = 0;
2617  if (FunctionProtoType *FTP =
2618        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2619    return QualType(FTP, 0);
2620
2621  // Determine whether the type being created is already canonical or not.
2622  bool isCanonical =
2623    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2624    !EPI.HasTrailingReturn;
2625  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2626    if (!ArgArray[i].isCanonicalAsParam())
2627      isCanonical = false;
2628
2629  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2630  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2631                               CC_X86StdCall : DefaultCC;
2632
2633  // If this type isn't canonical, get the canonical version of it.
2634  // The exception spec is not part of the canonical type.
2635  QualType Canonical;
2636  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2637    SmallVector<QualType, 16> CanonicalArgs;
2638    CanonicalArgs.reserve(NumArgs);
2639    for (unsigned i = 0; i != NumArgs; ++i)
2640      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2641
2642    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2643    CanonicalEPI.HasTrailingReturn = false;
2644    CanonicalEPI.ExceptionSpecType = EST_None;
2645    CanonicalEPI.NumExceptions = 0;
2646    CanonicalEPI.ExtInfo
2647      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2648
2649    Canonical = getFunctionType(getCanonicalType(ResultTy),
2650                                CanonicalArgs.data(), NumArgs,
2651                                CanonicalEPI);
2652
2653    // Get the new insert position for the node we care about.
2654    FunctionProtoType *NewIP =
2655      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2656    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2657  }
2658
2659  // FunctionProtoType objects are allocated with extra bytes after
2660  // them for three variable size arrays at the end:
2661  //  - parameter types
2662  //  - exception types
2663  //  - consumed-arguments flags
2664  // Instead of the exception types, there could be a noexcept
2665  // expression, or information used to resolve the exception
2666  // specification.
2667  size_t Size = sizeof(FunctionProtoType) +
2668                NumArgs * sizeof(QualType);
2669  if (EPI.ExceptionSpecType == EST_Dynamic) {
2670    Size += EPI.NumExceptions * sizeof(QualType);
2671  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2672    Size += sizeof(Expr*);
2673  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2674    Size += 2 * sizeof(FunctionDecl*);
2675  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2676    Size += sizeof(FunctionDecl*);
2677  }
2678  if (EPI.ConsumedArguments)
2679    Size += NumArgs * sizeof(bool);
2680
2681  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2682  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2683  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2684  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2685  Types.push_back(FTP);
2686  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2687  return QualType(FTP, 0);
2688}
2689
2690#ifndef NDEBUG
2691static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2692  if (!isa<CXXRecordDecl>(D)) return false;
2693  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2694  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2695    return true;
2696  if (RD->getDescribedClassTemplate() &&
2697      !isa<ClassTemplateSpecializationDecl>(RD))
2698    return true;
2699  return false;
2700}
2701#endif
2702
2703/// getInjectedClassNameType - Return the unique reference to the
2704/// injected class name type for the specified templated declaration.
2705QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2706                                              QualType TST) const {
2707  assert(NeedsInjectedClassNameType(Decl));
2708  if (Decl->TypeForDecl) {
2709    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2710  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2711    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2712    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2713    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2714  } else {
2715    Type *newType =
2716      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2717    Decl->TypeForDecl = newType;
2718    Types.push_back(newType);
2719  }
2720  return QualType(Decl->TypeForDecl, 0);
2721}
2722
2723/// getTypeDeclType - Return the unique reference to the type for the
2724/// specified type declaration.
2725QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2726  assert(Decl && "Passed null for Decl param");
2727  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2728
2729  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2730    return getTypedefType(Typedef);
2731
2732  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2733         "Template type parameter types are always available.");
2734
2735  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2736    assert(!Record->getPreviousDecl() &&
2737           "struct/union has previous declaration");
2738    assert(!NeedsInjectedClassNameType(Record));
2739    return getRecordType(Record);
2740  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2741    assert(!Enum->getPreviousDecl() &&
2742           "enum has previous declaration");
2743    return getEnumType(Enum);
2744  } else if (const UnresolvedUsingTypenameDecl *Using =
2745               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2746    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2747    Decl->TypeForDecl = newType;
2748    Types.push_back(newType);
2749  } else
2750    llvm_unreachable("TypeDecl without a type?");
2751
2752  return QualType(Decl->TypeForDecl, 0);
2753}
2754
2755/// getTypedefType - Return the unique reference to the type for the
2756/// specified typedef name decl.
2757QualType
2758ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2759                           QualType Canonical) const {
2760  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2761
2762  if (Canonical.isNull())
2763    Canonical = getCanonicalType(Decl->getUnderlyingType());
2764  TypedefType *newType = new(*this, TypeAlignment)
2765    TypedefType(Type::Typedef, Decl, Canonical);
2766  Decl->TypeForDecl = newType;
2767  Types.push_back(newType);
2768  return QualType(newType, 0);
2769}
2770
2771QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2772  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2773
2774  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2775    if (PrevDecl->TypeForDecl)
2776      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2777
2778  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2779  Decl->TypeForDecl = newType;
2780  Types.push_back(newType);
2781  return QualType(newType, 0);
2782}
2783
2784QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2785  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2786
2787  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2788    if (PrevDecl->TypeForDecl)
2789      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2790
2791  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2792  Decl->TypeForDecl = newType;
2793  Types.push_back(newType);
2794  return QualType(newType, 0);
2795}
2796
2797QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2798                                       QualType modifiedType,
2799                                       QualType equivalentType) {
2800  llvm::FoldingSetNodeID id;
2801  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2802
2803  void *insertPos = 0;
2804  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2805  if (type) return QualType(type, 0);
2806
2807  QualType canon = getCanonicalType(equivalentType);
2808  type = new (*this, TypeAlignment)
2809           AttributedType(canon, attrKind, modifiedType, equivalentType);
2810
2811  Types.push_back(type);
2812  AttributedTypes.InsertNode(type, insertPos);
2813
2814  return QualType(type, 0);
2815}
2816
2817
2818/// \brief Retrieve a substitution-result type.
2819QualType
2820ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2821                                         QualType Replacement) const {
2822  assert(Replacement.isCanonical()
2823         && "replacement types must always be canonical");
2824
2825  llvm::FoldingSetNodeID ID;
2826  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2827  void *InsertPos = 0;
2828  SubstTemplateTypeParmType *SubstParm
2829    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2830
2831  if (!SubstParm) {
2832    SubstParm = new (*this, TypeAlignment)
2833      SubstTemplateTypeParmType(Parm, Replacement);
2834    Types.push_back(SubstParm);
2835    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2836  }
2837
2838  return QualType(SubstParm, 0);
2839}
2840
2841/// \brief Retrieve a
2842QualType ASTContext::getSubstTemplateTypeParmPackType(
2843                                          const TemplateTypeParmType *Parm,
2844                                              const TemplateArgument &ArgPack) {
2845#ifndef NDEBUG
2846  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2847                                    PEnd = ArgPack.pack_end();
2848       P != PEnd; ++P) {
2849    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2850    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2851  }
2852#endif
2853
2854  llvm::FoldingSetNodeID ID;
2855  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2856  void *InsertPos = 0;
2857  if (SubstTemplateTypeParmPackType *SubstParm
2858        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2859    return QualType(SubstParm, 0);
2860
2861  QualType Canon;
2862  if (!Parm->isCanonicalUnqualified()) {
2863    Canon = getCanonicalType(QualType(Parm, 0));
2864    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2865                                             ArgPack);
2866    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2867  }
2868
2869  SubstTemplateTypeParmPackType *SubstParm
2870    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2871                                                               ArgPack);
2872  Types.push_back(SubstParm);
2873  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2874  return QualType(SubstParm, 0);
2875}
2876
2877/// \brief Retrieve the template type parameter type for a template
2878/// parameter or parameter pack with the given depth, index, and (optionally)
2879/// name.
2880QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2881                                             bool ParameterPack,
2882                                             TemplateTypeParmDecl *TTPDecl) const {
2883  llvm::FoldingSetNodeID ID;
2884  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2885  void *InsertPos = 0;
2886  TemplateTypeParmType *TypeParm
2887    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2888
2889  if (TypeParm)
2890    return QualType(TypeParm, 0);
2891
2892  if (TTPDecl) {
2893    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2894    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2895
2896    TemplateTypeParmType *TypeCheck
2897      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2898    assert(!TypeCheck && "Template type parameter canonical type broken");
2899    (void)TypeCheck;
2900  } else
2901    TypeParm = new (*this, TypeAlignment)
2902      TemplateTypeParmType(Depth, Index, ParameterPack);
2903
2904  Types.push_back(TypeParm);
2905  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2906
2907  return QualType(TypeParm, 0);
2908}
2909
2910TypeSourceInfo *
2911ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2912                                              SourceLocation NameLoc,
2913                                        const TemplateArgumentListInfo &Args,
2914                                              QualType Underlying) const {
2915  assert(!Name.getAsDependentTemplateName() &&
2916         "No dependent template names here!");
2917  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2918
2919  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2920  TemplateSpecializationTypeLoc TL
2921    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2922  TL.setTemplateKeywordLoc(SourceLocation());
2923  TL.setTemplateNameLoc(NameLoc);
2924  TL.setLAngleLoc(Args.getLAngleLoc());
2925  TL.setRAngleLoc(Args.getRAngleLoc());
2926  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2927    TL.setArgLocInfo(i, Args[i].getLocInfo());
2928  return DI;
2929}
2930
2931QualType
2932ASTContext::getTemplateSpecializationType(TemplateName Template,
2933                                          const TemplateArgumentListInfo &Args,
2934                                          QualType Underlying) const {
2935  assert(!Template.getAsDependentTemplateName() &&
2936         "No dependent template names here!");
2937
2938  unsigned NumArgs = Args.size();
2939
2940  SmallVector<TemplateArgument, 4> ArgVec;
2941  ArgVec.reserve(NumArgs);
2942  for (unsigned i = 0; i != NumArgs; ++i)
2943    ArgVec.push_back(Args[i].getArgument());
2944
2945  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2946                                       Underlying);
2947}
2948
2949#ifndef NDEBUG
2950static bool hasAnyPackExpansions(const TemplateArgument *Args,
2951                                 unsigned NumArgs) {
2952  for (unsigned I = 0; I != NumArgs; ++I)
2953    if (Args[I].isPackExpansion())
2954      return true;
2955
2956  return true;
2957}
2958#endif
2959
2960QualType
2961ASTContext::getTemplateSpecializationType(TemplateName Template,
2962                                          const TemplateArgument *Args,
2963                                          unsigned NumArgs,
2964                                          QualType Underlying) const {
2965  assert(!Template.getAsDependentTemplateName() &&
2966         "No dependent template names here!");
2967  // Look through qualified template names.
2968  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2969    Template = TemplateName(QTN->getTemplateDecl());
2970
2971  bool IsTypeAlias =
2972    Template.getAsTemplateDecl() &&
2973    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2974  QualType CanonType;
2975  if (!Underlying.isNull())
2976    CanonType = getCanonicalType(Underlying);
2977  else {
2978    // We can get here with an alias template when the specialization contains
2979    // a pack expansion that does not match up with a parameter pack.
2980    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2981           "Caller must compute aliased type");
2982    IsTypeAlias = false;
2983    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2984                                                       NumArgs);
2985  }
2986
2987  // Allocate the (non-canonical) template specialization type, but don't
2988  // try to unique it: these types typically have location information that
2989  // we don't unique and don't want to lose.
2990  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2991                       sizeof(TemplateArgument) * NumArgs +
2992                       (IsTypeAlias? sizeof(QualType) : 0),
2993                       TypeAlignment);
2994  TemplateSpecializationType *Spec
2995    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2996                                         IsTypeAlias ? Underlying : QualType());
2997
2998  Types.push_back(Spec);
2999  return QualType(Spec, 0);
3000}
3001
3002QualType
3003ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3004                                                   const TemplateArgument *Args,
3005                                                   unsigned NumArgs) const {
3006  assert(!Template.getAsDependentTemplateName() &&
3007         "No dependent template names here!");
3008
3009  // Look through qualified template names.
3010  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3011    Template = TemplateName(QTN->getTemplateDecl());
3012
3013  // Build the canonical template specialization type.
3014  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3015  SmallVector<TemplateArgument, 4> CanonArgs;
3016  CanonArgs.reserve(NumArgs);
3017  for (unsigned I = 0; I != NumArgs; ++I)
3018    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3019
3020  // Determine whether this canonical template specialization type already
3021  // exists.
3022  llvm::FoldingSetNodeID ID;
3023  TemplateSpecializationType::Profile(ID, CanonTemplate,
3024                                      CanonArgs.data(), NumArgs, *this);
3025
3026  void *InsertPos = 0;
3027  TemplateSpecializationType *Spec
3028    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3029
3030  if (!Spec) {
3031    // Allocate a new canonical template specialization type.
3032    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3033                          sizeof(TemplateArgument) * NumArgs),
3034                         TypeAlignment);
3035    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3036                                                CanonArgs.data(), NumArgs,
3037                                                QualType(), QualType());
3038    Types.push_back(Spec);
3039    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3040  }
3041
3042  assert(Spec->isDependentType() &&
3043         "Non-dependent template-id type must have a canonical type");
3044  return QualType(Spec, 0);
3045}
3046
3047QualType
3048ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3049                              NestedNameSpecifier *NNS,
3050                              QualType NamedType) const {
3051  llvm::FoldingSetNodeID ID;
3052  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3053
3054  void *InsertPos = 0;
3055  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3056  if (T)
3057    return QualType(T, 0);
3058
3059  QualType Canon = NamedType;
3060  if (!Canon.isCanonical()) {
3061    Canon = getCanonicalType(NamedType);
3062    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3063    assert(!CheckT && "Elaborated canonical type broken");
3064    (void)CheckT;
3065  }
3066
3067  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3068  Types.push_back(T);
3069  ElaboratedTypes.InsertNode(T, InsertPos);
3070  return QualType(T, 0);
3071}
3072
3073QualType
3074ASTContext::getParenType(QualType InnerType) const {
3075  llvm::FoldingSetNodeID ID;
3076  ParenType::Profile(ID, InnerType);
3077
3078  void *InsertPos = 0;
3079  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3080  if (T)
3081    return QualType(T, 0);
3082
3083  QualType Canon = InnerType;
3084  if (!Canon.isCanonical()) {
3085    Canon = getCanonicalType(InnerType);
3086    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3087    assert(!CheckT && "Paren canonical type broken");
3088    (void)CheckT;
3089  }
3090
3091  T = new (*this) ParenType(InnerType, Canon);
3092  Types.push_back(T);
3093  ParenTypes.InsertNode(T, InsertPos);
3094  return QualType(T, 0);
3095}
3096
3097QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3098                                          NestedNameSpecifier *NNS,
3099                                          const IdentifierInfo *Name,
3100                                          QualType Canon) const {
3101  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3102
3103  if (Canon.isNull()) {
3104    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3105    ElaboratedTypeKeyword CanonKeyword = Keyword;
3106    if (Keyword == ETK_None)
3107      CanonKeyword = ETK_Typename;
3108
3109    if (CanonNNS != NNS || CanonKeyword != Keyword)
3110      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3111  }
3112
3113  llvm::FoldingSetNodeID ID;
3114  DependentNameType::Profile(ID, Keyword, NNS, Name);
3115
3116  void *InsertPos = 0;
3117  DependentNameType *T
3118    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3119  if (T)
3120    return QualType(T, 0);
3121
3122  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3123  Types.push_back(T);
3124  DependentNameTypes.InsertNode(T, InsertPos);
3125  return QualType(T, 0);
3126}
3127
3128QualType
3129ASTContext::getDependentTemplateSpecializationType(
3130                                 ElaboratedTypeKeyword Keyword,
3131                                 NestedNameSpecifier *NNS,
3132                                 const IdentifierInfo *Name,
3133                                 const TemplateArgumentListInfo &Args) const {
3134  // TODO: avoid this copy
3135  SmallVector<TemplateArgument, 16> ArgCopy;
3136  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3137    ArgCopy.push_back(Args[I].getArgument());
3138  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3139                                                ArgCopy.size(),
3140                                                ArgCopy.data());
3141}
3142
3143QualType
3144ASTContext::getDependentTemplateSpecializationType(
3145                                 ElaboratedTypeKeyword Keyword,
3146                                 NestedNameSpecifier *NNS,
3147                                 const IdentifierInfo *Name,
3148                                 unsigned NumArgs,
3149                                 const TemplateArgument *Args) const {
3150  assert((!NNS || NNS->isDependent()) &&
3151         "nested-name-specifier must be dependent");
3152
3153  llvm::FoldingSetNodeID ID;
3154  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3155                                               Name, NumArgs, Args);
3156
3157  void *InsertPos = 0;
3158  DependentTemplateSpecializationType *T
3159    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3160  if (T)
3161    return QualType(T, 0);
3162
3163  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3164
3165  ElaboratedTypeKeyword CanonKeyword = Keyword;
3166  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3167
3168  bool AnyNonCanonArgs = false;
3169  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3170  for (unsigned I = 0; I != NumArgs; ++I) {
3171    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3172    if (!CanonArgs[I].structurallyEquals(Args[I]))
3173      AnyNonCanonArgs = true;
3174  }
3175
3176  QualType Canon;
3177  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3178    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3179                                                   Name, NumArgs,
3180                                                   CanonArgs.data());
3181
3182    // Find the insert position again.
3183    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3184  }
3185
3186  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3187                        sizeof(TemplateArgument) * NumArgs),
3188                       TypeAlignment);
3189  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3190                                                    Name, NumArgs, Args, Canon);
3191  Types.push_back(T);
3192  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3193  return QualType(T, 0);
3194}
3195
3196QualType ASTContext::getPackExpansionType(QualType Pattern,
3197                                      llvm::Optional<unsigned> NumExpansions) {
3198  llvm::FoldingSetNodeID ID;
3199  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3200
3201  assert(Pattern->containsUnexpandedParameterPack() &&
3202         "Pack expansions must expand one or more parameter packs");
3203  void *InsertPos = 0;
3204  PackExpansionType *T
3205    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3206  if (T)
3207    return QualType(T, 0);
3208
3209  QualType Canon;
3210  if (!Pattern.isCanonical()) {
3211    Canon = getCanonicalType(Pattern);
3212    // The canonical type might not contain an unexpanded parameter pack, if it
3213    // contains an alias template specialization which ignores one of its
3214    // parameters.
3215    if (Canon->containsUnexpandedParameterPack()) {
3216      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3217
3218      // Find the insert position again, in case we inserted an element into
3219      // PackExpansionTypes and invalidated our insert position.
3220      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3221    }
3222  }
3223
3224  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3225  Types.push_back(T);
3226  PackExpansionTypes.InsertNode(T, InsertPos);
3227  return QualType(T, 0);
3228}
3229
3230/// CmpProtocolNames - Comparison predicate for sorting protocols
3231/// alphabetically.
3232static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3233                            const ObjCProtocolDecl *RHS) {
3234  return LHS->getDeclName() < RHS->getDeclName();
3235}
3236
3237static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3238                                unsigned NumProtocols) {
3239  if (NumProtocols == 0) return true;
3240
3241  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3242    return false;
3243
3244  for (unsigned i = 1; i != NumProtocols; ++i)
3245    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3246        Protocols[i]->getCanonicalDecl() != Protocols[i])
3247      return false;
3248  return true;
3249}
3250
3251static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3252                                   unsigned &NumProtocols) {
3253  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3254
3255  // Sort protocols, keyed by name.
3256  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3257
3258  // Canonicalize.
3259  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3260    Protocols[I] = Protocols[I]->getCanonicalDecl();
3261
3262  // Remove duplicates.
3263  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3264  NumProtocols = ProtocolsEnd-Protocols;
3265}
3266
3267QualType ASTContext::getObjCObjectType(QualType BaseType,
3268                                       ObjCProtocolDecl * const *Protocols,
3269                                       unsigned NumProtocols) const {
3270  // If the base type is an interface and there aren't any protocols
3271  // to add, then the interface type will do just fine.
3272  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3273    return BaseType;
3274
3275  // Look in the folding set for an existing type.
3276  llvm::FoldingSetNodeID ID;
3277  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3278  void *InsertPos = 0;
3279  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3280    return QualType(QT, 0);
3281
3282  // Build the canonical type, which has the canonical base type and
3283  // a sorted-and-uniqued list of protocols.
3284  QualType Canonical;
3285  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3286  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3287    if (!ProtocolsSorted) {
3288      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3289                                                     Protocols + NumProtocols);
3290      unsigned UniqueCount = NumProtocols;
3291
3292      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3293      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3294                                    &Sorted[0], UniqueCount);
3295    } else {
3296      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3297                                    Protocols, NumProtocols);
3298    }
3299
3300    // Regenerate InsertPos.
3301    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3302  }
3303
3304  unsigned Size = sizeof(ObjCObjectTypeImpl);
3305  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3306  void *Mem = Allocate(Size, TypeAlignment);
3307  ObjCObjectTypeImpl *T =
3308    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3309
3310  Types.push_back(T);
3311  ObjCObjectTypes.InsertNode(T, InsertPos);
3312  return QualType(T, 0);
3313}
3314
3315/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3316/// the given object type.
3317QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3318  llvm::FoldingSetNodeID ID;
3319  ObjCObjectPointerType::Profile(ID, ObjectT);
3320
3321  void *InsertPos = 0;
3322  if (ObjCObjectPointerType *QT =
3323              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3324    return QualType(QT, 0);
3325
3326  // Find the canonical object type.
3327  QualType Canonical;
3328  if (!ObjectT.isCanonical()) {
3329    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3330
3331    // Regenerate InsertPos.
3332    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3333  }
3334
3335  // No match.
3336  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3337  ObjCObjectPointerType *QType =
3338    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3339
3340  Types.push_back(QType);
3341  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3342  return QualType(QType, 0);
3343}
3344
3345/// getObjCInterfaceType - Return the unique reference to the type for the
3346/// specified ObjC interface decl. The list of protocols is optional.
3347QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3348                                          ObjCInterfaceDecl *PrevDecl) const {
3349  if (Decl->TypeForDecl)
3350    return QualType(Decl->TypeForDecl, 0);
3351
3352  if (PrevDecl) {
3353    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3354    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3355    return QualType(PrevDecl->TypeForDecl, 0);
3356  }
3357
3358  // Prefer the definition, if there is one.
3359  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3360    Decl = Def;
3361
3362  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3363  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3364  Decl->TypeForDecl = T;
3365  Types.push_back(T);
3366  return QualType(T, 0);
3367}
3368
3369/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3370/// TypeOfExprType AST's (since expression's are never shared). For example,
3371/// multiple declarations that refer to "typeof(x)" all contain different
3372/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3373/// on canonical type's (which are always unique).
3374QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3375  TypeOfExprType *toe;
3376  if (tofExpr->isTypeDependent()) {
3377    llvm::FoldingSetNodeID ID;
3378    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3379
3380    void *InsertPos = 0;
3381    DependentTypeOfExprType *Canon
3382      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3383    if (Canon) {
3384      // We already have a "canonical" version of an identical, dependent
3385      // typeof(expr) type. Use that as our canonical type.
3386      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3387                                          QualType((TypeOfExprType*)Canon, 0));
3388    } else {
3389      // Build a new, canonical typeof(expr) type.
3390      Canon
3391        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3392      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3393      toe = Canon;
3394    }
3395  } else {
3396    QualType Canonical = getCanonicalType(tofExpr->getType());
3397    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3398  }
3399  Types.push_back(toe);
3400  return QualType(toe, 0);
3401}
3402
3403/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3404/// TypeOfType AST's. The only motivation to unique these nodes would be
3405/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3406/// an issue. This doesn't effect the type checker, since it operates
3407/// on canonical type's (which are always unique).
3408QualType ASTContext::getTypeOfType(QualType tofType) const {
3409  QualType Canonical = getCanonicalType(tofType);
3410  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3411  Types.push_back(tot);
3412  return QualType(tot, 0);
3413}
3414
3415
3416/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3417/// DecltypeType AST's. The only motivation to unique these nodes would be
3418/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3419/// an issue. This doesn't effect the type checker, since it operates
3420/// on canonical types (which are always unique).
3421QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3422  DecltypeType *dt;
3423
3424  // C++0x [temp.type]p2:
3425  //   If an expression e involves a template parameter, decltype(e) denotes a
3426  //   unique dependent type. Two such decltype-specifiers refer to the same
3427  //   type only if their expressions are equivalent (14.5.6.1).
3428  if (e->isInstantiationDependent()) {
3429    llvm::FoldingSetNodeID ID;
3430    DependentDecltypeType::Profile(ID, *this, e);
3431
3432    void *InsertPos = 0;
3433    DependentDecltypeType *Canon
3434      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3435    if (Canon) {
3436      // We already have a "canonical" version of an equivalent, dependent
3437      // decltype type. Use that as our canonical type.
3438      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3439                                       QualType((DecltypeType*)Canon, 0));
3440    } else {
3441      // Build a new, canonical typeof(expr) type.
3442      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3443      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3444      dt = Canon;
3445    }
3446  } else {
3447    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3448                                      getCanonicalType(UnderlyingType));
3449  }
3450  Types.push_back(dt);
3451  return QualType(dt, 0);
3452}
3453
3454/// getUnaryTransformationType - We don't unique these, since the memory
3455/// savings are minimal and these are rare.
3456QualType ASTContext::getUnaryTransformType(QualType BaseType,
3457                                           QualType UnderlyingType,
3458                                           UnaryTransformType::UTTKind Kind)
3459    const {
3460  UnaryTransformType *Ty =
3461    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3462                                                   Kind,
3463                                 UnderlyingType->isDependentType() ?
3464                                 QualType() : getCanonicalType(UnderlyingType));
3465  Types.push_back(Ty);
3466  return QualType(Ty, 0);
3467}
3468
3469/// getAutoType - We only unique auto types after they've been deduced.
3470QualType ASTContext::getAutoType(QualType DeducedType) const {
3471  void *InsertPos = 0;
3472  if (!DeducedType.isNull()) {
3473    // Look in the folding set for an existing type.
3474    llvm::FoldingSetNodeID ID;
3475    AutoType::Profile(ID, DeducedType);
3476    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3477      return QualType(AT, 0);
3478  }
3479
3480  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3481  Types.push_back(AT);
3482  if (InsertPos)
3483    AutoTypes.InsertNode(AT, InsertPos);
3484  return QualType(AT, 0);
3485}
3486
3487/// getAtomicType - Return the uniqued reference to the atomic type for
3488/// the given value type.
3489QualType ASTContext::getAtomicType(QualType T) const {
3490  // Unique pointers, to guarantee there is only one pointer of a particular
3491  // structure.
3492  llvm::FoldingSetNodeID ID;
3493  AtomicType::Profile(ID, T);
3494
3495  void *InsertPos = 0;
3496  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3497    return QualType(AT, 0);
3498
3499  // If the atomic value type isn't canonical, this won't be a canonical type
3500  // either, so fill in the canonical type field.
3501  QualType Canonical;
3502  if (!T.isCanonical()) {
3503    Canonical = getAtomicType(getCanonicalType(T));
3504
3505    // Get the new insert position for the node we care about.
3506    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3507    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3508  }
3509  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3510  Types.push_back(New);
3511  AtomicTypes.InsertNode(New, InsertPos);
3512  return QualType(New, 0);
3513}
3514
3515/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3516QualType ASTContext::getAutoDeductType() const {
3517  if (AutoDeductTy.isNull())
3518    AutoDeductTy = getAutoType(QualType());
3519  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3520  return AutoDeductTy;
3521}
3522
3523/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3524QualType ASTContext::getAutoRRefDeductType() const {
3525  if (AutoRRefDeductTy.isNull())
3526    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3527  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3528  return AutoRRefDeductTy;
3529}
3530
3531/// getTagDeclType - Return the unique reference to the type for the
3532/// specified TagDecl (struct/union/class/enum) decl.
3533QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3534  assert (Decl);
3535  // FIXME: What is the design on getTagDeclType when it requires casting
3536  // away const?  mutable?
3537  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3538}
3539
3540/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3541/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3542/// needs to agree with the definition in <stddef.h>.
3543CanQualType ASTContext::getSizeType() const {
3544  return getFromTargetType(Target->getSizeType());
3545}
3546
3547/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3548CanQualType ASTContext::getIntMaxType() const {
3549  return getFromTargetType(Target->getIntMaxType());
3550}
3551
3552/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3553CanQualType ASTContext::getUIntMaxType() const {
3554  return getFromTargetType(Target->getUIntMaxType());
3555}
3556
3557/// getSignedWCharType - Return the type of "signed wchar_t".
3558/// Used when in C++, as a GCC extension.
3559QualType ASTContext::getSignedWCharType() const {
3560  // FIXME: derive from "Target" ?
3561  return WCharTy;
3562}
3563
3564/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3565/// Used when in C++, as a GCC extension.
3566QualType ASTContext::getUnsignedWCharType() const {
3567  // FIXME: derive from "Target" ?
3568  return UnsignedIntTy;
3569}
3570
3571/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3572/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3573QualType ASTContext::getPointerDiffType() const {
3574  return getFromTargetType(Target->getPtrDiffType(0));
3575}
3576
3577/// \brief Return the unique type for "pid_t" defined in
3578/// <sys/types.h>. We need this to compute the correct type for vfork().
3579QualType ASTContext::getProcessIDType() const {
3580  return getFromTargetType(Target->getProcessIDType());
3581}
3582
3583//===----------------------------------------------------------------------===//
3584//                              Type Operators
3585//===----------------------------------------------------------------------===//
3586
3587CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3588  // Push qualifiers into arrays, and then discard any remaining
3589  // qualifiers.
3590  T = getCanonicalType(T);
3591  T = getVariableArrayDecayedType(T);
3592  const Type *Ty = T.getTypePtr();
3593  QualType Result;
3594  if (isa<ArrayType>(Ty)) {
3595    Result = getArrayDecayedType(QualType(Ty,0));
3596  } else if (isa<FunctionType>(Ty)) {
3597    Result = getPointerType(QualType(Ty, 0));
3598  } else {
3599    Result = QualType(Ty, 0);
3600  }
3601
3602  return CanQualType::CreateUnsafe(Result);
3603}
3604
3605QualType ASTContext::getUnqualifiedArrayType(QualType type,
3606                                             Qualifiers &quals) {
3607  SplitQualType splitType = type.getSplitUnqualifiedType();
3608
3609  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3610  // the unqualified desugared type and then drops it on the floor.
3611  // We then have to strip that sugar back off with
3612  // getUnqualifiedDesugaredType(), which is silly.
3613  const ArrayType *AT =
3614    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3615
3616  // If we don't have an array, just use the results in splitType.
3617  if (!AT) {
3618    quals = splitType.Quals;
3619    return QualType(splitType.Ty, 0);
3620  }
3621
3622  // Otherwise, recurse on the array's element type.
3623  QualType elementType = AT->getElementType();
3624  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3625
3626  // If that didn't change the element type, AT has no qualifiers, so we
3627  // can just use the results in splitType.
3628  if (elementType == unqualElementType) {
3629    assert(quals.empty()); // from the recursive call
3630    quals = splitType.Quals;
3631    return QualType(splitType.Ty, 0);
3632  }
3633
3634  // Otherwise, add in the qualifiers from the outermost type, then
3635  // build the type back up.
3636  quals.addConsistentQualifiers(splitType.Quals);
3637
3638  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3639    return getConstantArrayType(unqualElementType, CAT->getSize(),
3640                                CAT->getSizeModifier(), 0);
3641  }
3642
3643  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3644    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3645  }
3646
3647  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3648    return getVariableArrayType(unqualElementType,
3649                                VAT->getSizeExpr(),
3650                                VAT->getSizeModifier(),
3651                                VAT->getIndexTypeCVRQualifiers(),
3652                                VAT->getBracketsRange());
3653  }
3654
3655  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3656  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3657                                    DSAT->getSizeModifier(), 0,
3658                                    SourceRange());
3659}
3660
3661/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3662/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3663/// they point to and return true. If T1 and T2 aren't pointer types
3664/// or pointer-to-member types, or if they are not similar at this
3665/// level, returns false and leaves T1 and T2 unchanged. Top-level
3666/// qualifiers on T1 and T2 are ignored. This function will typically
3667/// be called in a loop that successively "unwraps" pointer and
3668/// pointer-to-member types to compare them at each level.
3669bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3670  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3671                    *T2PtrType = T2->getAs<PointerType>();
3672  if (T1PtrType && T2PtrType) {
3673    T1 = T1PtrType->getPointeeType();
3674    T2 = T2PtrType->getPointeeType();
3675    return true;
3676  }
3677
3678  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3679                          *T2MPType = T2->getAs<MemberPointerType>();
3680  if (T1MPType && T2MPType &&
3681      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3682                             QualType(T2MPType->getClass(), 0))) {
3683    T1 = T1MPType->getPointeeType();
3684    T2 = T2MPType->getPointeeType();
3685    return true;
3686  }
3687
3688  if (getLangOpts().ObjC1) {
3689    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3690                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3691    if (T1OPType && T2OPType) {
3692      T1 = T1OPType->getPointeeType();
3693      T2 = T2OPType->getPointeeType();
3694      return true;
3695    }
3696  }
3697
3698  // FIXME: Block pointers, too?
3699
3700  return false;
3701}
3702
3703DeclarationNameInfo
3704ASTContext::getNameForTemplate(TemplateName Name,
3705                               SourceLocation NameLoc) const {
3706  switch (Name.getKind()) {
3707  case TemplateName::QualifiedTemplate:
3708  case TemplateName::Template:
3709    // DNInfo work in progress: CHECKME: what about DNLoc?
3710    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3711                               NameLoc);
3712
3713  case TemplateName::OverloadedTemplate: {
3714    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3715    // DNInfo work in progress: CHECKME: what about DNLoc?
3716    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3717  }
3718
3719  case TemplateName::DependentTemplate: {
3720    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3721    DeclarationName DName;
3722    if (DTN->isIdentifier()) {
3723      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3724      return DeclarationNameInfo(DName, NameLoc);
3725    } else {
3726      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3727      // DNInfo work in progress: FIXME: source locations?
3728      DeclarationNameLoc DNLoc;
3729      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3730      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3731      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3732    }
3733  }
3734
3735  case TemplateName::SubstTemplateTemplateParm: {
3736    SubstTemplateTemplateParmStorage *subst
3737      = Name.getAsSubstTemplateTemplateParm();
3738    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3739                               NameLoc);
3740  }
3741
3742  case TemplateName::SubstTemplateTemplateParmPack: {
3743    SubstTemplateTemplateParmPackStorage *subst
3744      = Name.getAsSubstTemplateTemplateParmPack();
3745    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3746                               NameLoc);
3747  }
3748  }
3749
3750  llvm_unreachable("bad template name kind!");
3751}
3752
3753TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3754  switch (Name.getKind()) {
3755  case TemplateName::QualifiedTemplate:
3756  case TemplateName::Template: {
3757    TemplateDecl *Template = Name.getAsTemplateDecl();
3758    if (TemplateTemplateParmDecl *TTP
3759          = dyn_cast<TemplateTemplateParmDecl>(Template))
3760      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3761
3762    // The canonical template name is the canonical template declaration.
3763    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3764  }
3765
3766  case TemplateName::OverloadedTemplate:
3767    llvm_unreachable("cannot canonicalize overloaded template");
3768
3769  case TemplateName::DependentTemplate: {
3770    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3771    assert(DTN && "Non-dependent template names must refer to template decls.");
3772    return DTN->CanonicalTemplateName;
3773  }
3774
3775  case TemplateName::SubstTemplateTemplateParm: {
3776    SubstTemplateTemplateParmStorage *subst
3777      = Name.getAsSubstTemplateTemplateParm();
3778    return getCanonicalTemplateName(subst->getReplacement());
3779  }
3780
3781  case TemplateName::SubstTemplateTemplateParmPack: {
3782    SubstTemplateTemplateParmPackStorage *subst
3783                                  = Name.getAsSubstTemplateTemplateParmPack();
3784    TemplateTemplateParmDecl *canonParameter
3785      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3786    TemplateArgument canonArgPack
3787      = getCanonicalTemplateArgument(subst->getArgumentPack());
3788    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3789  }
3790  }
3791
3792  llvm_unreachable("bad template name!");
3793}
3794
3795bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3796  X = getCanonicalTemplateName(X);
3797  Y = getCanonicalTemplateName(Y);
3798  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3799}
3800
3801TemplateArgument
3802ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3803  switch (Arg.getKind()) {
3804    case TemplateArgument::Null:
3805      return Arg;
3806
3807    case TemplateArgument::Expression:
3808      return Arg;
3809
3810    case TemplateArgument::Declaration: {
3811      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3812      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3813    }
3814
3815    case TemplateArgument::NullPtr:
3816      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3817                              /*isNullPtr*/true);
3818
3819    case TemplateArgument::Template:
3820      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3821
3822    case TemplateArgument::TemplateExpansion:
3823      return TemplateArgument(getCanonicalTemplateName(
3824                                         Arg.getAsTemplateOrTemplatePattern()),
3825                              Arg.getNumTemplateExpansions());
3826
3827    case TemplateArgument::Integral:
3828      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3829
3830    case TemplateArgument::Type:
3831      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3832
3833    case TemplateArgument::Pack: {
3834      if (Arg.pack_size() == 0)
3835        return Arg;
3836
3837      TemplateArgument *CanonArgs
3838        = new (*this) TemplateArgument[Arg.pack_size()];
3839      unsigned Idx = 0;
3840      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3841                                        AEnd = Arg.pack_end();
3842           A != AEnd; (void)++A, ++Idx)
3843        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3844
3845      return TemplateArgument(CanonArgs, Arg.pack_size());
3846    }
3847  }
3848
3849  // Silence GCC warning
3850  llvm_unreachable("Unhandled template argument kind");
3851}
3852
3853NestedNameSpecifier *
3854ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3855  if (!NNS)
3856    return 0;
3857
3858  switch (NNS->getKind()) {
3859  case NestedNameSpecifier::Identifier:
3860    // Canonicalize the prefix but keep the identifier the same.
3861    return NestedNameSpecifier::Create(*this,
3862                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3863                                       NNS->getAsIdentifier());
3864
3865  case NestedNameSpecifier::Namespace:
3866    // A namespace is canonical; build a nested-name-specifier with
3867    // this namespace and no prefix.
3868    return NestedNameSpecifier::Create(*this, 0,
3869                                 NNS->getAsNamespace()->getOriginalNamespace());
3870
3871  case NestedNameSpecifier::NamespaceAlias:
3872    // A namespace is canonical; build a nested-name-specifier with
3873    // this namespace and no prefix.
3874    return NestedNameSpecifier::Create(*this, 0,
3875                                    NNS->getAsNamespaceAlias()->getNamespace()
3876                                                      ->getOriginalNamespace());
3877
3878  case NestedNameSpecifier::TypeSpec:
3879  case NestedNameSpecifier::TypeSpecWithTemplate: {
3880    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3881
3882    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3883    // break it apart into its prefix and identifier, then reconsititute those
3884    // as the canonical nested-name-specifier. This is required to canonicalize
3885    // a dependent nested-name-specifier involving typedefs of dependent-name
3886    // types, e.g.,
3887    //   typedef typename T::type T1;
3888    //   typedef typename T1::type T2;
3889    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3890      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3891                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3892
3893    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3894    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3895    // first place?
3896    return NestedNameSpecifier::Create(*this, 0, false,
3897                                       const_cast<Type*>(T.getTypePtr()));
3898  }
3899
3900  case NestedNameSpecifier::Global:
3901    // The global specifier is canonical and unique.
3902    return NNS;
3903  }
3904
3905  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3906}
3907
3908
3909const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3910  // Handle the non-qualified case efficiently.
3911  if (!T.hasLocalQualifiers()) {
3912    // Handle the common positive case fast.
3913    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3914      return AT;
3915  }
3916
3917  // Handle the common negative case fast.
3918  if (!isa<ArrayType>(T.getCanonicalType()))
3919    return 0;
3920
3921  // Apply any qualifiers from the array type to the element type.  This
3922  // implements C99 6.7.3p8: "If the specification of an array type includes
3923  // any type qualifiers, the element type is so qualified, not the array type."
3924
3925  // If we get here, we either have type qualifiers on the type, or we have
3926  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3927  // we must propagate them down into the element type.
3928
3929  SplitQualType split = T.getSplitDesugaredType();
3930  Qualifiers qs = split.Quals;
3931
3932  // If we have a simple case, just return now.
3933  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3934  if (ATy == 0 || qs.empty())
3935    return ATy;
3936
3937  // Otherwise, we have an array and we have qualifiers on it.  Push the
3938  // qualifiers into the array element type and return a new array type.
3939  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3940
3941  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3942    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3943                                                CAT->getSizeModifier(),
3944                                           CAT->getIndexTypeCVRQualifiers()));
3945  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3946    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3947                                                  IAT->getSizeModifier(),
3948                                           IAT->getIndexTypeCVRQualifiers()));
3949
3950  if (const DependentSizedArrayType *DSAT
3951        = dyn_cast<DependentSizedArrayType>(ATy))
3952    return cast<ArrayType>(
3953                     getDependentSizedArrayType(NewEltTy,
3954                                                DSAT->getSizeExpr(),
3955                                                DSAT->getSizeModifier(),
3956                                              DSAT->getIndexTypeCVRQualifiers(),
3957                                                DSAT->getBracketsRange()));
3958
3959  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3960  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3961                                              VAT->getSizeExpr(),
3962                                              VAT->getSizeModifier(),
3963                                              VAT->getIndexTypeCVRQualifiers(),
3964                                              VAT->getBracketsRange()));
3965}
3966
3967QualType ASTContext::getAdjustedParameterType(QualType T) const {
3968  // C99 6.7.5.3p7:
3969  //   A declaration of a parameter as "array of type" shall be
3970  //   adjusted to "qualified pointer to type", where the type
3971  //   qualifiers (if any) are those specified within the [ and ] of
3972  //   the array type derivation.
3973  if (T->isArrayType())
3974    return getArrayDecayedType(T);
3975
3976  // C99 6.7.5.3p8:
3977  //   A declaration of a parameter as "function returning type"
3978  //   shall be adjusted to "pointer to function returning type", as
3979  //   in 6.3.2.1.
3980  if (T->isFunctionType())
3981    return getPointerType(T);
3982
3983  return T;
3984}
3985
3986QualType ASTContext::getSignatureParameterType(QualType T) const {
3987  T = getVariableArrayDecayedType(T);
3988  T = getAdjustedParameterType(T);
3989  return T.getUnqualifiedType();
3990}
3991
3992/// getArrayDecayedType - Return the properly qualified result of decaying the
3993/// specified array type to a pointer.  This operation is non-trivial when
3994/// handling typedefs etc.  The canonical type of "T" must be an array type,
3995/// this returns a pointer to a properly qualified element of the array.
3996///
3997/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3998QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3999  // Get the element type with 'getAsArrayType' so that we don't lose any
4000  // typedefs in the element type of the array.  This also handles propagation
4001  // of type qualifiers from the array type into the element type if present
4002  // (C99 6.7.3p8).
4003  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4004  assert(PrettyArrayType && "Not an array type!");
4005
4006  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4007
4008  // int x[restrict 4] ->  int *restrict
4009  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4010}
4011
4012QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4013  return getBaseElementType(array->getElementType());
4014}
4015
4016QualType ASTContext::getBaseElementType(QualType type) const {
4017  Qualifiers qs;
4018  while (true) {
4019    SplitQualType split = type.getSplitDesugaredType();
4020    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4021    if (!array) break;
4022
4023    type = array->getElementType();
4024    qs.addConsistentQualifiers(split.Quals);
4025  }
4026
4027  return getQualifiedType(type, qs);
4028}
4029
4030/// getConstantArrayElementCount - Returns number of constant array elements.
4031uint64_t
4032ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4033  uint64_t ElementCount = 1;
4034  do {
4035    ElementCount *= CA->getSize().getZExtValue();
4036    CA = dyn_cast_or_null<ConstantArrayType>(
4037      CA->getElementType()->getAsArrayTypeUnsafe());
4038  } while (CA);
4039  return ElementCount;
4040}
4041
4042/// getFloatingRank - Return a relative rank for floating point types.
4043/// This routine will assert if passed a built-in type that isn't a float.
4044static FloatingRank getFloatingRank(QualType T) {
4045  if (const ComplexType *CT = T->getAs<ComplexType>())
4046    return getFloatingRank(CT->getElementType());
4047
4048  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4049  switch (T->getAs<BuiltinType>()->getKind()) {
4050  default: llvm_unreachable("getFloatingRank(): not a floating type");
4051  case BuiltinType::Half:       return HalfRank;
4052  case BuiltinType::Float:      return FloatRank;
4053  case BuiltinType::Double:     return DoubleRank;
4054  case BuiltinType::LongDouble: return LongDoubleRank;
4055  }
4056}
4057
4058/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4059/// point or a complex type (based on typeDomain/typeSize).
4060/// 'typeDomain' is a real floating point or complex type.
4061/// 'typeSize' is a real floating point or complex type.
4062QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4063                                                       QualType Domain) const {
4064  FloatingRank EltRank = getFloatingRank(Size);
4065  if (Domain->isComplexType()) {
4066    switch (EltRank) {
4067    case HalfRank: llvm_unreachable("Complex half is not supported");
4068    case FloatRank:      return FloatComplexTy;
4069    case DoubleRank:     return DoubleComplexTy;
4070    case LongDoubleRank: return LongDoubleComplexTy;
4071    }
4072  }
4073
4074  assert(Domain->isRealFloatingType() && "Unknown domain!");
4075  switch (EltRank) {
4076  case HalfRank: llvm_unreachable("Half ranks are not valid here");
4077  case FloatRank:      return FloatTy;
4078  case DoubleRank:     return DoubleTy;
4079  case LongDoubleRank: return LongDoubleTy;
4080  }
4081  llvm_unreachable("getFloatingRank(): illegal value for rank");
4082}
4083
4084/// getFloatingTypeOrder - Compare the rank of the two specified floating
4085/// point types, ignoring the domain of the type (i.e. 'double' ==
4086/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4087/// LHS < RHS, return -1.
4088int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4089  FloatingRank LHSR = getFloatingRank(LHS);
4090  FloatingRank RHSR = getFloatingRank(RHS);
4091
4092  if (LHSR == RHSR)
4093    return 0;
4094  if (LHSR > RHSR)
4095    return 1;
4096  return -1;
4097}
4098
4099/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4100/// routine will assert if passed a built-in type that isn't an integer or enum,
4101/// or if it is not canonicalized.
4102unsigned ASTContext::getIntegerRank(const Type *T) const {
4103  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4104
4105  switch (cast<BuiltinType>(T)->getKind()) {
4106  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4107  case BuiltinType::Bool:
4108    return 1 + (getIntWidth(BoolTy) << 3);
4109  case BuiltinType::Char_S:
4110  case BuiltinType::Char_U:
4111  case BuiltinType::SChar:
4112  case BuiltinType::UChar:
4113    return 2 + (getIntWidth(CharTy) << 3);
4114  case BuiltinType::Short:
4115  case BuiltinType::UShort:
4116    return 3 + (getIntWidth(ShortTy) << 3);
4117  case BuiltinType::Int:
4118  case BuiltinType::UInt:
4119    return 4 + (getIntWidth(IntTy) << 3);
4120  case BuiltinType::Long:
4121  case BuiltinType::ULong:
4122    return 5 + (getIntWidth(LongTy) << 3);
4123  case BuiltinType::LongLong:
4124  case BuiltinType::ULongLong:
4125    return 6 + (getIntWidth(LongLongTy) << 3);
4126  case BuiltinType::Int128:
4127  case BuiltinType::UInt128:
4128    return 7 + (getIntWidth(Int128Ty) << 3);
4129  }
4130}
4131
4132/// \brief Whether this is a promotable bitfield reference according
4133/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4134///
4135/// \returns the type this bit-field will promote to, or NULL if no
4136/// promotion occurs.
4137QualType ASTContext::isPromotableBitField(Expr *E) const {
4138  if (E->isTypeDependent() || E->isValueDependent())
4139    return QualType();
4140
4141  FieldDecl *Field = E->getBitField();
4142  if (!Field)
4143    return QualType();
4144
4145  QualType FT = Field->getType();
4146
4147  uint64_t BitWidth = Field->getBitWidthValue(*this);
4148  uint64_t IntSize = getTypeSize(IntTy);
4149  // GCC extension compatibility: if the bit-field size is less than or equal
4150  // to the size of int, it gets promoted no matter what its type is.
4151  // For instance, unsigned long bf : 4 gets promoted to signed int.
4152  if (BitWidth < IntSize)
4153    return IntTy;
4154
4155  if (BitWidth == IntSize)
4156    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4157
4158  // Types bigger than int are not subject to promotions, and therefore act
4159  // like the base type.
4160  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4161  // is ridiculous.
4162  return QualType();
4163}
4164
4165/// getPromotedIntegerType - Returns the type that Promotable will
4166/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4167/// integer type.
4168QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4169  assert(!Promotable.isNull());
4170  assert(Promotable->isPromotableIntegerType());
4171  if (const EnumType *ET = Promotable->getAs<EnumType>())
4172    return ET->getDecl()->getPromotionType();
4173
4174  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4175    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4176    // (3.9.1) can be converted to a prvalue of the first of the following
4177    // types that can represent all the values of its underlying type:
4178    // int, unsigned int, long int, unsigned long int, long long int, or
4179    // unsigned long long int [...]
4180    // FIXME: Is there some better way to compute this?
4181    if (BT->getKind() == BuiltinType::WChar_S ||
4182        BT->getKind() == BuiltinType::WChar_U ||
4183        BT->getKind() == BuiltinType::Char16 ||
4184        BT->getKind() == BuiltinType::Char32) {
4185      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4186      uint64_t FromSize = getTypeSize(BT);
4187      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4188                                  LongLongTy, UnsignedLongLongTy };
4189      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4190        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4191        if (FromSize < ToSize ||
4192            (FromSize == ToSize &&
4193             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4194          return PromoteTypes[Idx];
4195      }
4196      llvm_unreachable("char type should fit into long long");
4197    }
4198  }
4199
4200  // At this point, we should have a signed or unsigned integer type.
4201  if (Promotable->isSignedIntegerType())
4202    return IntTy;
4203  uint64_t PromotableSize = getIntWidth(Promotable);
4204  uint64_t IntSize = getIntWidth(IntTy);
4205  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4206  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4207}
4208
4209/// \brief Recurses in pointer/array types until it finds an objc retainable
4210/// type and returns its ownership.
4211Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4212  while (!T.isNull()) {
4213    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4214      return T.getObjCLifetime();
4215    if (T->isArrayType())
4216      T = getBaseElementType(T);
4217    else if (const PointerType *PT = T->getAs<PointerType>())
4218      T = PT->getPointeeType();
4219    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4220      T = RT->getPointeeType();
4221    else
4222      break;
4223  }
4224
4225  return Qualifiers::OCL_None;
4226}
4227
4228/// getIntegerTypeOrder - Returns the highest ranked integer type:
4229/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4230/// LHS < RHS, return -1.
4231int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4232  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4233  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4234  if (LHSC == RHSC) return 0;
4235
4236  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4237  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4238
4239  unsigned LHSRank = getIntegerRank(LHSC);
4240  unsigned RHSRank = getIntegerRank(RHSC);
4241
4242  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4243    if (LHSRank == RHSRank) return 0;
4244    return LHSRank > RHSRank ? 1 : -1;
4245  }
4246
4247  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4248  if (LHSUnsigned) {
4249    // If the unsigned [LHS] type is larger, return it.
4250    if (LHSRank >= RHSRank)
4251      return 1;
4252
4253    // If the signed type can represent all values of the unsigned type, it
4254    // wins.  Because we are dealing with 2's complement and types that are
4255    // powers of two larger than each other, this is always safe.
4256    return -1;
4257  }
4258
4259  // If the unsigned [RHS] type is larger, return it.
4260  if (RHSRank >= LHSRank)
4261    return -1;
4262
4263  // If the signed type can represent all values of the unsigned type, it
4264  // wins.  Because we are dealing with 2's complement and types that are
4265  // powers of two larger than each other, this is always safe.
4266  return 1;
4267}
4268
4269static RecordDecl *
4270CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4271                 DeclContext *DC, IdentifierInfo *Id) {
4272  SourceLocation Loc;
4273  if (Ctx.getLangOpts().CPlusPlus)
4274    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4275  else
4276    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4277}
4278
4279// getCFConstantStringType - Return the type used for constant CFStrings.
4280QualType ASTContext::getCFConstantStringType() const {
4281  if (!CFConstantStringTypeDecl) {
4282    CFConstantStringTypeDecl =
4283      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4284                       &Idents.get("NSConstantString"));
4285    CFConstantStringTypeDecl->startDefinition();
4286
4287    QualType FieldTypes[4];
4288
4289    // const int *isa;
4290    FieldTypes[0] = getPointerType(IntTy.withConst());
4291    // int flags;
4292    FieldTypes[1] = IntTy;
4293    // const char *str;
4294    FieldTypes[2] = getPointerType(CharTy.withConst());
4295    // long length;
4296    FieldTypes[3] = LongTy;
4297
4298    // Create fields
4299    for (unsigned i = 0; i < 4; ++i) {
4300      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4301                                           SourceLocation(),
4302                                           SourceLocation(), 0,
4303                                           FieldTypes[i], /*TInfo=*/0,
4304                                           /*BitWidth=*/0,
4305                                           /*Mutable=*/false,
4306                                           ICIS_NoInit);
4307      Field->setAccess(AS_public);
4308      CFConstantStringTypeDecl->addDecl(Field);
4309    }
4310
4311    CFConstantStringTypeDecl->completeDefinition();
4312  }
4313
4314  return getTagDeclType(CFConstantStringTypeDecl);
4315}
4316
4317QualType ASTContext::getObjCSuperType() const {
4318  if (ObjCSuperType.isNull()) {
4319    RecordDecl *ObjCSuperTypeDecl  =
4320      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4321    TUDecl->addDecl(ObjCSuperTypeDecl);
4322    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4323  }
4324  return ObjCSuperType;
4325}
4326
4327void ASTContext::setCFConstantStringType(QualType T) {
4328  const RecordType *Rec = T->getAs<RecordType>();
4329  assert(Rec && "Invalid CFConstantStringType");
4330  CFConstantStringTypeDecl = Rec->getDecl();
4331}
4332
4333QualType ASTContext::getBlockDescriptorType() const {
4334  if (BlockDescriptorType)
4335    return getTagDeclType(BlockDescriptorType);
4336
4337  RecordDecl *T;
4338  // FIXME: Needs the FlagAppleBlock bit.
4339  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4340                       &Idents.get("__block_descriptor"));
4341  T->startDefinition();
4342
4343  QualType FieldTypes[] = {
4344    UnsignedLongTy,
4345    UnsignedLongTy,
4346  };
4347
4348  const char *FieldNames[] = {
4349    "reserved",
4350    "Size"
4351  };
4352
4353  for (size_t i = 0; i < 2; ++i) {
4354    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4355                                         SourceLocation(),
4356                                         &Idents.get(FieldNames[i]),
4357                                         FieldTypes[i], /*TInfo=*/0,
4358                                         /*BitWidth=*/0,
4359                                         /*Mutable=*/false,
4360                                         ICIS_NoInit);
4361    Field->setAccess(AS_public);
4362    T->addDecl(Field);
4363  }
4364
4365  T->completeDefinition();
4366
4367  BlockDescriptorType = T;
4368
4369  return getTagDeclType(BlockDescriptorType);
4370}
4371
4372QualType ASTContext::getBlockDescriptorExtendedType() const {
4373  if (BlockDescriptorExtendedType)
4374    return getTagDeclType(BlockDescriptorExtendedType);
4375
4376  RecordDecl *T;
4377  // FIXME: Needs the FlagAppleBlock bit.
4378  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4379                       &Idents.get("__block_descriptor_withcopydispose"));
4380  T->startDefinition();
4381
4382  QualType FieldTypes[] = {
4383    UnsignedLongTy,
4384    UnsignedLongTy,
4385    getPointerType(VoidPtrTy),
4386    getPointerType(VoidPtrTy)
4387  };
4388
4389  const char *FieldNames[] = {
4390    "reserved",
4391    "Size",
4392    "CopyFuncPtr",
4393    "DestroyFuncPtr"
4394  };
4395
4396  for (size_t i = 0; i < 4; ++i) {
4397    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4398                                         SourceLocation(),
4399                                         &Idents.get(FieldNames[i]),
4400                                         FieldTypes[i], /*TInfo=*/0,
4401                                         /*BitWidth=*/0,
4402                                         /*Mutable=*/false,
4403                                         ICIS_NoInit);
4404    Field->setAccess(AS_public);
4405    T->addDecl(Field);
4406  }
4407
4408  T->completeDefinition();
4409
4410  BlockDescriptorExtendedType = T;
4411
4412  return getTagDeclType(BlockDescriptorExtendedType);
4413}
4414
4415/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4416/// requires copy/dispose. Note that this must match the logic
4417/// in buildByrefHelpers.
4418bool ASTContext::BlockRequiresCopying(QualType Ty,
4419                                      const VarDecl *D) {
4420  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4421    const Expr *copyExpr = getBlockVarCopyInits(D);
4422    if (!copyExpr && record->hasTrivialDestructor()) return false;
4423
4424    return true;
4425  }
4426
4427  if (!Ty->isObjCRetainableType()) return false;
4428
4429  Qualifiers qs = Ty.getQualifiers();
4430
4431  // If we have lifetime, that dominates.
4432  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4433    assert(getLangOpts().ObjCAutoRefCount);
4434
4435    switch (lifetime) {
4436      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4437
4438      // These are just bits as far as the runtime is concerned.
4439      case Qualifiers::OCL_ExplicitNone:
4440      case Qualifiers::OCL_Autoreleasing:
4441        return false;
4442
4443      // Tell the runtime that this is ARC __weak, called by the
4444      // byref routines.
4445      case Qualifiers::OCL_Weak:
4446      // ARC __strong __block variables need to be retained.
4447      case Qualifiers::OCL_Strong:
4448        return true;
4449    }
4450    llvm_unreachable("fell out of lifetime switch!");
4451  }
4452  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4453          Ty->isObjCObjectPointerType());
4454}
4455
4456bool ASTContext::getByrefLifetime(QualType Ty,
4457                              Qualifiers::ObjCLifetime &LifeTime,
4458                              bool &HasByrefExtendedLayout) const {
4459
4460  if (!getLangOpts().ObjC1 ||
4461      getLangOpts().getGC() != LangOptions::NonGC)
4462    return false;
4463
4464  HasByrefExtendedLayout = false;
4465  if (Ty->isRecordType()) {
4466    HasByrefExtendedLayout = true;
4467    LifeTime = Qualifiers::OCL_None;
4468  }
4469  else if (getLangOpts().ObjCAutoRefCount)
4470    LifeTime = Ty.getObjCLifetime();
4471  // MRR.
4472  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4473    LifeTime = Qualifiers::OCL_ExplicitNone;
4474  else
4475    LifeTime = Qualifiers::OCL_None;
4476  return true;
4477}
4478
4479TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4480  if (!ObjCInstanceTypeDecl)
4481    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4482                                               getTranslationUnitDecl(),
4483                                               SourceLocation(),
4484                                               SourceLocation(),
4485                                               &Idents.get("instancetype"),
4486                                     getTrivialTypeSourceInfo(getObjCIdType()));
4487  return ObjCInstanceTypeDecl;
4488}
4489
4490// This returns true if a type has been typedefed to BOOL:
4491// typedef <type> BOOL;
4492static bool isTypeTypedefedAsBOOL(QualType T) {
4493  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4494    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4495      return II->isStr("BOOL");
4496
4497  return false;
4498}
4499
4500/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4501/// purpose.
4502CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4503  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4504    return CharUnits::Zero();
4505
4506  CharUnits sz = getTypeSizeInChars(type);
4507
4508  // Make all integer and enum types at least as large as an int
4509  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4510    sz = std::max(sz, getTypeSizeInChars(IntTy));
4511  // Treat arrays as pointers, since that's how they're passed in.
4512  else if (type->isArrayType())
4513    sz = getTypeSizeInChars(VoidPtrTy);
4514  return sz;
4515}
4516
4517static inline
4518std::string charUnitsToString(const CharUnits &CU) {
4519  return llvm::itostr(CU.getQuantity());
4520}
4521
4522/// getObjCEncodingForBlock - Return the encoded type for this block
4523/// declaration.
4524std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4525  std::string S;
4526
4527  const BlockDecl *Decl = Expr->getBlockDecl();
4528  QualType BlockTy =
4529      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4530  // Encode result type.
4531  if (getLangOpts().EncodeExtendedBlockSig)
4532    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4533                            BlockTy->getAs<FunctionType>()->getResultType(),
4534                            S, true /*Extended*/);
4535  else
4536    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4537                           S);
4538  // Compute size of all parameters.
4539  // Start with computing size of a pointer in number of bytes.
4540  // FIXME: There might(should) be a better way of doing this computation!
4541  SourceLocation Loc;
4542  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4543  CharUnits ParmOffset = PtrSize;
4544  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4545       E = Decl->param_end(); PI != E; ++PI) {
4546    QualType PType = (*PI)->getType();
4547    CharUnits sz = getObjCEncodingTypeSize(PType);
4548    if (sz.isZero())
4549      continue;
4550    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4551    ParmOffset += sz;
4552  }
4553  // Size of the argument frame
4554  S += charUnitsToString(ParmOffset);
4555  // Block pointer and offset.
4556  S += "@?0";
4557
4558  // Argument types.
4559  ParmOffset = PtrSize;
4560  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4561       Decl->param_end(); PI != E; ++PI) {
4562    ParmVarDecl *PVDecl = *PI;
4563    QualType PType = PVDecl->getOriginalType();
4564    if (const ArrayType *AT =
4565          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4566      // Use array's original type only if it has known number of
4567      // elements.
4568      if (!isa<ConstantArrayType>(AT))
4569        PType = PVDecl->getType();
4570    } else if (PType->isFunctionType())
4571      PType = PVDecl->getType();
4572    if (getLangOpts().EncodeExtendedBlockSig)
4573      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4574                                      S, true /*Extended*/);
4575    else
4576      getObjCEncodingForType(PType, S);
4577    S += charUnitsToString(ParmOffset);
4578    ParmOffset += getObjCEncodingTypeSize(PType);
4579  }
4580
4581  return S;
4582}
4583
4584bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4585                                                std::string& S) {
4586  // Encode result type.
4587  getObjCEncodingForType(Decl->getResultType(), S);
4588  CharUnits ParmOffset;
4589  // Compute size of all parameters.
4590  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4591       E = Decl->param_end(); PI != E; ++PI) {
4592    QualType PType = (*PI)->getType();
4593    CharUnits sz = getObjCEncodingTypeSize(PType);
4594    if (sz.isZero())
4595      continue;
4596
4597    assert (sz.isPositive() &&
4598        "getObjCEncodingForFunctionDecl - Incomplete param type");
4599    ParmOffset += sz;
4600  }
4601  S += charUnitsToString(ParmOffset);
4602  ParmOffset = CharUnits::Zero();
4603
4604  // Argument types.
4605  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4606       E = Decl->param_end(); PI != E; ++PI) {
4607    ParmVarDecl *PVDecl = *PI;
4608    QualType PType = PVDecl->getOriginalType();
4609    if (const ArrayType *AT =
4610          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4611      // Use array's original type only if it has known number of
4612      // elements.
4613      if (!isa<ConstantArrayType>(AT))
4614        PType = PVDecl->getType();
4615    } else if (PType->isFunctionType())
4616      PType = PVDecl->getType();
4617    getObjCEncodingForType(PType, S);
4618    S += charUnitsToString(ParmOffset);
4619    ParmOffset += getObjCEncodingTypeSize(PType);
4620  }
4621
4622  return false;
4623}
4624
4625/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4626/// method parameter or return type. If Extended, include class names and
4627/// block object types.
4628void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4629                                                   QualType T, std::string& S,
4630                                                   bool Extended) const {
4631  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4632  getObjCEncodingForTypeQualifier(QT, S);
4633  // Encode parameter type.
4634  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4635                             true     /*OutermostType*/,
4636                             false    /*EncodingProperty*/,
4637                             false    /*StructField*/,
4638                             Extended /*EncodeBlockParameters*/,
4639                             Extended /*EncodeClassNames*/);
4640}
4641
4642/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4643/// declaration.
4644bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4645                                              std::string& S,
4646                                              bool Extended) const {
4647  // FIXME: This is not very efficient.
4648  // Encode return type.
4649  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4650                                    Decl->getResultType(), S, Extended);
4651  // Compute size of all parameters.
4652  // Start with computing size of a pointer in number of bytes.
4653  // FIXME: There might(should) be a better way of doing this computation!
4654  SourceLocation Loc;
4655  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4656  // The first two arguments (self and _cmd) are pointers; account for
4657  // their size.
4658  CharUnits ParmOffset = 2 * PtrSize;
4659  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4660       E = Decl->sel_param_end(); PI != E; ++PI) {
4661    QualType PType = (*PI)->getType();
4662    CharUnits sz = getObjCEncodingTypeSize(PType);
4663    if (sz.isZero())
4664      continue;
4665
4666    assert (sz.isPositive() &&
4667        "getObjCEncodingForMethodDecl - Incomplete param type");
4668    ParmOffset += sz;
4669  }
4670  S += charUnitsToString(ParmOffset);
4671  S += "@0:";
4672  S += charUnitsToString(PtrSize);
4673
4674  // Argument types.
4675  ParmOffset = 2 * PtrSize;
4676  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4677       E = Decl->sel_param_end(); PI != E; ++PI) {
4678    const ParmVarDecl *PVDecl = *PI;
4679    QualType PType = PVDecl->getOriginalType();
4680    if (const ArrayType *AT =
4681          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4682      // Use array's original type only if it has known number of
4683      // elements.
4684      if (!isa<ConstantArrayType>(AT))
4685        PType = PVDecl->getType();
4686    } else if (PType->isFunctionType())
4687      PType = PVDecl->getType();
4688    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4689                                      PType, S, Extended);
4690    S += charUnitsToString(ParmOffset);
4691    ParmOffset += getObjCEncodingTypeSize(PType);
4692  }
4693
4694  return false;
4695}
4696
4697/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4698/// property declaration. If non-NULL, Container must be either an
4699/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4700/// NULL when getting encodings for protocol properties.
4701/// Property attributes are stored as a comma-delimited C string. The simple
4702/// attributes readonly and bycopy are encoded as single characters. The
4703/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4704/// encoded as single characters, followed by an identifier. Property types
4705/// are also encoded as a parametrized attribute. The characters used to encode
4706/// these attributes are defined by the following enumeration:
4707/// @code
4708/// enum PropertyAttributes {
4709/// kPropertyReadOnly = 'R',   // property is read-only.
4710/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4711/// kPropertyByref = '&',  // property is a reference to the value last assigned
4712/// kPropertyDynamic = 'D',    // property is dynamic
4713/// kPropertyGetter = 'G',     // followed by getter selector name
4714/// kPropertySetter = 'S',     // followed by setter selector name
4715/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4716/// kPropertyType = 'T'              // followed by old-style type encoding.
4717/// kPropertyWeak = 'W'              // 'weak' property
4718/// kPropertyStrong = 'P'            // property GC'able
4719/// kPropertyNonAtomic = 'N'         // property non-atomic
4720/// };
4721/// @endcode
4722void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4723                                                const Decl *Container,
4724                                                std::string& S) const {
4725  // Collect information from the property implementation decl(s).
4726  bool Dynamic = false;
4727  ObjCPropertyImplDecl *SynthesizePID = 0;
4728
4729  // FIXME: Duplicated code due to poor abstraction.
4730  if (Container) {
4731    if (const ObjCCategoryImplDecl *CID =
4732        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4733      for (ObjCCategoryImplDecl::propimpl_iterator
4734             i = CID->propimpl_begin(), e = CID->propimpl_end();
4735           i != e; ++i) {
4736        ObjCPropertyImplDecl *PID = *i;
4737        if (PID->getPropertyDecl() == PD) {
4738          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4739            Dynamic = true;
4740          } else {
4741            SynthesizePID = PID;
4742          }
4743        }
4744      }
4745    } else {
4746      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4747      for (ObjCCategoryImplDecl::propimpl_iterator
4748             i = OID->propimpl_begin(), e = OID->propimpl_end();
4749           i != e; ++i) {
4750        ObjCPropertyImplDecl *PID = *i;
4751        if (PID->getPropertyDecl() == PD) {
4752          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4753            Dynamic = true;
4754          } else {
4755            SynthesizePID = PID;
4756          }
4757        }
4758      }
4759    }
4760  }
4761
4762  // FIXME: This is not very efficient.
4763  S = "T";
4764
4765  // Encode result type.
4766  // GCC has some special rules regarding encoding of properties which
4767  // closely resembles encoding of ivars.
4768  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4769                             true /* outermost type */,
4770                             true /* encoding for property */);
4771
4772  if (PD->isReadOnly()) {
4773    S += ",R";
4774  } else {
4775    switch (PD->getSetterKind()) {
4776    case ObjCPropertyDecl::Assign: break;
4777    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4778    case ObjCPropertyDecl::Retain: S += ",&"; break;
4779    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4780    }
4781  }
4782
4783  // It really isn't clear at all what this means, since properties
4784  // are "dynamic by default".
4785  if (Dynamic)
4786    S += ",D";
4787
4788  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4789    S += ",N";
4790
4791  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4792    S += ",G";
4793    S += PD->getGetterName().getAsString();
4794  }
4795
4796  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4797    S += ",S";
4798    S += PD->getSetterName().getAsString();
4799  }
4800
4801  if (SynthesizePID) {
4802    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4803    S += ",V";
4804    S += OID->getNameAsString();
4805  }
4806
4807  // FIXME: OBJCGC: weak & strong
4808}
4809
4810/// getLegacyIntegralTypeEncoding -
4811/// Another legacy compatibility encoding: 32-bit longs are encoded as
4812/// 'l' or 'L' , but not always.  For typedefs, we need to use
4813/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4814///
4815void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4816  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4817    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4818      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4819        PointeeTy = UnsignedIntTy;
4820      else
4821        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4822          PointeeTy = IntTy;
4823    }
4824  }
4825}
4826
4827void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4828                                        const FieldDecl *Field) const {
4829  // We follow the behavior of gcc, expanding structures which are
4830  // directly pointed to, and expanding embedded structures. Note that
4831  // these rules are sufficient to prevent recursive encoding of the
4832  // same type.
4833  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4834                             true /* outermost type */);
4835}
4836
4837static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
4838                                            BuiltinType::Kind kind) {
4839    switch (kind) {
4840    case BuiltinType::Void:       return 'v';
4841    case BuiltinType::Bool:       return 'B';
4842    case BuiltinType::Char_U:
4843    case BuiltinType::UChar:      return 'C';
4844    case BuiltinType::Char16:
4845    case BuiltinType::UShort:     return 'S';
4846    case BuiltinType::Char32:
4847    case BuiltinType::UInt:       return 'I';
4848    case BuiltinType::ULong:
4849        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
4850    case BuiltinType::UInt128:    return 'T';
4851    case BuiltinType::ULongLong:  return 'Q';
4852    case BuiltinType::Char_S:
4853    case BuiltinType::SChar:      return 'c';
4854    case BuiltinType::Short:      return 's';
4855    case BuiltinType::WChar_S:
4856    case BuiltinType::WChar_U:
4857    case BuiltinType::Int:        return 'i';
4858    case BuiltinType::Long:
4859      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
4860    case BuiltinType::LongLong:   return 'q';
4861    case BuiltinType::Int128:     return 't';
4862    case BuiltinType::Float:      return 'f';
4863    case BuiltinType::Double:     return 'd';
4864    case BuiltinType::LongDouble: return 'D';
4865    case BuiltinType::NullPtr:    return '*'; // like char*
4866
4867    case BuiltinType::Half:
4868      // FIXME: potentially need @encodes for these!
4869      return ' ';
4870
4871    case BuiltinType::ObjCId:
4872    case BuiltinType::ObjCClass:
4873    case BuiltinType::ObjCSel:
4874      llvm_unreachable("@encoding ObjC primitive type");
4875
4876    // OpenCL and placeholder types don't need @encodings.
4877    case BuiltinType::OCLImage1d:
4878    case BuiltinType::OCLImage1dArray:
4879    case BuiltinType::OCLImage1dBuffer:
4880    case BuiltinType::OCLImage2d:
4881    case BuiltinType::OCLImage2dArray:
4882    case BuiltinType::OCLImage3d:
4883    case BuiltinType::Dependent:
4884#define BUILTIN_TYPE(KIND, ID)
4885#define PLACEHOLDER_TYPE(KIND, ID) \
4886    case BuiltinType::KIND:
4887#include "clang/AST/BuiltinTypes.def"
4888      llvm_unreachable("invalid builtin type for @encode");
4889    }
4890    llvm_unreachable("invalid BuiltinType::Kind value");
4891}
4892
4893static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4894  EnumDecl *Enum = ET->getDecl();
4895
4896  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4897  if (!Enum->isFixed())
4898    return 'i';
4899
4900  // The encoding of a fixed enum type matches its fixed underlying type.
4901  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
4902  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
4903}
4904
4905static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4906                           QualType T, const FieldDecl *FD) {
4907  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4908  S += 'b';
4909  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4910  // The GNU runtime requires more information; bitfields are encoded as b,
4911  // then the offset (in bits) of the first element, then the type of the
4912  // bitfield, then the size in bits.  For example, in this structure:
4913  //
4914  // struct
4915  // {
4916  //    int integer;
4917  //    int flags:2;
4918  // };
4919  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4920  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4921  // information is not especially sensible, but we're stuck with it for
4922  // compatibility with GCC, although providing it breaks anything that
4923  // actually uses runtime introspection and wants to work on both runtimes...
4924  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4925    const RecordDecl *RD = FD->getParent();
4926    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4927    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4928    if (const EnumType *ET = T->getAs<EnumType>())
4929      S += ObjCEncodingForEnumType(Ctx, ET);
4930    else {
4931      const BuiltinType *BT = T->castAs<BuiltinType>();
4932      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
4933    }
4934  }
4935  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4936}
4937
4938// FIXME: Use SmallString for accumulating string.
4939void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4940                                            bool ExpandPointedToStructures,
4941                                            bool ExpandStructures,
4942                                            const FieldDecl *FD,
4943                                            bool OutermostType,
4944                                            bool EncodingProperty,
4945                                            bool StructField,
4946                                            bool EncodeBlockParameters,
4947                                            bool EncodeClassNames) const {
4948  CanQualType CT = getCanonicalType(T);
4949  switch (CT->getTypeClass()) {
4950  case Type::Builtin:
4951  case Type::Enum:
4952    if (FD && FD->isBitField())
4953      return EncodeBitField(this, S, T, FD);
4954    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
4955      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
4956    else
4957      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
4958    return;
4959
4960  case Type::Complex: {
4961    const ComplexType *CT = T->castAs<ComplexType>();
4962    S += 'j';
4963    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4964                               false);
4965    return;
4966  }
4967
4968  case Type::Atomic: {
4969    const AtomicType *AT = T->castAs<AtomicType>();
4970    S += 'A';
4971    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
4972                               false, false);
4973    return;
4974  }
4975
4976  // encoding for pointer or reference types.
4977  case Type::Pointer:
4978  case Type::LValueReference:
4979  case Type::RValueReference: {
4980    QualType PointeeTy;
4981    if (isa<PointerType>(CT)) {
4982      const PointerType *PT = T->castAs<PointerType>();
4983      if (PT->isObjCSelType()) {
4984        S += ':';
4985        return;
4986      }
4987      PointeeTy = PT->getPointeeType();
4988    } else {
4989      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
4990    }
4991
4992    bool isReadOnly = false;
4993    // For historical/compatibility reasons, the read-only qualifier of the
4994    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4995    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4996    // Also, do not emit the 'r' for anything but the outermost type!
4997    if (isa<TypedefType>(T.getTypePtr())) {
4998      if (OutermostType && T.isConstQualified()) {
4999        isReadOnly = true;
5000        S += 'r';
5001      }
5002    } else if (OutermostType) {
5003      QualType P = PointeeTy;
5004      while (P->getAs<PointerType>())
5005        P = P->getAs<PointerType>()->getPointeeType();
5006      if (P.isConstQualified()) {
5007        isReadOnly = true;
5008        S += 'r';
5009      }
5010    }
5011    if (isReadOnly) {
5012      // Another legacy compatibility encoding. Some ObjC qualifier and type
5013      // combinations need to be rearranged.
5014      // Rewrite "in const" from "nr" to "rn"
5015      if (StringRef(S).endswith("nr"))
5016        S.replace(S.end()-2, S.end(), "rn");
5017    }
5018
5019    if (PointeeTy->isCharType()) {
5020      // char pointer types should be encoded as '*' unless it is a
5021      // type that has been typedef'd to 'BOOL'.
5022      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5023        S += '*';
5024        return;
5025      }
5026    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5027      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5028      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5029        S += '#';
5030        return;
5031      }
5032      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5033      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5034        S += '@';
5035        return;
5036      }
5037      // fall through...
5038    }
5039    S += '^';
5040    getLegacyIntegralTypeEncoding(PointeeTy);
5041
5042    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5043                               NULL);
5044    return;
5045  }
5046
5047  case Type::ConstantArray:
5048  case Type::IncompleteArray:
5049  case Type::VariableArray: {
5050    const ArrayType *AT = cast<ArrayType>(CT);
5051
5052    if (isa<IncompleteArrayType>(AT) && !StructField) {
5053      // Incomplete arrays are encoded as a pointer to the array element.
5054      S += '^';
5055
5056      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5057                                 false, ExpandStructures, FD);
5058    } else {
5059      S += '[';
5060
5061      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5062        if (getTypeSize(CAT->getElementType()) == 0)
5063          S += '0';
5064        else
5065          S += llvm::utostr(CAT->getSize().getZExtValue());
5066      } else {
5067        //Variable length arrays are encoded as a regular array with 0 elements.
5068        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5069               "Unknown array type!");
5070        S += '0';
5071      }
5072
5073      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5074                                 false, ExpandStructures, FD);
5075      S += ']';
5076    }
5077    return;
5078  }
5079
5080  case Type::FunctionNoProto:
5081  case Type::FunctionProto:
5082    S += '?';
5083    return;
5084
5085  case Type::Record: {
5086    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5087    S += RDecl->isUnion() ? '(' : '{';
5088    // Anonymous structures print as '?'
5089    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5090      S += II->getName();
5091      if (ClassTemplateSpecializationDecl *Spec
5092          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5093        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5094        std::string TemplateArgsStr
5095          = TemplateSpecializationType::PrintTemplateArgumentList(
5096                                            TemplateArgs.data(),
5097                                            TemplateArgs.size(),
5098                                            (*this).getPrintingPolicy());
5099
5100        S += TemplateArgsStr;
5101      }
5102    } else {
5103      S += '?';
5104    }
5105    if (ExpandStructures) {
5106      S += '=';
5107      if (!RDecl->isUnion()) {
5108        getObjCEncodingForStructureImpl(RDecl, S, FD);
5109      } else {
5110        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5111                                     FieldEnd = RDecl->field_end();
5112             Field != FieldEnd; ++Field) {
5113          if (FD) {
5114            S += '"';
5115            S += Field->getNameAsString();
5116            S += '"';
5117          }
5118
5119          // Special case bit-fields.
5120          if (Field->isBitField()) {
5121            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5122                                       *Field);
5123          } else {
5124            QualType qt = Field->getType();
5125            getLegacyIntegralTypeEncoding(qt);
5126            getObjCEncodingForTypeImpl(qt, S, false, true,
5127                                       FD, /*OutermostType*/false,
5128                                       /*EncodingProperty*/false,
5129                                       /*StructField*/true);
5130          }
5131        }
5132      }
5133    }
5134    S += RDecl->isUnion() ? ')' : '}';
5135    return;
5136  }
5137
5138  case Type::BlockPointer: {
5139    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5140    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5141    if (EncodeBlockParameters) {
5142      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5143
5144      S += '<';
5145      // Block return type
5146      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5147                                 ExpandPointedToStructures, ExpandStructures,
5148                                 FD,
5149                                 false /* OutermostType */,
5150                                 EncodingProperty,
5151                                 false /* StructField */,
5152                                 EncodeBlockParameters,
5153                                 EncodeClassNames);
5154      // Block self
5155      S += "@?";
5156      // Block parameters
5157      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5158        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5159               E = FPT->arg_type_end(); I && (I != E); ++I) {
5160          getObjCEncodingForTypeImpl(*I, S,
5161                                     ExpandPointedToStructures,
5162                                     ExpandStructures,
5163                                     FD,
5164                                     false /* OutermostType */,
5165                                     EncodingProperty,
5166                                     false /* StructField */,
5167                                     EncodeBlockParameters,
5168                                     EncodeClassNames);
5169        }
5170      }
5171      S += '>';
5172    }
5173    return;
5174  }
5175
5176  case Type::ObjCObject:
5177  case Type::ObjCInterface: {
5178    // Ignore protocol qualifiers when mangling at this level.
5179    T = T->castAs<ObjCObjectType>()->getBaseType();
5180
5181    // The assumption seems to be that this assert will succeed
5182    // because nested levels will have filtered out 'id' and 'Class'.
5183    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5184    // @encode(class_name)
5185    ObjCInterfaceDecl *OI = OIT->getDecl();
5186    S += '{';
5187    const IdentifierInfo *II = OI->getIdentifier();
5188    S += II->getName();
5189    S += '=';
5190    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5191    DeepCollectObjCIvars(OI, true, Ivars);
5192    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5193      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5194      if (Field->isBitField())
5195        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5196      else
5197        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
5198    }
5199    S += '}';
5200    return;
5201  }
5202
5203  case Type::ObjCObjectPointer: {
5204    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5205    if (OPT->isObjCIdType()) {
5206      S += '@';
5207      return;
5208    }
5209
5210    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5211      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5212      // Since this is a binary compatibility issue, need to consult with runtime
5213      // folks. Fortunately, this is a *very* obsure construct.
5214      S += '#';
5215      return;
5216    }
5217
5218    if (OPT->isObjCQualifiedIdType()) {
5219      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5220                                 ExpandPointedToStructures,
5221                                 ExpandStructures, FD);
5222      if (FD || EncodingProperty || EncodeClassNames) {
5223        // Note that we do extended encoding of protocol qualifer list
5224        // Only when doing ivar or property encoding.
5225        S += '"';
5226        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5227             E = OPT->qual_end(); I != E; ++I) {
5228          S += '<';
5229          S += (*I)->getNameAsString();
5230          S += '>';
5231        }
5232        S += '"';
5233      }
5234      return;
5235    }
5236
5237    QualType PointeeTy = OPT->getPointeeType();
5238    if (!EncodingProperty &&
5239        isa<TypedefType>(PointeeTy.getTypePtr())) {
5240      // Another historical/compatibility reason.
5241      // We encode the underlying type which comes out as
5242      // {...};
5243      S += '^';
5244      getObjCEncodingForTypeImpl(PointeeTy, S,
5245                                 false, ExpandPointedToStructures,
5246                                 NULL);
5247      return;
5248    }
5249
5250    S += '@';
5251    if (OPT->getInterfaceDecl() &&
5252        (FD || EncodingProperty || EncodeClassNames)) {
5253      S += '"';
5254      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5255      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5256           E = OPT->qual_end(); I != E; ++I) {
5257        S += '<';
5258        S += (*I)->getNameAsString();
5259        S += '>';
5260      }
5261      S += '"';
5262    }
5263    return;
5264  }
5265
5266  // gcc just blithely ignores member pointers.
5267  // FIXME: we shoul do better than that.  'M' is available.
5268  case Type::MemberPointer:
5269    return;
5270
5271  case Type::Vector:
5272  case Type::ExtVector:
5273    // This matches gcc's encoding, even though technically it is
5274    // insufficient.
5275    // FIXME. We should do a better job than gcc.
5276    return;
5277
5278#define ABSTRACT_TYPE(KIND, BASE)
5279#define TYPE(KIND, BASE)
5280#define DEPENDENT_TYPE(KIND, BASE) \
5281  case Type::KIND:
5282#define NON_CANONICAL_TYPE(KIND, BASE) \
5283  case Type::KIND:
5284#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5285  case Type::KIND:
5286#include "clang/AST/TypeNodes.def"
5287    llvm_unreachable("@encode for dependent type!");
5288  }
5289  llvm_unreachable("bad type kind!");
5290}
5291
5292void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5293                                                 std::string &S,
5294                                                 const FieldDecl *FD,
5295                                                 bool includeVBases) const {
5296  assert(RDecl && "Expected non-null RecordDecl");
5297  assert(!RDecl->isUnion() && "Should not be called for unions");
5298  if (!RDecl->getDefinition())
5299    return;
5300
5301  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5302  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5303  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5304
5305  if (CXXRec) {
5306    for (CXXRecordDecl::base_class_iterator
5307           BI = CXXRec->bases_begin(),
5308           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5309      if (!BI->isVirtual()) {
5310        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5311        if (base->isEmpty())
5312          continue;
5313        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5314        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5315                                  std::make_pair(offs, base));
5316      }
5317    }
5318  }
5319
5320  unsigned i = 0;
5321  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5322                               FieldEnd = RDecl->field_end();
5323       Field != FieldEnd; ++Field, ++i) {
5324    uint64_t offs = layout.getFieldOffset(i);
5325    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5326                              std::make_pair(offs, *Field));
5327  }
5328
5329  if (CXXRec && includeVBases) {
5330    for (CXXRecordDecl::base_class_iterator
5331           BI = CXXRec->vbases_begin(),
5332           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5333      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5334      if (base->isEmpty())
5335        continue;
5336      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5337      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5338        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5339                                  std::make_pair(offs, base));
5340    }
5341  }
5342
5343  CharUnits size;
5344  if (CXXRec) {
5345    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5346  } else {
5347    size = layout.getSize();
5348  }
5349
5350  uint64_t CurOffs = 0;
5351  std::multimap<uint64_t, NamedDecl *>::iterator
5352    CurLayObj = FieldOrBaseOffsets.begin();
5353
5354  if (CXXRec && CXXRec->isDynamicClass() &&
5355      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5356    if (FD) {
5357      S += "\"_vptr$";
5358      std::string recname = CXXRec->getNameAsString();
5359      if (recname.empty()) recname = "?";
5360      S += recname;
5361      S += '"';
5362    }
5363    S += "^^?";
5364    CurOffs += getTypeSize(VoidPtrTy);
5365  }
5366
5367  if (!RDecl->hasFlexibleArrayMember()) {
5368    // Mark the end of the structure.
5369    uint64_t offs = toBits(size);
5370    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5371                              std::make_pair(offs, (NamedDecl*)0));
5372  }
5373
5374  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5375    assert(CurOffs <= CurLayObj->first);
5376
5377    if (CurOffs < CurLayObj->first) {
5378      uint64_t padding = CurLayObj->first - CurOffs;
5379      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5380      // packing/alignment of members is different that normal, in which case
5381      // the encoding will be out-of-sync with the real layout.
5382      // If the runtime switches to just consider the size of types without
5383      // taking into account alignment, we could make padding explicit in the
5384      // encoding (e.g. using arrays of chars). The encoding strings would be
5385      // longer then though.
5386      CurOffs += padding;
5387    }
5388
5389    NamedDecl *dcl = CurLayObj->second;
5390    if (dcl == 0)
5391      break; // reached end of structure.
5392
5393    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5394      // We expand the bases without their virtual bases since those are going
5395      // in the initial structure. Note that this differs from gcc which
5396      // expands virtual bases each time one is encountered in the hierarchy,
5397      // making the encoding type bigger than it really is.
5398      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5399      assert(!base->isEmpty());
5400      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5401    } else {
5402      FieldDecl *field = cast<FieldDecl>(dcl);
5403      if (FD) {
5404        S += '"';
5405        S += field->getNameAsString();
5406        S += '"';
5407      }
5408
5409      if (field->isBitField()) {
5410        EncodeBitField(this, S, field->getType(), field);
5411        CurOffs += field->getBitWidthValue(*this);
5412      } else {
5413        QualType qt = field->getType();
5414        getLegacyIntegralTypeEncoding(qt);
5415        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5416                                   /*OutermostType*/false,
5417                                   /*EncodingProperty*/false,
5418                                   /*StructField*/true);
5419        CurOffs += getTypeSize(field->getType());
5420      }
5421    }
5422  }
5423}
5424
5425void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5426                                                 std::string& S) const {
5427  if (QT & Decl::OBJC_TQ_In)
5428    S += 'n';
5429  if (QT & Decl::OBJC_TQ_Inout)
5430    S += 'N';
5431  if (QT & Decl::OBJC_TQ_Out)
5432    S += 'o';
5433  if (QT & Decl::OBJC_TQ_Bycopy)
5434    S += 'O';
5435  if (QT & Decl::OBJC_TQ_Byref)
5436    S += 'R';
5437  if (QT & Decl::OBJC_TQ_Oneway)
5438    S += 'V';
5439}
5440
5441TypedefDecl *ASTContext::getObjCIdDecl() const {
5442  if (!ObjCIdDecl) {
5443    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5444    T = getObjCObjectPointerType(T);
5445    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5446    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5447                                     getTranslationUnitDecl(),
5448                                     SourceLocation(), SourceLocation(),
5449                                     &Idents.get("id"), IdInfo);
5450  }
5451
5452  return ObjCIdDecl;
5453}
5454
5455TypedefDecl *ASTContext::getObjCSelDecl() const {
5456  if (!ObjCSelDecl) {
5457    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5458    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5459    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5460                                      getTranslationUnitDecl(),
5461                                      SourceLocation(), SourceLocation(),
5462                                      &Idents.get("SEL"), SelInfo);
5463  }
5464  return ObjCSelDecl;
5465}
5466
5467TypedefDecl *ASTContext::getObjCClassDecl() const {
5468  if (!ObjCClassDecl) {
5469    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5470    T = getObjCObjectPointerType(T);
5471    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5472    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5473                                        getTranslationUnitDecl(),
5474                                        SourceLocation(), SourceLocation(),
5475                                        &Idents.get("Class"), ClassInfo);
5476  }
5477
5478  return ObjCClassDecl;
5479}
5480
5481ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5482  if (!ObjCProtocolClassDecl) {
5483    ObjCProtocolClassDecl
5484      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5485                                  SourceLocation(),
5486                                  &Idents.get("Protocol"),
5487                                  /*PrevDecl=*/0,
5488                                  SourceLocation(), true);
5489  }
5490
5491  return ObjCProtocolClassDecl;
5492}
5493
5494//===----------------------------------------------------------------------===//
5495// __builtin_va_list Construction Functions
5496//===----------------------------------------------------------------------===//
5497
5498static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5499  // typedef char* __builtin_va_list;
5500  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5501  TypeSourceInfo *TInfo
5502    = Context->getTrivialTypeSourceInfo(CharPtrType);
5503
5504  TypedefDecl *VaListTypeDecl
5505    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5506                          Context->getTranslationUnitDecl(),
5507                          SourceLocation(), SourceLocation(),
5508                          &Context->Idents.get("__builtin_va_list"),
5509                          TInfo);
5510  return VaListTypeDecl;
5511}
5512
5513static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5514  // typedef void* __builtin_va_list;
5515  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5516  TypeSourceInfo *TInfo
5517    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5518
5519  TypedefDecl *VaListTypeDecl
5520    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5521                          Context->getTranslationUnitDecl(),
5522                          SourceLocation(), SourceLocation(),
5523                          &Context->Idents.get("__builtin_va_list"),
5524                          TInfo);
5525  return VaListTypeDecl;
5526}
5527
5528static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5529  // typedef struct __va_list_tag {
5530  RecordDecl *VaListTagDecl;
5531
5532  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5533                                   Context->getTranslationUnitDecl(),
5534                                   &Context->Idents.get("__va_list_tag"));
5535  VaListTagDecl->startDefinition();
5536
5537  const size_t NumFields = 5;
5538  QualType FieldTypes[NumFields];
5539  const char *FieldNames[NumFields];
5540
5541  //   unsigned char gpr;
5542  FieldTypes[0] = Context->UnsignedCharTy;
5543  FieldNames[0] = "gpr";
5544
5545  //   unsigned char fpr;
5546  FieldTypes[1] = Context->UnsignedCharTy;
5547  FieldNames[1] = "fpr";
5548
5549  //   unsigned short reserved;
5550  FieldTypes[2] = Context->UnsignedShortTy;
5551  FieldNames[2] = "reserved";
5552
5553  //   void* overflow_arg_area;
5554  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5555  FieldNames[3] = "overflow_arg_area";
5556
5557  //   void* reg_save_area;
5558  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5559  FieldNames[4] = "reg_save_area";
5560
5561  // Create fields
5562  for (unsigned i = 0; i < NumFields; ++i) {
5563    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5564                                         SourceLocation(),
5565                                         SourceLocation(),
5566                                         &Context->Idents.get(FieldNames[i]),
5567                                         FieldTypes[i], /*TInfo=*/0,
5568                                         /*BitWidth=*/0,
5569                                         /*Mutable=*/false,
5570                                         ICIS_NoInit);
5571    Field->setAccess(AS_public);
5572    VaListTagDecl->addDecl(Field);
5573  }
5574  VaListTagDecl->completeDefinition();
5575  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5576  Context->VaListTagTy = VaListTagType;
5577
5578  // } __va_list_tag;
5579  TypedefDecl *VaListTagTypedefDecl
5580    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5581                          Context->getTranslationUnitDecl(),
5582                          SourceLocation(), SourceLocation(),
5583                          &Context->Idents.get("__va_list_tag"),
5584                          Context->getTrivialTypeSourceInfo(VaListTagType));
5585  QualType VaListTagTypedefType =
5586    Context->getTypedefType(VaListTagTypedefDecl);
5587
5588  // typedef __va_list_tag __builtin_va_list[1];
5589  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5590  QualType VaListTagArrayType
5591    = Context->getConstantArrayType(VaListTagTypedefType,
5592                                    Size, ArrayType::Normal, 0);
5593  TypeSourceInfo *TInfo
5594    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5595  TypedefDecl *VaListTypedefDecl
5596    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5597                          Context->getTranslationUnitDecl(),
5598                          SourceLocation(), SourceLocation(),
5599                          &Context->Idents.get("__builtin_va_list"),
5600                          TInfo);
5601
5602  return VaListTypedefDecl;
5603}
5604
5605static TypedefDecl *
5606CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5607  // typedef struct __va_list_tag {
5608  RecordDecl *VaListTagDecl;
5609  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5610                                   Context->getTranslationUnitDecl(),
5611                                   &Context->Idents.get("__va_list_tag"));
5612  VaListTagDecl->startDefinition();
5613
5614  const size_t NumFields = 4;
5615  QualType FieldTypes[NumFields];
5616  const char *FieldNames[NumFields];
5617
5618  //   unsigned gp_offset;
5619  FieldTypes[0] = Context->UnsignedIntTy;
5620  FieldNames[0] = "gp_offset";
5621
5622  //   unsigned fp_offset;
5623  FieldTypes[1] = Context->UnsignedIntTy;
5624  FieldNames[1] = "fp_offset";
5625
5626  //   void* overflow_arg_area;
5627  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5628  FieldNames[2] = "overflow_arg_area";
5629
5630  //   void* reg_save_area;
5631  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5632  FieldNames[3] = "reg_save_area";
5633
5634  // Create fields
5635  for (unsigned i = 0; i < NumFields; ++i) {
5636    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5637                                         VaListTagDecl,
5638                                         SourceLocation(),
5639                                         SourceLocation(),
5640                                         &Context->Idents.get(FieldNames[i]),
5641                                         FieldTypes[i], /*TInfo=*/0,
5642                                         /*BitWidth=*/0,
5643                                         /*Mutable=*/false,
5644                                         ICIS_NoInit);
5645    Field->setAccess(AS_public);
5646    VaListTagDecl->addDecl(Field);
5647  }
5648  VaListTagDecl->completeDefinition();
5649  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5650  Context->VaListTagTy = VaListTagType;
5651
5652  // } __va_list_tag;
5653  TypedefDecl *VaListTagTypedefDecl
5654    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5655                          Context->getTranslationUnitDecl(),
5656                          SourceLocation(), SourceLocation(),
5657                          &Context->Idents.get("__va_list_tag"),
5658                          Context->getTrivialTypeSourceInfo(VaListTagType));
5659  QualType VaListTagTypedefType =
5660    Context->getTypedefType(VaListTagTypedefDecl);
5661
5662  // typedef __va_list_tag __builtin_va_list[1];
5663  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5664  QualType VaListTagArrayType
5665    = Context->getConstantArrayType(VaListTagTypedefType,
5666                                      Size, ArrayType::Normal,0);
5667  TypeSourceInfo *TInfo
5668    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5669  TypedefDecl *VaListTypedefDecl
5670    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5671                          Context->getTranslationUnitDecl(),
5672                          SourceLocation(), SourceLocation(),
5673                          &Context->Idents.get("__builtin_va_list"),
5674                          TInfo);
5675
5676  return VaListTypedefDecl;
5677}
5678
5679static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5680  // typedef int __builtin_va_list[4];
5681  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5682  QualType IntArrayType
5683    = Context->getConstantArrayType(Context->IntTy,
5684				    Size, ArrayType::Normal, 0);
5685  TypedefDecl *VaListTypedefDecl
5686    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5687                          Context->getTranslationUnitDecl(),
5688                          SourceLocation(), SourceLocation(),
5689                          &Context->Idents.get("__builtin_va_list"),
5690                          Context->getTrivialTypeSourceInfo(IntArrayType));
5691
5692  return VaListTypedefDecl;
5693}
5694
5695static TypedefDecl *
5696CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5697  RecordDecl *VaListDecl;
5698  if (Context->getLangOpts().CPlusPlus) {
5699    // namespace std { struct __va_list {
5700    NamespaceDecl *NS;
5701    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5702                               Context->getTranslationUnitDecl(),
5703                               /*Inline*/false, SourceLocation(),
5704                               SourceLocation(), &Context->Idents.get("std"),
5705                               /*PrevDecl*/0);
5706
5707    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5708                                       Context->getTranslationUnitDecl(),
5709                                       SourceLocation(), SourceLocation(),
5710                                       &Context->Idents.get("__va_list"));
5711
5712    VaListDecl->setDeclContext(NS);
5713
5714  } else {
5715    // struct __va_list {
5716    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5717                                  Context->getTranslationUnitDecl(),
5718                                  &Context->Idents.get("__va_list"));
5719  }
5720
5721  VaListDecl->startDefinition();
5722
5723  // void * __ap;
5724  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5725                                       VaListDecl,
5726                                       SourceLocation(),
5727                                       SourceLocation(),
5728                                       &Context->Idents.get("__ap"),
5729                                       Context->getPointerType(Context->VoidTy),
5730                                       /*TInfo=*/0,
5731                                       /*BitWidth=*/0,
5732                                       /*Mutable=*/false,
5733                                       ICIS_NoInit);
5734  Field->setAccess(AS_public);
5735  VaListDecl->addDecl(Field);
5736
5737  // };
5738  VaListDecl->completeDefinition();
5739
5740  // typedef struct __va_list __builtin_va_list;
5741  TypeSourceInfo *TInfo
5742    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5743
5744  TypedefDecl *VaListTypeDecl
5745    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5746                          Context->getTranslationUnitDecl(),
5747                          SourceLocation(), SourceLocation(),
5748                          &Context->Idents.get("__builtin_va_list"),
5749                          TInfo);
5750
5751  return VaListTypeDecl;
5752}
5753
5754static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5755                                     TargetInfo::BuiltinVaListKind Kind) {
5756  switch (Kind) {
5757  case TargetInfo::CharPtrBuiltinVaList:
5758    return CreateCharPtrBuiltinVaListDecl(Context);
5759  case TargetInfo::VoidPtrBuiltinVaList:
5760    return CreateVoidPtrBuiltinVaListDecl(Context);
5761  case TargetInfo::PowerABIBuiltinVaList:
5762    return CreatePowerABIBuiltinVaListDecl(Context);
5763  case TargetInfo::X86_64ABIBuiltinVaList:
5764    return CreateX86_64ABIBuiltinVaListDecl(Context);
5765  case TargetInfo::PNaClABIBuiltinVaList:
5766    return CreatePNaClABIBuiltinVaListDecl(Context);
5767  case TargetInfo::AAPCSABIBuiltinVaList:
5768    return CreateAAPCSABIBuiltinVaListDecl(Context);
5769  }
5770
5771  llvm_unreachable("Unhandled __builtin_va_list type kind");
5772}
5773
5774TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5775  if (!BuiltinVaListDecl)
5776    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5777
5778  return BuiltinVaListDecl;
5779}
5780
5781QualType ASTContext::getVaListTagType() const {
5782  // Force the creation of VaListTagTy by building the __builtin_va_list
5783  // declaration.
5784  if (VaListTagTy.isNull())
5785    (void) getBuiltinVaListDecl();
5786
5787  return VaListTagTy;
5788}
5789
5790void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5791  assert(ObjCConstantStringType.isNull() &&
5792         "'NSConstantString' type already set!");
5793
5794  ObjCConstantStringType = getObjCInterfaceType(Decl);
5795}
5796
5797/// \brief Retrieve the template name that corresponds to a non-empty
5798/// lookup.
5799TemplateName
5800ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5801                                      UnresolvedSetIterator End) const {
5802  unsigned size = End - Begin;
5803  assert(size > 1 && "set is not overloaded!");
5804
5805  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5806                          size * sizeof(FunctionTemplateDecl*));
5807  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5808
5809  NamedDecl **Storage = OT->getStorage();
5810  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5811    NamedDecl *D = *I;
5812    assert(isa<FunctionTemplateDecl>(D) ||
5813           (isa<UsingShadowDecl>(D) &&
5814            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5815    *Storage++ = D;
5816  }
5817
5818  return TemplateName(OT);
5819}
5820
5821/// \brief Retrieve the template name that represents a qualified
5822/// template name such as \c std::vector.
5823TemplateName
5824ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5825                                     bool TemplateKeyword,
5826                                     TemplateDecl *Template) const {
5827  assert(NNS && "Missing nested-name-specifier in qualified template name");
5828
5829  // FIXME: Canonicalization?
5830  llvm::FoldingSetNodeID ID;
5831  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5832
5833  void *InsertPos = 0;
5834  QualifiedTemplateName *QTN =
5835    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5836  if (!QTN) {
5837    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5838        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5839    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5840  }
5841
5842  return TemplateName(QTN);
5843}
5844
5845/// \brief Retrieve the template name that represents a dependent
5846/// template name such as \c MetaFun::template apply.
5847TemplateName
5848ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5849                                     const IdentifierInfo *Name) const {
5850  assert((!NNS || NNS->isDependent()) &&
5851         "Nested name specifier must be dependent");
5852
5853  llvm::FoldingSetNodeID ID;
5854  DependentTemplateName::Profile(ID, NNS, Name);
5855
5856  void *InsertPos = 0;
5857  DependentTemplateName *QTN =
5858    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5859
5860  if (QTN)
5861    return TemplateName(QTN);
5862
5863  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5864  if (CanonNNS == NNS) {
5865    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5866        DependentTemplateName(NNS, Name);
5867  } else {
5868    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5869    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5870        DependentTemplateName(NNS, Name, Canon);
5871    DependentTemplateName *CheckQTN =
5872      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5873    assert(!CheckQTN && "Dependent type name canonicalization broken");
5874    (void)CheckQTN;
5875  }
5876
5877  DependentTemplateNames.InsertNode(QTN, InsertPos);
5878  return TemplateName(QTN);
5879}
5880
5881/// \brief Retrieve the template name that represents a dependent
5882/// template name such as \c MetaFun::template operator+.
5883TemplateName
5884ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5885                                     OverloadedOperatorKind Operator) const {
5886  assert((!NNS || NNS->isDependent()) &&
5887         "Nested name specifier must be dependent");
5888
5889  llvm::FoldingSetNodeID ID;
5890  DependentTemplateName::Profile(ID, NNS, Operator);
5891
5892  void *InsertPos = 0;
5893  DependentTemplateName *QTN
5894    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5895
5896  if (QTN)
5897    return TemplateName(QTN);
5898
5899  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5900  if (CanonNNS == NNS) {
5901    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5902        DependentTemplateName(NNS, Operator);
5903  } else {
5904    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5905    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5906        DependentTemplateName(NNS, Operator, Canon);
5907
5908    DependentTemplateName *CheckQTN
5909      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5910    assert(!CheckQTN && "Dependent template name canonicalization broken");
5911    (void)CheckQTN;
5912  }
5913
5914  DependentTemplateNames.InsertNode(QTN, InsertPos);
5915  return TemplateName(QTN);
5916}
5917
5918TemplateName
5919ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5920                                         TemplateName replacement) const {
5921  llvm::FoldingSetNodeID ID;
5922  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5923
5924  void *insertPos = 0;
5925  SubstTemplateTemplateParmStorage *subst
5926    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5927
5928  if (!subst) {
5929    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5930    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5931  }
5932
5933  return TemplateName(subst);
5934}
5935
5936TemplateName
5937ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5938                                       const TemplateArgument &ArgPack) const {
5939  ASTContext &Self = const_cast<ASTContext &>(*this);
5940  llvm::FoldingSetNodeID ID;
5941  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5942
5943  void *InsertPos = 0;
5944  SubstTemplateTemplateParmPackStorage *Subst
5945    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5946
5947  if (!Subst) {
5948    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5949                                                           ArgPack.pack_size(),
5950                                                         ArgPack.pack_begin());
5951    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5952  }
5953
5954  return TemplateName(Subst);
5955}
5956
5957/// getFromTargetType - Given one of the integer types provided by
5958/// TargetInfo, produce the corresponding type. The unsigned @p Type
5959/// is actually a value of type @c TargetInfo::IntType.
5960CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5961  switch (Type) {
5962  case TargetInfo::NoInt: return CanQualType();
5963  case TargetInfo::SignedShort: return ShortTy;
5964  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5965  case TargetInfo::SignedInt: return IntTy;
5966  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5967  case TargetInfo::SignedLong: return LongTy;
5968  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5969  case TargetInfo::SignedLongLong: return LongLongTy;
5970  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5971  }
5972
5973  llvm_unreachable("Unhandled TargetInfo::IntType value");
5974}
5975
5976//===----------------------------------------------------------------------===//
5977//                        Type Predicates.
5978//===----------------------------------------------------------------------===//
5979
5980/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5981/// garbage collection attribute.
5982///
5983Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5984  if (getLangOpts().getGC() == LangOptions::NonGC)
5985    return Qualifiers::GCNone;
5986
5987  assert(getLangOpts().ObjC1);
5988  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5989
5990  // Default behaviour under objective-C's gc is for ObjC pointers
5991  // (or pointers to them) be treated as though they were declared
5992  // as __strong.
5993  if (GCAttrs == Qualifiers::GCNone) {
5994    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5995      return Qualifiers::Strong;
5996    else if (Ty->isPointerType())
5997      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5998  } else {
5999    // It's not valid to set GC attributes on anything that isn't a
6000    // pointer.
6001#ifndef NDEBUG
6002    QualType CT = Ty->getCanonicalTypeInternal();
6003    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6004      CT = AT->getElementType();
6005    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6006#endif
6007  }
6008  return GCAttrs;
6009}
6010
6011//===----------------------------------------------------------------------===//
6012//                        Type Compatibility Testing
6013//===----------------------------------------------------------------------===//
6014
6015/// areCompatVectorTypes - Return true if the two specified vector types are
6016/// compatible.
6017static bool areCompatVectorTypes(const VectorType *LHS,
6018                                 const VectorType *RHS) {
6019  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6020  return LHS->getElementType() == RHS->getElementType() &&
6021         LHS->getNumElements() == RHS->getNumElements();
6022}
6023
6024bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6025                                          QualType SecondVec) {
6026  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6027  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6028
6029  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6030    return true;
6031
6032  // Treat Neon vector types and most AltiVec vector types as if they are the
6033  // equivalent GCC vector types.
6034  const VectorType *First = FirstVec->getAs<VectorType>();
6035  const VectorType *Second = SecondVec->getAs<VectorType>();
6036  if (First->getNumElements() == Second->getNumElements() &&
6037      hasSameType(First->getElementType(), Second->getElementType()) &&
6038      First->getVectorKind() != VectorType::AltiVecPixel &&
6039      First->getVectorKind() != VectorType::AltiVecBool &&
6040      Second->getVectorKind() != VectorType::AltiVecPixel &&
6041      Second->getVectorKind() != VectorType::AltiVecBool)
6042    return true;
6043
6044  return false;
6045}
6046
6047//===----------------------------------------------------------------------===//
6048// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6049//===----------------------------------------------------------------------===//
6050
6051/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6052/// inheritance hierarchy of 'rProto'.
6053bool
6054ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6055                                           ObjCProtocolDecl *rProto) const {
6056  if (declaresSameEntity(lProto, rProto))
6057    return true;
6058  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6059       E = rProto->protocol_end(); PI != E; ++PI)
6060    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6061      return true;
6062  return false;
6063}
6064
6065/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6066/// return true if lhs's protocols conform to rhs's protocol; false
6067/// otherwise.
6068bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6069  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6070    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6071  return false;
6072}
6073
6074/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6075/// Class<pr1, ...>.
6076bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6077                                                      QualType rhs) {
6078  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6079  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6080  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6081
6082  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6083       E = lhsQID->qual_end(); I != E; ++I) {
6084    bool match = false;
6085    ObjCProtocolDecl *lhsProto = *I;
6086    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6087         E = rhsOPT->qual_end(); J != E; ++J) {
6088      ObjCProtocolDecl *rhsProto = *J;
6089      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6090        match = true;
6091        break;
6092      }
6093    }
6094    if (!match)
6095      return false;
6096  }
6097  return true;
6098}
6099
6100/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6101/// ObjCQualifiedIDType.
6102bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6103                                                   bool compare) {
6104  // Allow id<P..> and an 'id' or void* type in all cases.
6105  if (lhs->isVoidPointerType() ||
6106      lhs->isObjCIdType() || lhs->isObjCClassType())
6107    return true;
6108  else if (rhs->isVoidPointerType() ||
6109           rhs->isObjCIdType() || rhs->isObjCClassType())
6110    return true;
6111
6112  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6113    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6114
6115    if (!rhsOPT) return false;
6116
6117    if (rhsOPT->qual_empty()) {
6118      // If the RHS is a unqualified interface pointer "NSString*",
6119      // make sure we check the class hierarchy.
6120      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6121        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6122             E = lhsQID->qual_end(); I != E; ++I) {
6123          // when comparing an id<P> on lhs with a static type on rhs,
6124          // see if static class implements all of id's protocols, directly or
6125          // through its super class and categories.
6126          if (!rhsID->ClassImplementsProtocol(*I, true))
6127            return false;
6128        }
6129      }
6130      // If there are no qualifiers and no interface, we have an 'id'.
6131      return true;
6132    }
6133    // Both the right and left sides have qualifiers.
6134    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6135         E = lhsQID->qual_end(); I != E; ++I) {
6136      ObjCProtocolDecl *lhsProto = *I;
6137      bool match = false;
6138
6139      // when comparing an id<P> on lhs with a static type on rhs,
6140      // see if static class implements all of id's protocols, directly or
6141      // through its super class and categories.
6142      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6143           E = rhsOPT->qual_end(); J != E; ++J) {
6144        ObjCProtocolDecl *rhsProto = *J;
6145        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6146            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6147          match = true;
6148          break;
6149        }
6150      }
6151      // If the RHS is a qualified interface pointer "NSString<P>*",
6152      // make sure we check the class hierarchy.
6153      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6154        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6155             E = lhsQID->qual_end(); I != E; ++I) {
6156          // when comparing an id<P> on lhs with a static type on rhs,
6157          // see if static class implements all of id's protocols, directly or
6158          // through its super class and categories.
6159          if (rhsID->ClassImplementsProtocol(*I, true)) {
6160            match = true;
6161            break;
6162          }
6163        }
6164      }
6165      if (!match)
6166        return false;
6167    }
6168
6169    return true;
6170  }
6171
6172  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6173  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6174
6175  if (const ObjCObjectPointerType *lhsOPT =
6176        lhs->getAsObjCInterfacePointerType()) {
6177    // If both the right and left sides have qualifiers.
6178    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6179         E = lhsOPT->qual_end(); I != E; ++I) {
6180      ObjCProtocolDecl *lhsProto = *I;
6181      bool match = false;
6182
6183      // when comparing an id<P> on rhs with a static type on lhs,
6184      // see if static class implements all of id's protocols, directly or
6185      // through its super class and categories.
6186      // First, lhs protocols in the qualifier list must be found, direct
6187      // or indirect in rhs's qualifier list or it is a mismatch.
6188      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6189           E = rhsQID->qual_end(); J != E; ++J) {
6190        ObjCProtocolDecl *rhsProto = *J;
6191        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6192            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6193          match = true;
6194          break;
6195        }
6196      }
6197      if (!match)
6198        return false;
6199    }
6200
6201    // Static class's protocols, or its super class or category protocols
6202    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6203    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6204      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6205      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6206      // This is rather dubious but matches gcc's behavior. If lhs has
6207      // no type qualifier and its class has no static protocol(s)
6208      // assume that it is mismatch.
6209      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6210        return false;
6211      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6212           LHSInheritedProtocols.begin(),
6213           E = LHSInheritedProtocols.end(); I != E; ++I) {
6214        bool match = false;
6215        ObjCProtocolDecl *lhsProto = (*I);
6216        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6217             E = rhsQID->qual_end(); J != E; ++J) {
6218          ObjCProtocolDecl *rhsProto = *J;
6219          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6220              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6221            match = true;
6222            break;
6223          }
6224        }
6225        if (!match)
6226          return false;
6227      }
6228    }
6229    return true;
6230  }
6231  return false;
6232}
6233
6234/// canAssignObjCInterfaces - Return true if the two interface types are
6235/// compatible for assignment from RHS to LHS.  This handles validation of any
6236/// protocol qualifiers on the LHS or RHS.
6237///
6238bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6239                                         const ObjCObjectPointerType *RHSOPT) {
6240  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6241  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6242
6243  // If either type represents the built-in 'id' or 'Class' types, return true.
6244  if (LHS->isObjCUnqualifiedIdOrClass() ||
6245      RHS->isObjCUnqualifiedIdOrClass())
6246    return true;
6247
6248  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6249    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6250                                             QualType(RHSOPT,0),
6251                                             false);
6252
6253  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6254    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6255                                                QualType(RHSOPT,0));
6256
6257  // If we have 2 user-defined types, fall into that path.
6258  if (LHS->getInterface() && RHS->getInterface())
6259    return canAssignObjCInterfaces(LHS, RHS);
6260
6261  return false;
6262}
6263
6264/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6265/// for providing type-safety for objective-c pointers used to pass/return
6266/// arguments in block literals. When passed as arguments, passing 'A*' where
6267/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6268/// not OK. For the return type, the opposite is not OK.
6269bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6270                                         const ObjCObjectPointerType *LHSOPT,
6271                                         const ObjCObjectPointerType *RHSOPT,
6272                                         bool BlockReturnType) {
6273  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6274    return true;
6275
6276  if (LHSOPT->isObjCBuiltinType()) {
6277    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6278  }
6279
6280  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6281    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6282                                             QualType(RHSOPT,0),
6283                                             false);
6284
6285  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6286  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6287  if (LHS && RHS)  { // We have 2 user-defined types.
6288    if (LHS != RHS) {
6289      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6290        return BlockReturnType;
6291      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6292        return !BlockReturnType;
6293    }
6294    else
6295      return true;
6296  }
6297  return false;
6298}
6299
6300/// getIntersectionOfProtocols - This routine finds the intersection of set
6301/// of protocols inherited from two distinct objective-c pointer objects.
6302/// It is used to build composite qualifier list of the composite type of
6303/// the conditional expression involving two objective-c pointer objects.
6304static
6305void getIntersectionOfProtocols(ASTContext &Context,
6306                                const ObjCObjectPointerType *LHSOPT,
6307                                const ObjCObjectPointerType *RHSOPT,
6308      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6309
6310  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6311  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6312  assert(LHS->getInterface() && "LHS must have an interface base");
6313  assert(RHS->getInterface() && "RHS must have an interface base");
6314
6315  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6316  unsigned LHSNumProtocols = LHS->getNumProtocols();
6317  if (LHSNumProtocols > 0)
6318    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6319  else {
6320    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6321    Context.CollectInheritedProtocols(LHS->getInterface(),
6322                                      LHSInheritedProtocols);
6323    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6324                                LHSInheritedProtocols.end());
6325  }
6326
6327  unsigned RHSNumProtocols = RHS->getNumProtocols();
6328  if (RHSNumProtocols > 0) {
6329    ObjCProtocolDecl **RHSProtocols =
6330      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6331    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6332      if (InheritedProtocolSet.count(RHSProtocols[i]))
6333        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6334  } else {
6335    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6336    Context.CollectInheritedProtocols(RHS->getInterface(),
6337                                      RHSInheritedProtocols);
6338    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6339         RHSInheritedProtocols.begin(),
6340         E = RHSInheritedProtocols.end(); I != E; ++I)
6341      if (InheritedProtocolSet.count((*I)))
6342        IntersectionOfProtocols.push_back((*I));
6343  }
6344}
6345
6346/// areCommonBaseCompatible - Returns common base class of the two classes if
6347/// one found. Note that this is O'2 algorithm. But it will be called as the
6348/// last type comparison in a ?-exp of ObjC pointer types before a
6349/// warning is issued. So, its invokation is extremely rare.
6350QualType ASTContext::areCommonBaseCompatible(
6351                                          const ObjCObjectPointerType *Lptr,
6352                                          const ObjCObjectPointerType *Rptr) {
6353  const ObjCObjectType *LHS = Lptr->getObjectType();
6354  const ObjCObjectType *RHS = Rptr->getObjectType();
6355  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6356  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6357  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6358    return QualType();
6359
6360  do {
6361    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6362    if (canAssignObjCInterfaces(LHS, RHS)) {
6363      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6364      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6365
6366      QualType Result = QualType(LHS, 0);
6367      if (!Protocols.empty())
6368        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6369      Result = getObjCObjectPointerType(Result);
6370      return Result;
6371    }
6372  } while ((LDecl = LDecl->getSuperClass()));
6373
6374  return QualType();
6375}
6376
6377bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6378                                         const ObjCObjectType *RHS) {
6379  assert(LHS->getInterface() && "LHS is not an interface type");
6380  assert(RHS->getInterface() && "RHS is not an interface type");
6381
6382  // Verify that the base decls are compatible: the RHS must be a subclass of
6383  // the LHS.
6384  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6385    return false;
6386
6387  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6388  // protocol qualified at all, then we are good.
6389  if (LHS->getNumProtocols() == 0)
6390    return true;
6391
6392  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6393  // more detailed analysis is required.
6394  if (RHS->getNumProtocols() == 0) {
6395    // OK, if LHS is a superclass of RHS *and*
6396    // this superclass is assignment compatible with LHS.
6397    // false otherwise.
6398    bool IsSuperClass =
6399      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6400    if (IsSuperClass) {
6401      // OK if conversion of LHS to SuperClass results in narrowing of types
6402      // ; i.e., SuperClass may implement at least one of the protocols
6403      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6404      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6405      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6406      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6407      // If super class has no protocols, it is not a match.
6408      if (SuperClassInheritedProtocols.empty())
6409        return false;
6410
6411      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6412           LHSPE = LHS->qual_end();
6413           LHSPI != LHSPE; LHSPI++) {
6414        bool SuperImplementsProtocol = false;
6415        ObjCProtocolDecl *LHSProto = (*LHSPI);
6416
6417        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6418             SuperClassInheritedProtocols.begin(),
6419             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6420          ObjCProtocolDecl *SuperClassProto = (*I);
6421          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6422            SuperImplementsProtocol = true;
6423            break;
6424          }
6425        }
6426        if (!SuperImplementsProtocol)
6427          return false;
6428      }
6429      return true;
6430    }
6431    return false;
6432  }
6433
6434  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6435                                     LHSPE = LHS->qual_end();
6436       LHSPI != LHSPE; LHSPI++) {
6437    bool RHSImplementsProtocol = false;
6438
6439    // If the RHS doesn't implement the protocol on the left, the types
6440    // are incompatible.
6441    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6442                                       RHSPE = RHS->qual_end();
6443         RHSPI != RHSPE; RHSPI++) {
6444      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6445        RHSImplementsProtocol = true;
6446        break;
6447      }
6448    }
6449    // FIXME: For better diagnostics, consider passing back the protocol name.
6450    if (!RHSImplementsProtocol)
6451      return false;
6452  }
6453  // The RHS implements all protocols listed on the LHS.
6454  return true;
6455}
6456
6457bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6458  // get the "pointed to" types
6459  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6460  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6461
6462  if (!LHSOPT || !RHSOPT)
6463    return false;
6464
6465  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6466         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6467}
6468
6469bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6470  return canAssignObjCInterfaces(
6471                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6472                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6473}
6474
6475/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6476/// both shall have the identically qualified version of a compatible type.
6477/// C99 6.2.7p1: Two types have compatible types if their types are the
6478/// same. See 6.7.[2,3,5] for additional rules.
6479bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6480                                    bool CompareUnqualified) {
6481  if (getLangOpts().CPlusPlus)
6482    return hasSameType(LHS, RHS);
6483
6484  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6485}
6486
6487bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6488  return typesAreCompatible(LHS, RHS);
6489}
6490
6491bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6492  return !mergeTypes(LHS, RHS, true).isNull();
6493}
6494
6495/// mergeTransparentUnionType - if T is a transparent union type and a member
6496/// of T is compatible with SubType, return the merged type, else return
6497/// QualType()
6498QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6499                                               bool OfBlockPointer,
6500                                               bool Unqualified) {
6501  if (const RecordType *UT = T->getAsUnionType()) {
6502    RecordDecl *UD = UT->getDecl();
6503    if (UD->hasAttr<TransparentUnionAttr>()) {
6504      for (RecordDecl::field_iterator it = UD->field_begin(),
6505           itend = UD->field_end(); it != itend; ++it) {
6506        QualType ET = it->getType().getUnqualifiedType();
6507        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6508        if (!MT.isNull())
6509          return MT;
6510      }
6511    }
6512  }
6513
6514  return QualType();
6515}
6516
6517/// mergeFunctionArgumentTypes - merge two types which appear as function
6518/// argument types
6519QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6520                                                bool OfBlockPointer,
6521                                                bool Unqualified) {
6522  // GNU extension: two types are compatible if they appear as a function
6523  // argument, one of the types is a transparent union type and the other
6524  // type is compatible with a union member
6525  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6526                                              Unqualified);
6527  if (!lmerge.isNull())
6528    return lmerge;
6529
6530  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6531                                              Unqualified);
6532  if (!rmerge.isNull())
6533    return rmerge;
6534
6535  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6536}
6537
6538QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6539                                        bool OfBlockPointer,
6540                                        bool Unqualified) {
6541  const FunctionType *lbase = lhs->getAs<FunctionType>();
6542  const FunctionType *rbase = rhs->getAs<FunctionType>();
6543  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6544  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6545  bool allLTypes = true;
6546  bool allRTypes = true;
6547
6548  // Check return type
6549  QualType retType;
6550  if (OfBlockPointer) {
6551    QualType RHS = rbase->getResultType();
6552    QualType LHS = lbase->getResultType();
6553    bool UnqualifiedResult = Unqualified;
6554    if (!UnqualifiedResult)
6555      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6556    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6557  }
6558  else
6559    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6560                         Unqualified);
6561  if (retType.isNull()) return QualType();
6562
6563  if (Unqualified)
6564    retType = retType.getUnqualifiedType();
6565
6566  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6567  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6568  if (Unqualified) {
6569    LRetType = LRetType.getUnqualifiedType();
6570    RRetType = RRetType.getUnqualifiedType();
6571  }
6572
6573  if (getCanonicalType(retType) != LRetType)
6574    allLTypes = false;
6575  if (getCanonicalType(retType) != RRetType)
6576    allRTypes = false;
6577
6578  // FIXME: double check this
6579  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6580  //                           rbase->getRegParmAttr() != 0 &&
6581  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6582  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6583  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6584
6585  // Compatible functions must have compatible calling conventions
6586  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6587    return QualType();
6588
6589  // Regparm is part of the calling convention.
6590  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6591    return QualType();
6592  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6593    return QualType();
6594
6595  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6596    return QualType();
6597
6598  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6599  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6600
6601  if (lbaseInfo.getNoReturn() != NoReturn)
6602    allLTypes = false;
6603  if (rbaseInfo.getNoReturn() != NoReturn)
6604    allRTypes = false;
6605
6606  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6607
6608  if (lproto && rproto) { // two C99 style function prototypes
6609    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6610           "C++ shouldn't be here");
6611    unsigned lproto_nargs = lproto->getNumArgs();
6612    unsigned rproto_nargs = rproto->getNumArgs();
6613
6614    // Compatible functions must have the same number of arguments
6615    if (lproto_nargs != rproto_nargs)
6616      return QualType();
6617
6618    // Variadic and non-variadic functions aren't compatible
6619    if (lproto->isVariadic() != rproto->isVariadic())
6620      return QualType();
6621
6622    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6623      return QualType();
6624
6625    if (LangOpts.ObjCAutoRefCount &&
6626        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6627      return QualType();
6628
6629    // Check argument compatibility
6630    SmallVector<QualType, 10> types;
6631    for (unsigned i = 0; i < lproto_nargs; i++) {
6632      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6633      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6634      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6635                                                    OfBlockPointer,
6636                                                    Unqualified);
6637      if (argtype.isNull()) return QualType();
6638
6639      if (Unqualified)
6640        argtype = argtype.getUnqualifiedType();
6641
6642      types.push_back(argtype);
6643      if (Unqualified) {
6644        largtype = largtype.getUnqualifiedType();
6645        rargtype = rargtype.getUnqualifiedType();
6646      }
6647
6648      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6649        allLTypes = false;
6650      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6651        allRTypes = false;
6652    }
6653
6654    if (allLTypes) return lhs;
6655    if (allRTypes) return rhs;
6656
6657    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6658    EPI.ExtInfo = einfo;
6659    return getFunctionType(retType, types.begin(), types.size(), EPI);
6660  }
6661
6662  if (lproto) allRTypes = false;
6663  if (rproto) allLTypes = false;
6664
6665  const FunctionProtoType *proto = lproto ? lproto : rproto;
6666  if (proto) {
6667    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6668    if (proto->isVariadic()) return QualType();
6669    // Check that the types are compatible with the types that
6670    // would result from default argument promotions (C99 6.7.5.3p15).
6671    // The only types actually affected are promotable integer
6672    // types and floats, which would be passed as a different
6673    // type depending on whether the prototype is visible.
6674    unsigned proto_nargs = proto->getNumArgs();
6675    for (unsigned i = 0; i < proto_nargs; ++i) {
6676      QualType argTy = proto->getArgType(i);
6677
6678      // Look at the converted type of enum types, since that is the type used
6679      // to pass enum values.
6680      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6681        argTy = Enum->getDecl()->getIntegerType();
6682        if (argTy.isNull())
6683          return QualType();
6684      }
6685
6686      if (argTy->isPromotableIntegerType() ||
6687          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6688        return QualType();
6689    }
6690
6691    if (allLTypes) return lhs;
6692    if (allRTypes) return rhs;
6693
6694    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6695    EPI.ExtInfo = einfo;
6696    return getFunctionType(retType, proto->arg_type_begin(),
6697                           proto->getNumArgs(), EPI);
6698  }
6699
6700  if (allLTypes) return lhs;
6701  if (allRTypes) return rhs;
6702  return getFunctionNoProtoType(retType, einfo);
6703}
6704
6705QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6706                                bool OfBlockPointer,
6707                                bool Unqualified, bool BlockReturnType) {
6708  // C++ [expr]: If an expression initially has the type "reference to T", the
6709  // type is adjusted to "T" prior to any further analysis, the expression
6710  // designates the object or function denoted by the reference, and the
6711  // expression is an lvalue unless the reference is an rvalue reference and
6712  // the expression is a function call (possibly inside parentheses).
6713  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6714  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6715
6716  if (Unqualified) {
6717    LHS = LHS.getUnqualifiedType();
6718    RHS = RHS.getUnqualifiedType();
6719  }
6720
6721  QualType LHSCan = getCanonicalType(LHS),
6722           RHSCan = getCanonicalType(RHS);
6723
6724  // If two types are identical, they are compatible.
6725  if (LHSCan == RHSCan)
6726    return LHS;
6727
6728  // If the qualifiers are different, the types aren't compatible... mostly.
6729  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6730  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6731  if (LQuals != RQuals) {
6732    // If any of these qualifiers are different, we have a type
6733    // mismatch.
6734    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6735        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6736        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6737      return QualType();
6738
6739    // Exactly one GC qualifier difference is allowed: __strong is
6740    // okay if the other type has no GC qualifier but is an Objective
6741    // C object pointer (i.e. implicitly strong by default).  We fix
6742    // this by pretending that the unqualified type was actually
6743    // qualified __strong.
6744    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6745    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6746    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6747
6748    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6749      return QualType();
6750
6751    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6752      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6753    }
6754    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6755      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6756    }
6757    return QualType();
6758  }
6759
6760  // Okay, qualifiers are equal.
6761
6762  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6763  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6764
6765  // We want to consider the two function types to be the same for these
6766  // comparisons, just force one to the other.
6767  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6768  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6769
6770  // Same as above for arrays
6771  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6772    LHSClass = Type::ConstantArray;
6773  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6774    RHSClass = Type::ConstantArray;
6775
6776  // ObjCInterfaces are just specialized ObjCObjects.
6777  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6778  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6779
6780  // Canonicalize ExtVector -> Vector.
6781  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6782  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6783
6784  // If the canonical type classes don't match.
6785  if (LHSClass != RHSClass) {
6786    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6787    // a signed integer type, or an unsigned integer type.
6788    // Compatibility is based on the underlying type, not the promotion
6789    // type.
6790    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6791      QualType TINT = ETy->getDecl()->getIntegerType();
6792      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6793        return RHS;
6794    }
6795    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6796      QualType TINT = ETy->getDecl()->getIntegerType();
6797      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6798        return LHS;
6799    }
6800    // allow block pointer type to match an 'id' type.
6801    if (OfBlockPointer && !BlockReturnType) {
6802       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6803         return LHS;
6804      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6805        return RHS;
6806    }
6807
6808    return QualType();
6809  }
6810
6811  // The canonical type classes match.
6812  switch (LHSClass) {
6813#define TYPE(Class, Base)
6814#define ABSTRACT_TYPE(Class, Base)
6815#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6816#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6817#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6818#include "clang/AST/TypeNodes.def"
6819    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6820
6821  case Type::LValueReference:
6822  case Type::RValueReference:
6823  case Type::MemberPointer:
6824    llvm_unreachable("C++ should never be in mergeTypes");
6825
6826  case Type::ObjCInterface:
6827  case Type::IncompleteArray:
6828  case Type::VariableArray:
6829  case Type::FunctionProto:
6830  case Type::ExtVector:
6831    llvm_unreachable("Types are eliminated above");
6832
6833  case Type::Pointer:
6834  {
6835    // Merge two pointer types, while trying to preserve typedef info
6836    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6837    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6838    if (Unqualified) {
6839      LHSPointee = LHSPointee.getUnqualifiedType();
6840      RHSPointee = RHSPointee.getUnqualifiedType();
6841    }
6842    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6843                                     Unqualified);
6844    if (ResultType.isNull()) return QualType();
6845    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6846      return LHS;
6847    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6848      return RHS;
6849    return getPointerType(ResultType);
6850  }
6851  case Type::BlockPointer:
6852  {
6853    // Merge two block pointer types, while trying to preserve typedef info
6854    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6855    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6856    if (Unqualified) {
6857      LHSPointee = LHSPointee.getUnqualifiedType();
6858      RHSPointee = RHSPointee.getUnqualifiedType();
6859    }
6860    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6861                                     Unqualified);
6862    if (ResultType.isNull()) return QualType();
6863    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6864      return LHS;
6865    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6866      return RHS;
6867    return getBlockPointerType(ResultType);
6868  }
6869  case Type::Atomic:
6870  {
6871    // Merge two pointer types, while trying to preserve typedef info
6872    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6873    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6874    if (Unqualified) {
6875      LHSValue = LHSValue.getUnqualifiedType();
6876      RHSValue = RHSValue.getUnqualifiedType();
6877    }
6878    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6879                                     Unqualified);
6880    if (ResultType.isNull()) return QualType();
6881    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6882      return LHS;
6883    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6884      return RHS;
6885    return getAtomicType(ResultType);
6886  }
6887  case Type::ConstantArray:
6888  {
6889    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6890    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6891    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6892      return QualType();
6893
6894    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6895    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6896    if (Unqualified) {
6897      LHSElem = LHSElem.getUnqualifiedType();
6898      RHSElem = RHSElem.getUnqualifiedType();
6899    }
6900
6901    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6902    if (ResultType.isNull()) return QualType();
6903    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6904      return LHS;
6905    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6906      return RHS;
6907    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6908                                          ArrayType::ArraySizeModifier(), 0);
6909    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6910                                          ArrayType::ArraySizeModifier(), 0);
6911    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6912    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6913    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6914      return LHS;
6915    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6916      return RHS;
6917    if (LVAT) {
6918      // FIXME: This isn't correct! But tricky to implement because
6919      // the array's size has to be the size of LHS, but the type
6920      // has to be different.
6921      return LHS;
6922    }
6923    if (RVAT) {
6924      // FIXME: This isn't correct! But tricky to implement because
6925      // the array's size has to be the size of RHS, but the type
6926      // has to be different.
6927      return RHS;
6928    }
6929    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6930    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6931    return getIncompleteArrayType(ResultType,
6932                                  ArrayType::ArraySizeModifier(), 0);
6933  }
6934  case Type::FunctionNoProto:
6935    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6936  case Type::Record:
6937  case Type::Enum:
6938    return QualType();
6939  case Type::Builtin:
6940    // Only exactly equal builtin types are compatible, which is tested above.
6941    return QualType();
6942  case Type::Complex:
6943    // Distinct complex types are incompatible.
6944    return QualType();
6945  case Type::Vector:
6946    // FIXME: The merged type should be an ExtVector!
6947    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6948                             RHSCan->getAs<VectorType>()))
6949      return LHS;
6950    return QualType();
6951  case Type::ObjCObject: {
6952    // Check if the types are assignment compatible.
6953    // FIXME: This should be type compatibility, e.g. whether
6954    // "LHS x; RHS x;" at global scope is legal.
6955    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6956    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6957    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6958      return LHS;
6959
6960    return QualType();
6961  }
6962  case Type::ObjCObjectPointer: {
6963    if (OfBlockPointer) {
6964      if (canAssignObjCInterfacesInBlockPointer(
6965                                          LHS->getAs<ObjCObjectPointerType>(),
6966                                          RHS->getAs<ObjCObjectPointerType>(),
6967                                          BlockReturnType))
6968        return LHS;
6969      return QualType();
6970    }
6971    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6972                                RHS->getAs<ObjCObjectPointerType>()))
6973      return LHS;
6974
6975    return QualType();
6976  }
6977  }
6978
6979  llvm_unreachable("Invalid Type::Class!");
6980}
6981
6982bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6983                   const FunctionProtoType *FromFunctionType,
6984                   const FunctionProtoType *ToFunctionType) {
6985  if (FromFunctionType->hasAnyConsumedArgs() !=
6986      ToFunctionType->hasAnyConsumedArgs())
6987    return false;
6988  FunctionProtoType::ExtProtoInfo FromEPI =
6989    FromFunctionType->getExtProtoInfo();
6990  FunctionProtoType::ExtProtoInfo ToEPI =
6991    ToFunctionType->getExtProtoInfo();
6992  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6993    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6994         ArgIdx != NumArgs; ++ArgIdx)  {
6995      if (FromEPI.ConsumedArguments[ArgIdx] !=
6996          ToEPI.ConsumedArguments[ArgIdx])
6997        return false;
6998    }
6999  return true;
7000}
7001
7002/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7003/// 'RHS' attributes and returns the merged version; including for function
7004/// return types.
7005QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7006  QualType LHSCan = getCanonicalType(LHS),
7007  RHSCan = getCanonicalType(RHS);
7008  // If two types are identical, they are compatible.
7009  if (LHSCan == RHSCan)
7010    return LHS;
7011  if (RHSCan->isFunctionType()) {
7012    if (!LHSCan->isFunctionType())
7013      return QualType();
7014    QualType OldReturnType =
7015      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7016    QualType NewReturnType =
7017      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7018    QualType ResReturnType =
7019      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7020    if (ResReturnType.isNull())
7021      return QualType();
7022    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7023      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7024      // In either case, use OldReturnType to build the new function type.
7025      const FunctionType *F = LHS->getAs<FunctionType>();
7026      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7027        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7028        EPI.ExtInfo = getFunctionExtInfo(LHS);
7029        QualType ResultType
7030          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
7031                            FPT->getNumArgs(), EPI);
7032        return ResultType;
7033      }
7034    }
7035    return QualType();
7036  }
7037
7038  // If the qualifiers are different, the types can still be merged.
7039  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7040  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7041  if (LQuals != RQuals) {
7042    // If any of these qualifiers are different, we have a type mismatch.
7043    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7044        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7045      return QualType();
7046
7047    // Exactly one GC qualifier difference is allowed: __strong is
7048    // okay if the other type has no GC qualifier but is an Objective
7049    // C object pointer (i.e. implicitly strong by default).  We fix
7050    // this by pretending that the unqualified type was actually
7051    // qualified __strong.
7052    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7053    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7054    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7055
7056    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7057      return QualType();
7058
7059    if (GC_L == Qualifiers::Strong)
7060      return LHS;
7061    if (GC_R == Qualifiers::Strong)
7062      return RHS;
7063    return QualType();
7064  }
7065
7066  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7067    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7068    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7069    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7070    if (ResQT == LHSBaseQT)
7071      return LHS;
7072    if (ResQT == RHSBaseQT)
7073      return RHS;
7074  }
7075  return QualType();
7076}
7077
7078//===----------------------------------------------------------------------===//
7079//                         Integer Predicates
7080//===----------------------------------------------------------------------===//
7081
7082unsigned ASTContext::getIntWidth(QualType T) const {
7083  if (const EnumType *ET = dyn_cast<EnumType>(T))
7084    T = ET->getDecl()->getIntegerType();
7085  if (T->isBooleanType())
7086    return 1;
7087  // For builtin types, just use the standard type sizing method
7088  return (unsigned)getTypeSize(T);
7089}
7090
7091QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7092  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7093
7094  // Turn <4 x signed int> -> <4 x unsigned int>
7095  if (const VectorType *VTy = T->getAs<VectorType>())
7096    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7097                         VTy->getNumElements(), VTy->getVectorKind());
7098
7099  // For enums, we return the unsigned version of the base type.
7100  if (const EnumType *ETy = T->getAs<EnumType>())
7101    T = ETy->getDecl()->getIntegerType();
7102
7103  const BuiltinType *BTy = T->getAs<BuiltinType>();
7104  assert(BTy && "Unexpected signed integer type");
7105  switch (BTy->getKind()) {
7106  case BuiltinType::Char_S:
7107  case BuiltinType::SChar:
7108    return UnsignedCharTy;
7109  case BuiltinType::Short:
7110    return UnsignedShortTy;
7111  case BuiltinType::Int:
7112    return UnsignedIntTy;
7113  case BuiltinType::Long:
7114    return UnsignedLongTy;
7115  case BuiltinType::LongLong:
7116    return UnsignedLongLongTy;
7117  case BuiltinType::Int128:
7118    return UnsignedInt128Ty;
7119  default:
7120    llvm_unreachable("Unexpected signed integer type");
7121  }
7122}
7123
7124ASTMutationListener::~ASTMutationListener() { }
7125
7126
7127//===----------------------------------------------------------------------===//
7128//                          Builtin Type Computation
7129//===----------------------------------------------------------------------===//
7130
7131/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7132/// pointer over the consumed characters.  This returns the resultant type.  If
7133/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7134/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7135/// a vector of "i*".
7136///
7137/// RequiresICE is filled in on return to indicate whether the value is required
7138/// to be an Integer Constant Expression.
7139static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7140                                  ASTContext::GetBuiltinTypeError &Error,
7141                                  bool &RequiresICE,
7142                                  bool AllowTypeModifiers) {
7143  // Modifiers.
7144  int HowLong = 0;
7145  bool Signed = false, Unsigned = false;
7146  RequiresICE = false;
7147
7148  // Read the prefixed modifiers first.
7149  bool Done = false;
7150  while (!Done) {
7151    switch (*Str++) {
7152    default: Done = true; --Str; break;
7153    case 'I':
7154      RequiresICE = true;
7155      break;
7156    case 'S':
7157      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7158      assert(!Signed && "Can't use 'S' modifier multiple times!");
7159      Signed = true;
7160      break;
7161    case 'U':
7162      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7163      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7164      Unsigned = true;
7165      break;
7166    case 'L':
7167      assert(HowLong <= 2 && "Can't have LLLL modifier");
7168      ++HowLong;
7169      break;
7170    }
7171  }
7172
7173  QualType Type;
7174
7175  // Read the base type.
7176  switch (*Str++) {
7177  default: llvm_unreachable("Unknown builtin type letter!");
7178  case 'v':
7179    assert(HowLong == 0 && !Signed && !Unsigned &&
7180           "Bad modifiers used with 'v'!");
7181    Type = Context.VoidTy;
7182    break;
7183  case 'f':
7184    assert(HowLong == 0 && !Signed && !Unsigned &&
7185           "Bad modifiers used with 'f'!");
7186    Type = Context.FloatTy;
7187    break;
7188  case 'd':
7189    assert(HowLong < 2 && !Signed && !Unsigned &&
7190           "Bad modifiers used with 'd'!");
7191    if (HowLong)
7192      Type = Context.LongDoubleTy;
7193    else
7194      Type = Context.DoubleTy;
7195    break;
7196  case 's':
7197    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7198    if (Unsigned)
7199      Type = Context.UnsignedShortTy;
7200    else
7201      Type = Context.ShortTy;
7202    break;
7203  case 'i':
7204    if (HowLong == 3)
7205      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7206    else if (HowLong == 2)
7207      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7208    else if (HowLong == 1)
7209      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7210    else
7211      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7212    break;
7213  case 'c':
7214    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7215    if (Signed)
7216      Type = Context.SignedCharTy;
7217    else if (Unsigned)
7218      Type = Context.UnsignedCharTy;
7219    else
7220      Type = Context.CharTy;
7221    break;
7222  case 'b': // boolean
7223    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7224    Type = Context.BoolTy;
7225    break;
7226  case 'z':  // size_t.
7227    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7228    Type = Context.getSizeType();
7229    break;
7230  case 'F':
7231    Type = Context.getCFConstantStringType();
7232    break;
7233  case 'G':
7234    Type = Context.getObjCIdType();
7235    break;
7236  case 'H':
7237    Type = Context.getObjCSelType();
7238    break;
7239  case 'M':
7240    Type = Context.getObjCSuperType();
7241    break;
7242  case 'a':
7243    Type = Context.getBuiltinVaListType();
7244    assert(!Type.isNull() && "builtin va list type not initialized!");
7245    break;
7246  case 'A':
7247    // This is a "reference" to a va_list; however, what exactly
7248    // this means depends on how va_list is defined. There are two
7249    // different kinds of va_list: ones passed by value, and ones
7250    // passed by reference.  An example of a by-value va_list is
7251    // x86, where va_list is a char*. An example of by-ref va_list
7252    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7253    // we want this argument to be a char*&; for x86-64, we want
7254    // it to be a __va_list_tag*.
7255    Type = Context.getBuiltinVaListType();
7256    assert(!Type.isNull() && "builtin va list type not initialized!");
7257    if (Type->isArrayType())
7258      Type = Context.getArrayDecayedType(Type);
7259    else
7260      Type = Context.getLValueReferenceType(Type);
7261    break;
7262  case 'V': {
7263    char *End;
7264    unsigned NumElements = strtoul(Str, &End, 10);
7265    assert(End != Str && "Missing vector size");
7266    Str = End;
7267
7268    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7269                                             RequiresICE, false);
7270    assert(!RequiresICE && "Can't require vector ICE");
7271
7272    // TODO: No way to make AltiVec vectors in builtins yet.
7273    Type = Context.getVectorType(ElementType, NumElements,
7274                                 VectorType::GenericVector);
7275    break;
7276  }
7277  case 'E': {
7278    char *End;
7279
7280    unsigned NumElements = strtoul(Str, &End, 10);
7281    assert(End != Str && "Missing vector size");
7282
7283    Str = End;
7284
7285    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7286                                             false);
7287    Type = Context.getExtVectorType(ElementType, NumElements);
7288    break;
7289  }
7290  case 'X': {
7291    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7292                                             false);
7293    assert(!RequiresICE && "Can't require complex ICE");
7294    Type = Context.getComplexType(ElementType);
7295    break;
7296  }
7297  case 'Y' : {
7298    Type = Context.getPointerDiffType();
7299    break;
7300  }
7301  case 'P':
7302    Type = Context.getFILEType();
7303    if (Type.isNull()) {
7304      Error = ASTContext::GE_Missing_stdio;
7305      return QualType();
7306    }
7307    break;
7308  case 'J':
7309    if (Signed)
7310      Type = Context.getsigjmp_bufType();
7311    else
7312      Type = Context.getjmp_bufType();
7313
7314    if (Type.isNull()) {
7315      Error = ASTContext::GE_Missing_setjmp;
7316      return QualType();
7317    }
7318    break;
7319  case 'K':
7320    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7321    Type = Context.getucontext_tType();
7322
7323    if (Type.isNull()) {
7324      Error = ASTContext::GE_Missing_ucontext;
7325      return QualType();
7326    }
7327    break;
7328  case 'p':
7329    Type = Context.getProcessIDType();
7330    break;
7331  }
7332
7333  // If there are modifiers and if we're allowed to parse them, go for it.
7334  Done = !AllowTypeModifiers;
7335  while (!Done) {
7336    switch (char c = *Str++) {
7337    default: Done = true; --Str; break;
7338    case '*':
7339    case '&': {
7340      // Both pointers and references can have their pointee types
7341      // qualified with an address space.
7342      char *End;
7343      unsigned AddrSpace = strtoul(Str, &End, 10);
7344      if (End != Str && AddrSpace != 0) {
7345        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7346        Str = End;
7347      }
7348      if (c == '*')
7349        Type = Context.getPointerType(Type);
7350      else
7351        Type = Context.getLValueReferenceType(Type);
7352      break;
7353    }
7354    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7355    case 'C':
7356      Type = Type.withConst();
7357      break;
7358    case 'D':
7359      Type = Context.getVolatileType(Type);
7360      break;
7361    case 'R':
7362      Type = Type.withRestrict();
7363      break;
7364    }
7365  }
7366
7367  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7368         "Integer constant 'I' type must be an integer");
7369
7370  return Type;
7371}
7372
7373/// GetBuiltinType - Return the type for the specified builtin.
7374QualType ASTContext::GetBuiltinType(unsigned Id,
7375                                    GetBuiltinTypeError &Error,
7376                                    unsigned *IntegerConstantArgs) const {
7377  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7378
7379  SmallVector<QualType, 8> ArgTypes;
7380
7381  bool RequiresICE = false;
7382  Error = GE_None;
7383  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7384                                       RequiresICE, true);
7385  if (Error != GE_None)
7386    return QualType();
7387
7388  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7389
7390  while (TypeStr[0] && TypeStr[0] != '.') {
7391    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7392    if (Error != GE_None)
7393      return QualType();
7394
7395    // If this argument is required to be an IntegerConstantExpression and the
7396    // caller cares, fill in the bitmask we return.
7397    if (RequiresICE && IntegerConstantArgs)
7398      *IntegerConstantArgs |= 1 << ArgTypes.size();
7399
7400    // Do array -> pointer decay.  The builtin should use the decayed type.
7401    if (Ty->isArrayType())
7402      Ty = getArrayDecayedType(Ty);
7403
7404    ArgTypes.push_back(Ty);
7405  }
7406
7407  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7408         "'.' should only occur at end of builtin type list!");
7409
7410  FunctionType::ExtInfo EI;
7411  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7412
7413  bool Variadic = (TypeStr[0] == '.');
7414
7415  // We really shouldn't be making a no-proto type here, especially in C++.
7416  if (ArgTypes.empty() && Variadic)
7417    return getFunctionNoProtoType(ResType, EI);
7418
7419  FunctionProtoType::ExtProtoInfo EPI;
7420  EPI.ExtInfo = EI;
7421  EPI.Variadic = Variadic;
7422
7423  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
7424}
7425
7426GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7427  GVALinkage External = GVA_StrongExternal;
7428
7429  Linkage L = FD->getLinkage();
7430  switch (L) {
7431  case NoLinkage:
7432  case InternalLinkage:
7433  case UniqueExternalLinkage:
7434    return GVA_Internal;
7435
7436  case ExternalLinkage:
7437    switch (FD->getTemplateSpecializationKind()) {
7438    case TSK_Undeclared:
7439    case TSK_ExplicitSpecialization:
7440      External = GVA_StrongExternal;
7441      break;
7442
7443    case TSK_ExplicitInstantiationDefinition:
7444      return GVA_ExplicitTemplateInstantiation;
7445
7446    case TSK_ExplicitInstantiationDeclaration:
7447    case TSK_ImplicitInstantiation:
7448      External = GVA_TemplateInstantiation;
7449      break;
7450    }
7451  }
7452
7453  if (!FD->isInlined())
7454    return External;
7455
7456  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7457    // GNU or C99 inline semantics. Determine whether this symbol should be
7458    // externally visible.
7459    if (FD->isInlineDefinitionExternallyVisible())
7460      return External;
7461
7462    // C99 inline semantics, where the symbol is not externally visible.
7463    return GVA_C99Inline;
7464  }
7465
7466  // C++0x [temp.explicit]p9:
7467  //   [ Note: The intent is that an inline function that is the subject of
7468  //   an explicit instantiation declaration will still be implicitly
7469  //   instantiated when used so that the body can be considered for
7470  //   inlining, but that no out-of-line copy of the inline function would be
7471  //   generated in the translation unit. -- end note ]
7472  if (FD->getTemplateSpecializationKind()
7473                                       == TSK_ExplicitInstantiationDeclaration)
7474    return GVA_C99Inline;
7475
7476  return GVA_CXXInline;
7477}
7478
7479GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7480  // If this is a static data member, compute the kind of template
7481  // specialization. Otherwise, this variable is not part of a
7482  // template.
7483  TemplateSpecializationKind TSK = TSK_Undeclared;
7484  if (VD->isStaticDataMember())
7485    TSK = VD->getTemplateSpecializationKind();
7486
7487  Linkage L = VD->getLinkage();
7488  assert (!(L == ExternalLinkage && getLangOpts().CPlusPlus &&
7489            VD->getType()->getLinkage() == UniqueExternalLinkage));
7490
7491  switch (L) {
7492  case NoLinkage:
7493  case InternalLinkage:
7494  case UniqueExternalLinkage:
7495    return GVA_Internal;
7496
7497  case ExternalLinkage:
7498    switch (TSK) {
7499    case TSK_Undeclared:
7500    case TSK_ExplicitSpecialization:
7501      return GVA_StrongExternal;
7502
7503    case TSK_ExplicitInstantiationDeclaration:
7504      llvm_unreachable("Variable should not be instantiated");
7505      // Fall through to treat this like any other instantiation.
7506
7507    case TSK_ExplicitInstantiationDefinition:
7508      return GVA_ExplicitTemplateInstantiation;
7509
7510    case TSK_ImplicitInstantiation:
7511      return GVA_TemplateInstantiation;
7512    }
7513  }
7514
7515  llvm_unreachable("Invalid Linkage!");
7516}
7517
7518bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7519  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7520    if (!VD->isFileVarDecl())
7521      return false;
7522  } else if (!isa<FunctionDecl>(D))
7523    return false;
7524
7525  // Weak references don't produce any output by themselves.
7526  if (D->hasAttr<WeakRefAttr>())
7527    return false;
7528
7529  // Aliases and used decls are required.
7530  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7531    return true;
7532
7533  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7534    // Forward declarations aren't required.
7535    if (!FD->doesThisDeclarationHaveABody())
7536      return FD->doesDeclarationForceExternallyVisibleDefinition();
7537
7538    // Constructors and destructors are required.
7539    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7540      return true;
7541
7542    // The key function for a class is required.
7543    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7544      const CXXRecordDecl *RD = MD->getParent();
7545      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7546        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7547        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7548          return true;
7549      }
7550    }
7551
7552    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7553
7554    // static, static inline, always_inline, and extern inline functions can
7555    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7556    // Implicit template instantiations can also be deferred in C++.
7557    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7558        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7559      return false;
7560    return true;
7561  }
7562
7563  const VarDecl *VD = cast<VarDecl>(D);
7564  assert(VD->isFileVarDecl() && "Expected file scoped var");
7565
7566  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7567    return false;
7568
7569  // Variables that can be needed in other TUs are required.
7570  GVALinkage L = GetGVALinkageForVariable(VD);
7571  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7572    return true;
7573
7574  // Variables that have destruction with side-effects are required.
7575  if (VD->getType().isDestructedType())
7576    return true;
7577
7578  // Variables that have initialization with side-effects are required.
7579  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7580    return true;
7581
7582  return false;
7583}
7584
7585CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7586  // Pass through to the C++ ABI object
7587  return ABI->getDefaultMethodCallConv(isVariadic);
7588}
7589
7590CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7591  if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
7592    return CC_Default;
7593  return CC;
7594}
7595
7596bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7597  // Pass through to the C++ ABI object
7598  return ABI->isNearlyEmpty(RD);
7599}
7600
7601MangleContext *ASTContext::createMangleContext() {
7602  switch (Target->getCXXABI()) {
7603  case CXXABI_ARM:
7604  case CXXABI_Itanium:
7605    return createItaniumMangleContext(*this, getDiagnostics());
7606  case CXXABI_Microsoft:
7607    return createMicrosoftMangleContext(*this, getDiagnostics());
7608  }
7609  llvm_unreachable("Unsupported ABI");
7610}
7611
7612CXXABI::~CXXABI() {}
7613
7614size_t ASTContext::getSideTableAllocatedMemory() const {
7615  return ASTRecordLayouts.getMemorySize()
7616    + llvm::capacity_in_bytes(ObjCLayouts)
7617    + llvm::capacity_in_bytes(KeyFunctions)
7618    + llvm::capacity_in_bytes(ObjCImpls)
7619    + llvm::capacity_in_bytes(BlockVarCopyInits)
7620    + llvm::capacity_in_bytes(DeclAttrs)
7621    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7622    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7623    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7624    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7625    + llvm::capacity_in_bytes(OverriddenMethods)
7626    + llvm::capacity_in_bytes(Types)
7627    + llvm::capacity_in_bytes(VariableArrayTypes)
7628    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7629}
7630
7631void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7632  // FIXME: This mangling should be applied to function local classes too
7633  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7634      !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
7635    return;
7636
7637  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7638    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7639  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7640}
7641
7642int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7643  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7644    UnnamedMangleNumbers.find(Tag);
7645  return I != UnnamedMangleNumbers.end() ? I->second : -1;
7646}
7647
7648unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7649  CXXRecordDecl *Lambda = CallOperator->getParent();
7650  return LambdaMangleContexts[Lambda->getDeclContext()]
7651           .getManglingNumber(CallOperator);
7652}
7653
7654
7655void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7656  ParamIndices[D] = index;
7657}
7658
7659unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7660  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7661  assert(I != ParamIndices.end() &&
7662         "ParmIndices lacks entry set by ParmVarDecl");
7663  return I->second;
7664}
7665