ASTContext.cpp revision e24aea225ec87b935ede6c21c964dd47a4afb810
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExternalASTSource.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/Basic/Builtins.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "RecordLayoutBuilder.h"
28
29using namespace clang;
30
31enum FloatingRank {
32  FloatRank, DoubleRank, LongDoubleRank
33};
34
35ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
36                       TargetInfo &t,
37                       IdentifierTable &idents, SelectorTable &sels,
38                       Builtin::Context &builtins,
39                       bool FreeMem, unsigned size_reserve) :
40  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
41  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0),
42  SourceMgr(SM), LangOpts(LOpts),
43  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
44  Idents(idents), Selectors(sels),
45  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
46  if (size_reserve > 0) Types.reserve(size_reserve);
47  TUDecl = TranslationUnitDecl::Create(*this);
48  InitBuiltinTypes();
49}
50
51ASTContext::~ASTContext() {
52  // Deallocate all the types.
53  while (!Types.empty()) {
54    Types.back()->Destroy(*this);
55    Types.pop_back();
56  }
57
58  {
59    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
60      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
61    while (I != E) {
62      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
63      delete R;
64    }
65  }
66
67  {
68    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
69      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
70    while (I != E) {
71      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
72      delete R;
73    }
74  }
75
76  // Destroy nested-name-specifiers.
77  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
78         NNS = NestedNameSpecifiers.begin(),
79         NNSEnd = NestedNameSpecifiers.end();
80       NNS != NNSEnd;
81       /* Increment in loop */)
82    (*NNS++).Destroy(*this);
83
84  if (GlobalNestedNameSpecifier)
85    GlobalNestedNameSpecifier->Destroy(*this);
86
87  TUDecl->Destroy(*this);
88}
89
90void
91ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
92  ExternalSource.reset(Source.take());
93}
94
95void ASTContext::PrintStats() const {
96  fprintf(stderr, "*** AST Context Stats:\n");
97  fprintf(stderr, "  %d types total.\n", (int)Types.size());
98
99  unsigned counts[] = {
100#define TYPE(Name, Parent) 0,
101#define ABSTRACT_TYPE(Name, Parent)
102#include "clang/AST/TypeNodes.def"
103    0 // Extra
104  };
105
106  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
107    Type *T = Types[i];
108    counts[(unsigned)T->getTypeClass()]++;
109  }
110
111  unsigned Idx = 0;
112  unsigned TotalBytes = 0;
113#define TYPE(Name, Parent)                                              \
114  if (counts[Idx])                                                      \
115    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
116  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
117  ++Idx;
118#define ABSTRACT_TYPE(Name, Parent)
119#include "clang/AST/TypeNodes.def"
120
121  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
122
123  if (ExternalSource.get()) {
124    fprintf(stderr, "\n");
125    ExternalSource->PrintStats();
126  }
127}
128
129
130void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
131  Types.push_back((R = QualType(new (*this,8) BuiltinType(K),0)).getTypePtr());
132}
133
134void ASTContext::InitBuiltinTypes() {
135  assert(VoidTy.isNull() && "Context reinitialized?");
136
137  // C99 6.2.5p19.
138  InitBuiltinType(VoidTy,              BuiltinType::Void);
139
140  // C99 6.2.5p2.
141  InitBuiltinType(BoolTy,              BuiltinType::Bool);
142  // C99 6.2.5p3.
143  if (LangOpts.CharIsSigned)
144    InitBuiltinType(CharTy,            BuiltinType::Char_S);
145  else
146    InitBuiltinType(CharTy,            BuiltinType::Char_U);
147  // C99 6.2.5p4.
148  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
149  InitBuiltinType(ShortTy,             BuiltinType::Short);
150  InitBuiltinType(IntTy,               BuiltinType::Int);
151  InitBuiltinType(LongTy,              BuiltinType::Long);
152  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
153
154  // C99 6.2.5p6.
155  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
156  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
157  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
158  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
159  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
160
161  // C99 6.2.5p10.
162  InitBuiltinType(FloatTy,             BuiltinType::Float);
163  InitBuiltinType(DoubleTy,            BuiltinType::Double);
164  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
165
166  // GNU extension, 128-bit integers.
167  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
168  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
169
170  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
171    InitBuiltinType(WCharTy,           BuiltinType::WChar);
172  else // C99
173    WCharTy = getFromTargetType(Target.getWCharType());
174
175  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
176    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
177  else // C99
178    Char16Ty = getFromTargetType(Target.getChar16Type());
179
180  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
181    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
182  else // C99
183    Char32Ty = getFromTargetType(Target.getChar32Type());
184
185  // Placeholder type for functions.
186  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
187
188  // Placeholder type for type-dependent expressions whose type is
189  // completely unknown. No code should ever check a type against
190  // DependentTy and users should never see it; however, it is here to
191  // help diagnose failures to properly check for type-dependent
192  // expressions.
193  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
194
195  // Placeholder type for C++0x auto declarations whose real type has
196  // not yet been deduced.
197  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
198
199  // C99 6.2.5p11.
200  FloatComplexTy      = getComplexType(FloatTy);
201  DoubleComplexTy     = getComplexType(DoubleTy);
202  LongDoubleComplexTy = getComplexType(LongDoubleTy);
203
204  BuiltinVaListType = QualType();
205
206  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
207  ObjCIdTypedefType = QualType();
208  ObjCClassTypedefType = QualType();
209
210  // Builtin types for 'id' and 'Class'.
211  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
212  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
213
214  ObjCConstantStringType = QualType();
215
216  // void * type
217  VoidPtrTy = getPointerType(VoidTy);
218
219  // nullptr type (C++0x 2.14.7)
220  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
221}
222
223VarDecl *ASTContext::getInstantiatedFromStaticDataMember(VarDecl *Var) {
224  assert(Var->isStaticDataMember() && "Not a static data member");
225  llvm::DenseMap<VarDecl *, VarDecl *>::iterator Pos
226    = InstantiatedFromStaticDataMember.find(Var);
227  if (Pos == InstantiatedFromStaticDataMember.end())
228    return 0;
229
230  return Pos->second;
231}
232
233void
234ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl) {
235  assert(Inst->isStaticDataMember() && "Not a static data member");
236  assert(Tmpl->isStaticDataMember() && "Not a static data member");
237  assert(!InstantiatedFromStaticDataMember[Inst] &&
238         "Already noted what static data member was instantiated from");
239  InstantiatedFromStaticDataMember[Inst] = Tmpl;
240}
241
242namespace {
243  class BeforeInTranslationUnit
244    : std::binary_function<SourceRange, SourceRange, bool> {
245    SourceManager *SourceMgr;
246
247  public:
248    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
249
250    bool operator()(SourceRange X, SourceRange Y) {
251      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
252    }
253  };
254}
255
256/// \brief Determine whether the given comment is a Doxygen-style comment.
257///
258/// \param Start the start of the comment text.
259///
260/// \param End the end of the comment text.
261///
262/// \param Member whether we want to check whether this is a member comment
263/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
264/// we only return true when we find a non-member comment.
265static bool
266isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
267                 bool Member = false) {
268  const char *BufferStart
269    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
270  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
271  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
272
273  if (End - Start < 4)
274    return false;
275
276  assert(Start[0] == '/' && "Not a comment?");
277  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
278    return false;
279  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
280    return false;
281
282  return (Start[3] == '<') == Member;
283}
284
285/// \brief Retrieve the comment associated with the given declaration, if
286/// it has one.
287const char *ASTContext::getCommentForDecl(const Decl *D) {
288  if (!D)
289    return 0;
290
291  // Check whether we have cached a comment string for this declaration
292  // already.
293  llvm::DenseMap<const Decl *, std::string>::iterator Pos
294    = DeclComments.find(D);
295  if (Pos != DeclComments.end())
296    return Pos->second.c_str();
297
298  // If we have an external AST source and have not yet loaded comments from
299  // that source, do so now.
300  if (ExternalSource && !LoadedExternalComments) {
301    std::vector<SourceRange> LoadedComments;
302    ExternalSource->ReadComments(LoadedComments);
303
304    if (!LoadedComments.empty())
305      Comments.insert(Comments.begin(), LoadedComments.begin(),
306                      LoadedComments.end());
307
308    LoadedExternalComments = true;
309  }
310
311  // If there are no comments anywhere, we won't find anything.
312  if (Comments.empty())
313    return 0;
314
315  // If the declaration doesn't map directly to a location in a file, we
316  // can't find the comment.
317  SourceLocation DeclStartLoc = D->getLocStart();
318  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
319    return 0;
320
321  // Find the comment that occurs just before this declaration.
322  std::vector<SourceRange>::iterator LastComment
323    = std::lower_bound(Comments.begin(), Comments.end(),
324                       SourceRange(DeclStartLoc),
325                       BeforeInTranslationUnit(&SourceMgr));
326
327  // Decompose the location for the start of the declaration and find the
328  // beginning of the file buffer.
329  std::pair<FileID, unsigned> DeclStartDecomp
330    = SourceMgr.getDecomposedLoc(DeclStartLoc);
331  const char *FileBufferStart
332    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
333
334  // First check whether we have a comment for a member.
335  if (LastComment != Comments.end() &&
336      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
337      isDoxygenComment(SourceMgr, *LastComment, true)) {
338    std::pair<FileID, unsigned> LastCommentEndDecomp
339      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
340    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
341        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
342          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
343                                     LastCommentEndDecomp.second)) {
344      // The Doxygen member comment comes after the declaration starts and
345      // is on the same line and in the same file as the declaration. This
346      // is the comment we want.
347      std::string &Result = DeclComments[D];
348      Result.append(FileBufferStart +
349                      SourceMgr.getFileOffset(LastComment->getBegin()),
350                    FileBufferStart + LastCommentEndDecomp.second + 1);
351      return Result.c_str();
352    }
353  }
354
355  if (LastComment == Comments.begin())
356    return 0;
357  --LastComment;
358
359  // Decompose the end of the comment.
360  std::pair<FileID, unsigned> LastCommentEndDecomp
361    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
362
363  // If the comment and the declaration aren't in the same file, then they
364  // aren't related.
365  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
366    return 0;
367
368  // Check that we actually have a Doxygen comment.
369  if (!isDoxygenComment(SourceMgr, *LastComment))
370    return 0;
371
372  // Compute the starting line for the declaration and for the end of the
373  // comment (this is expensive).
374  unsigned DeclStartLine
375    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
376  unsigned CommentEndLine
377    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
378                              LastCommentEndDecomp.second);
379
380  // If the comment does not end on the line prior to the declaration, then
381  // the comment is not associated with the declaration at all.
382  if (CommentEndLine + 1 != DeclStartLine)
383    return 0;
384
385  // We have a comment, but there may be more comments on the previous lines.
386  // Keep looking so long as the comments are still Doxygen comments and are
387  // still adjacent.
388  unsigned ExpectedLine
389    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
390  std::vector<SourceRange>::iterator FirstComment = LastComment;
391  while (FirstComment != Comments.begin()) {
392    // Look at the previous comment
393    --FirstComment;
394    std::pair<FileID, unsigned> Decomp
395      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
396
397    // If this previous comment is in a different file, we're done.
398    if (Decomp.first != DeclStartDecomp.first) {
399      ++FirstComment;
400      break;
401    }
402
403    // If this comment is not a Doxygen comment, we're done.
404    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
405      ++FirstComment;
406      break;
407    }
408
409    // If the line number is not what we expected, we're done.
410    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
411    if (Line != ExpectedLine) {
412      ++FirstComment;
413      break;
414    }
415
416    // Set the next expected line number.
417    ExpectedLine
418      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
419  }
420
421  // The iterator range [FirstComment, LastComment] contains all of the
422  // BCPL comments that, together, are associated with this declaration.
423  // Form a single comment block string for this declaration that concatenates
424  // all of these comments.
425  std::string &Result = DeclComments[D];
426  while (FirstComment != LastComment) {
427    std::pair<FileID, unsigned> DecompStart
428      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
429    std::pair<FileID, unsigned> DecompEnd
430      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
431    Result.append(FileBufferStart + DecompStart.second,
432                  FileBufferStart + DecompEnd.second + 1);
433    ++FirstComment;
434  }
435
436  // Append the last comment line.
437  Result.append(FileBufferStart +
438                  SourceMgr.getFileOffset(LastComment->getBegin()),
439                FileBufferStart + LastCommentEndDecomp.second + 1);
440  return Result.c_str();
441}
442
443//===----------------------------------------------------------------------===//
444//                         Type Sizing and Analysis
445//===----------------------------------------------------------------------===//
446
447/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
448/// scalar floating point type.
449const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
450  const BuiltinType *BT = T->getAsBuiltinType();
451  assert(BT && "Not a floating point type!");
452  switch (BT->getKind()) {
453  default: assert(0 && "Not a floating point type!");
454  case BuiltinType::Float:      return Target.getFloatFormat();
455  case BuiltinType::Double:     return Target.getDoubleFormat();
456  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
457  }
458}
459
460/// getDeclAlign - Return a conservative estimate of the alignment of the
461/// specified decl.  Note that bitfields do not have a valid alignment, so
462/// this method will assert on them.
463unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
464  unsigned Align = Target.getCharWidth();
465
466  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
467    Align = std::max(Align, AA->getAlignment());
468
469  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
470    QualType T = VD->getType();
471    if (const ReferenceType* RT = T->getAsReferenceType()) {
472      unsigned AS = RT->getPointeeType().getAddressSpace();
473      Align = Target.getPointerAlign(AS);
474    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
475      // Incomplete or function types default to 1.
476      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
477        T = cast<ArrayType>(T)->getElementType();
478
479      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
480    }
481  }
482
483  return Align / Target.getCharWidth();
484}
485
486/// getTypeSize - Return the size of the specified type, in bits.  This method
487/// does not work on incomplete types.
488std::pair<uint64_t, unsigned>
489ASTContext::getTypeInfo(const Type *T) {
490  uint64_t Width=0;
491  unsigned Align=8;
492  switch (T->getTypeClass()) {
493#define TYPE(Class, Base)
494#define ABSTRACT_TYPE(Class, Base)
495#define NON_CANONICAL_TYPE(Class, Base)
496#define DEPENDENT_TYPE(Class, Base) case Type::Class:
497#include "clang/AST/TypeNodes.def"
498    assert(false && "Should not see dependent types");
499    break;
500
501  case Type::FunctionNoProto:
502  case Type::FunctionProto:
503    // GCC extension: alignof(function) = 32 bits
504    Width = 0;
505    Align = 32;
506    break;
507
508  case Type::IncompleteArray:
509  case Type::VariableArray:
510    Width = 0;
511    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
512    break;
513
514  case Type::ConstantArrayWithExpr:
515  case Type::ConstantArrayWithoutExpr:
516  case Type::ConstantArray: {
517    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
518
519    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
520    Width = EltInfo.first*CAT->getSize().getZExtValue();
521    Align = EltInfo.second;
522    break;
523  }
524  case Type::ExtVector:
525  case Type::Vector: {
526    std::pair<uint64_t, unsigned> EltInfo =
527      getTypeInfo(cast<VectorType>(T)->getElementType());
528    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
529    Align = Width;
530    // If the alignment is not a power of 2, round up to the next power of 2.
531    // This happens for non-power-of-2 length vectors.
532    // FIXME: this should probably be a target property.
533    Align = 1 << llvm::Log2_32_Ceil(Align);
534    break;
535  }
536
537  case Type::Builtin:
538    switch (cast<BuiltinType>(T)->getKind()) {
539    default: assert(0 && "Unknown builtin type!");
540    case BuiltinType::Void:
541      // GCC extension: alignof(void) = 8 bits.
542      Width = 0;
543      Align = 8;
544      break;
545
546    case BuiltinType::Bool:
547      Width = Target.getBoolWidth();
548      Align = Target.getBoolAlign();
549      break;
550    case BuiltinType::Char_S:
551    case BuiltinType::Char_U:
552    case BuiltinType::UChar:
553    case BuiltinType::SChar:
554      Width = Target.getCharWidth();
555      Align = Target.getCharAlign();
556      break;
557    case BuiltinType::WChar:
558      Width = Target.getWCharWidth();
559      Align = Target.getWCharAlign();
560      break;
561    case BuiltinType::Char16:
562      Width = Target.getChar16Width();
563      Align = Target.getChar16Align();
564      break;
565    case BuiltinType::Char32:
566      Width = Target.getChar32Width();
567      Align = Target.getChar32Align();
568      break;
569    case BuiltinType::UShort:
570    case BuiltinType::Short:
571      Width = Target.getShortWidth();
572      Align = Target.getShortAlign();
573      break;
574    case BuiltinType::UInt:
575    case BuiltinType::Int:
576      Width = Target.getIntWidth();
577      Align = Target.getIntAlign();
578      break;
579    case BuiltinType::ULong:
580    case BuiltinType::Long:
581      Width = Target.getLongWidth();
582      Align = Target.getLongAlign();
583      break;
584    case BuiltinType::ULongLong:
585    case BuiltinType::LongLong:
586      Width = Target.getLongLongWidth();
587      Align = Target.getLongLongAlign();
588      break;
589    case BuiltinType::Int128:
590    case BuiltinType::UInt128:
591      Width = 128;
592      Align = 128; // int128_t is 128-bit aligned on all targets.
593      break;
594    case BuiltinType::Float:
595      Width = Target.getFloatWidth();
596      Align = Target.getFloatAlign();
597      break;
598    case BuiltinType::Double:
599      Width = Target.getDoubleWidth();
600      Align = Target.getDoubleAlign();
601      break;
602    case BuiltinType::LongDouble:
603      Width = Target.getLongDoubleWidth();
604      Align = Target.getLongDoubleAlign();
605      break;
606    case BuiltinType::NullPtr:
607      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
608      Align = Target.getPointerAlign(0); //   == sizeof(void*)
609      break;
610    }
611    break;
612  case Type::FixedWidthInt:
613    // FIXME: This isn't precisely correct; the width/alignment should depend
614    // on the available types for the target
615    Width = cast<FixedWidthIntType>(T)->getWidth();
616    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
617    Align = Width;
618    break;
619  case Type::ExtQual:
620    // FIXME: Pointers into different addr spaces could have different sizes and
621    // alignment requirements: getPointerInfo should take an AddrSpace.
622    return getTypeInfo(QualType(cast<ExtQualType>(T)->getBaseType(), 0));
623  case Type::ObjCObjectPointer:
624    Width = Target.getPointerWidth(0);
625    Align = Target.getPointerAlign(0);
626    break;
627  case Type::BlockPointer: {
628    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
629    Width = Target.getPointerWidth(AS);
630    Align = Target.getPointerAlign(AS);
631    break;
632  }
633  case Type::Pointer: {
634    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
635    Width = Target.getPointerWidth(AS);
636    Align = Target.getPointerAlign(AS);
637    break;
638  }
639  case Type::LValueReference:
640  case Type::RValueReference:
641    // "When applied to a reference or a reference type, the result is the size
642    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
643    // FIXME: This is wrong for struct layout: a reference in a struct has
644    // pointer size.
645    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
646  case Type::MemberPointer: {
647    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
648    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
649    // If we ever want to support other ABIs this needs to be abstracted.
650
651    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
652    std::pair<uint64_t, unsigned> PtrDiffInfo =
653      getTypeInfo(getPointerDiffType());
654    Width = PtrDiffInfo.first;
655    if (Pointee->isFunctionType())
656      Width *= 2;
657    Align = PtrDiffInfo.second;
658    break;
659  }
660  case Type::Complex: {
661    // Complex types have the same alignment as their elements, but twice the
662    // size.
663    std::pair<uint64_t, unsigned> EltInfo =
664      getTypeInfo(cast<ComplexType>(T)->getElementType());
665    Width = EltInfo.first*2;
666    Align = EltInfo.second;
667    break;
668  }
669  case Type::ObjCInterface: {
670    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
671    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
672    Width = Layout.getSize();
673    Align = Layout.getAlignment();
674    break;
675  }
676  case Type::Record:
677  case Type::Enum: {
678    const TagType *TT = cast<TagType>(T);
679
680    if (TT->getDecl()->isInvalidDecl()) {
681      Width = 1;
682      Align = 1;
683      break;
684    }
685
686    if (const EnumType *ET = dyn_cast<EnumType>(TT))
687      return getTypeInfo(ET->getDecl()->getIntegerType());
688
689    const RecordType *RT = cast<RecordType>(TT);
690    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
691    Width = Layout.getSize();
692    Align = Layout.getAlignment();
693    break;
694  }
695
696  case Type::Typedef: {
697    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
698    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
699      Align = Aligned->getAlignment();
700      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
701    } else
702      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
703    break;
704  }
705
706  case Type::TypeOfExpr:
707    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
708                         .getTypePtr());
709
710  case Type::TypeOf:
711    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
712
713  case Type::Decltype:
714    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
715                        .getTypePtr());
716
717  case Type::QualifiedName:
718    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
719
720  case Type::TemplateSpecialization:
721    assert(getCanonicalType(T) != T &&
722           "Cannot request the size of a dependent type");
723    // FIXME: this is likely to be wrong once we support template
724    // aliases, since a template alias could refer to a typedef that
725    // has an __aligned__ attribute on it.
726    return getTypeInfo(getCanonicalType(T));
727  }
728
729  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
730  return std::make_pair(Width, Align);
731}
732
733/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
734/// type for the current target in bits.  This can be different than the ABI
735/// alignment in cases where it is beneficial for performance to overalign
736/// a data type.
737unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
738  unsigned ABIAlign = getTypeAlign(T);
739
740  // Double and long long should be naturally aligned if possible.
741  if (const ComplexType* CT = T->getAsComplexType())
742    T = CT->getElementType().getTypePtr();
743  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
744      T->isSpecificBuiltinType(BuiltinType::LongLong))
745    return std::max(ABIAlign, (unsigned)getTypeSize(T));
746
747  return ABIAlign;
748}
749
750static void CollectLocalObjCIvars(ASTContext *Ctx,
751                                  const ObjCInterfaceDecl *OI,
752                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
753  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
754       E = OI->ivar_end(); I != E; ++I) {
755    ObjCIvarDecl *IVDecl = *I;
756    if (!IVDecl->isInvalidDecl())
757      Fields.push_back(cast<FieldDecl>(IVDecl));
758  }
759}
760
761void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
762                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
763  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
764    CollectObjCIvars(SuperClass, Fields);
765  CollectLocalObjCIvars(this, OI, Fields);
766}
767
768/// ShallowCollectObjCIvars -
769/// Collect all ivars, including those synthesized, in the current class.
770///
771void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
772                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
773                                 bool CollectSynthesized) {
774  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
775         E = OI->ivar_end(); I != E; ++I) {
776     Ivars.push_back(*I);
777  }
778  if (CollectSynthesized)
779    CollectSynthesizedIvars(OI, Ivars);
780}
781
782void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
783                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
784  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
785       E = PD->prop_end(); I != E; ++I)
786    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
787      Ivars.push_back(Ivar);
788
789  // Also look into nested protocols.
790  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
791       E = PD->protocol_end(); P != E; ++P)
792    CollectProtocolSynthesizedIvars(*P, Ivars);
793}
794
795/// CollectSynthesizedIvars -
796/// This routine collect synthesized ivars for the designated class.
797///
798void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
799                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
800  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
801       E = OI->prop_end(); I != E; ++I) {
802    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
803      Ivars.push_back(Ivar);
804  }
805  // Also look into interface's protocol list for properties declared
806  // in the protocol and whose ivars are synthesized.
807  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
808       PE = OI->protocol_end(); P != PE; ++P) {
809    ObjCProtocolDecl *PD = (*P);
810    CollectProtocolSynthesizedIvars(PD, Ivars);
811  }
812}
813
814unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
815  unsigned count = 0;
816  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
817       E = PD->prop_end(); I != E; ++I)
818    if ((*I)->getPropertyIvarDecl())
819      ++count;
820
821  // Also look into nested protocols.
822  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
823       E = PD->protocol_end(); P != E; ++P)
824    count += CountProtocolSynthesizedIvars(*P);
825  return count;
826}
827
828unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI)
829{
830  unsigned count = 0;
831  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
832       E = OI->prop_end(); I != E; ++I) {
833    if ((*I)->getPropertyIvarDecl())
834      ++count;
835  }
836  // Also look into interface's protocol list for properties declared
837  // in the protocol and whose ivars are synthesized.
838  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
839       PE = OI->protocol_end(); P != PE; ++P) {
840    ObjCProtocolDecl *PD = (*P);
841    count += CountProtocolSynthesizedIvars(PD);
842  }
843  return count;
844}
845
846/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
847ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
848  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
849    I = ObjCImpls.find(D);
850  if (I != ObjCImpls.end())
851    return cast<ObjCImplementationDecl>(I->second);
852  return 0;
853}
854/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
855ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
856  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
857    I = ObjCImpls.find(D);
858  if (I != ObjCImpls.end())
859    return cast<ObjCCategoryImplDecl>(I->second);
860  return 0;
861}
862
863/// \brief Set the implementation of ObjCInterfaceDecl.
864void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
865                           ObjCImplementationDecl *ImplD) {
866  assert(IFaceD && ImplD && "Passed null params");
867  ObjCImpls[IFaceD] = ImplD;
868}
869/// \brief Set the implementation of ObjCCategoryDecl.
870void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
871                           ObjCCategoryImplDecl *ImplD) {
872  assert(CatD && ImplD && "Passed null params");
873  ObjCImpls[CatD] = ImplD;
874}
875
876/// getInterfaceLayoutImpl - Get or compute information about the
877/// layout of the given interface.
878///
879/// \param Impl - If given, also include the layout of the interface's
880/// implementation. This may differ by including synthesized ivars.
881const ASTRecordLayout &
882ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
883                          const ObjCImplementationDecl *Impl) {
884  assert(!D->isForwardDecl() && "Invalid interface decl!");
885
886  // Look up this layout, if already laid out, return what we have.
887  ObjCContainerDecl *Key =
888    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
889  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
890    return *Entry;
891
892  // Add in synthesized ivar count if laying out an implementation.
893  if (Impl) {
894    unsigned FieldCount = D->ivar_size();
895    unsigned SynthCount = CountSynthesizedIvars(D);
896    FieldCount += SynthCount;
897    // If there aren't any sythesized ivars then reuse the interface
898    // entry. Note we can't cache this because we simply free all
899    // entries later; however we shouldn't look up implementations
900    // frequently.
901    if (SynthCount == 0)
902      return getObjCLayout(D, 0);
903  }
904
905  const ASTRecordLayout *NewEntry =
906    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
907  ObjCLayouts[Key] = NewEntry;
908
909  return *NewEntry;
910}
911
912const ASTRecordLayout &
913ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
914  return getObjCLayout(D, 0);
915}
916
917const ASTRecordLayout &
918ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
919  return getObjCLayout(D->getClassInterface(), D);
920}
921
922/// getASTRecordLayout - Get or compute information about the layout of the
923/// specified record (struct/union/class), which indicates its size and field
924/// position information.
925const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
926  D = D->getDefinition(*this);
927  assert(D && "Cannot get layout of forward declarations!");
928
929  // Look up this layout, if already laid out, return what we have.
930  // Note that we can't save a reference to the entry because this function
931  // is recursive.
932  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
933  if (Entry) return *Entry;
934
935  const ASTRecordLayout *NewEntry =
936    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
937  ASTRecordLayouts[D] = NewEntry;
938
939  return *NewEntry;
940}
941
942//===----------------------------------------------------------------------===//
943//                   Type creation/memoization methods
944//===----------------------------------------------------------------------===//
945
946QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
947  QualType CanT = getCanonicalType(T);
948  if (CanT.getAddressSpace() == AddressSpace)
949    return T;
950
951  // If we are composing extended qualifiers together, merge together into one
952  // ExtQualType node.
953  unsigned CVRQuals = T.getCVRQualifiers();
954  QualType::GCAttrTypes GCAttr = QualType::GCNone;
955  Type *TypeNode = T.getTypePtr();
956
957  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
958    // If this type already has an address space specified, it cannot get
959    // another one.
960    assert(EQT->getAddressSpace() == 0 &&
961           "Type cannot be in multiple addr spaces!");
962    GCAttr = EQT->getObjCGCAttr();
963    TypeNode = EQT->getBaseType();
964  }
965
966  // Check if we've already instantiated this type.
967  llvm::FoldingSetNodeID ID;
968  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
969  void *InsertPos = 0;
970  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
971    return QualType(EXTQy, CVRQuals);
972
973  // If the base type isn't canonical, this won't be a canonical type either,
974  // so fill in the canonical type field.
975  QualType Canonical;
976  if (!TypeNode->isCanonical()) {
977    Canonical = getAddrSpaceQualType(CanT, AddressSpace);
978
979    // Update InsertPos, the previous call could have invalidated it.
980    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
981    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
982  }
983  ExtQualType *New =
984    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
985  ExtQualTypes.InsertNode(New, InsertPos);
986  Types.push_back(New);
987  return QualType(New, CVRQuals);
988}
989
990QualType ASTContext::getObjCGCQualType(QualType T,
991                                       QualType::GCAttrTypes GCAttr) {
992  QualType CanT = getCanonicalType(T);
993  if (CanT.getObjCGCAttr() == GCAttr)
994    return T;
995
996  if (T->isPointerType()) {
997    QualType Pointee = T->getAsPointerType()->getPointeeType();
998    if (Pointee->isAnyPointerType()) {
999      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1000      return getPointerType(ResultType);
1001    }
1002  }
1003  // If we are composing extended qualifiers together, merge together into one
1004  // ExtQualType node.
1005  unsigned CVRQuals = T.getCVRQualifiers();
1006  Type *TypeNode = T.getTypePtr();
1007  unsigned AddressSpace = 0;
1008
1009  if (ExtQualType *EQT = dyn_cast<ExtQualType>(TypeNode)) {
1010    // If this type already has an ObjCGC specified, it cannot get
1011    // another one.
1012    assert(EQT->getObjCGCAttr() == QualType::GCNone &&
1013           "Type cannot have multiple ObjCGCs!");
1014    AddressSpace = EQT->getAddressSpace();
1015    TypeNode = EQT->getBaseType();
1016  }
1017
1018  // Check if we've already instantiated an gc qual'd type of this type.
1019  llvm::FoldingSetNodeID ID;
1020  ExtQualType::Profile(ID, TypeNode, AddressSpace, GCAttr);
1021  void *InsertPos = 0;
1022  if (ExtQualType *EXTQy = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos))
1023    return QualType(EXTQy, CVRQuals);
1024
1025  // If the base type isn't canonical, this won't be a canonical type either,
1026  // so fill in the canonical type field.
1027  // FIXME: Isn't this also not canonical if the base type is a array
1028  // or pointer type?  I can't find any documentation for objc_gc, though...
1029  QualType Canonical;
1030  if (!T->isCanonical()) {
1031    Canonical = getObjCGCQualType(CanT, GCAttr);
1032
1033    // Update InsertPos, the previous call could have invalidated it.
1034    ExtQualType *NewIP = ExtQualTypes.FindNodeOrInsertPos(ID, InsertPos);
1035    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1036  }
1037  ExtQualType *New =
1038    new (*this, 8) ExtQualType(TypeNode, Canonical, AddressSpace, GCAttr);
1039  ExtQualTypes.InsertNode(New, InsertPos);
1040  Types.push_back(New);
1041  return QualType(New, CVRQuals);
1042}
1043
1044QualType ASTContext::getNoReturnType(QualType T) {
1045  QualifierSet qs;
1046  qs.strip(T);
1047  if (T->isPointerType()) {
1048    QualType Pointee = T->getAsPointerType()->getPointeeType();
1049    QualType ResultType = getNoReturnType(Pointee);
1050    ResultType = getPointerType(ResultType);
1051    ResultType.setCVRQualifiers(T.getCVRQualifiers());
1052    return qs.apply(ResultType, *this);
1053  }
1054  if (T->isBlockPointerType()) {
1055    QualType Pointee = T->getAsBlockPointerType()->getPointeeType();
1056    QualType ResultType = getNoReturnType(Pointee);
1057    ResultType = getBlockPointerType(ResultType);
1058    ResultType.setCVRQualifiers(T.getCVRQualifiers());
1059    return qs.apply(ResultType, *this);
1060  }
1061  if (!T->isFunctionType())
1062    assert(0 && "can't noreturn qualify non-pointer to function or block type");
1063
1064  if (const FunctionNoProtoType *F = T->getAsFunctionNoProtoType()) {
1065    return getFunctionNoProtoType(F->getResultType(), true);
1066  }
1067  const FunctionProtoType *F = T->getAsFunctionProtoType();
1068  return getFunctionType(F->getResultType(), F->arg_type_begin(),
1069                         F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1070                         F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1071                         F->getNumExceptions(), F->exception_begin(), true);
1072}
1073
1074/// getComplexType - Return the uniqued reference to the type for a complex
1075/// number with the specified element type.
1076QualType ASTContext::getComplexType(QualType T) {
1077  // Unique pointers, to guarantee there is only one pointer of a particular
1078  // structure.
1079  llvm::FoldingSetNodeID ID;
1080  ComplexType::Profile(ID, T);
1081
1082  void *InsertPos = 0;
1083  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1084    return QualType(CT, 0);
1085
1086  // If the pointee type isn't canonical, this won't be a canonical type either,
1087  // so fill in the canonical type field.
1088  QualType Canonical;
1089  if (!T->isCanonical()) {
1090    Canonical = getComplexType(getCanonicalType(T));
1091
1092    // Get the new insert position for the node we care about.
1093    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1094    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1095  }
1096  ComplexType *New = new (*this,8) ComplexType(T, Canonical);
1097  Types.push_back(New);
1098  ComplexTypes.InsertNode(New, InsertPos);
1099  return QualType(New, 0);
1100}
1101
1102QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1103  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1104     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1105  FixedWidthIntType *&Entry = Map[Width];
1106  if (!Entry)
1107    Entry = new FixedWidthIntType(Width, Signed);
1108  return QualType(Entry, 0);
1109}
1110
1111/// getPointerType - Return the uniqued reference to the type for a pointer to
1112/// the specified type.
1113QualType ASTContext::getPointerType(QualType T) {
1114  // Unique pointers, to guarantee there is only one pointer of a particular
1115  // structure.
1116  llvm::FoldingSetNodeID ID;
1117  PointerType::Profile(ID, T);
1118
1119  void *InsertPos = 0;
1120  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1121    return QualType(PT, 0);
1122
1123  // If the pointee type isn't canonical, this won't be a canonical type either,
1124  // so fill in the canonical type field.
1125  QualType Canonical;
1126  if (!T->isCanonical()) {
1127    Canonical = getPointerType(getCanonicalType(T));
1128
1129    // Get the new insert position for the node we care about.
1130    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1131    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1132  }
1133  PointerType *New = new (*this,8) PointerType(T, Canonical);
1134  Types.push_back(New);
1135  PointerTypes.InsertNode(New, InsertPos);
1136  return QualType(New, 0);
1137}
1138
1139/// getBlockPointerType - Return the uniqued reference to the type for
1140/// a pointer to the specified block.
1141QualType ASTContext::getBlockPointerType(QualType T) {
1142  assert(T->isFunctionType() && "block of function types only");
1143  // Unique pointers, to guarantee there is only one block of a particular
1144  // structure.
1145  llvm::FoldingSetNodeID ID;
1146  BlockPointerType::Profile(ID, T);
1147
1148  void *InsertPos = 0;
1149  if (BlockPointerType *PT =
1150        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1151    return QualType(PT, 0);
1152
1153  // If the block pointee type isn't canonical, this won't be a canonical
1154  // type either so fill in the canonical type field.
1155  QualType Canonical;
1156  if (!T->isCanonical()) {
1157    Canonical = getBlockPointerType(getCanonicalType(T));
1158
1159    // Get the new insert position for the node we care about.
1160    BlockPointerType *NewIP =
1161      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1162    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1163  }
1164  BlockPointerType *New = new (*this,8) BlockPointerType(T, Canonical);
1165  Types.push_back(New);
1166  BlockPointerTypes.InsertNode(New, InsertPos);
1167  return QualType(New, 0);
1168}
1169
1170/// getLValueReferenceType - Return the uniqued reference to the type for an
1171/// lvalue reference to the specified type.
1172QualType ASTContext::getLValueReferenceType(QualType T) {
1173  // Unique pointers, to guarantee there is only one pointer of a particular
1174  // structure.
1175  llvm::FoldingSetNodeID ID;
1176  ReferenceType::Profile(ID, T);
1177
1178  void *InsertPos = 0;
1179  if (LValueReferenceType *RT =
1180        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1181    return QualType(RT, 0);
1182
1183  // If the referencee type isn't canonical, this won't be a canonical type
1184  // either, so fill in the canonical type field.
1185  QualType Canonical;
1186  if (!T->isCanonical()) {
1187    Canonical = getLValueReferenceType(getCanonicalType(T));
1188
1189    // Get the new insert position for the node we care about.
1190    LValueReferenceType *NewIP =
1191      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1192    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1193  }
1194
1195  LValueReferenceType *New = new (*this,8) LValueReferenceType(T, Canonical);
1196  Types.push_back(New);
1197  LValueReferenceTypes.InsertNode(New, InsertPos);
1198  return QualType(New, 0);
1199}
1200
1201/// getRValueReferenceType - Return the uniqued reference to the type for an
1202/// rvalue reference to the specified type.
1203QualType ASTContext::getRValueReferenceType(QualType T) {
1204  // Unique pointers, to guarantee there is only one pointer of a particular
1205  // structure.
1206  llvm::FoldingSetNodeID ID;
1207  ReferenceType::Profile(ID, T);
1208
1209  void *InsertPos = 0;
1210  if (RValueReferenceType *RT =
1211        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1212    return QualType(RT, 0);
1213
1214  // If the referencee type isn't canonical, this won't be a canonical type
1215  // either, so fill in the canonical type field.
1216  QualType Canonical;
1217  if (!T->isCanonical()) {
1218    Canonical = getRValueReferenceType(getCanonicalType(T));
1219
1220    // Get the new insert position for the node we care about.
1221    RValueReferenceType *NewIP =
1222      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1223    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1224  }
1225
1226  RValueReferenceType *New = new (*this,8) RValueReferenceType(T, Canonical);
1227  Types.push_back(New);
1228  RValueReferenceTypes.InsertNode(New, InsertPos);
1229  return QualType(New, 0);
1230}
1231
1232/// getMemberPointerType - Return the uniqued reference to the type for a
1233/// member pointer to the specified type, in the specified class.
1234QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls)
1235{
1236  // Unique pointers, to guarantee there is only one pointer of a particular
1237  // structure.
1238  llvm::FoldingSetNodeID ID;
1239  MemberPointerType::Profile(ID, T, Cls);
1240
1241  void *InsertPos = 0;
1242  if (MemberPointerType *PT =
1243      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1244    return QualType(PT, 0);
1245
1246  // If the pointee or class type isn't canonical, this won't be a canonical
1247  // type either, so fill in the canonical type field.
1248  QualType Canonical;
1249  if (!T->isCanonical()) {
1250    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1251
1252    // Get the new insert position for the node we care about.
1253    MemberPointerType *NewIP =
1254      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1255    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1256  }
1257  MemberPointerType *New = new (*this,8) MemberPointerType(T, Cls, Canonical);
1258  Types.push_back(New);
1259  MemberPointerTypes.InsertNode(New, InsertPos);
1260  return QualType(New, 0);
1261}
1262
1263/// getConstantArrayType - Return the unique reference to the type for an
1264/// array of the specified element type.
1265QualType ASTContext::getConstantArrayType(QualType EltTy,
1266                                          const llvm::APInt &ArySizeIn,
1267                                          ArrayType::ArraySizeModifier ASM,
1268                                          unsigned EltTypeQuals) {
1269  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1270         "Constant array of VLAs is illegal!");
1271
1272  // Convert the array size into a canonical width matching the pointer size for
1273  // the target.
1274  llvm::APInt ArySize(ArySizeIn);
1275  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1276
1277  llvm::FoldingSetNodeID ID;
1278  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1279
1280  void *InsertPos = 0;
1281  if (ConstantArrayType *ATP =
1282      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1283    return QualType(ATP, 0);
1284
1285  // If the element type isn't canonical, this won't be a canonical type either,
1286  // so fill in the canonical type field.
1287  QualType Canonical;
1288  if (!EltTy->isCanonical()) {
1289    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1290                                     ASM, EltTypeQuals);
1291    // Get the new insert position for the node we care about.
1292    ConstantArrayType *NewIP =
1293      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1294    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1295  }
1296
1297  ConstantArrayType *New =
1298    new(*this,8)ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1299  ConstantArrayTypes.InsertNode(New, InsertPos);
1300  Types.push_back(New);
1301  return QualType(New, 0);
1302}
1303
1304/// getConstantArrayWithExprType - Return a reference to the type for
1305/// an array of the specified element type.
1306QualType
1307ASTContext::getConstantArrayWithExprType(QualType EltTy,
1308                                         const llvm::APInt &ArySizeIn,
1309                                         Expr *ArySizeExpr,
1310                                         ArrayType::ArraySizeModifier ASM,
1311                                         unsigned EltTypeQuals,
1312                                         SourceRange Brackets) {
1313  // Convert the array size into a canonical width matching the pointer
1314  // size for the target.
1315  llvm::APInt ArySize(ArySizeIn);
1316  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1317
1318  // Compute the canonical ConstantArrayType.
1319  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1320                                            ArySize, ASM, EltTypeQuals);
1321  // Since we don't unique expressions, it isn't possible to unique VLA's
1322  // that have an expression provided for their size.
1323  ConstantArrayWithExprType *New =
1324    new(*this,8)ConstantArrayWithExprType(EltTy, Canonical,
1325                                          ArySize, ArySizeExpr,
1326                                          ASM, EltTypeQuals, Brackets);
1327  Types.push_back(New);
1328  return QualType(New, 0);
1329}
1330
1331/// getConstantArrayWithoutExprType - Return a reference to the type for
1332/// an array of the specified element type.
1333QualType
1334ASTContext::getConstantArrayWithoutExprType(QualType EltTy,
1335                                            const llvm::APInt &ArySizeIn,
1336                                            ArrayType::ArraySizeModifier ASM,
1337                                            unsigned EltTypeQuals) {
1338  // Convert the array size into a canonical width matching the pointer
1339  // size for the target.
1340  llvm::APInt ArySize(ArySizeIn);
1341  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1342
1343  // Compute the canonical ConstantArrayType.
1344  QualType Canonical = getConstantArrayType(getCanonicalType(EltTy),
1345                                            ArySize, ASM, EltTypeQuals);
1346  ConstantArrayWithoutExprType *New =
1347    new(*this,8)ConstantArrayWithoutExprType(EltTy, Canonical,
1348                                             ArySize, ASM, EltTypeQuals);
1349  Types.push_back(New);
1350  return QualType(New, 0);
1351}
1352
1353/// getVariableArrayType - Returns a non-unique reference to the type for a
1354/// variable array of the specified element type.
1355QualType ASTContext::getVariableArrayType(QualType EltTy,
1356                                          Expr *NumElts,
1357                                          ArrayType::ArraySizeModifier ASM,
1358                                          unsigned EltTypeQuals,
1359                                          SourceRange Brackets) {
1360  // Since we don't unique expressions, it isn't possible to unique VLA's
1361  // that have an expression provided for their size.
1362
1363  VariableArrayType *New =
1364    new(*this,8)VariableArrayType(EltTy, QualType(),
1365                                  NumElts, ASM, EltTypeQuals, Brackets);
1366
1367  VariableArrayTypes.push_back(New);
1368  Types.push_back(New);
1369  return QualType(New, 0);
1370}
1371
1372/// getDependentSizedArrayType - Returns a non-unique reference to
1373/// the type for a dependently-sized array of the specified element
1374/// type. FIXME: We will need these to be uniqued, or at least
1375/// comparable, at some point.
1376QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1377                                                Expr *NumElts,
1378                                                ArrayType::ArraySizeModifier ASM,
1379                                                unsigned EltTypeQuals,
1380                                                SourceRange Brackets) {
1381  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1382         "Size must be type- or value-dependent!");
1383
1384  // Since we don't unique expressions, it isn't possible to unique
1385  // dependently-sized array types.
1386
1387  DependentSizedArrayType *New =
1388    new (*this,8) DependentSizedArrayType(EltTy, QualType(),
1389                                          NumElts, ASM, EltTypeQuals,
1390                                          Brackets);
1391
1392  DependentSizedArrayTypes.push_back(New);
1393  Types.push_back(New);
1394  return QualType(New, 0);
1395}
1396
1397QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1398                                            ArrayType::ArraySizeModifier ASM,
1399                                            unsigned EltTypeQuals) {
1400  llvm::FoldingSetNodeID ID;
1401  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1402
1403  void *InsertPos = 0;
1404  if (IncompleteArrayType *ATP =
1405       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1406    return QualType(ATP, 0);
1407
1408  // If the element type isn't canonical, this won't be a canonical type
1409  // either, so fill in the canonical type field.
1410  QualType Canonical;
1411
1412  if (!EltTy->isCanonical()) {
1413    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1414                                       ASM, EltTypeQuals);
1415
1416    // Get the new insert position for the node we care about.
1417    IncompleteArrayType *NewIP =
1418      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1419    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1420  }
1421
1422  IncompleteArrayType *New
1423    = new (*this,8) IncompleteArrayType(EltTy, Canonical,
1424                                        ASM, EltTypeQuals);
1425
1426  IncompleteArrayTypes.InsertNode(New, InsertPos);
1427  Types.push_back(New);
1428  return QualType(New, 0);
1429}
1430
1431/// getVectorType - Return the unique reference to a vector type of
1432/// the specified element type and size. VectorType must be a built-in type.
1433QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1434  BuiltinType *baseType;
1435
1436  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1437  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1438
1439  // Check if we've already instantiated a vector of this type.
1440  llvm::FoldingSetNodeID ID;
1441  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1442  void *InsertPos = 0;
1443  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1444    return QualType(VTP, 0);
1445
1446  // If the element type isn't canonical, this won't be a canonical type either,
1447  // so fill in the canonical type field.
1448  QualType Canonical;
1449  if (!vecType->isCanonical()) {
1450    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1451
1452    // Get the new insert position for the node we care about.
1453    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1454    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1455  }
1456  VectorType *New = new (*this,8) VectorType(vecType, NumElts, Canonical);
1457  VectorTypes.InsertNode(New, InsertPos);
1458  Types.push_back(New);
1459  return QualType(New, 0);
1460}
1461
1462/// getExtVectorType - Return the unique reference to an extended vector type of
1463/// the specified element type and size. VectorType must be a built-in type.
1464QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1465  BuiltinType *baseType;
1466
1467  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1468  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1469
1470  // Check if we've already instantiated a vector of this type.
1471  llvm::FoldingSetNodeID ID;
1472  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1473  void *InsertPos = 0;
1474  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1475    return QualType(VTP, 0);
1476
1477  // If the element type isn't canonical, this won't be a canonical type either,
1478  // so fill in the canonical type field.
1479  QualType Canonical;
1480  if (!vecType->isCanonical()) {
1481    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1482
1483    // Get the new insert position for the node we care about.
1484    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1485    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1486  }
1487  ExtVectorType *New = new (*this,8) ExtVectorType(vecType, NumElts, Canonical);
1488  VectorTypes.InsertNode(New, InsertPos);
1489  Types.push_back(New);
1490  return QualType(New, 0);
1491}
1492
1493QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1494                                                    Expr *SizeExpr,
1495                                                    SourceLocation AttrLoc) {
1496  DependentSizedExtVectorType *New =
1497      new (*this,8) DependentSizedExtVectorType(vecType, QualType(),
1498                                                SizeExpr, AttrLoc);
1499
1500  DependentSizedExtVectorTypes.push_back(New);
1501  Types.push_back(New);
1502  return QualType(New, 0);
1503}
1504
1505/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1506///
1507QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1508  // Unique functions, to guarantee there is only one function of a particular
1509  // structure.
1510  llvm::FoldingSetNodeID ID;
1511  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1512
1513  void *InsertPos = 0;
1514  if (FunctionNoProtoType *FT =
1515        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1516    return QualType(FT, 0);
1517
1518  QualType Canonical;
1519  if (!ResultTy->isCanonical()) {
1520    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1521
1522    // Get the new insert position for the node we care about.
1523    FunctionNoProtoType *NewIP =
1524      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1525    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1526  }
1527
1528  FunctionNoProtoType *New
1529    = new (*this,8) FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1530  Types.push_back(New);
1531  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1532  return QualType(New, 0);
1533}
1534
1535/// getFunctionType - Return a normal function type with a typed argument
1536/// list.  isVariadic indicates whether the argument list includes '...'.
1537QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1538                                     unsigned NumArgs, bool isVariadic,
1539                                     unsigned TypeQuals, bool hasExceptionSpec,
1540                                     bool hasAnyExceptionSpec, unsigned NumExs,
1541                                     const QualType *ExArray, bool NoReturn) {
1542  // Unique functions, to guarantee there is only one function of a particular
1543  // structure.
1544  llvm::FoldingSetNodeID ID;
1545  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1546                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1547                             NumExs, ExArray, NoReturn);
1548
1549  void *InsertPos = 0;
1550  if (FunctionProtoType *FTP =
1551        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1552    return QualType(FTP, 0);
1553
1554  // Determine whether the type being created is already canonical or not.
1555  bool isCanonical = ResultTy->isCanonical();
1556  if (hasExceptionSpec)
1557    isCanonical = false;
1558  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1559    if (!ArgArray[i]->isCanonical())
1560      isCanonical = false;
1561
1562  // If this type isn't canonical, get the canonical version of it.
1563  // The exception spec is not part of the canonical type.
1564  QualType Canonical;
1565  if (!isCanonical) {
1566    llvm::SmallVector<QualType, 16> CanonicalArgs;
1567    CanonicalArgs.reserve(NumArgs);
1568    for (unsigned i = 0; i != NumArgs; ++i)
1569      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1570
1571    Canonical = getFunctionType(getCanonicalType(ResultTy),
1572                                CanonicalArgs.data(), NumArgs,
1573                                isVariadic, TypeQuals, NoReturn);
1574
1575    // Get the new insert position for the node we care about.
1576    FunctionProtoType *NewIP =
1577      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1578    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1579  }
1580
1581  // FunctionProtoType objects are allocated with extra bytes after them
1582  // for two variable size arrays (for parameter and exception types) at the
1583  // end of them.
1584  FunctionProtoType *FTP =
1585    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1586                                 NumArgs*sizeof(QualType) +
1587                                 NumExs*sizeof(QualType), 8);
1588  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1589                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1590                              ExArray, NumExs, Canonical, NoReturn);
1591  Types.push_back(FTP);
1592  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1593  return QualType(FTP, 0);
1594}
1595
1596/// getTypeDeclType - Return the unique reference to the type for the
1597/// specified type declaration.
1598QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1599  assert(Decl && "Passed null for Decl param");
1600  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1601
1602  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1603    return getTypedefType(Typedef);
1604  else if (isa<TemplateTypeParmDecl>(Decl)) {
1605    assert(false && "Template type parameter types are always available.");
1606  } else if (ObjCInterfaceDecl *ObjCInterface = dyn_cast<ObjCInterfaceDecl>(Decl))
1607    return getObjCInterfaceType(ObjCInterface);
1608
1609  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1610    if (PrevDecl)
1611      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1612    else
1613      Decl->TypeForDecl = new (*this,8) RecordType(Record);
1614  }
1615  else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1616    if (PrevDecl)
1617      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1618    else
1619      Decl->TypeForDecl = new (*this,8) EnumType(Enum);
1620  }
1621  else
1622    assert(false && "TypeDecl without a type?");
1623
1624  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1625  return QualType(Decl->TypeForDecl, 0);
1626}
1627
1628/// getTypedefType - Return the unique reference to the type for the
1629/// specified typename decl.
1630QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1631  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1632
1633  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1634  Decl->TypeForDecl = new(*this,8) TypedefType(Type::Typedef, Decl, Canonical);
1635  Types.push_back(Decl->TypeForDecl);
1636  return QualType(Decl->TypeForDecl, 0);
1637}
1638
1639/// \brief Retrieve the template type parameter type for a template
1640/// parameter or parameter pack with the given depth, index, and (optionally)
1641/// name.
1642QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1643                                             bool ParameterPack,
1644                                             IdentifierInfo *Name) {
1645  llvm::FoldingSetNodeID ID;
1646  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1647  void *InsertPos = 0;
1648  TemplateTypeParmType *TypeParm
1649    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1650
1651  if (TypeParm)
1652    return QualType(TypeParm, 0);
1653
1654  if (Name) {
1655    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1656    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack,
1657                                                   Name, Canon);
1658  } else
1659    TypeParm = new (*this, 8) TemplateTypeParmType(Depth, Index, ParameterPack);
1660
1661  Types.push_back(TypeParm);
1662  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1663
1664  return QualType(TypeParm, 0);
1665}
1666
1667QualType
1668ASTContext::getTemplateSpecializationType(TemplateName Template,
1669                                          const TemplateArgument *Args,
1670                                          unsigned NumArgs,
1671                                          QualType Canon) {
1672  if (!Canon.isNull())
1673    Canon = getCanonicalType(Canon);
1674
1675  llvm::FoldingSetNodeID ID;
1676  TemplateSpecializationType::Profile(ID, Template, Args, NumArgs);
1677
1678  void *InsertPos = 0;
1679  TemplateSpecializationType *Spec
1680    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1681
1682  if (Spec)
1683    return QualType(Spec, 0);
1684
1685  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1686                        sizeof(TemplateArgument) * NumArgs),
1687                       8);
1688  Spec = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, Canon);
1689  Types.push_back(Spec);
1690  TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1691
1692  return QualType(Spec, 0);
1693}
1694
1695QualType
1696ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1697                                 QualType NamedType) {
1698  llvm::FoldingSetNodeID ID;
1699  QualifiedNameType::Profile(ID, NNS, NamedType);
1700
1701  void *InsertPos = 0;
1702  QualifiedNameType *T
1703    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1704  if (T)
1705    return QualType(T, 0);
1706
1707  T = new (*this) QualifiedNameType(NNS, NamedType,
1708                                    getCanonicalType(NamedType));
1709  Types.push_back(T);
1710  QualifiedNameTypes.InsertNode(T, InsertPos);
1711  return QualType(T, 0);
1712}
1713
1714QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1715                                     const IdentifierInfo *Name,
1716                                     QualType Canon) {
1717  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1718
1719  if (Canon.isNull()) {
1720    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1721    if (CanonNNS != NNS)
1722      Canon = getTypenameType(CanonNNS, Name);
1723  }
1724
1725  llvm::FoldingSetNodeID ID;
1726  TypenameType::Profile(ID, NNS, Name);
1727
1728  void *InsertPos = 0;
1729  TypenameType *T
1730    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1731  if (T)
1732    return QualType(T, 0);
1733
1734  T = new (*this) TypenameType(NNS, Name, Canon);
1735  Types.push_back(T);
1736  TypenameTypes.InsertNode(T, InsertPos);
1737  return QualType(T, 0);
1738}
1739
1740QualType
1741ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1742                            const TemplateSpecializationType *TemplateId,
1743                            QualType Canon) {
1744  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1745
1746  if (Canon.isNull()) {
1747    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1748    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1749    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1750      const TemplateSpecializationType *CanonTemplateId
1751        = CanonType->getAsTemplateSpecializationType();
1752      assert(CanonTemplateId &&
1753             "Canonical type must also be a template specialization type");
1754      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1755    }
1756  }
1757
1758  llvm::FoldingSetNodeID ID;
1759  TypenameType::Profile(ID, NNS, TemplateId);
1760
1761  void *InsertPos = 0;
1762  TypenameType *T
1763    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1764  if (T)
1765    return QualType(T, 0);
1766
1767  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1768  Types.push_back(T);
1769  TypenameTypes.InsertNode(T, InsertPos);
1770  return QualType(T, 0);
1771}
1772
1773/// CmpProtocolNames - Comparison predicate for sorting protocols
1774/// alphabetically.
1775static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1776                            const ObjCProtocolDecl *RHS) {
1777  return LHS->getDeclName() < RHS->getDeclName();
1778}
1779
1780static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1781                                   unsigned &NumProtocols) {
1782  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1783
1784  // Sort protocols, keyed by name.
1785  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1786
1787  // Remove duplicates.
1788  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1789  NumProtocols = ProtocolsEnd-Protocols;
1790}
1791
1792/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1793/// the given interface decl and the conforming protocol list.
1794QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
1795                                              ObjCProtocolDecl **Protocols,
1796                                              unsigned NumProtocols) {
1797  // Sort the protocol list alphabetically to canonicalize it.
1798  if (NumProtocols)
1799    SortAndUniqueProtocols(Protocols, NumProtocols);
1800
1801  llvm::FoldingSetNodeID ID;
1802  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
1803
1804  void *InsertPos = 0;
1805  if (ObjCObjectPointerType *QT =
1806              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1807    return QualType(QT, 0);
1808
1809  // No Match;
1810  ObjCObjectPointerType *QType =
1811    new (*this,8) ObjCObjectPointerType(InterfaceT, Protocols, NumProtocols);
1812
1813  Types.push_back(QType);
1814  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1815  return QualType(QType, 0);
1816}
1817
1818/// getObjCInterfaceType - Return the unique reference to the type for the
1819/// specified ObjC interface decl. The list of protocols is optional.
1820QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1821                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1822  if (NumProtocols)
1823    // Sort the protocol list alphabetically to canonicalize it.
1824    SortAndUniqueProtocols(Protocols, NumProtocols);
1825
1826  llvm::FoldingSetNodeID ID;
1827  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1828
1829  void *InsertPos = 0;
1830  if (ObjCInterfaceType *QT =
1831      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1832    return QualType(QT, 0);
1833
1834  // No Match;
1835  ObjCInterfaceType *QType =
1836    new (*this,8) ObjCInterfaceType(const_cast<ObjCInterfaceDecl*>(Decl),
1837                                    Protocols, NumProtocols);
1838  Types.push_back(QType);
1839  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
1840  return QualType(QType, 0);
1841}
1842
1843/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
1844/// TypeOfExprType AST's (since expression's are never shared). For example,
1845/// multiple declarations that refer to "typeof(x)" all contain different
1846/// DeclRefExpr's. This doesn't effect the type checker, since it operates
1847/// on canonical type's (which are always unique).
1848QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
1849  TypeOfExprType *toe;
1850  if (tofExpr->isTypeDependent())
1851    toe = new (*this, 8) TypeOfExprType(tofExpr);
1852  else {
1853    QualType Canonical = getCanonicalType(tofExpr->getType());
1854    toe = new (*this,8) TypeOfExprType(tofExpr, Canonical);
1855  }
1856  Types.push_back(toe);
1857  return QualType(toe, 0);
1858}
1859
1860/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
1861/// TypeOfType AST's. The only motivation to unique these nodes would be
1862/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
1863/// an issue. This doesn't effect the type checker, since it operates
1864/// on canonical type's (which are always unique).
1865QualType ASTContext::getTypeOfType(QualType tofType) {
1866  QualType Canonical = getCanonicalType(tofType);
1867  TypeOfType *tot = new (*this,8) TypeOfType(tofType, Canonical);
1868  Types.push_back(tot);
1869  return QualType(tot, 0);
1870}
1871
1872/// getDecltypeForExpr - Given an expr, will return the decltype for that
1873/// expression, according to the rules in C++0x [dcl.type.simple]p4
1874static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
1875  if (e->isTypeDependent())
1876    return Context.DependentTy;
1877
1878  // If e is an id expression or a class member access, decltype(e) is defined
1879  // as the type of the entity named by e.
1880  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
1881    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
1882      return VD->getType();
1883  }
1884  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
1885    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
1886      return FD->getType();
1887  }
1888  // If e is a function call or an invocation of an overloaded operator,
1889  // (parentheses around e are ignored), decltype(e) is defined as the
1890  // return type of that function.
1891  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
1892    return CE->getCallReturnType();
1893
1894  QualType T = e->getType();
1895
1896  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
1897  // defined as T&, otherwise decltype(e) is defined as T.
1898  if (e->isLvalue(Context) == Expr::LV_Valid)
1899    T = Context.getLValueReferenceType(T);
1900
1901  return T;
1902}
1903
1904/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
1905/// DecltypeType AST's. The only motivation to unique these nodes would be
1906/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
1907/// an issue. This doesn't effect the type checker, since it operates
1908/// on canonical type's (which are always unique).
1909QualType ASTContext::getDecltypeType(Expr *e) {
1910  DecltypeType *dt;
1911  if (e->isTypeDependent()) // FIXME: canonicalize the expression
1912    dt = new (*this, 8) DecltypeType(e, DependentTy);
1913  else {
1914    QualType T = getDecltypeForExpr(e, *this);
1915    dt = new (*this, 8) DecltypeType(e, T, getCanonicalType(T));
1916  }
1917  Types.push_back(dt);
1918  return QualType(dt, 0);
1919}
1920
1921/// getTagDeclType - Return the unique reference to the type for the
1922/// specified TagDecl (struct/union/class/enum) decl.
1923QualType ASTContext::getTagDeclType(TagDecl *Decl) {
1924  assert (Decl);
1925  return getTypeDeclType(Decl);
1926}
1927
1928/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
1929/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
1930/// needs to agree with the definition in <stddef.h>.
1931QualType ASTContext::getSizeType() const {
1932  return getFromTargetType(Target.getSizeType());
1933}
1934
1935/// getSignedWCharType - Return the type of "signed wchar_t".
1936/// Used when in C++, as a GCC extension.
1937QualType ASTContext::getSignedWCharType() const {
1938  // FIXME: derive from "Target" ?
1939  return WCharTy;
1940}
1941
1942/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
1943/// Used when in C++, as a GCC extension.
1944QualType ASTContext::getUnsignedWCharType() const {
1945  // FIXME: derive from "Target" ?
1946  return UnsignedIntTy;
1947}
1948
1949/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
1950/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1951QualType ASTContext::getPointerDiffType() const {
1952  return getFromTargetType(Target.getPtrDiffType(0));
1953}
1954
1955//===----------------------------------------------------------------------===//
1956//                              Type Operators
1957//===----------------------------------------------------------------------===//
1958
1959/// getCanonicalType - Return the canonical (structural) type corresponding to
1960/// the specified potentially non-canonical type.  The non-canonical version
1961/// of a type may have many "decorated" versions of types.  Decorators can
1962/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1963/// to be free of any of these, allowing two canonical types to be compared
1964/// for exact equality with a simple pointer comparison.
1965QualType ASTContext::getCanonicalType(QualType T) {
1966  QualType CanType = T.getTypePtr()->getCanonicalTypeInternal();
1967
1968  // If the result has type qualifiers, make sure to canonicalize them as well.
1969  unsigned TypeQuals = T.getCVRQualifiers() | CanType.getCVRQualifiers();
1970  if (TypeQuals == 0) return CanType;
1971
1972  // If the type qualifiers are on an array type, get the canonical type of the
1973  // array with the qualifiers applied to the element type.
1974  ArrayType *AT = dyn_cast<ArrayType>(CanType);
1975  if (!AT)
1976    return CanType.getQualifiedType(TypeQuals);
1977
1978  // Get the canonical version of the element with the extra qualifiers on it.
1979  // This can recursively sink qualifiers through multiple levels of arrays.
1980  QualType NewEltTy=AT->getElementType().getWithAdditionalQualifiers(TypeQuals);
1981  NewEltTy = getCanonicalType(NewEltTy);
1982
1983  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1984    return getConstantArrayType(NewEltTy, CAT->getSize(),CAT->getSizeModifier(),
1985                                CAT->getIndexTypeQualifier());
1986  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
1987    return getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
1988                                  IAT->getIndexTypeQualifier());
1989
1990  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
1991    return getDependentSizedArrayType(NewEltTy,
1992                                      DSAT->getSizeExpr(),
1993                                      DSAT->getSizeModifier(),
1994                                      DSAT->getIndexTypeQualifier(),
1995                                      DSAT->getBracketsRange());
1996
1997  VariableArrayType *VAT = cast<VariableArrayType>(AT);
1998  return getVariableArrayType(NewEltTy,
1999                              VAT->getSizeExpr(),
2000                              VAT->getSizeModifier(),
2001                              VAT->getIndexTypeQualifier(),
2002                              VAT->getBracketsRange());
2003}
2004
2005TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2006  // If this template name refers to a template, the canonical
2007  // template name merely stores the template itself.
2008  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2009    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2010
2011  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2012  assert(DTN && "Non-dependent template names must refer to template decls.");
2013  return DTN->CanonicalTemplateName;
2014}
2015
2016NestedNameSpecifier *
2017ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2018  if (!NNS)
2019    return 0;
2020
2021  switch (NNS->getKind()) {
2022  case NestedNameSpecifier::Identifier:
2023    // Canonicalize the prefix but keep the identifier the same.
2024    return NestedNameSpecifier::Create(*this,
2025                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2026                                       NNS->getAsIdentifier());
2027
2028  case NestedNameSpecifier::Namespace:
2029    // A namespace is canonical; build a nested-name-specifier with
2030    // this namespace and no prefix.
2031    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2032
2033  case NestedNameSpecifier::TypeSpec:
2034  case NestedNameSpecifier::TypeSpecWithTemplate: {
2035    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2036    NestedNameSpecifier *Prefix = 0;
2037
2038    // FIXME: This isn't the right check!
2039    if (T->isDependentType())
2040      Prefix = getCanonicalNestedNameSpecifier(NNS->getPrefix());
2041
2042    return NestedNameSpecifier::Create(*this, Prefix,
2043                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2044                                       T.getTypePtr());
2045  }
2046
2047  case NestedNameSpecifier::Global:
2048    // The global specifier is canonical and unique.
2049    return NNS;
2050  }
2051
2052  // Required to silence a GCC warning
2053  return 0;
2054}
2055
2056
2057const ArrayType *ASTContext::getAsArrayType(QualType T) {
2058  // Handle the non-qualified case efficiently.
2059  if (T.getCVRQualifiers() == 0) {
2060    // Handle the common positive case fast.
2061    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2062      return AT;
2063  }
2064
2065  // Handle the common negative case fast, ignoring CVR qualifiers.
2066  QualType CType = T->getCanonicalTypeInternal();
2067
2068  // Make sure to look through type qualifiers (like ExtQuals) for the negative
2069  // test.
2070  if (!isa<ArrayType>(CType) &&
2071      !isa<ArrayType>(CType.getUnqualifiedType()))
2072    return 0;
2073
2074  // Apply any CVR qualifiers from the array type to the element type.  This
2075  // implements C99 6.7.3p8: "If the specification of an array type includes
2076  // any type qualifiers, the element type is so qualified, not the array type."
2077
2078  // If we get here, we either have type qualifiers on the type, or we have
2079  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2080  // we must propagate them down into the elemeng type.
2081  unsigned CVRQuals = T.getCVRQualifiers();
2082  unsigned AddrSpace = 0;
2083  Type *Ty = T.getTypePtr();
2084
2085  // Rip through ExtQualType's and typedefs to get to a concrete type.
2086  while (1) {
2087    if (const ExtQualType *EXTQT = dyn_cast<ExtQualType>(Ty)) {
2088      AddrSpace = EXTQT->getAddressSpace();
2089      Ty = EXTQT->getBaseType();
2090    } else {
2091      T = Ty->getDesugaredType();
2092      if (T.getTypePtr() == Ty && T.getCVRQualifiers() == 0)
2093        break;
2094      CVRQuals |= T.getCVRQualifiers();
2095      Ty = T.getTypePtr();
2096    }
2097  }
2098
2099  // If we have a simple case, just return now.
2100  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2101  if (ATy == 0 || (AddrSpace == 0 && CVRQuals == 0))
2102    return ATy;
2103
2104  // Otherwise, we have an array and we have qualifiers on it.  Push the
2105  // qualifiers into the array element type and return a new array type.
2106  // Get the canonical version of the element with the extra qualifiers on it.
2107  // This can recursively sink qualifiers through multiple levels of arrays.
2108  QualType NewEltTy = ATy->getElementType();
2109  if (AddrSpace)
2110    NewEltTy = getAddrSpaceQualType(NewEltTy, AddrSpace);
2111  NewEltTy = NewEltTy.getWithAdditionalQualifiers(CVRQuals);
2112
2113  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2114    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2115                                                CAT->getSizeModifier(),
2116                                                CAT->getIndexTypeQualifier()));
2117  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2118    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2119                                                  IAT->getSizeModifier(),
2120                                                  IAT->getIndexTypeQualifier()));
2121
2122  if (const DependentSizedArrayType *DSAT
2123        = dyn_cast<DependentSizedArrayType>(ATy))
2124    return cast<ArrayType>(
2125                     getDependentSizedArrayType(NewEltTy,
2126                                                DSAT->getSizeExpr(),
2127                                                DSAT->getSizeModifier(),
2128                                                DSAT->getIndexTypeQualifier(),
2129                                                DSAT->getBracketsRange()));
2130
2131  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2132  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2133                                              VAT->getSizeExpr(),
2134                                              VAT->getSizeModifier(),
2135                                              VAT->getIndexTypeQualifier(),
2136                                              VAT->getBracketsRange()));
2137}
2138
2139
2140/// getArrayDecayedType - Return the properly qualified result of decaying the
2141/// specified array type to a pointer.  This operation is non-trivial when
2142/// handling typedefs etc.  The canonical type of "T" must be an array type,
2143/// this returns a pointer to a properly qualified element of the array.
2144///
2145/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2146QualType ASTContext::getArrayDecayedType(QualType Ty) {
2147  // Get the element type with 'getAsArrayType' so that we don't lose any
2148  // typedefs in the element type of the array.  This also handles propagation
2149  // of type qualifiers from the array type into the element type if present
2150  // (C99 6.7.3p8).
2151  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2152  assert(PrettyArrayType && "Not an array type!");
2153
2154  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2155
2156  // int x[restrict 4] ->  int *restrict
2157  return PtrTy.getQualifiedType(PrettyArrayType->getIndexTypeQualifier());
2158}
2159
2160QualType ASTContext::getBaseElementType(QualType QT) {
2161  QualifierSet qualifiers;
2162  while (true) {
2163    const Type *UT = qualifiers.strip(QT);
2164    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2165      QT = AT->getElementType();
2166    } else {
2167      return qualifiers.apply(QT, *this);
2168    }
2169  }
2170}
2171
2172QualType ASTContext::getBaseElementType(const VariableArrayType *VAT) {
2173  QualType ElemTy = VAT->getElementType();
2174
2175  if (const VariableArrayType *VAT = getAsVariableArrayType(ElemTy))
2176    return getBaseElementType(VAT);
2177
2178  return ElemTy;
2179}
2180
2181/// getFloatingRank - Return a relative rank for floating point types.
2182/// This routine will assert if passed a built-in type that isn't a float.
2183static FloatingRank getFloatingRank(QualType T) {
2184  if (const ComplexType *CT = T->getAsComplexType())
2185    return getFloatingRank(CT->getElementType());
2186
2187  assert(T->getAsBuiltinType() && "getFloatingRank(): not a floating type");
2188  switch (T->getAsBuiltinType()->getKind()) {
2189  default: assert(0 && "getFloatingRank(): not a floating type");
2190  case BuiltinType::Float:      return FloatRank;
2191  case BuiltinType::Double:     return DoubleRank;
2192  case BuiltinType::LongDouble: return LongDoubleRank;
2193  }
2194}
2195
2196/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2197/// point or a complex type (based on typeDomain/typeSize).
2198/// 'typeDomain' is a real floating point or complex type.
2199/// 'typeSize' is a real floating point or complex type.
2200QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2201                                                       QualType Domain) const {
2202  FloatingRank EltRank = getFloatingRank(Size);
2203  if (Domain->isComplexType()) {
2204    switch (EltRank) {
2205    default: assert(0 && "getFloatingRank(): illegal value for rank");
2206    case FloatRank:      return FloatComplexTy;
2207    case DoubleRank:     return DoubleComplexTy;
2208    case LongDoubleRank: return LongDoubleComplexTy;
2209    }
2210  }
2211
2212  assert(Domain->isRealFloatingType() && "Unknown domain!");
2213  switch (EltRank) {
2214  default: assert(0 && "getFloatingRank(): illegal value for rank");
2215  case FloatRank:      return FloatTy;
2216  case DoubleRank:     return DoubleTy;
2217  case LongDoubleRank: return LongDoubleTy;
2218  }
2219}
2220
2221/// getFloatingTypeOrder - Compare the rank of the two specified floating
2222/// point types, ignoring the domain of the type (i.e. 'double' ==
2223/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2224/// LHS < RHS, return -1.
2225int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2226  FloatingRank LHSR = getFloatingRank(LHS);
2227  FloatingRank RHSR = getFloatingRank(RHS);
2228
2229  if (LHSR == RHSR)
2230    return 0;
2231  if (LHSR > RHSR)
2232    return 1;
2233  return -1;
2234}
2235
2236/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2237/// routine will assert if passed a built-in type that isn't an integer or enum,
2238/// or if it is not canonicalized.
2239unsigned ASTContext::getIntegerRank(Type *T) {
2240  assert(T->isCanonical() && "T should be canonicalized");
2241  if (EnumType* ET = dyn_cast<EnumType>(T))
2242    T = ET->getDecl()->getIntegerType().getTypePtr();
2243
2244  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2245    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2246
2247  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2248    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2249
2250  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2251    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2252
2253  // There are two things which impact the integer rank: the width, and
2254  // the ordering of builtins.  The builtin ordering is encoded in the
2255  // bottom three bits; the width is encoded in the bits above that.
2256  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2257    return FWIT->getWidth() << 3;
2258
2259  switch (cast<BuiltinType>(T)->getKind()) {
2260  default: assert(0 && "getIntegerRank(): not a built-in integer");
2261  case BuiltinType::Bool:
2262    return 1 + (getIntWidth(BoolTy) << 3);
2263  case BuiltinType::Char_S:
2264  case BuiltinType::Char_U:
2265  case BuiltinType::SChar:
2266  case BuiltinType::UChar:
2267    return 2 + (getIntWidth(CharTy) << 3);
2268  case BuiltinType::Short:
2269  case BuiltinType::UShort:
2270    return 3 + (getIntWidth(ShortTy) << 3);
2271  case BuiltinType::Int:
2272  case BuiltinType::UInt:
2273    return 4 + (getIntWidth(IntTy) << 3);
2274  case BuiltinType::Long:
2275  case BuiltinType::ULong:
2276    return 5 + (getIntWidth(LongTy) << 3);
2277  case BuiltinType::LongLong:
2278  case BuiltinType::ULongLong:
2279    return 6 + (getIntWidth(LongLongTy) << 3);
2280  case BuiltinType::Int128:
2281  case BuiltinType::UInt128:
2282    return 7 + (getIntWidth(Int128Ty) << 3);
2283  }
2284}
2285
2286/// getIntegerTypeOrder - Returns the highest ranked integer type:
2287/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2288/// LHS < RHS, return -1.
2289int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2290  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2291  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2292  if (LHSC == RHSC) return 0;
2293
2294  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2295  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2296
2297  unsigned LHSRank = getIntegerRank(LHSC);
2298  unsigned RHSRank = getIntegerRank(RHSC);
2299
2300  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2301    if (LHSRank == RHSRank) return 0;
2302    return LHSRank > RHSRank ? 1 : -1;
2303  }
2304
2305  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2306  if (LHSUnsigned) {
2307    // If the unsigned [LHS] type is larger, return it.
2308    if (LHSRank >= RHSRank)
2309      return 1;
2310
2311    // If the signed type can represent all values of the unsigned type, it
2312    // wins.  Because we are dealing with 2's complement and types that are
2313    // powers of two larger than each other, this is always safe.
2314    return -1;
2315  }
2316
2317  // If the unsigned [RHS] type is larger, return it.
2318  if (RHSRank >= LHSRank)
2319    return -1;
2320
2321  // If the signed type can represent all values of the unsigned type, it
2322  // wins.  Because we are dealing with 2's complement and types that are
2323  // powers of two larger than each other, this is always safe.
2324  return 1;
2325}
2326
2327// getCFConstantStringType - Return the type used for constant CFStrings.
2328QualType ASTContext::getCFConstantStringType() {
2329  if (!CFConstantStringTypeDecl) {
2330    CFConstantStringTypeDecl =
2331      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2332                         &Idents.get("NSConstantString"));
2333    QualType FieldTypes[4];
2334
2335    // const int *isa;
2336    FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const));
2337    // int flags;
2338    FieldTypes[1] = IntTy;
2339    // const char *str;
2340    FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const));
2341    // long length;
2342    FieldTypes[3] = LongTy;
2343
2344    // Create fields
2345    for (unsigned i = 0; i < 4; ++i) {
2346      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2347                                           SourceLocation(), 0,
2348                                           FieldTypes[i], /*BitWidth=*/0,
2349                                           /*Mutable=*/false);
2350      CFConstantStringTypeDecl->addDecl(Field);
2351    }
2352
2353    CFConstantStringTypeDecl->completeDefinition(*this);
2354  }
2355
2356  return getTagDeclType(CFConstantStringTypeDecl);
2357}
2358
2359void ASTContext::setCFConstantStringType(QualType T) {
2360  const RecordType *Rec = T->getAsRecordType();
2361  assert(Rec && "Invalid CFConstantStringType");
2362  CFConstantStringTypeDecl = Rec->getDecl();
2363}
2364
2365QualType ASTContext::getObjCFastEnumerationStateType()
2366{
2367  if (!ObjCFastEnumerationStateTypeDecl) {
2368    ObjCFastEnumerationStateTypeDecl =
2369      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2370                         &Idents.get("__objcFastEnumerationState"));
2371
2372    QualType FieldTypes[] = {
2373      UnsignedLongTy,
2374      getPointerType(ObjCIdTypedefType),
2375      getPointerType(UnsignedLongTy),
2376      getConstantArrayType(UnsignedLongTy,
2377                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2378    };
2379
2380    for (size_t i = 0; i < 4; ++i) {
2381      FieldDecl *Field = FieldDecl::Create(*this,
2382                                           ObjCFastEnumerationStateTypeDecl,
2383                                           SourceLocation(), 0,
2384                                           FieldTypes[i], /*BitWidth=*/0,
2385                                           /*Mutable=*/false);
2386      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2387    }
2388
2389    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2390  }
2391
2392  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2393}
2394
2395void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2396  const RecordType *Rec = T->getAsRecordType();
2397  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2398  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2399}
2400
2401// This returns true if a type has been typedefed to BOOL:
2402// typedef <type> BOOL;
2403static bool isTypeTypedefedAsBOOL(QualType T) {
2404  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2405    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2406      return II->isStr("BOOL");
2407
2408  return false;
2409}
2410
2411/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2412/// purpose.
2413int ASTContext::getObjCEncodingTypeSize(QualType type) {
2414  uint64_t sz = getTypeSize(type);
2415
2416  // Make all integer and enum types at least as large as an int
2417  if (sz > 0 && type->isIntegralType())
2418    sz = std::max(sz, getTypeSize(IntTy));
2419  // Treat arrays as pointers, since that's how they're passed in.
2420  else if (type->isArrayType())
2421    sz = getTypeSize(VoidPtrTy);
2422  return sz / getTypeSize(CharTy);
2423}
2424
2425/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2426/// declaration.
2427void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2428                                              std::string& S) {
2429  // FIXME: This is not very efficient.
2430  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2431  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2432  // Encode result type.
2433  getObjCEncodingForType(Decl->getResultType(), S);
2434  // Compute size of all parameters.
2435  // Start with computing size of a pointer in number of bytes.
2436  // FIXME: There might(should) be a better way of doing this computation!
2437  SourceLocation Loc;
2438  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2439  // The first two arguments (self and _cmd) are pointers; account for
2440  // their size.
2441  int ParmOffset = 2 * PtrSize;
2442  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2443       E = Decl->param_end(); PI != E; ++PI) {
2444    QualType PType = (*PI)->getType();
2445    int sz = getObjCEncodingTypeSize(PType);
2446    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2447    ParmOffset += sz;
2448  }
2449  S += llvm::utostr(ParmOffset);
2450  S += "@0:";
2451  S += llvm::utostr(PtrSize);
2452
2453  // Argument types.
2454  ParmOffset = 2 * PtrSize;
2455  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2456       E = Decl->param_end(); PI != E; ++PI) {
2457    ParmVarDecl *PVDecl = *PI;
2458    QualType PType = PVDecl->getOriginalType();
2459    if (const ArrayType *AT =
2460          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2461      // Use array's original type only if it has known number of
2462      // elements.
2463      if (!isa<ConstantArrayType>(AT))
2464        PType = PVDecl->getType();
2465    } else if (PType->isFunctionType())
2466      PType = PVDecl->getType();
2467    // Process argument qualifiers for user supplied arguments; such as,
2468    // 'in', 'inout', etc.
2469    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2470    getObjCEncodingForType(PType, S);
2471    S += llvm::utostr(ParmOffset);
2472    ParmOffset += getObjCEncodingTypeSize(PType);
2473  }
2474}
2475
2476/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2477/// property declaration. If non-NULL, Container must be either an
2478/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2479/// NULL when getting encodings for protocol properties.
2480/// Property attributes are stored as a comma-delimited C string. The simple
2481/// attributes readonly and bycopy are encoded as single characters. The
2482/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2483/// encoded as single characters, followed by an identifier. Property types
2484/// are also encoded as a parametrized attribute. The characters used to encode
2485/// these attributes are defined by the following enumeration:
2486/// @code
2487/// enum PropertyAttributes {
2488/// kPropertyReadOnly = 'R',   // property is read-only.
2489/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2490/// kPropertyByref = '&',  // property is a reference to the value last assigned
2491/// kPropertyDynamic = 'D',    // property is dynamic
2492/// kPropertyGetter = 'G',     // followed by getter selector name
2493/// kPropertySetter = 'S',     // followed by setter selector name
2494/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2495/// kPropertyType = 't'              // followed by old-style type encoding.
2496/// kPropertyWeak = 'W'              // 'weak' property
2497/// kPropertyStrong = 'P'            // property GC'able
2498/// kPropertyNonAtomic = 'N'         // property non-atomic
2499/// };
2500/// @endcode
2501void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2502                                                const Decl *Container,
2503                                                std::string& S) {
2504  // Collect information from the property implementation decl(s).
2505  bool Dynamic = false;
2506  ObjCPropertyImplDecl *SynthesizePID = 0;
2507
2508  // FIXME: Duplicated code due to poor abstraction.
2509  if (Container) {
2510    if (const ObjCCategoryImplDecl *CID =
2511        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2512      for (ObjCCategoryImplDecl::propimpl_iterator
2513             i = CID->propimpl_begin(), e = CID->propimpl_end();
2514           i != e; ++i) {
2515        ObjCPropertyImplDecl *PID = *i;
2516        if (PID->getPropertyDecl() == PD) {
2517          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2518            Dynamic = true;
2519          } else {
2520            SynthesizePID = PID;
2521          }
2522        }
2523      }
2524    } else {
2525      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2526      for (ObjCCategoryImplDecl::propimpl_iterator
2527             i = OID->propimpl_begin(), e = OID->propimpl_end();
2528           i != e; ++i) {
2529        ObjCPropertyImplDecl *PID = *i;
2530        if (PID->getPropertyDecl() == PD) {
2531          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2532            Dynamic = true;
2533          } else {
2534            SynthesizePID = PID;
2535          }
2536        }
2537      }
2538    }
2539  }
2540
2541  // FIXME: This is not very efficient.
2542  S = "T";
2543
2544  // Encode result type.
2545  // GCC has some special rules regarding encoding of properties which
2546  // closely resembles encoding of ivars.
2547  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2548                             true /* outermost type */,
2549                             true /* encoding for property */);
2550
2551  if (PD->isReadOnly()) {
2552    S += ",R";
2553  } else {
2554    switch (PD->getSetterKind()) {
2555    case ObjCPropertyDecl::Assign: break;
2556    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2557    case ObjCPropertyDecl::Retain: S += ",&"; break;
2558    }
2559  }
2560
2561  // It really isn't clear at all what this means, since properties
2562  // are "dynamic by default".
2563  if (Dynamic)
2564    S += ",D";
2565
2566  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2567    S += ",N";
2568
2569  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2570    S += ",G";
2571    S += PD->getGetterName().getAsString();
2572  }
2573
2574  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2575    S += ",S";
2576    S += PD->getSetterName().getAsString();
2577  }
2578
2579  if (SynthesizePID) {
2580    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
2581    S += ",V";
2582    S += OID->getNameAsString();
2583  }
2584
2585  // FIXME: OBJCGC: weak & strong
2586}
2587
2588/// getLegacyIntegralTypeEncoding -
2589/// Another legacy compatibility encoding: 32-bit longs are encoded as
2590/// 'l' or 'L' , but not always.  For typedefs, we need to use
2591/// 'i' or 'I' instead if encoding a struct field, or a pointer!
2592///
2593void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
2594  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
2595    if (const BuiltinType *BT = PointeeTy->getAsBuiltinType()) {
2596      if (BT->getKind() == BuiltinType::ULong &&
2597          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2598        PointeeTy = UnsignedIntTy;
2599      else
2600        if (BT->getKind() == BuiltinType::Long &&
2601            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
2602          PointeeTy = IntTy;
2603    }
2604  }
2605}
2606
2607void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
2608                                        const FieldDecl *Field) {
2609  // We follow the behavior of gcc, expanding structures which are
2610  // directly pointed to, and expanding embedded structures. Note that
2611  // these rules are sufficient to prevent recursive encoding of the
2612  // same type.
2613  getObjCEncodingForTypeImpl(T, S, true, true, Field,
2614                             true /* outermost type */);
2615}
2616
2617static void EncodeBitField(const ASTContext *Context, std::string& S,
2618                           const FieldDecl *FD) {
2619  const Expr *E = FD->getBitWidth();
2620  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
2621  ASTContext *Ctx = const_cast<ASTContext*>(Context);
2622  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
2623  S += 'b';
2624  S += llvm::utostr(N);
2625}
2626
2627void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
2628                                            bool ExpandPointedToStructures,
2629                                            bool ExpandStructures,
2630                                            const FieldDecl *FD,
2631                                            bool OutermostType,
2632                                            bool EncodingProperty) {
2633  if (const BuiltinType *BT = T->getAsBuiltinType()) {
2634    if (FD && FD->isBitField())
2635      return EncodeBitField(this, S, FD);
2636    char encoding;
2637    switch (BT->getKind()) {
2638    default: assert(0 && "Unhandled builtin type kind");
2639    case BuiltinType::Void:       encoding = 'v'; break;
2640    case BuiltinType::Bool:       encoding = 'B'; break;
2641    case BuiltinType::Char_U:
2642    case BuiltinType::UChar:      encoding = 'C'; break;
2643    case BuiltinType::UShort:     encoding = 'S'; break;
2644    case BuiltinType::UInt:       encoding = 'I'; break;
2645    case BuiltinType::ULong:
2646        encoding =
2647          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
2648        break;
2649    case BuiltinType::UInt128:    encoding = 'T'; break;
2650    case BuiltinType::ULongLong:  encoding = 'Q'; break;
2651    case BuiltinType::Char_S:
2652    case BuiltinType::SChar:      encoding = 'c'; break;
2653    case BuiltinType::Short:      encoding = 's'; break;
2654    case BuiltinType::Int:        encoding = 'i'; break;
2655    case BuiltinType::Long:
2656      encoding =
2657        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
2658      break;
2659    case BuiltinType::LongLong:   encoding = 'q'; break;
2660    case BuiltinType::Int128:     encoding = 't'; break;
2661    case BuiltinType::Float:      encoding = 'f'; break;
2662    case BuiltinType::Double:     encoding = 'd'; break;
2663    case BuiltinType::LongDouble: encoding = 'd'; break;
2664    }
2665
2666    S += encoding;
2667    return;
2668  }
2669
2670  if (const ComplexType *CT = T->getAsComplexType()) {
2671    S += 'j';
2672    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
2673                               false);
2674    return;
2675  }
2676
2677  if (const PointerType *PT = T->getAsPointerType()) {
2678    QualType PointeeTy = PT->getPointeeType();
2679    bool isReadOnly = false;
2680    // For historical/compatibility reasons, the read-only qualifier of the
2681    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
2682    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
2683    // Also, do not emit the 'r' for anything but the outermost type!
2684    if (isa<TypedefType>(T.getTypePtr())) {
2685      if (OutermostType && T.isConstQualified()) {
2686        isReadOnly = true;
2687        S += 'r';
2688      }
2689    }
2690    else if (OutermostType) {
2691      QualType P = PointeeTy;
2692      while (P->getAsPointerType())
2693        P = P->getAsPointerType()->getPointeeType();
2694      if (P.isConstQualified()) {
2695        isReadOnly = true;
2696        S += 'r';
2697      }
2698    }
2699    if (isReadOnly) {
2700      // Another legacy compatibility encoding. Some ObjC qualifier and type
2701      // combinations need to be rearranged.
2702      // Rewrite "in const" from "nr" to "rn"
2703      const char * s = S.c_str();
2704      int len = S.length();
2705      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
2706        std::string replace = "rn";
2707        S.replace(S.end()-2, S.end(), replace);
2708      }
2709    }
2710    if (isObjCSelType(PointeeTy)) {
2711      S += ':';
2712      return;
2713    }
2714
2715    if (PointeeTy->isCharType()) {
2716      // char pointer types should be encoded as '*' unless it is a
2717      // type that has been typedef'd to 'BOOL'.
2718      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
2719        S += '*';
2720        return;
2721      }
2722    } else if (const RecordType *RTy = PointeeTy->getAsRecordType()) {
2723      // GCC binary compat: Need to convert "struct objc_class *" to "#".
2724      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
2725        S += '#';
2726        return;
2727      }
2728      // GCC binary compat: Need to convert "struct objc_object *" to "@".
2729      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
2730        S += '@';
2731        return;
2732      }
2733      // fall through...
2734    }
2735    S += '^';
2736    getLegacyIntegralTypeEncoding(PointeeTy);
2737
2738    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
2739                               NULL);
2740    return;
2741  }
2742
2743  if (const ArrayType *AT =
2744      // Ignore type qualifiers etc.
2745        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
2746    if (isa<IncompleteArrayType>(AT)) {
2747      // Incomplete arrays are encoded as a pointer to the array element.
2748      S += '^';
2749
2750      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2751                                 false, ExpandStructures, FD);
2752    } else {
2753      S += '[';
2754
2755      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2756        S += llvm::utostr(CAT->getSize().getZExtValue());
2757      else {
2758        //Variable length arrays are encoded as a regular array with 0 elements.
2759        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
2760        S += '0';
2761      }
2762
2763      getObjCEncodingForTypeImpl(AT->getElementType(), S,
2764                                 false, ExpandStructures, FD);
2765      S += ']';
2766    }
2767    return;
2768  }
2769
2770  if (T->getAsFunctionType()) {
2771    S += '?';
2772    return;
2773  }
2774
2775  if (const RecordType *RTy = T->getAsRecordType()) {
2776    RecordDecl *RDecl = RTy->getDecl();
2777    S += RDecl->isUnion() ? '(' : '{';
2778    // Anonymous structures print as '?'
2779    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
2780      S += II->getName();
2781    } else {
2782      S += '?';
2783    }
2784    if (ExpandStructures) {
2785      S += '=';
2786      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
2787                                   FieldEnd = RDecl->field_end();
2788           Field != FieldEnd; ++Field) {
2789        if (FD) {
2790          S += '"';
2791          S += Field->getNameAsString();
2792          S += '"';
2793        }
2794
2795        // Special case bit-fields.
2796        if (Field->isBitField()) {
2797          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
2798                                     (*Field));
2799        } else {
2800          QualType qt = Field->getType();
2801          getLegacyIntegralTypeEncoding(qt);
2802          getObjCEncodingForTypeImpl(qt, S, false, true,
2803                                     FD);
2804        }
2805      }
2806    }
2807    S += RDecl->isUnion() ? ')' : '}';
2808    return;
2809  }
2810
2811  if (T->isEnumeralType()) {
2812    if (FD && FD->isBitField())
2813      EncodeBitField(this, S, FD);
2814    else
2815      S += 'i';
2816    return;
2817  }
2818
2819  if (T->isBlockPointerType()) {
2820    S += "@?"; // Unlike a pointer-to-function, which is "^?".
2821    return;
2822  }
2823
2824  if (T->isObjCInterfaceType()) {
2825    // @encode(class_name)
2826    ObjCInterfaceDecl *OI = T->getAsObjCInterfaceType()->getDecl();
2827    S += '{';
2828    const IdentifierInfo *II = OI->getIdentifier();
2829    S += II->getName();
2830    S += '=';
2831    llvm::SmallVector<FieldDecl*, 32> RecFields;
2832    CollectObjCIvars(OI, RecFields);
2833    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2834      if (RecFields[i]->isBitField())
2835        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2836                                   RecFields[i]);
2837      else
2838        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
2839                                   FD);
2840    }
2841    S += '}';
2842    return;
2843  }
2844
2845  if (const ObjCObjectPointerType *OPT = T->getAsObjCObjectPointerType()) {
2846    if (OPT->isObjCIdType()) {
2847      S += '@';
2848      return;
2849    }
2850
2851    if (OPT->isObjCClassType()) {
2852      S += '#';
2853      return;
2854    }
2855
2856    if (OPT->isObjCQualifiedIdType()) {
2857      getObjCEncodingForTypeImpl(getObjCIdType(), S,
2858                                 ExpandPointedToStructures,
2859                                 ExpandStructures, FD);
2860      if (FD || EncodingProperty) {
2861        // Note that we do extended encoding of protocol qualifer list
2862        // Only when doing ivar or property encoding.
2863        S += '"';
2864        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2865             E = OPT->qual_end(); I != E; ++I) {
2866          S += '<';
2867          S += (*I)->getNameAsString();
2868          S += '>';
2869        }
2870        S += '"';
2871      }
2872      return;
2873    }
2874
2875    QualType PointeeTy = OPT->getPointeeType();
2876    if (!EncodingProperty &&
2877        isa<TypedefType>(PointeeTy.getTypePtr())) {
2878      // Another historical/compatibility reason.
2879      // We encode the underlying type which comes out as
2880      // {...};
2881      S += '^';
2882      getObjCEncodingForTypeImpl(PointeeTy, S,
2883                                 false, ExpandPointedToStructures,
2884                                 NULL);
2885      return;
2886    }
2887
2888    S += '@';
2889    if (FD || EncodingProperty) {
2890      S += '"';
2891      S += OPT->getInterfaceDecl()->getNameAsCString();
2892      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
2893           E = OPT->qual_end(); I != E; ++I) {
2894        S += '<';
2895        S += (*I)->getNameAsString();
2896        S += '>';
2897      }
2898      S += '"';
2899    }
2900    return;
2901  }
2902
2903  assert(0 && "@encode for type not implemented!");
2904}
2905
2906void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
2907                                                 std::string& S) const {
2908  if (QT & Decl::OBJC_TQ_In)
2909    S += 'n';
2910  if (QT & Decl::OBJC_TQ_Inout)
2911    S += 'N';
2912  if (QT & Decl::OBJC_TQ_Out)
2913    S += 'o';
2914  if (QT & Decl::OBJC_TQ_Bycopy)
2915    S += 'O';
2916  if (QT & Decl::OBJC_TQ_Byref)
2917    S += 'R';
2918  if (QT & Decl::OBJC_TQ_Oneway)
2919    S += 'V';
2920}
2921
2922void ASTContext::setBuiltinVaListType(QualType T) {
2923  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
2924
2925  BuiltinVaListType = T;
2926}
2927
2928void ASTContext::setObjCIdType(QualType T) {
2929  ObjCIdTypedefType = T;
2930}
2931
2932void ASTContext::setObjCSelType(QualType T) {
2933  ObjCSelType = T;
2934
2935  const TypedefType *TT = T->getAsTypedefType();
2936  if (!TT)
2937    return;
2938  TypedefDecl *TD = TT->getDecl();
2939
2940  // typedef struct objc_selector *SEL;
2941  const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType();
2942  if (!ptr)
2943    return;
2944  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
2945  if (!rec)
2946    return;
2947  SelStructType = rec;
2948}
2949
2950void ASTContext::setObjCProtoType(QualType QT) {
2951  ObjCProtoType = QT;
2952}
2953
2954void ASTContext::setObjCClassType(QualType T) {
2955  ObjCClassTypedefType = T;
2956}
2957
2958void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
2959  assert(ObjCConstantStringType.isNull() &&
2960         "'NSConstantString' type already set!");
2961
2962  ObjCConstantStringType = getObjCInterfaceType(Decl);
2963}
2964
2965/// \brief Retrieve the template name that represents a qualified
2966/// template name such as \c std::vector.
2967TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
2968                                                  bool TemplateKeyword,
2969                                                  TemplateDecl *Template) {
2970  llvm::FoldingSetNodeID ID;
2971  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
2972
2973  void *InsertPos = 0;
2974  QualifiedTemplateName *QTN =
2975    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2976  if (!QTN) {
2977    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
2978    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
2979  }
2980
2981  return TemplateName(QTN);
2982}
2983
2984/// \brief Retrieve the template name that represents a dependent
2985/// template name such as \c MetaFun::template apply.
2986TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
2987                                                  const IdentifierInfo *Name) {
2988  assert(NNS->isDependent() && "Nested name specifier must be dependent");
2989
2990  llvm::FoldingSetNodeID ID;
2991  DependentTemplateName::Profile(ID, NNS, Name);
2992
2993  void *InsertPos = 0;
2994  DependentTemplateName *QTN =
2995    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
2996
2997  if (QTN)
2998    return TemplateName(QTN);
2999
3000  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3001  if (CanonNNS == NNS) {
3002    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3003  } else {
3004    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3005    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3006  }
3007
3008  DependentTemplateNames.InsertNode(QTN, InsertPos);
3009  return TemplateName(QTN);
3010}
3011
3012/// getFromTargetType - Given one of the integer types provided by
3013/// TargetInfo, produce the corresponding type. The unsigned @p Type
3014/// is actually a value of type @c TargetInfo::IntType.
3015QualType ASTContext::getFromTargetType(unsigned Type) const {
3016  switch (Type) {
3017  case TargetInfo::NoInt: return QualType();
3018  case TargetInfo::SignedShort: return ShortTy;
3019  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3020  case TargetInfo::SignedInt: return IntTy;
3021  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3022  case TargetInfo::SignedLong: return LongTy;
3023  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3024  case TargetInfo::SignedLongLong: return LongLongTy;
3025  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3026  }
3027
3028  assert(false && "Unhandled TargetInfo::IntType value");
3029  return QualType();
3030}
3031
3032//===----------------------------------------------------------------------===//
3033//                        Type Predicates.
3034//===----------------------------------------------------------------------===//
3035
3036/// isObjCNSObjectType - Return true if this is an NSObject object using
3037/// NSObject attribute on a c-style pointer type.
3038/// FIXME - Make it work directly on types.
3039/// FIXME: Move to Type.
3040///
3041bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3042  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3043    if (TypedefDecl *TD = TDT->getDecl())
3044      if (TD->getAttr<ObjCNSObjectAttr>())
3045        return true;
3046  }
3047  return false;
3048}
3049
3050/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3051/// garbage collection attribute.
3052///
3053QualType::GCAttrTypes ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3054  QualType::GCAttrTypes GCAttrs = QualType::GCNone;
3055  if (getLangOptions().ObjC1 &&
3056      getLangOptions().getGCMode() != LangOptions::NonGC) {
3057    GCAttrs = Ty.getObjCGCAttr();
3058    // Default behavious under objective-c's gc is for objective-c pointers
3059    // (or pointers to them) be treated as though they were declared
3060    // as __strong.
3061    if (GCAttrs == QualType::GCNone) {
3062      if (Ty->isObjCObjectPointerType())
3063        GCAttrs = QualType::Strong;
3064      else if (Ty->isPointerType())
3065        return getObjCGCAttrKind(Ty->getAsPointerType()->getPointeeType());
3066    }
3067    // Non-pointers have none gc'able attribute regardless of the attribute
3068    // set on them.
3069    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3070      return QualType::GCNone;
3071  }
3072  return GCAttrs;
3073}
3074
3075//===----------------------------------------------------------------------===//
3076//                        Type Compatibility Testing
3077//===----------------------------------------------------------------------===//
3078
3079/// areCompatVectorTypes - Return true if the two specified vector types are
3080/// compatible.
3081static bool areCompatVectorTypes(const VectorType *LHS,
3082                                 const VectorType *RHS) {
3083  assert(LHS->isCanonical() && RHS->isCanonical());
3084  return LHS->getElementType() == RHS->getElementType() &&
3085         LHS->getNumElements() == RHS->getNumElements();
3086}
3087
3088//===----------------------------------------------------------------------===//
3089// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3090//===----------------------------------------------------------------------===//
3091
3092/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3093/// inheritance hierarchy of 'rProto'.
3094static bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3095                                           ObjCProtocolDecl *rProto) {
3096  if (lProto == rProto)
3097    return true;
3098  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3099       E = rProto->protocol_end(); PI != E; ++PI)
3100    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3101      return true;
3102  return false;
3103}
3104
3105/// ClassImplementsProtocol - Checks that 'lProto' protocol
3106/// has been implemented in IDecl class, its super class or categories (if
3107/// lookupCategory is true).
3108static bool ClassImplementsProtocol(ObjCProtocolDecl *lProto,
3109                                    ObjCInterfaceDecl *IDecl,
3110                                    bool lookupCategory,
3111                                    bool RHSIsQualifiedID = false) {
3112
3113  // 1st, look up the class.
3114  const ObjCList<ObjCProtocolDecl> &Protocols =
3115    IDecl->getReferencedProtocols();
3116
3117  for (ObjCList<ObjCProtocolDecl>::iterator PI = Protocols.begin(),
3118       E = Protocols.end(); PI != E; ++PI) {
3119    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3120      return true;
3121    // This is dubious and is added to be compatible with gcc.  In gcc, it is
3122    // also allowed assigning a protocol-qualified 'id' type to a LHS object
3123    // when protocol in qualified LHS is in list of protocols in the rhs 'id'
3124    // object. This IMO, should be a bug.
3125    // FIXME: Treat this as an extension, and flag this as an error when GCC
3126    // extensions are not enabled.
3127    if (RHSIsQualifiedID && ProtocolCompatibleWithProtocol(*PI, lProto))
3128      return true;
3129  }
3130
3131  // 2nd, look up the category.
3132  if (lookupCategory)
3133    for (ObjCCategoryDecl *CDecl = IDecl->getCategoryList(); CDecl;
3134         CDecl = CDecl->getNextClassCategory()) {
3135      for (ObjCCategoryDecl::protocol_iterator PI = CDecl->protocol_begin(),
3136           E = CDecl->protocol_end(); PI != E; ++PI)
3137        if (ProtocolCompatibleWithProtocol(lProto, *PI))
3138          return true;
3139    }
3140
3141  // 3rd, look up the super class(s)
3142  if (IDecl->getSuperClass())
3143    return
3144      ClassImplementsProtocol(lProto, IDecl->getSuperClass(), lookupCategory,
3145                              RHSIsQualifiedID);
3146
3147  return false;
3148}
3149
3150/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3151/// return true if lhs's protocols conform to rhs's protocol; false
3152/// otherwise.
3153bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3154  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3155    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3156  return false;
3157}
3158
3159/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3160/// ObjCQualifiedIDType.
3161bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3162                                                   bool compare) {
3163  // Allow id<P..> and an 'id' or void* type in all cases.
3164  if (lhs->isVoidPointerType() ||
3165      lhs->isObjCIdType() || lhs->isObjCClassType())
3166    return true;
3167  else if (rhs->isVoidPointerType() ||
3168           rhs->isObjCIdType() || rhs->isObjCClassType())
3169    return true;
3170
3171  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3172    const ObjCObjectPointerType *rhsOPT = rhs->getAsObjCObjectPointerType();
3173
3174    if (!rhsOPT) return false;
3175
3176    if (rhsOPT->qual_empty()) {
3177      // If the RHS is a unqualified interface pointer "NSString*",
3178      // make sure we check the class hierarchy.
3179      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3180        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3181             E = lhsQID->qual_end(); I != E; ++I) {
3182          // when comparing an id<P> on lhs with a static type on rhs,
3183          // see if static class implements all of id's protocols, directly or
3184          // through its super class and categories.
3185          if (!ClassImplementsProtocol(*I, rhsID, true))
3186            return false;
3187        }
3188      }
3189      // If there are no qualifiers and no interface, we have an 'id'.
3190      return true;
3191    }
3192    // Both the right and left sides have qualifiers.
3193    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3194         E = lhsQID->qual_end(); I != E; ++I) {
3195      ObjCProtocolDecl *lhsProto = *I;
3196      bool match = false;
3197
3198      // when comparing an id<P> on lhs with a static type on rhs,
3199      // see if static class implements all of id's protocols, directly or
3200      // through its super class and categories.
3201      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3202           E = rhsOPT->qual_end(); J != E; ++J) {
3203        ObjCProtocolDecl *rhsProto = *J;
3204        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3205            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3206          match = true;
3207          break;
3208        }
3209      }
3210      // If the RHS is a qualified interface pointer "NSString<P>*",
3211      // make sure we check the class hierarchy.
3212      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3213        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3214             E = lhsQID->qual_end(); I != E; ++I) {
3215          // when comparing an id<P> on lhs with a static type on rhs,
3216          // see if static class implements all of id's protocols, directly or
3217          // through its super class and categories.
3218          if (ClassImplementsProtocol(*I, rhsID, true)) {
3219            match = true;
3220            break;
3221          }
3222        }
3223      }
3224      if (!match)
3225        return false;
3226    }
3227
3228    return true;
3229  }
3230
3231  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3232  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3233
3234  if (const ObjCObjectPointerType *lhsOPT =
3235        lhs->getAsObjCInterfacePointerType()) {
3236    if (lhsOPT->qual_empty()) {
3237      bool match = false;
3238      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3239        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3240             E = rhsQID->qual_end(); I != E; ++I) {
3241          // when comparing an id<P> on lhs with a static type on rhs,
3242          // see if static class implements all of id's protocols, directly or
3243          // through its super class and categories.
3244          if (ClassImplementsProtocol(*I, lhsID, true)) {
3245            match = true;
3246            break;
3247          }
3248        }
3249        if (!match)
3250          return false;
3251      }
3252      return true;
3253    }
3254    // Both the right and left sides have qualifiers.
3255    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3256         E = lhsOPT->qual_end(); I != E; ++I) {
3257      ObjCProtocolDecl *lhsProto = *I;
3258      bool match = false;
3259
3260      // when comparing an id<P> on lhs with a static type on rhs,
3261      // see if static class implements all of id's protocols, directly or
3262      // through its super class and categories.
3263      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3264           E = rhsQID->qual_end(); J != E; ++J) {
3265        ObjCProtocolDecl *rhsProto = *J;
3266        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3267            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3268          match = true;
3269          break;
3270        }
3271      }
3272      if (!match)
3273        return false;
3274    }
3275    return true;
3276  }
3277  return false;
3278}
3279
3280/// canAssignObjCInterfaces - Return true if the two interface types are
3281/// compatible for assignment from RHS to LHS.  This handles validation of any
3282/// protocol qualifiers on the LHS or RHS.
3283///
3284bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3285                                         const ObjCObjectPointerType *RHSOPT) {
3286  // If either type represents the built-in 'id' or 'Class' types, return true.
3287  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3288    return true;
3289
3290  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
3291    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
3292                                             QualType(RHSOPT,0),
3293                                             false);
3294
3295  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3296  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3297  if (LHS && RHS) // We have 2 user-defined types.
3298    return canAssignObjCInterfaces(LHS, RHS);
3299
3300  return false;
3301}
3302
3303bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
3304                                         const ObjCInterfaceType *RHS) {
3305  // Verify that the base decls are compatible: the RHS must be a subclass of
3306  // the LHS.
3307  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
3308    return false;
3309
3310  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
3311  // protocol qualified at all, then we are good.
3312  if (LHS->getNumProtocols() == 0)
3313    return true;
3314
3315  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
3316  // isn't a superset.
3317  if (RHS->getNumProtocols() == 0)
3318    return true;  // FIXME: should return false!
3319
3320  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
3321                                        LHSPE = LHS->qual_end();
3322       LHSPI != LHSPE; LHSPI++) {
3323    bool RHSImplementsProtocol = false;
3324
3325    // If the RHS doesn't implement the protocol on the left, the types
3326    // are incompatible.
3327    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
3328                                          RHSPE = RHS->qual_end();
3329         RHSPI != RHSPE; RHSPI++) {
3330      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
3331        RHSImplementsProtocol = true;
3332        break;
3333      }
3334    }
3335    // FIXME: For better diagnostics, consider passing back the protocol name.
3336    if (!RHSImplementsProtocol)
3337      return false;
3338  }
3339  // The RHS implements all protocols listed on the LHS.
3340  return true;
3341}
3342
3343bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
3344  // get the "pointed to" types
3345  const ObjCObjectPointerType *LHSOPT = LHS->getAsObjCObjectPointerType();
3346  const ObjCObjectPointerType *RHSOPT = RHS->getAsObjCObjectPointerType();
3347
3348  if (!LHSOPT || !RHSOPT)
3349    return false;
3350
3351  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
3352         canAssignObjCInterfaces(RHSOPT, LHSOPT);
3353}
3354
3355/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
3356/// both shall have the identically qualified version of a compatible type.
3357/// C99 6.2.7p1: Two types have compatible types if their types are the
3358/// same. See 6.7.[2,3,5] for additional rules.
3359bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
3360  return !mergeTypes(LHS, RHS).isNull();
3361}
3362
3363QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
3364  const FunctionType *lbase = lhs->getAsFunctionType();
3365  const FunctionType *rbase = rhs->getAsFunctionType();
3366  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
3367  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
3368  bool allLTypes = true;
3369  bool allRTypes = true;
3370
3371  // Check return type
3372  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
3373  if (retType.isNull()) return QualType();
3374  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
3375    allLTypes = false;
3376  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
3377    allRTypes = false;
3378  // FIXME: double check this
3379  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
3380  if (NoReturn != lbase->getNoReturnAttr())
3381    allLTypes = false;
3382  if (NoReturn != rbase->getNoReturnAttr())
3383    allRTypes = false;
3384
3385  if (lproto && rproto) { // two C99 style function prototypes
3386    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
3387           "C++ shouldn't be here");
3388    unsigned lproto_nargs = lproto->getNumArgs();
3389    unsigned rproto_nargs = rproto->getNumArgs();
3390
3391    // Compatible functions must have the same number of arguments
3392    if (lproto_nargs != rproto_nargs)
3393      return QualType();
3394
3395    // Variadic and non-variadic functions aren't compatible
3396    if (lproto->isVariadic() != rproto->isVariadic())
3397      return QualType();
3398
3399    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3400      return QualType();
3401
3402    // Check argument compatibility
3403    llvm::SmallVector<QualType, 10> types;
3404    for (unsigned i = 0; i < lproto_nargs; i++) {
3405      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3406      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3407      QualType argtype = mergeTypes(largtype, rargtype);
3408      if (argtype.isNull()) return QualType();
3409      types.push_back(argtype);
3410      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3411        allLTypes = false;
3412      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3413        allRTypes = false;
3414    }
3415    if (allLTypes) return lhs;
3416    if (allRTypes) return rhs;
3417    return getFunctionType(retType, types.begin(), types.size(),
3418                           lproto->isVariadic(), lproto->getTypeQuals(),
3419                           NoReturn);
3420  }
3421
3422  if (lproto) allRTypes = false;
3423  if (rproto) allLTypes = false;
3424
3425  const FunctionProtoType *proto = lproto ? lproto : rproto;
3426  if (proto) {
3427    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3428    if (proto->isVariadic()) return QualType();
3429    // Check that the types are compatible with the types that
3430    // would result from default argument promotions (C99 6.7.5.3p15).
3431    // The only types actually affected are promotable integer
3432    // types and floats, which would be passed as a different
3433    // type depending on whether the prototype is visible.
3434    unsigned proto_nargs = proto->getNumArgs();
3435    for (unsigned i = 0; i < proto_nargs; ++i) {
3436      QualType argTy = proto->getArgType(i);
3437      if (argTy->isPromotableIntegerType() ||
3438          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3439        return QualType();
3440    }
3441
3442    if (allLTypes) return lhs;
3443    if (allRTypes) return rhs;
3444    return getFunctionType(retType, proto->arg_type_begin(),
3445                           proto->getNumArgs(), proto->isVariadic(),
3446                           proto->getTypeQuals(), NoReturn);
3447  }
3448
3449  if (allLTypes) return lhs;
3450  if (allRTypes) return rhs;
3451  return getFunctionNoProtoType(retType, NoReturn);
3452}
3453
3454QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3455  // C++ [expr]: If an expression initially has the type "reference to T", the
3456  // type is adjusted to "T" prior to any further analysis, the expression
3457  // designates the object or function denoted by the reference, and the
3458  // expression is an lvalue unless the reference is an rvalue reference and
3459  // the expression is a function call (possibly inside parentheses).
3460  // FIXME: C++ shouldn't be going through here!  The rules are different
3461  // enough that they should be handled separately.
3462  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3463  // shouldn't be going through here!
3464  if (const ReferenceType *RT = LHS->getAsReferenceType())
3465    LHS = RT->getPointeeType();
3466  if (const ReferenceType *RT = RHS->getAsReferenceType())
3467    RHS = RT->getPointeeType();
3468
3469  QualType LHSCan = getCanonicalType(LHS),
3470           RHSCan = getCanonicalType(RHS);
3471
3472  // If two types are identical, they are compatible.
3473  if (LHSCan == RHSCan)
3474    return LHS;
3475
3476  // If the qualifiers are different, the types aren't compatible
3477  // Note that we handle extended qualifiers later, in the
3478  // case for ExtQualType.
3479  if (LHSCan.getCVRQualifiers() != RHSCan.getCVRQualifiers())
3480    return QualType();
3481
3482  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3483  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3484
3485  // We want to consider the two function types to be the same for these
3486  // comparisons, just force one to the other.
3487  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3488  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3489
3490  // Strip off objc_gc attributes off the top level so they can be merged.
3491  // This is a complete mess, but the attribute itself doesn't make much sense.
3492  if (RHSClass == Type::ExtQual) {
3493    QualType::GCAttrTypes GCAttr = RHSCan.getObjCGCAttr();
3494    if (GCAttr != QualType::GCNone) {
3495      QualType::GCAttrTypes GCLHSAttr = LHSCan.getObjCGCAttr();
3496      // __weak attribute must appear on both declarations.
3497      // __strong attribue is redundant if other decl is an objective-c
3498      // object pointer (or decorated with __strong attribute); otherwise
3499      // issue error.
3500      if ((GCAttr == QualType::Weak && GCLHSAttr != GCAttr) ||
3501          (GCAttr == QualType::Strong && GCLHSAttr != GCAttr &&
3502           !LHSCan->isObjCObjectPointerType()))
3503        return QualType();
3504
3505      RHS = QualType(cast<ExtQualType>(RHS.getDesugaredType())->getBaseType(),
3506                     RHS.getCVRQualifiers());
3507      QualType Result = mergeTypes(LHS, RHS);
3508      if (!Result.isNull()) {
3509        if (Result.getObjCGCAttr() == QualType::GCNone)
3510          Result = getObjCGCQualType(Result, GCAttr);
3511        else if (Result.getObjCGCAttr() != GCAttr)
3512          Result = QualType();
3513      }
3514      return Result;
3515    }
3516  }
3517  if (LHSClass == Type::ExtQual) {
3518    QualType::GCAttrTypes GCAttr = LHSCan.getObjCGCAttr();
3519    if (GCAttr != QualType::GCNone) {
3520      QualType::GCAttrTypes GCRHSAttr = RHSCan.getObjCGCAttr();
3521      // __weak attribute must appear on both declarations. __strong
3522      // __strong attribue is redundant if other decl is an objective-c
3523      // object pointer (or decorated with __strong attribute); otherwise
3524      // issue error.
3525      if ((GCAttr == QualType::Weak && GCRHSAttr != GCAttr) ||
3526          (GCAttr == QualType::Strong && GCRHSAttr != GCAttr &&
3527           !RHSCan->isObjCObjectPointerType()))
3528        return QualType();
3529
3530      LHS = QualType(cast<ExtQualType>(LHS.getDesugaredType())->getBaseType(),
3531                     LHS.getCVRQualifiers());
3532      QualType Result = mergeTypes(LHS, RHS);
3533      if (!Result.isNull()) {
3534        if (Result.getObjCGCAttr() == QualType::GCNone)
3535          Result = getObjCGCQualType(Result, GCAttr);
3536        else if (Result.getObjCGCAttr() != GCAttr)
3537          Result = QualType();
3538      }
3539      return Result;
3540    }
3541  }
3542
3543  // Same as above for arrays
3544  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3545    LHSClass = Type::ConstantArray;
3546  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3547    RHSClass = Type::ConstantArray;
3548
3549  // Canonicalize ExtVector -> Vector.
3550  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3551  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3552
3553  // If the canonical type classes don't match.
3554  if (LHSClass != RHSClass) {
3555    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3556    // a signed integer type, or an unsigned integer type.
3557    if (const EnumType* ETy = LHS->getAsEnumType()) {
3558      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3559        return RHS;
3560    }
3561    if (const EnumType* ETy = RHS->getAsEnumType()) {
3562      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3563        return LHS;
3564    }
3565
3566    return QualType();
3567  }
3568
3569  // The canonical type classes match.
3570  switch (LHSClass) {
3571#define TYPE(Class, Base)
3572#define ABSTRACT_TYPE(Class, Base)
3573#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3574#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3575#include "clang/AST/TypeNodes.def"
3576    assert(false && "Non-canonical and dependent types shouldn't get here");
3577    return QualType();
3578
3579  case Type::LValueReference:
3580  case Type::RValueReference:
3581  case Type::MemberPointer:
3582    assert(false && "C++ should never be in mergeTypes");
3583    return QualType();
3584
3585  case Type::IncompleteArray:
3586  case Type::VariableArray:
3587  case Type::FunctionProto:
3588  case Type::ExtVector:
3589    assert(false && "Types are eliminated above");
3590    return QualType();
3591
3592  case Type::Pointer:
3593  {
3594    // Merge two pointer types, while trying to preserve typedef info
3595    QualType LHSPointee = LHS->getAsPointerType()->getPointeeType();
3596    QualType RHSPointee = RHS->getAsPointerType()->getPointeeType();
3597    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3598    if (ResultType.isNull()) return QualType();
3599    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3600      return LHS;
3601    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3602      return RHS;
3603    return getPointerType(ResultType);
3604  }
3605  case Type::BlockPointer:
3606  {
3607    // Merge two block pointer types, while trying to preserve typedef info
3608    QualType LHSPointee = LHS->getAsBlockPointerType()->getPointeeType();
3609    QualType RHSPointee = RHS->getAsBlockPointerType()->getPointeeType();
3610    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3611    if (ResultType.isNull()) return QualType();
3612    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3613      return LHS;
3614    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3615      return RHS;
3616    return getBlockPointerType(ResultType);
3617  }
3618  case Type::ConstantArray:
3619  {
3620    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3621    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3622    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3623      return QualType();
3624
3625    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3626    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3627    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3628    if (ResultType.isNull()) return QualType();
3629    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3630      return LHS;
3631    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3632      return RHS;
3633    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
3634                                          ArrayType::ArraySizeModifier(), 0);
3635    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
3636                                          ArrayType::ArraySizeModifier(), 0);
3637    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
3638    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
3639    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3640      return LHS;
3641    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
3642      return RHS;
3643    if (LVAT) {
3644      // FIXME: This isn't correct! But tricky to implement because
3645      // the array's size has to be the size of LHS, but the type
3646      // has to be different.
3647      return LHS;
3648    }
3649    if (RVAT) {
3650      // FIXME: This isn't correct! But tricky to implement because
3651      // the array's size has to be the size of RHS, but the type
3652      // has to be different.
3653      return RHS;
3654    }
3655    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
3656    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
3657    return getIncompleteArrayType(ResultType,
3658                                  ArrayType::ArraySizeModifier(), 0);
3659  }
3660  case Type::FunctionNoProto:
3661    return mergeFunctionTypes(LHS, RHS);
3662  case Type::Record:
3663  case Type::Enum:
3664    return QualType();
3665  case Type::Builtin:
3666    // Only exactly equal builtin types are compatible, which is tested above.
3667    return QualType();
3668  case Type::Complex:
3669    // Distinct complex types are incompatible.
3670    return QualType();
3671  case Type::Vector:
3672    // FIXME: The merged type should be an ExtVector!
3673    if (areCompatVectorTypes(LHS->getAsVectorType(), RHS->getAsVectorType()))
3674      return LHS;
3675    return QualType();
3676  case Type::ObjCInterface: {
3677    // Check if the interfaces are assignment compatible.
3678    // FIXME: This should be type compatibility, e.g. whether
3679    // "LHS x; RHS x;" at global scope is legal.
3680    const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
3681    const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
3682    if (LHSIface && RHSIface &&
3683        canAssignObjCInterfaces(LHSIface, RHSIface))
3684      return LHS;
3685
3686    return QualType();
3687  }
3688  case Type::ObjCObjectPointer: {
3689    if (canAssignObjCInterfaces(LHS->getAsObjCObjectPointerType(),
3690                                RHS->getAsObjCObjectPointerType()))
3691      return LHS;
3692
3693    return QualType();
3694  }
3695  case Type::FixedWidthInt:
3696    // Distinct fixed-width integers are not compatible.
3697    return QualType();
3698  case Type::ExtQual:
3699    // FIXME: ExtQual types can be compatible even if they're not
3700    // identical!
3701    return QualType();
3702    // First attempt at an implementation, but I'm not really sure it's
3703    // right...
3704#if 0
3705    ExtQualType* LQual = cast<ExtQualType>(LHSCan);
3706    ExtQualType* RQual = cast<ExtQualType>(RHSCan);
3707    if (LQual->getAddressSpace() != RQual->getAddressSpace() ||
3708        LQual->getObjCGCAttr() != RQual->getObjCGCAttr())
3709      return QualType();
3710    QualType LHSBase, RHSBase, ResultType, ResCanUnqual;
3711    LHSBase = QualType(LQual->getBaseType(), 0);
3712    RHSBase = QualType(RQual->getBaseType(), 0);
3713    ResultType = mergeTypes(LHSBase, RHSBase);
3714    if (ResultType.isNull()) return QualType();
3715    ResCanUnqual = getCanonicalType(ResultType).getUnqualifiedType();
3716    if (LHSCan.getUnqualifiedType() == ResCanUnqual)
3717      return LHS;
3718    if (RHSCan.getUnqualifiedType() == ResCanUnqual)
3719      return RHS;
3720    ResultType = getAddrSpaceQualType(ResultType, LQual->getAddressSpace());
3721    ResultType = getObjCGCQualType(ResultType, LQual->getObjCGCAttr());
3722    ResultType.setCVRQualifiers(LHSCan.getCVRQualifiers());
3723    return ResultType;
3724#endif
3725
3726  case Type::TemplateSpecialization:
3727    assert(false && "Dependent types have no size");
3728    break;
3729  }
3730
3731  return QualType();
3732}
3733
3734//===----------------------------------------------------------------------===//
3735//                         Integer Predicates
3736//===----------------------------------------------------------------------===//
3737
3738unsigned ASTContext::getIntWidth(QualType T) {
3739  if (T == BoolTy)
3740    return 1;
3741  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T)) {
3742    return FWIT->getWidth();
3743  }
3744  // For builtin types, just use the standard type sizing method
3745  return (unsigned)getTypeSize(T);
3746}
3747
3748QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
3749  assert(T->isSignedIntegerType() && "Unexpected type");
3750  if (const EnumType* ETy = T->getAsEnumType())
3751    T = ETy->getDecl()->getIntegerType();
3752  const BuiltinType* BTy = T->getAsBuiltinType();
3753  assert (BTy && "Unexpected signed integer type");
3754  switch (BTy->getKind()) {
3755  case BuiltinType::Char_S:
3756  case BuiltinType::SChar:
3757    return UnsignedCharTy;
3758  case BuiltinType::Short:
3759    return UnsignedShortTy;
3760  case BuiltinType::Int:
3761    return UnsignedIntTy;
3762  case BuiltinType::Long:
3763    return UnsignedLongTy;
3764  case BuiltinType::LongLong:
3765    return UnsignedLongLongTy;
3766  case BuiltinType::Int128:
3767    return UnsignedInt128Ty;
3768  default:
3769    assert(0 && "Unexpected signed integer type");
3770    return QualType();
3771  }
3772}
3773
3774ExternalASTSource::~ExternalASTSource() { }
3775
3776void ExternalASTSource::PrintStats() { }
3777
3778
3779//===----------------------------------------------------------------------===//
3780//                          Builtin Type Computation
3781//===----------------------------------------------------------------------===//
3782
3783/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
3784/// pointer over the consumed characters.  This returns the resultant type.
3785static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
3786                                  ASTContext::GetBuiltinTypeError &Error,
3787                                  bool AllowTypeModifiers = true) {
3788  // Modifiers.
3789  int HowLong = 0;
3790  bool Signed = false, Unsigned = false;
3791
3792  // Read the modifiers first.
3793  bool Done = false;
3794  while (!Done) {
3795    switch (*Str++) {
3796    default: Done = true; --Str; break;
3797    case 'S':
3798      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
3799      assert(!Signed && "Can't use 'S' modifier multiple times!");
3800      Signed = true;
3801      break;
3802    case 'U':
3803      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
3804      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
3805      Unsigned = true;
3806      break;
3807    case 'L':
3808      assert(HowLong <= 2 && "Can't have LLLL modifier");
3809      ++HowLong;
3810      break;
3811    }
3812  }
3813
3814  QualType Type;
3815
3816  // Read the base type.
3817  switch (*Str++) {
3818  default: assert(0 && "Unknown builtin type letter!");
3819  case 'v':
3820    assert(HowLong == 0 && !Signed && !Unsigned &&
3821           "Bad modifiers used with 'v'!");
3822    Type = Context.VoidTy;
3823    break;
3824  case 'f':
3825    assert(HowLong == 0 && !Signed && !Unsigned &&
3826           "Bad modifiers used with 'f'!");
3827    Type = Context.FloatTy;
3828    break;
3829  case 'd':
3830    assert(HowLong < 2 && !Signed && !Unsigned &&
3831           "Bad modifiers used with 'd'!");
3832    if (HowLong)
3833      Type = Context.LongDoubleTy;
3834    else
3835      Type = Context.DoubleTy;
3836    break;
3837  case 's':
3838    assert(HowLong == 0 && "Bad modifiers used with 's'!");
3839    if (Unsigned)
3840      Type = Context.UnsignedShortTy;
3841    else
3842      Type = Context.ShortTy;
3843    break;
3844  case 'i':
3845    if (HowLong == 3)
3846      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
3847    else if (HowLong == 2)
3848      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
3849    else if (HowLong == 1)
3850      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
3851    else
3852      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
3853    break;
3854  case 'c':
3855    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
3856    if (Signed)
3857      Type = Context.SignedCharTy;
3858    else if (Unsigned)
3859      Type = Context.UnsignedCharTy;
3860    else
3861      Type = Context.CharTy;
3862    break;
3863  case 'b': // boolean
3864    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
3865    Type = Context.BoolTy;
3866    break;
3867  case 'z':  // size_t.
3868    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
3869    Type = Context.getSizeType();
3870    break;
3871  case 'F':
3872    Type = Context.getCFConstantStringType();
3873    break;
3874  case 'a':
3875    Type = Context.getBuiltinVaListType();
3876    assert(!Type.isNull() && "builtin va list type not initialized!");
3877    break;
3878  case 'A':
3879    // This is a "reference" to a va_list; however, what exactly
3880    // this means depends on how va_list is defined. There are two
3881    // different kinds of va_list: ones passed by value, and ones
3882    // passed by reference.  An example of a by-value va_list is
3883    // x86, where va_list is a char*. An example of by-ref va_list
3884    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
3885    // we want this argument to be a char*&; for x86-64, we want
3886    // it to be a __va_list_tag*.
3887    Type = Context.getBuiltinVaListType();
3888    assert(!Type.isNull() && "builtin va list type not initialized!");
3889    if (Type->isArrayType()) {
3890      Type = Context.getArrayDecayedType(Type);
3891    } else {
3892      Type = Context.getLValueReferenceType(Type);
3893    }
3894    break;
3895  case 'V': {
3896    char *End;
3897
3898    unsigned NumElements = strtoul(Str, &End, 10);
3899    assert(End != Str && "Missing vector size");
3900
3901    Str = End;
3902
3903    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
3904    Type = Context.getVectorType(ElementType, NumElements);
3905    break;
3906  }
3907  case 'P': {
3908    Type = Context.getFILEType();
3909    if (Type.isNull()) {
3910      Error = ASTContext::GE_Missing_FILE;
3911      return QualType();
3912    } else {
3913      break;
3914    }
3915  }
3916  }
3917
3918  if (!AllowTypeModifiers)
3919    return Type;
3920
3921  Done = false;
3922  while (!Done) {
3923    switch (*Str++) {
3924      default: Done = true; --Str; break;
3925      case '*':
3926        Type = Context.getPointerType(Type);
3927        break;
3928      case '&':
3929        Type = Context.getLValueReferenceType(Type);
3930        break;
3931      // FIXME: There's no way to have a built-in with an rvalue ref arg.
3932      case 'C':
3933        Type = Type.getQualifiedType(QualType::Const);
3934        break;
3935    }
3936  }
3937
3938  return Type;
3939}
3940
3941/// GetBuiltinType - Return the type for the specified builtin.
3942QualType ASTContext::GetBuiltinType(unsigned id,
3943                                    GetBuiltinTypeError &Error) {
3944  const char *TypeStr = BuiltinInfo.GetTypeString(id);
3945
3946  llvm::SmallVector<QualType, 8> ArgTypes;
3947
3948  Error = GE_None;
3949  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
3950  if (Error != GE_None)
3951    return QualType();
3952  while (TypeStr[0] && TypeStr[0] != '.') {
3953    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
3954    if (Error != GE_None)
3955      return QualType();
3956
3957    // Do array -> pointer decay.  The builtin should use the decayed type.
3958    if (Ty->isArrayType())
3959      Ty = getArrayDecayedType(Ty);
3960
3961    ArgTypes.push_back(Ty);
3962  }
3963
3964  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
3965         "'.' should only occur at end of builtin type list!");
3966
3967  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
3968  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
3969    return getFunctionNoProtoType(ResType);
3970  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
3971                         TypeStr[0] == '.', 0);
3972}
3973