ASTContext.cpp revision d3a23b238a2b2c0f11e6ac4951c7410a8c5717bf
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "RecordLayoutBuilder.h"
29
30using namespace clang;
31
32enum FloatingRank {
33  FloatRank, DoubleRank, LongDoubleRank
34};
35
36ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
37                       TargetInfo &t,
38                       IdentifierTable &idents, SelectorTable &sels,
39                       Builtin::Context &builtins,
40                       bool FreeMem, unsigned size_reserve) :
41  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
42  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
43  sigjmp_bufDecl(0), SourceMgr(SM), LangOpts(LOpts),
44  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
45  Idents(idents), Selectors(sels),
46  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
47  ObjCIdRedefinitionType = QualType();
48  ObjCClassRedefinitionType = QualType();
49  if (size_reserve > 0) Types.reserve(size_reserve);
50  TUDecl = TranslationUnitDecl::Create(*this);
51  InitBuiltinTypes();
52}
53
54ASTContext::~ASTContext() {
55  // Deallocate all the types.
56  while (!Types.empty()) {
57    Types.back()->Destroy(*this);
58    Types.pop_back();
59  }
60
61  {
62    llvm::FoldingSet<ExtQuals>::iterator
63      I = ExtQualNodes.begin(), E = ExtQualNodes.end();
64    while (I != E)
65      Deallocate(&*I++);
66  }
67
68  {
69    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
70      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
71    while (I != E) {
72      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
73      delete R;
74    }
75  }
76
77  {
78    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
79      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
80    while (I != E) {
81      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
82      delete R;
83    }
84  }
85
86  // Destroy nested-name-specifiers.
87  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
88         NNS = NestedNameSpecifiers.begin(),
89         NNSEnd = NestedNameSpecifiers.end();
90       NNS != NNSEnd;
91       /* Increment in loop */)
92    (*NNS++).Destroy(*this);
93
94  if (GlobalNestedNameSpecifier)
95    GlobalNestedNameSpecifier->Destroy(*this);
96
97  TUDecl->Destroy(*this);
98}
99
100void
101ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
102  ExternalSource.reset(Source.take());
103}
104
105void ASTContext::PrintStats() const {
106  fprintf(stderr, "*** AST Context Stats:\n");
107  fprintf(stderr, "  %d types total.\n", (int)Types.size());
108
109  unsigned counts[] = {
110#define TYPE(Name, Parent) 0,
111#define ABSTRACT_TYPE(Name, Parent)
112#include "clang/AST/TypeNodes.def"
113    0 // Extra
114  };
115
116  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
117    Type *T = Types[i];
118    counts[(unsigned)T->getTypeClass()]++;
119  }
120
121  unsigned Idx = 0;
122  unsigned TotalBytes = 0;
123#define TYPE(Name, Parent)                                              \
124  if (counts[Idx])                                                      \
125    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
126  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
127  ++Idx;
128#define ABSTRACT_TYPE(Name, Parent)
129#include "clang/AST/TypeNodes.def"
130
131  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
132
133  if (ExternalSource.get()) {
134    fprintf(stderr, "\n");
135    ExternalSource->PrintStats();
136  }
137}
138
139
140void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
141  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
142  R = QualType(Ty, 0);
143  Types.push_back(Ty);
144}
145
146void ASTContext::InitBuiltinTypes() {
147  assert(VoidTy.isNull() && "Context reinitialized?");
148
149  // C99 6.2.5p19.
150  InitBuiltinType(VoidTy,              BuiltinType::Void);
151
152  // C99 6.2.5p2.
153  InitBuiltinType(BoolTy,              BuiltinType::Bool);
154  // C99 6.2.5p3.
155  if (LangOpts.CharIsSigned)
156    InitBuiltinType(CharTy,            BuiltinType::Char_S);
157  else
158    InitBuiltinType(CharTy,            BuiltinType::Char_U);
159  // C99 6.2.5p4.
160  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
161  InitBuiltinType(ShortTy,             BuiltinType::Short);
162  InitBuiltinType(IntTy,               BuiltinType::Int);
163  InitBuiltinType(LongTy,              BuiltinType::Long);
164  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
165
166  // C99 6.2.5p6.
167  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
168  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
169  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
170  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
171  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
172
173  // C99 6.2.5p10.
174  InitBuiltinType(FloatTy,             BuiltinType::Float);
175  InitBuiltinType(DoubleTy,            BuiltinType::Double);
176  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
177
178  // GNU extension, 128-bit integers.
179  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
180  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
181
182  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
183    InitBuiltinType(WCharTy,           BuiltinType::WChar);
184  else // C99
185    WCharTy = getFromTargetType(Target.getWCharType());
186
187  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
188    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
189  else // C99
190    Char16Ty = getFromTargetType(Target.getChar16Type());
191
192  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
193    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
194  else // C99
195    Char32Ty = getFromTargetType(Target.getChar32Type());
196
197  // Placeholder type for functions.
198  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
199
200  // Placeholder type for type-dependent expressions whose type is
201  // completely unknown. No code should ever check a type against
202  // DependentTy and users should never see it; however, it is here to
203  // help diagnose failures to properly check for type-dependent
204  // expressions.
205  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
206
207  // Placeholder type for C++0x auto declarations whose real type has
208  // not yet been deduced.
209  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
210
211  // C99 6.2.5p11.
212  FloatComplexTy      = getComplexType(FloatTy);
213  DoubleComplexTy     = getComplexType(DoubleTy);
214  LongDoubleComplexTy = getComplexType(LongDoubleTy);
215
216  BuiltinVaListType = QualType();
217
218  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
219  ObjCIdTypedefType = QualType();
220  ObjCClassTypedefType = QualType();
221
222  // Builtin types for 'id' and 'Class'.
223  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
224  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
225
226  ObjCConstantStringType = QualType();
227
228  // void * type
229  VoidPtrTy = getPointerType(VoidTy);
230
231  // nullptr type (C++0x 2.14.7)
232  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
233}
234
235VarDecl *ASTContext::getInstantiatedFromStaticDataMember(VarDecl *Var) {
236  assert(Var->isStaticDataMember() && "Not a static data member");
237  llvm::DenseMap<VarDecl *, VarDecl *>::iterator Pos
238    = InstantiatedFromStaticDataMember.find(Var);
239  if (Pos == InstantiatedFromStaticDataMember.end())
240    return 0;
241
242  return Pos->second;
243}
244
245void
246ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl) {
247  assert(Inst->isStaticDataMember() && "Not a static data member");
248  assert(Tmpl->isStaticDataMember() && "Not a static data member");
249  assert(!InstantiatedFromStaticDataMember[Inst] &&
250         "Already noted what static data member was instantiated from");
251  InstantiatedFromStaticDataMember[Inst] = Tmpl;
252}
253
254UnresolvedUsingDecl *
255ASTContext::getInstantiatedFromUnresolvedUsingDecl(UsingDecl *UUD) {
256  llvm::DenseMap<UsingDecl *, UnresolvedUsingDecl *>::iterator Pos
257    = InstantiatedFromUnresolvedUsingDecl.find(UUD);
258  if (Pos == InstantiatedFromUnresolvedUsingDecl.end())
259    return 0;
260
261  return Pos->second;
262}
263
264void
265ASTContext::setInstantiatedFromUnresolvedUsingDecl(UsingDecl *UD,
266                                                   UnresolvedUsingDecl *UUD) {
267  assert(!InstantiatedFromUnresolvedUsingDecl[UD] &&
268         "Already noted what using decl what instantiated from");
269  InstantiatedFromUnresolvedUsingDecl[UD] = UUD;
270}
271
272FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
273  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
274    = InstantiatedFromUnnamedFieldDecl.find(Field);
275  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
276    return 0;
277
278  return Pos->second;
279}
280
281void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
282                                                     FieldDecl *Tmpl) {
283  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
284  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
285  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
286         "Already noted what unnamed field was instantiated from");
287
288  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
289}
290
291namespace {
292  class BeforeInTranslationUnit
293    : std::binary_function<SourceRange, SourceRange, bool> {
294    SourceManager *SourceMgr;
295
296  public:
297    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
298
299    bool operator()(SourceRange X, SourceRange Y) {
300      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
301    }
302  };
303}
304
305/// \brief Determine whether the given comment is a Doxygen-style comment.
306///
307/// \param Start the start of the comment text.
308///
309/// \param End the end of the comment text.
310///
311/// \param Member whether we want to check whether this is a member comment
312/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
313/// we only return true when we find a non-member comment.
314static bool
315isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
316                 bool Member = false) {
317  const char *BufferStart
318    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
319  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
320  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
321
322  if (End - Start < 4)
323    return false;
324
325  assert(Start[0] == '/' && "Not a comment?");
326  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
327    return false;
328  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
329    return false;
330
331  return (Start[3] == '<') == Member;
332}
333
334/// \brief Retrieve the comment associated with the given declaration, if
335/// it has one.
336const char *ASTContext::getCommentForDecl(const Decl *D) {
337  if (!D)
338    return 0;
339
340  // Check whether we have cached a comment string for this declaration
341  // already.
342  llvm::DenseMap<const Decl *, std::string>::iterator Pos
343    = DeclComments.find(D);
344  if (Pos != DeclComments.end())
345    return Pos->second.c_str();
346
347  // If we have an external AST source and have not yet loaded comments from
348  // that source, do so now.
349  if (ExternalSource && !LoadedExternalComments) {
350    std::vector<SourceRange> LoadedComments;
351    ExternalSource->ReadComments(LoadedComments);
352
353    if (!LoadedComments.empty())
354      Comments.insert(Comments.begin(), LoadedComments.begin(),
355                      LoadedComments.end());
356
357    LoadedExternalComments = true;
358  }
359
360  // If there are no comments anywhere, we won't find anything.
361  if (Comments.empty())
362    return 0;
363
364  // If the declaration doesn't map directly to a location in a file, we
365  // can't find the comment.
366  SourceLocation DeclStartLoc = D->getLocStart();
367  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
368    return 0;
369
370  // Find the comment that occurs just before this declaration.
371  std::vector<SourceRange>::iterator LastComment
372    = std::lower_bound(Comments.begin(), Comments.end(),
373                       SourceRange(DeclStartLoc),
374                       BeforeInTranslationUnit(&SourceMgr));
375
376  // Decompose the location for the start of the declaration and find the
377  // beginning of the file buffer.
378  std::pair<FileID, unsigned> DeclStartDecomp
379    = SourceMgr.getDecomposedLoc(DeclStartLoc);
380  const char *FileBufferStart
381    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
382
383  // First check whether we have a comment for a member.
384  if (LastComment != Comments.end() &&
385      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
386      isDoxygenComment(SourceMgr, *LastComment, true)) {
387    std::pair<FileID, unsigned> LastCommentEndDecomp
388      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
389    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
390        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
391          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
392                                     LastCommentEndDecomp.second)) {
393      // The Doxygen member comment comes after the declaration starts and
394      // is on the same line and in the same file as the declaration. This
395      // is the comment we want.
396      std::string &Result = DeclComments[D];
397      Result.append(FileBufferStart +
398                      SourceMgr.getFileOffset(LastComment->getBegin()),
399                    FileBufferStart + LastCommentEndDecomp.second + 1);
400      return Result.c_str();
401    }
402  }
403
404  if (LastComment == Comments.begin())
405    return 0;
406  --LastComment;
407
408  // Decompose the end of the comment.
409  std::pair<FileID, unsigned> LastCommentEndDecomp
410    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
411
412  // If the comment and the declaration aren't in the same file, then they
413  // aren't related.
414  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
415    return 0;
416
417  // Check that we actually have a Doxygen comment.
418  if (!isDoxygenComment(SourceMgr, *LastComment))
419    return 0;
420
421  // Compute the starting line for the declaration and for the end of the
422  // comment (this is expensive).
423  unsigned DeclStartLine
424    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
425  unsigned CommentEndLine
426    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
427                              LastCommentEndDecomp.second);
428
429  // If the comment does not end on the line prior to the declaration, then
430  // the comment is not associated with the declaration at all.
431  if (CommentEndLine + 1 != DeclStartLine)
432    return 0;
433
434  // We have a comment, but there may be more comments on the previous lines.
435  // Keep looking so long as the comments are still Doxygen comments and are
436  // still adjacent.
437  unsigned ExpectedLine
438    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
439  std::vector<SourceRange>::iterator FirstComment = LastComment;
440  while (FirstComment != Comments.begin()) {
441    // Look at the previous comment
442    --FirstComment;
443    std::pair<FileID, unsigned> Decomp
444      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
445
446    // If this previous comment is in a different file, we're done.
447    if (Decomp.first != DeclStartDecomp.first) {
448      ++FirstComment;
449      break;
450    }
451
452    // If this comment is not a Doxygen comment, we're done.
453    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
454      ++FirstComment;
455      break;
456    }
457
458    // If the line number is not what we expected, we're done.
459    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
460    if (Line != ExpectedLine) {
461      ++FirstComment;
462      break;
463    }
464
465    // Set the next expected line number.
466    ExpectedLine
467      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
468  }
469
470  // The iterator range [FirstComment, LastComment] contains all of the
471  // BCPL comments that, together, are associated with this declaration.
472  // Form a single comment block string for this declaration that concatenates
473  // all of these comments.
474  std::string &Result = DeclComments[D];
475  while (FirstComment != LastComment) {
476    std::pair<FileID, unsigned> DecompStart
477      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
478    std::pair<FileID, unsigned> DecompEnd
479      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
480    Result.append(FileBufferStart + DecompStart.second,
481                  FileBufferStart + DecompEnd.second + 1);
482    ++FirstComment;
483  }
484
485  // Append the last comment line.
486  Result.append(FileBufferStart +
487                  SourceMgr.getFileOffset(LastComment->getBegin()),
488                FileBufferStart + LastCommentEndDecomp.second + 1);
489  return Result.c_str();
490}
491
492//===----------------------------------------------------------------------===//
493//                         Type Sizing and Analysis
494//===----------------------------------------------------------------------===//
495
496/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
497/// scalar floating point type.
498const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
499  const BuiltinType *BT = T->getAs<BuiltinType>();
500  assert(BT && "Not a floating point type!");
501  switch (BT->getKind()) {
502  default: assert(0 && "Not a floating point type!");
503  case BuiltinType::Float:      return Target.getFloatFormat();
504  case BuiltinType::Double:     return Target.getDoubleFormat();
505  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
506  }
507}
508
509/// getDeclAlignInBytes - Return a conservative estimate of the alignment of the
510/// specified decl.  Note that bitfields do not have a valid alignment, so
511/// this method will assert on them.
512unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
513  unsigned Align = Target.getCharWidth();
514
515  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
516    Align = std::max(Align, AA->getAlignment());
517
518  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
519    QualType T = VD->getType();
520    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
521      unsigned AS = RT->getPointeeType().getAddressSpace();
522      Align = Target.getPointerAlign(AS);
523    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
524      // Incomplete or function types default to 1.
525      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
526        T = cast<ArrayType>(T)->getElementType();
527
528      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
529    }
530  }
531
532  return Align / Target.getCharWidth();
533}
534
535/// getTypeSize - Return the size of the specified type, in bits.  This method
536/// does not work on incomplete types.
537///
538/// FIXME: Pointers into different addr spaces could have different sizes and
539/// alignment requirements: getPointerInfo should take an AddrSpace, this
540/// should take a QualType, &c.
541std::pair<uint64_t, unsigned>
542ASTContext::getTypeInfo(const Type *T) {
543  uint64_t Width=0;
544  unsigned Align=8;
545  switch (T->getTypeClass()) {
546#define TYPE(Class, Base)
547#define ABSTRACT_TYPE(Class, Base)
548#define NON_CANONICAL_TYPE(Class, Base)
549#define DEPENDENT_TYPE(Class, Base) case Type::Class:
550#include "clang/AST/TypeNodes.def"
551    assert(false && "Should not see dependent types");
552    break;
553
554  case Type::FunctionNoProto:
555  case Type::FunctionProto:
556    // GCC extension: alignof(function) = 32 bits
557    Width = 0;
558    Align = 32;
559    break;
560
561  case Type::IncompleteArray:
562  case Type::VariableArray:
563    Width = 0;
564    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
565    break;
566
567  case Type::ConstantArrayWithExpr:
568  case Type::ConstantArrayWithoutExpr:
569  case Type::ConstantArray: {
570    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
571
572    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
573    Width = EltInfo.first*CAT->getSize().getZExtValue();
574    Align = EltInfo.second;
575    break;
576  }
577  case Type::ExtVector:
578  case Type::Vector: {
579    std::pair<uint64_t, unsigned> EltInfo =
580      getTypeInfo(cast<VectorType>(T)->getElementType());
581    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
582    Align = Width;
583    // If the alignment is not a power of 2, round up to the next power of 2.
584    // This happens for non-power-of-2 length vectors.
585    // FIXME: this should probably be a target property.
586    Align = 1 << llvm::Log2_32_Ceil(Align);
587    break;
588  }
589
590  case Type::Builtin:
591    switch (cast<BuiltinType>(T)->getKind()) {
592    default: assert(0 && "Unknown builtin type!");
593    case BuiltinType::Void:
594      // GCC extension: alignof(void) = 8 bits.
595      Width = 0;
596      Align = 8;
597      break;
598
599    case BuiltinType::Bool:
600      Width = Target.getBoolWidth();
601      Align = Target.getBoolAlign();
602      break;
603    case BuiltinType::Char_S:
604    case BuiltinType::Char_U:
605    case BuiltinType::UChar:
606    case BuiltinType::SChar:
607      Width = Target.getCharWidth();
608      Align = Target.getCharAlign();
609      break;
610    case BuiltinType::WChar:
611      Width = Target.getWCharWidth();
612      Align = Target.getWCharAlign();
613      break;
614    case BuiltinType::Char16:
615      Width = Target.getChar16Width();
616      Align = Target.getChar16Align();
617      break;
618    case BuiltinType::Char32:
619      Width = Target.getChar32Width();
620      Align = Target.getChar32Align();
621      break;
622    case BuiltinType::UShort:
623    case BuiltinType::Short:
624      Width = Target.getShortWidth();
625      Align = Target.getShortAlign();
626      break;
627    case BuiltinType::UInt:
628    case BuiltinType::Int:
629      Width = Target.getIntWidth();
630      Align = Target.getIntAlign();
631      break;
632    case BuiltinType::ULong:
633    case BuiltinType::Long:
634      Width = Target.getLongWidth();
635      Align = Target.getLongAlign();
636      break;
637    case BuiltinType::ULongLong:
638    case BuiltinType::LongLong:
639      Width = Target.getLongLongWidth();
640      Align = Target.getLongLongAlign();
641      break;
642    case BuiltinType::Int128:
643    case BuiltinType::UInt128:
644      Width = 128;
645      Align = 128; // int128_t is 128-bit aligned on all targets.
646      break;
647    case BuiltinType::Float:
648      Width = Target.getFloatWidth();
649      Align = Target.getFloatAlign();
650      break;
651    case BuiltinType::Double:
652      Width = Target.getDoubleWidth();
653      Align = Target.getDoubleAlign();
654      break;
655    case BuiltinType::LongDouble:
656      Width = Target.getLongDoubleWidth();
657      Align = Target.getLongDoubleAlign();
658      break;
659    case BuiltinType::NullPtr:
660      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
661      Align = Target.getPointerAlign(0); //   == sizeof(void*)
662      break;
663    }
664    break;
665  case Type::FixedWidthInt:
666    // FIXME: This isn't precisely correct; the width/alignment should depend
667    // on the available types for the target
668    Width = cast<FixedWidthIntType>(T)->getWidth();
669    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
670    Align = Width;
671    break;
672  case Type::ObjCObjectPointer:
673    Width = Target.getPointerWidth(0);
674    Align = Target.getPointerAlign(0);
675    break;
676  case Type::BlockPointer: {
677    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
678    Width = Target.getPointerWidth(AS);
679    Align = Target.getPointerAlign(AS);
680    break;
681  }
682  case Type::Pointer: {
683    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
684    Width = Target.getPointerWidth(AS);
685    Align = Target.getPointerAlign(AS);
686    break;
687  }
688  case Type::LValueReference:
689  case Type::RValueReference:
690    // "When applied to a reference or a reference type, the result is the size
691    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
692    // FIXME: This is wrong for struct layout: a reference in a struct has
693    // pointer size.
694    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
695  case Type::MemberPointer: {
696    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
697    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
698    // If we ever want to support other ABIs this needs to be abstracted.
699
700    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
701    std::pair<uint64_t, unsigned> PtrDiffInfo =
702      getTypeInfo(getPointerDiffType());
703    Width = PtrDiffInfo.first;
704    if (Pointee->isFunctionType())
705      Width *= 2;
706    Align = PtrDiffInfo.second;
707    break;
708  }
709  case Type::Complex: {
710    // Complex types have the same alignment as their elements, but twice the
711    // size.
712    std::pair<uint64_t, unsigned> EltInfo =
713      getTypeInfo(cast<ComplexType>(T)->getElementType());
714    Width = EltInfo.first*2;
715    Align = EltInfo.second;
716    break;
717  }
718  case Type::ObjCInterface: {
719    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
720    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
721    Width = Layout.getSize();
722    Align = Layout.getAlignment();
723    break;
724  }
725  case Type::Record:
726  case Type::Enum: {
727    const TagType *TT = cast<TagType>(T);
728
729    if (TT->getDecl()->isInvalidDecl()) {
730      Width = 1;
731      Align = 1;
732      break;
733    }
734
735    if (const EnumType *ET = dyn_cast<EnumType>(TT))
736      return getTypeInfo(ET->getDecl()->getIntegerType());
737
738    const RecordType *RT = cast<RecordType>(TT);
739    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
740    Width = Layout.getSize();
741    Align = Layout.getAlignment();
742    break;
743  }
744
745  case Type::Elaborated: {
746    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType().getTypePtr());
747  }
748
749  case Type::Typedef: {
750    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
751    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
752      Align = Aligned->getAlignment();
753      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
754    } else
755      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
756    break;
757  }
758
759  case Type::TypeOfExpr:
760    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
761                         .getTypePtr());
762
763  case Type::TypeOf:
764    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
765
766  case Type::Decltype:
767    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
768                        .getTypePtr());
769
770  case Type::QualifiedName:
771    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
772
773  case Type::TemplateSpecialization:
774    assert(getCanonicalType(T) != T &&
775           "Cannot request the size of a dependent type");
776    // FIXME: this is likely to be wrong once we support template
777    // aliases, since a template alias could refer to a typedef that
778    // has an __aligned__ attribute on it.
779    return getTypeInfo(getCanonicalType(T));
780  }
781
782  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
783  return std::make_pair(Width, Align);
784}
785
786/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
787/// type for the current target in bits.  This can be different than the ABI
788/// alignment in cases where it is beneficial for performance to overalign
789/// a data type.
790unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
791  unsigned ABIAlign = getTypeAlign(T);
792
793  // Double and long long should be naturally aligned if possible.
794  if (const ComplexType* CT = T->getAs<ComplexType>())
795    T = CT->getElementType().getTypePtr();
796  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
797      T->isSpecificBuiltinType(BuiltinType::LongLong))
798    return std::max(ABIAlign, (unsigned)getTypeSize(T));
799
800  return ABIAlign;
801}
802
803static void CollectLocalObjCIvars(ASTContext *Ctx,
804                                  const ObjCInterfaceDecl *OI,
805                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
806  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
807       E = OI->ivar_end(); I != E; ++I) {
808    ObjCIvarDecl *IVDecl = *I;
809    if (!IVDecl->isInvalidDecl())
810      Fields.push_back(cast<FieldDecl>(IVDecl));
811  }
812}
813
814void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
815                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
816  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
817    CollectObjCIvars(SuperClass, Fields);
818  CollectLocalObjCIvars(this, OI, Fields);
819}
820
821/// ShallowCollectObjCIvars -
822/// Collect all ivars, including those synthesized, in the current class.
823///
824void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
825                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
826                                 bool CollectSynthesized) {
827  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
828         E = OI->ivar_end(); I != E; ++I) {
829     Ivars.push_back(*I);
830  }
831  if (CollectSynthesized)
832    CollectSynthesizedIvars(OI, Ivars);
833}
834
835void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
836                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
837  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
838       E = PD->prop_end(); I != E; ++I)
839    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
840      Ivars.push_back(Ivar);
841
842  // Also look into nested protocols.
843  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
844       E = PD->protocol_end(); P != E; ++P)
845    CollectProtocolSynthesizedIvars(*P, Ivars);
846}
847
848/// CollectSynthesizedIvars -
849/// This routine collect synthesized ivars for the designated class.
850///
851void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
852                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
853  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
854       E = OI->prop_end(); I != E; ++I) {
855    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
856      Ivars.push_back(Ivar);
857  }
858  // Also look into interface's protocol list for properties declared
859  // in the protocol and whose ivars are synthesized.
860  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
861       PE = OI->protocol_end(); P != PE; ++P) {
862    ObjCProtocolDecl *PD = (*P);
863    CollectProtocolSynthesizedIvars(PD, Ivars);
864  }
865}
866
867unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
868  unsigned count = 0;
869  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
870       E = PD->prop_end(); I != E; ++I)
871    if ((*I)->getPropertyIvarDecl())
872      ++count;
873
874  // Also look into nested protocols.
875  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
876       E = PD->protocol_end(); P != E; ++P)
877    count += CountProtocolSynthesizedIvars(*P);
878  return count;
879}
880
881unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
882  unsigned count = 0;
883  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
884       E = OI->prop_end(); I != E; ++I) {
885    if ((*I)->getPropertyIvarDecl())
886      ++count;
887  }
888  // Also look into interface's protocol list for properties declared
889  // in the protocol and whose ivars are synthesized.
890  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
891       PE = OI->protocol_end(); P != PE; ++P) {
892    ObjCProtocolDecl *PD = (*P);
893    count += CountProtocolSynthesizedIvars(PD);
894  }
895  return count;
896}
897
898/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
899ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
900  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
901    I = ObjCImpls.find(D);
902  if (I != ObjCImpls.end())
903    return cast<ObjCImplementationDecl>(I->second);
904  return 0;
905}
906/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
907ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
908  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
909    I = ObjCImpls.find(D);
910  if (I != ObjCImpls.end())
911    return cast<ObjCCategoryImplDecl>(I->second);
912  return 0;
913}
914
915/// \brief Set the implementation of ObjCInterfaceDecl.
916void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
917                           ObjCImplementationDecl *ImplD) {
918  assert(IFaceD && ImplD && "Passed null params");
919  ObjCImpls[IFaceD] = ImplD;
920}
921/// \brief Set the implementation of ObjCCategoryDecl.
922void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
923                           ObjCCategoryImplDecl *ImplD) {
924  assert(CatD && ImplD && "Passed null params");
925  ObjCImpls[CatD] = ImplD;
926}
927
928/// \brief Allocate an uninitialized DeclaratorInfo.
929///
930/// The caller should initialize the memory held by DeclaratorInfo using
931/// the TypeLoc wrappers.
932///
933/// \param T the type that will be the basis for type source info. This type
934/// should refer to how the declarator was written in source code, not to
935/// what type semantic analysis resolved the declarator to.
936DeclaratorInfo *ASTContext::CreateDeclaratorInfo(QualType T) {
937  unsigned DataSize = TypeLoc::getFullDataSizeForType(T);
938  DeclaratorInfo *DInfo =
939    (DeclaratorInfo*)BumpAlloc.Allocate(sizeof(DeclaratorInfo) + DataSize, 8);
940  new (DInfo) DeclaratorInfo(T);
941  return DInfo;
942}
943
944/// getInterfaceLayoutImpl - Get or compute information about the
945/// layout of the given interface.
946///
947/// \param Impl - If given, also include the layout of the interface's
948/// implementation. This may differ by including synthesized ivars.
949const ASTRecordLayout &
950ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
951                          const ObjCImplementationDecl *Impl) {
952  assert(!D->isForwardDecl() && "Invalid interface decl!");
953
954  // Look up this layout, if already laid out, return what we have.
955  ObjCContainerDecl *Key =
956    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
957  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
958    return *Entry;
959
960  // Add in synthesized ivar count if laying out an implementation.
961  if (Impl) {
962    unsigned FieldCount = D->ivar_size();
963    unsigned SynthCount = CountSynthesizedIvars(D);
964    FieldCount += SynthCount;
965    // If there aren't any sythesized ivars then reuse the interface
966    // entry. Note we can't cache this because we simply free all
967    // entries later; however we shouldn't look up implementations
968    // frequently.
969    if (SynthCount == 0)
970      return getObjCLayout(D, 0);
971  }
972
973  const ASTRecordLayout *NewEntry =
974    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
975  ObjCLayouts[Key] = NewEntry;
976
977  return *NewEntry;
978}
979
980const ASTRecordLayout &
981ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
982  return getObjCLayout(D, 0);
983}
984
985const ASTRecordLayout &
986ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
987  return getObjCLayout(D->getClassInterface(), D);
988}
989
990/// getASTRecordLayout - Get or compute information about the layout of the
991/// specified record (struct/union/class), which indicates its size and field
992/// position information.
993const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
994  D = D->getDefinition(*this);
995  assert(D && "Cannot get layout of forward declarations!");
996
997  // Look up this layout, if already laid out, return what we have.
998  // Note that we can't save a reference to the entry because this function
999  // is recursive.
1000  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1001  if (Entry) return *Entry;
1002
1003  const ASTRecordLayout *NewEntry =
1004    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1005  ASTRecordLayouts[D] = NewEntry;
1006
1007  return *NewEntry;
1008}
1009
1010//===----------------------------------------------------------------------===//
1011//                   Type creation/memoization methods
1012//===----------------------------------------------------------------------===//
1013
1014QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1015  unsigned Fast = Quals.getFastQualifiers();
1016  Quals.removeFastQualifiers();
1017
1018  // Check if we've already instantiated this type.
1019  llvm::FoldingSetNodeID ID;
1020  ExtQuals::Profile(ID, TypeNode, Quals);
1021  void *InsertPos = 0;
1022  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1023    assert(EQ->getQualifiers() == Quals);
1024    QualType T = QualType(EQ, Fast);
1025    return T;
1026  }
1027
1028  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1029  ExtQualNodes.InsertNode(New, InsertPos);
1030  QualType T = QualType(New, Fast);
1031  return T;
1032}
1033
1034QualType ASTContext::getVolatileType(QualType T) {
1035  QualType CanT = getCanonicalType(T);
1036  if (CanT.isVolatileQualified()) return T;
1037
1038  QualifierCollector Quals;
1039  const Type *TypeNode = Quals.strip(T);
1040  Quals.addVolatile();
1041
1042  return getExtQualType(TypeNode, Quals);
1043}
1044
1045QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1046  QualType CanT = getCanonicalType(T);
1047  if (CanT.getAddressSpace() == AddressSpace)
1048    return T;
1049
1050  // If we are composing extended qualifiers together, merge together
1051  // into one ExtQuals node.
1052  QualifierCollector Quals;
1053  const Type *TypeNode = Quals.strip(T);
1054
1055  // If this type already has an address space specified, it cannot get
1056  // another one.
1057  assert(!Quals.hasAddressSpace() &&
1058         "Type cannot be in multiple addr spaces!");
1059  Quals.addAddressSpace(AddressSpace);
1060
1061  return getExtQualType(TypeNode, Quals);
1062}
1063
1064QualType ASTContext::getObjCGCQualType(QualType T,
1065                                       Qualifiers::GC GCAttr) {
1066  QualType CanT = getCanonicalType(T);
1067  if (CanT.getObjCGCAttr() == GCAttr)
1068    return T;
1069
1070  if (T->isPointerType()) {
1071    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1072    if (Pointee->isAnyPointerType()) {
1073      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1074      return getPointerType(ResultType);
1075    }
1076  }
1077
1078  // If we are composing extended qualifiers together, merge together
1079  // into one ExtQuals node.
1080  QualifierCollector Quals;
1081  const Type *TypeNode = Quals.strip(T);
1082
1083  // If this type already has an ObjCGC specified, it cannot get
1084  // another one.
1085  assert(!Quals.hasObjCGCAttr() &&
1086         "Type cannot have multiple ObjCGCs!");
1087  Quals.addObjCGCAttr(GCAttr);
1088
1089  return getExtQualType(TypeNode, Quals);
1090}
1091
1092QualType ASTContext::getNoReturnType(QualType T) {
1093  QualType ResultType;
1094  if (T->isPointerType()) {
1095    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1096    ResultType = getNoReturnType(Pointee);
1097    ResultType = getPointerType(ResultType);
1098  } else if (T->isBlockPointerType()) {
1099    QualType Pointee = T->getAs<BlockPointerType>()->getPointeeType();
1100    ResultType = getNoReturnType(Pointee);
1101    ResultType = getBlockPointerType(ResultType);
1102  } else {
1103    assert (T->isFunctionType()
1104            && "can't noreturn qualify non-pointer to function or block type");
1105
1106    if (const FunctionNoProtoType *FNPT = T->getAs<FunctionNoProtoType>()) {
1107      ResultType = getFunctionNoProtoType(FNPT->getResultType(), true);
1108    } else {
1109      const FunctionProtoType *F = T->getAs<FunctionProtoType>();
1110      ResultType
1111        = getFunctionType(F->getResultType(), F->arg_type_begin(),
1112                          F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1113                          F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1114                          F->getNumExceptions(), F->exception_begin(), true);
1115    }
1116  }
1117
1118  return getQualifiedType(ResultType, T.getQualifiers());
1119}
1120
1121/// getComplexType - Return the uniqued reference to the type for a complex
1122/// number with the specified element type.
1123QualType ASTContext::getComplexType(QualType T) {
1124  // Unique pointers, to guarantee there is only one pointer of a particular
1125  // structure.
1126  llvm::FoldingSetNodeID ID;
1127  ComplexType::Profile(ID, T);
1128
1129  void *InsertPos = 0;
1130  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1131    return QualType(CT, 0);
1132
1133  // If the pointee type isn't canonical, this won't be a canonical type either,
1134  // so fill in the canonical type field.
1135  QualType Canonical;
1136  if (!T->isCanonical()) {
1137    Canonical = getComplexType(getCanonicalType(T));
1138
1139    // Get the new insert position for the node we care about.
1140    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1141    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1142  }
1143  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1144  Types.push_back(New);
1145  ComplexTypes.InsertNode(New, InsertPos);
1146  return QualType(New, 0);
1147}
1148
1149QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1150  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1151     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1152  FixedWidthIntType *&Entry = Map[Width];
1153  if (!Entry)
1154    Entry = new FixedWidthIntType(Width, Signed);
1155  return QualType(Entry, 0);
1156}
1157
1158/// getPointerType - Return the uniqued reference to the type for a pointer to
1159/// the specified type.
1160QualType ASTContext::getPointerType(QualType T) {
1161  // Unique pointers, to guarantee there is only one pointer of a particular
1162  // structure.
1163  llvm::FoldingSetNodeID ID;
1164  PointerType::Profile(ID, T);
1165
1166  void *InsertPos = 0;
1167  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1168    return QualType(PT, 0);
1169
1170  // If the pointee type isn't canonical, this won't be a canonical type either,
1171  // so fill in the canonical type field.
1172  QualType Canonical;
1173  if (!T->isCanonical()) {
1174    Canonical = getPointerType(getCanonicalType(T));
1175
1176    // Get the new insert position for the node we care about.
1177    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1178    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1179  }
1180  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1181  Types.push_back(New);
1182  PointerTypes.InsertNode(New, InsertPos);
1183  return QualType(New, 0);
1184}
1185
1186/// getBlockPointerType - Return the uniqued reference to the type for
1187/// a pointer to the specified block.
1188QualType ASTContext::getBlockPointerType(QualType T) {
1189  assert(T->isFunctionType() && "block of function types only");
1190  // Unique pointers, to guarantee there is only one block of a particular
1191  // structure.
1192  llvm::FoldingSetNodeID ID;
1193  BlockPointerType::Profile(ID, T);
1194
1195  void *InsertPos = 0;
1196  if (BlockPointerType *PT =
1197        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1198    return QualType(PT, 0);
1199
1200  // If the block pointee type isn't canonical, this won't be a canonical
1201  // type either so fill in the canonical type field.
1202  QualType Canonical;
1203  if (!T->isCanonical()) {
1204    Canonical = getBlockPointerType(getCanonicalType(T));
1205
1206    // Get the new insert position for the node we care about.
1207    BlockPointerType *NewIP =
1208      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1209    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1210  }
1211  BlockPointerType *New
1212    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1213  Types.push_back(New);
1214  BlockPointerTypes.InsertNode(New, InsertPos);
1215  return QualType(New, 0);
1216}
1217
1218/// getLValueReferenceType - Return the uniqued reference to the type for an
1219/// lvalue reference to the specified type.
1220QualType ASTContext::getLValueReferenceType(QualType T) {
1221  // Unique pointers, to guarantee there is only one pointer of a particular
1222  // structure.
1223  llvm::FoldingSetNodeID ID;
1224  ReferenceType::Profile(ID, T);
1225
1226  void *InsertPos = 0;
1227  if (LValueReferenceType *RT =
1228        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1229    return QualType(RT, 0);
1230
1231  // If the referencee type isn't canonical, this won't be a canonical type
1232  // either, so fill in the canonical type field.
1233  QualType Canonical;
1234  if (!T->isCanonical()) {
1235    Canonical = getLValueReferenceType(getCanonicalType(T));
1236
1237    // Get the new insert position for the node we care about.
1238    LValueReferenceType *NewIP =
1239      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1240    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1241  }
1242
1243  LValueReferenceType *New
1244    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical);
1245  Types.push_back(New);
1246  LValueReferenceTypes.InsertNode(New, InsertPos);
1247  return QualType(New, 0);
1248}
1249
1250/// getRValueReferenceType - Return the uniqued reference to the type for an
1251/// rvalue reference to the specified type.
1252QualType ASTContext::getRValueReferenceType(QualType T) {
1253  // Unique pointers, to guarantee there is only one pointer of a particular
1254  // structure.
1255  llvm::FoldingSetNodeID ID;
1256  ReferenceType::Profile(ID, T);
1257
1258  void *InsertPos = 0;
1259  if (RValueReferenceType *RT =
1260        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1261    return QualType(RT, 0);
1262
1263  // If the referencee type isn't canonical, this won't be a canonical type
1264  // either, so fill in the canonical type field.
1265  QualType Canonical;
1266  if (!T->isCanonical()) {
1267    Canonical = getRValueReferenceType(getCanonicalType(T));
1268
1269    // Get the new insert position for the node we care about.
1270    RValueReferenceType *NewIP =
1271      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1272    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1273  }
1274
1275  RValueReferenceType *New
1276    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1277  Types.push_back(New);
1278  RValueReferenceTypes.InsertNode(New, InsertPos);
1279  return QualType(New, 0);
1280}
1281
1282/// getMemberPointerType - Return the uniqued reference to the type for a
1283/// member pointer to the specified type, in the specified class.
1284QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1285  // Unique pointers, to guarantee there is only one pointer of a particular
1286  // structure.
1287  llvm::FoldingSetNodeID ID;
1288  MemberPointerType::Profile(ID, T, Cls);
1289
1290  void *InsertPos = 0;
1291  if (MemberPointerType *PT =
1292      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1293    return QualType(PT, 0);
1294
1295  // If the pointee or class type isn't canonical, this won't be a canonical
1296  // type either, so fill in the canonical type field.
1297  QualType Canonical;
1298  if (!T->isCanonical()) {
1299    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1300
1301    // Get the new insert position for the node we care about.
1302    MemberPointerType *NewIP =
1303      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1304    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1305  }
1306  MemberPointerType *New
1307    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1308  Types.push_back(New);
1309  MemberPointerTypes.InsertNode(New, InsertPos);
1310  return QualType(New, 0);
1311}
1312
1313/// getConstantArrayType - Return the unique reference to the type for an
1314/// array of the specified element type.
1315QualType ASTContext::getConstantArrayType(QualType EltTy,
1316                                          const llvm::APInt &ArySizeIn,
1317                                          ArrayType::ArraySizeModifier ASM,
1318                                          unsigned EltTypeQuals) {
1319  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1320         "Constant array of VLAs is illegal!");
1321
1322  // Convert the array size into a canonical width matching the pointer size for
1323  // the target.
1324  llvm::APInt ArySize(ArySizeIn);
1325  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1326
1327  llvm::FoldingSetNodeID ID;
1328  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1329
1330  void *InsertPos = 0;
1331  if (ConstantArrayType *ATP =
1332      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1333    return QualType(ATP, 0);
1334
1335  // If the element type isn't canonical, this won't be a canonical type either,
1336  // so fill in the canonical type field.
1337  QualType Canonical;
1338  if (!EltTy->isCanonical()) {
1339    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1340                                     ASM, EltTypeQuals);
1341    // Get the new insert position for the node we care about.
1342    ConstantArrayType *NewIP =
1343      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1344    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1345  }
1346
1347  ConstantArrayType *New = new(*this,TypeAlignment)
1348    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1349  ConstantArrayTypes.InsertNode(New, InsertPos);
1350  Types.push_back(New);
1351  return QualType(New, 0);
1352}
1353
1354/// getConstantArrayWithExprType - Return a reference to the type for
1355/// an array of the specified element type.
1356QualType
1357ASTContext::getConstantArrayWithExprType(QualType EltTy,
1358                                         const llvm::APInt &ArySizeIn,
1359                                         Expr *ArySizeExpr,
1360                                         ArrayType::ArraySizeModifier ASM,
1361                                         unsigned EltTypeQuals,
1362                                         SourceRange Brackets) {
1363  // Convert the array size into a canonical width matching the pointer
1364  // size for the target.
1365  llvm::APInt ArySize(ArySizeIn);
1366  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1367
1368  // Compute the canonical ConstantArrayType.
1369  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1370                                            ArySize, ASM, EltTypeQuals);
1371  // Since we don't unique expressions, it isn't possible to unique VLA's
1372  // that have an expression provided for their size.
1373  ConstantArrayWithExprType *New = new(*this, TypeAlignment)
1374    ConstantArrayWithExprType(EltTy, Canonical, ArySize, ArySizeExpr,
1375                              ASM, EltTypeQuals, Brackets);
1376  Types.push_back(New);
1377  return QualType(New, 0);
1378}
1379
1380/// getConstantArrayWithoutExprType - Return a reference to the type for
1381/// an array of the specified element type.
1382QualType
1383ASTContext::getConstantArrayWithoutExprType(QualType EltTy,
1384                                            const llvm::APInt &ArySizeIn,
1385                                            ArrayType::ArraySizeModifier ASM,
1386                                            unsigned EltTypeQuals) {
1387  // Convert the array size into a canonical width matching the pointer
1388  // size for the target.
1389  llvm::APInt ArySize(ArySizeIn);
1390  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1391
1392  // Compute the canonical ConstantArrayType.
1393  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1394                                            ArySize, ASM, EltTypeQuals);
1395  ConstantArrayWithoutExprType *New = new(*this, TypeAlignment)
1396    ConstantArrayWithoutExprType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1397  Types.push_back(New);
1398  return QualType(New, 0);
1399}
1400
1401/// getVariableArrayType - Returns a non-unique reference to the type for a
1402/// variable array of the specified element type.
1403QualType ASTContext::getVariableArrayType(QualType EltTy,
1404                                          Expr *NumElts,
1405                                          ArrayType::ArraySizeModifier ASM,
1406                                          unsigned EltTypeQuals,
1407                                          SourceRange Brackets) {
1408  // Since we don't unique expressions, it isn't possible to unique VLA's
1409  // that have an expression provided for their size.
1410
1411  VariableArrayType *New = new(*this, TypeAlignment)
1412    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1413
1414  VariableArrayTypes.push_back(New);
1415  Types.push_back(New);
1416  return QualType(New, 0);
1417}
1418
1419/// getDependentSizedArrayType - Returns a non-unique reference to
1420/// the type for a dependently-sized array of the specified element
1421/// type.
1422QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1423                                                Expr *NumElts,
1424                                                ArrayType::ArraySizeModifier ASM,
1425                                                unsigned EltTypeQuals,
1426                                                SourceRange Brackets) {
1427  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1428         "Size must be type- or value-dependent!");
1429
1430  llvm::FoldingSetNodeID ID;
1431  DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1432                                   EltTypeQuals, NumElts);
1433
1434  void *InsertPos = 0;
1435  DependentSizedArrayType *Canon
1436    = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1437  DependentSizedArrayType *New;
1438  if (Canon) {
1439    // We already have a canonical version of this array type; use it as
1440    // the canonical type for a newly-built type.
1441    New = new (*this, TypeAlignment)
1442      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1443                              NumElts, ASM, EltTypeQuals, Brackets);
1444  } else {
1445    QualType CanonEltTy = getCanonicalType(EltTy);
1446    if (CanonEltTy == EltTy) {
1447      New = new (*this, TypeAlignment)
1448        DependentSizedArrayType(*this, EltTy, QualType(),
1449                                NumElts, ASM, EltTypeQuals, Brackets);
1450      DependentSizedArrayTypes.InsertNode(New, InsertPos);
1451    } else {
1452      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1453                                                  ASM, EltTypeQuals,
1454                                                  SourceRange());
1455      New = new (*this, TypeAlignment)
1456        DependentSizedArrayType(*this, EltTy, Canon,
1457                                NumElts, ASM, EltTypeQuals, Brackets);
1458    }
1459  }
1460
1461  Types.push_back(New);
1462  return QualType(New, 0);
1463}
1464
1465QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1466                                            ArrayType::ArraySizeModifier ASM,
1467                                            unsigned EltTypeQuals) {
1468  llvm::FoldingSetNodeID ID;
1469  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1470
1471  void *InsertPos = 0;
1472  if (IncompleteArrayType *ATP =
1473       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1474    return QualType(ATP, 0);
1475
1476  // If the element type isn't canonical, this won't be a canonical type
1477  // either, so fill in the canonical type field.
1478  QualType Canonical;
1479
1480  if (!EltTy->isCanonical()) {
1481    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1482                                       ASM, EltTypeQuals);
1483
1484    // Get the new insert position for the node we care about.
1485    IncompleteArrayType *NewIP =
1486      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1487    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1488  }
1489
1490  IncompleteArrayType *New = new (*this, TypeAlignment)
1491    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1492
1493  IncompleteArrayTypes.InsertNode(New, InsertPos);
1494  Types.push_back(New);
1495  return QualType(New, 0);
1496}
1497
1498/// getVectorType - Return the unique reference to a vector type of
1499/// the specified element type and size. VectorType must be a built-in type.
1500QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1501  BuiltinType *baseType;
1502
1503  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1504  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1505
1506  // Check if we've already instantiated a vector of this type.
1507  llvm::FoldingSetNodeID ID;
1508  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1509  void *InsertPos = 0;
1510  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1511    return QualType(VTP, 0);
1512
1513  // If the element type isn't canonical, this won't be a canonical type either,
1514  // so fill in the canonical type field.
1515  QualType Canonical;
1516  if (!vecType->isCanonical()) {
1517    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1518
1519    // Get the new insert position for the node we care about.
1520    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1521    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1522  }
1523  VectorType *New = new (*this, TypeAlignment)
1524    VectorType(vecType, NumElts, Canonical);
1525  VectorTypes.InsertNode(New, InsertPos);
1526  Types.push_back(New);
1527  return QualType(New, 0);
1528}
1529
1530/// getExtVectorType - Return the unique reference to an extended vector type of
1531/// the specified element type and size. VectorType must be a built-in type.
1532QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1533  BuiltinType *baseType;
1534
1535  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1536  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1537
1538  // Check if we've already instantiated a vector of this type.
1539  llvm::FoldingSetNodeID ID;
1540  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1541  void *InsertPos = 0;
1542  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1543    return QualType(VTP, 0);
1544
1545  // If the element type isn't canonical, this won't be a canonical type either,
1546  // so fill in the canonical type field.
1547  QualType Canonical;
1548  if (!vecType->isCanonical()) {
1549    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1550
1551    // Get the new insert position for the node we care about.
1552    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1553    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1554  }
1555  ExtVectorType *New = new (*this, TypeAlignment)
1556    ExtVectorType(vecType, NumElts, Canonical);
1557  VectorTypes.InsertNode(New, InsertPos);
1558  Types.push_back(New);
1559  return QualType(New, 0);
1560}
1561
1562QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1563                                                    Expr *SizeExpr,
1564                                                    SourceLocation AttrLoc) {
1565  llvm::FoldingSetNodeID ID;
1566  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1567                                       SizeExpr);
1568
1569  void *InsertPos = 0;
1570  DependentSizedExtVectorType *Canon
1571    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1572  DependentSizedExtVectorType *New;
1573  if (Canon) {
1574    // We already have a canonical version of this array type; use it as
1575    // the canonical type for a newly-built type.
1576    New = new (*this, TypeAlignment)
1577      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1578                                  SizeExpr, AttrLoc);
1579  } else {
1580    QualType CanonVecTy = getCanonicalType(vecType);
1581    if (CanonVecTy == vecType) {
1582      New = new (*this, TypeAlignment)
1583        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1584                                    AttrLoc);
1585      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1586    } else {
1587      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1588                                                      SourceLocation());
1589      New = new (*this, TypeAlignment)
1590        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1591    }
1592  }
1593
1594  Types.push_back(New);
1595  return QualType(New, 0);
1596}
1597
1598/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1599///
1600QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1601  // Unique functions, to guarantee there is only one function of a particular
1602  // structure.
1603  llvm::FoldingSetNodeID ID;
1604  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1605
1606  void *InsertPos = 0;
1607  if (FunctionNoProtoType *FT =
1608        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1609    return QualType(FT, 0);
1610
1611  QualType Canonical;
1612  if (!ResultTy->isCanonical()) {
1613    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1614
1615    // Get the new insert position for the node we care about.
1616    FunctionNoProtoType *NewIP =
1617      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1618    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1619  }
1620
1621  FunctionNoProtoType *New = new (*this, TypeAlignment)
1622    FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1623  Types.push_back(New);
1624  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1625  return QualType(New, 0);
1626}
1627
1628/// getFunctionType - Return a normal function type with a typed argument
1629/// list.  isVariadic indicates whether the argument list includes '...'.
1630QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1631                                     unsigned NumArgs, bool isVariadic,
1632                                     unsigned TypeQuals, bool hasExceptionSpec,
1633                                     bool hasAnyExceptionSpec, unsigned NumExs,
1634                                     const QualType *ExArray, bool NoReturn) {
1635  if (LangOpts.CPlusPlus) {
1636    for (unsigned i = 0; i != NumArgs; ++i)
1637      assert(!ArgArray[i].hasQualifiers() &&
1638             "C++ arguments can't have toplevel qualifiers!");
1639  }
1640
1641  // Unique functions, to guarantee there is only one function of a particular
1642  // structure.
1643  llvm::FoldingSetNodeID ID;
1644  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1645                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1646                             NumExs, ExArray, NoReturn);
1647
1648  void *InsertPos = 0;
1649  if (FunctionProtoType *FTP =
1650        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1651    return QualType(FTP, 0);
1652
1653  // Determine whether the type being created is already canonical or not.
1654  bool isCanonical = ResultTy->isCanonical();
1655  if (hasExceptionSpec)
1656    isCanonical = false;
1657  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1658    if (!ArgArray[i]->isCanonical())
1659      isCanonical = false;
1660
1661  // If this type isn't canonical, get the canonical version of it.
1662  // The exception spec is not part of the canonical type.
1663  QualType Canonical;
1664  if (!isCanonical) {
1665    llvm::SmallVector<QualType, 16> CanonicalArgs;
1666    CanonicalArgs.reserve(NumArgs);
1667    for (unsigned i = 0; i != NumArgs; ++i)
1668      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1669
1670    Canonical = getFunctionType(getCanonicalType(ResultTy),
1671                                CanonicalArgs.data(), NumArgs,
1672                                isVariadic, TypeQuals, false,
1673                                false, 0, 0, NoReturn);
1674
1675    // Get the new insert position for the node we care about.
1676    FunctionProtoType *NewIP =
1677      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1678    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1679  }
1680
1681  // FunctionProtoType objects are allocated with extra bytes after them
1682  // for two variable size arrays (for parameter and exception types) at the
1683  // end of them.
1684  FunctionProtoType *FTP =
1685    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1686                                 NumArgs*sizeof(QualType) +
1687                                 NumExs*sizeof(QualType), TypeAlignment);
1688  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1689                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1690                              ExArray, NumExs, Canonical, NoReturn);
1691  Types.push_back(FTP);
1692  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1693  return QualType(FTP, 0);
1694}
1695
1696/// getTypeDeclType - Return the unique reference to the type for the
1697/// specified type declaration.
1698QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1699  assert(Decl && "Passed null for Decl param");
1700  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1701
1702  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1703    return getTypedefType(Typedef);
1704  else if (isa<TemplateTypeParmDecl>(Decl)) {
1705    assert(false && "Template type parameter types are always available.");
1706  } else if (ObjCInterfaceDecl *ObjCInterface
1707               = dyn_cast<ObjCInterfaceDecl>(Decl))
1708    return getObjCInterfaceType(ObjCInterface);
1709
1710  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1711    if (PrevDecl)
1712      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1713    else
1714      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1715  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1716    if (PrevDecl)
1717      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1718    else
1719      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1720  } else
1721    assert(false && "TypeDecl without a type?");
1722
1723  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1724  return QualType(Decl->TypeForDecl, 0);
1725}
1726
1727/// getTypedefType - Return the unique reference to the type for the
1728/// specified typename decl.
1729QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1730  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1731
1732  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1733  Decl->TypeForDecl = new(*this, TypeAlignment)
1734    TypedefType(Type::Typedef, Decl, Canonical);
1735  Types.push_back(Decl->TypeForDecl);
1736  return QualType(Decl->TypeForDecl, 0);
1737}
1738
1739/// \brief Retrieve the template type parameter type for a template
1740/// parameter or parameter pack with the given depth, index, and (optionally)
1741/// name.
1742QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1743                                             bool ParameterPack,
1744                                             IdentifierInfo *Name) {
1745  llvm::FoldingSetNodeID ID;
1746  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1747  void *InsertPos = 0;
1748  TemplateTypeParmType *TypeParm
1749    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1750
1751  if (TypeParm)
1752    return QualType(TypeParm, 0);
1753
1754  if (Name) {
1755    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1756    TypeParm = new (*this, TypeAlignment)
1757      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1758  } else
1759    TypeParm = new (*this, TypeAlignment)
1760      TemplateTypeParmType(Depth, Index, ParameterPack);
1761
1762  Types.push_back(TypeParm);
1763  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1764
1765  return QualType(TypeParm, 0);
1766}
1767
1768QualType
1769ASTContext::getTemplateSpecializationType(TemplateName Template,
1770                                          const TemplateArgument *Args,
1771                                          unsigned NumArgs,
1772                                          QualType Canon) {
1773  if (!Canon.isNull())
1774    Canon = getCanonicalType(Canon);
1775  else {
1776    // Build the canonical template specialization type.
1777    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1778    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1779    CanonArgs.reserve(NumArgs);
1780    for (unsigned I = 0; I != NumArgs; ++I)
1781      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1782
1783    // Determine whether this canonical template specialization type already
1784    // exists.
1785    llvm::FoldingSetNodeID ID;
1786    TemplateSpecializationType::Profile(ID, CanonTemplate,
1787                                        CanonArgs.data(), NumArgs, *this);
1788
1789    void *InsertPos = 0;
1790    TemplateSpecializationType *Spec
1791      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1792
1793    if (!Spec) {
1794      // Allocate a new canonical template specialization type.
1795      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1796                            sizeof(TemplateArgument) * NumArgs),
1797                           TypeAlignment);
1798      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1799                                                  CanonArgs.data(), NumArgs,
1800                                                  Canon);
1801      Types.push_back(Spec);
1802      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1803    }
1804
1805    if (Canon.isNull())
1806      Canon = QualType(Spec, 0);
1807    assert(Canon->isDependentType() &&
1808           "Non-dependent template-id type must have a canonical type");
1809  }
1810
1811  // Allocate the (non-canonical) template specialization type, but don't
1812  // try to unique it: these types typically have location information that
1813  // we don't unique and don't want to lose.
1814  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1815                        sizeof(TemplateArgument) * NumArgs),
1816                       TypeAlignment);
1817  TemplateSpecializationType *Spec
1818    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1819                                           Canon);
1820
1821  Types.push_back(Spec);
1822  return QualType(Spec, 0);
1823}
1824
1825QualType
1826ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1827                                 QualType NamedType) {
1828  llvm::FoldingSetNodeID ID;
1829  QualifiedNameType::Profile(ID, NNS, NamedType);
1830
1831  void *InsertPos = 0;
1832  QualifiedNameType *T
1833    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1834  if (T)
1835    return QualType(T, 0);
1836
1837  T = new (*this) QualifiedNameType(NNS, NamedType,
1838                                    getCanonicalType(NamedType));
1839  Types.push_back(T);
1840  QualifiedNameTypes.InsertNode(T, InsertPos);
1841  return QualType(T, 0);
1842}
1843
1844QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1845                                     const IdentifierInfo *Name,
1846                                     QualType Canon) {
1847  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1848
1849  if (Canon.isNull()) {
1850    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1851    if (CanonNNS != NNS)
1852      Canon = getTypenameType(CanonNNS, Name);
1853  }
1854
1855  llvm::FoldingSetNodeID ID;
1856  TypenameType::Profile(ID, NNS, Name);
1857
1858  void *InsertPos = 0;
1859  TypenameType *T
1860    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1861  if (T)
1862    return QualType(T, 0);
1863
1864  T = new (*this) TypenameType(NNS, Name, Canon);
1865  Types.push_back(T);
1866  TypenameTypes.InsertNode(T, InsertPos);
1867  return QualType(T, 0);
1868}
1869
1870QualType
1871ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1872                            const TemplateSpecializationType *TemplateId,
1873                            QualType Canon) {
1874  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1875
1876  if (Canon.isNull()) {
1877    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1878    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1879    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1880      const TemplateSpecializationType *CanonTemplateId
1881        = CanonType->getAs<TemplateSpecializationType>();
1882      assert(CanonTemplateId &&
1883             "Canonical type must also be a template specialization type");
1884      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1885    }
1886  }
1887
1888  llvm::FoldingSetNodeID ID;
1889  TypenameType::Profile(ID, NNS, TemplateId);
1890
1891  void *InsertPos = 0;
1892  TypenameType *T
1893    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1894  if (T)
1895    return QualType(T, 0);
1896
1897  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1898  Types.push_back(T);
1899  TypenameTypes.InsertNode(T, InsertPos);
1900  return QualType(T, 0);
1901}
1902
1903QualType
1904ASTContext::getElaboratedType(QualType UnderlyingType,
1905                              ElaboratedType::TagKind Tag) {
1906  llvm::FoldingSetNodeID ID;
1907  ElaboratedType::Profile(ID, UnderlyingType, Tag);
1908
1909  void *InsertPos = 0;
1910  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1911  if (T)
1912    return QualType(T, 0);
1913
1914  QualType Canon = getCanonicalType(UnderlyingType);
1915
1916  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
1917  Types.push_back(T);
1918  ElaboratedTypes.InsertNode(T, InsertPos);
1919  return QualType(T, 0);
1920}
1921
1922/// CmpProtocolNames - Comparison predicate for sorting protocols
1923/// alphabetically.
1924static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1925                            const ObjCProtocolDecl *RHS) {
1926  return LHS->getDeclName() < RHS->getDeclName();
1927}
1928
1929static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1930                                   unsigned &NumProtocols) {
1931  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1932
1933  // Sort protocols, keyed by name.
1934  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1935
1936  // Remove duplicates.
1937  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1938  NumProtocols = ProtocolsEnd-Protocols;
1939}
1940
1941/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1942/// the given interface decl and the conforming protocol list.
1943QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
1944                                              ObjCProtocolDecl **Protocols,
1945                                              unsigned NumProtocols) {
1946  // Sort the protocol list alphabetically to canonicalize it.
1947  if (NumProtocols)
1948    SortAndUniqueProtocols(Protocols, NumProtocols);
1949
1950  llvm::FoldingSetNodeID ID;
1951  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
1952
1953  void *InsertPos = 0;
1954  if (ObjCObjectPointerType *QT =
1955              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1956    return QualType(QT, 0);
1957
1958  // No Match;
1959  ObjCObjectPointerType *QType = new (*this, TypeAlignment)
1960    ObjCObjectPointerType(InterfaceT, Protocols, NumProtocols);
1961
1962  Types.push_back(QType);
1963  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1964  return QualType(QType, 0);
1965}
1966
1967/// getObjCInterfaceType - Return the unique reference to the type for the
1968/// specified ObjC interface decl. The list of protocols is optional.
1969QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1970                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1971  if (NumProtocols)
1972    // Sort the protocol list alphabetically to canonicalize it.
1973    SortAndUniqueProtocols(Protocols, NumProtocols);
1974
1975  llvm::FoldingSetNodeID ID;
1976  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1977
1978  void *InsertPos = 0;
1979  if (ObjCInterfaceType *QT =
1980      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1981    return QualType(QT, 0);
1982
1983  // No Match;
1984  ObjCInterfaceType *QType = new (*this, TypeAlignment)
1985    ObjCInterfaceType(const_cast<ObjCInterfaceDecl*>(Decl),
1986                      Protocols, NumProtocols);
1987  Types.push_back(QType);
1988  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
1989  return QualType(QType, 0);
1990}
1991
1992/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1993/// TypeOfExprType AST's (since expression's are never shared). For example,
1994/// multiple declarations that refer to "typeof(x)" all contain different
1995/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1996/// on canonical type's (which are always unique).
1997QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1998  TypeOfExprType *toe;
1999  if (tofExpr->isTypeDependent()) {
2000    llvm::FoldingSetNodeID ID;
2001    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2002
2003    void *InsertPos = 0;
2004    DependentTypeOfExprType *Canon
2005      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2006    if (Canon) {
2007      // We already have a "canonical" version of an identical, dependent
2008      // typeof(expr) type. Use that as our canonical type.
2009      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2010                                          QualType((TypeOfExprType*)Canon, 0));
2011    }
2012    else {
2013      // Build a new, canonical typeof(expr) type.
2014      Canon
2015        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2016      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2017      toe = Canon;
2018    }
2019  } else {
2020    QualType Canonical = getCanonicalType(tofExpr->getType());
2021    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2022  }
2023  Types.push_back(toe);
2024  return QualType(toe, 0);
2025}
2026
2027/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2028/// TypeOfType AST's. The only motivation to unique these nodes would be
2029/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2030/// an issue. This doesn't effect the type checker, since it operates
2031/// on canonical type's (which are always unique).
2032QualType ASTContext::getTypeOfType(QualType tofType) {
2033  QualType Canonical = getCanonicalType(tofType);
2034  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2035  Types.push_back(tot);
2036  return QualType(tot, 0);
2037}
2038
2039/// getDecltypeForExpr - Given an expr, will return the decltype for that
2040/// expression, according to the rules in C++0x [dcl.type.simple]p4
2041static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2042  if (e->isTypeDependent())
2043    return Context.DependentTy;
2044
2045  // If e is an id expression or a class member access, decltype(e) is defined
2046  // as the type of the entity named by e.
2047  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2048    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2049      return VD->getType();
2050  }
2051  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2052    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2053      return FD->getType();
2054  }
2055  // If e is a function call or an invocation of an overloaded operator,
2056  // (parentheses around e are ignored), decltype(e) is defined as the
2057  // return type of that function.
2058  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2059    return CE->getCallReturnType();
2060
2061  QualType T = e->getType();
2062
2063  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2064  // defined as T&, otherwise decltype(e) is defined as T.
2065  if (e->isLvalue(Context) == Expr::LV_Valid)
2066    T = Context.getLValueReferenceType(T);
2067
2068  return T;
2069}
2070
2071/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2072/// DecltypeType AST's. The only motivation to unique these nodes would be
2073/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2074/// an issue. This doesn't effect the type checker, since it operates
2075/// on canonical type's (which are always unique).
2076QualType ASTContext::getDecltypeType(Expr *e) {
2077  DecltypeType *dt;
2078  if (e->isTypeDependent()) {
2079    llvm::FoldingSetNodeID ID;
2080    DependentDecltypeType::Profile(ID, *this, e);
2081
2082    void *InsertPos = 0;
2083    DependentDecltypeType *Canon
2084      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2085    if (Canon) {
2086      // We already have a "canonical" version of an equivalent, dependent
2087      // decltype type. Use that as our canonical type.
2088      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2089                                       QualType((DecltypeType*)Canon, 0));
2090    }
2091    else {
2092      // Build a new, canonical typeof(expr) type.
2093      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2094      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2095      dt = Canon;
2096    }
2097  } else {
2098    QualType T = getDecltypeForExpr(e, *this);
2099    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2100  }
2101  Types.push_back(dt);
2102  return QualType(dt, 0);
2103}
2104
2105/// getTagDeclType - Return the unique reference to the type for the
2106/// specified TagDecl (struct/union/class/enum) decl.
2107QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2108  assert (Decl);
2109  // FIXME: What is the design on getTagDeclType when it requires casting
2110  // away const?  mutable?
2111  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2112}
2113
2114/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2115/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2116/// needs to agree with the definition in <stddef.h>.
2117QualType ASTContext::getSizeType() const {
2118  return getFromTargetType(Target.getSizeType());
2119}
2120
2121/// getSignedWCharType - Return the type of "signed wchar_t".
2122/// Used when in C++, as a GCC extension.
2123QualType ASTContext::getSignedWCharType() const {
2124  // FIXME: derive from "Target" ?
2125  return WCharTy;
2126}
2127
2128/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2129/// Used when in C++, as a GCC extension.
2130QualType ASTContext::getUnsignedWCharType() const {
2131  // FIXME: derive from "Target" ?
2132  return UnsignedIntTy;
2133}
2134
2135/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2136/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2137QualType ASTContext::getPointerDiffType() const {
2138  return getFromTargetType(Target.getPtrDiffType(0));
2139}
2140
2141//===----------------------------------------------------------------------===//
2142//                              Type Operators
2143//===----------------------------------------------------------------------===//
2144
2145/// getCanonicalType - Return the canonical (structural) type corresponding to
2146/// the specified potentially non-canonical type.  The non-canonical version
2147/// of a type may have many "decorated" versions of types.  Decorators can
2148/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2149/// to be free of any of these, allowing two canonical types to be compared
2150/// for exact equality with a simple pointer comparison.
2151CanQualType ASTContext::getCanonicalType(QualType T) {
2152  QualifierCollector Quals;
2153  const Type *Ptr = Quals.strip(T);
2154  QualType CanType = Ptr->getCanonicalTypeInternal();
2155
2156  // The canonical internal type will be the canonical type *except*
2157  // that we push type qualifiers down through array types.
2158
2159  // If there are no new qualifiers to push down, stop here.
2160  if (!Quals.hasQualifiers())
2161    return CanQualType::CreateUnsafe(CanType);
2162
2163  // If the type qualifiers are on an array type, get the canonical
2164  // type of the array with the qualifiers applied to the element
2165  // type.
2166  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2167  if (!AT)
2168    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2169
2170  // Get the canonical version of the element with the extra qualifiers on it.
2171  // This can recursively sink qualifiers through multiple levels of arrays.
2172  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2173  NewEltTy = getCanonicalType(NewEltTy);
2174
2175  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2176    return CanQualType::CreateUnsafe(
2177             getConstantArrayType(NewEltTy, CAT->getSize(),
2178                                  CAT->getSizeModifier(),
2179                                  CAT->getIndexTypeCVRQualifiers()));
2180  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2181    return CanQualType::CreateUnsafe(
2182             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2183                                    IAT->getIndexTypeCVRQualifiers()));
2184
2185  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2186    return CanQualType::CreateUnsafe(
2187             getDependentSizedArrayType(NewEltTy,
2188                                        DSAT->getSizeExpr() ?
2189                                          DSAT->getSizeExpr()->Retain() : 0,
2190                                        DSAT->getSizeModifier(),
2191                                        DSAT->getIndexTypeCVRQualifiers(),
2192                                        DSAT->getBracketsRange()));
2193
2194  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2195  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2196                                                        VAT->getSizeExpr() ?
2197                                              VAT->getSizeExpr()->Retain() : 0,
2198                                                        VAT->getSizeModifier(),
2199                                              VAT->getIndexTypeCVRQualifiers(),
2200                                                     VAT->getBracketsRange()));
2201}
2202
2203TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2204  // If this template name refers to a template, the canonical
2205  // template name merely stores the template itself.
2206  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2207    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2208
2209  // If this template name refers to a set of overloaded function templates,
2210  /// the canonical template name merely stores the set of function templates.
2211  if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl()) {
2212    OverloadedFunctionDecl *CanonOvl = 0;
2213    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2214                                                FEnd = Ovl->function_end();
2215         F != FEnd; ++F) {
2216      Decl *Canon = F->get()->getCanonicalDecl();
2217      if (CanonOvl || Canon != F->get()) {
2218        if (!CanonOvl)
2219          CanonOvl = OverloadedFunctionDecl::Create(*this,
2220                                                    Ovl->getDeclContext(),
2221                                                    Ovl->getDeclName());
2222
2223        CanonOvl->addOverload(
2224                    AnyFunctionDecl::getFromNamedDecl(cast<NamedDecl>(Canon)));
2225      }
2226    }
2227
2228    return TemplateName(CanonOvl? CanonOvl : Ovl);
2229  }
2230
2231  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2232  assert(DTN && "Non-dependent template names must refer to template decls.");
2233  return DTN->CanonicalTemplateName;
2234}
2235
2236TemplateArgument
2237ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2238  switch (Arg.getKind()) {
2239    case TemplateArgument::Null:
2240      return Arg;
2241
2242    case TemplateArgument::Expression:
2243      // FIXME: Build canonical expression?
2244      return Arg;
2245
2246    case TemplateArgument::Declaration:
2247      return TemplateArgument(SourceLocation(),
2248                              Arg.getAsDecl()->getCanonicalDecl());
2249
2250    case TemplateArgument::Integral:
2251      return TemplateArgument(SourceLocation(),
2252                              *Arg.getAsIntegral(),
2253                              getCanonicalType(Arg.getIntegralType()));
2254
2255    case TemplateArgument::Type:
2256      return TemplateArgument(SourceLocation(),
2257                              getCanonicalType(Arg.getAsType()));
2258
2259    case TemplateArgument::Pack: {
2260      // FIXME: Allocate in ASTContext
2261      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2262      unsigned Idx = 0;
2263      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2264                                        AEnd = Arg.pack_end();
2265           A != AEnd; (void)++A, ++Idx)
2266        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2267
2268      TemplateArgument Result;
2269      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2270      return Result;
2271    }
2272  }
2273
2274  // Silence GCC warning
2275  assert(false && "Unhandled template argument kind");
2276  return TemplateArgument();
2277}
2278
2279NestedNameSpecifier *
2280ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2281  if (!NNS)
2282    return 0;
2283
2284  switch (NNS->getKind()) {
2285  case NestedNameSpecifier::Identifier:
2286    // Canonicalize the prefix but keep the identifier the same.
2287    return NestedNameSpecifier::Create(*this,
2288                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2289                                       NNS->getAsIdentifier());
2290
2291  case NestedNameSpecifier::Namespace:
2292    // A namespace is canonical; build a nested-name-specifier with
2293    // this namespace and no prefix.
2294    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2295
2296  case NestedNameSpecifier::TypeSpec:
2297  case NestedNameSpecifier::TypeSpecWithTemplate: {
2298    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2299    return NestedNameSpecifier::Create(*this, 0,
2300                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2301                                       T.getTypePtr());
2302  }
2303
2304  case NestedNameSpecifier::Global:
2305    // The global specifier is canonical and unique.
2306    return NNS;
2307  }
2308
2309  // Required to silence a GCC warning
2310  return 0;
2311}
2312
2313
2314const ArrayType *ASTContext::getAsArrayType(QualType T) {
2315  // Handle the non-qualified case efficiently.
2316  if (!T.hasQualifiers()) {
2317    // Handle the common positive case fast.
2318    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2319      return AT;
2320  }
2321
2322  // Handle the common negative case fast.
2323  QualType CType = T->getCanonicalTypeInternal();
2324  if (!isa<ArrayType>(CType))
2325    return 0;
2326
2327  // Apply any qualifiers from the array type to the element type.  This
2328  // implements C99 6.7.3p8: "If the specification of an array type includes
2329  // any type qualifiers, the element type is so qualified, not the array type."
2330
2331  // If we get here, we either have type qualifiers on the type, or we have
2332  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2333  // we must propagate them down into the element type.
2334
2335  QualifierCollector Qs;
2336  const Type *Ty = Qs.strip(T.getDesugaredType());
2337
2338  // If we have a simple case, just return now.
2339  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2340  if (ATy == 0 || Qs.empty())
2341    return ATy;
2342
2343  // Otherwise, we have an array and we have qualifiers on it.  Push the
2344  // qualifiers into the array element type and return a new array type.
2345  // Get the canonical version of the element with the extra qualifiers on it.
2346  // This can recursively sink qualifiers through multiple levels of arrays.
2347  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2348
2349  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2350    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2351                                                CAT->getSizeModifier(),
2352                                           CAT->getIndexTypeCVRQualifiers()));
2353  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2354    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2355                                                  IAT->getSizeModifier(),
2356                                           IAT->getIndexTypeCVRQualifiers()));
2357
2358  if (const DependentSizedArrayType *DSAT
2359        = dyn_cast<DependentSizedArrayType>(ATy))
2360    return cast<ArrayType>(
2361                     getDependentSizedArrayType(NewEltTy,
2362                                                DSAT->getSizeExpr() ?
2363                                              DSAT->getSizeExpr()->Retain() : 0,
2364                                                DSAT->getSizeModifier(),
2365                                              DSAT->getIndexTypeCVRQualifiers(),
2366                                                DSAT->getBracketsRange()));
2367
2368  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2369  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2370                                              VAT->getSizeExpr() ?
2371                                              VAT->getSizeExpr()->Retain() : 0,
2372                                              VAT->getSizeModifier(),
2373                                              VAT->getIndexTypeCVRQualifiers(),
2374                                              VAT->getBracketsRange()));
2375}
2376
2377
2378/// getArrayDecayedType - Return the properly qualified result of decaying the
2379/// specified array type to a pointer.  This operation is non-trivial when
2380/// handling typedefs etc.  The canonical type of "T" must be an array type,
2381/// this returns a pointer to a properly qualified element of the array.
2382///
2383/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2384QualType ASTContext::getArrayDecayedType(QualType Ty) {
2385  // Get the element type with 'getAsArrayType' so that we don't lose any
2386  // typedefs in the element type of the array.  This also handles propagation
2387  // of type qualifiers from the array type into the element type if present
2388  // (C99 6.7.3p8).
2389  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2390  assert(PrettyArrayType && "Not an array type!");
2391
2392  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2393
2394  // int x[restrict 4] ->  int *restrict
2395  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2396}
2397
2398QualType ASTContext::getBaseElementType(QualType QT) {
2399  QualifierCollector Qs;
2400  while (true) {
2401    const Type *UT = Qs.strip(QT);
2402    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2403      QT = AT->getElementType();
2404    } else {
2405      return Qs.apply(QT);
2406    }
2407  }
2408}
2409
2410QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2411  QualType ElemTy = AT->getElementType();
2412
2413  if (const ArrayType *AT = getAsArrayType(ElemTy))
2414    return getBaseElementType(AT);
2415
2416  return ElemTy;
2417}
2418
2419/// getConstantArrayElementCount - Returns number of constant array elements.
2420uint64_t
2421ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2422  uint64_t ElementCount = 1;
2423  do {
2424    ElementCount *= CA->getSize().getZExtValue();
2425    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2426  } while (CA);
2427  return ElementCount;
2428}
2429
2430/// getFloatingRank - Return a relative rank for floating point types.
2431/// This routine will assert if passed a built-in type that isn't a float.
2432static FloatingRank getFloatingRank(QualType T) {
2433  if (const ComplexType *CT = T->getAs<ComplexType>())
2434    return getFloatingRank(CT->getElementType());
2435
2436  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2437  switch (T->getAs<BuiltinType>()->getKind()) {
2438  default: assert(0 && "getFloatingRank(): not a floating type");
2439  case BuiltinType::Float:      return FloatRank;
2440  case BuiltinType::Double:     return DoubleRank;
2441  case BuiltinType::LongDouble: return LongDoubleRank;
2442  }
2443}
2444
2445/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2446/// point or a complex type (based on typeDomain/typeSize).
2447/// 'typeDomain' is a real floating point or complex type.
2448/// 'typeSize' is a real floating point or complex type.
2449QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2450                                                       QualType Domain) const {
2451  FloatingRank EltRank = getFloatingRank(Size);
2452  if (Domain->isComplexType()) {
2453    switch (EltRank) {
2454    default: assert(0 && "getFloatingRank(): illegal value for rank");
2455    case FloatRank:      return FloatComplexTy;
2456    case DoubleRank:     return DoubleComplexTy;
2457    case LongDoubleRank: return LongDoubleComplexTy;
2458    }
2459  }
2460
2461  assert(Domain->isRealFloatingType() && "Unknown domain!");
2462  switch (EltRank) {
2463  default: assert(0 && "getFloatingRank(): illegal value for rank");
2464  case FloatRank:      return FloatTy;
2465  case DoubleRank:     return DoubleTy;
2466  case LongDoubleRank: return LongDoubleTy;
2467  }
2468}
2469
2470/// getFloatingTypeOrder - Compare the rank of the two specified floating
2471/// point types, ignoring the domain of the type (i.e. 'double' ==
2472/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2473/// LHS < RHS, return -1.
2474int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2475  FloatingRank LHSR = getFloatingRank(LHS);
2476  FloatingRank RHSR = getFloatingRank(RHS);
2477
2478  if (LHSR == RHSR)
2479    return 0;
2480  if (LHSR > RHSR)
2481    return 1;
2482  return -1;
2483}
2484
2485/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2486/// routine will assert if passed a built-in type that isn't an integer or enum,
2487/// or if it is not canonicalized.
2488unsigned ASTContext::getIntegerRank(Type *T) {
2489  assert(T->isCanonical() && "T should be canonicalized");
2490  if (EnumType* ET = dyn_cast<EnumType>(T))
2491    T = ET->getDecl()->getIntegerType().getTypePtr();
2492
2493  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2494    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2495
2496  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2497    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2498
2499  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2500    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2501
2502  // There are two things which impact the integer rank: the width, and
2503  // the ordering of builtins.  The builtin ordering is encoded in the
2504  // bottom three bits; the width is encoded in the bits above that.
2505  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2506    return FWIT->getWidth() << 3;
2507
2508  switch (cast<BuiltinType>(T)->getKind()) {
2509  default: assert(0 && "getIntegerRank(): not a built-in integer");
2510  case BuiltinType::Bool:
2511    return 1 + (getIntWidth(BoolTy) << 3);
2512  case BuiltinType::Char_S:
2513  case BuiltinType::Char_U:
2514  case BuiltinType::SChar:
2515  case BuiltinType::UChar:
2516    return 2 + (getIntWidth(CharTy) << 3);
2517  case BuiltinType::Short:
2518  case BuiltinType::UShort:
2519    return 3 + (getIntWidth(ShortTy) << 3);
2520  case BuiltinType::Int:
2521  case BuiltinType::UInt:
2522    return 4 + (getIntWidth(IntTy) << 3);
2523  case BuiltinType::Long:
2524  case BuiltinType::ULong:
2525    return 5 + (getIntWidth(LongTy) << 3);
2526  case BuiltinType::LongLong:
2527  case BuiltinType::ULongLong:
2528    return 6 + (getIntWidth(LongLongTy) << 3);
2529  case BuiltinType::Int128:
2530  case BuiltinType::UInt128:
2531    return 7 + (getIntWidth(Int128Ty) << 3);
2532  }
2533}
2534
2535/// \brief Whether this is a promotable bitfield reference according
2536/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2537///
2538/// \returns the type this bit-field will promote to, or NULL if no
2539/// promotion occurs.
2540QualType ASTContext::isPromotableBitField(Expr *E) {
2541  FieldDecl *Field = E->getBitField();
2542  if (!Field)
2543    return QualType();
2544
2545  QualType FT = Field->getType();
2546
2547  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2548  uint64_t BitWidth = BitWidthAP.getZExtValue();
2549  uint64_t IntSize = getTypeSize(IntTy);
2550  // GCC extension compatibility: if the bit-field size is less than or equal
2551  // to the size of int, it gets promoted no matter what its type is.
2552  // For instance, unsigned long bf : 4 gets promoted to signed int.
2553  if (BitWidth < IntSize)
2554    return IntTy;
2555
2556  if (BitWidth == IntSize)
2557    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2558
2559  // Types bigger than int are not subject to promotions, and therefore act
2560  // like the base type.
2561  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2562  // is ridiculous.
2563  return QualType();
2564}
2565
2566/// getPromotedIntegerType - Returns the type that Promotable will
2567/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2568/// integer type.
2569QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2570  assert(!Promotable.isNull());
2571  assert(Promotable->isPromotableIntegerType());
2572  if (Promotable->isSignedIntegerType())
2573    return IntTy;
2574  uint64_t PromotableSize = getTypeSize(Promotable);
2575  uint64_t IntSize = getTypeSize(IntTy);
2576  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2577  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2578}
2579
2580/// getIntegerTypeOrder - Returns the highest ranked integer type:
2581/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2582/// LHS < RHS, return -1.
2583int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2584  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2585  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2586  if (LHSC == RHSC) return 0;
2587
2588  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2589  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2590
2591  unsigned LHSRank = getIntegerRank(LHSC);
2592  unsigned RHSRank = getIntegerRank(RHSC);
2593
2594  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2595    if (LHSRank == RHSRank) return 0;
2596    return LHSRank > RHSRank ? 1 : -1;
2597  }
2598
2599  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2600  if (LHSUnsigned) {
2601    // If the unsigned [LHS] type is larger, return it.
2602    if (LHSRank >= RHSRank)
2603      return 1;
2604
2605    // If the signed type can represent all values of the unsigned type, it
2606    // wins.  Because we are dealing with 2's complement and types that are
2607    // powers of two larger than each other, this is always safe.
2608    return -1;
2609  }
2610
2611  // If the unsigned [RHS] type is larger, return it.
2612  if (RHSRank >= LHSRank)
2613    return -1;
2614
2615  // If the signed type can represent all values of the unsigned type, it
2616  // wins.  Because we are dealing with 2's complement and types that are
2617  // powers of two larger than each other, this is always safe.
2618  return 1;
2619}
2620
2621// getCFConstantStringType - Return the type used for constant CFStrings.
2622QualType ASTContext::getCFConstantStringType() {
2623  if (!CFConstantStringTypeDecl) {
2624    CFConstantStringTypeDecl =
2625      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2626                         &Idents.get("NSConstantString"));
2627    QualType FieldTypes[4];
2628
2629    // const int *isa;
2630    FieldTypes[0] = getPointerType(IntTy.withConst());
2631    // int flags;
2632    FieldTypes[1] = IntTy;
2633    // const char *str;
2634    FieldTypes[2] = getPointerType(CharTy.withConst());
2635    // long length;
2636    FieldTypes[3] = LongTy;
2637
2638    // Create fields
2639    for (unsigned i = 0; i < 4; ++i) {
2640      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2641                                           SourceLocation(), 0,
2642                                           FieldTypes[i], /*DInfo=*/0,
2643                                           /*BitWidth=*/0,
2644                                           /*Mutable=*/false);
2645      CFConstantStringTypeDecl->addDecl(Field);
2646    }
2647
2648    CFConstantStringTypeDecl->completeDefinition(*this);
2649  }
2650
2651  return getTagDeclType(CFConstantStringTypeDecl);
2652}
2653
2654void ASTContext::setCFConstantStringType(QualType T) {
2655  const RecordType *Rec = T->getAs<RecordType>();
2656  assert(Rec && "Invalid CFConstantStringType");
2657  CFConstantStringTypeDecl = Rec->getDecl();
2658}
2659
2660QualType ASTContext::getObjCFastEnumerationStateType() {
2661  if (!ObjCFastEnumerationStateTypeDecl) {
2662    ObjCFastEnumerationStateTypeDecl =
2663      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2664                         &Idents.get("__objcFastEnumerationState"));
2665
2666    QualType FieldTypes[] = {
2667      UnsignedLongTy,
2668      getPointerType(ObjCIdTypedefType),
2669      getPointerType(UnsignedLongTy),
2670      getConstantArrayType(UnsignedLongTy,
2671                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2672    };
2673
2674    for (size_t i = 0; i < 4; ++i) {
2675      FieldDecl *Field = FieldDecl::Create(*this,
2676                                           ObjCFastEnumerationStateTypeDecl,
2677                                           SourceLocation(), 0,
2678                                           FieldTypes[i], /*DInfo=*/0,
2679                                           /*BitWidth=*/0,
2680                                           /*Mutable=*/false);
2681      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2682    }
2683
2684    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2685  }
2686
2687  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2688}
2689
2690void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2691  const RecordType *Rec = T->getAs<RecordType>();
2692  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2693  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2694}
2695
2696// This returns true if a type has been typedefed to BOOL:
2697// typedef <type> BOOL;
2698static bool isTypeTypedefedAsBOOL(QualType T) {
2699  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2700    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2701      return II->isStr("BOOL");
2702
2703  return false;
2704}
2705
2706/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2707/// purpose.
2708int ASTContext::getObjCEncodingTypeSize(QualType type) {
2709  uint64_t sz = getTypeSize(type);
2710
2711  // Make all integer and enum types at least as large as an int
2712  if (sz > 0 && type->isIntegralType())
2713    sz = std::max(sz, getTypeSize(IntTy));
2714  // Treat arrays as pointers, since that's how they're passed in.
2715  else if (type->isArrayType())
2716    sz = getTypeSize(VoidPtrTy);
2717  return sz / getTypeSize(CharTy);
2718}
2719
2720/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2721/// declaration.
2722void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2723                                              std::string& S) {
2724  // FIXME: This is not very efficient.
2725  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2726  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2727  // Encode result type.
2728  getObjCEncodingForType(Decl->getResultType(), S);
2729  // Compute size of all parameters.
2730  // Start with computing size of a pointer in number of bytes.
2731  // FIXME: There might(should) be a better way of doing this computation!
2732  SourceLocation Loc;
2733  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2734  // The first two arguments (self and _cmd) are pointers; account for
2735  // their size.
2736  int ParmOffset = 2 * PtrSize;
2737  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2738       E = Decl->param_end(); PI != E; ++PI) {
2739    QualType PType = (*PI)->getType();
2740    int sz = getObjCEncodingTypeSize(PType);
2741    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2742    ParmOffset += sz;
2743  }
2744  S += llvm::utostr(ParmOffset);
2745  S += "@0:";
2746  S += llvm::utostr(PtrSize);
2747
2748  // Argument types.
2749  ParmOffset = 2 * PtrSize;
2750  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2751       E = Decl->param_end(); PI != E; ++PI) {
2752    ParmVarDecl *PVDecl = *PI;
2753    QualType PType = PVDecl->getOriginalType();
2754    if (const ArrayType *AT =
2755          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2756      // Use array's original type only if it has known number of
2757      // elements.
2758      if (!isa<ConstantArrayType>(AT))
2759        PType = PVDecl->getType();
2760    } else if (PType->isFunctionType())
2761      PType = PVDecl->getType();
2762    // Process argument qualifiers for user supplied arguments; such as,
2763    // 'in', 'inout', etc.
2764    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2765    getObjCEncodingForType(PType, S);
2766    S += llvm::utostr(ParmOffset);
2767    ParmOffset += getObjCEncodingTypeSize(PType);
2768  }
2769}
2770
2771/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2772/// property declaration. If non-NULL, Container must be either an
2773/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2774/// NULL when getting encodings for protocol properties.
2775/// Property attributes are stored as a comma-delimited C string. The simple
2776/// attributes readonly and bycopy are encoded as single characters. The
2777/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2778/// encoded as single characters, followed by an identifier. Property types
2779/// are also encoded as a parametrized attribute. The characters used to encode
2780/// these attributes are defined by the following enumeration:
2781/// @code
2782/// enum PropertyAttributes {
2783/// kPropertyReadOnly = 'R',   // property is read-only.
2784/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2785/// kPropertyByref = '&',  // property is a reference to the value last assigned
2786/// kPropertyDynamic = 'D',    // property is dynamic
2787/// kPropertyGetter = 'G',     // followed by getter selector name
2788/// kPropertySetter = 'S',     // followed by setter selector name
2789/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2790/// kPropertyType = 't'              // followed by old-style type encoding.
2791/// kPropertyWeak = 'W'              // 'weak' property
2792/// kPropertyStrong = 'P'            // property GC'able
2793/// kPropertyNonAtomic = 'N'         // property non-atomic
2794/// };
2795/// @endcode
2796void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2797                                                const Decl *Container,
2798                                                std::string& S) {
2799  // Collect information from the property implementation decl(s).
2800  bool Dynamic = false;
2801  ObjCPropertyImplDecl *SynthesizePID = 0;
2802
2803  // FIXME: Duplicated code due to poor abstraction.
2804  if (Container) {
2805    if (const ObjCCategoryImplDecl *CID =
2806        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2807      for (ObjCCategoryImplDecl::propimpl_iterator
2808             i = CID->propimpl_begin(), e = CID->propimpl_end();
2809           i != e; ++i) {
2810        ObjCPropertyImplDecl *PID = *i;
2811        if (PID->getPropertyDecl() == PD) {
2812          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2813            Dynamic = true;
2814          } else {
2815            SynthesizePID = PID;
2816          }
2817        }
2818      }
2819    } else {
2820      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2821      for (ObjCCategoryImplDecl::propimpl_iterator
2822             i = OID->propimpl_begin(), e = OID->propimpl_end();
2823           i != e; ++i) {
2824        ObjCPropertyImplDecl *PID = *i;
2825        if (PID->getPropertyDecl() == PD) {
2826          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2827            Dynamic = true;
2828          } else {
2829            SynthesizePID = PID;
2830          }
2831        }
2832      }
2833    }
2834  }
2835
2836  // FIXME: This is not very efficient.
2837  S = "T";
2838
2839  // Encode result type.
2840  // GCC has some special rules regarding encoding of properties which
2841  // closely resembles encoding of ivars.
2842  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2843                             true /* outermost type */,
2844                             true /* encoding for property */);
2845
2846  if (PD->isReadOnly()) {
2847    S += ",R";
2848  } else {
2849    switch (PD->getSetterKind()) {
2850    case ObjCPropertyDecl::Assign: break;
2851    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2852    case ObjCPropertyDecl::Retain: S += ",&"; break;
2853    }
2854  }
2855
2856  // It really isn't clear at all what this means, since properties
2857  // are "dynamic by default".
2858  if (Dynamic)
2859    S += ",D";
2860
2861  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2862    S += ",N";
2863
2864  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2865    S += ",G";
2866    S += PD->getGetterName().getAsString();
2867  }
2868
2869  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2870    S += ",S";
2871    S += PD->getSetterName().getAsString();
2872  }
2873
2874  if (SynthesizePID) {
2875    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2876    S += ",V";
2877    S += OID->getNameAsString();
2878  }
2879
2880  // FIXME: OBJCGC: weak & strong
2881}
2882
2883/// getLegacyIntegralTypeEncoding -
2884/// Another legacy compatibility encoding: 32-bit longs are encoded as
2885/// 'l' or 'L' , but not always.  For typedefs, we need to use
2886/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2887///
2888void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2889  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
2890    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
2891      if (BT->getKind() == BuiltinType::ULong &&
2892          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2893        PointeeTy = UnsignedIntTy;
2894      else
2895        if (BT->getKind() == BuiltinType::Long &&
2896            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2897          PointeeTy = IntTy;
2898    }
2899  }
2900}
2901
2902void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2903                                        const FieldDecl *Field) {
2904  // We follow the behavior of gcc, expanding structures which are
2905  // directly pointed to, and expanding embedded structures. Note that
2906  // these rules are sufficient to prevent recursive encoding of the
2907  // same type.
2908  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2909                             true /* outermost type */);
2910}
2911
2912static void EncodeBitField(const ASTContext *Context, std::string& S,
2913                           const FieldDecl *FD) {
2914  const Expr *E = FD->getBitWidth();
2915  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2916  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2917  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2918  S += 'b';
2919  S += llvm::utostr(N);
2920}
2921
2922void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2923                                            bool ExpandPointedToStructures,
2924                                            bool ExpandStructures,
2925                                            const FieldDecl *FD,
2926                                            bool OutermostType,
2927                                            bool EncodingProperty) {
2928  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
2929    if (FD && FD->isBitField())
2930      return EncodeBitField(this, S, FD);
2931    char encoding;
2932    switch (BT->getKind()) {
2933    default: assert(0 && "Unhandled builtin type kind");
2934    case BuiltinType::Void:       encoding = 'v'; break;
2935    case BuiltinType::Bool:       encoding = 'B'; break;
2936    case BuiltinType::Char_U:
2937    case BuiltinType::UChar:      encoding = 'C'; break;
2938    case BuiltinType::UShort:     encoding = 'S'; break;
2939    case BuiltinType::UInt:       encoding = 'I'; break;
2940    case BuiltinType::ULong:
2941        encoding =
2942          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2943        break;
2944    case BuiltinType::UInt128:    encoding = 'T'; break;
2945    case BuiltinType::ULongLong:  encoding = 'Q'; break;
2946    case BuiltinType::Char_S:
2947    case BuiltinType::SChar:      encoding = 'c'; break;
2948    case BuiltinType::Short:      encoding = 's'; break;
2949    case BuiltinType::Int:        encoding = 'i'; break;
2950    case BuiltinType::Long:
2951      encoding =
2952        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2953      break;
2954    case BuiltinType::LongLong:   encoding = 'q'; break;
2955    case BuiltinType::Int128:     encoding = 't'; break;
2956    case BuiltinType::Float:      encoding = 'f'; break;
2957    case BuiltinType::Double:     encoding = 'd'; break;
2958    case BuiltinType::LongDouble: encoding = 'd'; break;
2959    }
2960
2961    S += encoding;
2962    return;
2963  }
2964
2965  if (const ComplexType *CT = T->getAs<ComplexType>()) {
2966    S += 'j';
2967    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2968                               false);
2969    return;
2970  }
2971
2972  if (const PointerType *PT = T->getAs<PointerType>()) {
2973    QualType PointeeTy = PT->getPointeeType();
2974    bool isReadOnly = false;
2975    // For historical/compatibility reasons, the read-only qualifier of the
2976    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2977    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2978    // Also, do not emit the 'r' for anything but the outermost type!
2979    if (isa<TypedefType>(T.getTypePtr())) {
2980      if (OutermostType && T.isConstQualified()) {
2981        isReadOnly = true;
2982        S += 'r';
2983      }
2984    } else if (OutermostType) {
2985      QualType P = PointeeTy;
2986      while (P->getAs<PointerType>())
2987        P = P->getAs<PointerType>()->getPointeeType();
2988      if (P.isConstQualified()) {
2989        isReadOnly = true;
2990        S += 'r';
2991      }
2992    }
2993    if (isReadOnly) {
2994      // Another legacy compatibility encoding. Some ObjC qualifier and type
2995      // combinations need to be rearranged.
2996      // Rewrite "in const" from "nr" to "rn"
2997      const char * s = S.c_str();
2998      int len = S.length();
2999      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3000        std::string replace = "rn";
3001        S.replace(S.end()-2, S.end(), replace);
3002      }
3003    }
3004    if (isObjCSelType(PointeeTy)) {
3005      S += ':';
3006      return;
3007    }
3008
3009    if (PointeeTy->isCharType()) {
3010      // char pointer types should be encoded as '*' unless it is a
3011      // type that has been typedef'd to 'BOOL'.
3012      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3013        S += '*';
3014        return;
3015      }
3016    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3017      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3018      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3019        S += '#';
3020        return;
3021      }
3022      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3023      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3024        S += '@';
3025        return;
3026      }
3027      // fall through...
3028    }
3029    S += '^';
3030    getLegacyIntegralTypeEncoding(PointeeTy);
3031
3032    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3033                               NULL);
3034    return;
3035  }
3036
3037  if (const ArrayType *AT =
3038      // Ignore type qualifiers etc.
3039        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3040    if (isa<IncompleteArrayType>(AT)) {
3041      // Incomplete arrays are encoded as a pointer to the array element.
3042      S += '^';
3043
3044      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3045                                 false, ExpandStructures, FD);
3046    } else {
3047      S += '[';
3048
3049      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3050        S += llvm::utostr(CAT->getSize().getZExtValue());
3051      else {
3052        //Variable length arrays are encoded as a regular array with 0 elements.
3053        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3054        S += '0';
3055      }
3056
3057      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3058                                 false, ExpandStructures, FD);
3059      S += ']';
3060    }
3061    return;
3062  }
3063
3064  if (T->getAs<FunctionType>()) {
3065    S += '?';
3066    return;
3067  }
3068
3069  if (const RecordType *RTy = T->getAs<RecordType>()) {
3070    RecordDecl *RDecl = RTy->getDecl();
3071    S += RDecl->isUnion() ? '(' : '{';
3072    // Anonymous structures print as '?'
3073    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3074      S += II->getName();
3075    } else {
3076      S += '?';
3077    }
3078    if (ExpandStructures) {
3079      S += '=';
3080      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3081                                   FieldEnd = RDecl->field_end();
3082           Field != FieldEnd; ++Field) {
3083        if (FD) {
3084          S += '"';
3085          S += Field->getNameAsString();
3086          S += '"';
3087        }
3088
3089        // Special case bit-fields.
3090        if (Field->isBitField()) {
3091          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3092                                     (*Field));
3093        } else {
3094          QualType qt = Field->getType();
3095          getLegacyIntegralTypeEncoding(qt);
3096          getObjCEncodingForTypeImpl(qt, S, false, true,
3097                                     FD);
3098        }
3099      }
3100    }
3101    S += RDecl->isUnion() ? ')' : '}';
3102    return;
3103  }
3104
3105  if (T->isEnumeralType()) {
3106    if (FD && FD->isBitField())
3107      EncodeBitField(this, S, FD);
3108    else
3109      S += 'i';
3110    return;
3111  }
3112
3113  if (T->isBlockPointerType()) {
3114    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3115    return;
3116  }
3117
3118  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3119    // @encode(class_name)
3120    ObjCInterfaceDecl *OI = OIT->getDecl();
3121    S += '{';
3122    const IdentifierInfo *II = OI->getIdentifier();
3123    S += II->getName();
3124    S += '=';
3125    llvm::SmallVector<FieldDecl*, 32> RecFields;
3126    CollectObjCIvars(OI, RecFields);
3127    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3128      if (RecFields[i]->isBitField())
3129        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3130                                   RecFields[i]);
3131      else
3132        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3133                                   FD);
3134    }
3135    S += '}';
3136    return;
3137  }
3138
3139  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3140    if (OPT->isObjCIdType()) {
3141      S += '@';
3142      return;
3143    }
3144
3145    if (OPT->isObjCClassType()) {
3146      S += '#';
3147      return;
3148    }
3149
3150    if (OPT->isObjCQualifiedIdType()) {
3151      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3152                                 ExpandPointedToStructures,
3153                                 ExpandStructures, FD);
3154      if (FD || EncodingProperty) {
3155        // Note that we do extended encoding of protocol qualifer list
3156        // Only when doing ivar or property encoding.
3157        S += '"';
3158        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3159             E = OPT->qual_end(); I != E; ++I) {
3160          S += '<';
3161          S += (*I)->getNameAsString();
3162          S += '>';
3163        }
3164        S += '"';
3165      }
3166      return;
3167    }
3168
3169    QualType PointeeTy = OPT->getPointeeType();
3170    if (!EncodingProperty &&
3171        isa<TypedefType>(PointeeTy.getTypePtr())) {
3172      // Another historical/compatibility reason.
3173      // We encode the underlying type which comes out as
3174      // {...};
3175      S += '^';
3176      getObjCEncodingForTypeImpl(PointeeTy, S,
3177                                 false, ExpandPointedToStructures,
3178                                 NULL);
3179      return;
3180    }
3181
3182    S += '@';
3183    if (FD || EncodingProperty) {
3184      S += '"';
3185      S += OPT->getInterfaceDecl()->getNameAsCString();
3186      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3187           E = OPT->qual_end(); I != E; ++I) {
3188        S += '<';
3189        S += (*I)->getNameAsString();
3190        S += '>';
3191      }
3192      S += '"';
3193    }
3194    return;
3195  }
3196
3197  assert(0 && "@encode for type not implemented!");
3198}
3199
3200void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3201                                                 std::string& S) const {
3202  if (QT & Decl::OBJC_TQ_In)
3203    S += 'n';
3204  if (QT & Decl::OBJC_TQ_Inout)
3205    S += 'N';
3206  if (QT & Decl::OBJC_TQ_Out)
3207    S += 'o';
3208  if (QT & Decl::OBJC_TQ_Bycopy)
3209    S += 'O';
3210  if (QT & Decl::OBJC_TQ_Byref)
3211    S += 'R';
3212  if (QT & Decl::OBJC_TQ_Oneway)
3213    S += 'V';
3214}
3215
3216void ASTContext::setBuiltinVaListType(QualType T) {
3217  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3218
3219  BuiltinVaListType = T;
3220}
3221
3222void ASTContext::setObjCIdType(QualType T) {
3223  ObjCIdTypedefType = T;
3224}
3225
3226void ASTContext::setObjCSelType(QualType T) {
3227  ObjCSelType = T;
3228
3229  const TypedefType *TT = T->getAs<TypedefType>();
3230  if (!TT)
3231    return;
3232  TypedefDecl *TD = TT->getDecl();
3233
3234  // typedef struct objc_selector *SEL;
3235  const PointerType *ptr = TD->getUnderlyingType()->getAs<PointerType>();
3236  if (!ptr)
3237    return;
3238  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
3239  if (!rec)
3240    return;
3241  SelStructType = rec;
3242}
3243
3244void ASTContext::setObjCProtoType(QualType QT) {
3245  ObjCProtoType = QT;
3246}
3247
3248void ASTContext::setObjCClassType(QualType T) {
3249  ObjCClassTypedefType = T;
3250}
3251
3252void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3253  assert(ObjCConstantStringType.isNull() &&
3254         "'NSConstantString' type already set!");
3255
3256  ObjCConstantStringType = getObjCInterfaceType(Decl);
3257}
3258
3259/// \brief Retrieve the template name that represents a qualified
3260/// template name such as \c std::vector.
3261TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3262                                                  bool TemplateKeyword,
3263                                                  TemplateDecl *Template) {
3264  llvm::FoldingSetNodeID ID;
3265  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3266
3267  void *InsertPos = 0;
3268  QualifiedTemplateName *QTN =
3269    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3270  if (!QTN) {
3271    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3272    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3273  }
3274
3275  return TemplateName(QTN);
3276}
3277
3278/// \brief Retrieve the template name that represents a qualified
3279/// template name such as \c std::vector.
3280TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3281                                                  bool TemplateKeyword,
3282                                            OverloadedFunctionDecl *Template) {
3283  llvm::FoldingSetNodeID ID;
3284  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3285
3286  void *InsertPos = 0;
3287  QualifiedTemplateName *QTN =
3288  QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3289  if (!QTN) {
3290    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3291    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3292  }
3293
3294  return TemplateName(QTN);
3295}
3296
3297/// \brief Retrieve the template name that represents a dependent
3298/// template name such as \c MetaFun::template apply.
3299TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3300                                                  const IdentifierInfo *Name) {
3301  assert((!NNS || NNS->isDependent()) &&
3302         "Nested name specifier must be dependent");
3303
3304  llvm::FoldingSetNodeID ID;
3305  DependentTemplateName::Profile(ID, NNS, Name);
3306
3307  void *InsertPos = 0;
3308  DependentTemplateName *QTN =
3309    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3310
3311  if (QTN)
3312    return TemplateName(QTN);
3313
3314  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3315  if (CanonNNS == NNS) {
3316    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3317  } else {
3318    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3319    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3320  }
3321
3322  DependentTemplateNames.InsertNode(QTN, InsertPos);
3323  return TemplateName(QTN);
3324}
3325
3326/// getFromTargetType - Given one of the integer types provided by
3327/// TargetInfo, produce the corresponding type. The unsigned @p Type
3328/// is actually a value of type @c TargetInfo::IntType.
3329QualType ASTContext::getFromTargetType(unsigned Type) const {
3330  switch (Type) {
3331  case TargetInfo::NoInt: return QualType();
3332  case TargetInfo::SignedShort: return ShortTy;
3333  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3334  case TargetInfo::SignedInt: return IntTy;
3335  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3336  case TargetInfo::SignedLong: return LongTy;
3337  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3338  case TargetInfo::SignedLongLong: return LongLongTy;
3339  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3340  }
3341
3342  assert(false && "Unhandled TargetInfo::IntType value");
3343  return QualType();
3344}
3345
3346//===----------------------------------------------------------------------===//
3347//                        Type Predicates.
3348//===----------------------------------------------------------------------===//
3349
3350/// isObjCNSObjectType - Return true if this is an NSObject object using
3351/// NSObject attribute on a c-style pointer type.
3352/// FIXME - Make it work directly on types.
3353/// FIXME: Move to Type.
3354///
3355bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3356  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3357    if (TypedefDecl *TD = TDT->getDecl())
3358      if (TD->getAttr<ObjCNSObjectAttr>())
3359        return true;
3360  }
3361  return false;
3362}
3363
3364/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3365/// garbage collection attribute.
3366///
3367Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3368  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3369  if (getLangOptions().ObjC1 &&
3370      getLangOptions().getGCMode() != LangOptions::NonGC) {
3371    GCAttrs = Ty.getObjCGCAttr();
3372    // Default behavious under objective-c's gc is for objective-c pointers
3373    // (or pointers to them) be treated as though they were declared
3374    // as __strong.
3375    if (GCAttrs == Qualifiers::GCNone) {
3376      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3377        GCAttrs = Qualifiers::Strong;
3378      else if (Ty->isPointerType())
3379        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3380    }
3381    // Non-pointers have none gc'able attribute regardless of the attribute
3382    // set on them.
3383    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3384      return Qualifiers::GCNone;
3385  }
3386  return GCAttrs;
3387}
3388
3389//===----------------------------------------------------------------------===//
3390//                        Type Compatibility Testing
3391//===----------------------------------------------------------------------===//
3392
3393/// areCompatVectorTypes - Return true if the two specified vector types are
3394/// compatible.
3395static bool areCompatVectorTypes(const VectorType *LHS,
3396                                 const VectorType *RHS) {
3397  assert(LHS->isCanonical() && RHS->isCanonical());
3398  return LHS->getElementType() == RHS->getElementType() &&
3399         LHS->getNumElements() == RHS->getNumElements();
3400}
3401
3402//===----------------------------------------------------------------------===//
3403// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3404//===----------------------------------------------------------------------===//
3405
3406/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3407/// inheritance hierarchy of 'rProto'.
3408bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3409                                                ObjCProtocolDecl *rProto) {
3410  if (lProto == rProto)
3411    return true;
3412  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3413       E = rProto->protocol_end(); PI != E; ++PI)
3414    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3415      return true;
3416  return false;
3417}
3418
3419/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3420/// return true if lhs's protocols conform to rhs's protocol; false
3421/// otherwise.
3422bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3423  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3424    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3425  return false;
3426}
3427
3428/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3429/// ObjCQualifiedIDType.
3430bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3431                                                   bool compare) {
3432  // Allow id<P..> and an 'id' or void* type in all cases.
3433  if (lhs->isVoidPointerType() ||
3434      lhs->isObjCIdType() || lhs->isObjCClassType())
3435    return true;
3436  else if (rhs->isVoidPointerType() ||
3437           rhs->isObjCIdType() || rhs->isObjCClassType())
3438    return true;
3439
3440  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3441    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
3442
3443    if (!rhsOPT) return false;
3444
3445    if (rhsOPT->qual_empty()) {
3446      // If the RHS is a unqualified interface pointer "NSString*",
3447      // make sure we check the class hierarchy.
3448      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3449        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3450             E = lhsQID->qual_end(); I != E; ++I) {
3451          // when comparing an id<P> on lhs with a static type on rhs,
3452          // see if static class implements all of id's protocols, directly or
3453          // through its super class and categories.
3454          if (!rhsID->ClassImplementsProtocol(*I, true))
3455            return false;
3456        }
3457      }
3458      // If there are no qualifiers and no interface, we have an 'id'.
3459      return true;
3460    }
3461    // Both the right and left sides have qualifiers.
3462    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3463         E = lhsQID->qual_end(); I != E; ++I) {
3464      ObjCProtocolDecl *lhsProto = *I;
3465      bool match = false;
3466
3467      // when comparing an id<P> on lhs with a static type on rhs,
3468      // see if static class implements all of id's protocols, directly or
3469      // through its super class and categories.
3470      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3471           E = rhsOPT->qual_end(); J != E; ++J) {
3472        ObjCProtocolDecl *rhsProto = *J;
3473        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3474            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3475          match = true;
3476          break;
3477        }
3478      }
3479      // If the RHS is a qualified interface pointer "NSString<P>*",
3480      // make sure we check the class hierarchy.
3481      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3482        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3483             E = lhsQID->qual_end(); I != E; ++I) {
3484          // when comparing an id<P> on lhs with a static type on rhs,
3485          // see if static class implements all of id's protocols, directly or
3486          // through its super class and categories.
3487          if (rhsID->ClassImplementsProtocol(*I, true)) {
3488            match = true;
3489            break;
3490          }
3491        }
3492      }
3493      if (!match)
3494        return false;
3495    }
3496
3497    return true;
3498  }
3499
3500  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3501  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3502
3503  if (const ObjCObjectPointerType *lhsOPT =
3504        lhs->getAsObjCInterfacePointerType()) {
3505    if (lhsOPT->qual_empty()) {
3506      bool match = false;
3507      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3508        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3509             E = rhsQID->qual_end(); I != E; ++I) {
3510          // when comparing an id<P> on lhs with a static type on rhs,
3511          // see if static class implements all of id's protocols, directly or
3512          // through its super class and categories.
3513          if (lhsID->ClassImplementsProtocol(*I, true)) {
3514            match = true;
3515            break;
3516          }
3517        }
3518        if (!match)
3519          return false;
3520      }
3521      return true;
3522    }
3523    // Both the right and left sides have qualifiers.
3524    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3525         E = lhsOPT->qual_end(); I != E; ++I) {
3526      ObjCProtocolDecl *lhsProto = *I;
3527      bool match = false;
3528
3529      // when comparing an id<P> on lhs with a static type on rhs,
3530      // see if static class implements all of id's protocols, directly or
3531      // through its super class and categories.
3532      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3533           E = rhsQID->qual_end(); J != E; ++J) {
3534        ObjCProtocolDecl *rhsProto = *J;
3535        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3536            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3537          match = true;
3538          break;
3539        }
3540      }
3541      if (!match)
3542        return false;
3543    }
3544    return true;
3545  }
3546  return false;
3547}
3548
3549/// canAssignObjCInterfaces - Return true if the two interface types are
3550/// compatible for assignment from RHS to LHS.  This handles validation of any
3551/// protocol qualifiers on the LHS or RHS.
3552///
3553bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3554                                         const ObjCObjectPointerType *RHSOPT) {
3555  // If either type represents the built-in 'id' or 'Class' types, return true.
3556  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3557    return true;
3558
3559  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
3560    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
3561                                             QualType(RHSOPT,0),
3562                                             false);
3563
3564  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3565  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3566  if (LHS && RHS) // We have 2 user-defined types.
3567    return canAssignObjCInterfaces(LHS, RHS);
3568
3569  return false;
3570}
3571
3572bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
3573                                         const ObjCInterfaceType *RHS) {
3574  // Verify that the base decls are compatible: the RHS must be a subclass of
3575  // the LHS.
3576  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
3577    return false;
3578
3579  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
3580  // protocol qualified at all, then we are good.
3581  if (LHS->getNumProtocols() == 0)
3582    return true;
3583
3584  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
3585  // isn't a superset.
3586  if (RHS->getNumProtocols() == 0)
3587    return true;  // FIXME: should return false!
3588
3589  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
3590                                        LHSPE = LHS->qual_end();
3591       LHSPI != LHSPE; LHSPI++) {
3592    bool RHSImplementsProtocol = false;
3593
3594    // If the RHS doesn't implement the protocol on the left, the types
3595    // are incompatible.
3596    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
3597                                          RHSPE = RHS->qual_end();
3598         RHSPI != RHSPE; RHSPI++) {
3599      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
3600        RHSImplementsProtocol = true;
3601        break;
3602      }
3603    }
3604    // FIXME: For better diagnostics, consider passing back the protocol name.
3605    if (!RHSImplementsProtocol)
3606      return false;
3607  }
3608  // The RHS implements all protocols listed on the LHS.
3609  return true;
3610}
3611
3612bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
3613  // get the "pointed to" types
3614  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
3615  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
3616
3617  if (!LHSOPT || !RHSOPT)
3618    return false;
3619
3620  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
3621         canAssignObjCInterfaces(RHSOPT, LHSOPT);
3622}
3623
3624/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
3625/// both shall have the identically qualified version of a compatible type.
3626/// C99 6.2.7p1: Two types have compatible types if their types are the
3627/// same. See 6.7.[2,3,5] for additional rules.
3628bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
3629  return !mergeTypes(LHS, RHS).isNull();
3630}
3631
3632QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
3633  const FunctionType *lbase = lhs->getAs<FunctionType>();
3634  const FunctionType *rbase = rhs->getAs<FunctionType>();
3635  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
3636  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
3637  bool allLTypes = true;
3638  bool allRTypes = true;
3639
3640  // Check return type
3641  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
3642  if (retType.isNull()) return QualType();
3643  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
3644    allLTypes = false;
3645  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
3646    allRTypes = false;
3647  // FIXME: double check this
3648  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
3649  if (NoReturn != lbase->getNoReturnAttr())
3650    allLTypes = false;
3651  if (NoReturn != rbase->getNoReturnAttr())
3652    allRTypes = false;
3653
3654  if (lproto && rproto) { // two C99 style function prototypes
3655    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
3656           "C++ shouldn't be here");
3657    unsigned lproto_nargs = lproto->getNumArgs();
3658    unsigned rproto_nargs = rproto->getNumArgs();
3659
3660    // Compatible functions must have the same number of arguments
3661    if (lproto_nargs != rproto_nargs)
3662      return QualType();
3663
3664    // Variadic and non-variadic functions aren't compatible
3665    if (lproto->isVariadic() != rproto->isVariadic())
3666      return QualType();
3667
3668    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3669      return QualType();
3670
3671    // Check argument compatibility
3672    llvm::SmallVector<QualType, 10> types;
3673    for (unsigned i = 0; i < lproto_nargs; i++) {
3674      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3675      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3676      QualType argtype = mergeTypes(largtype, rargtype);
3677      if (argtype.isNull()) return QualType();
3678      types.push_back(argtype);
3679      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3680        allLTypes = false;
3681      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3682        allRTypes = false;
3683    }
3684    if (allLTypes) return lhs;
3685    if (allRTypes) return rhs;
3686    return getFunctionType(retType, types.begin(), types.size(),
3687                           lproto->isVariadic(), lproto->getTypeQuals(),
3688                           NoReturn);
3689  }
3690
3691  if (lproto) allRTypes = false;
3692  if (rproto) allLTypes = false;
3693
3694  const FunctionProtoType *proto = lproto ? lproto : rproto;
3695  if (proto) {
3696    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3697    if (proto->isVariadic()) return QualType();
3698    // Check that the types are compatible with the types that
3699    // would result from default argument promotions (C99 6.7.5.3p15).
3700    // The only types actually affected are promotable integer
3701    // types and floats, which would be passed as a different
3702    // type depending on whether the prototype is visible.
3703    unsigned proto_nargs = proto->getNumArgs();
3704    for (unsigned i = 0; i < proto_nargs; ++i) {
3705      QualType argTy = proto->getArgType(i);
3706      if (argTy->isPromotableIntegerType() ||
3707          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3708        return QualType();
3709    }
3710
3711    if (allLTypes) return lhs;
3712    if (allRTypes) return rhs;
3713    return getFunctionType(retType, proto->arg_type_begin(),
3714                           proto->getNumArgs(), proto->isVariadic(),
3715                           proto->getTypeQuals(), NoReturn);
3716  }
3717
3718  if (allLTypes) return lhs;
3719  if (allRTypes) return rhs;
3720  return getFunctionNoProtoType(retType, NoReturn);
3721}
3722
3723QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3724  // C++ [expr]: If an expression initially has the type "reference to T", the
3725  // type is adjusted to "T" prior to any further analysis, the expression
3726  // designates the object or function denoted by the reference, and the
3727  // expression is an lvalue unless the reference is an rvalue reference and
3728  // the expression is a function call (possibly inside parentheses).
3729  // FIXME: C++ shouldn't be going through here!  The rules are different
3730  // enough that they should be handled separately.
3731  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3732  // shouldn't be going through here!
3733  if (const ReferenceType *RT = LHS->getAs<ReferenceType>())
3734    LHS = RT->getPointeeType();
3735  if (const ReferenceType *RT = RHS->getAs<ReferenceType>())
3736    RHS = RT->getPointeeType();
3737
3738  QualType LHSCan = getCanonicalType(LHS),
3739           RHSCan = getCanonicalType(RHS);
3740
3741  // If two types are identical, they are compatible.
3742  if (LHSCan == RHSCan)
3743    return LHS;
3744
3745  // If the qualifiers are different, the types aren't compatible... mostly.
3746  Qualifiers LQuals = LHSCan.getQualifiers();
3747  Qualifiers RQuals = RHSCan.getQualifiers();
3748  if (LQuals != RQuals) {
3749    // If any of these qualifiers are different, we have a type
3750    // mismatch.
3751    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
3752        LQuals.getAddressSpace() != RQuals.getAddressSpace())
3753      return QualType();
3754
3755    // Exactly one GC qualifier difference is allowed: __strong is
3756    // okay if the other type has no GC qualifier but is an Objective
3757    // C object pointer (i.e. implicitly strong by default).  We fix
3758    // this by pretending that the unqualified type was actually
3759    // qualified __strong.
3760    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
3761    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
3762    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
3763
3764    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
3765      return QualType();
3766
3767    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
3768      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
3769    }
3770    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
3771      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
3772    }
3773    return QualType();
3774  }
3775
3776  // Okay, qualifiers are equal.
3777
3778  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3779  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3780
3781  // We want to consider the two function types to be the same for these
3782  // comparisons, just force one to the other.
3783  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3784  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3785
3786  // Same as above for arrays
3787  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3788    LHSClass = Type::ConstantArray;
3789  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3790    RHSClass = Type::ConstantArray;
3791
3792  // Canonicalize ExtVector -> Vector.
3793  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3794  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3795
3796  // If the canonical type classes don't match.
3797  if (LHSClass != RHSClass) {
3798    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3799    // a signed integer type, or an unsigned integer type.
3800    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
3801      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3802        return RHS;
3803    }
3804    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
3805      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3806        return LHS;
3807    }
3808
3809    return QualType();
3810  }
3811
3812  // The canonical type classes match.
3813  switch (LHSClass) {
3814#define TYPE(Class, Base)
3815#define ABSTRACT_TYPE(Class, Base)
3816#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3817#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3818#include "clang/AST/TypeNodes.def"
3819    assert(false && "Non-canonical and dependent types shouldn't get here");
3820    return QualType();
3821
3822  case Type::LValueReference:
3823  case Type::RValueReference:
3824  case Type::MemberPointer:
3825    assert(false && "C++ should never be in mergeTypes");
3826    return QualType();
3827
3828  case Type::IncompleteArray:
3829  case Type::VariableArray:
3830  case Type::FunctionProto:
3831  case Type::ExtVector:
3832    assert(false && "Types are eliminated above");
3833    return QualType();
3834
3835  case Type::Pointer:
3836  {
3837    // Merge two pointer types, while trying to preserve typedef info
3838    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
3839    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
3840    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3841    if (ResultType.isNull()) return QualType();
3842    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3843      return LHS;
3844    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3845      return RHS;
3846    return getPointerType(ResultType);
3847  }
3848  case Type::BlockPointer:
3849  {
3850    // Merge two block pointer types, while trying to preserve typedef info
3851    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
3852    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
3853    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3854    if (ResultType.isNull()) return QualType();
3855    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3856      return LHS;
3857    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3858      return RHS;
3859    return getBlockPointerType(ResultType);
3860  }
3861  case Type::ConstantArray:
3862  {
3863    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3864    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3865    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3866      return QualType();
3867
3868    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3869    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3870    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3871    if (ResultType.isNull()) return QualType();
3872    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3873      return LHS;
3874    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3875      return RHS;
3876    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3877                                          ArrayType::ArraySizeModifier(), 0);
3878    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3879                                          ArrayType::ArraySizeModifier(), 0);
3880    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3881    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3882    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3883      return LHS;
3884    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3885      return RHS;
3886    if (LVAT) {
3887      // FIXME: This isn't correct! But tricky to implement because
3888      // the array's size has to be the size of LHS, but the type
3889      // has to be different.
3890      return LHS;
3891    }
3892    if (RVAT) {
3893      // FIXME: This isn't correct! But tricky to implement because
3894      // the array's size has to be the size of RHS, but the type
3895      // has to be different.
3896      return RHS;
3897    }
3898    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3899    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3900    return getIncompleteArrayType(ResultType,
3901                                  ArrayType::ArraySizeModifier(), 0);
3902  }
3903  case Type::FunctionNoProto:
3904    return mergeFunctionTypes(LHS, RHS);
3905  case Type::Record:
3906  case Type::Enum:
3907    return QualType();
3908  case Type::Builtin:
3909    // Only exactly equal builtin types are compatible, which is tested above.
3910    return QualType();
3911  case Type::Complex:
3912    // Distinct complex types are incompatible.
3913    return QualType();
3914  case Type::Vector:
3915    // FIXME: The merged type should be an ExtVector!
3916    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
3917      return LHS;
3918    return QualType();
3919  case Type::ObjCInterface: {
3920    // Check if the interfaces are assignment compatible.
3921    // FIXME: This should be type compatibility, e.g. whether
3922    // "LHS x; RHS x;" at global scope is legal.
3923    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
3924    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
3925    if (LHSIface && RHSIface &&
3926        canAssignObjCInterfaces(LHSIface, RHSIface))
3927      return LHS;
3928
3929    return QualType();
3930  }
3931  case Type::ObjCObjectPointer: {
3932    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
3933                                RHS->getAs<ObjCObjectPointerType>()))
3934      return LHS;
3935
3936    return QualType();
3937  }
3938  case Type::FixedWidthInt:
3939    // Distinct fixed-width integers are not compatible.
3940    return QualType();
3941  case Type::TemplateSpecialization:
3942    assert(false && "Dependent types have no size");
3943    break;
3944  }
3945
3946  return QualType();
3947}
3948
3949//===----------------------------------------------------------------------===//
3950//                         Integer Predicates
3951//===----------------------------------------------------------------------===//
3952
3953unsigned ASTContext::getIntWidth(QualType T) {
3954  if (T == BoolTy)
3955    return 1;
3956  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3957    return FWIT->getWidth();
3958  }
3959  // For builtin types, just use the standard type sizing method
3960  return (unsigned)getTypeSize(T);
3961}
3962
3963QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3964  assert(T->isSignedIntegerType() && "Unexpected type");
3965  if (const EnumType* ETy = T->getAs<EnumType>())
3966    T = ETy->getDecl()->getIntegerType();
3967  const BuiltinType* BTy = T->getAs<BuiltinType>();
3968  assert (BTy && "Unexpected signed integer type");
3969  switch (BTy->getKind()) {
3970  case BuiltinType::Char_S:
3971  case BuiltinType::SChar:
3972    return UnsignedCharTy;
3973  case BuiltinType::Short:
3974    return UnsignedShortTy;
3975  case BuiltinType::Int:
3976    return UnsignedIntTy;
3977  case BuiltinType::Long:
3978    return UnsignedLongTy;
3979  case BuiltinType::LongLong:
3980    return UnsignedLongLongTy;
3981  case BuiltinType::Int128:
3982    return UnsignedInt128Ty;
3983  default:
3984    assert(0 && "Unexpected signed integer type");
3985    return QualType();
3986  }
3987}
3988
3989ExternalASTSource::~ExternalASTSource() { }
3990
3991void ExternalASTSource::PrintStats() { }
3992
3993
3994//===----------------------------------------------------------------------===//
3995//                          Builtin Type Computation
3996//===----------------------------------------------------------------------===//
3997
3998/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
3999/// pointer over the consumed characters.  This returns the resultant type.
4000static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4001                                  ASTContext::GetBuiltinTypeError &Error,
4002                                  bool AllowTypeModifiers = true) {
4003  // Modifiers.
4004  int HowLong = 0;
4005  bool Signed = false, Unsigned = false;
4006
4007  // Read the modifiers first.
4008  bool Done = false;
4009  while (!Done) {
4010    switch (*Str++) {
4011    default: Done = true; --Str; break;
4012    case 'S':
4013      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4014      assert(!Signed && "Can't use 'S' modifier multiple times!");
4015      Signed = true;
4016      break;
4017    case 'U':
4018      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4019      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4020      Unsigned = true;
4021      break;
4022    case 'L':
4023      assert(HowLong <= 2 && "Can't have LLLL modifier");
4024      ++HowLong;
4025      break;
4026    }
4027  }
4028
4029  QualType Type;
4030
4031  // Read the base type.
4032  switch (*Str++) {
4033  default: assert(0 && "Unknown builtin type letter!");
4034  case 'v':
4035    assert(HowLong == 0 && !Signed && !Unsigned &&
4036           "Bad modifiers used with 'v'!");
4037    Type = Context.VoidTy;
4038    break;
4039  case 'f':
4040    assert(HowLong == 0 && !Signed && !Unsigned &&
4041           "Bad modifiers used with 'f'!");
4042    Type = Context.FloatTy;
4043    break;
4044  case 'd':
4045    assert(HowLong < 2 && !Signed && !Unsigned &&
4046           "Bad modifiers used with 'd'!");
4047    if (HowLong)
4048      Type = Context.LongDoubleTy;
4049    else
4050      Type = Context.DoubleTy;
4051    break;
4052  case 's':
4053    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4054    if (Unsigned)
4055      Type = Context.UnsignedShortTy;
4056    else
4057      Type = Context.ShortTy;
4058    break;
4059  case 'i':
4060    if (HowLong == 3)
4061      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4062    else if (HowLong == 2)
4063      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4064    else if (HowLong == 1)
4065      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4066    else
4067      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4068    break;
4069  case 'c':
4070    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4071    if (Signed)
4072      Type = Context.SignedCharTy;
4073    else if (Unsigned)
4074      Type = Context.UnsignedCharTy;
4075    else
4076      Type = Context.CharTy;
4077    break;
4078  case 'b': // boolean
4079    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4080    Type = Context.BoolTy;
4081    break;
4082  case 'z':  // size_t.
4083    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4084    Type = Context.getSizeType();
4085    break;
4086  case 'F':
4087    Type = Context.getCFConstantStringType();
4088    break;
4089  case 'a':
4090    Type = Context.getBuiltinVaListType();
4091    assert(!Type.isNull() && "builtin va list type not initialized!");
4092    break;
4093  case 'A':
4094    // This is a "reference" to a va_list; however, what exactly
4095    // this means depends on how va_list is defined. There are two
4096    // different kinds of va_list: ones passed by value, and ones
4097    // passed by reference.  An example of a by-value va_list is
4098    // x86, where va_list is a char*. An example of by-ref va_list
4099    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4100    // we want this argument to be a char*&; for x86-64, we want
4101    // it to be a __va_list_tag*.
4102    Type = Context.getBuiltinVaListType();
4103    assert(!Type.isNull() && "builtin va list type not initialized!");
4104    if (Type->isArrayType()) {
4105      Type = Context.getArrayDecayedType(Type);
4106    } else {
4107      Type = Context.getLValueReferenceType(Type);
4108    }
4109    break;
4110  case 'V': {
4111    char *End;
4112    unsigned NumElements = strtoul(Str, &End, 10);
4113    assert(End != Str && "Missing vector size");
4114
4115    Str = End;
4116
4117    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4118    Type = Context.getVectorType(ElementType, NumElements);
4119    break;
4120  }
4121  case 'X': {
4122    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4123    Type = Context.getComplexType(ElementType);
4124    break;
4125  }
4126  case 'P':
4127    Type = Context.getFILEType();
4128    if (Type.isNull()) {
4129      Error = ASTContext::GE_Missing_stdio;
4130      return QualType();
4131    }
4132    break;
4133  case 'J':
4134    if (Signed)
4135      Type = Context.getsigjmp_bufType();
4136    else
4137      Type = Context.getjmp_bufType();
4138
4139    if (Type.isNull()) {
4140      Error = ASTContext::GE_Missing_setjmp;
4141      return QualType();
4142    }
4143    break;
4144  }
4145
4146  if (!AllowTypeModifiers)
4147    return Type;
4148
4149  Done = false;
4150  while (!Done) {
4151    switch (*Str++) {
4152      default: Done = true; --Str; break;
4153      case '*':
4154        Type = Context.getPointerType(Type);
4155        break;
4156      case '&':
4157        Type = Context.getLValueReferenceType(Type);
4158        break;
4159      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4160      case 'C':
4161        Type = Type.withConst();
4162        break;
4163    }
4164  }
4165
4166  return Type;
4167}
4168
4169/// GetBuiltinType - Return the type for the specified builtin.
4170QualType ASTContext::GetBuiltinType(unsigned id,
4171                                    GetBuiltinTypeError &Error) {
4172  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4173
4174  llvm::SmallVector<QualType, 8> ArgTypes;
4175
4176  Error = GE_None;
4177  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4178  if (Error != GE_None)
4179    return QualType();
4180  while (TypeStr[0] && TypeStr[0] != '.') {
4181    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4182    if (Error != GE_None)
4183      return QualType();
4184
4185    // Do array -> pointer decay.  The builtin should use the decayed type.
4186    if (Ty->isArrayType())
4187      Ty = getArrayDecayedType(Ty);
4188
4189    ArgTypes.push_back(Ty);
4190  }
4191
4192  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4193         "'.' should only occur at end of builtin type list!");
4194
4195  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4196  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4197    return getFunctionNoProtoType(ResType);
4198  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4199                         TypeStr[0] == '.', 0);
4200}
4201
4202QualType
4203ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4204  // Perform the usual unary conversions. We do this early so that
4205  // integral promotions to "int" can allow us to exit early, in the
4206  // lhs == rhs check. Also, for conversion purposes, we ignore any
4207  // qualifiers.  For example, "const float" and "float" are
4208  // equivalent.
4209  if (lhs->isPromotableIntegerType())
4210    lhs = getPromotedIntegerType(lhs);
4211  else
4212    lhs = lhs.getUnqualifiedType();
4213  if (rhs->isPromotableIntegerType())
4214    rhs = getPromotedIntegerType(rhs);
4215  else
4216    rhs = rhs.getUnqualifiedType();
4217
4218  // If both types are identical, no conversion is needed.
4219  if (lhs == rhs)
4220    return lhs;
4221
4222  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4223  // The caller can deal with this (e.g. pointer + int).
4224  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4225    return lhs;
4226
4227  // At this point, we have two different arithmetic types.
4228
4229  // Handle complex types first (C99 6.3.1.8p1).
4230  if (lhs->isComplexType() || rhs->isComplexType()) {
4231    // if we have an integer operand, the result is the complex type.
4232    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4233      // convert the rhs to the lhs complex type.
4234      return lhs;
4235    }
4236    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4237      // convert the lhs to the rhs complex type.
4238      return rhs;
4239    }
4240    // This handles complex/complex, complex/float, or float/complex.
4241    // When both operands are complex, the shorter operand is converted to the
4242    // type of the longer, and that is the type of the result. This corresponds
4243    // to what is done when combining two real floating-point operands.
4244    // The fun begins when size promotion occur across type domains.
4245    // From H&S 6.3.4: When one operand is complex and the other is a real
4246    // floating-point type, the less precise type is converted, within it's
4247    // real or complex domain, to the precision of the other type. For example,
4248    // when combining a "long double" with a "double _Complex", the
4249    // "double _Complex" is promoted to "long double _Complex".
4250    int result = getFloatingTypeOrder(lhs, rhs);
4251
4252    if (result > 0) { // The left side is bigger, convert rhs.
4253      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4254    } else if (result < 0) { // The right side is bigger, convert lhs.
4255      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4256    }
4257    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4258    // domains match. This is a requirement for our implementation, C99
4259    // does not require this promotion.
4260    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4261      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4262        return rhs;
4263      } else { // handle "_Complex double, double".
4264        return lhs;
4265      }
4266    }
4267    return lhs; // The domain/size match exactly.
4268  }
4269  // Now handle "real" floating types (i.e. float, double, long double).
4270  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4271    // if we have an integer operand, the result is the real floating type.
4272    if (rhs->isIntegerType()) {
4273      // convert rhs to the lhs floating point type.
4274      return lhs;
4275    }
4276    if (rhs->isComplexIntegerType()) {
4277      // convert rhs to the complex floating point type.
4278      return getComplexType(lhs);
4279    }
4280    if (lhs->isIntegerType()) {
4281      // convert lhs to the rhs floating point type.
4282      return rhs;
4283    }
4284    if (lhs->isComplexIntegerType()) {
4285      // convert lhs to the complex floating point type.
4286      return getComplexType(rhs);
4287    }
4288    // We have two real floating types, float/complex combos were handled above.
4289    // Convert the smaller operand to the bigger result.
4290    int result = getFloatingTypeOrder(lhs, rhs);
4291    if (result > 0) // convert the rhs
4292      return lhs;
4293    assert(result < 0 && "illegal float comparison");
4294    return rhs;   // convert the lhs
4295  }
4296  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4297    // Handle GCC complex int extension.
4298    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4299    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4300
4301    if (lhsComplexInt && rhsComplexInt) {
4302      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4303                              rhsComplexInt->getElementType()) >= 0)
4304        return lhs; // convert the rhs
4305      return rhs;
4306    } else if (lhsComplexInt && rhs->isIntegerType()) {
4307      // convert the rhs to the lhs complex type.
4308      return lhs;
4309    } else if (rhsComplexInt && lhs->isIntegerType()) {
4310      // convert the lhs to the rhs complex type.
4311      return rhs;
4312    }
4313  }
4314  // Finally, we have two differing integer types.
4315  // The rules for this case are in C99 6.3.1.8
4316  int compare = getIntegerTypeOrder(lhs, rhs);
4317  bool lhsSigned = lhs->isSignedIntegerType(),
4318       rhsSigned = rhs->isSignedIntegerType();
4319  QualType destType;
4320  if (lhsSigned == rhsSigned) {
4321    // Same signedness; use the higher-ranked type
4322    destType = compare >= 0 ? lhs : rhs;
4323  } else if (compare != (lhsSigned ? 1 : -1)) {
4324    // The unsigned type has greater than or equal rank to the
4325    // signed type, so use the unsigned type
4326    destType = lhsSigned ? rhs : lhs;
4327  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
4328    // The two types are different widths; if we are here, that
4329    // means the signed type is larger than the unsigned type, so
4330    // use the signed type.
4331    destType = lhsSigned ? lhs : rhs;
4332  } else {
4333    // The signed type is higher-ranked than the unsigned type,
4334    // but isn't actually any bigger (like unsigned int and long
4335    // on most 32-bit systems).  Use the unsigned type corresponding
4336    // to the signed type.
4337    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
4338  }
4339  return destType;
4340}
4341