ASTContext.cpp revision e2d4f4ed44a32f179c6d48cd1dba8346ab2129d9
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/DeclCXX.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/ASTMutationListener.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/Mangle.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/SmallString.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Support/Capacity.h"
34#include "CXXABI.h"
35#include <map>
36
37using namespace clang;
38
39unsigned ASTContext::NumImplicitDefaultConstructors;
40unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
41unsigned ASTContext::NumImplicitCopyConstructors;
42unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
43unsigned ASTContext::NumImplicitMoveConstructors;
44unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
45unsigned ASTContext::NumImplicitCopyAssignmentOperators;
46unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
47unsigned ASTContext::NumImplicitMoveAssignmentOperators;
48unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
49unsigned ASTContext::NumImplicitDestructors;
50unsigned ASTContext::NumImplicitDestructorsDeclared;
51
52enum FloatingRank {
53  HalfRank, FloatRank, DoubleRank, LongDoubleRank
54};
55
56void
57ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
58                                               TemplateTemplateParmDecl *Parm) {
59  ID.AddInteger(Parm->getDepth());
60  ID.AddInteger(Parm->getPosition());
61  ID.AddBoolean(Parm->isParameterPack());
62
63  TemplateParameterList *Params = Parm->getTemplateParameters();
64  ID.AddInteger(Params->size());
65  for (TemplateParameterList::const_iterator P = Params->begin(),
66                                          PEnd = Params->end();
67       P != PEnd; ++P) {
68    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
69      ID.AddInteger(0);
70      ID.AddBoolean(TTP->isParameterPack());
71      continue;
72    }
73
74    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
75      ID.AddInteger(1);
76      ID.AddBoolean(NTTP->isParameterPack());
77      ID.AddPointer(NTTP->getType().getAsOpaquePtr());
78      if (NTTP->isExpandedParameterPack()) {
79        ID.AddBoolean(true);
80        ID.AddInteger(NTTP->getNumExpansionTypes());
81        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I)
82          ID.AddPointer(NTTP->getExpansionType(I).getAsOpaquePtr());
83      } else
84        ID.AddBoolean(false);
85      continue;
86    }
87
88    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
89    ID.AddInteger(2);
90    Profile(ID, TTP);
91  }
92}
93
94TemplateTemplateParmDecl *
95ASTContext::getCanonicalTemplateTemplateParmDecl(
96                                          TemplateTemplateParmDecl *TTP) const {
97  // Check if we already have a canonical template template parameter.
98  llvm::FoldingSetNodeID ID;
99  CanonicalTemplateTemplateParm::Profile(ID, TTP);
100  void *InsertPos = 0;
101  CanonicalTemplateTemplateParm *Canonical
102    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
103  if (Canonical)
104    return Canonical->getParam();
105
106  // Build a canonical template parameter list.
107  TemplateParameterList *Params = TTP->getTemplateParameters();
108  SmallVector<NamedDecl *, 4> CanonParams;
109  CanonParams.reserve(Params->size());
110  for (TemplateParameterList::const_iterator P = Params->begin(),
111                                          PEnd = Params->end();
112       P != PEnd; ++P) {
113    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
114      CanonParams.push_back(
115                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
116                                               SourceLocation(),
117                                               SourceLocation(),
118                                               TTP->getDepth(),
119                                               TTP->getIndex(), 0, false,
120                                               TTP->isParameterPack()));
121    else if (NonTypeTemplateParmDecl *NTTP
122             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
123      QualType T = getCanonicalType(NTTP->getType());
124      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
125      NonTypeTemplateParmDecl *Param;
126      if (NTTP->isExpandedParameterPack()) {
127        SmallVector<QualType, 2> ExpandedTypes;
128        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
129        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
130          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
131          ExpandedTInfos.push_back(
132                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
133        }
134
135        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
136                                                SourceLocation(),
137                                                SourceLocation(),
138                                                NTTP->getDepth(),
139                                                NTTP->getPosition(), 0,
140                                                T,
141                                                TInfo,
142                                                ExpandedTypes.data(),
143                                                ExpandedTypes.size(),
144                                                ExpandedTInfos.data());
145      } else {
146        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
147                                                SourceLocation(),
148                                                SourceLocation(),
149                                                NTTP->getDepth(),
150                                                NTTP->getPosition(), 0,
151                                                T,
152                                                NTTP->isParameterPack(),
153                                                TInfo);
154      }
155      CanonParams.push_back(Param);
156
157    } else
158      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
159                                           cast<TemplateTemplateParmDecl>(*P)));
160  }
161
162  TemplateTemplateParmDecl *CanonTTP
163    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
164                                       SourceLocation(), TTP->getDepth(),
165                                       TTP->getPosition(),
166                                       TTP->isParameterPack(),
167                                       0,
168                         TemplateParameterList::Create(*this, SourceLocation(),
169                                                       SourceLocation(),
170                                                       CanonParams.data(),
171                                                       CanonParams.size(),
172                                                       SourceLocation()));
173
174  // Get the new insert position for the node we care about.
175  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
176  assert(Canonical == 0 && "Shouldn't be in the map!");
177  (void)Canonical;
178
179  // Create the canonical template template parameter entry.
180  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
181  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
182  return CanonTTP;
183}
184
185CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
186  if (!LangOpts.CPlusPlus) return 0;
187
188  switch (T.getCXXABI()) {
189  case CXXABI_ARM:
190    return CreateARMCXXABI(*this);
191  case CXXABI_Itanium:
192    return CreateItaniumCXXABI(*this);
193  case CXXABI_Microsoft:
194    return CreateMicrosoftCXXABI(*this);
195  }
196  return 0;
197}
198
199static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
200                                             const LangOptions &LOpts) {
201  if (LOpts.FakeAddressSpaceMap) {
202    // The fake address space map must have a distinct entry for each
203    // language-specific address space.
204    static const unsigned FakeAddrSpaceMap[] = {
205      1, // opencl_global
206      2, // opencl_local
207      3  // opencl_constant
208    };
209    return &FakeAddrSpaceMap;
210  } else {
211    return &T.getAddressSpaceMap();
212  }
213}
214
215ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
216                       const TargetInfo *t,
217                       IdentifierTable &idents, SelectorTable &sels,
218                       Builtin::Context &builtins,
219                       unsigned size_reserve,
220                       bool DelayInitialization)
221  : FunctionProtoTypes(this_()),
222    TemplateSpecializationTypes(this_()),
223    DependentTemplateSpecializationTypes(this_()),
224    SubstTemplateTemplateParmPacks(this_()),
225    GlobalNestedNameSpecifier(0),
226    Int128Decl(0), UInt128Decl(0),
227    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0),
228    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
229    FILEDecl(0),
230    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
231    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
232    cudaConfigureCallDecl(0),
233    NullTypeSourceInfo(QualType()),
234    SourceMgr(SM), LangOpts(LOpts),
235    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
236    Idents(idents), Selectors(sels),
237    BuiltinInfo(builtins),
238    DeclarationNames(*this),
239    ExternalSource(0), Listener(0),
240    LastSDM(0, 0),
241    UniqueBlockByRefTypeID(0)
242{
243  if (size_reserve > 0) Types.reserve(size_reserve);
244  TUDecl = TranslationUnitDecl::Create(*this);
245
246  if (!DelayInitialization) {
247    assert(t && "No target supplied for ASTContext initialization");
248    InitBuiltinTypes(*t);
249  }
250}
251
252ASTContext::~ASTContext() {
253  // Release the DenseMaps associated with DeclContext objects.
254  // FIXME: Is this the ideal solution?
255  ReleaseDeclContextMaps();
256
257  // Call all of the deallocation functions.
258  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
259    Deallocations[I].first(Deallocations[I].second);
260
261  // Release all of the memory associated with overridden C++ methods.
262  for (llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::iterator
263         OM = OverriddenMethods.begin(), OMEnd = OverriddenMethods.end();
264       OM != OMEnd; ++OM)
265    OM->second.Destroy();
266
267  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
268  // because they can contain DenseMaps.
269  for (llvm::DenseMap<const ObjCContainerDecl*,
270       const ASTRecordLayout*>::iterator
271       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
272    // Increment in loop to prevent using deallocated memory.
273    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
274      R->Destroy(*this);
275
276  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
277       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
278    // Increment in loop to prevent using deallocated memory.
279    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
280      R->Destroy(*this);
281  }
282
283  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
284                                                    AEnd = DeclAttrs.end();
285       A != AEnd; ++A)
286    A->second->~AttrVec();
287}
288
289void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
290  Deallocations.push_back(std::make_pair(Callback, Data));
291}
292
293void
294ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
295  ExternalSource.reset(Source.take());
296}
297
298void ASTContext::PrintStats() const {
299  llvm::errs() << "\n*** AST Context Stats:\n";
300  llvm::errs() << "  " << Types.size() << " types total.\n";
301
302  unsigned counts[] = {
303#define TYPE(Name, Parent) 0,
304#define ABSTRACT_TYPE(Name, Parent)
305#include "clang/AST/TypeNodes.def"
306    0 // Extra
307  };
308
309  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
310    Type *T = Types[i];
311    counts[(unsigned)T->getTypeClass()]++;
312  }
313
314  unsigned Idx = 0;
315  unsigned TotalBytes = 0;
316#define TYPE(Name, Parent)                                              \
317  if (counts[Idx])                                                      \
318    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
319                 << " types\n";                                         \
320  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
321  ++Idx;
322#define ABSTRACT_TYPE(Name, Parent)
323#include "clang/AST/TypeNodes.def"
324
325  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
326
327  // Implicit special member functions.
328  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
329               << NumImplicitDefaultConstructors
330               << " implicit default constructors created\n";
331  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
332               << NumImplicitCopyConstructors
333               << " implicit copy constructors created\n";
334  if (getLangOptions().CPlusPlus)
335    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
336                 << NumImplicitMoveConstructors
337                 << " implicit move constructors created\n";
338  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
339               << NumImplicitCopyAssignmentOperators
340               << " implicit copy assignment operators created\n";
341  if (getLangOptions().CPlusPlus)
342    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
343                 << NumImplicitMoveAssignmentOperators
344                 << " implicit move assignment operators created\n";
345  llvm::errs() << NumImplicitDestructorsDeclared << "/"
346               << NumImplicitDestructors
347               << " implicit destructors created\n";
348
349  if (ExternalSource.get()) {
350    llvm::errs() << "\n";
351    ExternalSource->PrintStats();
352  }
353
354  BumpAlloc.PrintStats();
355}
356
357TypedefDecl *ASTContext::getInt128Decl() const {
358  if (!Int128Decl) {
359    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
360    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
361                                     getTranslationUnitDecl(),
362                                     SourceLocation(),
363                                     SourceLocation(),
364                                     &Idents.get("__int128_t"),
365                                     TInfo);
366  }
367
368  return Int128Decl;
369}
370
371TypedefDecl *ASTContext::getUInt128Decl() const {
372  if (!UInt128Decl) {
373    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
374    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
375                                     getTranslationUnitDecl(),
376                                     SourceLocation(),
377                                     SourceLocation(),
378                                     &Idents.get("__uint128_t"),
379                                     TInfo);
380  }
381
382  return UInt128Decl;
383}
384
385void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
386  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
387  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
388  Types.push_back(Ty);
389}
390
391void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
392  assert((!this->Target || this->Target == &Target) &&
393         "Incorrect target reinitialization");
394  assert(VoidTy.isNull() && "Context reinitialized?");
395
396  this->Target = &Target;
397
398  ABI.reset(createCXXABI(Target));
399  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
400
401  // C99 6.2.5p19.
402  InitBuiltinType(VoidTy,              BuiltinType::Void);
403
404  // C99 6.2.5p2.
405  InitBuiltinType(BoolTy,              BuiltinType::Bool);
406  // C99 6.2.5p3.
407  if (LangOpts.CharIsSigned)
408    InitBuiltinType(CharTy,            BuiltinType::Char_S);
409  else
410    InitBuiltinType(CharTy,            BuiltinType::Char_U);
411  // C99 6.2.5p4.
412  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
413  InitBuiltinType(ShortTy,             BuiltinType::Short);
414  InitBuiltinType(IntTy,               BuiltinType::Int);
415  InitBuiltinType(LongTy,              BuiltinType::Long);
416  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
417
418  // C99 6.2.5p6.
419  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
420  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
421  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
422  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
423  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
424
425  // C99 6.2.5p10.
426  InitBuiltinType(FloatTy,             BuiltinType::Float);
427  InitBuiltinType(DoubleTy,            BuiltinType::Double);
428  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
429
430  // GNU extension, 128-bit integers.
431  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
432  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
433
434  if (LangOpts.CPlusPlus) { // C++ 3.9.1p5
435    if (TargetInfo::isTypeSigned(Target.getWCharType()))
436      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
437    else  // -fshort-wchar makes wchar_t be unsigned.
438      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
439  } else // C99
440    WCharTy = getFromTargetType(Target.getWCharType());
441
442  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
443    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
444  else // C99
445    Char16Ty = getFromTargetType(Target.getChar16Type());
446
447  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
448    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
449  else // C99
450    Char32Ty = getFromTargetType(Target.getChar32Type());
451
452  // Placeholder type for type-dependent expressions whose type is
453  // completely unknown. No code should ever check a type against
454  // DependentTy and users should never see it; however, it is here to
455  // help diagnose failures to properly check for type-dependent
456  // expressions.
457  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
458
459  // Placeholder type for functions.
460  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
461
462  // Placeholder type for bound members.
463  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
464
465  // Placeholder type for pseudo-objects.
466  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
467
468  // "any" type; useful for debugger-like clients.
469  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
470
471  // Placeholder type for unbridged ARC casts.
472  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
473
474  // C99 6.2.5p11.
475  FloatComplexTy      = getComplexType(FloatTy);
476  DoubleComplexTy     = getComplexType(DoubleTy);
477  LongDoubleComplexTy = getComplexType(LongDoubleTy);
478
479  BuiltinVaListType = QualType();
480
481  // Builtin types for 'id', 'Class', and 'SEL'.
482  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
483  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
484  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
485
486  ObjCConstantStringType = QualType();
487
488  // void * type
489  VoidPtrTy = getPointerType(VoidTy);
490
491  // nullptr type (C++0x 2.14.7)
492  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
493
494  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
495  InitBuiltinType(HalfTy, BuiltinType::Half);
496}
497
498DiagnosticsEngine &ASTContext::getDiagnostics() const {
499  return SourceMgr.getDiagnostics();
500}
501
502AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
503  AttrVec *&Result = DeclAttrs[D];
504  if (!Result) {
505    void *Mem = Allocate(sizeof(AttrVec));
506    Result = new (Mem) AttrVec;
507  }
508
509  return *Result;
510}
511
512/// \brief Erase the attributes corresponding to the given declaration.
513void ASTContext::eraseDeclAttrs(const Decl *D) {
514  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
515  if (Pos != DeclAttrs.end()) {
516    Pos->second->~AttrVec();
517    DeclAttrs.erase(Pos);
518  }
519}
520
521MemberSpecializationInfo *
522ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
523  assert(Var->isStaticDataMember() && "Not a static data member");
524  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
525    = InstantiatedFromStaticDataMember.find(Var);
526  if (Pos == InstantiatedFromStaticDataMember.end())
527    return 0;
528
529  return Pos->second;
530}
531
532void
533ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
534                                                TemplateSpecializationKind TSK,
535                                          SourceLocation PointOfInstantiation) {
536  assert(Inst->isStaticDataMember() && "Not a static data member");
537  assert(Tmpl->isStaticDataMember() && "Not a static data member");
538  assert(!InstantiatedFromStaticDataMember[Inst] &&
539         "Already noted what static data member was instantiated from");
540  InstantiatedFromStaticDataMember[Inst]
541    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
542}
543
544FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
545                                                     const FunctionDecl *FD){
546  assert(FD && "Specialization is 0");
547  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
548    = ClassScopeSpecializationPattern.find(FD);
549  if (Pos == ClassScopeSpecializationPattern.end())
550    return 0;
551
552  return Pos->second;
553}
554
555void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
556                                        FunctionDecl *Pattern) {
557  assert(FD && "Specialization is 0");
558  assert(Pattern && "Class scope specialization pattern is 0");
559  ClassScopeSpecializationPattern[FD] = Pattern;
560}
561
562NamedDecl *
563ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
564  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
565    = InstantiatedFromUsingDecl.find(UUD);
566  if (Pos == InstantiatedFromUsingDecl.end())
567    return 0;
568
569  return Pos->second;
570}
571
572void
573ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
574  assert((isa<UsingDecl>(Pattern) ||
575          isa<UnresolvedUsingValueDecl>(Pattern) ||
576          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
577         "pattern decl is not a using decl");
578  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
579  InstantiatedFromUsingDecl[Inst] = Pattern;
580}
581
582UsingShadowDecl *
583ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
584  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
585    = InstantiatedFromUsingShadowDecl.find(Inst);
586  if (Pos == InstantiatedFromUsingShadowDecl.end())
587    return 0;
588
589  return Pos->second;
590}
591
592void
593ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
594                                               UsingShadowDecl *Pattern) {
595  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
596  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
597}
598
599FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
600  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
601    = InstantiatedFromUnnamedFieldDecl.find(Field);
602  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
603    return 0;
604
605  return Pos->second;
606}
607
608void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
609                                                     FieldDecl *Tmpl) {
610  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
611  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
612  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
613         "Already noted what unnamed field was instantiated from");
614
615  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
616}
617
618bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
619                                    const FieldDecl *LastFD) const {
620  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
621          FD->getBitWidthValue(*this) == 0);
622}
623
624bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
625                                             const FieldDecl *LastFD) const {
626  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
627          FD->getBitWidthValue(*this) == 0 &&
628          LastFD->getBitWidthValue(*this) != 0);
629}
630
631bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
632                                         const FieldDecl *LastFD) const {
633  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
634          FD->getBitWidthValue(*this) &&
635          LastFD->getBitWidthValue(*this));
636}
637
638bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
639                                         const FieldDecl *LastFD) const {
640  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
641          LastFD->getBitWidthValue(*this));
642}
643
644bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
645                                             const FieldDecl *LastFD) const {
646  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
647          FD->getBitWidthValue(*this));
648}
649
650ASTContext::overridden_cxx_method_iterator
651ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
652  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
653    = OverriddenMethods.find(Method);
654  if (Pos == OverriddenMethods.end())
655    return 0;
656
657  return Pos->second.begin();
658}
659
660ASTContext::overridden_cxx_method_iterator
661ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
662  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
663    = OverriddenMethods.find(Method);
664  if (Pos == OverriddenMethods.end())
665    return 0;
666
667  return Pos->second.end();
668}
669
670unsigned
671ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
672  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
673    = OverriddenMethods.find(Method);
674  if (Pos == OverriddenMethods.end())
675    return 0;
676
677  return Pos->second.size();
678}
679
680void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
681                                     const CXXMethodDecl *Overridden) {
682  OverriddenMethods[Method].push_back(Overridden);
683}
684
685//===----------------------------------------------------------------------===//
686//                         Type Sizing and Analysis
687//===----------------------------------------------------------------------===//
688
689/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
690/// scalar floating point type.
691const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
692  const BuiltinType *BT = T->getAs<BuiltinType>();
693  assert(BT && "Not a floating point type!");
694  switch (BT->getKind()) {
695  default: llvm_unreachable("Not a floating point type!");
696  case BuiltinType::Half:       return Target->getHalfFormat();
697  case BuiltinType::Float:      return Target->getFloatFormat();
698  case BuiltinType::Double:     return Target->getDoubleFormat();
699  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
700  }
701}
702
703/// getDeclAlign - Return a conservative estimate of the alignment of the
704/// specified decl.  Note that bitfields do not have a valid alignment, so
705/// this method will assert on them.
706/// If @p RefAsPointee, references are treated like their underlying type
707/// (for alignof), else they're treated like pointers (for CodeGen).
708CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
709  unsigned Align = Target->getCharWidth();
710
711  bool UseAlignAttrOnly = false;
712  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
713    Align = AlignFromAttr;
714
715    // __attribute__((aligned)) can increase or decrease alignment
716    // *except* on a struct or struct member, where it only increases
717    // alignment unless 'packed' is also specified.
718    //
719    // It is an error for alignas to decrease alignment, so we can
720    // ignore that possibility;  Sema should diagnose it.
721    if (isa<FieldDecl>(D)) {
722      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
723        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
724    } else {
725      UseAlignAttrOnly = true;
726    }
727  }
728  else if (isa<FieldDecl>(D))
729      UseAlignAttrOnly =
730        D->hasAttr<PackedAttr>() ||
731        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
732
733  // If we're using the align attribute only, just ignore everything
734  // else about the declaration and its type.
735  if (UseAlignAttrOnly) {
736    // do nothing
737
738  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
739    QualType T = VD->getType();
740    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
741      if (RefAsPointee)
742        T = RT->getPointeeType();
743      else
744        T = getPointerType(RT->getPointeeType());
745    }
746    if (!T->isIncompleteType() && !T->isFunctionType()) {
747      // Adjust alignments of declarations with array type by the
748      // large-array alignment on the target.
749      unsigned MinWidth = Target->getLargeArrayMinWidth();
750      const ArrayType *arrayType;
751      if (MinWidth && (arrayType = getAsArrayType(T))) {
752        if (isa<VariableArrayType>(arrayType))
753          Align = std::max(Align, Target->getLargeArrayAlign());
754        else if (isa<ConstantArrayType>(arrayType) &&
755                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
756          Align = std::max(Align, Target->getLargeArrayAlign());
757
758        // Walk through any array types while we're at it.
759        T = getBaseElementType(arrayType);
760      }
761      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
762    }
763
764    // Fields can be subject to extra alignment constraints, like if
765    // the field is packed, the struct is packed, or the struct has a
766    // a max-field-alignment constraint (#pragma pack).  So calculate
767    // the actual alignment of the field within the struct, and then
768    // (as we're expected to) constrain that by the alignment of the type.
769    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
770      // So calculate the alignment of the field.
771      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
772
773      // Start with the record's overall alignment.
774      unsigned fieldAlign = toBits(layout.getAlignment());
775
776      // Use the GCD of that and the offset within the record.
777      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
778      if (offset > 0) {
779        // Alignment is always a power of 2, so the GCD will be a power of 2,
780        // which means we get to do this crazy thing instead of Euclid's.
781        uint64_t lowBitOfOffset = offset & (~offset + 1);
782        if (lowBitOfOffset < fieldAlign)
783          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
784      }
785
786      Align = std::min(Align, fieldAlign);
787    }
788  }
789
790  return toCharUnitsFromBits(Align);
791}
792
793std::pair<CharUnits, CharUnits>
794ASTContext::getTypeInfoInChars(const Type *T) const {
795  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
796  return std::make_pair(toCharUnitsFromBits(Info.first),
797                        toCharUnitsFromBits(Info.second));
798}
799
800std::pair<CharUnits, CharUnits>
801ASTContext::getTypeInfoInChars(QualType T) const {
802  return getTypeInfoInChars(T.getTypePtr());
803}
804
805/// getTypeSize - Return the size of the specified type, in bits.  This method
806/// does not work on incomplete types.
807///
808/// FIXME: Pointers into different addr spaces could have different sizes and
809/// alignment requirements: getPointerInfo should take an AddrSpace, this
810/// should take a QualType, &c.
811std::pair<uint64_t, unsigned>
812ASTContext::getTypeInfo(const Type *T) const {
813  uint64_t Width=0;
814  unsigned Align=8;
815  switch (T->getTypeClass()) {
816#define TYPE(Class, Base)
817#define ABSTRACT_TYPE(Class, Base)
818#define NON_CANONICAL_TYPE(Class, Base)
819#define DEPENDENT_TYPE(Class, Base) case Type::Class:
820#include "clang/AST/TypeNodes.def"
821    llvm_unreachable("Should not see dependent types");
822    break;
823
824  case Type::FunctionNoProto:
825  case Type::FunctionProto:
826    // GCC extension: alignof(function) = 32 bits
827    Width = 0;
828    Align = 32;
829    break;
830
831  case Type::IncompleteArray:
832  case Type::VariableArray:
833    Width = 0;
834    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
835    break;
836
837  case Type::ConstantArray: {
838    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
839
840    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
841    Width = EltInfo.first*CAT->getSize().getZExtValue();
842    Align = EltInfo.second;
843    Width = llvm::RoundUpToAlignment(Width, Align);
844    break;
845  }
846  case Type::ExtVector:
847  case Type::Vector: {
848    const VectorType *VT = cast<VectorType>(T);
849    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
850    Width = EltInfo.first*VT->getNumElements();
851    Align = Width;
852    // If the alignment is not a power of 2, round up to the next power of 2.
853    // This happens for non-power-of-2 length vectors.
854    if (Align & (Align-1)) {
855      Align = llvm::NextPowerOf2(Align);
856      Width = llvm::RoundUpToAlignment(Width, Align);
857    }
858    break;
859  }
860
861  case Type::Builtin:
862    switch (cast<BuiltinType>(T)->getKind()) {
863    default: llvm_unreachable("Unknown builtin type!");
864    case BuiltinType::Void:
865      // GCC extension: alignof(void) = 8 bits.
866      Width = 0;
867      Align = 8;
868      break;
869
870    case BuiltinType::Bool:
871      Width = Target->getBoolWidth();
872      Align = Target->getBoolAlign();
873      break;
874    case BuiltinType::Char_S:
875    case BuiltinType::Char_U:
876    case BuiltinType::UChar:
877    case BuiltinType::SChar:
878      Width = Target->getCharWidth();
879      Align = Target->getCharAlign();
880      break;
881    case BuiltinType::WChar_S:
882    case BuiltinType::WChar_U:
883      Width = Target->getWCharWidth();
884      Align = Target->getWCharAlign();
885      break;
886    case BuiltinType::Char16:
887      Width = Target->getChar16Width();
888      Align = Target->getChar16Align();
889      break;
890    case BuiltinType::Char32:
891      Width = Target->getChar32Width();
892      Align = Target->getChar32Align();
893      break;
894    case BuiltinType::UShort:
895    case BuiltinType::Short:
896      Width = Target->getShortWidth();
897      Align = Target->getShortAlign();
898      break;
899    case BuiltinType::UInt:
900    case BuiltinType::Int:
901      Width = Target->getIntWidth();
902      Align = Target->getIntAlign();
903      break;
904    case BuiltinType::ULong:
905    case BuiltinType::Long:
906      Width = Target->getLongWidth();
907      Align = Target->getLongAlign();
908      break;
909    case BuiltinType::ULongLong:
910    case BuiltinType::LongLong:
911      Width = Target->getLongLongWidth();
912      Align = Target->getLongLongAlign();
913      break;
914    case BuiltinType::Int128:
915    case BuiltinType::UInt128:
916      Width = 128;
917      Align = 128; // int128_t is 128-bit aligned on all targets.
918      break;
919    case BuiltinType::Half:
920      Width = Target->getHalfWidth();
921      Align = Target->getHalfAlign();
922      break;
923    case BuiltinType::Float:
924      Width = Target->getFloatWidth();
925      Align = Target->getFloatAlign();
926      break;
927    case BuiltinType::Double:
928      Width = Target->getDoubleWidth();
929      Align = Target->getDoubleAlign();
930      break;
931    case BuiltinType::LongDouble:
932      Width = Target->getLongDoubleWidth();
933      Align = Target->getLongDoubleAlign();
934      break;
935    case BuiltinType::NullPtr:
936      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
937      Align = Target->getPointerAlign(0); //   == sizeof(void*)
938      break;
939    case BuiltinType::ObjCId:
940    case BuiltinType::ObjCClass:
941    case BuiltinType::ObjCSel:
942      Width = Target->getPointerWidth(0);
943      Align = Target->getPointerAlign(0);
944      break;
945    }
946    break;
947  case Type::ObjCObjectPointer:
948    Width = Target->getPointerWidth(0);
949    Align = Target->getPointerAlign(0);
950    break;
951  case Type::BlockPointer: {
952    unsigned AS = getTargetAddressSpace(
953        cast<BlockPointerType>(T)->getPointeeType());
954    Width = Target->getPointerWidth(AS);
955    Align = Target->getPointerAlign(AS);
956    break;
957  }
958  case Type::LValueReference:
959  case Type::RValueReference: {
960    // alignof and sizeof should never enter this code path here, so we go
961    // the pointer route.
962    unsigned AS = getTargetAddressSpace(
963        cast<ReferenceType>(T)->getPointeeType());
964    Width = Target->getPointerWidth(AS);
965    Align = Target->getPointerAlign(AS);
966    break;
967  }
968  case Type::Pointer: {
969    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
970    Width = Target->getPointerWidth(AS);
971    Align = Target->getPointerAlign(AS);
972    break;
973  }
974  case Type::MemberPointer: {
975    const MemberPointerType *MPT = cast<MemberPointerType>(T);
976    std::pair<uint64_t, unsigned> PtrDiffInfo =
977      getTypeInfo(getPointerDiffType());
978    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
979    Align = PtrDiffInfo.second;
980    break;
981  }
982  case Type::Complex: {
983    // Complex types have the same alignment as their elements, but twice the
984    // size.
985    std::pair<uint64_t, unsigned> EltInfo =
986      getTypeInfo(cast<ComplexType>(T)->getElementType());
987    Width = EltInfo.first*2;
988    Align = EltInfo.second;
989    break;
990  }
991  case Type::ObjCObject:
992    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
993  case Type::ObjCInterface: {
994    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
995    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
996    Width = toBits(Layout.getSize());
997    Align = toBits(Layout.getAlignment());
998    break;
999  }
1000  case Type::Record:
1001  case Type::Enum: {
1002    const TagType *TT = cast<TagType>(T);
1003
1004    if (TT->getDecl()->isInvalidDecl()) {
1005      Width = 8;
1006      Align = 8;
1007      break;
1008    }
1009
1010    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1011      return getTypeInfo(ET->getDecl()->getIntegerType());
1012
1013    const RecordType *RT = cast<RecordType>(TT);
1014    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1015    Width = toBits(Layout.getSize());
1016    Align = toBits(Layout.getAlignment());
1017    break;
1018  }
1019
1020  case Type::SubstTemplateTypeParm:
1021    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1022                       getReplacementType().getTypePtr());
1023
1024  case Type::Auto: {
1025    const AutoType *A = cast<AutoType>(T);
1026    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1027    return getTypeInfo(A->getDeducedType().getTypePtr());
1028  }
1029
1030  case Type::Paren:
1031    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1032
1033  case Type::Typedef: {
1034    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1035    std::pair<uint64_t, unsigned> Info
1036      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1037    // If the typedef has an aligned attribute on it, it overrides any computed
1038    // alignment we have.  This violates the GCC documentation (which says that
1039    // attribute(aligned) can only round up) but matches its implementation.
1040    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1041      Align = AttrAlign;
1042    else
1043      Align = Info.second;
1044    Width = Info.first;
1045    break;
1046  }
1047
1048  case Type::TypeOfExpr:
1049    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1050                         .getTypePtr());
1051
1052  case Type::TypeOf:
1053    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1054
1055  case Type::Decltype:
1056    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1057                        .getTypePtr());
1058
1059  case Type::UnaryTransform:
1060    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1061
1062  case Type::Elaborated:
1063    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1064
1065  case Type::Attributed:
1066    return getTypeInfo(
1067                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1068
1069  case Type::TemplateSpecialization: {
1070    assert(getCanonicalType(T) != T &&
1071           "Cannot request the size of a dependent type");
1072    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1073    // A type alias template specialization may refer to a typedef with the
1074    // aligned attribute on it.
1075    if (TST->isTypeAlias())
1076      return getTypeInfo(TST->getAliasedType().getTypePtr());
1077    else
1078      return getTypeInfo(getCanonicalType(T));
1079  }
1080
1081  case Type::Atomic: {
1082    std::pair<uint64_t, unsigned> Info
1083      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1084    Width = Info.first;
1085    Align = Info.second;
1086    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1087        llvm::isPowerOf2_64(Width)) {
1088      // We can potentially perform lock-free atomic operations for this
1089      // type; promote the alignment appropriately.
1090      // FIXME: We could potentially promote the width here as well...
1091      // is that worthwhile?  (Non-struct atomic types generally have
1092      // power-of-two size anyway, but structs might not.  Requires a bit
1093      // of implementation work to make sure we zero out the extra bits.)
1094      Align = static_cast<unsigned>(Width);
1095    }
1096  }
1097
1098  }
1099
1100  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1101  return std::make_pair(Width, Align);
1102}
1103
1104/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1105CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1106  return CharUnits::fromQuantity(BitSize / getCharWidth());
1107}
1108
1109/// toBits - Convert a size in characters to a size in characters.
1110int64_t ASTContext::toBits(CharUnits CharSize) const {
1111  return CharSize.getQuantity() * getCharWidth();
1112}
1113
1114/// getTypeSizeInChars - Return the size of the specified type, in characters.
1115/// This method does not work on incomplete types.
1116CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1117  return toCharUnitsFromBits(getTypeSize(T));
1118}
1119CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1120  return toCharUnitsFromBits(getTypeSize(T));
1121}
1122
1123/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1124/// characters. This method does not work on incomplete types.
1125CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1126  return toCharUnitsFromBits(getTypeAlign(T));
1127}
1128CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1129  return toCharUnitsFromBits(getTypeAlign(T));
1130}
1131
1132/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1133/// type for the current target in bits.  This can be different than the ABI
1134/// alignment in cases where it is beneficial for performance to overalign
1135/// a data type.
1136unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1137  unsigned ABIAlign = getTypeAlign(T);
1138
1139  // Double and long long should be naturally aligned if possible.
1140  if (const ComplexType* CT = T->getAs<ComplexType>())
1141    T = CT->getElementType().getTypePtr();
1142  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1143      T->isSpecificBuiltinType(BuiltinType::LongLong))
1144    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1145
1146  return ABIAlign;
1147}
1148
1149/// DeepCollectObjCIvars -
1150/// This routine first collects all declared, but not synthesized, ivars in
1151/// super class and then collects all ivars, including those synthesized for
1152/// current class. This routine is used for implementation of current class
1153/// when all ivars, declared and synthesized are known.
1154///
1155void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1156                                      bool leafClass,
1157                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1158  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1159    DeepCollectObjCIvars(SuperClass, false, Ivars);
1160  if (!leafClass) {
1161    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1162         E = OI->ivar_end(); I != E; ++I)
1163      Ivars.push_back(*I);
1164  } else {
1165    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1166    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1167         Iv= Iv->getNextIvar())
1168      Ivars.push_back(Iv);
1169  }
1170}
1171
1172/// CollectInheritedProtocols - Collect all protocols in current class and
1173/// those inherited by it.
1174void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1175                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1176  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1177    // We can use protocol_iterator here instead of
1178    // all_referenced_protocol_iterator since we are walking all categories.
1179    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1180         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1181      ObjCProtocolDecl *Proto = (*P);
1182      Protocols.insert(Proto);
1183      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1184           PE = Proto->protocol_end(); P != PE; ++P) {
1185        Protocols.insert(*P);
1186        CollectInheritedProtocols(*P, Protocols);
1187      }
1188    }
1189
1190    // Categories of this Interface.
1191    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1192         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1193      CollectInheritedProtocols(CDeclChain, Protocols);
1194    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1195      while (SD) {
1196        CollectInheritedProtocols(SD, Protocols);
1197        SD = SD->getSuperClass();
1198      }
1199  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1200    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1201         PE = OC->protocol_end(); P != PE; ++P) {
1202      ObjCProtocolDecl *Proto = (*P);
1203      Protocols.insert(Proto);
1204      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1205           PE = Proto->protocol_end(); P != PE; ++P)
1206        CollectInheritedProtocols(*P, Protocols);
1207    }
1208  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1209    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1210         PE = OP->protocol_end(); P != PE; ++P) {
1211      ObjCProtocolDecl *Proto = (*P);
1212      Protocols.insert(Proto);
1213      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1214           PE = Proto->protocol_end(); P != PE; ++P)
1215        CollectInheritedProtocols(*P, Protocols);
1216    }
1217  }
1218}
1219
1220unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1221  unsigned count = 0;
1222  // Count ivars declared in class extension.
1223  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1224       CDecl = CDecl->getNextClassExtension())
1225    count += CDecl->ivar_size();
1226
1227  // Count ivar defined in this class's implementation.  This
1228  // includes synthesized ivars.
1229  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1230    count += ImplDecl->ivar_size();
1231
1232  return count;
1233}
1234
1235/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1236ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1237  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1238    I = ObjCImpls.find(D);
1239  if (I != ObjCImpls.end())
1240    return cast<ObjCImplementationDecl>(I->second);
1241  return 0;
1242}
1243/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1244ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1245  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1246    I = ObjCImpls.find(D);
1247  if (I != ObjCImpls.end())
1248    return cast<ObjCCategoryImplDecl>(I->second);
1249  return 0;
1250}
1251
1252/// \brief Set the implementation of ObjCInterfaceDecl.
1253void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1254                           ObjCImplementationDecl *ImplD) {
1255  assert(IFaceD && ImplD && "Passed null params");
1256  ObjCImpls[IFaceD] = ImplD;
1257}
1258/// \brief Set the implementation of ObjCCategoryDecl.
1259void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1260                           ObjCCategoryImplDecl *ImplD) {
1261  assert(CatD && ImplD && "Passed null params");
1262  ObjCImpls[CatD] = ImplD;
1263}
1264
1265ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1266  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1267    return ID;
1268  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1269    return CD->getClassInterface();
1270  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1271    return IMD->getClassInterface();
1272
1273  return 0;
1274}
1275
1276/// \brief Get the copy initialization expression of VarDecl,or NULL if
1277/// none exists.
1278Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1279  assert(VD && "Passed null params");
1280  assert(VD->hasAttr<BlocksAttr>() &&
1281         "getBlockVarCopyInits - not __block var");
1282  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1283    I = BlockVarCopyInits.find(VD);
1284  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1285}
1286
1287/// \brief Set the copy inialization expression of a block var decl.
1288void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1289  assert(VD && Init && "Passed null params");
1290  assert(VD->hasAttr<BlocksAttr>() &&
1291         "setBlockVarCopyInits - not __block var");
1292  BlockVarCopyInits[VD] = Init;
1293}
1294
1295/// \brief Allocate an uninitialized TypeSourceInfo.
1296///
1297/// The caller should initialize the memory held by TypeSourceInfo using
1298/// the TypeLoc wrappers.
1299///
1300/// \param T the type that will be the basis for type source info. This type
1301/// should refer to how the declarator was written in source code, not to
1302/// what type semantic analysis resolved the declarator to.
1303TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1304                                                 unsigned DataSize) const {
1305  if (!DataSize)
1306    DataSize = TypeLoc::getFullDataSizeForType(T);
1307  else
1308    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1309           "incorrect data size provided to CreateTypeSourceInfo!");
1310
1311  TypeSourceInfo *TInfo =
1312    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1313  new (TInfo) TypeSourceInfo(T);
1314  return TInfo;
1315}
1316
1317TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1318                                                     SourceLocation L) const {
1319  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1320  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1321  return DI;
1322}
1323
1324const ASTRecordLayout &
1325ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1326  return getObjCLayout(D, 0);
1327}
1328
1329const ASTRecordLayout &
1330ASTContext::getASTObjCImplementationLayout(
1331                                        const ObjCImplementationDecl *D) const {
1332  return getObjCLayout(D->getClassInterface(), D);
1333}
1334
1335//===----------------------------------------------------------------------===//
1336//                   Type creation/memoization methods
1337//===----------------------------------------------------------------------===//
1338
1339QualType
1340ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1341  unsigned fastQuals = quals.getFastQualifiers();
1342  quals.removeFastQualifiers();
1343
1344  // Check if we've already instantiated this type.
1345  llvm::FoldingSetNodeID ID;
1346  ExtQuals::Profile(ID, baseType, quals);
1347  void *insertPos = 0;
1348  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1349    assert(eq->getQualifiers() == quals);
1350    return QualType(eq, fastQuals);
1351  }
1352
1353  // If the base type is not canonical, make the appropriate canonical type.
1354  QualType canon;
1355  if (!baseType->isCanonicalUnqualified()) {
1356    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1357    canonSplit.second.addConsistentQualifiers(quals);
1358    canon = getExtQualType(canonSplit.first, canonSplit.second);
1359
1360    // Re-find the insert position.
1361    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1362  }
1363
1364  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1365  ExtQualNodes.InsertNode(eq, insertPos);
1366  return QualType(eq, fastQuals);
1367}
1368
1369QualType
1370ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1371  QualType CanT = getCanonicalType(T);
1372  if (CanT.getAddressSpace() == AddressSpace)
1373    return T;
1374
1375  // If we are composing extended qualifiers together, merge together
1376  // into one ExtQuals node.
1377  QualifierCollector Quals;
1378  const Type *TypeNode = Quals.strip(T);
1379
1380  // If this type already has an address space specified, it cannot get
1381  // another one.
1382  assert(!Quals.hasAddressSpace() &&
1383         "Type cannot be in multiple addr spaces!");
1384  Quals.addAddressSpace(AddressSpace);
1385
1386  return getExtQualType(TypeNode, Quals);
1387}
1388
1389QualType ASTContext::getObjCGCQualType(QualType T,
1390                                       Qualifiers::GC GCAttr) const {
1391  QualType CanT = getCanonicalType(T);
1392  if (CanT.getObjCGCAttr() == GCAttr)
1393    return T;
1394
1395  if (const PointerType *ptr = T->getAs<PointerType>()) {
1396    QualType Pointee = ptr->getPointeeType();
1397    if (Pointee->isAnyPointerType()) {
1398      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1399      return getPointerType(ResultType);
1400    }
1401  }
1402
1403  // If we are composing extended qualifiers together, merge together
1404  // into one ExtQuals node.
1405  QualifierCollector Quals;
1406  const Type *TypeNode = Quals.strip(T);
1407
1408  // If this type already has an ObjCGC specified, it cannot get
1409  // another one.
1410  assert(!Quals.hasObjCGCAttr() &&
1411         "Type cannot have multiple ObjCGCs!");
1412  Quals.addObjCGCAttr(GCAttr);
1413
1414  return getExtQualType(TypeNode, Quals);
1415}
1416
1417const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1418                                                   FunctionType::ExtInfo Info) {
1419  if (T->getExtInfo() == Info)
1420    return T;
1421
1422  QualType Result;
1423  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1424    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1425  } else {
1426    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1427    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1428    EPI.ExtInfo = Info;
1429    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1430                             FPT->getNumArgs(), EPI);
1431  }
1432
1433  return cast<FunctionType>(Result.getTypePtr());
1434}
1435
1436/// getComplexType - Return the uniqued reference to the type for a complex
1437/// number with the specified element type.
1438QualType ASTContext::getComplexType(QualType T) const {
1439  // Unique pointers, to guarantee there is only one pointer of a particular
1440  // structure.
1441  llvm::FoldingSetNodeID ID;
1442  ComplexType::Profile(ID, T);
1443
1444  void *InsertPos = 0;
1445  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1446    return QualType(CT, 0);
1447
1448  // If the pointee type isn't canonical, this won't be a canonical type either,
1449  // so fill in the canonical type field.
1450  QualType Canonical;
1451  if (!T.isCanonical()) {
1452    Canonical = getComplexType(getCanonicalType(T));
1453
1454    // Get the new insert position for the node we care about.
1455    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1456    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1457  }
1458  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1459  Types.push_back(New);
1460  ComplexTypes.InsertNode(New, InsertPos);
1461  return QualType(New, 0);
1462}
1463
1464/// getPointerType - Return the uniqued reference to the type for a pointer to
1465/// the specified type.
1466QualType ASTContext::getPointerType(QualType T) const {
1467  // Unique pointers, to guarantee there is only one pointer of a particular
1468  // structure.
1469  llvm::FoldingSetNodeID ID;
1470  PointerType::Profile(ID, T);
1471
1472  void *InsertPos = 0;
1473  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1474    return QualType(PT, 0);
1475
1476  // If the pointee type isn't canonical, this won't be a canonical type either,
1477  // so fill in the canonical type field.
1478  QualType Canonical;
1479  if (!T.isCanonical()) {
1480    Canonical = getPointerType(getCanonicalType(T));
1481
1482    // Get the new insert position for the node we care about.
1483    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1484    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1485  }
1486  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1487  Types.push_back(New);
1488  PointerTypes.InsertNode(New, InsertPos);
1489  return QualType(New, 0);
1490}
1491
1492/// getBlockPointerType - Return the uniqued reference to the type for
1493/// a pointer to the specified block.
1494QualType ASTContext::getBlockPointerType(QualType T) const {
1495  assert(T->isFunctionType() && "block of function types only");
1496  // Unique pointers, to guarantee there is only one block of a particular
1497  // structure.
1498  llvm::FoldingSetNodeID ID;
1499  BlockPointerType::Profile(ID, T);
1500
1501  void *InsertPos = 0;
1502  if (BlockPointerType *PT =
1503        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1504    return QualType(PT, 0);
1505
1506  // If the block pointee type isn't canonical, this won't be a canonical
1507  // type either so fill in the canonical type field.
1508  QualType Canonical;
1509  if (!T.isCanonical()) {
1510    Canonical = getBlockPointerType(getCanonicalType(T));
1511
1512    // Get the new insert position for the node we care about.
1513    BlockPointerType *NewIP =
1514      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1515    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1516  }
1517  BlockPointerType *New
1518    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1519  Types.push_back(New);
1520  BlockPointerTypes.InsertNode(New, InsertPos);
1521  return QualType(New, 0);
1522}
1523
1524/// getLValueReferenceType - Return the uniqued reference to the type for an
1525/// lvalue reference to the specified type.
1526QualType
1527ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1528  assert(getCanonicalType(T) != OverloadTy &&
1529         "Unresolved overloaded function type");
1530
1531  // Unique pointers, to guarantee there is only one pointer of a particular
1532  // structure.
1533  llvm::FoldingSetNodeID ID;
1534  ReferenceType::Profile(ID, T, SpelledAsLValue);
1535
1536  void *InsertPos = 0;
1537  if (LValueReferenceType *RT =
1538        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1539    return QualType(RT, 0);
1540
1541  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1542
1543  // If the referencee type isn't canonical, this won't be a canonical type
1544  // either, so fill in the canonical type field.
1545  QualType Canonical;
1546  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1547    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1548    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1549
1550    // Get the new insert position for the node we care about.
1551    LValueReferenceType *NewIP =
1552      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1553    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1554  }
1555
1556  LValueReferenceType *New
1557    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1558                                                     SpelledAsLValue);
1559  Types.push_back(New);
1560  LValueReferenceTypes.InsertNode(New, InsertPos);
1561
1562  return QualType(New, 0);
1563}
1564
1565/// getRValueReferenceType - Return the uniqued reference to the type for an
1566/// rvalue reference to the specified type.
1567QualType ASTContext::getRValueReferenceType(QualType T) const {
1568  // Unique pointers, to guarantee there is only one pointer of a particular
1569  // structure.
1570  llvm::FoldingSetNodeID ID;
1571  ReferenceType::Profile(ID, T, false);
1572
1573  void *InsertPos = 0;
1574  if (RValueReferenceType *RT =
1575        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1576    return QualType(RT, 0);
1577
1578  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1579
1580  // If the referencee type isn't canonical, this won't be a canonical type
1581  // either, so fill in the canonical type field.
1582  QualType Canonical;
1583  if (InnerRef || !T.isCanonical()) {
1584    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1585    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1586
1587    // Get the new insert position for the node we care about.
1588    RValueReferenceType *NewIP =
1589      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1590    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1591  }
1592
1593  RValueReferenceType *New
1594    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1595  Types.push_back(New);
1596  RValueReferenceTypes.InsertNode(New, InsertPos);
1597  return QualType(New, 0);
1598}
1599
1600/// getMemberPointerType - Return the uniqued reference to the type for a
1601/// member pointer to the specified type, in the specified class.
1602QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
1603  // Unique pointers, to guarantee there is only one pointer of a particular
1604  // structure.
1605  llvm::FoldingSetNodeID ID;
1606  MemberPointerType::Profile(ID, T, Cls);
1607
1608  void *InsertPos = 0;
1609  if (MemberPointerType *PT =
1610      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1611    return QualType(PT, 0);
1612
1613  // If the pointee or class type isn't canonical, this won't be a canonical
1614  // type either, so fill in the canonical type field.
1615  QualType Canonical;
1616  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
1617    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1618
1619    // Get the new insert position for the node we care about.
1620    MemberPointerType *NewIP =
1621      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1622    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1623  }
1624  MemberPointerType *New
1625    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1626  Types.push_back(New);
1627  MemberPointerTypes.InsertNode(New, InsertPos);
1628  return QualType(New, 0);
1629}
1630
1631/// getConstantArrayType - Return the unique reference to the type for an
1632/// array of the specified element type.
1633QualType ASTContext::getConstantArrayType(QualType EltTy,
1634                                          const llvm::APInt &ArySizeIn,
1635                                          ArrayType::ArraySizeModifier ASM,
1636                                          unsigned IndexTypeQuals) const {
1637  assert((EltTy->isDependentType() ||
1638          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
1639         "Constant array of VLAs is illegal!");
1640
1641  // Convert the array size into a canonical width matching the pointer size for
1642  // the target.
1643  llvm::APInt ArySize(ArySizeIn);
1644  ArySize =
1645    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
1646
1647  llvm::FoldingSetNodeID ID;
1648  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
1649
1650  void *InsertPos = 0;
1651  if (ConstantArrayType *ATP =
1652      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1653    return QualType(ATP, 0);
1654
1655  // If the element type isn't canonical or has qualifiers, this won't
1656  // be a canonical type either, so fill in the canonical type field.
1657  QualType Canon;
1658  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1659    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1660    Canon = getConstantArrayType(QualType(canonSplit.first, 0), ArySize,
1661                                 ASM, IndexTypeQuals);
1662    Canon = getQualifiedType(Canon, canonSplit.second);
1663
1664    // Get the new insert position for the node we care about.
1665    ConstantArrayType *NewIP =
1666      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1667    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1668  }
1669
1670  ConstantArrayType *New = new(*this,TypeAlignment)
1671    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
1672  ConstantArrayTypes.InsertNode(New, InsertPos);
1673  Types.push_back(New);
1674  return QualType(New, 0);
1675}
1676
1677/// getVariableArrayDecayedType - Turns the given type, which may be
1678/// variably-modified, into the corresponding type with all the known
1679/// sizes replaced with [*].
1680QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
1681  // Vastly most common case.
1682  if (!type->isVariablyModifiedType()) return type;
1683
1684  QualType result;
1685
1686  SplitQualType split = type.getSplitDesugaredType();
1687  const Type *ty = split.first;
1688  switch (ty->getTypeClass()) {
1689#define TYPE(Class, Base)
1690#define ABSTRACT_TYPE(Class, Base)
1691#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1692#include "clang/AST/TypeNodes.def"
1693    llvm_unreachable("didn't desugar past all non-canonical types?");
1694
1695  // These types should never be variably-modified.
1696  case Type::Builtin:
1697  case Type::Complex:
1698  case Type::Vector:
1699  case Type::ExtVector:
1700  case Type::DependentSizedExtVector:
1701  case Type::ObjCObject:
1702  case Type::ObjCInterface:
1703  case Type::ObjCObjectPointer:
1704  case Type::Record:
1705  case Type::Enum:
1706  case Type::UnresolvedUsing:
1707  case Type::TypeOfExpr:
1708  case Type::TypeOf:
1709  case Type::Decltype:
1710  case Type::UnaryTransform:
1711  case Type::DependentName:
1712  case Type::InjectedClassName:
1713  case Type::TemplateSpecialization:
1714  case Type::DependentTemplateSpecialization:
1715  case Type::TemplateTypeParm:
1716  case Type::SubstTemplateTypeParmPack:
1717  case Type::Auto:
1718  case Type::PackExpansion:
1719    llvm_unreachable("type should never be variably-modified");
1720
1721  // These types can be variably-modified but should never need to
1722  // further decay.
1723  case Type::FunctionNoProto:
1724  case Type::FunctionProto:
1725  case Type::BlockPointer:
1726  case Type::MemberPointer:
1727    return type;
1728
1729  // These types can be variably-modified.  All these modifications
1730  // preserve structure except as noted by comments.
1731  // TODO: if we ever care about optimizing VLAs, there are no-op
1732  // optimizations available here.
1733  case Type::Pointer:
1734    result = getPointerType(getVariableArrayDecayedType(
1735                              cast<PointerType>(ty)->getPointeeType()));
1736    break;
1737
1738  case Type::LValueReference: {
1739    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
1740    result = getLValueReferenceType(
1741                 getVariableArrayDecayedType(lv->getPointeeType()),
1742                                    lv->isSpelledAsLValue());
1743    break;
1744  }
1745
1746  case Type::RValueReference: {
1747    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
1748    result = getRValueReferenceType(
1749                 getVariableArrayDecayedType(lv->getPointeeType()));
1750    break;
1751  }
1752
1753  case Type::Atomic: {
1754    const AtomicType *at = cast<AtomicType>(ty);
1755    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
1756    break;
1757  }
1758
1759  case Type::ConstantArray: {
1760    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
1761    result = getConstantArrayType(
1762                 getVariableArrayDecayedType(cat->getElementType()),
1763                                  cat->getSize(),
1764                                  cat->getSizeModifier(),
1765                                  cat->getIndexTypeCVRQualifiers());
1766    break;
1767  }
1768
1769  case Type::DependentSizedArray: {
1770    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
1771    result = getDependentSizedArrayType(
1772                 getVariableArrayDecayedType(dat->getElementType()),
1773                                        dat->getSizeExpr(),
1774                                        dat->getSizeModifier(),
1775                                        dat->getIndexTypeCVRQualifiers(),
1776                                        dat->getBracketsRange());
1777    break;
1778  }
1779
1780  // Turn incomplete types into [*] types.
1781  case Type::IncompleteArray: {
1782    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
1783    result = getVariableArrayType(
1784                 getVariableArrayDecayedType(iat->getElementType()),
1785                                  /*size*/ 0,
1786                                  ArrayType::Normal,
1787                                  iat->getIndexTypeCVRQualifiers(),
1788                                  SourceRange());
1789    break;
1790  }
1791
1792  // Turn VLA types into [*] types.
1793  case Type::VariableArray: {
1794    const VariableArrayType *vat = cast<VariableArrayType>(ty);
1795    result = getVariableArrayType(
1796                 getVariableArrayDecayedType(vat->getElementType()),
1797                                  /*size*/ 0,
1798                                  ArrayType::Star,
1799                                  vat->getIndexTypeCVRQualifiers(),
1800                                  vat->getBracketsRange());
1801    break;
1802  }
1803  }
1804
1805  // Apply the top-level qualifiers from the original.
1806  return getQualifiedType(result, split.second);
1807}
1808
1809/// getVariableArrayType - Returns a non-unique reference to the type for a
1810/// variable array of the specified element type.
1811QualType ASTContext::getVariableArrayType(QualType EltTy,
1812                                          Expr *NumElts,
1813                                          ArrayType::ArraySizeModifier ASM,
1814                                          unsigned IndexTypeQuals,
1815                                          SourceRange Brackets) const {
1816  // Since we don't unique expressions, it isn't possible to unique VLA's
1817  // that have an expression provided for their size.
1818  QualType Canon;
1819
1820  // Be sure to pull qualifiers off the element type.
1821  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
1822    SplitQualType canonSplit = getCanonicalType(EltTy).split();
1823    Canon = getVariableArrayType(QualType(canonSplit.first, 0), NumElts, ASM,
1824                                 IndexTypeQuals, Brackets);
1825    Canon = getQualifiedType(Canon, canonSplit.second);
1826  }
1827
1828  VariableArrayType *New = new(*this, TypeAlignment)
1829    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
1830
1831  VariableArrayTypes.push_back(New);
1832  Types.push_back(New);
1833  return QualType(New, 0);
1834}
1835
1836/// getDependentSizedArrayType - Returns a non-unique reference to
1837/// the type for a dependently-sized array of the specified element
1838/// type.
1839QualType ASTContext::getDependentSizedArrayType(QualType elementType,
1840                                                Expr *numElements,
1841                                                ArrayType::ArraySizeModifier ASM,
1842                                                unsigned elementTypeQuals,
1843                                                SourceRange brackets) const {
1844  assert((!numElements || numElements->isTypeDependent() ||
1845          numElements->isValueDependent()) &&
1846         "Size must be type- or value-dependent!");
1847
1848  // Dependently-sized array types that do not have a specified number
1849  // of elements will have their sizes deduced from a dependent
1850  // initializer.  We do no canonicalization here at all, which is okay
1851  // because they can't be used in most locations.
1852  if (!numElements) {
1853    DependentSizedArrayType *newType
1854      = new (*this, TypeAlignment)
1855          DependentSizedArrayType(*this, elementType, QualType(),
1856                                  numElements, ASM, elementTypeQuals,
1857                                  brackets);
1858    Types.push_back(newType);
1859    return QualType(newType, 0);
1860  }
1861
1862  // Otherwise, we actually build a new type every time, but we
1863  // also build a canonical type.
1864
1865  SplitQualType canonElementType = getCanonicalType(elementType).split();
1866
1867  void *insertPos = 0;
1868  llvm::FoldingSetNodeID ID;
1869  DependentSizedArrayType::Profile(ID, *this,
1870                                   QualType(canonElementType.first, 0),
1871                                   ASM, elementTypeQuals, numElements);
1872
1873  // Look for an existing type with these properties.
1874  DependentSizedArrayType *canonTy =
1875    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1876
1877  // If we don't have one, build one.
1878  if (!canonTy) {
1879    canonTy = new (*this, TypeAlignment)
1880      DependentSizedArrayType(*this, QualType(canonElementType.first, 0),
1881                              QualType(), numElements, ASM, elementTypeQuals,
1882                              brackets);
1883    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
1884    Types.push_back(canonTy);
1885  }
1886
1887  // Apply qualifiers from the element type to the array.
1888  QualType canon = getQualifiedType(QualType(canonTy,0),
1889                                    canonElementType.second);
1890
1891  // If we didn't need extra canonicalization for the element type,
1892  // then just use that as our result.
1893  if (QualType(canonElementType.first, 0) == elementType)
1894    return canon;
1895
1896  // Otherwise, we need to build a type which follows the spelling
1897  // of the element type.
1898  DependentSizedArrayType *sugaredType
1899    = new (*this, TypeAlignment)
1900        DependentSizedArrayType(*this, elementType, canon, numElements,
1901                                ASM, elementTypeQuals, brackets);
1902  Types.push_back(sugaredType);
1903  return QualType(sugaredType, 0);
1904}
1905
1906QualType ASTContext::getIncompleteArrayType(QualType elementType,
1907                                            ArrayType::ArraySizeModifier ASM,
1908                                            unsigned elementTypeQuals) const {
1909  llvm::FoldingSetNodeID ID;
1910  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
1911
1912  void *insertPos = 0;
1913  if (IncompleteArrayType *iat =
1914       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
1915    return QualType(iat, 0);
1916
1917  // If the element type isn't canonical, this won't be a canonical type
1918  // either, so fill in the canonical type field.  We also have to pull
1919  // qualifiers off the element type.
1920  QualType canon;
1921
1922  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
1923    SplitQualType canonSplit = getCanonicalType(elementType).split();
1924    canon = getIncompleteArrayType(QualType(canonSplit.first, 0),
1925                                   ASM, elementTypeQuals);
1926    canon = getQualifiedType(canon, canonSplit.second);
1927
1928    // Get the new insert position for the node we care about.
1929    IncompleteArrayType *existing =
1930      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
1931    assert(!existing && "Shouldn't be in the map!"); (void) existing;
1932  }
1933
1934  IncompleteArrayType *newType = new (*this, TypeAlignment)
1935    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
1936
1937  IncompleteArrayTypes.InsertNode(newType, insertPos);
1938  Types.push_back(newType);
1939  return QualType(newType, 0);
1940}
1941
1942/// getVectorType - Return the unique reference to a vector type of
1943/// the specified element type and size. VectorType must be a built-in type.
1944QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
1945                                   VectorType::VectorKind VecKind) const {
1946  assert(vecType->isBuiltinType());
1947
1948  // Check if we've already instantiated a vector of this type.
1949  llvm::FoldingSetNodeID ID;
1950  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
1951
1952  void *InsertPos = 0;
1953  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1954    return QualType(VTP, 0);
1955
1956  // If the element type isn't canonical, this won't be a canonical type either,
1957  // so fill in the canonical type field.
1958  QualType Canonical;
1959  if (!vecType.isCanonical()) {
1960    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
1961
1962    // Get the new insert position for the node we care about.
1963    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1964    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1965  }
1966  VectorType *New = new (*this, TypeAlignment)
1967    VectorType(vecType, NumElts, Canonical, VecKind);
1968  VectorTypes.InsertNode(New, InsertPos);
1969  Types.push_back(New);
1970  return QualType(New, 0);
1971}
1972
1973/// getExtVectorType - Return the unique reference to an extended vector type of
1974/// the specified element type and size. VectorType must be a built-in type.
1975QualType
1976ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
1977  assert(vecType->isBuiltinType() || vecType->isDependentType());
1978
1979  // Check if we've already instantiated a vector of this type.
1980  llvm::FoldingSetNodeID ID;
1981  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
1982                      VectorType::GenericVector);
1983  void *InsertPos = 0;
1984  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1985    return QualType(VTP, 0);
1986
1987  // If the element type isn't canonical, this won't be a canonical type either,
1988  // so fill in the canonical type field.
1989  QualType Canonical;
1990  if (!vecType.isCanonical()) {
1991    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1992
1993    // Get the new insert position for the node we care about.
1994    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1995    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1996  }
1997  ExtVectorType *New = new (*this, TypeAlignment)
1998    ExtVectorType(vecType, NumElts, Canonical);
1999  VectorTypes.InsertNode(New, InsertPos);
2000  Types.push_back(New);
2001  return QualType(New, 0);
2002}
2003
2004QualType
2005ASTContext::getDependentSizedExtVectorType(QualType vecType,
2006                                           Expr *SizeExpr,
2007                                           SourceLocation AttrLoc) const {
2008  llvm::FoldingSetNodeID ID;
2009  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2010                                       SizeExpr);
2011
2012  void *InsertPos = 0;
2013  DependentSizedExtVectorType *Canon
2014    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2015  DependentSizedExtVectorType *New;
2016  if (Canon) {
2017    // We already have a canonical version of this array type; use it as
2018    // the canonical type for a newly-built type.
2019    New = new (*this, TypeAlignment)
2020      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2021                                  SizeExpr, AttrLoc);
2022  } else {
2023    QualType CanonVecTy = getCanonicalType(vecType);
2024    if (CanonVecTy == vecType) {
2025      New = new (*this, TypeAlignment)
2026        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2027                                    AttrLoc);
2028
2029      DependentSizedExtVectorType *CanonCheck
2030        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2031      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2032      (void)CanonCheck;
2033      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2034    } else {
2035      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2036                                                      SourceLocation());
2037      New = new (*this, TypeAlignment)
2038        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2039    }
2040  }
2041
2042  Types.push_back(New);
2043  return QualType(New, 0);
2044}
2045
2046/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2047///
2048QualType
2049ASTContext::getFunctionNoProtoType(QualType ResultTy,
2050                                   const FunctionType::ExtInfo &Info) const {
2051  const CallingConv DefaultCC = Info.getCC();
2052  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2053                               CC_X86StdCall : DefaultCC;
2054  // Unique functions, to guarantee there is only one function of a particular
2055  // structure.
2056  llvm::FoldingSetNodeID ID;
2057  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2058
2059  void *InsertPos = 0;
2060  if (FunctionNoProtoType *FT =
2061        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2062    return QualType(FT, 0);
2063
2064  QualType Canonical;
2065  if (!ResultTy.isCanonical() ||
2066      getCanonicalCallConv(CallConv) != CallConv) {
2067    Canonical =
2068      getFunctionNoProtoType(getCanonicalType(ResultTy),
2069                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2070
2071    // Get the new insert position for the node we care about.
2072    FunctionNoProtoType *NewIP =
2073      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2074    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2075  }
2076
2077  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2078  FunctionNoProtoType *New = new (*this, TypeAlignment)
2079    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2080  Types.push_back(New);
2081  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2082  return QualType(New, 0);
2083}
2084
2085/// getFunctionType - Return a normal function type with a typed argument
2086/// list.  isVariadic indicates whether the argument list includes '...'.
2087QualType
2088ASTContext::getFunctionType(QualType ResultTy,
2089                            const QualType *ArgArray, unsigned NumArgs,
2090                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2091  // Unique functions, to guarantee there is only one function of a particular
2092  // structure.
2093  llvm::FoldingSetNodeID ID;
2094  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2095
2096  void *InsertPos = 0;
2097  if (FunctionProtoType *FTP =
2098        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2099    return QualType(FTP, 0);
2100
2101  // Determine whether the type being created is already canonical or not.
2102  bool isCanonical= EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical();
2103  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2104    if (!ArgArray[i].isCanonicalAsParam())
2105      isCanonical = false;
2106
2107  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2108  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2109                               CC_X86StdCall : DefaultCC;
2110
2111  // If this type isn't canonical, get the canonical version of it.
2112  // The exception spec is not part of the canonical type.
2113  QualType Canonical;
2114  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2115    SmallVector<QualType, 16> CanonicalArgs;
2116    CanonicalArgs.reserve(NumArgs);
2117    for (unsigned i = 0; i != NumArgs; ++i)
2118      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2119
2120    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2121    CanonicalEPI.ExceptionSpecType = EST_None;
2122    CanonicalEPI.NumExceptions = 0;
2123    CanonicalEPI.ExtInfo
2124      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2125
2126    Canonical = getFunctionType(getCanonicalType(ResultTy),
2127                                CanonicalArgs.data(), NumArgs,
2128                                CanonicalEPI);
2129
2130    // Get the new insert position for the node we care about.
2131    FunctionProtoType *NewIP =
2132      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2133    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2134  }
2135
2136  // FunctionProtoType objects are allocated with extra bytes after
2137  // them for three variable size arrays at the end:
2138  //  - parameter types
2139  //  - exception types
2140  //  - consumed-arguments flags
2141  // Instead of the exception types, there could be a noexcept
2142  // expression.
2143  size_t Size = sizeof(FunctionProtoType) +
2144                NumArgs * sizeof(QualType);
2145  if (EPI.ExceptionSpecType == EST_Dynamic)
2146    Size += EPI.NumExceptions * sizeof(QualType);
2147  else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2148    Size += sizeof(Expr*);
2149  }
2150  if (EPI.ConsumedArguments)
2151    Size += NumArgs * sizeof(bool);
2152
2153  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2154  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2155  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2156  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2157  Types.push_back(FTP);
2158  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2159  return QualType(FTP, 0);
2160}
2161
2162#ifndef NDEBUG
2163static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2164  if (!isa<CXXRecordDecl>(D)) return false;
2165  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2166  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2167    return true;
2168  if (RD->getDescribedClassTemplate() &&
2169      !isa<ClassTemplateSpecializationDecl>(RD))
2170    return true;
2171  return false;
2172}
2173#endif
2174
2175/// getInjectedClassNameType - Return the unique reference to the
2176/// injected class name type for the specified templated declaration.
2177QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2178                                              QualType TST) const {
2179  assert(NeedsInjectedClassNameType(Decl));
2180  if (Decl->TypeForDecl) {
2181    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2182  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDeclaration()) {
2183    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2184    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2185    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2186  } else {
2187    Type *newType =
2188      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2189    Decl->TypeForDecl = newType;
2190    Types.push_back(newType);
2191  }
2192  return QualType(Decl->TypeForDecl, 0);
2193}
2194
2195/// getTypeDeclType - Return the unique reference to the type for the
2196/// specified type declaration.
2197QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2198  assert(Decl && "Passed null for Decl param");
2199  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2200
2201  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2202    return getTypedefType(Typedef);
2203
2204  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2205         "Template type parameter types are always available.");
2206
2207  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2208    assert(!Record->getPreviousDeclaration() &&
2209           "struct/union has previous declaration");
2210    assert(!NeedsInjectedClassNameType(Record));
2211    return getRecordType(Record);
2212  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2213    assert(!Enum->getPreviousDeclaration() &&
2214           "enum has previous declaration");
2215    return getEnumType(Enum);
2216  } else if (const UnresolvedUsingTypenameDecl *Using =
2217               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2218    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2219    Decl->TypeForDecl = newType;
2220    Types.push_back(newType);
2221  } else
2222    llvm_unreachable("TypeDecl without a type?");
2223
2224  return QualType(Decl->TypeForDecl, 0);
2225}
2226
2227/// getTypedefType - Return the unique reference to the type for the
2228/// specified typedef name decl.
2229QualType
2230ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2231                           QualType Canonical) const {
2232  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2233
2234  if (Canonical.isNull())
2235    Canonical = getCanonicalType(Decl->getUnderlyingType());
2236  TypedefType *newType = new(*this, TypeAlignment)
2237    TypedefType(Type::Typedef, Decl, Canonical);
2238  Decl->TypeForDecl = newType;
2239  Types.push_back(newType);
2240  return QualType(newType, 0);
2241}
2242
2243QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2244  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2245
2246  if (const RecordDecl *PrevDecl = Decl->getPreviousDeclaration())
2247    if (PrevDecl->TypeForDecl)
2248      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2249
2250  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2251  Decl->TypeForDecl = newType;
2252  Types.push_back(newType);
2253  return QualType(newType, 0);
2254}
2255
2256QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2257  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2258
2259  if (const EnumDecl *PrevDecl = Decl->getPreviousDeclaration())
2260    if (PrevDecl->TypeForDecl)
2261      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2262
2263  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2264  Decl->TypeForDecl = newType;
2265  Types.push_back(newType);
2266  return QualType(newType, 0);
2267}
2268
2269QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2270                                       QualType modifiedType,
2271                                       QualType equivalentType) {
2272  llvm::FoldingSetNodeID id;
2273  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2274
2275  void *insertPos = 0;
2276  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2277  if (type) return QualType(type, 0);
2278
2279  QualType canon = getCanonicalType(equivalentType);
2280  type = new (*this, TypeAlignment)
2281           AttributedType(canon, attrKind, modifiedType, equivalentType);
2282
2283  Types.push_back(type);
2284  AttributedTypes.InsertNode(type, insertPos);
2285
2286  return QualType(type, 0);
2287}
2288
2289
2290/// \brief Retrieve a substitution-result type.
2291QualType
2292ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2293                                         QualType Replacement) const {
2294  assert(Replacement.isCanonical()
2295         && "replacement types must always be canonical");
2296
2297  llvm::FoldingSetNodeID ID;
2298  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2299  void *InsertPos = 0;
2300  SubstTemplateTypeParmType *SubstParm
2301    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2302
2303  if (!SubstParm) {
2304    SubstParm = new (*this, TypeAlignment)
2305      SubstTemplateTypeParmType(Parm, Replacement);
2306    Types.push_back(SubstParm);
2307    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2308  }
2309
2310  return QualType(SubstParm, 0);
2311}
2312
2313/// \brief Retrieve a
2314QualType ASTContext::getSubstTemplateTypeParmPackType(
2315                                          const TemplateTypeParmType *Parm,
2316                                              const TemplateArgument &ArgPack) {
2317#ifndef NDEBUG
2318  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2319                                    PEnd = ArgPack.pack_end();
2320       P != PEnd; ++P) {
2321    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2322    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2323  }
2324#endif
2325
2326  llvm::FoldingSetNodeID ID;
2327  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2328  void *InsertPos = 0;
2329  if (SubstTemplateTypeParmPackType *SubstParm
2330        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2331    return QualType(SubstParm, 0);
2332
2333  QualType Canon;
2334  if (!Parm->isCanonicalUnqualified()) {
2335    Canon = getCanonicalType(QualType(Parm, 0));
2336    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2337                                             ArgPack);
2338    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2339  }
2340
2341  SubstTemplateTypeParmPackType *SubstParm
2342    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2343                                                               ArgPack);
2344  Types.push_back(SubstParm);
2345  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2346  return QualType(SubstParm, 0);
2347}
2348
2349/// \brief Retrieve the template type parameter type for a template
2350/// parameter or parameter pack with the given depth, index, and (optionally)
2351/// name.
2352QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2353                                             bool ParameterPack,
2354                                             TemplateTypeParmDecl *TTPDecl) const {
2355  llvm::FoldingSetNodeID ID;
2356  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2357  void *InsertPos = 0;
2358  TemplateTypeParmType *TypeParm
2359    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2360
2361  if (TypeParm)
2362    return QualType(TypeParm, 0);
2363
2364  if (TTPDecl) {
2365    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2366    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2367
2368    TemplateTypeParmType *TypeCheck
2369      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2370    assert(!TypeCheck && "Template type parameter canonical type broken");
2371    (void)TypeCheck;
2372  } else
2373    TypeParm = new (*this, TypeAlignment)
2374      TemplateTypeParmType(Depth, Index, ParameterPack);
2375
2376  Types.push_back(TypeParm);
2377  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2378
2379  return QualType(TypeParm, 0);
2380}
2381
2382TypeSourceInfo *
2383ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2384                                              SourceLocation NameLoc,
2385                                        const TemplateArgumentListInfo &Args,
2386                                              QualType Underlying) const {
2387  assert(!Name.getAsDependentTemplateName() &&
2388         "No dependent template names here!");
2389  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2390
2391  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2392  TemplateSpecializationTypeLoc TL
2393    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2394  TL.setTemplateNameLoc(NameLoc);
2395  TL.setLAngleLoc(Args.getLAngleLoc());
2396  TL.setRAngleLoc(Args.getRAngleLoc());
2397  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2398    TL.setArgLocInfo(i, Args[i].getLocInfo());
2399  return DI;
2400}
2401
2402QualType
2403ASTContext::getTemplateSpecializationType(TemplateName Template,
2404                                          const TemplateArgumentListInfo &Args,
2405                                          QualType Underlying) const {
2406  assert(!Template.getAsDependentTemplateName() &&
2407         "No dependent template names here!");
2408
2409  unsigned NumArgs = Args.size();
2410
2411  SmallVector<TemplateArgument, 4> ArgVec;
2412  ArgVec.reserve(NumArgs);
2413  for (unsigned i = 0; i != NumArgs; ++i)
2414    ArgVec.push_back(Args[i].getArgument());
2415
2416  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2417                                       Underlying);
2418}
2419
2420QualType
2421ASTContext::getTemplateSpecializationType(TemplateName Template,
2422                                          const TemplateArgument *Args,
2423                                          unsigned NumArgs,
2424                                          QualType Underlying) const {
2425  assert(!Template.getAsDependentTemplateName() &&
2426         "No dependent template names here!");
2427  // Look through qualified template names.
2428  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2429    Template = TemplateName(QTN->getTemplateDecl());
2430
2431  bool isTypeAlias =
2432    Template.getAsTemplateDecl() &&
2433    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2434
2435  QualType CanonType;
2436  if (!Underlying.isNull())
2437    CanonType = getCanonicalType(Underlying);
2438  else {
2439    assert(!isTypeAlias &&
2440           "Underlying type for template alias must be computed by caller");
2441    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2442                                                       NumArgs);
2443  }
2444
2445  // Allocate the (non-canonical) template specialization type, but don't
2446  // try to unique it: these types typically have location information that
2447  // we don't unique and don't want to lose.
2448  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2449                       sizeof(TemplateArgument) * NumArgs +
2450                       (isTypeAlias ? sizeof(QualType) : 0),
2451                       TypeAlignment);
2452  TemplateSpecializationType *Spec
2453    = new (Mem) TemplateSpecializationType(Template,
2454                                           Args, NumArgs,
2455                                           CanonType,
2456                                         isTypeAlias ? Underlying : QualType());
2457
2458  Types.push_back(Spec);
2459  return QualType(Spec, 0);
2460}
2461
2462QualType
2463ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2464                                                   const TemplateArgument *Args,
2465                                                   unsigned NumArgs) const {
2466  assert(!Template.getAsDependentTemplateName() &&
2467         "No dependent template names here!");
2468  assert((!Template.getAsTemplateDecl() ||
2469          !isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) &&
2470         "Underlying type for template alias must be computed by caller");
2471
2472  // Look through qualified template names.
2473  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2474    Template = TemplateName(QTN->getTemplateDecl());
2475
2476  // Build the canonical template specialization type.
2477  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2478  SmallVector<TemplateArgument, 4> CanonArgs;
2479  CanonArgs.reserve(NumArgs);
2480  for (unsigned I = 0; I != NumArgs; ++I)
2481    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2482
2483  // Determine whether this canonical template specialization type already
2484  // exists.
2485  llvm::FoldingSetNodeID ID;
2486  TemplateSpecializationType::Profile(ID, CanonTemplate,
2487                                      CanonArgs.data(), NumArgs, *this);
2488
2489  void *InsertPos = 0;
2490  TemplateSpecializationType *Spec
2491    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2492
2493  if (!Spec) {
2494    // Allocate a new canonical template specialization type.
2495    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2496                          sizeof(TemplateArgument) * NumArgs),
2497                         TypeAlignment);
2498    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2499                                                CanonArgs.data(), NumArgs,
2500                                                QualType(), QualType());
2501    Types.push_back(Spec);
2502    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2503  }
2504
2505  assert(Spec->isDependentType() &&
2506         "Non-dependent template-id type must have a canonical type");
2507  return QualType(Spec, 0);
2508}
2509
2510QualType
2511ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2512                              NestedNameSpecifier *NNS,
2513                              QualType NamedType) const {
2514  llvm::FoldingSetNodeID ID;
2515  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2516
2517  void *InsertPos = 0;
2518  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2519  if (T)
2520    return QualType(T, 0);
2521
2522  QualType Canon = NamedType;
2523  if (!Canon.isCanonical()) {
2524    Canon = getCanonicalType(NamedType);
2525    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2526    assert(!CheckT && "Elaborated canonical type broken");
2527    (void)CheckT;
2528  }
2529
2530  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2531  Types.push_back(T);
2532  ElaboratedTypes.InsertNode(T, InsertPos);
2533  return QualType(T, 0);
2534}
2535
2536QualType
2537ASTContext::getParenType(QualType InnerType) const {
2538  llvm::FoldingSetNodeID ID;
2539  ParenType::Profile(ID, InnerType);
2540
2541  void *InsertPos = 0;
2542  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2543  if (T)
2544    return QualType(T, 0);
2545
2546  QualType Canon = InnerType;
2547  if (!Canon.isCanonical()) {
2548    Canon = getCanonicalType(InnerType);
2549    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2550    assert(!CheckT && "Paren canonical type broken");
2551    (void)CheckT;
2552  }
2553
2554  T = new (*this) ParenType(InnerType, Canon);
2555  Types.push_back(T);
2556  ParenTypes.InsertNode(T, InsertPos);
2557  return QualType(T, 0);
2558}
2559
2560QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2561                                          NestedNameSpecifier *NNS,
2562                                          const IdentifierInfo *Name,
2563                                          QualType Canon) const {
2564  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2565
2566  if (Canon.isNull()) {
2567    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2568    ElaboratedTypeKeyword CanonKeyword = Keyword;
2569    if (Keyword == ETK_None)
2570      CanonKeyword = ETK_Typename;
2571
2572    if (CanonNNS != NNS || CanonKeyword != Keyword)
2573      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2574  }
2575
2576  llvm::FoldingSetNodeID ID;
2577  DependentNameType::Profile(ID, Keyword, NNS, Name);
2578
2579  void *InsertPos = 0;
2580  DependentNameType *T
2581    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
2582  if (T)
2583    return QualType(T, 0);
2584
2585  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
2586  Types.push_back(T);
2587  DependentNameTypes.InsertNode(T, InsertPos);
2588  return QualType(T, 0);
2589}
2590
2591QualType
2592ASTContext::getDependentTemplateSpecializationType(
2593                                 ElaboratedTypeKeyword Keyword,
2594                                 NestedNameSpecifier *NNS,
2595                                 const IdentifierInfo *Name,
2596                                 const TemplateArgumentListInfo &Args) const {
2597  // TODO: avoid this copy
2598  SmallVector<TemplateArgument, 16> ArgCopy;
2599  for (unsigned I = 0, E = Args.size(); I != E; ++I)
2600    ArgCopy.push_back(Args[I].getArgument());
2601  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
2602                                                ArgCopy.size(),
2603                                                ArgCopy.data());
2604}
2605
2606QualType
2607ASTContext::getDependentTemplateSpecializationType(
2608                                 ElaboratedTypeKeyword Keyword,
2609                                 NestedNameSpecifier *NNS,
2610                                 const IdentifierInfo *Name,
2611                                 unsigned NumArgs,
2612                                 const TemplateArgument *Args) const {
2613  assert((!NNS || NNS->isDependent()) &&
2614         "nested-name-specifier must be dependent");
2615
2616  llvm::FoldingSetNodeID ID;
2617  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
2618                                               Name, NumArgs, Args);
2619
2620  void *InsertPos = 0;
2621  DependentTemplateSpecializationType *T
2622    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2623  if (T)
2624    return QualType(T, 0);
2625
2626  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2627
2628  ElaboratedTypeKeyword CanonKeyword = Keyword;
2629  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
2630
2631  bool AnyNonCanonArgs = false;
2632  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
2633  for (unsigned I = 0; I != NumArgs; ++I) {
2634    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
2635    if (!CanonArgs[I].structurallyEquals(Args[I]))
2636      AnyNonCanonArgs = true;
2637  }
2638
2639  QualType Canon;
2640  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
2641    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
2642                                                   Name, NumArgs,
2643                                                   CanonArgs.data());
2644
2645    // Find the insert position again.
2646    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2647  }
2648
2649  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
2650                        sizeof(TemplateArgument) * NumArgs),
2651                       TypeAlignment);
2652  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
2653                                                    Name, NumArgs, Args, Canon);
2654  Types.push_back(T);
2655  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
2656  return QualType(T, 0);
2657}
2658
2659QualType ASTContext::getPackExpansionType(QualType Pattern,
2660                                      llvm::Optional<unsigned> NumExpansions) {
2661  llvm::FoldingSetNodeID ID;
2662  PackExpansionType::Profile(ID, Pattern, NumExpansions);
2663
2664  assert(Pattern->containsUnexpandedParameterPack() &&
2665         "Pack expansions must expand one or more parameter packs");
2666  void *InsertPos = 0;
2667  PackExpansionType *T
2668    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2669  if (T)
2670    return QualType(T, 0);
2671
2672  QualType Canon;
2673  if (!Pattern.isCanonical()) {
2674    Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
2675
2676    // Find the insert position again.
2677    PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
2678  }
2679
2680  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
2681  Types.push_back(T);
2682  PackExpansionTypes.InsertNode(T, InsertPos);
2683  return QualType(T, 0);
2684}
2685
2686/// CmpProtocolNames - Comparison predicate for sorting protocols
2687/// alphabetically.
2688static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
2689                            const ObjCProtocolDecl *RHS) {
2690  return LHS->getDeclName() < RHS->getDeclName();
2691}
2692
2693static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
2694                                unsigned NumProtocols) {
2695  if (NumProtocols == 0) return true;
2696
2697  for (unsigned i = 1; i != NumProtocols; ++i)
2698    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
2699      return false;
2700  return true;
2701}
2702
2703static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
2704                                   unsigned &NumProtocols) {
2705  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
2706
2707  // Sort protocols, keyed by name.
2708  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
2709
2710  // Remove duplicates.
2711  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
2712  NumProtocols = ProtocolsEnd-Protocols;
2713}
2714
2715QualType ASTContext::getObjCObjectType(QualType BaseType,
2716                                       ObjCProtocolDecl * const *Protocols,
2717                                       unsigned NumProtocols) const {
2718  // If the base type is an interface and there aren't any protocols
2719  // to add, then the interface type will do just fine.
2720  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
2721    return BaseType;
2722
2723  // Look in the folding set for an existing type.
2724  llvm::FoldingSetNodeID ID;
2725  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
2726  void *InsertPos = 0;
2727  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
2728    return QualType(QT, 0);
2729
2730  // Build the canonical type, which has the canonical base type and
2731  // a sorted-and-uniqued list of protocols.
2732  QualType Canonical;
2733  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
2734  if (!ProtocolsSorted || !BaseType.isCanonical()) {
2735    if (!ProtocolsSorted) {
2736      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
2737                                                     Protocols + NumProtocols);
2738      unsigned UniqueCount = NumProtocols;
2739
2740      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
2741      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2742                                    &Sorted[0], UniqueCount);
2743    } else {
2744      Canonical = getObjCObjectType(getCanonicalType(BaseType),
2745                                    Protocols, NumProtocols);
2746    }
2747
2748    // Regenerate InsertPos.
2749    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
2750  }
2751
2752  unsigned Size = sizeof(ObjCObjectTypeImpl);
2753  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
2754  void *Mem = Allocate(Size, TypeAlignment);
2755  ObjCObjectTypeImpl *T =
2756    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
2757
2758  Types.push_back(T);
2759  ObjCObjectTypes.InsertNode(T, InsertPos);
2760  return QualType(T, 0);
2761}
2762
2763/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
2764/// the given object type.
2765QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
2766  llvm::FoldingSetNodeID ID;
2767  ObjCObjectPointerType::Profile(ID, ObjectT);
2768
2769  void *InsertPos = 0;
2770  if (ObjCObjectPointerType *QT =
2771              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2772    return QualType(QT, 0);
2773
2774  // Find the canonical object type.
2775  QualType Canonical;
2776  if (!ObjectT.isCanonical()) {
2777    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
2778
2779    // Regenerate InsertPos.
2780    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2781  }
2782
2783  // No match.
2784  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
2785  ObjCObjectPointerType *QType =
2786    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
2787
2788  Types.push_back(QType);
2789  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
2790  return QualType(QType, 0);
2791}
2792
2793/// getObjCInterfaceType - Return the unique reference to the type for the
2794/// specified ObjC interface decl. The list of protocols is optional.
2795QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const {
2796  if (Decl->TypeForDecl)
2797    return QualType(Decl->TypeForDecl, 0);
2798
2799  // FIXME: redeclarations?
2800  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
2801  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
2802  Decl->TypeForDecl = T;
2803  Types.push_back(T);
2804  return QualType(T, 0);
2805}
2806
2807/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2808/// TypeOfExprType AST's (since expression's are never shared). For example,
2809/// multiple declarations that refer to "typeof(x)" all contain different
2810/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2811/// on canonical type's (which are always unique).
2812QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
2813  TypeOfExprType *toe;
2814  if (tofExpr->isTypeDependent()) {
2815    llvm::FoldingSetNodeID ID;
2816    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2817
2818    void *InsertPos = 0;
2819    DependentTypeOfExprType *Canon
2820      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2821    if (Canon) {
2822      // We already have a "canonical" version of an identical, dependent
2823      // typeof(expr) type. Use that as our canonical type.
2824      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2825                                          QualType((TypeOfExprType*)Canon, 0));
2826    } else {
2827      // Build a new, canonical typeof(expr) type.
2828      Canon
2829        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2830      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2831      toe = Canon;
2832    }
2833  } else {
2834    QualType Canonical = getCanonicalType(tofExpr->getType());
2835    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2836  }
2837  Types.push_back(toe);
2838  return QualType(toe, 0);
2839}
2840
2841/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2842/// TypeOfType AST's. The only motivation to unique these nodes would be
2843/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2844/// an issue. This doesn't effect the type checker, since it operates
2845/// on canonical type's (which are always unique).
2846QualType ASTContext::getTypeOfType(QualType tofType) const {
2847  QualType Canonical = getCanonicalType(tofType);
2848  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2849  Types.push_back(tot);
2850  return QualType(tot, 0);
2851}
2852
2853/// getDecltypeForExpr - Given an expr, will return the decltype for that
2854/// expression, according to the rules in C++0x [dcl.type.simple]p4
2855static QualType getDecltypeForExpr(const Expr *e, const ASTContext &Context) {
2856  if (e->isTypeDependent())
2857    return Context.DependentTy;
2858
2859  // If e is an id expression or a class member access, decltype(e) is defined
2860  // as the type of the entity named by e.
2861  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2862    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2863      return VD->getType();
2864  }
2865  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2866    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2867      return FD->getType();
2868  }
2869  // If e is a function call or an invocation of an overloaded operator,
2870  // (parentheses around e are ignored), decltype(e) is defined as the
2871  // return type of that function.
2872  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2873    return CE->getCallReturnType();
2874
2875  QualType T = e->getType();
2876
2877  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2878  // defined as T&, otherwise decltype(e) is defined as T.
2879  if (e->isLValue())
2880    T = Context.getLValueReferenceType(T);
2881
2882  return T;
2883}
2884
2885/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2886/// DecltypeType AST's. The only motivation to unique these nodes would be
2887/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2888/// an issue. This doesn't effect the type checker, since it operates
2889/// on canonical types (which are always unique).
2890QualType ASTContext::getDecltypeType(Expr *e) const {
2891  DecltypeType *dt;
2892
2893  // C++0x [temp.type]p2:
2894  //   If an expression e involves a template parameter, decltype(e) denotes a
2895  //   unique dependent type. Two such decltype-specifiers refer to the same
2896  //   type only if their expressions are equivalent (14.5.6.1).
2897  if (e->isInstantiationDependent()) {
2898    llvm::FoldingSetNodeID ID;
2899    DependentDecltypeType::Profile(ID, *this, e);
2900
2901    void *InsertPos = 0;
2902    DependentDecltypeType *Canon
2903      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2904    if (Canon) {
2905      // We already have a "canonical" version of an equivalent, dependent
2906      // decltype type. Use that as our canonical type.
2907      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2908                                       QualType((DecltypeType*)Canon, 0));
2909    } else {
2910      // Build a new, canonical typeof(expr) type.
2911      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2912      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2913      dt = Canon;
2914    }
2915  } else {
2916    QualType T = getDecltypeForExpr(e, *this);
2917    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2918  }
2919  Types.push_back(dt);
2920  return QualType(dt, 0);
2921}
2922
2923/// getUnaryTransformationType - We don't unique these, since the memory
2924/// savings are minimal and these are rare.
2925QualType ASTContext::getUnaryTransformType(QualType BaseType,
2926                                           QualType UnderlyingType,
2927                                           UnaryTransformType::UTTKind Kind)
2928    const {
2929  UnaryTransformType *Ty =
2930    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
2931                                                   Kind,
2932                                 UnderlyingType->isDependentType() ?
2933                                    QualType() : UnderlyingType);
2934  Types.push_back(Ty);
2935  return QualType(Ty, 0);
2936}
2937
2938/// getAutoType - We only unique auto types after they've been deduced.
2939QualType ASTContext::getAutoType(QualType DeducedType) const {
2940  void *InsertPos = 0;
2941  if (!DeducedType.isNull()) {
2942    // Look in the folding set for an existing type.
2943    llvm::FoldingSetNodeID ID;
2944    AutoType::Profile(ID, DeducedType);
2945    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
2946      return QualType(AT, 0);
2947  }
2948
2949  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
2950  Types.push_back(AT);
2951  if (InsertPos)
2952    AutoTypes.InsertNode(AT, InsertPos);
2953  return QualType(AT, 0);
2954}
2955
2956/// getAtomicType - Return the uniqued reference to the atomic type for
2957/// the given value type.
2958QualType ASTContext::getAtomicType(QualType T) const {
2959  // Unique pointers, to guarantee there is only one pointer of a particular
2960  // structure.
2961  llvm::FoldingSetNodeID ID;
2962  AtomicType::Profile(ID, T);
2963
2964  void *InsertPos = 0;
2965  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
2966    return QualType(AT, 0);
2967
2968  // If the atomic value type isn't canonical, this won't be a canonical type
2969  // either, so fill in the canonical type field.
2970  QualType Canonical;
2971  if (!T.isCanonical()) {
2972    Canonical = getAtomicType(getCanonicalType(T));
2973
2974    // Get the new insert position for the node we care about.
2975    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
2976    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2977  }
2978  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
2979  Types.push_back(New);
2980  AtomicTypes.InsertNode(New, InsertPos);
2981  return QualType(New, 0);
2982}
2983
2984/// getAutoDeductType - Get type pattern for deducing against 'auto'.
2985QualType ASTContext::getAutoDeductType() const {
2986  if (AutoDeductTy.isNull())
2987    AutoDeductTy = getAutoType(QualType());
2988  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
2989  return AutoDeductTy;
2990}
2991
2992/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
2993QualType ASTContext::getAutoRRefDeductType() const {
2994  if (AutoRRefDeductTy.isNull())
2995    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
2996  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
2997  return AutoRRefDeductTy;
2998}
2999
3000/// getTagDeclType - Return the unique reference to the type for the
3001/// specified TagDecl (struct/union/class/enum) decl.
3002QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3003  assert (Decl);
3004  // FIXME: What is the design on getTagDeclType when it requires casting
3005  // away const?  mutable?
3006  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3007}
3008
3009/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3010/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3011/// needs to agree with the definition in <stddef.h>.
3012CanQualType ASTContext::getSizeType() const {
3013  return getFromTargetType(Target->getSizeType());
3014}
3015
3016/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3017CanQualType ASTContext::getIntMaxType() const {
3018  return getFromTargetType(Target->getIntMaxType());
3019}
3020
3021/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3022CanQualType ASTContext::getUIntMaxType() const {
3023  return getFromTargetType(Target->getUIntMaxType());
3024}
3025
3026/// getSignedWCharType - Return the type of "signed wchar_t".
3027/// Used when in C++, as a GCC extension.
3028QualType ASTContext::getSignedWCharType() const {
3029  // FIXME: derive from "Target" ?
3030  return WCharTy;
3031}
3032
3033/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3034/// Used when in C++, as a GCC extension.
3035QualType ASTContext::getUnsignedWCharType() const {
3036  // FIXME: derive from "Target" ?
3037  return UnsignedIntTy;
3038}
3039
3040/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3041/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3042QualType ASTContext::getPointerDiffType() const {
3043  return getFromTargetType(Target->getPtrDiffType(0));
3044}
3045
3046//===----------------------------------------------------------------------===//
3047//                              Type Operators
3048//===----------------------------------------------------------------------===//
3049
3050CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3051  // Push qualifiers into arrays, and then discard any remaining
3052  // qualifiers.
3053  T = getCanonicalType(T);
3054  T = getVariableArrayDecayedType(T);
3055  const Type *Ty = T.getTypePtr();
3056  QualType Result;
3057  if (isa<ArrayType>(Ty)) {
3058    Result = getArrayDecayedType(QualType(Ty,0));
3059  } else if (isa<FunctionType>(Ty)) {
3060    Result = getPointerType(QualType(Ty, 0));
3061  } else {
3062    Result = QualType(Ty, 0);
3063  }
3064
3065  return CanQualType::CreateUnsafe(Result);
3066}
3067
3068QualType ASTContext::getUnqualifiedArrayType(QualType type,
3069                                             Qualifiers &quals) {
3070  SplitQualType splitType = type.getSplitUnqualifiedType();
3071
3072  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3073  // the unqualified desugared type and then drops it on the floor.
3074  // We then have to strip that sugar back off with
3075  // getUnqualifiedDesugaredType(), which is silly.
3076  const ArrayType *AT =
3077    dyn_cast<ArrayType>(splitType.first->getUnqualifiedDesugaredType());
3078
3079  // If we don't have an array, just use the results in splitType.
3080  if (!AT) {
3081    quals = splitType.second;
3082    return QualType(splitType.first, 0);
3083  }
3084
3085  // Otherwise, recurse on the array's element type.
3086  QualType elementType = AT->getElementType();
3087  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3088
3089  // If that didn't change the element type, AT has no qualifiers, so we
3090  // can just use the results in splitType.
3091  if (elementType == unqualElementType) {
3092    assert(quals.empty()); // from the recursive call
3093    quals = splitType.second;
3094    return QualType(splitType.first, 0);
3095  }
3096
3097  // Otherwise, add in the qualifiers from the outermost type, then
3098  // build the type back up.
3099  quals.addConsistentQualifiers(splitType.second);
3100
3101  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3102    return getConstantArrayType(unqualElementType, CAT->getSize(),
3103                                CAT->getSizeModifier(), 0);
3104  }
3105
3106  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3107    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3108  }
3109
3110  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3111    return getVariableArrayType(unqualElementType,
3112                                VAT->getSizeExpr(),
3113                                VAT->getSizeModifier(),
3114                                VAT->getIndexTypeCVRQualifiers(),
3115                                VAT->getBracketsRange());
3116  }
3117
3118  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3119  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3120                                    DSAT->getSizeModifier(), 0,
3121                                    SourceRange());
3122}
3123
3124/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3125/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3126/// they point to and return true. If T1 and T2 aren't pointer types
3127/// or pointer-to-member types, or if they are not similar at this
3128/// level, returns false and leaves T1 and T2 unchanged. Top-level
3129/// qualifiers on T1 and T2 are ignored. This function will typically
3130/// be called in a loop that successively "unwraps" pointer and
3131/// pointer-to-member types to compare them at each level.
3132bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3133  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3134                    *T2PtrType = T2->getAs<PointerType>();
3135  if (T1PtrType && T2PtrType) {
3136    T1 = T1PtrType->getPointeeType();
3137    T2 = T2PtrType->getPointeeType();
3138    return true;
3139  }
3140
3141  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3142                          *T2MPType = T2->getAs<MemberPointerType>();
3143  if (T1MPType && T2MPType &&
3144      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3145                             QualType(T2MPType->getClass(), 0))) {
3146    T1 = T1MPType->getPointeeType();
3147    T2 = T2MPType->getPointeeType();
3148    return true;
3149  }
3150
3151  if (getLangOptions().ObjC1) {
3152    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3153                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3154    if (T1OPType && T2OPType) {
3155      T1 = T1OPType->getPointeeType();
3156      T2 = T2OPType->getPointeeType();
3157      return true;
3158    }
3159  }
3160
3161  // FIXME: Block pointers, too?
3162
3163  return false;
3164}
3165
3166DeclarationNameInfo
3167ASTContext::getNameForTemplate(TemplateName Name,
3168                               SourceLocation NameLoc) const {
3169  switch (Name.getKind()) {
3170  case TemplateName::QualifiedTemplate:
3171  case TemplateName::Template:
3172    // DNInfo work in progress: CHECKME: what about DNLoc?
3173    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3174                               NameLoc);
3175
3176  case TemplateName::OverloadedTemplate: {
3177    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3178    // DNInfo work in progress: CHECKME: what about DNLoc?
3179    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3180  }
3181
3182  case TemplateName::DependentTemplate: {
3183    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3184    DeclarationName DName;
3185    if (DTN->isIdentifier()) {
3186      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3187      return DeclarationNameInfo(DName, NameLoc);
3188    } else {
3189      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3190      // DNInfo work in progress: FIXME: source locations?
3191      DeclarationNameLoc DNLoc;
3192      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3193      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3194      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3195    }
3196  }
3197
3198  case TemplateName::SubstTemplateTemplateParm: {
3199    SubstTemplateTemplateParmStorage *subst
3200      = Name.getAsSubstTemplateTemplateParm();
3201    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3202                               NameLoc);
3203  }
3204
3205  case TemplateName::SubstTemplateTemplateParmPack: {
3206    SubstTemplateTemplateParmPackStorage *subst
3207      = Name.getAsSubstTemplateTemplateParmPack();
3208    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3209                               NameLoc);
3210  }
3211  }
3212
3213  llvm_unreachable("bad template name kind!");
3214}
3215
3216TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3217  switch (Name.getKind()) {
3218  case TemplateName::QualifiedTemplate:
3219  case TemplateName::Template: {
3220    TemplateDecl *Template = Name.getAsTemplateDecl();
3221    if (TemplateTemplateParmDecl *TTP
3222          = dyn_cast<TemplateTemplateParmDecl>(Template))
3223      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3224
3225    // The canonical template name is the canonical template declaration.
3226    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3227  }
3228
3229  case TemplateName::OverloadedTemplate:
3230    llvm_unreachable("cannot canonicalize overloaded template");
3231
3232  case TemplateName::DependentTemplate: {
3233    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3234    assert(DTN && "Non-dependent template names must refer to template decls.");
3235    return DTN->CanonicalTemplateName;
3236  }
3237
3238  case TemplateName::SubstTemplateTemplateParm: {
3239    SubstTemplateTemplateParmStorage *subst
3240      = Name.getAsSubstTemplateTemplateParm();
3241    return getCanonicalTemplateName(subst->getReplacement());
3242  }
3243
3244  case TemplateName::SubstTemplateTemplateParmPack: {
3245    SubstTemplateTemplateParmPackStorage *subst
3246                                  = Name.getAsSubstTemplateTemplateParmPack();
3247    TemplateTemplateParmDecl *canonParameter
3248      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3249    TemplateArgument canonArgPack
3250      = getCanonicalTemplateArgument(subst->getArgumentPack());
3251    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3252  }
3253  }
3254
3255  llvm_unreachable("bad template name!");
3256}
3257
3258bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3259  X = getCanonicalTemplateName(X);
3260  Y = getCanonicalTemplateName(Y);
3261  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3262}
3263
3264TemplateArgument
3265ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3266  switch (Arg.getKind()) {
3267    case TemplateArgument::Null:
3268      return Arg;
3269
3270    case TemplateArgument::Expression:
3271      return Arg;
3272
3273    case TemplateArgument::Declaration:
3274      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
3275
3276    case TemplateArgument::Template:
3277      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3278
3279    case TemplateArgument::TemplateExpansion:
3280      return TemplateArgument(getCanonicalTemplateName(
3281                                         Arg.getAsTemplateOrTemplatePattern()),
3282                              Arg.getNumTemplateExpansions());
3283
3284    case TemplateArgument::Integral:
3285      return TemplateArgument(*Arg.getAsIntegral(),
3286                              getCanonicalType(Arg.getIntegralType()));
3287
3288    case TemplateArgument::Type:
3289      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3290
3291    case TemplateArgument::Pack: {
3292      if (Arg.pack_size() == 0)
3293        return Arg;
3294
3295      TemplateArgument *CanonArgs
3296        = new (*this) TemplateArgument[Arg.pack_size()];
3297      unsigned Idx = 0;
3298      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3299                                        AEnd = Arg.pack_end();
3300           A != AEnd; (void)++A, ++Idx)
3301        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3302
3303      return TemplateArgument(CanonArgs, Arg.pack_size());
3304    }
3305  }
3306
3307  // Silence GCC warning
3308  llvm_unreachable("Unhandled template argument kind");
3309}
3310
3311NestedNameSpecifier *
3312ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3313  if (!NNS)
3314    return 0;
3315
3316  switch (NNS->getKind()) {
3317  case NestedNameSpecifier::Identifier:
3318    // Canonicalize the prefix but keep the identifier the same.
3319    return NestedNameSpecifier::Create(*this,
3320                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3321                                       NNS->getAsIdentifier());
3322
3323  case NestedNameSpecifier::Namespace:
3324    // A namespace is canonical; build a nested-name-specifier with
3325    // this namespace and no prefix.
3326    return NestedNameSpecifier::Create(*this, 0,
3327                                 NNS->getAsNamespace()->getOriginalNamespace());
3328
3329  case NestedNameSpecifier::NamespaceAlias:
3330    // A namespace is canonical; build a nested-name-specifier with
3331    // this namespace and no prefix.
3332    return NestedNameSpecifier::Create(*this, 0,
3333                                    NNS->getAsNamespaceAlias()->getNamespace()
3334                                                      ->getOriginalNamespace());
3335
3336  case NestedNameSpecifier::TypeSpec:
3337  case NestedNameSpecifier::TypeSpecWithTemplate: {
3338    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3339
3340    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3341    // break it apart into its prefix and identifier, then reconsititute those
3342    // as the canonical nested-name-specifier. This is required to canonicalize
3343    // a dependent nested-name-specifier involving typedefs of dependent-name
3344    // types, e.g.,
3345    //   typedef typename T::type T1;
3346    //   typedef typename T1::type T2;
3347    if (const DependentNameType *DNT = T->getAs<DependentNameType>()) {
3348      NestedNameSpecifier *Prefix
3349        = getCanonicalNestedNameSpecifier(DNT->getQualifier());
3350      return NestedNameSpecifier::Create(*this, Prefix,
3351                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3352    }
3353
3354    // Do the same thing as above, but with dependent-named specializations.
3355    if (const DependentTemplateSpecializationType *DTST
3356          = T->getAs<DependentTemplateSpecializationType>()) {
3357      NestedNameSpecifier *Prefix
3358        = getCanonicalNestedNameSpecifier(DTST->getQualifier());
3359
3360      T = getDependentTemplateSpecializationType(DTST->getKeyword(),
3361                                                 Prefix, DTST->getIdentifier(),
3362                                                 DTST->getNumArgs(),
3363                                                 DTST->getArgs());
3364      T = getCanonicalType(T);
3365    }
3366
3367    return NestedNameSpecifier::Create(*this, 0, false,
3368                                       const_cast<Type*>(T.getTypePtr()));
3369  }
3370
3371  case NestedNameSpecifier::Global:
3372    // The global specifier is canonical and unique.
3373    return NNS;
3374  }
3375
3376  // Required to silence a GCC warning
3377  return 0;
3378}
3379
3380
3381const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3382  // Handle the non-qualified case efficiently.
3383  if (!T.hasLocalQualifiers()) {
3384    // Handle the common positive case fast.
3385    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3386      return AT;
3387  }
3388
3389  // Handle the common negative case fast.
3390  if (!isa<ArrayType>(T.getCanonicalType()))
3391    return 0;
3392
3393  // Apply any qualifiers from the array type to the element type.  This
3394  // implements C99 6.7.3p8: "If the specification of an array type includes
3395  // any type qualifiers, the element type is so qualified, not the array type."
3396
3397  // If we get here, we either have type qualifiers on the type, or we have
3398  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3399  // we must propagate them down into the element type.
3400
3401  SplitQualType split = T.getSplitDesugaredType();
3402  Qualifiers qs = split.second;
3403
3404  // If we have a simple case, just return now.
3405  const ArrayType *ATy = dyn_cast<ArrayType>(split.first);
3406  if (ATy == 0 || qs.empty())
3407    return ATy;
3408
3409  // Otherwise, we have an array and we have qualifiers on it.  Push the
3410  // qualifiers into the array element type and return a new array type.
3411  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3412
3413  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3414    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3415                                                CAT->getSizeModifier(),
3416                                           CAT->getIndexTypeCVRQualifiers()));
3417  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3418    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3419                                                  IAT->getSizeModifier(),
3420                                           IAT->getIndexTypeCVRQualifiers()));
3421
3422  if (const DependentSizedArrayType *DSAT
3423        = dyn_cast<DependentSizedArrayType>(ATy))
3424    return cast<ArrayType>(
3425                     getDependentSizedArrayType(NewEltTy,
3426                                                DSAT->getSizeExpr(),
3427                                                DSAT->getSizeModifier(),
3428                                              DSAT->getIndexTypeCVRQualifiers(),
3429                                                DSAT->getBracketsRange()));
3430
3431  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3432  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3433                                              VAT->getSizeExpr(),
3434                                              VAT->getSizeModifier(),
3435                                              VAT->getIndexTypeCVRQualifiers(),
3436                                              VAT->getBracketsRange()));
3437}
3438
3439QualType ASTContext::getAdjustedParameterType(QualType T) {
3440  // C99 6.7.5.3p7:
3441  //   A declaration of a parameter as "array of type" shall be
3442  //   adjusted to "qualified pointer to type", where the type
3443  //   qualifiers (if any) are those specified within the [ and ] of
3444  //   the array type derivation.
3445  if (T->isArrayType())
3446    return getArrayDecayedType(T);
3447
3448  // C99 6.7.5.3p8:
3449  //   A declaration of a parameter as "function returning type"
3450  //   shall be adjusted to "pointer to function returning type", as
3451  //   in 6.3.2.1.
3452  if (T->isFunctionType())
3453    return getPointerType(T);
3454
3455  return T;
3456}
3457
3458QualType ASTContext::getSignatureParameterType(QualType T) {
3459  T = getVariableArrayDecayedType(T);
3460  T = getAdjustedParameterType(T);
3461  return T.getUnqualifiedType();
3462}
3463
3464/// getArrayDecayedType - Return the properly qualified result of decaying the
3465/// specified array type to a pointer.  This operation is non-trivial when
3466/// handling typedefs etc.  The canonical type of "T" must be an array type,
3467/// this returns a pointer to a properly qualified element of the array.
3468///
3469/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3470QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3471  // Get the element type with 'getAsArrayType' so that we don't lose any
3472  // typedefs in the element type of the array.  This also handles propagation
3473  // of type qualifiers from the array type into the element type if present
3474  // (C99 6.7.3p8).
3475  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3476  assert(PrettyArrayType && "Not an array type!");
3477
3478  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3479
3480  // int x[restrict 4] ->  int *restrict
3481  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3482}
3483
3484QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3485  return getBaseElementType(array->getElementType());
3486}
3487
3488QualType ASTContext::getBaseElementType(QualType type) const {
3489  Qualifiers qs;
3490  while (true) {
3491    SplitQualType split = type.getSplitDesugaredType();
3492    const ArrayType *array = split.first->getAsArrayTypeUnsafe();
3493    if (!array) break;
3494
3495    type = array->getElementType();
3496    qs.addConsistentQualifiers(split.second);
3497  }
3498
3499  return getQualifiedType(type, qs);
3500}
3501
3502/// getConstantArrayElementCount - Returns number of constant array elements.
3503uint64_t
3504ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3505  uint64_t ElementCount = 1;
3506  do {
3507    ElementCount *= CA->getSize().getZExtValue();
3508    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3509  } while (CA);
3510  return ElementCount;
3511}
3512
3513/// getFloatingRank - Return a relative rank for floating point types.
3514/// This routine will assert if passed a built-in type that isn't a float.
3515static FloatingRank getFloatingRank(QualType T) {
3516  if (const ComplexType *CT = T->getAs<ComplexType>())
3517    return getFloatingRank(CT->getElementType());
3518
3519  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3520  switch (T->getAs<BuiltinType>()->getKind()) {
3521  default: llvm_unreachable("getFloatingRank(): not a floating type");
3522  case BuiltinType::Half:       return HalfRank;
3523  case BuiltinType::Float:      return FloatRank;
3524  case BuiltinType::Double:     return DoubleRank;
3525  case BuiltinType::LongDouble: return LongDoubleRank;
3526  }
3527}
3528
3529/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3530/// point or a complex type (based on typeDomain/typeSize).
3531/// 'typeDomain' is a real floating point or complex type.
3532/// 'typeSize' is a real floating point or complex type.
3533QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3534                                                       QualType Domain) const {
3535  FloatingRank EltRank = getFloatingRank(Size);
3536  if (Domain->isComplexType()) {
3537    switch (EltRank) {
3538    default: llvm_unreachable("getFloatingRank(): illegal value for rank");
3539    case FloatRank:      return FloatComplexTy;
3540    case DoubleRank:     return DoubleComplexTy;
3541    case LongDoubleRank: return LongDoubleComplexTy;
3542    }
3543  }
3544
3545  assert(Domain->isRealFloatingType() && "Unknown domain!");
3546  switch (EltRank) {
3547  default: llvm_unreachable("getFloatingRank(): illegal value for rank");
3548  case FloatRank:      return FloatTy;
3549  case DoubleRank:     return DoubleTy;
3550  case LongDoubleRank: return LongDoubleTy;
3551  }
3552}
3553
3554/// getFloatingTypeOrder - Compare the rank of the two specified floating
3555/// point types, ignoring the domain of the type (i.e. 'double' ==
3556/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3557/// LHS < RHS, return -1.
3558int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3559  FloatingRank LHSR = getFloatingRank(LHS);
3560  FloatingRank RHSR = getFloatingRank(RHS);
3561
3562  if (LHSR == RHSR)
3563    return 0;
3564  if (LHSR > RHSR)
3565    return 1;
3566  return -1;
3567}
3568
3569/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3570/// routine will assert if passed a built-in type that isn't an integer or enum,
3571/// or if it is not canonicalized.
3572unsigned ASTContext::getIntegerRank(const Type *T) const {
3573  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3574
3575  switch (cast<BuiltinType>(T)->getKind()) {
3576  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3577  case BuiltinType::Bool:
3578    return 1 + (getIntWidth(BoolTy) << 3);
3579  case BuiltinType::Char_S:
3580  case BuiltinType::Char_U:
3581  case BuiltinType::SChar:
3582  case BuiltinType::UChar:
3583    return 2 + (getIntWidth(CharTy) << 3);
3584  case BuiltinType::Short:
3585  case BuiltinType::UShort:
3586    return 3 + (getIntWidth(ShortTy) << 3);
3587  case BuiltinType::Int:
3588  case BuiltinType::UInt:
3589    return 4 + (getIntWidth(IntTy) << 3);
3590  case BuiltinType::Long:
3591  case BuiltinType::ULong:
3592    return 5 + (getIntWidth(LongTy) << 3);
3593  case BuiltinType::LongLong:
3594  case BuiltinType::ULongLong:
3595    return 6 + (getIntWidth(LongLongTy) << 3);
3596  case BuiltinType::Int128:
3597  case BuiltinType::UInt128:
3598    return 7 + (getIntWidth(Int128Ty) << 3);
3599  }
3600}
3601
3602/// \brief Whether this is a promotable bitfield reference according
3603/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
3604///
3605/// \returns the type this bit-field will promote to, or NULL if no
3606/// promotion occurs.
3607QualType ASTContext::isPromotableBitField(Expr *E) const {
3608  if (E->isTypeDependent() || E->isValueDependent())
3609    return QualType();
3610
3611  FieldDecl *Field = E->getBitField();
3612  if (!Field)
3613    return QualType();
3614
3615  QualType FT = Field->getType();
3616
3617  uint64_t BitWidth = Field->getBitWidthValue(*this);
3618  uint64_t IntSize = getTypeSize(IntTy);
3619  // GCC extension compatibility: if the bit-field size is less than or equal
3620  // to the size of int, it gets promoted no matter what its type is.
3621  // For instance, unsigned long bf : 4 gets promoted to signed int.
3622  if (BitWidth < IntSize)
3623    return IntTy;
3624
3625  if (BitWidth == IntSize)
3626    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
3627
3628  // Types bigger than int are not subject to promotions, and therefore act
3629  // like the base type.
3630  // FIXME: This doesn't quite match what gcc does, but what gcc does here
3631  // is ridiculous.
3632  return QualType();
3633}
3634
3635/// getPromotedIntegerType - Returns the type that Promotable will
3636/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
3637/// integer type.
3638QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
3639  assert(!Promotable.isNull());
3640  assert(Promotable->isPromotableIntegerType());
3641  if (const EnumType *ET = Promotable->getAs<EnumType>())
3642    return ET->getDecl()->getPromotionType();
3643
3644  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
3645    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
3646    // (3.9.1) can be converted to a prvalue of the first of the following
3647    // types that can represent all the values of its underlying type:
3648    // int, unsigned int, long int, unsigned long int, long long int, or
3649    // unsigned long long int [...]
3650    // FIXME: Is there some better way to compute this?
3651    if (BT->getKind() == BuiltinType::WChar_S ||
3652        BT->getKind() == BuiltinType::WChar_U ||
3653        BT->getKind() == BuiltinType::Char16 ||
3654        BT->getKind() == BuiltinType::Char32) {
3655      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
3656      uint64_t FromSize = getTypeSize(BT);
3657      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
3658                                  LongLongTy, UnsignedLongLongTy };
3659      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
3660        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
3661        if (FromSize < ToSize ||
3662            (FromSize == ToSize &&
3663             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
3664          return PromoteTypes[Idx];
3665      }
3666      llvm_unreachable("char type should fit into long long");
3667    }
3668  }
3669
3670  // At this point, we should have a signed or unsigned integer type.
3671  if (Promotable->isSignedIntegerType())
3672    return IntTy;
3673  uint64_t PromotableSize = getTypeSize(Promotable);
3674  uint64_t IntSize = getTypeSize(IntTy);
3675  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
3676  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
3677}
3678
3679/// \brief Recurses in pointer/array types until it finds an objc retainable
3680/// type and returns its ownership.
3681Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
3682  while (!T.isNull()) {
3683    if (T.getObjCLifetime() != Qualifiers::OCL_None)
3684      return T.getObjCLifetime();
3685    if (T->isArrayType())
3686      T = getBaseElementType(T);
3687    else if (const PointerType *PT = T->getAs<PointerType>())
3688      T = PT->getPointeeType();
3689    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
3690      T = RT->getPointeeType();
3691    else
3692      break;
3693  }
3694
3695  return Qualifiers::OCL_None;
3696}
3697
3698/// getIntegerTypeOrder - Returns the highest ranked integer type:
3699/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3700/// LHS < RHS, return -1.
3701int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
3702  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
3703  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
3704  if (LHSC == RHSC) return 0;
3705
3706  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
3707  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
3708
3709  unsigned LHSRank = getIntegerRank(LHSC);
3710  unsigned RHSRank = getIntegerRank(RHSC);
3711
3712  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
3713    if (LHSRank == RHSRank) return 0;
3714    return LHSRank > RHSRank ? 1 : -1;
3715  }
3716
3717  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
3718  if (LHSUnsigned) {
3719    // If the unsigned [LHS] type is larger, return it.
3720    if (LHSRank >= RHSRank)
3721      return 1;
3722
3723    // If the signed type can represent all values of the unsigned type, it
3724    // wins.  Because we are dealing with 2's complement and types that are
3725    // powers of two larger than each other, this is always safe.
3726    return -1;
3727  }
3728
3729  // If the unsigned [RHS] type is larger, return it.
3730  if (RHSRank >= LHSRank)
3731    return -1;
3732
3733  // If the signed type can represent all values of the unsigned type, it
3734  // wins.  Because we are dealing with 2's complement and types that are
3735  // powers of two larger than each other, this is always safe.
3736  return 1;
3737}
3738
3739static RecordDecl *
3740CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
3741                 DeclContext *DC, IdentifierInfo *Id) {
3742  SourceLocation Loc;
3743  if (Ctx.getLangOptions().CPlusPlus)
3744    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3745  else
3746    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
3747}
3748
3749// getCFConstantStringType - Return the type used for constant CFStrings.
3750QualType ASTContext::getCFConstantStringType() const {
3751  if (!CFConstantStringTypeDecl) {
3752    CFConstantStringTypeDecl =
3753      CreateRecordDecl(*this, TTK_Struct, TUDecl,
3754                       &Idents.get("NSConstantString"));
3755    CFConstantStringTypeDecl->startDefinition();
3756
3757    QualType FieldTypes[4];
3758
3759    // const int *isa;
3760    FieldTypes[0] = getPointerType(IntTy.withConst());
3761    // int flags;
3762    FieldTypes[1] = IntTy;
3763    // const char *str;
3764    FieldTypes[2] = getPointerType(CharTy.withConst());
3765    // long length;
3766    FieldTypes[3] = LongTy;
3767
3768    // Create fields
3769    for (unsigned i = 0; i < 4; ++i) {
3770      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
3771                                           SourceLocation(),
3772                                           SourceLocation(), 0,
3773                                           FieldTypes[i], /*TInfo=*/0,
3774                                           /*BitWidth=*/0,
3775                                           /*Mutable=*/false,
3776                                           /*HasInit=*/false);
3777      Field->setAccess(AS_public);
3778      CFConstantStringTypeDecl->addDecl(Field);
3779    }
3780
3781    CFConstantStringTypeDecl->completeDefinition();
3782  }
3783
3784  return getTagDeclType(CFConstantStringTypeDecl);
3785}
3786
3787void ASTContext::setCFConstantStringType(QualType T) {
3788  const RecordType *Rec = T->getAs<RecordType>();
3789  assert(Rec && "Invalid CFConstantStringType");
3790  CFConstantStringTypeDecl = Rec->getDecl();
3791}
3792
3793QualType ASTContext::getBlockDescriptorType() const {
3794  if (BlockDescriptorType)
3795    return getTagDeclType(BlockDescriptorType);
3796
3797  RecordDecl *T;
3798  // FIXME: Needs the FlagAppleBlock bit.
3799  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3800                       &Idents.get("__block_descriptor"));
3801  T->startDefinition();
3802
3803  QualType FieldTypes[] = {
3804    UnsignedLongTy,
3805    UnsignedLongTy,
3806  };
3807
3808  const char *FieldNames[] = {
3809    "reserved",
3810    "Size"
3811  };
3812
3813  for (size_t i = 0; i < 2; ++i) {
3814    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3815                                         SourceLocation(),
3816                                         &Idents.get(FieldNames[i]),
3817                                         FieldTypes[i], /*TInfo=*/0,
3818                                         /*BitWidth=*/0,
3819                                         /*Mutable=*/false,
3820                                         /*HasInit=*/false);
3821    Field->setAccess(AS_public);
3822    T->addDecl(Field);
3823  }
3824
3825  T->completeDefinition();
3826
3827  BlockDescriptorType = T;
3828
3829  return getTagDeclType(BlockDescriptorType);
3830}
3831
3832QualType ASTContext::getBlockDescriptorExtendedType() const {
3833  if (BlockDescriptorExtendedType)
3834    return getTagDeclType(BlockDescriptorExtendedType);
3835
3836  RecordDecl *T;
3837  // FIXME: Needs the FlagAppleBlock bit.
3838  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
3839                       &Idents.get("__block_descriptor_withcopydispose"));
3840  T->startDefinition();
3841
3842  QualType FieldTypes[] = {
3843    UnsignedLongTy,
3844    UnsignedLongTy,
3845    getPointerType(VoidPtrTy),
3846    getPointerType(VoidPtrTy)
3847  };
3848
3849  const char *FieldNames[] = {
3850    "reserved",
3851    "Size",
3852    "CopyFuncPtr",
3853    "DestroyFuncPtr"
3854  };
3855
3856  for (size_t i = 0; i < 4; ++i) {
3857    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3858                                         SourceLocation(),
3859                                         &Idents.get(FieldNames[i]),
3860                                         FieldTypes[i], /*TInfo=*/0,
3861                                         /*BitWidth=*/0,
3862                                         /*Mutable=*/false,
3863                                         /*HasInit=*/false);
3864    Field->setAccess(AS_public);
3865    T->addDecl(Field);
3866  }
3867
3868  T->completeDefinition();
3869
3870  BlockDescriptorExtendedType = T;
3871
3872  return getTagDeclType(BlockDescriptorExtendedType);
3873}
3874
3875bool ASTContext::BlockRequiresCopying(QualType Ty) const {
3876  if (Ty->isObjCRetainableType())
3877    return true;
3878  if (getLangOptions().CPlusPlus) {
3879    if (const RecordType *RT = Ty->getAs<RecordType>()) {
3880      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3881      return RD->hasConstCopyConstructor();
3882
3883    }
3884  }
3885  return false;
3886}
3887
3888QualType
3889ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
3890  //  type = struct __Block_byref_1_X {
3891  //    void *__isa;
3892  //    struct __Block_byref_1_X *__forwarding;
3893  //    unsigned int __flags;
3894  //    unsigned int __size;
3895  //    void *__copy_helper;            // as needed
3896  //    void *__destroy_help            // as needed
3897  //    int X;
3898  //  } *
3899
3900  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
3901
3902  // FIXME: Move up
3903  llvm::SmallString<36> Name;
3904  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
3905                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
3906  RecordDecl *T;
3907  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
3908  T->startDefinition();
3909  QualType Int32Ty = IntTy;
3910  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
3911  QualType FieldTypes[] = {
3912    getPointerType(VoidPtrTy),
3913    getPointerType(getTagDeclType(T)),
3914    Int32Ty,
3915    Int32Ty,
3916    getPointerType(VoidPtrTy),
3917    getPointerType(VoidPtrTy),
3918    Ty
3919  };
3920
3921  StringRef FieldNames[] = {
3922    "__isa",
3923    "__forwarding",
3924    "__flags",
3925    "__size",
3926    "__copy_helper",
3927    "__destroy_helper",
3928    DeclName,
3929  };
3930
3931  for (size_t i = 0; i < 7; ++i) {
3932    if (!HasCopyAndDispose && i >=4 && i <= 5)
3933      continue;
3934    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
3935                                         SourceLocation(),
3936                                         &Idents.get(FieldNames[i]),
3937                                         FieldTypes[i], /*TInfo=*/0,
3938                                         /*BitWidth=*/0, /*Mutable=*/false,
3939                                         /*HasInit=*/false);
3940    Field->setAccess(AS_public);
3941    T->addDecl(Field);
3942  }
3943
3944  T->completeDefinition();
3945
3946  return getPointerType(getTagDeclType(T));
3947}
3948
3949TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
3950  if (!ObjCInstanceTypeDecl)
3951    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
3952                                               getTranslationUnitDecl(),
3953                                               SourceLocation(),
3954                                               SourceLocation(),
3955                                               &Idents.get("instancetype"),
3956                                     getTrivialTypeSourceInfo(getObjCIdType()));
3957  return ObjCInstanceTypeDecl;
3958}
3959
3960// This returns true if a type has been typedefed to BOOL:
3961// typedef <type> BOOL;
3962static bool isTypeTypedefedAsBOOL(QualType T) {
3963  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
3964    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
3965      return II->isStr("BOOL");
3966
3967  return false;
3968}
3969
3970/// getObjCEncodingTypeSize returns size of type for objective-c encoding
3971/// purpose.
3972CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
3973  if (!type->isIncompleteArrayType() && type->isIncompleteType())
3974    return CharUnits::Zero();
3975
3976  CharUnits sz = getTypeSizeInChars(type);
3977
3978  // Make all integer and enum types at least as large as an int
3979  if (sz.isPositive() && type->isIntegralOrEnumerationType())
3980    sz = std::max(sz, getTypeSizeInChars(IntTy));
3981  // Treat arrays as pointers, since that's how they're passed in.
3982  else if (type->isArrayType())
3983    sz = getTypeSizeInChars(VoidPtrTy);
3984  return sz;
3985}
3986
3987static inline
3988std::string charUnitsToString(const CharUnits &CU) {
3989  return llvm::itostr(CU.getQuantity());
3990}
3991
3992/// getObjCEncodingForBlock - Return the encoded type for this block
3993/// declaration.
3994std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
3995  std::string S;
3996
3997  const BlockDecl *Decl = Expr->getBlockDecl();
3998  QualType BlockTy =
3999      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4000  // Encode result type.
4001  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4002  // Compute size of all parameters.
4003  // Start with computing size of a pointer in number of bytes.
4004  // FIXME: There might(should) be a better way of doing this computation!
4005  SourceLocation Loc;
4006  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4007  CharUnits ParmOffset = PtrSize;
4008  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4009       E = Decl->param_end(); PI != E; ++PI) {
4010    QualType PType = (*PI)->getType();
4011    CharUnits sz = getObjCEncodingTypeSize(PType);
4012    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4013    ParmOffset += sz;
4014  }
4015  // Size of the argument frame
4016  S += charUnitsToString(ParmOffset);
4017  // Block pointer and offset.
4018  S += "@?0";
4019
4020  // Argument types.
4021  ParmOffset = PtrSize;
4022  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4023       Decl->param_end(); PI != E; ++PI) {
4024    ParmVarDecl *PVDecl = *PI;
4025    QualType PType = PVDecl->getOriginalType();
4026    if (const ArrayType *AT =
4027          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4028      // Use array's original type only if it has known number of
4029      // elements.
4030      if (!isa<ConstantArrayType>(AT))
4031        PType = PVDecl->getType();
4032    } else if (PType->isFunctionType())
4033      PType = PVDecl->getType();
4034    getObjCEncodingForType(PType, S);
4035    S += charUnitsToString(ParmOffset);
4036    ParmOffset += getObjCEncodingTypeSize(PType);
4037  }
4038
4039  return S;
4040}
4041
4042bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4043                                                std::string& S) {
4044  // Encode result type.
4045  getObjCEncodingForType(Decl->getResultType(), S);
4046  CharUnits ParmOffset;
4047  // Compute size of all parameters.
4048  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4049       E = Decl->param_end(); PI != E; ++PI) {
4050    QualType PType = (*PI)->getType();
4051    CharUnits sz = getObjCEncodingTypeSize(PType);
4052    if (sz.isZero())
4053      return true;
4054
4055    assert (sz.isPositive() &&
4056        "getObjCEncodingForFunctionDecl - Incomplete param type");
4057    ParmOffset += sz;
4058  }
4059  S += charUnitsToString(ParmOffset);
4060  ParmOffset = CharUnits::Zero();
4061
4062  // Argument types.
4063  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4064       E = Decl->param_end(); PI != E; ++PI) {
4065    ParmVarDecl *PVDecl = *PI;
4066    QualType PType = PVDecl->getOriginalType();
4067    if (const ArrayType *AT =
4068          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4069      // Use array's original type only if it has known number of
4070      // elements.
4071      if (!isa<ConstantArrayType>(AT))
4072        PType = PVDecl->getType();
4073    } else if (PType->isFunctionType())
4074      PType = PVDecl->getType();
4075    getObjCEncodingForType(PType, S);
4076    S += charUnitsToString(ParmOffset);
4077    ParmOffset += getObjCEncodingTypeSize(PType);
4078  }
4079
4080  return false;
4081}
4082
4083/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4084/// declaration.
4085bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4086                                              std::string& S) const {
4087  // FIXME: This is not very efficient.
4088  // Encode type qualifer, 'in', 'inout', etc. for the return type.
4089  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
4090  // Encode result type.
4091  getObjCEncodingForType(Decl->getResultType(), S);
4092  // Compute size of all parameters.
4093  // Start with computing size of a pointer in number of bytes.
4094  // FIXME: There might(should) be a better way of doing this computation!
4095  SourceLocation Loc;
4096  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4097  // The first two arguments (self and _cmd) are pointers; account for
4098  // their size.
4099  CharUnits ParmOffset = 2 * PtrSize;
4100  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4101       E = Decl->sel_param_end(); PI != E; ++PI) {
4102    QualType PType = (*PI)->getType();
4103    CharUnits sz = getObjCEncodingTypeSize(PType);
4104    if (sz.isZero())
4105      return true;
4106
4107    assert (sz.isPositive() &&
4108        "getObjCEncodingForMethodDecl - Incomplete param type");
4109    ParmOffset += sz;
4110  }
4111  S += charUnitsToString(ParmOffset);
4112  S += "@0:";
4113  S += charUnitsToString(PtrSize);
4114
4115  // Argument types.
4116  ParmOffset = 2 * PtrSize;
4117  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4118       E = Decl->sel_param_end(); PI != E; ++PI) {
4119    const ParmVarDecl *PVDecl = *PI;
4120    QualType PType = PVDecl->getOriginalType();
4121    if (const ArrayType *AT =
4122          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4123      // Use array's original type only if it has known number of
4124      // elements.
4125      if (!isa<ConstantArrayType>(AT))
4126        PType = PVDecl->getType();
4127    } else if (PType->isFunctionType())
4128      PType = PVDecl->getType();
4129    // Process argument qualifiers for user supplied arguments; such as,
4130    // 'in', 'inout', etc.
4131    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
4132    getObjCEncodingForType(PType, S);
4133    S += charUnitsToString(ParmOffset);
4134    ParmOffset += getObjCEncodingTypeSize(PType);
4135  }
4136
4137  return false;
4138}
4139
4140/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4141/// property declaration. If non-NULL, Container must be either an
4142/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4143/// NULL when getting encodings for protocol properties.
4144/// Property attributes are stored as a comma-delimited C string. The simple
4145/// attributes readonly and bycopy are encoded as single characters. The
4146/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4147/// encoded as single characters, followed by an identifier. Property types
4148/// are also encoded as a parametrized attribute. The characters used to encode
4149/// these attributes are defined by the following enumeration:
4150/// @code
4151/// enum PropertyAttributes {
4152/// kPropertyReadOnly = 'R',   // property is read-only.
4153/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4154/// kPropertyByref = '&',  // property is a reference to the value last assigned
4155/// kPropertyDynamic = 'D',    // property is dynamic
4156/// kPropertyGetter = 'G',     // followed by getter selector name
4157/// kPropertySetter = 'S',     // followed by setter selector name
4158/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4159/// kPropertyType = 't'              // followed by old-style type encoding.
4160/// kPropertyWeak = 'W'              // 'weak' property
4161/// kPropertyStrong = 'P'            // property GC'able
4162/// kPropertyNonAtomic = 'N'         // property non-atomic
4163/// };
4164/// @endcode
4165void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4166                                                const Decl *Container,
4167                                                std::string& S) const {
4168  // Collect information from the property implementation decl(s).
4169  bool Dynamic = false;
4170  ObjCPropertyImplDecl *SynthesizePID = 0;
4171
4172  // FIXME: Duplicated code due to poor abstraction.
4173  if (Container) {
4174    if (const ObjCCategoryImplDecl *CID =
4175        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4176      for (ObjCCategoryImplDecl::propimpl_iterator
4177             i = CID->propimpl_begin(), e = CID->propimpl_end();
4178           i != e; ++i) {
4179        ObjCPropertyImplDecl *PID = *i;
4180        if (PID->getPropertyDecl() == PD) {
4181          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4182            Dynamic = true;
4183          } else {
4184            SynthesizePID = PID;
4185          }
4186        }
4187      }
4188    } else {
4189      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4190      for (ObjCCategoryImplDecl::propimpl_iterator
4191             i = OID->propimpl_begin(), e = OID->propimpl_end();
4192           i != e; ++i) {
4193        ObjCPropertyImplDecl *PID = *i;
4194        if (PID->getPropertyDecl() == PD) {
4195          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4196            Dynamic = true;
4197          } else {
4198            SynthesizePID = PID;
4199          }
4200        }
4201      }
4202    }
4203  }
4204
4205  // FIXME: This is not very efficient.
4206  S = "T";
4207
4208  // Encode result type.
4209  // GCC has some special rules regarding encoding of properties which
4210  // closely resembles encoding of ivars.
4211  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4212                             true /* outermost type */,
4213                             true /* encoding for property */);
4214
4215  if (PD->isReadOnly()) {
4216    S += ",R";
4217  } else {
4218    switch (PD->getSetterKind()) {
4219    case ObjCPropertyDecl::Assign: break;
4220    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4221    case ObjCPropertyDecl::Retain: S += ",&"; break;
4222    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4223    }
4224  }
4225
4226  // It really isn't clear at all what this means, since properties
4227  // are "dynamic by default".
4228  if (Dynamic)
4229    S += ",D";
4230
4231  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4232    S += ",N";
4233
4234  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4235    S += ",G";
4236    S += PD->getGetterName().getAsString();
4237  }
4238
4239  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4240    S += ",S";
4241    S += PD->getSetterName().getAsString();
4242  }
4243
4244  if (SynthesizePID) {
4245    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4246    S += ",V";
4247    S += OID->getNameAsString();
4248  }
4249
4250  // FIXME: OBJCGC: weak & strong
4251}
4252
4253/// getLegacyIntegralTypeEncoding -
4254/// Another legacy compatibility encoding: 32-bit longs are encoded as
4255/// 'l' or 'L' , but not always.  For typedefs, we need to use
4256/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4257///
4258void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4259  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4260    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4261      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4262        PointeeTy = UnsignedIntTy;
4263      else
4264        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4265          PointeeTy = IntTy;
4266    }
4267  }
4268}
4269
4270void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4271                                        const FieldDecl *Field) const {
4272  // We follow the behavior of gcc, expanding structures which are
4273  // directly pointed to, and expanding embedded structures. Note that
4274  // these rules are sufficient to prevent recursive encoding of the
4275  // same type.
4276  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4277                             true /* outermost type */);
4278}
4279
4280static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4281    switch (T->getAs<BuiltinType>()->getKind()) {
4282    default: llvm_unreachable("Unhandled builtin type kind");
4283    case BuiltinType::Void:       return 'v';
4284    case BuiltinType::Bool:       return 'B';
4285    case BuiltinType::Char_U:
4286    case BuiltinType::UChar:      return 'C';
4287    case BuiltinType::UShort:     return 'S';
4288    case BuiltinType::UInt:       return 'I';
4289    case BuiltinType::ULong:
4290        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4291    case BuiltinType::UInt128:    return 'T';
4292    case BuiltinType::ULongLong:  return 'Q';
4293    case BuiltinType::Char_S:
4294    case BuiltinType::SChar:      return 'c';
4295    case BuiltinType::Short:      return 's';
4296    case BuiltinType::WChar_S:
4297    case BuiltinType::WChar_U:
4298    case BuiltinType::Int:        return 'i';
4299    case BuiltinType::Long:
4300      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4301    case BuiltinType::LongLong:   return 'q';
4302    case BuiltinType::Int128:     return 't';
4303    case BuiltinType::Float:      return 'f';
4304    case BuiltinType::Double:     return 'd';
4305    case BuiltinType::LongDouble: return 'D';
4306    }
4307}
4308
4309static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4310  EnumDecl *Enum = ET->getDecl();
4311
4312  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4313  if (!Enum->isFixed())
4314    return 'i';
4315
4316  // The encoding of a fixed enum type matches its fixed underlying type.
4317  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4318}
4319
4320static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4321                           QualType T, const FieldDecl *FD) {
4322  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4323  S += 'b';
4324  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4325  // The GNU runtime requires more information; bitfields are encoded as b,
4326  // then the offset (in bits) of the first element, then the type of the
4327  // bitfield, then the size in bits.  For example, in this structure:
4328  //
4329  // struct
4330  // {
4331  //    int integer;
4332  //    int flags:2;
4333  // };
4334  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4335  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4336  // information is not especially sensible, but we're stuck with it for
4337  // compatibility with GCC, although providing it breaks anything that
4338  // actually uses runtime introspection and wants to work on both runtimes...
4339  if (!Ctx->getLangOptions().NeXTRuntime) {
4340    const RecordDecl *RD = FD->getParent();
4341    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4342    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4343    if (const EnumType *ET = T->getAs<EnumType>())
4344      S += ObjCEncodingForEnumType(Ctx, ET);
4345    else
4346      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4347  }
4348  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4349}
4350
4351// FIXME: Use SmallString for accumulating string.
4352void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4353                                            bool ExpandPointedToStructures,
4354                                            bool ExpandStructures,
4355                                            const FieldDecl *FD,
4356                                            bool OutermostType,
4357                                            bool EncodingProperty,
4358                                            bool StructField) const {
4359  if (T->getAs<BuiltinType>()) {
4360    if (FD && FD->isBitField())
4361      return EncodeBitField(this, S, T, FD);
4362    S += ObjCEncodingForPrimitiveKind(this, T);
4363    return;
4364  }
4365
4366  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4367    S += 'j';
4368    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4369                               false);
4370    return;
4371  }
4372
4373  // encoding for pointer or r3eference types.
4374  QualType PointeeTy;
4375  if (const PointerType *PT = T->getAs<PointerType>()) {
4376    if (PT->isObjCSelType()) {
4377      S += ':';
4378      return;
4379    }
4380    PointeeTy = PT->getPointeeType();
4381  }
4382  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4383    PointeeTy = RT->getPointeeType();
4384  if (!PointeeTy.isNull()) {
4385    bool isReadOnly = false;
4386    // For historical/compatibility reasons, the read-only qualifier of the
4387    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4388    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4389    // Also, do not emit the 'r' for anything but the outermost type!
4390    if (isa<TypedefType>(T.getTypePtr())) {
4391      if (OutermostType && T.isConstQualified()) {
4392        isReadOnly = true;
4393        S += 'r';
4394      }
4395    } else if (OutermostType) {
4396      QualType P = PointeeTy;
4397      while (P->getAs<PointerType>())
4398        P = P->getAs<PointerType>()->getPointeeType();
4399      if (P.isConstQualified()) {
4400        isReadOnly = true;
4401        S += 'r';
4402      }
4403    }
4404    if (isReadOnly) {
4405      // Another legacy compatibility encoding. Some ObjC qualifier and type
4406      // combinations need to be rearranged.
4407      // Rewrite "in const" from "nr" to "rn"
4408      if (StringRef(S).endswith("nr"))
4409        S.replace(S.end()-2, S.end(), "rn");
4410    }
4411
4412    if (PointeeTy->isCharType()) {
4413      // char pointer types should be encoded as '*' unless it is a
4414      // type that has been typedef'd to 'BOOL'.
4415      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4416        S += '*';
4417        return;
4418      }
4419    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4420      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4421      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4422        S += '#';
4423        return;
4424      }
4425      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4426      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4427        S += '@';
4428        return;
4429      }
4430      // fall through...
4431    }
4432    S += '^';
4433    getLegacyIntegralTypeEncoding(PointeeTy);
4434
4435    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4436                               NULL);
4437    return;
4438  }
4439
4440  if (const ArrayType *AT =
4441      // Ignore type qualifiers etc.
4442        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4443    if (isa<IncompleteArrayType>(AT) && !StructField) {
4444      // Incomplete arrays are encoded as a pointer to the array element.
4445      S += '^';
4446
4447      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4448                                 false, ExpandStructures, FD);
4449    } else {
4450      S += '[';
4451
4452      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4453        if (getTypeSize(CAT->getElementType()) == 0)
4454          S += '0';
4455        else
4456          S += llvm::utostr(CAT->getSize().getZExtValue());
4457      } else {
4458        //Variable length arrays are encoded as a regular array with 0 elements.
4459        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4460               "Unknown array type!");
4461        S += '0';
4462      }
4463
4464      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4465                                 false, ExpandStructures, FD);
4466      S += ']';
4467    }
4468    return;
4469  }
4470
4471  if (T->getAs<FunctionType>()) {
4472    S += '?';
4473    return;
4474  }
4475
4476  if (const RecordType *RTy = T->getAs<RecordType>()) {
4477    RecordDecl *RDecl = RTy->getDecl();
4478    S += RDecl->isUnion() ? '(' : '{';
4479    // Anonymous structures print as '?'
4480    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4481      S += II->getName();
4482      if (ClassTemplateSpecializationDecl *Spec
4483          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4484        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4485        std::string TemplateArgsStr
4486          = TemplateSpecializationType::PrintTemplateArgumentList(
4487                                            TemplateArgs.data(),
4488                                            TemplateArgs.size(),
4489                                            (*this).getPrintingPolicy());
4490
4491        S += TemplateArgsStr;
4492      }
4493    } else {
4494      S += '?';
4495    }
4496    if (ExpandStructures) {
4497      S += '=';
4498      if (!RDecl->isUnion()) {
4499        getObjCEncodingForStructureImpl(RDecl, S, FD);
4500      } else {
4501        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4502                                     FieldEnd = RDecl->field_end();
4503             Field != FieldEnd; ++Field) {
4504          if (FD) {
4505            S += '"';
4506            S += Field->getNameAsString();
4507            S += '"';
4508          }
4509
4510          // Special case bit-fields.
4511          if (Field->isBitField()) {
4512            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4513                                       (*Field));
4514          } else {
4515            QualType qt = Field->getType();
4516            getLegacyIntegralTypeEncoding(qt);
4517            getObjCEncodingForTypeImpl(qt, S, false, true,
4518                                       FD, /*OutermostType*/false,
4519                                       /*EncodingProperty*/false,
4520                                       /*StructField*/true);
4521          }
4522        }
4523      }
4524    }
4525    S += RDecl->isUnion() ? ')' : '}';
4526    return;
4527  }
4528
4529  if (const EnumType *ET = T->getAs<EnumType>()) {
4530    if (FD && FD->isBitField())
4531      EncodeBitField(this, S, T, FD);
4532    else
4533      S += ObjCEncodingForEnumType(this, ET);
4534    return;
4535  }
4536
4537  if (T->isBlockPointerType()) {
4538    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4539    return;
4540  }
4541
4542  // Ignore protocol qualifiers when mangling at this level.
4543  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4544    T = OT->getBaseType();
4545
4546  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4547    // @encode(class_name)
4548    ObjCInterfaceDecl *OI = OIT->getDecl();
4549    S += '{';
4550    const IdentifierInfo *II = OI->getIdentifier();
4551    S += II->getName();
4552    S += '=';
4553    SmallVector<const ObjCIvarDecl*, 32> Ivars;
4554    DeepCollectObjCIvars(OI, true, Ivars);
4555    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
4556      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
4557      if (Field->isBitField())
4558        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
4559      else
4560        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
4561    }
4562    S += '}';
4563    return;
4564  }
4565
4566  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
4567    if (OPT->isObjCIdType()) {
4568      S += '@';
4569      return;
4570    }
4571
4572    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
4573      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
4574      // Since this is a binary compatibility issue, need to consult with runtime
4575      // folks. Fortunately, this is a *very* obsure construct.
4576      S += '#';
4577      return;
4578    }
4579
4580    if (OPT->isObjCQualifiedIdType()) {
4581      getObjCEncodingForTypeImpl(getObjCIdType(), S,
4582                                 ExpandPointedToStructures,
4583                                 ExpandStructures, FD);
4584      if (FD || EncodingProperty) {
4585        // Note that we do extended encoding of protocol qualifer list
4586        // Only when doing ivar or property encoding.
4587        S += '"';
4588        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4589             E = OPT->qual_end(); I != E; ++I) {
4590          S += '<';
4591          S += (*I)->getNameAsString();
4592          S += '>';
4593        }
4594        S += '"';
4595      }
4596      return;
4597    }
4598
4599    QualType PointeeTy = OPT->getPointeeType();
4600    if (!EncodingProperty &&
4601        isa<TypedefType>(PointeeTy.getTypePtr())) {
4602      // Another historical/compatibility reason.
4603      // We encode the underlying type which comes out as
4604      // {...};
4605      S += '^';
4606      getObjCEncodingForTypeImpl(PointeeTy, S,
4607                                 false, ExpandPointedToStructures,
4608                                 NULL);
4609      return;
4610    }
4611
4612    S += '@';
4613    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
4614      S += '"';
4615      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
4616      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
4617           E = OPT->qual_end(); I != E; ++I) {
4618        S += '<';
4619        S += (*I)->getNameAsString();
4620        S += '>';
4621      }
4622      S += '"';
4623    }
4624    return;
4625  }
4626
4627  // gcc just blithely ignores member pointers.
4628  // TODO: maybe there should be a mangling for these
4629  if (T->getAs<MemberPointerType>())
4630    return;
4631
4632  if (T->isVectorType()) {
4633    // This matches gcc's encoding, even though technically it is
4634    // insufficient.
4635    // FIXME. We should do a better job than gcc.
4636    return;
4637  }
4638
4639  llvm_unreachable("@encode for type not implemented!");
4640}
4641
4642void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
4643                                                 std::string &S,
4644                                                 const FieldDecl *FD,
4645                                                 bool includeVBases) const {
4646  assert(RDecl && "Expected non-null RecordDecl");
4647  assert(!RDecl->isUnion() && "Should not be called for unions");
4648  if (!RDecl->getDefinition())
4649    return;
4650
4651  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
4652  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
4653  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
4654
4655  if (CXXRec) {
4656    for (CXXRecordDecl::base_class_iterator
4657           BI = CXXRec->bases_begin(),
4658           BE = CXXRec->bases_end(); BI != BE; ++BI) {
4659      if (!BI->isVirtual()) {
4660        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4661        if (base->isEmpty())
4662          continue;
4663        uint64_t offs = layout.getBaseClassOffsetInBits(base);
4664        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4665                                  std::make_pair(offs, base));
4666      }
4667    }
4668  }
4669
4670  unsigned i = 0;
4671  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4672                               FieldEnd = RDecl->field_end();
4673       Field != FieldEnd; ++Field, ++i) {
4674    uint64_t offs = layout.getFieldOffset(i);
4675    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4676                              std::make_pair(offs, *Field));
4677  }
4678
4679  if (CXXRec && includeVBases) {
4680    for (CXXRecordDecl::base_class_iterator
4681           BI = CXXRec->vbases_begin(),
4682           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
4683      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
4684      if (base->isEmpty())
4685        continue;
4686      uint64_t offs = layout.getVBaseClassOffsetInBits(base);
4687      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
4688        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
4689                                  std::make_pair(offs, base));
4690    }
4691  }
4692
4693  CharUnits size;
4694  if (CXXRec) {
4695    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
4696  } else {
4697    size = layout.getSize();
4698  }
4699
4700  uint64_t CurOffs = 0;
4701  std::multimap<uint64_t, NamedDecl *>::iterator
4702    CurLayObj = FieldOrBaseOffsets.begin();
4703
4704  if ((CurLayObj != FieldOrBaseOffsets.end() && CurLayObj->first != 0) ||
4705      (CurLayObj == FieldOrBaseOffsets.end() &&
4706         CXXRec && CXXRec->isDynamicClass())) {
4707    assert(CXXRec && CXXRec->isDynamicClass() &&
4708           "Offset 0 was empty but no VTable ?");
4709    if (FD) {
4710      S += "\"_vptr$";
4711      std::string recname = CXXRec->getNameAsString();
4712      if (recname.empty()) recname = "?";
4713      S += recname;
4714      S += '"';
4715    }
4716    S += "^^?";
4717    CurOffs += getTypeSize(VoidPtrTy);
4718  }
4719
4720  if (!RDecl->hasFlexibleArrayMember()) {
4721    // Mark the end of the structure.
4722    uint64_t offs = toBits(size);
4723    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
4724                              std::make_pair(offs, (NamedDecl*)0));
4725  }
4726
4727  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
4728    assert(CurOffs <= CurLayObj->first);
4729
4730    if (CurOffs < CurLayObj->first) {
4731      uint64_t padding = CurLayObj->first - CurOffs;
4732      // FIXME: There doesn't seem to be a way to indicate in the encoding that
4733      // packing/alignment of members is different that normal, in which case
4734      // the encoding will be out-of-sync with the real layout.
4735      // If the runtime switches to just consider the size of types without
4736      // taking into account alignment, we could make padding explicit in the
4737      // encoding (e.g. using arrays of chars). The encoding strings would be
4738      // longer then though.
4739      CurOffs += padding;
4740    }
4741
4742    NamedDecl *dcl = CurLayObj->second;
4743    if (dcl == 0)
4744      break; // reached end of structure.
4745
4746    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
4747      // We expand the bases without their virtual bases since those are going
4748      // in the initial structure. Note that this differs from gcc which
4749      // expands virtual bases each time one is encountered in the hierarchy,
4750      // making the encoding type bigger than it really is.
4751      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
4752      assert(!base->isEmpty());
4753      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
4754    } else {
4755      FieldDecl *field = cast<FieldDecl>(dcl);
4756      if (FD) {
4757        S += '"';
4758        S += field->getNameAsString();
4759        S += '"';
4760      }
4761
4762      if (field->isBitField()) {
4763        EncodeBitField(this, S, field->getType(), field);
4764        CurOffs += field->getBitWidthValue(*this);
4765      } else {
4766        QualType qt = field->getType();
4767        getLegacyIntegralTypeEncoding(qt);
4768        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
4769                                   /*OutermostType*/false,
4770                                   /*EncodingProperty*/false,
4771                                   /*StructField*/true);
4772        CurOffs += getTypeSize(field->getType());
4773      }
4774    }
4775  }
4776}
4777
4778void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
4779                                                 std::string& S) const {
4780  if (QT & Decl::OBJC_TQ_In)
4781    S += 'n';
4782  if (QT & Decl::OBJC_TQ_Inout)
4783    S += 'N';
4784  if (QT & Decl::OBJC_TQ_Out)
4785    S += 'o';
4786  if (QT & Decl::OBJC_TQ_Bycopy)
4787    S += 'O';
4788  if (QT & Decl::OBJC_TQ_Byref)
4789    S += 'R';
4790  if (QT & Decl::OBJC_TQ_Oneway)
4791    S += 'V';
4792}
4793
4794void ASTContext::setBuiltinVaListType(QualType T) {
4795  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
4796
4797  BuiltinVaListType = T;
4798}
4799
4800TypedefDecl *ASTContext::getObjCIdDecl() const {
4801  if (!ObjCIdDecl) {
4802    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
4803    T = getObjCObjectPointerType(T);
4804    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
4805    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4806                                     getTranslationUnitDecl(),
4807                                     SourceLocation(), SourceLocation(),
4808                                     &Idents.get("id"), IdInfo);
4809  }
4810
4811  return ObjCIdDecl;
4812}
4813
4814TypedefDecl *ASTContext::getObjCSelDecl() const {
4815  if (!ObjCSelDecl) {
4816    QualType SelT = getPointerType(ObjCBuiltinSelTy);
4817    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
4818    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4819                                      getTranslationUnitDecl(),
4820                                      SourceLocation(), SourceLocation(),
4821                                      &Idents.get("SEL"), SelInfo);
4822  }
4823  return ObjCSelDecl;
4824}
4825
4826void ASTContext::setObjCProtoType(QualType QT) {
4827  ObjCProtoType = QT;
4828}
4829
4830TypedefDecl *ASTContext::getObjCClassDecl() const {
4831  if (!ObjCClassDecl) {
4832    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
4833    T = getObjCObjectPointerType(T);
4834    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
4835    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
4836                                        getTranslationUnitDecl(),
4837                                        SourceLocation(), SourceLocation(),
4838                                        &Idents.get("Class"), ClassInfo);
4839  }
4840
4841  return ObjCClassDecl;
4842}
4843
4844void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
4845  assert(ObjCConstantStringType.isNull() &&
4846         "'NSConstantString' type already set!");
4847
4848  ObjCConstantStringType = getObjCInterfaceType(Decl);
4849}
4850
4851/// \brief Retrieve the template name that corresponds to a non-empty
4852/// lookup.
4853TemplateName
4854ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
4855                                      UnresolvedSetIterator End) const {
4856  unsigned size = End - Begin;
4857  assert(size > 1 && "set is not overloaded!");
4858
4859  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
4860                          size * sizeof(FunctionTemplateDecl*));
4861  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
4862
4863  NamedDecl **Storage = OT->getStorage();
4864  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
4865    NamedDecl *D = *I;
4866    assert(isa<FunctionTemplateDecl>(D) ||
4867           (isa<UsingShadowDecl>(D) &&
4868            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
4869    *Storage++ = D;
4870  }
4871
4872  return TemplateName(OT);
4873}
4874
4875/// \brief Retrieve the template name that represents a qualified
4876/// template name such as \c std::vector.
4877TemplateName
4878ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
4879                                     bool TemplateKeyword,
4880                                     TemplateDecl *Template) const {
4881  assert(NNS && "Missing nested-name-specifier in qualified template name");
4882
4883  // FIXME: Canonicalization?
4884  llvm::FoldingSetNodeID ID;
4885  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
4886
4887  void *InsertPos = 0;
4888  QualifiedTemplateName *QTN =
4889    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4890  if (!QTN) {
4891    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
4892    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
4893  }
4894
4895  return TemplateName(QTN);
4896}
4897
4898/// \brief Retrieve the template name that represents a dependent
4899/// template name such as \c MetaFun::template apply.
4900TemplateName
4901ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4902                                     const IdentifierInfo *Name) const {
4903  assert((!NNS || NNS->isDependent()) &&
4904         "Nested name specifier must be dependent");
4905
4906  llvm::FoldingSetNodeID ID;
4907  DependentTemplateName::Profile(ID, NNS, Name);
4908
4909  void *InsertPos = 0;
4910  DependentTemplateName *QTN =
4911    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4912
4913  if (QTN)
4914    return TemplateName(QTN);
4915
4916  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4917  if (CanonNNS == NNS) {
4918    QTN = new (*this,4) DependentTemplateName(NNS, Name);
4919  } else {
4920    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
4921    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
4922    DependentTemplateName *CheckQTN =
4923      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4924    assert(!CheckQTN && "Dependent type name canonicalization broken");
4925    (void)CheckQTN;
4926  }
4927
4928  DependentTemplateNames.InsertNode(QTN, InsertPos);
4929  return TemplateName(QTN);
4930}
4931
4932/// \brief Retrieve the template name that represents a dependent
4933/// template name such as \c MetaFun::template operator+.
4934TemplateName
4935ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
4936                                     OverloadedOperatorKind Operator) const {
4937  assert((!NNS || NNS->isDependent()) &&
4938         "Nested name specifier must be dependent");
4939
4940  llvm::FoldingSetNodeID ID;
4941  DependentTemplateName::Profile(ID, NNS, Operator);
4942
4943  void *InsertPos = 0;
4944  DependentTemplateName *QTN
4945    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4946
4947  if (QTN)
4948    return TemplateName(QTN);
4949
4950  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4951  if (CanonNNS == NNS) {
4952    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
4953  } else {
4954    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
4955    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
4956
4957    DependentTemplateName *CheckQTN
4958      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
4959    assert(!CheckQTN && "Dependent template name canonicalization broken");
4960    (void)CheckQTN;
4961  }
4962
4963  DependentTemplateNames.InsertNode(QTN, InsertPos);
4964  return TemplateName(QTN);
4965}
4966
4967TemplateName
4968ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
4969                                         TemplateName replacement) const {
4970  llvm::FoldingSetNodeID ID;
4971  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
4972
4973  void *insertPos = 0;
4974  SubstTemplateTemplateParmStorage *subst
4975    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
4976
4977  if (!subst) {
4978    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
4979    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
4980  }
4981
4982  return TemplateName(subst);
4983}
4984
4985TemplateName
4986ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
4987                                       const TemplateArgument &ArgPack) const {
4988  ASTContext &Self = const_cast<ASTContext &>(*this);
4989  llvm::FoldingSetNodeID ID;
4990  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
4991
4992  void *InsertPos = 0;
4993  SubstTemplateTemplateParmPackStorage *Subst
4994    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
4995
4996  if (!Subst) {
4997    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
4998                                                           ArgPack.pack_size(),
4999                                                         ArgPack.pack_begin());
5000    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5001  }
5002
5003  return TemplateName(Subst);
5004}
5005
5006/// getFromTargetType - Given one of the integer types provided by
5007/// TargetInfo, produce the corresponding type. The unsigned @p Type
5008/// is actually a value of type @c TargetInfo::IntType.
5009CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5010  switch (Type) {
5011  case TargetInfo::NoInt: return CanQualType();
5012  case TargetInfo::SignedShort: return ShortTy;
5013  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5014  case TargetInfo::SignedInt: return IntTy;
5015  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5016  case TargetInfo::SignedLong: return LongTy;
5017  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5018  case TargetInfo::SignedLongLong: return LongLongTy;
5019  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5020  }
5021
5022  llvm_unreachable("Unhandled TargetInfo::IntType value");
5023}
5024
5025//===----------------------------------------------------------------------===//
5026//                        Type Predicates.
5027//===----------------------------------------------------------------------===//
5028
5029/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5030/// garbage collection attribute.
5031///
5032Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5033  if (getLangOptions().getGC() == LangOptions::NonGC)
5034    return Qualifiers::GCNone;
5035
5036  assert(getLangOptions().ObjC1);
5037  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5038
5039  // Default behaviour under objective-C's gc is for ObjC pointers
5040  // (or pointers to them) be treated as though they were declared
5041  // as __strong.
5042  if (GCAttrs == Qualifiers::GCNone) {
5043    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5044      return Qualifiers::Strong;
5045    else if (Ty->isPointerType())
5046      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5047  } else {
5048    // It's not valid to set GC attributes on anything that isn't a
5049    // pointer.
5050#ifndef NDEBUG
5051    QualType CT = Ty->getCanonicalTypeInternal();
5052    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5053      CT = AT->getElementType();
5054    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5055#endif
5056  }
5057  return GCAttrs;
5058}
5059
5060//===----------------------------------------------------------------------===//
5061//                        Type Compatibility Testing
5062//===----------------------------------------------------------------------===//
5063
5064/// areCompatVectorTypes - Return true if the two specified vector types are
5065/// compatible.
5066static bool areCompatVectorTypes(const VectorType *LHS,
5067                                 const VectorType *RHS) {
5068  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5069  return LHS->getElementType() == RHS->getElementType() &&
5070         LHS->getNumElements() == RHS->getNumElements();
5071}
5072
5073bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5074                                          QualType SecondVec) {
5075  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5076  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5077
5078  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5079    return true;
5080
5081  // Treat Neon vector types and most AltiVec vector types as if they are the
5082  // equivalent GCC vector types.
5083  const VectorType *First = FirstVec->getAs<VectorType>();
5084  const VectorType *Second = SecondVec->getAs<VectorType>();
5085  if (First->getNumElements() == Second->getNumElements() &&
5086      hasSameType(First->getElementType(), Second->getElementType()) &&
5087      First->getVectorKind() != VectorType::AltiVecPixel &&
5088      First->getVectorKind() != VectorType::AltiVecBool &&
5089      Second->getVectorKind() != VectorType::AltiVecPixel &&
5090      Second->getVectorKind() != VectorType::AltiVecBool)
5091    return true;
5092
5093  return false;
5094}
5095
5096//===----------------------------------------------------------------------===//
5097// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5098//===----------------------------------------------------------------------===//
5099
5100/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5101/// inheritance hierarchy of 'rProto'.
5102bool
5103ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5104                                           ObjCProtocolDecl *rProto) const {
5105  if (lProto == rProto)
5106    return true;
5107  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5108       E = rProto->protocol_end(); PI != E; ++PI)
5109    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5110      return true;
5111  return false;
5112}
5113
5114/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
5115/// return true if lhs's protocols conform to rhs's protocol; false
5116/// otherwise.
5117bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5118  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5119    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5120  return false;
5121}
5122
5123/// ObjCQualifiedClassTypesAreCompatible - compare  Class<p,...> and
5124/// Class<p1, ...>.
5125bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5126                                                      QualType rhs) {
5127  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5128  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5129  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5130
5131  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5132       E = lhsQID->qual_end(); I != E; ++I) {
5133    bool match = false;
5134    ObjCProtocolDecl *lhsProto = *I;
5135    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5136         E = rhsOPT->qual_end(); J != E; ++J) {
5137      ObjCProtocolDecl *rhsProto = *J;
5138      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5139        match = true;
5140        break;
5141      }
5142    }
5143    if (!match)
5144      return false;
5145  }
5146  return true;
5147}
5148
5149/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5150/// ObjCQualifiedIDType.
5151bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5152                                                   bool compare) {
5153  // Allow id<P..> and an 'id' or void* type in all cases.
5154  if (lhs->isVoidPointerType() ||
5155      lhs->isObjCIdType() || lhs->isObjCClassType())
5156    return true;
5157  else if (rhs->isVoidPointerType() ||
5158           rhs->isObjCIdType() || rhs->isObjCClassType())
5159    return true;
5160
5161  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5162    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5163
5164    if (!rhsOPT) return false;
5165
5166    if (rhsOPT->qual_empty()) {
5167      // If the RHS is a unqualified interface pointer "NSString*",
5168      // make sure we check the class hierarchy.
5169      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5170        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5171             E = lhsQID->qual_end(); I != E; ++I) {
5172          // when comparing an id<P> on lhs with a static type on rhs,
5173          // see if static class implements all of id's protocols, directly or
5174          // through its super class and categories.
5175          if (!rhsID->ClassImplementsProtocol(*I, true))
5176            return false;
5177        }
5178      }
5179      // If there are no qualifiers and no interface, we have an 'id'.
5180      return true;
5181    }
5182    // Both the right and left sides have qualifiers.
5183    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5184         E = lhsQID->qual_end(); I != E; ++I) {
5185      ObjCProtocolDecl *lhsProto = *I;
5186      bool match = false;
5187
5188      // when comparing an id<P> on lhs with a static type on rhs,
5189      // see if static class implements all of id's protocols, directly or
5190      // through its super class and categories.
5191      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5192           E = rhsOPT->qual_end(); J != E; ++J) {
5193        ObjCProtocolDecl *rhsProto = *J;
5194        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5195            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5196          match = true;
5197          break;
5198        }
5199      }
5200      // If the RHS is a qualified interface pointer "NSString<P>*",
5201      // make sure we check the class hierarchy.
5202      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5203        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5204             E = lhsQID->qual_end(); I != E; ++I) {
5205          // when comparing an id<P> on lhs with a static type on rhs,
5206          // see if static class implements all of id's protocols, directly or
5207          // through its super class and categories.
5208          if (rhsID->ClassImplementsProtocol(*I, true)) {
5209            match = true;
5210            break;
5211          }
5212        }
5213      }
5214      if (!match)
5215        return false;
5216    }
5217
5218    return true;
5219  }
5220
5221  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5222  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5223
5224  if (const ObjCObjectPointerType *lhsOPT =
5225        lhs->getAsObjCInterfacePointerType()) {
5226    // If both the right and left sides have qualifiers.
5227    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5228         E = lhsOPT->qual_end(); I != E; ++I) {
5229      ObjCProtocolDecl *lhsProto = *I;
5230      bool match = false;
5231
5232      // when comparing an id<P> on rhs with a static type on lhs,
5233      // see if static class implements all of id's protocols, directly or
5234      // through its super class and categories.
5235      // First, lhs protocols in the qualifier list must be found, direct
5236      // or indirect in rhs's qualifier list or it is a mismatch.
5237      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5238           E = rhsQID->qual_end(); J != E; ++J) {
5239        ObjCProtocolDecl *rhsProto = *J;
5240        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5241            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5242          match = true;
5243          break;
5244        }
5245      }
5246      if (!match)
5247        return false;
5248    }
5249
5250    // Static class's protocols, or its super class or category protocols
5251    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5252    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5253      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5254      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5255      // This is rather dubious but matches gcc's behavior. If lhs has
5256      // no type qualifier and its class has no static protocol(s)
5257      // assume that it is mismatch.
5258      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5259        return false;
5260      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5261           LHSInheritedProtocols.begin(),
5262           E = LHSInheritedProtocols.end(); I != E; ++I) {
5263        bool match = false;
5264        ObjCProtocolDecl *lhsProto = (*I);
5265        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5266             E = rhsQID->qual_end(); J != E; ++J) {
5267          ObjCProtocolDecl *rhsProto = *J;
5268          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5269              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5270            match = true;
5271            break;
5272          }
5273        }
5274        if (!match)
5275          return false;
5276      }
5277    }
5278    return true;
5279  }
5280  return false;
5281}
5282
5283/// canAssignObjCInterfaces - Return true if the two interface types are
5284/// compatible for assignment from RHS to LHS.  This handles validation of any
5285/// protocol qualifiers on the LHS or RHS.
5286///
5287bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5288                                         const ObjCObjectPointerType *RHSOPT) {
5289  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5290  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5291
5292  // If either type represents the built-in 'id' or 'Class' types, return true.
5293  if (LHS->isObjCUnqualifiedIdOrClass() ||
5294      RHS->isObjCUnqualifiedIdOrClass())
5295    return true;
5296
5297  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5298    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5299                                             QualType(RHSOPT,0),
5300                                             false);
5301
5302  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5303    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5304                                                QualType(RHSOPT,0));
5305
5306  // If we have 2 user-defined types, fall into that path.
5307  if (LHS->getInterface() && RHS->getInterface())
5308    return canAssignObjCInterfaces(LHS, RHS);
5309
5310  return false;
5311}
5312
5313/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
5314/// for providing type-safety for objective-c pointers used to pass/return
5315/// arguments in block literals. When passed as arguments, passing 'A*' where
5316/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
5317/// not OK. For the return type, the opposite is not OK.
5318bool ASTContext::canAssignObjCInterfacesInBlockPointer(
5319                                         const ObjCObjectPointerType *LHSOPT,
5320                                         const ObjCObjectPointerType *RHSOPT,
5321                                         bool BlockReturnType) {
5322  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
5323    return true;
5324
5325  if (LHSOPT->isObjCBuiltinType()) {
5326    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
5327  }
5328
5329  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
5330    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5331                                             QualType(RHSOPT,0),
5332                                             false);
5333
5334  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
5335  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
5336  if (LHS && RHS)  { // We have 2 user-defined types.
5337    if (LHS != RHS) {
5338      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
5339        return BlockReturnType;
5340      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
5341        return !BlockReturnType;
5342    }
5343    else
5344      return true;
5345  }
5346  return false;
5347}
5348
5349/// getIntersectionOfProtocols - This routine finds the intersection of set
5350/// of protocols inherited from two distinct objective-c pointer objects.
5351/// It is used to build composite qualifier list of the composite type of
5352/// the conditional expression involving two objective-c pointer objects.
5353static
5354void getIntersectionOfProtocols(ASTContext &Context,
5355                                const ObjCObjectPointerType *LHSOPT,
5356                                const ObjCObjectPointerType *RHSOPT,
5357      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
5358
5359  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5360  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5361  assert(LHS->getInterface() && "LHS must have an interface base");
5362  assert(RHS->getInterface() && "RHS must have an interface base");
5363
5364  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
5365  unsigned LHSNumProtocols = LHS->getNumProtocols();
5366  if (LHSNumProtocols > 0)
5367    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
5368  else {
5369    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5370    Context.CollectInheritedProtocols(LHS->getInterface(),
5371                                      LHSInheritedProtocols);
5372    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
5373                                LHSInheritedProtocols.end());
5374  }
5375
5376  unsigned RHSNumProtocols = RHS->getNumProtocols();
5377  if (RHSNumProtocols > 0) {
5378    ObjCProtocolDecl **RHSProtocols =
5379      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
5380    for (unsigned i = 0; i < RHSNumProtocols; ++i)
5381      if (InheritedProtocolSet.count(RHSProtocols[i]))
5382        IntersectionOfProtocols.push_back(RHSProtocols[i]);
5383  } else {
5384    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
5385    Context.CollectInheritedProtocols(RHS->getInterface(),
5386                                      RHSInheritedProtocols);
5387    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5388         RHSInheritedProtocols.begin(),
5389         E = RHSInheritedProtocols.end(); I != E; ++I)
5390      if (InheritedProtocolSet.count((*I)))
5391        IntersectionOfProtocols.push_back((*I));
5392  }
5393}
5394
5395/// areCommonBaseCompatible - Returns common base class of the two classes if
5396/// one found. Note that this is O'2 algorithm. But it will be called as the
5397/// last type comparison in a ?-exp of ObjC pointer types before a
5398/// warning is issued. So, its invokation is extremely rare.
5399QualType ASTContext::areCommonBaseCompatible(
5400                                          const ObjCObjectPointerType *Lptr,
5401                                          const ObjCObjectPointerType *Rptr) {
5402  const ObjCObjectType *LHS = Lptr->getObjectType();
5403  const ObjCObjectType *RHS = Rptr->getObjectType();
5404  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
5405  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
5406  if (!LDecl || !RDecl || (LDecl == RDecl))
5407    return QualType();
5408
5409  do {
5410    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
5411    if (canAssignObjCInterfaces(LHS, RHS)) {
5412      SmallVector<ObjCProtocolDecl *, 8> Protocols;
5413      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
5414
5415      QualType Result = QualType(LHS, 0);
5416      if (!Protocols.empty())
5417        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
5418      Result = getObjCObjectPointerType(Result);
5419      return Result;
5420    }
5421  } while ((LDecl = LDecl->getSuperClass()));
5422
5423  return QualType();
5424}
5425
5426bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
5427                                         const ObjCObjectType *RHS) {
5428  assert(LHS->getInterface() && "LHS is not an interface type");
5429  assert(RHS->getInterface() && "RHS is not an interface type");
5430
5431  // Verify that the base decls are compatible: the RHS must be a subclass of
5432  // the LHS.
5433  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
5434    return false;
5435
5436  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
5437  // protocol qualified at all, then we are good.
5438  if (LHS->getNumProtocols() == 0)
5439    return true;
5440
5441  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
5442  // more detailed analysis is required.
5443  if (RHS->getNumProtocols() == 0) {
5444    // OK, if LHS is a superclass of RHS *and*
5445    // this superclass is assignment compatible with LHS.
5446    // false otherwise.
5447    bool IsSuperClass =
5448      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
5449    if (IsSuperClass) {
5450      // OK if conversion of LHS to SuperClass results in narrowing of types
5451      // ; i.e., SuperClass may implement at least one of the protocols
5452      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
5453      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
5454      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
5455      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
5456      // If super class has no protocols, it is not a match.
5457      if (SuperClassInheritedProtocols.empty())
5458        return false;
5459
5460      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5461           LHSPE = LHS->qual_end();
5462           LHSPI != LHSPE; LHSPI++) {
5463        bool SuperImplementsProtocol = false;
5464        ObjCProtocolDecl *LHSProto = (*LHSPI);
5465
5466        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5467             SuperClassInheritedProtocols.begin(),
5468             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
5469          ObjCProtocolDecl *SuperClassProto = (*I);
5470          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
5471            SuperImplementsProtocol = true;
5472            break;
5473          }
5474        }
5475        if (!SuperImplementsProtocol)
5476          return false;
5477      }
5478      return true;
5479    }
5480    return false;
5481  }
5482
5483  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
5484                                     LHSPE = LHS->qual_end();
5485       LHSPI != LHSPE; LHSPI++) {
5486    bool RHSImplementsProtocol = false;
5487
5488    // If the RHS doesn't implement the protocol on the left, the types
5489    // are incompatible.
5490    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
5491                                       RHSPE = RHS->qual_end();
5492         RHSPI != RHSPE; RHSPI++) {
5493      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
5494        RHSImplementsProtocol = true;
5495        break;
5496      }
5497    }
5498    // FIXME: For better diagnostics, consider passing back the protocol name.
5499    if (!RHSImplementsProtocol)
5500      return false;
5501  }
5502  // The RHS implements all protocols listed on the LHS.
5503  return true;
5504}
5505
5506bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
5507  // get the "pointed to" types
5508  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
5509  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
5510
5511  if (!LHSOPT || !RHSOPT)
5512    return false;
5513
5514  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
5515         canAssignObjCInterfaces(RHSOPT, LHSOPT);
5516}
5517
5518bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
5519  return canAssignObjCInterfaces(
5520                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
5521                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
5522}
5523
5524/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
5525/// both shall have the identically qualified version of a compatible type.
5526/// C99 6.2.7p1: Two types have compatible types if their types are the
5527/// same. See 6.7.[2,3,5] for additional rules.
5528bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
5529                                    bool CompareUnqualified) {
5530  if (getLangOptions().CPlusPlus)
5531    return hasSameType(LHS, RHS);
5532
5533  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
5534}
5535
5536bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
5537  return typesAreCompatible(LHS, RHS);
5538}
5539
5540bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
5541  return !mergeTypes(LHS, RHS, true).isNull();
5542}
5543
5544/// mergeTransparentUnionType - if T is a transparent union type and a member
5545/// of T is compatible with SubType, return the merged type, else return
5546/// QualType()
5547QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
5548                                               bool OfBlockPointer,
5549                                               bool Unqualified) {
5550  if (const RecordType *UT = T->getAsUnionType()) {
5551    RecordDecl *UD = UT->getDecl();
5552    if (UD->hasAttr<TransparentUnionAttr>()) {
5553      for (RecordDecl::field_iterator it = UD->field_begin(),
5554           itend = UD->field_end(); it != itend; ++it) {
5555        QualType ET = it->getType().getUnqualifiedType();
5556        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
5557        if (!MT.isNull())
5558          return MT;
5559      }
5560    }
5561  }
5562
5563  return QualType();
5564}
5565
5566/// mergeFunctionArgumentTypes - merge two types which appear as function
5567/// argument types
5568QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
5569                                                bool OfBlockPointer,
5570                                                bool Unqualified) {
5571  // GNU extension: two types are compatible if they appear as a function
5572  // argument, one of the types is a transparent union type and the other
5573  // type is compatible with a union member
5574  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
5575                                              Unqualified);
5576  if (!lmerge.isNull())
5577    return lmerge;
5578
5579  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
5580                                              Unqualified);
5581  if (!rmerge.isNull())
5582    return rmerge;
5583
5584  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
5585}
5586
5587QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
5588                                        bool OfBlockPointer,
5589                                        bool Unqualified) {
5590  const FunctionType *lbase = lhs->getAs<FunctionType>();
5591  const FunctionType *rbase = rhs->getAs<FunctionType>();
5592  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
5593  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
5594  bool allLTypes = true;
5595  bool allRTypes = true;
5596
5597  // Check return type
5598  QualType retType;
5599  if (OfBlockPointer) {
5600    QualType RHS = rbase->getResultType();
5601    QualType LHS = lbase->getResultType();
5602    bool UnqualifiedResult = Unqualified;
5603    if (!UnqualifiedResult)
5604      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
5605    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
5606  }
5607  else
5608    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
5609                         Unqualified);
5610  if (retType.isNull()) return QualType();
5611
5612  if (Unqualified)
5613    retType = retType.getUnqualifiedType();
5614
5615  CanQualType LRetType = getCanonicalType(lbase->getResultType());
5616  CanQualType RRetType = getCanonicalType(rbase->getResultType());
5617  if (Unqualified) {
5618    LRetType = LRetType.getUnqualifiedType();
5619    RRetType = RRetType.getUnqualifiedType();
5620  }
5621
5622  if (getCanonicalType(retType) != LRetType)
5623    allLTypes = false;
5624  if (getCanonicalType(retType) != RRetType)
5625    allRTypes = false;
5626
5627  // FIXME: double check this
5628  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
5629  //                           rbase->getRegParmAttr() != 0 &&
5630  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
5631  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
5632  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
5633
5634  // Compatible functions must have compatible calling conventions
5635  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
5636    return QualType();
5637
5638  // Regparm is part of the calling convention.
5639  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
5640    return QualType();
5641  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
5642    return QualType();
5643
5644  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
5645    return QualType();
5646
5647  // functypes which return are preferred over those that do not.
5648  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
5649    allLTypes = false;
5650  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
5651    allRTypes = false;
5652  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
5653  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
5654
5655  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
5656
5657  if (lproto && rproto) { // two C99 style function prototypes
5658    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
5659           "C++ shouldn't be here");
5660    unsigned lproto_nargs = lproto->getNumArgs();
5661    unsigned rproto_nargs = rproto->getNumArgs();
5662
5663    // Compatible functions must have the same number of arguments
5664    if (lproto_nargs != rproto_nargs)
5665      return QualType();
5666
5667    // Variadic and non-variadic functions aren't compatible
5668    if (lproto->isVariadic() != rproto->isVariadic())
5669      return QualType();
5670
5671    if (lproto->getTypeQuals() != rproto->getTypeQuals())
5672      return QualType();
5673
5674    if (LangOpts.ObjCAutoRefCount &&
5675        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
5676      return QualType();
5677
5678    // Check argument compatibility
5679    SmallVector<QualType, 10> types;
5680    for (unsigned i = 0; i < lproto_nargs; i++) {
5681      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
5682      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
5683      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
5684                                                    OfBlockPointer,
5685                                                    Unqualified);
5686      if (argtype.isNull()) return QualType();
5687
5688      if (Unqualified)
5689        argtype = argtype.getUnqualifiedType();
5690
5691      types.push_back(argtype);
5692      if (Unqualified) {
5693        largtype = largtype.getUnqualifiedType();
5694        rargtype = rargtype.getUnqualifiedType();
5695      }
5696
5697      if (getCanonicalType(argtype) != getCanonicalType(largtype))
5698        allLTypes = false;
5699      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
5700        allRTypes = false;
5701    }
5702
5703    if (allLTypes) return lhs;
5704    if (allRTypes) return rhs;
5705
5706    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
5707    EPI.ExtInfo = einfo;
5708    return getFunctionType(retType, types.begin(), types.size(), EPI);
5709  }
5710
5711  if (lproto) allRTypes = false;
5712  if (rproto) allLTypes = false;
5713
5714  const FunctionProtoType *proto = lproto ? lproto : rproto;
5715  if (proto) {
5716    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
5717    if (proto->isVariadic()) return QualType();
5718    // Check that the types are compatible with the types that
5719    // would result from default argument promotions (C99 6.7.5.3p15).
5720    // The only types actually affected are promotable integer
5721    // types and floats, which would be passed as a different
5722    // type depending on whether the prototype is visible.
5723    unsigned proto_nargs = proto->getNumArgs();
5724    for (unsigned i = 0; i < proto_nargs; ++i) {
5725      QualType argTy = proto->getArgType(i);
5726
5727      // Look at the promotion type of enum types, since that is the type used
5728      // to pass enum values.
5729      if (const EnumType *Enum = argTy->getAs<EnumType>())
5730        argTy = Enum->getDecl()->getPromotionType();
5731
5732      if (argTy->isPromotableIntegerType() ||
5733          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
5734        return QualType();
5735    }
5736
5737    if (allLTypes) return lhs;
5738    if (allRTypes) return rhs;
5739
5740    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
5741    EPI.ExtInfo = einfo;
5742    return getFunctionType(retType, proto->arg_type_begin(),
5743                           proto->getNumArgs(), EPI);
5744  }
5745
5746  if (allLTypes) return lhs;
5747  if (allRTypes) return rhs;
5748  return getFunctionNoProtoType(retType, einfo);
5749}
5750
5751QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
5752                                bool OfBlockPointer,
5753                                bool Unqualified, bool BlockReturnType) {
5754  // C++ [expr]: If an expression initially has the type "reference to T", the
5755  // type is adjusted to "T" prior to any further analysis, the expression
5756  // designates the object or function denoted by the reference, and the
5757  // expression is an lvalue unless the reference is an rvalue reference and
5758  // the expression is a function call (possibly inside parentheses).
5759  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
5760  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
5761
5762  if (Unqualified) {
5763    LHS = LHS.getUnqualifiedType();
5764    RHS = RHS.getUnqualifiedType();
5765  }
5766
5767  QualType LHSCan = getCanonicalType(LHS),
5768           RHSCan = getCanonicalType(RHS);
5769
5770  // If two types are identical, they are compatible.
5771  if (LHSCan == RHSCan)
5772    return LHS;
5773
5774  // If the qualifiers are different, the types aren't compatible... mostly.
5775  Qualifiers LQuals = LHSCan.getLocalQualifiers();
5776  Qualifiers RQuals = RHSCan.getLocalQualifiers();
5777  if (LQuals != RQuals) {
5778    // If any of these qualifiers are different, we have a type
5779    // mismatch.
5780    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
5781        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
5782        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
5783      return QualType();
5784
5785    // Exactly one GC qualifier difference is allowed: __strong is
5786    // okay if the other type has no GC qualifier but is an Objective
5787    // C object pointer (i.e. implicitly strong by default).  We fix
5788    // this by pretending that the unqualified type was actually
5789    // qualified __strong.
5790    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
5791    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
5792    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
5793
5794    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
5795      return QualType();
5796
5797    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
5798      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
5799    }
5800    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
5801      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
5802    }
5803    return QualType();
5804  }
5805
5806  // Okay, qualifiers are equal.
5807
5808  Type::TypeClass LHSClass = LHSCan->getTypeClass();
5809  Type::TypeClass RHSClass = RHSCan->getTypeClass();
5810
5811  // We want to consider the two function types to be the same for these
5812  // comparisons, just force one to the other.
5813  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
5814  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
5815
5816  // Same as above for arrays
5817  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
5818    LHSClass = Type::ConstantArray;
5819  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
5820    RHSClass = Type::ConstantArray;
5821
5822  // ObjCInterfaces are just specialized ObjCObjects.
5823  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
5824  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
5825
5826  // Canonicalize ExtVector -> Vector.
5827  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
5828  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
5829
5830  // If the canonical type classes don't match.
5831  if (LHSClass != RHSClass) {
5832    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
5833    // a signed integer type, or an unsigned integer type.
5834    // Compatibility is based on the underlying type, not the promotion
5835    // type.
5836    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
5837      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
5838        return RHS;
5839    }
5840    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
5841      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
5842        return LHS;
5843    }
5844
5845    return QualType();
5846  }
5847
5848  // The canonical type classes match.
5849  switch (LHSClass) {
5850#define TYPE(Class, Base)
5851#define ABSTRACT_TYPE(Class, Base)
5852#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
5853#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
5854#define DEPENDENT_TYPE(Class, Base) case Type::Class:
5855#include "clang/AST/TypeNodes.def"
5856    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
5857
5858  case Type::LValueReference:
5859  case Type::RValueReference:
5860  case Type::MemberPointer:
5861    llvm_unreachable("C++ should never be in mergeTypes");
5862
5863  case Type::ObjCInterface:
5864  case Type::IncompleteArray:
5865  case Type::VariableArray:
5866  case Type::FunctionProto:
5867  case Type::ExtVector:
5868    llvm_unreachable("Types are eliminated above");
5869
5870  case Type::Pointer:
5871  {
5872    // Merge two pointer types, while trying to preserve typedef info
5873    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
5874    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
5875    if (Unqualified) {
5876      LHSPointee = LHSPointee.getUnqualifiedType();
5877      RHSPointee = RHSPointee.getUnqualifiedType();
5878    }
5879    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
5880                                     Unqualified);
5881    if (ResultType.isNull()) return QualType();
5882    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5883      return LHS;
5884    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5885      return RHS;
5886    return getPointerType(ResultType);
5887  }
5888  case Type::BlockPointer:
5889  {
5890    // Merge two block pointer types, while trying to preserve typedef info
5891    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
5892    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
5893    if (Unqualified) {
5894      LHSPointee = LHSPointee.getUnqualifiedType();
5895      RHSPointee = RHSPointee.getUnqualifiedType();
5896    }
5897    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
5898                                     Unqualified);
5899    if (ResultType.isNull()) return QualType();
5900    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
5901      return LHS;
5902    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
5903      return RHS;
5904    return getBlockPointerType(ResultType);
5905  }
5906  case Type::Atomic:
5907  {
5908    // Merge two pointer types, while trying to preserve typedef info
5909    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
5910    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
5911    if (Unqualified) {
5912      LHSValue = LHSValue.getUnqualifiedType();
5913      RHSValue = RHSValue.getUnqualifiedType();
5914    }
5915    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
5916                                     Unqualified);
5917    if (ResultType.isNull()) return QualType();
5918    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
5919      return LHS;
5920    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
5921      return RHS;
5922    return getAtomicType(ResultType);
5923  }
5924  case Type::ConstantArray:
5925  {
5926    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
5927    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
5928    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
5929      return QualType();
5930
5931    QualType LHSElem = getAsArrayType(LHS)->getElementType();
5932    QualType RHSElem = getAsArrayType(RHS)->getElementType();
5933    if (Unqualified) {
5934      LHSElem = LHSElem.getUnqualifiedType();
5935      RHSElem = RHSElem.getUnqualifiedType();
5936    }
5937
5938    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
5939    if (ResultType.isNull()) return QualType();
5940    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5941      return LHS;
5942    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5943      return RHS;
5944    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
5945                                          ArrayType::ArraySizeModifier(), 0);
5946    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
5947                                          ArrayType::ArraySizeModifier(), 0);
5948    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
5949    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
5950    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
5951      return LHS;
5952    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
5953      return RHS;
5954    if (LVAT) {
5955      // FIXME: This isn't correct! But tricky to implement because
5956      // the array's size has to be the size of LHS, but the type
5957      // has to be different.
5958      return LHS;
5959    }
5960    if (RVAT) {
5961      // FIXME: This isn't correct! But tricky to implement because
5962      // the array's size has to be the size of RHS, but the type
5963      // has to be different.
5964      return RHS;
5965    }
5966    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
5967    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
5968    return getIncompleteArrayType(ResultType,
5969                                  ArrayType::ArraySizeModifier(), 0);
5970  }
5971  case Type::FunctionNoProto:
5972    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
5973  case Type::Record:
5974  case Type::Enum:
5975    return QualType();
5976  case Type::Builtin:
5977    // Only exactly equal builtin types are compatible, which is tested above.
5978    return QualType();
5979  case Type::Complex:
5980    // Distinct complex types are incompatible.
5981    return QualType();
5982  case Type::Vector:
5983    // FIXME: The merged type should be an ExtVector!
5984    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
5985                             RHSCan->getAs<VectorType>()))
5986      return LHS;
5987    return QualType();
5988  case Type::ObjCObject: {
5989    // Check if the types are assignment compatible.
5990    // FIXME: This should be type compatibility, e.g. whether
5991    // "LHS x; RHS x;" at global scope is legal.
5992    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
5993    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
5994    if (canAssignObjCInterfaces(LHSIface, RHSIface))
5995      return LHS;
5996
5997    return QualType();
5998  }
5999  case Type::ObjCObjectPointer: {
6000    if (OfBlockPointer) {
6001      if (canAssignObjCInterfacesInBlockPointer(
6002                                          LHS->getAs<ObjCObjectPointerType>(),
6003                                          RHS->getAs<ObjCObjectPointerType>(),
6004                                          BlockReturnType))
6005      return LHS;
6006      return QualType();
6007    }
6008    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6009                                RHS->getAs<ObjCObjectPointerType>()))
6010      return LHS;
6011
6012    return QualType();
6013    }
6014  }
6015
6016  return QualType();
6017}
6018
6019bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6020                   const FunctionProtoType *FromFunctionType,
6021                   const FunctionProtoType *ToFunctionType) {
6022  if (FromFunctionType->hasAnyConsumedArgs() !=
6023      ToFunctionType->hasAnyConsumedArgs())
6024    return false;
6025  FunctionProtoType::ExtProtoInfo FromEPI =
6026    FromFunctionType->getExtProtoInfo();
6027  FunctionProtoType::ExtProtoInfo ToEPI =
6028    ToFunctionType->getExtProtoInfo();
6029  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6030    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6031         ArgIdx != NumArgs; ++ArgIdx)  {
6032      if (FromEPI.ConsumedArguments[ArgIdx] !=
6033          ToEPI.ConsumedArguments[ArgIdx])
6034        return false;
6035    }
6036  return true;
6037}
6038
6039/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6040/// 'RHS' attributes and returns the merged version; including for function
6041/// return types.
6042QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6043  QualType LHSCan = getCanonicalType(LHS),
6044  RHSCan = getCanonicalType(RHS);
6045  // If two types are identical, they are compatible.
6046  if (LHSCan == RHSCan)
6047    return LHS;
6048  if (RHSCan->isFunctionType()) {
6049    if (!LHSCan->isFunctionType())
6050      return QualType();
6051    QualType OldReturnType =
6052      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6053    QualType NewReturnType =
6054      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6055    QualType ResReturnType =
6056      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6057    if (ResReturnType.isNull())
6058      return QualType();
6059    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6060      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6061      // In either case, use OldReturnType to build the new function type.
6062      const FunctionType *F = LHS->getAs<FunctionType>();
6063      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6064        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6065        EPI.ExtInfo = getFunctionExtInfo(LHS);
6066        QualType ResultType
6067          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6068                            FPT->getNumArgs(), EPI);
6069        return ResultType;
6070      }
6071    }
6072    return QualType();
6073  }
6074
6075  // If the qualifiers are different, the types can still be merged.
6076  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6077  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6078  if (LQuals != RQuals) {
6079    // If any of these qualifiers are different, we have a type mismatch.
6080    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6081        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6082      return QualType();
6083
6084    // Exactly one GC qualifier difference is allowed: __strong is
6085    // okay if the other type has no GC qualifier but is an Objective
6086    // C object pointer (i.e. implicitly strong by default).  We fix
6087    // this by pretending that the unqualified type was actually
6088    // qualified __strong.
6089    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6090    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6091    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6092
6093    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6094      return QualType();
6095
6096    if (GC_L == Qualifiers::Strong)
6097      return LHS;
6098    if (GC_R == Qualifiers::Strong)
6099      return RHS;
6100    return QualType();
6101  }
6102
6103  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6104    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6105    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6106    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6107    if (ResQT == LHSBaseQT)
6108      return LHS;
6109    if (ResQT == RHSBaseQT)
6110      return RHS;
6111  }
6112  return QualType();
6113}
6114
6115//===----------------------------------------------------------------------===//
6116//                         Integer Predicates
6117//===----------------------------------------------------------------------===//
6118
6119unsigned ASTContext::getIntWidth(QualType T) const {
6120  if (const EnumType *ET = dyn_cast<EnumType>(T))
6121    T = ET->getDecl()->getIntegerType();
6122  if (T->isBooleanType())
6123    return 1;
6124  // For builtin types, just use the standard type sizing method
6125  return (unsigned)getTypeSize(T);
6126}
6127
6128QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6129  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6130
6131  // Turn <4 x signed int> -> <4 x unsigned int>
6132  if (const VectorType *VTy = T->getAs<VectorType>())
6133    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6134                         VTy->getNumElements(), VTy->getVectorKind());
6135
6136  // For enums, we return the unsigned version of the base type.
6137  if (const EnumType *ETy = T->getAs<EnumType>())
6138    T = ETy->getDecl()->getIntegerType();
6139
6140  const BuiltinType *BTy = T->getAs<BuiltinType>();
6141  assert(BTy && "Unexpected signed integer type");
6142  switch (BTy->getKind()) {
6143  case BuiltinType::Char_S:
6144  case BuiltinType::SChar:
6145    return UnsignedCharTy;
6146  case BuiltinType::Short:
6147    return UnsignedShortTy;
6148  case BuiltinType::Int:
6149    return UnsignedIntTy;
6150  case BuiltinType::Long:
6151    return UnsignedLongTy;
6152  case BuiltinType::LongLong:
6153    return UnsignedLongLongTy;
6154  case BuiltinType::Int128:
6155    return UnsignedInt128Ty;
6156  default:
6157    llvm_unreachable("Unexpected signed integer type");
6158  }
6159}
6160
6161ASTMutationListener::~ASTMutationListener() { }
6162
6163
6164//===----------------------------------------------------------------------===//
6165//                          Builtin Type Computation
6166//===----------------------------------------------------------------------===//
6167
6168/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6169/// pointer over the consumed characters.  This returns the resultant type.  If
6170/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6171/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6172/// a vector of "i*".
6173///
6174/// RequiresICE is filled in on return to indicate whether the value is required
6175/// to be an Integer Constant Expression.
6176static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6177                                  ASTContext::GetBuiltinTypeError &Error,
6178                                  bool &RequiresICE,
6179                                  bool AllowTypeModifiers) {
6180  // Modifiers.
6181  int HowLong = 0;
6182  bool Signed = false, Unsigned = false;
6183  RequiresICE = false;
6184
6185  // Read the prefixed modifiers first.
6186  bool Done = false;
6187  while (!Done) {
6188    switch (*Str++) {
6189    default: Done = true; --Str; break;
6190    case 'I':
6191      RequiresICE = true;
6192      break;
6193    case 'S':
6194      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6195      assert(!Signed && "Can't use 'S' modifier multiple times!");
6196      Signed = true;
6197      break;
6198    case 'U':
6199      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6200      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6201      Unsigned = true;
6202      break;
6203    case 'L':
6204      assert(HowLong <= 2 && "Can't have LLLL modifier");
6205      ++HowLong;
6206      break;
6207    }
6208  }
6209
6210  QualType Type;
6211
6212  // Read the base type.
6213  switch (*Str++) {
6214  default: llvm_unreachable("Unknown builtin type letter!");
6215  case 'v':
6216    assert(HowLong == 0 && !Signed && !Unsigned &&
6217           "Bad modifiers used with 'v'!");
6218    Type = Context.VoidTy;
6219    break;
6220  case 'f':
6221    assert(HowLong == 0 && !Signed && !Unsigned &&
6222           "Bad modifiers used with 'f'!");
6223    Type = Context.FloatTy;
6224    break;
6225  case 'd':
6226    assert(HowLong < 2 && !Signed && !Unsigned &&
6227           "Bad modifiers used with 'd'!");
6228    if (HowLong)
6229      Type = Context.LongDoubleTy;
6230    else
6231      Type = Context.DoubleTy;
6232    break;
6233  case 's':
6234    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6235    if (Unsigned)
6236      Type = Context.UnsignedShortTy;
6237    else
6238      Type = Context.ShortTy;
6239    break;
6240  case 'i':
6241    if (HowLong == 3)
6242      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6243    else if (HowLong == 2)
6244      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6245    else if (HowLong == 1)
6246      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6247    else
6248      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6249    break;
6250  case 'c':
6251    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6252    if (Signed)
6253      Type = Context.SignedCharTy;
6254    else if (Unsigned)
6255      Type = Context.UnsignedCharTy;
6256    else
6257      Type = Context.CharTy;
6258    break;
6259  case 'b': // boolean
6260    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6261    Type = Context.BoolTy;
6262    break;
6263  case 'z':  // size_t.
6264    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6265    Type = Context.getSizeType();
6266    break;
6267  case 'F':
6268    Type = Context.getCFConstantStringType();
6269    break;
6270  case 'G':
6271    Type = Context.getObjCIdType();
6272    break;
6273  case 'H':
6274    Type = Context.getObjCSelType();
6275    break;
6276  case 'a':
6277    Type = Context.getBuiltinVaListType();
6278    assert(!Type.isNull() && "builtin va list type not initialized!");
6279    break;
6280  case 'A':
6281    // This is a "reference" to a va_list; however, what exactly
6282    // this means depends on how va_list is defined. There are two
6283    // different kinds of va_list: ones passed by value, and ones
6284    // passed by reference.  An example of a by-value va_list is
6285    // x86, where va_list is a char*. An example of by-ref va_list
6286    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6287    // we want this argument to be a char*&; for x86-64, we want
6288    // it to be a __va_list_tag*.
6289    Type = Context.getBuiltinVaListType();
6290    assert(!Type.isNull() && "builtin va list type not initialized!");
6291    if (Type->isArrayType())
6292      Type = Context.getArrayDecayedType(Type);
6293    else
6294      Type = Context.getLValueReferenceType(Type);
6295    break;
6296  case 'V': {
6297    char *End;
6298    unsigned NumElements = strtoul(Str, &End, 10);
6299    assert(End != Str && "Missing vector size");
6300    Str = End;
6301
6302    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
6303                                             RequiresICE, false);
6304    assert(!RequiresICE && "Can't require vector ICE");
6305
6306    // TODO: No way to make AltiVec vectors in builtins yet.
6307    Type = Context.getVectorType(ElementType, NumElements,
6308                                 VectorType::GenericVector);
6309    break;
6310  }
6311  case 'X': {
6312    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
6313                                             false);
6314    assert(!RequiresICE && "Can't require complex ICE");
6315    Type = Context.getComplexType(ElementType);
6316    break;
6317  }
6318  case 'Y' : {
6319    Type = Context.getPointerDiffType();
6320    break;
6321  }
6322  case 'P':
6323    Type = Context.getFILEType();
6324    if (Type.isNull()) {
6325      Error = ASTContext::GE_Missing_stdio;
6326      return QualType();
6327    }
6328    break;
6329  case 'J':
6330    if (Signed)
6331      Type = Context.getsigjmp_bufType();
6332    else
6333      Type = Context.getjmp_bufType();
6334
6335    if (Type.isNull()) {
6336      Error = ASTContext::GE_Missing_setjmp;
6337      return QualType();
6338    }
6339    break;
6340  case 'K':
6341    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
6342    Type = Context.getucontext_tType();
6343
6344    if (Type.isNull()) {
6345      Error = ASTContext::GE_Missing_ucontext;
6346      return QualType();
6347    }
6348    break;
6349  }
6350
6351  // If there are modifiers and if we're allowed to parse them, go for it.
6352  Done = !AllowTypeModifiers;
6353  while (!Done) {
6354    switch (char c = *Str++) {
6355    default: Done = true; --Str; break;
6356    case '*':
6357    case '&': {
6358      // Both pointers and references can have their pointee types
6359      // qualified with an address space.
6360      char *End;
6361      unsigned AddrSpace = strtoul(Str, &End, 10);
6362      if (End != Str && AddrSpace != 0) {
6363        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
6364        Str = End;
6365      }
6366      if (c == '*')
6367        Type = Context.getPointerType(Type);
6368      else
6369        Type = Context.getLValueReferenceType(Type);
6370      break;
6371    }
6372    // FIXME: There's no way to have a built-in with an rvalue ref arg.
6373    case 'C':
6374      Type = Type.withConst();
6375      break;
6376    case 'D':
6377      Type = Context.getVolatileType(Type);
6378      break;
6379    }
6380  }
6381
6382  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
6383         "Integer constant 'I' type must be an integer");
6384
6385  return Type;
6386}
6387
6388/// GetBuiltinType - Return the type for the specified builtin.
6389QualType ASTContext::GetBuiltinType(unsigned Id,
6390                                    GetBuiltinTypeError &Error,
6391                                    unsigned *IntegerConstantArgs) const {
6392  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
6393
6394  SmallVector<QualType, 8> ArgTypes;
6395
6396  bool RequiresICE = false;
6397  Error = GE_None;
6398  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
6399                                       RequiresICE, true);
6400  if (Error != GE_None)
6401    return QualType();
6402
6403  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
6404
6405  while (TypeStr[0] && TypeStr[0] != '.') {
6406    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
6407    if (Error != GE_None)
6408      return QualType();
6409
6410    // If this argument is required to be an IntegerConstantExpression and the
6411    // caller cares, fill in the bitmask we return.
6412    if (RequiresICE && IntegerConstantArgs)
6413      *IntegerConstantArgs |= 1 << ArgTypes.size();
6414
6415    // Do array -> pointer decay.  The builtin should use the decayed type.
6416    if (Ty->isArrayType())
6417      Ty = getArrayDecayedType(Ty);
6418
6419    ArgTypes.push_back(Ty);
6420  }
6421
6422  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
6423         "'.' should only occur at end of builtin type list!");
6424
6425  FunctionType::ExtInfo EI;
6426  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
6427
6428  bool Variadic = (TypeStr[0] == '.');
6429
6430  // We really shouldn't be making a no-proto type here, especially in C++.
6431  if (ArgTypes.empty() && Variadic)
6432    return getFunctionNoProtoType(ResType, EI);
6433
6434  FunctionProtoType::ExtProtoInfo EPI;
6435  EPI.ExtInfo = EI;
6436  EPI.Variadic = Variadic;
6437
6438  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
6439}
6440
6441GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
6442  GVALinkage External = GVA_StrongExternal;
6443
6444  Linkage L = FD->getLinkage();
6445  switch (L) {
6446  case NoLinkage:
6447  case InternalLinkage:
6448  case UniqueExternalLinkage:
6449    return GVA_Internal;
6450
6451  case ExternalLinkage:
6452    switch (FD->getTemplateSpecializationKind()) {
6453    case TSK_Undeclared:
6454    case TSK_ExplicitSpecialization:
6455      External = GVA_StrongExternal;
6456      break;
6457
6458    case TSK_ExplicitInstantiationDefinition:
6459      return GVA_ExplicitTemplateInstantiation;
6460
6461    case TSK_ExplicitInstantiationDeclaration:
6462    case TSK_ImplicitInstantiation:
6463      External = GVA_TemplateInstantiation;
6464      break;
6465    }
6466  }
6467
6468  if (!FD->isInlined())
6469    return External;
6470
6471  if (!getLangOptions().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
6472    // GNU or C99 inline semantics. Determine whether this symbol should be
6473    // externally visible.
6474    if (FD->isInlineDefinitionExternallyVisible())
6475      return External;
6476
6477    // C99 inline semantics, where the symbol is not externally visible.
6478    return GVA_C99Inline;
6479  }
6480
6481  // C++0x [temp.explicit]p9:
6482  //   [ Note: The intent is that an inline function that is the subject of
6483  //   an explicit instantiation declaration will still be implicitly
6484  //   instantiated when used so that the body can be considered for
6485  //   inlining, but that no out-of-line copy of the inline function would be
6486  //   generated in the translation unit. -- end note ]
6487  if (FD->getTemplateSpecializationKind()
6488                                       == TSK_ExplicitInstantiationDeclaration)
6489    return GVA_C99Inline;
6490
6491  return GVA_CXXInline;
6492}
6493
6494GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
6495  // If this is a static data member, compute the kind of template
6496  // specialization. Otherwise, this variable is not part of a
6497  // template.
6498  TemplateSpecializationKind TSK = TSK_Undeclared;
6499  if (VD->isStaticDataMember())
6500    TSK = VD->getTemplateSpecializationKind();
6501
6502  Linkage L = VD->getLinkage();
6503  if (L == ExternalLinkage && getLangOptions().CPlusPlus &&
6504      VD->getType()->getLinkage() == UniqueExternalLinkage)
6505    L = UniqueExternalLinkage;
6506
6507  switch (L) {
6508  case NoLinkage:
6509  case InternalLinkage:
6510  case UniqueExternalLinkage:
6511    return GVA_Internal;
6512
6513  case ExternalLinkage:
6514    switch (TSK) {
6515    case TSK_Undeclared:
6516    case TSK_ExplicitSpecialization:
6517      return GVA_StrongExternal;
6518
6519    case TSK_ExplicitInstantiationDeclaration:
6520      llvm_unreachable("Variable should not be instantiated");
6521      // Fall through to treat this like any other instantiation.
6522
6523    case TSK_ExplicitInstantiationDefinition:
6524      return GVA_ExplicitTemplateInstantiation;
6525
6526    case TSK_ImplicitInstantiation:
6527      return GVA_TemplateInstantiation;
6528    }
6529  }
6530
6531  return GVA_StrongExternal;
6532}
6533
6534bool ASTContext::DeclMustBeEmitted(const Decl *D) {
6535  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
6536    if (!VD->isFileVarDecl())
6537      return false;
6538  } else if (!isa<FunctionDecl>(D))
6539    return false;
6540
6541  // Weak references don't produce any output by themselves.
6542  if (D->hasAttr<WeakRefAttr>())
6543    return false;
6544
6545  // Aliases and used decls are required.
6546  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
6547    return true;
6548
6549  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6550    // Forward declarations aren't required.
6551    if (!FD->doesThisDeclarationHaveABody())
6552      return FD->doesDeclarationForceExternallyVisibleDefinition();
6553
6554    // Constructors and destructors are required.
6555    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
6556      return true;
6557
6558    // The key function for a class is required.
6559    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6560      const CXXRecordDecl *RD = MD->getParent();
6561      if (MD->isOutOfLine() && RD->isDynamicClass()) {
6562        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
6563        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
6564          return true;
6565      }
6566    }
6567
6568    GVALinkage Linkage = GetGVALinkageForFunction(FD);
6569
6570    // static, static inline, always_inline, and extern inline functions can
6571    // always be deferred.  Normal inline functions can be deferred in C99/C++.
6572    // Implicit template instantiations can also be deferred in C++.
6573    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
6574        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
6575      return false;
6576    return true;
6577  }
6578
6579  const VarDecl *VD = cast<VarDecl>(D);
6580  assert(VD->isFileVarDecl() && "Expected file scoped var");
6581
6582  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
6583    return false;
6584
6585  // Structs that have non-trivial constructors or destructors are required.
6586
6587  // FIXME: Handle references.
6588  // FIXME: Be more selective about which constructors we care about.
6589  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
6590    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
6591      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
6592                                   RD->hasTrivialCopyConstructor() &&
6593                                   RD->hasTrivialMoveConstructor() &&
6594                                   RD->hasTrivialDestructor()))
6595        return true;
6596    }
6597  }
6598
6599  GVALinkage L = GetGVALinkageForVariable(VD);
6600  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
6601    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
6602      return false;
6603  }
6604
6605  return true;
6606}
6607
6608CallingConv ASTContext::getDefaultMethodCallConv() {
6609  // Pass through to the C++ ABI object
6610  return ABI->getDefaultMethodCallConv();
6611}
6612
6613bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
6614  // Pass through to the C++ ABI object
6615  return ABI->isNearlyEmpty(RD);
6616}
6617
6618MangleContext *ASTContext::createMangleContext() {
6619  switch (Target->getCXXABI()) {
6620  case CXXABI_ARM:
6621  case CXXABI_Itanium:
6622    return createItaniumMangleContext(*this, getDiagnostics());
6623  case CXXABI_Microsoft:
6624    return createMicrosoftMangleContext(*this, getDiagnostics());
6625  }
6626  llvm_unreachable("Unsupported ABI");
6627}
6628
6629CXXABI::~CXXABI() {}
6630
6631size_t ASTContext::getSideTableAllocatedMemory() const {
6632  return ASTRecordLayouts.getMemorySize()
6633    + llvm::capacity_in_bytes(ObjCLayouts)
6634    + llvm::capacity_in_bytes(KeyFunctions)
6635    + llvm::capacity_in_bytes(ObjCImpls)
6636    + llvm::capacity_in_bytes(BlockVarCopyInits)
6637    + llvm::capacity_in_bytes(DeclAttrs)
6638    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
6639    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
6640    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
6641    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
6642    + llvm::capacity_in_bytes(OverriddenMethods)
6643    + llvm::capacity_in_bytes(Types)
6644    + llvm::capacity_in_bytes(VariableArrayTypes)
6645    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
6646}
6647
6648void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
6649  ParamIndices[D] = index;
6650}
6651
6652unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
6653  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
6654  assert(I != ParamIndices.end() &&
6655         "ParmIndices lacks entry set by ParmVarDecl");
6656  return I->second;
6657}
6658