ASTContext.cpp revision e75bb61f1b876afaa6b2f4a2b860c2889ea1d050
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/CommentCommandTraits.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/TypeLoc.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExternalASTSource.h"
24#include "clang/AST/ASTMutationListener.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/Mangle.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Support/Capacity.h"
35#include "CXXABI.h"
36#include <map>
37
38using namespace clang;
39
40unsigned ASTContext::NumImplicitDefaultConstructors;
41unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
42unsigned ASTContext::NumImplicitCopyConstructors;
43unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
44unsigned ASTContext::NumImplicitMoveConstructors;
45unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
46unsigned ASTContext::NumImplicitCopyAssignmentOperators;
47unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
48unsigned ASTContext::NumImplicitMoveAssignmentOperators;
49unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitDestructors;
51unsigned ASTContext::NumImplicitDestructorsDeclared;
52
53enum FloatingRank {
54  HalfRank, FloatRank, DoubleRank, LongDoubleRank
55};
56
57RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
58  if (!CommentsLoaded && ExternalSource) {
59    ExternalSource->ReadComments();
60    CommentsLoaded = true;
61  }
62
63  assert(D);
64
65  // User can not attach documentation to implicit declarations.
66  if (D->isImplicit())
67    return NULL;
68
69  // User can not attach documentation to implicit instantiations.
70  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
71    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
72      return NULL;
73  }
74
75  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
76    if (VD->isStaticDataMember() &&
77        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
78      return NULL;
79  }
80
81  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
82    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
83      return NULL;
84  }
85
86  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
87    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
88      return NULL;
89  }
90
91  // TODO: handle comments for function parameters properly.
92  if (isa<ParmVarDecl>(D))
93    return NULL;
94
95  // TODO: we could look up template parameter documentation in the template
96  // documentation.
97  if (isa<TemplateTypeParmDecl>(D) ||
98      isa<NonTypeTemplateParmDecl>(D) ||
99      isa<TemplateTemplateParmDecl>(D))
100    return NULL;
101
102  ArrayRef<RawComment *> RawComments = Comments.getComments();
103
104  // If there are no comments anywhere, we won't find anything.
105  if (RawComments.empty())
106    return NULL;
107
108  // Find declaration location.
109  // For Objective-C declarations we generally don't expect to have multiple
110  // declarators, thus use declaration starting location as the "declaration
111  // location".
112  // For all other declarations multiple declarators are used quite frequently,
113  // so we use the location of the identifier as the "declaration location".
114  SourceLocation DeclLoc;
115  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
116      isa<ObjCPropertyDecl>(D) ||
117      isa<RedeclarableTemplateDecl>(D) ||
118      isa<ClassTemplateSpecializationDecl>(D))
119    DeclLoc = D->getLocStart();
120  else
121    DeclLoc = D->getLocation();
122
123  // If the declaration doesn't map directly to a location in a file, we
124  // can't find the comment.
125  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
126    return NULL;
127
128  // Find the comment that occurs just after this declaration.
129  ArrayRef<RawComment *>::iterator Comment;
130  {
131    // When searching for comments during parsing, the comment we are looking
132    // for is usually among the last two comments we parsed -- check them
133    // first.
134    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
135    BeforeThanCompare<RawComment> Compare(SourceMgr);
136    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
137    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
138    if (!Found && RawComments.size() >= 2) {
139      MaybeBeforeDecl--;
140      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
141    }
142
143    if (Found) {
144      Comment = MaybeBeforeDecl + 1;
145      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
146                                         &CommentAtDeclLoc, Compare));
147    } else {
148      // Slow path.
149      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
150                                 &CommentAtDeclLoc, Compare);
151    }
152  }
153
154  // Decompose the location for the declaration and find the beginning of the
155  // file buffer.
156  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
157
158  // First check whether we have a trailing comment.
159  if (Comment != RawComments.end() &&
160      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
161      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
162    std::pair<FileID, unsigned> CommentBeginDecomp
163      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
164    // Check that Doxygen trailing comment comes after the declaration, starts
165    // on the same line and in the same file as the declaration.
166    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
167        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
168          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
169                                     CommentBeginDecomp.second)) {
170      return *Comment;
171    }
172  }
173
174  // The comment just after the declaration was not a trailing comment.
175  // Let's look at the previous comment.
176  if (Comment == RawComments.begin())
177    return NULL;
178  --Comment;
179
180  // Check that we actually have a non-member Doxygen comment.
181  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
182    return NULL;
183
184  // Decompose the end of the comment.
185  std::pair<FileID, unsigned> CommentEndDecomp
186    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
187
188  // If the comment and the declaration aren't in the same file, then they
189  // aren't related.
190  if (DeclLocDecomp.first != CommentEndDecomp.first)
191    return NULL;
192
193  // Get the corresponding buffer.
194  bool Invalid = false;
195  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
196                                               &Invalid).data();
197  if (Invalid)
198    return NULL;
199
200  // Extract text between the comment and declaration.
201  StringRef Text(Buffer + CommentEndDecomp.second,
202                 DeclLocDecomp.second - CommentEndDecomp.second);
203
204  // There should be no other declarations or preprocessor directives between
205  // comment and declaration.
206  if (Text.find_first_of(",;{}#@") != StringRef::npos)
207    return NULL;
208
209  return *Comment;
210}
211
212namespace {
213/// If we have a 'templated' declaration for a template, adjust 'D' to
214/// refer to the actual template.
215/// If we have an implicit instantiation, adjust 'D' to refer to template.
216const Decl *adjustDeclToTemplate(const Decl *D) {
217  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
218    // Is this function declaration part of a function template?
219    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
220      return FTD;
221
222    // Nothing to do if function is not an implicit instantiation.
223    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
224      return D;
225
226    // Function is an implicit instantiation of a function template?
227    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
228      return FTD;
229
230    // Function is instantiated from a member definition of a class template?
231    if (const FunctionDecl *MemberDecl =
232            FD->getInstantiatedFromMemberFunction())
233      return MemberDecl;
234
235    return D;
236  }
237  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
238    // Static data member is instantiated from a member definition of a class
239    // template?
240    if (VD->isStaticDataMember())
241      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
242        return MemberDecl;
243
244    return D;
245  }
246  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
247    // Is this class declaration part of a class template?
248    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
249      return CTD;
250
251    // Class is an implicit instantiation of a class template or partial
252    // specialization?
253    if (const ClassTemplateSpecializationDecl *CTSD =
254            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
255      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
256        return D;
257      llvm::PointerUnion<ClassTemplateDecl *,
258                         ClassTemplatePartialSpecializationDecl *>
259          PU = CTSD->getSpecializedTemplateOrPartial();
260      return PU.is<ClassTemplateDecl*>() ?
261          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
262          static_cast<const Decl*>(
263              PU.get<ClassTemplatePartialSpecializationDecl *>());
264    }
265
266    // Class is instantiated from a member definition of a class template?
267    if (const MemberSpecializationInfo *Info =
268                   CRD->getMemberSpecializationInfo())
269      return Info->getInstantiatedFrom();
270
271    return D;
272  }
273  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
274    // Enum is instantiated from a member definition of a class template?
275    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
276      return MemberDecl;
277
278    return D;
279  }
280  // FIXME: Adjust alias templates?
281  return D;
282}
283} // unnamed namespace
284
285const RawComment *ASTContext::getRawCommentForAnyRedecl(
286                                                const Decl *D,
287                                                const Decl **OriginalDecl) const {
288  D = adjustDeclToTemplate(D);
289
290  // Check whether we have cached a comment for this declaration already.
291  {
292    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
293        RedeclComments.find(D);
294    if (Pos != RedeclComments.end()) {
295      const RawCommentAndCacheFlags &Raw = Pos->second;
296      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
297        if (OriginalDecl)
298          *OriginalDecl = Raw.getOriginalDecl();
299        return Raw.getRaw();
300      }
301    }
302  }
303
304  // Search for comments attached to declarations in the redeclaration chain.
305  const RawComment *RC = NULL;
306  const Decl *OriginalDeclForRC = NULL;
307  for (Decl::redecl_iterator I = D->redecls_begin(),
308                             E = D->redecls_end();
309       I != E; ++I) {
310    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
311        RedeclComments.find(*I);
312    if (Pos != RedeclComments.end()) {
313      const RawCommentAndCacheFlags &Raw = Pos->second;
314      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
315        RC = Raw.getRaw();
316        OriginalDeclForRC = Raw.getOriginalDecl();
317        break;
318      }
319    } else {
320      RC = getRawCommentForDeclNoCache(*I);
321      OriginalDeclForRC = *I;
322      RawCommentAndCacheFlags Raw;
323      if (RC) {
324        Raw.setRaw(RC);
325        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
326      } else
327        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
328      Raw.setOriginalDecl(*I);
329      RedeclComments[*I] = Raw;
330      if (RC)
331        break;
332    }
333  }
334
335  // If we found a comment, it should be a documentation comment.
336  assert(!RC || RC->isDocumentation());
337
338  if (OriginalDecl)
339    *OriginalDecl = OriginalDeclForRC;
340
341  // Update cache for every declaration in the redeclaration chain.
342  RawCommentAndCacheFlags Raw;
343  Raw.setRaw(RC);
344  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
345  Raw.setOriginalDecl(OriginalDeclForRC);
346
347  for (Decl::redecl_iterator I = D->redecls_begin(),
348                             E = D->redecls_end();
349       I != E; ++I) {
350    RawCommentAndCacheFlags &R = RedeclComments[*I];
351    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
352      R = Raw;
353  }
354
355  return RC;
356}
357
358comments::FullComment *ASTContext::getCommentForDecl(const Decl *D) const {
359  D = adjustDeclToTemplate(D);
360  const Decl *Canonical = D->getCanonicalDecl();
361  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
362      ParsedComments.find(Canonical);
363  if (Pos != ParsedComments.end())
364    return Pos->second;
365
366  const Decl *OriginalDecl;
367  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
368  if (!RC)
369    return NULL;
370
371  // If the RawComment was attached to other redeclaration of this Decl, we
372  // should parse the comment in context of that other Decl.  This is important
373  // because comments can contain references to parameter names which can be
374  // different across redeclarations.
375  if (D != OriginalDecl)
376    return getCommentForDecl(OriginalDecl);
377
378  comments::FullComment *FC = RC->parse(*this, D);
379  ParsedComments[Canonical] = FC;
380  return FC;
381}
382
383void
384ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
385                                               TemplateTemplateParmDecl *Parm) {
386  ID.AddInteger(Parm->getDepth());
387  ID.AddInteger(Parm->getPosition());
388  ID.AddBoolean(Parm->isParameterPack());
389
390  TemplateParameterList *Params = Parm->getTemplateParameters();
391  ID.AddInteger(Params->size());
392  for (TemplateParameterList::const_iterator P = Params->begin(),
393                                          PEnd = Params->end();
394       P != PEnd; ++P) {
395    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
396      ID.AddInteger(0);
397      ID.AddBoolean(TTP->isParameterPack());
398      continue;
399    }
400
401    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
402      ID.AddInteger(1);
403      ID.AddBoolean(NTTP->isParameterPack());
404      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
405      if (NTTP->isExpandedParameterPack()) {
406        ID.AddBoolean(true);
407        ID.AddInteger(NTTP->getNumExpansionTypes());
408        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
409          QualType T = NTTP->getExpansionType(I);
410          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
411        }
412      } else
413        ID.AddBoolean(false);
414      continue;
415    }
416
417    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
418    ID.AddInteger(2);
419    Profile(ID, TTP);
420  }
421}
422
423TemplateTemplateParmDecl *
424ASTContext::getCanonicalTemplateTemplateParmDecl(
425                                          TemplateTemplateParmDecl *TTP) const {
426  // Check if we already have a canonical template template parameter.
427  llvm::FoldingSetNodeID ID;
428  CanonicalTemplateTemplateParm::Profile(ID, TTP);
429  void *InsertPos = 0;
430  CanonicalTemplateTemplateParm *Canonical
431    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
432  if (Canonical)
433    return Canonical->getParam();
434
435  // Build a canonical template parameter list.
436  TemplateParameterList *Params = TTP->getTemplateParameters();
437  SmallVector<NamedDecl *, 4> CanonParams;
438  CanonParams.reserve(Params->size());
439  for (TemplateParameterList::const_iterator P = Params->begin(),
440                                          PEnd = Params->end();
441       P != PEnd; ++P) {
442    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
443      CanonParams.push_back(
444                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
445                                               SourceLocation(),
446                                               SourceLocation(),
447                                               TTP->getDepth(),
448                                               TTP->getIndex(), 0, false,
449                                               TTP->isParameterPack()));
450    else if (NonTypeTemplateParmDecl *NTTP
451             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
452      QualType T = getCanonicalType(NTTP->getType());
453      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
454      NonTypeTemplateParmDecl *Param;
455      if (NTTP->isExpandedParameterPack()) {
456        SmallVector<QualType, 2> ExpandedTypes;
457        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
458        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
459          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
460          ExpandedTInfos.push_back(
461                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
462        }
463
464        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
465                                                SourceLocation(),
466                                                SourceLocation(),
467                                                NTTP->getDepth(),
468                                                NTTP->getPosition(), 0,
469                                                T,
470                                                TInfo,
471                                                ExpandedTypes.data(),
472                                                ExpandedTypes.size(),
473                                                ExpandedTInfos.data());
474      } else {
475        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
476                                                SourceLocation(),
477                                                SourceLocation(),
478                                                NTTP->getDepth(),
479                                                NTTP->getPosition(), 0,
480                                                T,
481                                                NTTP->isParameterPack(),
482                                                TInfo);
483      }
484      CanonParams.push_back(Param);
485
486    } else
487      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
488                                           cast<TemplateTemplateParmDecl>(*P)));
489  }
490
491  TemplateTemplateParmDecl *CanonTTP
492    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
493                                       SourceLocation(), TTP->getDepth(),
494                                       TTP->getPosition(),
495                                       TTP->isParameterPack(),
496                                       0,
497                         TemplateParameterList::Create(*this, SourceLocation(),
498                                                       SourceLocation(),
499                                                       CanonParams.data(),
500                                                       CanonParams.size(),
501                                                       SourceLocation()));
502
503  // Get the new insert position for the node we care about.
504  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
505  assert(Canonical == 0 && "Shouldn't be in the map!");
506  (void)Canonical;
507
508  // Create the canonical template template parameter entry.
509  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
510  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
511  return CanonTTP;
512}
513
514CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
515  if (!LangOpts.CPlusPlus) return 0;
516
517  switch (T.getCXXABI()) {
518  case CXXABI_ARM:
519    return CreateARMCXXABI(*this);
520  case CXXABI_Itanium:
521    return CreateItaniumCXXABI(*this);
522  case CXXABI_Microsoft:
523    return CreateMicrosoftCXXABI(*this);
524  }
525  llvm_unreachable("Invalid CXXABI type!");
526}
527
528static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
529                                             const LangOptions &LOpts) {
530  if (LOpts.FakeAddressSpaceMap) {
531    // The fake address space map must have a distinct entry for each
532    // language-specific address space.
533    static const unsigned FakeAddrSpaceMap[] = {
534      1, // opencl_global
535      2, // opencl_local
536      3, // opencl_constant
537      4, // cuda_device
538      5, // cuda_constant
539      6  // cuda_shared
540    };
541    return &FakeAddrSpaceMap;
542  } else {
543    return &T.getAddressSpaceMap();
544  }
545}
546
547ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
548                       const TargetInfo *t,
549                       IdentifierTable &idents, SelectorTable &sels,
550                       Builtin::Context &builtins,
551                       unsigned size_reserve,
552                       bool DelayInitialization)
553  : FunctionProtoTypes(this_()),
554    TemplateSpecializationTypes(this_()),
555    DependentTemplateSpecializationTypes(this_()),
556    SubstTemplateTemplateParmPacks(this_()),
557    GlobalNestedNameSpecifier(0),
558    Int128Decl(0), UInt128Decl(0),
559    BuiltinVaListDecl(0),
560    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
561    BOOLDecl(0),
562    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
563    FILEDecl(0),
564    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
565    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
566    cudaConfigureCallDecl(0),
567    NullTypeSourceInfo(QualType()),
568    FirstLocalImport(), LastLocalImport(),
569    SourceMgr(SM), LangOpts(LOpts),
570    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
571    Idents(idents), Selectors(sels),
572    BuiltinInfo(builtins),
573    DeclarationNames(*this),
574    ExternalSource(0), Listener(0),
575    Comments(SM), CommentsLoaded(false),
576    LastSDM(0, 0),
577    UniqueBlockByRefTypeID(0)
578{
579  if (size_reserve > 0) Types.reserve(size_reserve);
580  TUDecl = TranslationUnitDecl::Create(*this);
581
582  if (!DelayInitialization) {
583    assert(t && "No target supplied for ASTContext initialization");
584    InitBuiltinTypes(*t);
585  }
586}
587
588ASTContext::~ASTContext() {
589  // Release the DenseMaps associated with DeclContext objects.
590  // FIXME: Is this the ideal solution?
591  ReleaseDeclContextMaps();
592
593  // Call all of the deallocation functions.
594  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
595    Deallocations[I].first(Deallocations[I].second);
596
597  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
598  // because they can contain DenseMaps.
599  for (llvm::DenseMap<const ObjCContainerDecl*,
600       const ASTRecordLayout*>::iterator
601       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
602    // Increment in loop to prevent using deallocated memory.
603    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
604      R->Destroy(*this);
605
606  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
607       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
608    // Increment in loop to prevent using deallocated memory.
609    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
610      R->Destroy(*this);
611  }
612
613  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
614                                                    AEnd = DeclAttrs.end();
615       A != AEnd; ++A)
616    A->second->~AttrVec();
617}
618
619void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
620  Deallocations.push_back(std::make_pair(Callback, Data));
621}
622
623void
624ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
625  ExternalSource.reset(Source.take());
626}
627
628void ASTContext::PrintStats() const {
629  llvm::errs() << "\n*** AST Context Stats:\n";
630  llvm::errs() << "  " << Types.size() << " types total.\n";
631
632  unsigned counts[] = {
633#define TYPE(Name, Parent) 0,
634#define ABSTRACT_TYPE(Name, Parent)
635#include "clang/AST/TypeNodes.def"
636    0 // Extra
637  };
638
639  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
640    Type *T = Types[i];
641    counts[(unsigned)T->getTypeClass()]++;
642  }
643
644  unsigned Idx = 0;
645  unsigned TotalBytes = 0;
646#define TYPE(Name, Parent)                                              \
647  if (counts[Idx])                                                      \
648    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
649                 << " types\n";                                         \
650  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
651  ++Idx;
652#define ABSTRACT_TYPE(Name, Parent)
653#include "clang/AST/TypeNodes.def"
654
655  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
656
657  // Implicit special member functions.
658  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
659               << NumImplicitDefaultConstructors
660               << " implicit default constructors created\n";
661  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
662               << NumImplicitCopyConstructors
663               << " implicit copy constructors created\n";
664  if (getLangOpts().CPlusPlus)
665    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
666                 << NumImplicitMoveConstructors
667                 << " implicit move constructors created\n";
668  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
669               << NumImplicitCopyAssignmentOperators
670               << " implicit copy assignment operators created\n";
671  if (getLangOpts().CPlusPlus)
672    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
673                 << NumImplicitMoveAssignmentOperators
674                 << " implicit move assignment operators created\n";
675  llvm::errs() << NumImplicitDestructorsDeclared << "/"
676               << NumImplicitDestructors
677               << " implicit destructors created\n";
678
679  if (ExternalSource.get()) {
680    llvm::errs() << "\n";
681    ExternalSource->PrintStats();
682  }
683
684  BumpAlloc.PrintStats();
685}
686
687TypedefDecl *ASTContext::getInt128Decl() const {
688  if (!Int128Decl) {
689    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
690    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
691                                     getTranslationUnitDecl(),
692                                     SourceLocation(),
693                                     SourceLocation(),
694                                     &Idents.get("__int128_t"),
695                                     TInfo);
696  }
697
698  return Int128Decl;
699}
700
701TypedefDecl *ASTContext::getUInt128Decl() const {
702  if (!UInt128Decl) {
703    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
704    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
705                                     getTranslationUnitDecl(),
706                                     SourceLocation(),
707                                     SourceLocation(),
708                                     &Idents.get("__uint128_t"),
709                                     TInfo);
710  }
711
712  return UInt128Decl;
713}
714
715void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
716  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
717  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
718  Types.push_back(Ty);
719}
720
721void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
722  assert((!this->Target || this->Target == &Target) &&
723         "Incorrect target reinitialization");
724  assert(VoidTy.isNull() && "Context reinitialized?");
725
726  this->Target = &Target;
727
728  ABI.reset(createCXXABI(Target));
729  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
730
731  // C99 6.2.5p19.
732  InitBuiltinType(VoidTy,              BuiltinType::Void);
733
734  // C99 6.2.5p2.
735  InitBuiltinType(BoolTy,              BuiltinType::Bool);
736  // C99 6.2.5p3.
737  if (LangOpts.CharIsSigned)
738    InitBuiltinType(CharTy,            BuiltinType::Char_S);
739  else
740    InitBuiltinType(CharTy,            BuiltinType::Char_U);
741  // C99 6.2.5p4.
742  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
743  InitBuiltinType(ShortTy,             BuiltinType::Short);
744  InitBuiltinType(IntTy,               BuiltinType::Int);
745  InitBuiltinType(LongTy,              BuiltinType::Long);
746  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
747
748  // C99 6.2.5p6.
749  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
750  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
751  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
752  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
753  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
754
755  // C99 6.2.5p10.
756  InitBuiltinType(FloatTy,             BuiltinType::Float);
757  InitBuiltinType(DoubleTy,            BuiltinType::Double);
758  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
759
760  // GNU extension, 128-bit integers.
761  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
762  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
763
764  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
765    if (TargetInfo::isTypeSigned(Target.getWCharType()))
766      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
767    else  // -fshort-wchar makes wchar_t be unsigned.
768      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
769  } else // C99 (or C++ using -fno-wchar)
770    WCharTy = getFromTargetType(Target.getWCharType());
771
772  WIntTy = getFromTargetType(Target.getWIntType());
773
774  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
775    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
776  else // C99
777    Char16Ty = getFromTargetType(Target.getChar16Type());
778
779  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
780    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
781  else // C99
782    Char32Ty = getFromTargetType(Target.getChar32Type());
783
784  // Placeholder type for type-dependent expressions whose type is
785  // completely unknown. No code should ever check a type against
786  // DependentTy and users should never see it; however, it is here to
787  // help diagnose failures to properly check for type-dependent
788  // expressions.
789  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
790
791  // Placeholder type for functions.
792  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
793
794  // Placeholder type for bound members.
795  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
796
797  // Placeholder type for pseudo-objects.
798  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
799
800  // "any" type; useful for debugger-like clients.
801  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
802
803  // Placeholder type for unbridged ARC casts.
804  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
805
806  // Placeholder type for builtin functions.
807  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
808
809  // C99 6.2.5p11.
810  FloatComplexTy      = getComplexType(FloatTy);
811  DoubleComplexTy     = getComplexType(DoubleTy);
812  LongDoubleComplexTy = getComplexType(LongDoubleTy);
813
814  // Builtin types for 'id', 'Class', and 'SEL'.
815  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
816  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
817  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
818
819  // Builtin type for __objc_yes and __objc_no
820  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
821                       SignedCharTy : BoolTy);
822
823  ObjCConstantStringType = QualType();
824
825  // void * type
826  VoidPtrTy = getPointerType(VoidTy);
827
828  // nullptr type (C++0x 2.14.7)
829  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
830
831  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
832  InitBuiltinType(HalfTy, BuiltinType::Half);
833
834  // Builtin type used to help define __builtin_va_list.
835  VaListTagTy = QualType();
836}
837
838DiagnosticsEngine &ASTContext::getDiagnostics() const {
839  return SourceMgr.getDiagnostics();
840}
841
842AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
843  AttrVec *&Result = DeclAttrs[D];
844  if (!Result) {
845    void *Mem = Allocate(sizeof(AttrVec));
846    Result = new (Mem) AttrVec;
847  }
848
849  return *Result;
850}
851
852/// \brief Erase the attributes corresponding to the given declaration.
853void ASTContext::eraseDeclAttrs(const Decl *D) {
854  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
855  if (Pos != DeclAttrs.end()) {
856    Pos->second->~AttrVec();
857    DeclAttrs.erase(Pos);
858  }
859}
860
861MemberSpecializationInfo *
862ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
863  assert(Var->isStaticDataMember() && "Not a static data member");
864  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
865    = InstantiatedFromStaticDataMember.find(Var);
866  if (Pos == InstantiatedFromStaticDataMember.end())
867    return 0;
868
869  return Pos->second;
870}
871
872void
873ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
874                                                TemplateSpecializationKind TSK,
875                                          SourceLocation PointOfInstantiation) {
876  assert(Inst->isStaticDataMember() && "Not a static data member");
877  assert(Tmpl->isStaticDataMember() && "Not a static data member");
878  assert(!InstantiatedFromStaticDataMember[Inst] &&
879         "Already noted what static data member was instantiated from");
880  InstantiatedFromStaticDataMember[Inst]
881    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
882}
883
884FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
885                                                     const FunctionDecl *FD){
886  assert(FD && "Specialization is 0");
887  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
888    = ClassScopeSpecializationPattern.find(FD);
889  if (Pos == ClassScopeSpecializationPattern.end())
890    return 0;
891
892  return Pos->second;
893}
894
895void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
896                                        FunctionDecl *Pattern) {
897  assert(FD && "Specialization is 0");
898  assert(Pattern && "Class scope specialization pattern is 0");
899  ClassScopeSpecializationPattern[FD] = Pattern;
900}
901
902NamedDecl *
903ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
904  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
905    = InstantiatedFromUsingDecl.find(UUD);
906  if (Pos == InstantiatedFromUsingDecl.end())
907    return 0;
908
909  return Pos->second;
910}
911
912void
913ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
914  assert((isa<UsingDecl>(Pattern) ||
915          isa<UnresolvedUsingValueDecl>(Pattern) ||
916          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
917         "pattern decl is not a using decl");
918  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
919  InstantiatedFromUsingDecl[Inst] = Pattern;
920}
921
922UsingShadowDecl *
923ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
924  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
925    = InstantiatedFromUsingShadowDecl.find(Inst);
926  if (Pos == InstantiatedFromUsingShadowDecl.end())
927    return 0;
928
929  return Pos->second;
930}
931
932void
933ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
934                                               UsingShadowDecl *Pattern) {
935  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
936  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
937}
938
939FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
940  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
941    = InstantiatedFromUnnamedFieldDecl.find(Field);
942  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
943    return 0;
944
945  return Pos->second;
946}
947
948void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
949                                                     FieldDecl *Tmpl) {
950  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
951  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
952  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
953         "Already noted what unnamed field was instantiated from");
954
955  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
956}
957
958bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
959                                    const FieldDecl *LastFD) const {
960  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
961          FD->getBitWidthValue(*this) == 0);
962}
963
964bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
965                                             const FieldDecl *LastFD) const {
966  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
967          FD->getBitWidthValue(*this) == 0 &&
968          LastFD->getBitWidthValue(*this) != 0);
969}
970
971bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
972                                         const FieldDecl *LastFD) const {
973  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
974          FD->getBitWidthValue(*this) &&
975          LastFD->getBitWidthValue(*this));
976}
977
978bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
979                                         const FieldDecl *LastFD) const {
980  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
981          LastFD->getBitWidthValue(*this));
982}
983
984bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
985                                             const FieldDecl *LastFD) const {
986  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
987          FD->getBitWidthValue(*this));
988}
989
990ASTContext::overridden_cxx_method_iterator
991ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
992  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
993    = OverriddenMethods.find(Method);
994  if (Pos == OverriddenMethods.end())
995    return 0;
996
997  return Pos->second.begin();
998}
999
1000ASTContext::overridden_cxx_method_iterator
1001ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1002  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1003    = OverriddenMethods.find(Method);
1004  if (Pos == OverriddenMethods.end())
1005    return 0;
1006
1007  return Pos->second.end();
1008}
1009
1010unsigned
1011ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1012  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1013    = OverriddenMethods.find(Method);
1014  if (Pos == OverriddenMethods.end())
1015    return 0;
1016
1017  return Pos->second.size();
1018}
1019
1020void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1021                                     const CXXMethodDecl *Overridden) {
1022  OverriddenMethods[Method].push_back(Overridden);
1023}
1024
1025void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1026  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1027  assert(!Import->isFromASTFile() && "Non-local import declaration");
1028  if (!FirstLocalImport) {
1029    FirstLocalImport = Import;
1030    LastLocalImport = Import;
1031    return;
1032  }
1033
1034  LastLocalImport->NextLocalImport = Import;
1035  LastLocalImport = Import;
1036}
1037
1038//===----------------------------------------------------------------------===//
1039//                         Type Sizing and Analysis
1040//===----------------------------------------------------------------------===//
1041
1042/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1043/// scalar floating point type.
1044const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1045  const BuiltinType *BT = T->getAs<BuiltinType>();
1046  assert(BT && "Not a floating point type!");
1047  switch (BT->getKind()) {
1048  default: llvm_unreachable("Not a floating point type!");
1049  case BuiltinType::Half:       return Target->getHalfFormat();
1050  case BuiltinType::Float:      return Target->getFloatFormat();
1051  case BuiltinType::Double:     return Target->getDoubleFormat();
1052  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1053  }
1054}
1055
1056/// getDeclAlign - Return a conservative estimate of the alignment of the
1057/// specified decl.  Note that bitfields do not have a valid alignment, so
1058/// this method will assert on them.
1059/// If @p RefAsPointee, references are treated like their underlying type
1060/// (for alignof), else they're treated like pointers (for CodeGen).
1061CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1062  unsigned Align = Target->getCharWidth();
1063
1064  bool UseAlignAttrOnly = false;
1065  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1066    Align = AlignFromAttr;
1067
1068    // __attribute__((aligned)) can increase or decrease alignment
1069    // *except* on a struct or struct member, where it only increases
1070    // alignment unless 'packed' is also specified.
1071    //
1072    // It is an error for alignas to decrease alignment, so we can
1073    // ignore that possibility;  Sema should diagnose it.
1074    if (isa<FieldDecl>(D)) {
1075      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1076        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1077    } else {
1078      UseAlignAttrOnly = true;
1079    }
1080  }
1081  else if (isa<FieldDecl>(D))
1082      UseAlignAttrOnly =
1083        D->hasAttr<PackedAttr>() ||
1084        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1085
1086  // If we're using the align attribute only, just ignore everything
1087  // else about the declaration and its type.
1088  if (UseAlignAttrOnly) {
1089    // do nothing
1090
1091  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1092    QualType T = VD->getType();
1093    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1094      if (RefAsPointee)
1095        T = RT->getPointeeType();
1096      else
1097        T = getPointerType(RT->getPointeeType());
1098    }
1099    if (!T->isIncompleteType() && !T->isFunctionType()) {
1100      // Adjust alignments of declarations with array type by the
1101      // large-array alignment on the target.
1102      unsigned MinWidth = Target->getLargeArrayMinWidth();
1103      const ArrayType *arrayType;
1104      if (MinWidth && (arrayType = getAsArrayType(T))) {
1105        if (isa<VariableArrayType>(arrayType))
1106          Align = std::max(Align, Target->getLargeArrayAlign());
1107        else if (isa<ConstantArrayType>(arrayType) &&
1108                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1109          Align = std::max(Align, Target->getLargeArrayAlign());
1110
1111        // Walk through any array types while we're at it.
1112        T = getBaseElementType(arrayType);
1113      }
1114      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1115    }
1116
1117    // Fields can be subject to extra alignment constraints, like if
1118    // the field is packed, the struct is packed, or the struct has a
1119    // a max-field-alignment constraint (#pragma pack).  So calculate
1120    // the actual alignment of the field within the struct, and then
1121    // (as we're expected to) constrain that by the alignment of the type.
1122    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1123      // So calculate the alignment of the field.
1124      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1125
1126      // Start with the record's overall alignment.
1127      unsigned fieldAlign = toBits(layout.getAlignment());
1128
1129      // Use the GCD of that and the offset within the record.
1130      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1131      if (offset > 0) {
1132        // Alignment is always a power of 2, so the GCD will be a power of 2,
1133        // which means we get to do this crazy thing instead of Euclid's.
1134        uint64_t lowBitOfOffset = offset & (~offset + 1);
1135        if (lowBitOfOffset < fieldAlign)
1136          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1137      }
1138
1139      Align = std::min(Align, fieldAlign);
1140    }
1141  }
1142
1143  return toCharUnitsFromBits(Align);
1144}
1145
1146// getTypeInfoDataSizeInChars - Return the size of a type, in
1147// chars. If the type is a record, its data size is returned.  This is
1148// the size of the memcpy that's performed when assigning this type
1149// using a trivial copy/move assignment operator.
1150std::pair<CharUnits, CharUnits>
1151ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1152  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1153
1154  // In C++, objects can sometimes be allocated into the tail padding
1155  // of a base-class subobject.  We decide whether that's possible
1156  // during class layout, so here we can just trust the layout results.
1157  if (getLangOpts().CPlusPlus) {
1158    if (const RecordType *RT = T->getAs<RecordType>()) {
1159      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1160      sizeAndAlign.first = layout.getDataSize();
1161    }
1162  }
1163
1164  return sizeAndAlign;
1165}
1166
1167std::pair<CharUnits, CharUnits>
1168ASTContext::getTypeInfoInChars(const Type *T) const {
1169  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1170  return std::make_pair(toCharUnitsFromBits(Info.first),
1171                        toCharUnitsFromBits(Info.second));
1172}
1173
1174std::pair<CharUnits, CharUnits>
1175ASTContext::getTypeInfoInChars(QualType T) const {
1176  return getTypeInfoInChars(T.getTypePtr());
1177}
1178
1179std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1180  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1181  if (it != MemoizedTypeInfo.end())
1182    return it->second;
1183
1184  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1185  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1186  return Info;
1187}
1188
1189/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1190/// method does not work on incomplete types.
1191///
1192/// FIXME: Pointers into different addr spaces could have different sizes and
1193/// alignment requirements: getPointerInfo should take an AddrSpace, this
1194/// should take a QualType, &c.
1195std::pair<uint64_t, unsigned>
1196ASTContext::getTypeInfoImpl(const Type *T) const {
1197  uint64_t Width=0;
1198  unsigned Align=8;
1199  switch (T->getTypeClass()) {
1200#define TYPE(Class, Base)
1201#define ABSTRACT_TYPE(Class, Base)
1202#define NON_CANONICAL_TYPE(Class, Base)
1203#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1204#include "clang/AST/TypeNodes.def"
1205    llvm_unreachable("Should not see dependent types");
1206
1207  case Type::FunctionNoProto:
1208  case Type::FunctionProto:
1209    // GCC extension: alignof(function) = 32 bits
1210    Width = 0;
1211    Align = 32;
1212    break;
1213
1214  case Type::IncompleteArray:
1215  case Type::VariableArray:
1216    Width = 0;
1217    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1218    break;
1219
1220  case Type::ConstantArray: {
1221    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1222
1223    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1224    uint64_t Size = CAT->getSize().getZExtValue();
1225    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1226           "Overflow in array type bit size evaluation");
1227    Width = EltInfo.first*Size;
1228    Align = EltInfo.second;
1229    Width = llvm::RoundUpToAlignment(Width, Align);
1230    break;
1231  }
1232  case Type::ExtVector:
1233  case Type::Vector: {
1234    const VectorType *VT = cast<VectorType>(T);
1235    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1236    Width = EltInfo.first*VT->getNumElements();
1237    Align = Width;
1238    // If the alignment is not a power of 2, round up to the next power of 2.
1239    // This happens for non-power-of-2 length vectors.
1240    if (Align & (Align-1)) {
1241      Align = llvm::NextPowerOf2(Align);
1242      Width = llvm::RoundUpToAlignment(Width, Align);
1243    }
1244    // Adjust the alignment based on the target max.
1245    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1246    if (TargetVectorAlign && TargetVectorAlign < Align)
1247      Align = TargetVectorAlign;
1248    break;
1249  }
1250
1251  case Type::Builtin:
1252    switch (cast<BuiltinType>(T)->getKind()) {
1253    default: llvm_unreachable("Unknown builtin type!");
1254    case BuiltinType::Void:
1255      // GCC extension: alignof(void) = 8 bits.
1256      Width = 0;
1257      Align = 8;
1258      break;
1259
1260    case BuiltinType::Bool:
1261      Width = Target->getBoolWidth();
1262      Align = Target->getBoolAlign();
1263      break;
1264    case BuiltinType::Char_S:
1265    case BuiltinType::Char_U:
1266    case BuiltinType::UChar:
1267    case BuiltinType::SChar:
1268      Width = Target->getCharWidth();
1269      Align = Target->getCharAlign();
1270      break;
1271    case BuiltinType::WChar_S:
1272    case BuiltinType::WChar_U:
1273      Width = Target->getWCharWidth();
1274      Align = Target->getWCharAlign();
1275      break;
1276    case BuiltinType::Char16:
1277      Width = Target->getChar16Width();
1278      Align = Target->getChar16Align();
1279      break;
1280    case BuiltinType::Char32:
1281      Width = Target->getChar32Width();
1282      Align = Target->getChar32Align();
1283      break;
1284    case BuiltinType::UShort:
1285    case BuiltinType::Short:
1286      Width = Target->getShortWidth();
1287      Align = Target->getShortAlign();
1288      break;
1289    case BuiltinType::UInt:
1290    case BuiltinType::Int:
1291      Width = Target->getIntWidth();
1292      Align = Target->getIntAlign();
1293      break;
1294    case BuiltinType::ULong:
1295    case BuiltinType::Long:
1296      Width = Target->getLongWidth();
1297      Align = Target->getLongAlign();
1298      break;
1299    case BuiltinType::ULongLong:
1300    case BuiltinType::LongLong:
1301      Width = Target->getLongLongWidth();
1302      Align = Target->getLongLongAlign();
1303      break;
1304    case BuiltinType::Int128:
1305    case BuiltinType::UInt128:
1306      Width = 128;
1307      Align = 128; // int128_t is 128-bit aligned on all targets.
1308      break;
1309    case BuiltinType::Half:
1310      Width = Target->getHalfWidth();
1311      Align = Target->getHalfAlign();
1312      break;
1313    case BuiltinType::Float:
1314      Width = Target->getFloatWidth();
1315      Align = Target->getFloatAlign();
1316      break;
1317    case BuiltinType::Double:
1318      Width = Target->getDoubleWidth();
1319      Align = Target->getDoubleAlign();
1320      break;
1321    case BuiltinType::LongDouble:
1322      Width = Target->getLongDoubleWidth();
1323      Align = Target->getLongDoubleAlign();
1324      break;
1325    case BuiltinType::NullPtr:
1326      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1327      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1328      break;
1329    case BuiltinType::ObjCId:
1330    case BuiltinType::ObjCClass:
1331    case BuiltinType::ObjCSel:
1332      Width = Target->getPointerWidth(0);
1333      Align = Target->getPointerAlign(0);
1334      break;
1335    }
1336    break;
1337  case Type::ObjCObjectPointer:
1338    Width = Target->getPointerWidth(0);
1339    Align = Target->getPointerAlign(0);
1340    break;
1341  case Type::BlockPointer: {
1342    unsigned AS = getTargetAddressSpace(
1343        cast<BlockPointerType>(T)->getPointeeType());
1344    Width = Target->getPointerWidth(AS);
1345    Align = Target->getPointerAlign(AS);
1346    break;
1347  }
1348  case Type::LValueReference:
1349  case Type::RValueReference: {
1350    // alignof and sizeof should never enter this code path here, so we go
1351    // the pointer route.
1352    unsigned AS = getTargetAddressSpace(
1353        cast<ReferenceType>(T)->getPointeeType());
1354    Width = Target->getPointerWidth(AS);
1355    Align = Target->getPointerAlign(AS);
1356    break;
1357  }
1358  case Type::Pointer: {
1359    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1360    Width = Target->getPointerWidth(AS);
1361    Align = Target->getPointerAlign(AS);
1362    break;
1363  }
1364  case Type::MemberPointer: {
1365    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1366    std::pair<uint64_t, unsigned> PtrDiffInfo =
1367      getTypeInfo(getPointerDiffType());
1368    Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT);
1369    Align = PtrDiffInfo.second;
1370    break;
1371  }
1372  case Type::Complex: {
1373    // Complex types have the same alignment as their elements, but twice the
1374    // size.
1375    std::pair<uint64_t, unsigned> EltInfo =
1376      getTypeInfo(cast<ComplexType>(T)->getElementType());
1377    Width = EltInfo.first*2;
1378    Align = EltInfo.second;
1379    break;
1380  }
1381  case Type::ObjCObject:
1382    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1383  case Type::ObjCInterface: {
1384    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1385    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1386    Width = toBits(Layout.getSize());
1387    Align = toBits(Layout.getAlignment());
1388    break;
1389  }
1390  case Type::Record:
1391  case Type::Enum: {
1392    const TagType *TT = cast<TagType>(T);
1393
1394    if (TT->getDecl()->isInvalidDecl()) {
1395      Width = 8;
1396      Align = 8;
1397      break;
1398    }
1399
1400    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1401      return getTypeInfo(ET->getDecl()->getIntegerType());
1402
1403    const RecordType *RT = cast<RecordType>(TT);
1404    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1405    Width = toBits(Layout.getSize());
1406    Align = toBits(Layout.getAlignment());
1407    break;
1408  }
1409
1410  case Type::SubstTemplateTypeParm:
1411    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1412                       getReplacementType().getTypePtr());
1413
1414  case Type::Auto: {
1415    const AutoType *A = cast<AutoType>(T);
1416    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1417    return getTypeInfo(A->getDeducedType().getTypePtr());
1418  }
1419
1420  case Type::Paren:
1421    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1422
1423  case Type::Typedef: {
1424    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1425    std::pair<uint64_t, unsigned> Info
1426      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1427    // If the typedef has an aligned attribute on it, it overrides any computed
1428    // alignment we have.  This violates the GCC documentation (which says that
1429    // attribute(aligned) can only round up) but matches its implementation.
1430    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1431      Align = AttrAlign;
1432    else
1433      Align = Info.second;
1434    Width = Info.first;
1435    break;
1436  }
1437
1438  case Type::TypeOfExpr:
1439    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1440                         .getTypePtr());
1441
1442  case Type::TypeOf:
1443    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1444
1445  case Type::Decltype:
1446    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1447                        .getTypePtr());
1448
1449  case Type::UnaryTransform:
1450    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1451
1452  case Type::Elaborated:
1453    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1454
1455  case Type::Attributed:
1456    return getTypeInfo(
1457                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1458
1459  case Type::TemplateSpecialization: {
1460    assert(getCanonicalType(T) != T &&
1461           "Cannot request the size of a dependent type");
1462    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1463    // A type alias template specialization may refer to a typedef with the
1464    // aligned attribute on it.
1465    if (TST->isTypeAlias())
1466      return getTypeInfo(TST->getAliasedType().getTypePtr());
1467    else
1468      return getTypeInfo(getCanonicalType(T));
1469  }
1470
1471  case Type::Atomic: {
1472    std::pair<uint64_t, unsigned> Info
1473      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1474    Width = Info.first;
1475    Align = Info.second;
1476    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() &&
1477        llvm::isPowerOf2_64(Width)) {
1478      // We can potentially perform lock-free atomic operations for this
1479      // type; promote the alignment appropriately.
1480      // FIXME: We could potentially promote the width here as well...
1481      // is that worthwhile?  (Non-struct atomic types generally have
1482      // power-of-two size anyway, but structs might not.  Requires a bit
1483      // of implementation work to make sure we zero out the extra bits.)
1484      Align = static_cast<unsigned>(Width);
1485    }
1486  }
1487
1488  }
1489
1490  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1491  return std::make_pair(Width, Align);
1492}
1493
1494/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1495CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1496  return CharUnits::fromQuantity(BitSize / getCharWidth());
1497}
1498
1499/// toBits - Convert a size in characters to a size in characters.
1500int64_t ASTContext::toBits(CharUnits CharSize) const {
1501  return CharSize.getQuantity() * getCharWidth();
1502}
1503
1504/// getTypeSizeInChars - Return the size of the specified type, in characters.
1505/// This method does not work on incomplete types.
1506CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1507  return toCharUnitsFromBits(getTypeSize(T));
1508}
1509CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1510  return toCharUnitsFromBits(getTypeSize(T));
1511}
1512
1513/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1514/// characters. This method does not work on incomplete types.
1515CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1516  return toCharUnitsFromBits(getTypeAlign(T));
1517}
1518CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1519  return toCharUnitsFromBits(getTypeAlign(T));
1520}
1521
1522/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1523/// type for the current target in bits.  This can be different than the ABI
1524/// alignment in cases where it is beneficial for performance to overalign
1525/// a data type.
1526unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1527  unsigned ABIAlign = getTypeAlign(T);
1528
1529  // Double and long long should be naturally aligned if possible.
1530  if (const ComplexType* CT = T->getAs<ComplexType>())
1531    T = CT->getElementType().getTypePtr();
1532  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1533      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1534      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1535    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1536
1537  return ABIAlign;
1538}
1539
1540/// DeepCollectObjCIvars -
1541/// This routine first collects all declared, but not synthesized, ivars in
1542/// super class and then collects all ivars, including those synthesized for
1543/// current class. This routine is used for implementation of current class
1544/// when all ivars, declared and synthesized are known.
1545///
1546void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1547                                      bool leafClass,
1548                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1549  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1550    DeepCollectObjCIvars(SuperClass, false, Ivars);
1551  if (!leafClass) {
1552    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1553         E = OI->ivar_end(); I != E; ++I)
1554      Ivars.push_back(*I);
1555  } else {
1556    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1557    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1558         Iv= Iv->getNextIvar())
1559      Ivars.push_back(Iv);
1560  }
1561}
1562
1563/// CollectInheritedProtocols - Collect all protocols in current class and
1564/// those inherited by it.
1565void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1566                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1567  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1568    // We can use protocol_iterator here instead of
1569    // all_referenced_protocol_iterator since we are walking all categories.
1570    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1571         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1572      ObjCProtocolDecl *Proto = (*P);
1573      Protocols.insert(Proto->getCanonicalDecl());
1574      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1575           PE = Proto->protocol_end(); P != PE; ++P) {
1576        Protocols.insert((*P)->getCanonicalDecl());
1577        CollectInheritedProtocols(*P, Protocols);
1578      }
1579    }
1580
1581    // Categories of this Interface.
1582    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList();
1583         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
1584      CollectInheritedProtocols(CDeclChain, Protocols);
1585    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1586      while (SD) {
1587        CollectInheritedProtocols(SD, Protocols);
1588        SD = SD->getSuperClass();
1589      }
1590  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1591    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1592         PE = OC->protocol_end(); P != PE; ++P) {
1593      ObjCProtocolDecl *Proto = (*P);
1594      Protocols.insert(Proto->getCanonicalDecl());
1595      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1596           PE = Proto->protocol_end(); P != PE; ++P)
1597        CollectInheritedProtocols(*P, Protocols);
1598    }
1599  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1600    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1601         PE = OP->protocol_end(); P != PE; ++P) {
1602      ObjCProtocolDecl *Proto = (*P);
1603      Protocols.insert(Proto->getCanonicalDecl());
1604      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1605           PE = Proto->protocol_end(); P != PE; ++P)
1606        CollectInheritedProtocols(*P, Protocols);
1607    }
1608  }
1609}
1610
1611unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1612  unsigned count = 0;
1613  // Count ivars declared in class extension.
1614  for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl;
1615       CDecl = CDecl->getNextClassExtension())
1616    count += CDecl->ivar_size();
1617
1618  // Count ivar defined in this class's implementation.  This
1619  // includes synthesized ivars.
1620  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1621    count += ImplDecl->ivar_size();
1622
1623  return count;
1624}
1625
1626bool ASTContext::isSentinelNullExpr(const Expr *E) {
1627  if (!E)
1628    return false;
1629
1630  // nullptr_t is always treated as null.
1631  if (E->getType()->isNullPtrType()) return true;
1632
1633  if (E->getType()->isAnyPointerType() &&
1634      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1635                                                Expr::NPC_ValueDependentIsNull))
1636    return true;
1637
1638  // Unfortunately, __null has type 'int'.
1639  if (isa<GNUNullExpr>(E)) return true;
1640
1641  return false;
1642}
1643
1644/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1645ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1646  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1647    I = ObjCImpls.find(D);
1648  if (I != ObjCImpls.end())
1649    return cast<ObjCImplementationDecl>(I->second);
1650  return 0;
1651}
1652/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1653ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1654  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1655    I = ObjCImpls.find(D);
1656  if (I != ObjCImpls.end())
1657    return cast<ObjCCategoryImplDecl>(I->second);
1658  return 0;
1659}
1660
1661/// \brief Set the implementation of ObjCInterfaceDecl.
1662void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1663                           ObjCImplementationDecl *ImplD) {
1664  assert(IFaceD && ImplD && "Passed null params");
1665  ObjCImpls[IFaceD] = ImplD;
1666}
1667/// \brief Set the implementation of ObjCCategoryDecl.
1668void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1669                           ObjCCategoryImplDecl *ImplD) {
1670  assert(CatD && ImplD && "Passed null params");
1671  ObjCImpls[CatD] = ImplD;
1672}
1673
1674ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const {
1675  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1676    return ID;
1677  if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1678    return CD->getClassInterface();
1679  if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1680    return IMD->getClassInterface();
1681
1682  return 0;
1683}
1684
1685/// \brief Get the copy initialization expression of VarDecl,or NULL if
1686/// none exists.
1687Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1688  assert(VD && "Passed null params");
1689  assert(VD->hasAttr<BlocksAttr>() &&
1690         "getBlockVarCopyInits - not __block var");
1691  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1692    I = BlockVarCopyInits.find(VD);
1693  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1694}
1695
1696/// \brief Set the copy inialization expression of a block var decl.
1697void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1698  assert(VD && Init && "Passed null params");
1699  assert(VD->hasAttr<BlocksAttr>() &&
1700         "setBlockVarCopyInits - not __block var");
1701  BlockVarCopyInits[VD] = Init;
1702}
1703
1704TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1705                                                 unsigned DataSize) const {
1706  if (!DataSize)
1707    DataSize = TypeLoc::getFullDataSizeForType(T);
1708  else
1709    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1710           "incorrect data size provided to CreateTypeSourceInfo!");
1711
1712  TypeSourceInfo *TInfo =
1713    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1714  new (TInfo) TypeSourceInfo(T);
1715  return TInfo;
1716}
1717
1718TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1719                                                     SourceLocation L) const {
1720  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1721  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1722  return DI;
1723}
1724
1725const ASTRecordLayout &
1726ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1727  return getObjCLayout(D, 0);
1728}
1729
1730const ASTRecordLayout &
1731ASTContext::getASTObjCImplementationLayout(
1732                                        const ObjCImplementationDecl *D) const {
1733  return getObjCLayout(D->getClassInterface(), D);
1734}
1735
1736//===----------------------------------------------------------------------===//
1737//                   Type creation/memoization methods
1738//===----------------------------------------------------------------------===//
1739
1740QualType
1741ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1742  unsigned fastQuals = quals.getFastQualifiers();
1743  quals.removeFastQualifiers();
1744
1745  // Check if we've already instantiated this type.
1746  llvm::FoldingSetNodeID ID;
1747  ExtQuals::Profile(ID, baseType, quals);
1748  void *insertPos = 0;
1749  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1750    assert(eq->getQualifiers() == quals);
1751    return QualType(eq, fastQuals);
1752  }
1753
1754  // If the base type is not canonical, make the appropriate canonical type.
1755  QualType canon;
1756  if (!baseType->isCanonicalUnqualified()) {
1757    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1758    canonSplit.Quals.addConsistentQualifiers(quals);
1759    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1760
1761    // Re-find the insert position.
1762    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1763  }
1764
1765  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1766  ExtQualNodes.InsertNode(eq, insertPos);
1767  return QualType(eq, fastQuals);
1768}
1769
1770QualType
1771ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1772  QualType CanT = getCanonicalType(T);
1773  if (CanT.getAddressSpace() == AddressSpace)
1774    return T;
1775
1776  // If we are composing extended qualifiers together, merge together
1777  // into one ExtQuals node.
1778  QualifierCollector Quals;
1779  const Type *TypeNode = Quals.strip(T);
1780
1781  // If this type already has an address space specified, it cannot get
1782  // another one.
1783  assert(!Quals.hasAddressSpace() &&
1784         "Type cannot be in multiple addr spaces!");
1785  Quals.addAddressSpace(AddressSpace);
1786
1787  return getExtQualType(TypeNode, Quals);
1788}
1789
1790QualType ASTContext::getObjCGCQualType(QualType T,
1791                                       Qualifiers::GC GCAttr) const {
1792  QualType CanT = getCanonicalType(T);
1793  if (CanT.getObjCGCAttr() == GCAttr)
1794    return T;
1795
1796  if (const PointerType *ptr = T->getAs<PointerType>()) {
1797    QualType Pointee = ptr->getPointeeType();
1798    if (Pointee->isAnyPointerType()) {
1799      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1800      return getPointerType(ResultType);
1801    }
1802  }
1803
1804  // If we are composing extended qualifiers together, merge together
1805  // into one ExtQuals node.
1806  QualifierCollector Quals;
1807  const Type *TypeNode = Quals.strip(T);
1808
1809  // If this type already has an ObjCGC specified, it cannot get
1810  // another one.
1811  assert(!Quals.hasObjCGCAttr() &&
1812         "Type cannot have multiple ObjCGCs!");
1813  Quals.addObjCGCAttr(GCAttr);
1814
1815  return getExtQualType(TypeNode, Quals);
1816}
1817
1818const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1819                                                   FunctionType::ExtInfo Info) {
1820  if (T->getExtInfo() == Info)
1821    return T;
1822
1823  QualType Result;
1824  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1825    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1826  } else {
1827    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1828    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1829    EPI.ExtInfo = Info;
1830    Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
1831                             FPT->getNumArgs(), EPI);
1832  }
1833
1834  return cast<FunctionType>(Result.getTypePtr());
1835}
1836
1837/// getComplexType - Return the uniqued reference to the type for a complex
1838/// number with the specified element type.
1839QualType ASTContext::getComplexType(QualType T) const {
1840  // Unique pointers, to guarantee there is only one pointer of a particular
1841  // structure.
1842  llvm::FoldingSetNodeID ID;
1843  ComplexType::Profile(ID, T);
1844
1845  void *InsertPos = 0;
1846  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1847    return QualType(CT, 0);
1848
1849  // If the pointee type isn't canonical, this won't be a canonical type either,
1850  // so fill in the canonical type field.
1851  QualType Canonical;
1852  if (!T.isCanonical()) {
1853    Canonical = getComplexType(getCanonicalType(T));
1854
1855    // Get the new insert position for the node we care about.
1856    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1857    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1858  }
1859  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1860  Types.push_back(New);
1861  ComplexTypes.InsertNode(New, InsertPos);
1862  return QualType(New, 0);
1863}
1864
1865/// getPointerType - Return the uniqued reference to the type for a pointer to
1866/// the specified type.
1867QualType ASTContext::getPointerType(QualType T) const {
1868  // Unique pointers, to guarantee there is only one pointer of a particular
1869  // structure.
1870  llvm::FoldingSetNodeID ID;
1871  PointerType::Profile(ID, T);
1872
1873  void *InsertPos = 0;
1874  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1875    return QualType(PT, 0);
1876
1877  // If the pointee type isn't canonical, this won't be a canonical type either,
1878  // so fill in the canonical type field.
1879  QualType Canonical;
1880  if (!T.isCanonical()) {
1881    Canonical = getPointerType(getCanonicalType(T));
1882
1883    // Get the new insert position for the node we care about.
1884    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1885    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1886  }
1887  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1888  Types.push_back(New);
1889  PointerTypes.InsertNode(New, InsertPos);
1890  return QualType(New, 0);
1891}
1892
1893/// getBlockPointerType - Return the uniqued reference to the type for
1894/// a pointer to the specified block.
1895QualType ASTContext::getBlockPointerType(QualType T) const {
1896  assert(T->isFunctionType() && "block of function types only");
1897  // Unique pointers, to guarantee there is only one block of a particular
1898  // structure.
1899  llvm::FoldingSetNodeID ID;
1900  BlockPointerType::Profile(ID, T);
1901
1902  void *InsertPos = 0;
1903  if (BlockPointerType *PT =
1904        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1905    return QualType(PT, 0);
1906
1907  // If the block pointee type isn't canonical, this won't be a canonical
1908  // type either so fill in the canonical type field.
1909  QualType Canonical;
1910  if (!T.isCanonical()) {
1911    Canonical = getBlockPointerType(getCanonicalType(T));
1912
1913    // Get the new insert position for the node we care about.
1914    BlockPointerType *NewIP =
1915      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1916    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1917  }
1918  BlockPointerType *New
1919    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1920  Types.push_back(New);
1921  BlockPointerTypes.InsertNode(New, InsertPos);
1922  return QualType(New, 0);
1923}
1924
1925/// getLValueReferenceType - Return the uniqued reference to the type for an
1926/// lvalue reference to the specified type.
1927QualType
1928ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
1929  assert(getCanonicalType(T) != OverloadTy &&
1930         "Unresolved overloaded function type");
1931
1932  // Unique pointers, to guarantee there is only one pointer of a particular
1933  // structure.
1934  llvm::FoldingSetNodeID ID;
1935  ReferenceType::Profile(ID, T, SpelledAsLValue);
1936
1937  void *InsertPos = 0;
1938  if (LValueReferenceType *RT =
1939        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1940    return QualType(RT, 0);
1941
1942  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1943
1944  // If the referencee type isn't canonical, this won't be a canonical type
1945  // either, so fill in the canonical type field.
1946  QualType Canonical;
1947  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
1948    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1949    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
1950
1951    // Get the new insert position for the node we care about.
1952    LValueReferenceType *NewIP =
1953      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1954    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1955  }
1956
1957  LValueReferenceType *New
1958    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
1959                                                     SpelledAsLValue);
1960  Types.push_back(New);
1961  LValueReferenceTypes.InsertNode(New, InsertPos);
1962
1963  return QualType(New, 0);
1964}
1965
1966/// getRValueReferenceType - Return the uniqued reference to the type for an
1967/// rvalue reference to the specified type.
1968QualType ASTContext::getRValueReferenceType(QualType T) const {
1969  // Unique pointers, to guarantee there is only one pointer of a particular
1970  // structure.
1971  llvm::FoldingSetNodeID ID;
1972  ReferenceType::Profile(ID, T, false);
1973
1974  void *InsertPos = 0;
1975  if (RValueReferenceType *RT =
1976        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1977    return QualType(RT, 0);
1978
1979  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
1980
1981  // If the referencee type isn't canonical, this won't be a canonical type
1982  // either, so fill in the canonical type field.
1983  QualType Canonical;
1984  if (InnerRef || !T.isCanonical()) {
1985    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
1986    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
1987
1988    // Get the new insert position for the node we care about.
1989    RValueReferenceType *NewIP =
1990      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1991    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
1992  }
1993
1994  RValueReferenceType *New
1995    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1996  Types.push_back(New);
1997  RValueReferenceTypes.InsertNode(New, InsertPos);
1998  return QualType(New, 0);
1999}
2000
2001/// getMemberPointerType - Return the uniqued reference to the type for a
2002/// member pointer to the specified type, in the specified class.
2003QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2004  // Unique pointers, to guarantee there is only one pointer of a particular
2005  // structure.
2006  llvm::FoldingSetNodeID ID;
2007  MemberPointerType::Profile(ID, T, Cls);
2008
2009  void *InsertPos = 0;
2010  if (MemberPointerType *PT =
2011      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2012    return QualType(PT, 0);
2013
2014  // If the pointee or class type isn't canonical, this won't be a canonical
2015  // type either, so fill in the canonical type field.
2016  QualType Canonical;
2017  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2018    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2019
2020    // Get the new insert position for the node we care about.
2021    MemberPointerType *NewIP =
2022      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2023    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2024  }
2025  MemberPointerType *New
2026    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2027  Types.push_back(New);
2028  MemberPointerTypes.InsertNode(New, InsertPos);
2029  return QualType(New, 0);
2030}
2031
2032/// getConstantArrayType - Return the unique reference to the type for an
2033/// array of the specified element type.
2034QualType ASTContext::getConstantArrayType(QualType EltTy,
2035                                          const llvm::APInt &ArySizeIn,
2036                                          ArrayType::ArraySizeModifier ASM,
2037                                          unsigned IndexTypeQuals) const {
2038  assert((EltTy->isDependentType() ||
2039          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2040         "Constant array of VLAs is illegal!");
2041
2042  // Convert the array size into a canonical width matching the pointer size for
2043  // the target.
2044  llvm::APInt ArySize(ArySizeIn);
2045  ArySize =
2046    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2047
2048  llvm::FoldingSetNodeID ID;
2049  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2050
2051  void *InsertPos = 0;
2052  if (ConstantArrayType *ATP =
2053      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2054    return QualType(ATP, 0);
2055
2056  // If the element type isn't canonical or has qualifiers, this won't
2057  // be a canonical type either, so fill in the canonical type field.
2058  QualType Canon;
2059  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2060    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2061    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2062                                 ASM, IndexTypeQuals);
2063    Canon = getQualifiedType(Canon, canonSplit.Quals);
2064
2065    // Get the new insert position for the node we care about.
2066    ConstantArrayType *NewIP =
2067      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2068    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2069  }
2070
2071  ConstantArrayType *New = new(*this,TypeAlignment)
2072    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2073  ConstantArrayTypes.InsertNode(New, InsertPos);
2074  Types.push_back(New);
2075  return QualType(New, 0);
2076}
2077
2078/// getVariableArrayDecayedType - Turns the given type, which may be
2079/// variably-modified, into the corresponding type with all the known
2080/// sizes replaced with [*].
2081QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2082  // Vastly most common case.
2083  if (!type->isVariablyModifiedType()) return type;
2084
2085  QualType result;
2086
2087  SplitQualType split = type.getSplitDesugaredType();
2088  const Type *ty = split.Ty;
2089  switch (ty->getTypeClass()) {
2090#define TYPE(Class, Base)
2091#define ABSTRACT_TYPE(Class, Base)
2092#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2093#include "clang/AST/TypeNodes.def"
2094    llvm_unreachable("didn't desugar past all non-canonical types?");
2095
2096  // These types should never be variably-modified.
2097  case Type::Builtin:
2098  case Type::Complex:
2099  case Type::Vector:
2100  case Type::ExtVector:
2101  case Type::DependentSizedExtVector:
2102  case Type::ObjCObject:
2103  case Type::ObjCInterface:
2104  case Type::ObjCObjectPointer:
2105  case Type::Record:
2106  case Type::Enum:
2107  case Type::UnresolvedUsing:
2108  case Type::TypeOfExpr:
2109  case Type::TypeOf:
2110  case Type::Decltype:
2111  case Type::UnaryTransform:
2112  case Type::DependentName:
2113  case Type::InjectedClassName:
2114  case Type::TemplateSpecialization:
2115  case Type::DependentTemplateSpecialization:
2116  case Type::TemplateTypeParm:
2117  case Type::SubstTemplateTypeParmPack:
2118  case Type::Auto:
2119  case Type::PackExpansion:
2120    llvm_unreachable("type should never be variably-modified");
2121
2122  // These types can be variably-modified but should never need to
2123  // further decay.
2124  case Type::FunctionNoProto:
2125  case Type::FunctionProto:
2126  case Type::BlockPointer:
2127  case Type::MemberPointer:
2128    return type;
2129
2130  // These types can be variably-modified.  All these modifications
2131  // preserve structure except as noted by comments.
2132  // TODO: if we ever care about optimizing VLAs, there are no-op
2133  // optimizations available here.
2134  case Type::Pointer:
2135    result = getPointerType(getVariableArrayDecayedType(
2136                              cast<PointerType>(ty)->getPointeeType()));
2137    break;
2138
2139  case Type::LValueReference: {
2140    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2141    result = getLValueReferenceType(
2142                 getVariableArrayDecayedType(lv->getPointeeType()),
2143                                    lv->isSpelledAsLValue());
2144    break;
2145  }
2146
2147  case Type::RValueReference: {
2148    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2149    result = getRValueReferenceType(
2150                 getVariableArrayDecayedType(lv->getPointeeType()));
2151    break;
2152  }
2153
2154  case Type::Atomic: {
2155    const AtomicType *at = cast<AtomicType>(ty);
2156    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2157    break;
2158  }
2159
2160  case Type::ConstantArray: {
2161    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2162    result = getConstantArrayType(
2163                 getVariableArrayDecayedType(cat->getElementType()),
2164                                  cat->getSize(),
2165                                  cat->getSizeModifier(),
2166                                  cat->getIndexTypeCVRQualifiers());
2167    break;
2168  }
2169
2170  case Type::DependentSizedArray: {
2171    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2172    result = getDependentSizedArrayType(
2173                 getVariableArrayDecayedType(dat->getElementType()),
2174                                        dat->getSizeExpr(),
2175                                        dat->getSizeModifier(),
2176                                        dat->getIndexTypeCVRQualifiers(),
2177                                        dat->getBracketsRange());
2178    break;
2179  }
2180
2181  // Turn incomplete types into [*] types.
2182  case Type::IncompleteArray: {
2183    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2184    result = getVariableArrayType(
2185                 getVariableArrayDecayedType(iat->getElementType()),
2186                                  /*size*/ 0,
2187                                  ArrayType::Normal,
2188                                  iat->getIndexTypeCVRQualifiers(),
2189                                  SourceRange());
2190    break;
2191  }
2192
2193  // Turn VLA types into [*] types.
2194  case Type::VariableArray: {
2195    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2196    result = getVariableArrayType(
2197                 getVariableArrayDecayedType(vat->getElementType()),
2198                                  /*size*/ 0,
2199                                  ArrayType::Star,
2200                                  vat->getIndexTypeCVRQualifiers(),
2201                                  vat->getBracketsRange());
2202    break;
2203  }
2204  }
2205
2206  // Apply the top-level qualifiers from the original.
2207  return getQualifiedType(result, split.Quals);
2208}
2209
2210/// getVariableArrayType - Returns a non-unique reference to the type for a
2211/// variable array of the specified element type.
2212QualType ASTContext::getVariableArrayType(QualType EltTy,
2213                                          Expr *NumElts,
2214                                          ArrayType::ArraySizeModifier ASM,
2215                                          unsigned IndexTypeQuals,
2216                                          SourceRange Brackets) const {
2217  // Since we don't unique expressions, it isn't possible to unique VLA's
2218  // that have an expression provided for their size.
2219  QualType Canon;
2220
2221  // Be sure to pull qualifiers off the element type.
2222  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2223    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2224    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2225                                 IndexTypeQuals, Brackets);
2226    Canon = getQualifiedType(Canon, canonSplit.Quals);
2227  }
2228
2229  VariableArrayType *New = new(*this, TypeAlignment)
2230    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2231
2232  VariableArrayTypes.push_back(New);
2233  Types.push_back(New);
2234  return QualType(New, 0);
2235}
2236
2237/// getDependentSizedArrayType - Returns a non-unique reference to
2238/// the type for a dependently-sized array of the specified element
2239/// type.
2240QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2241                                                Expr *numElements,
2242                                                ArrayType::ArraySizeModifier ASM,
2243                                                unsigned elementTypeQuals,
2244                                                SourceRange brackets) const {
2245  assert((!numElements || numElements->isTypeDependent() ||
2246          numElements->isValueDependent()) &&
2247         "Size must be type- or value-dependent!");
2248
2249  // Dependently-sized array types that do not have a specified number
2250  // of elements will have their sizes deduced from a dependent
2251  // initializer.  We do no canonicalization here at all, which is okay
2252  // because they can't be used in most locations.
2253  if (!numElements) {
2254    DependentSizedArrayType *newType
2255      = new (*this, TypeAlignment)
2256          DependentSizedArrayType(*this, elementType, QualType(),
2257                                  numElements, ASM, elementTypeQuals,
2258                                  brackets);
2259    Types.push_back(newType);
2260    return QualType(newType, 0);
2261  }
2262
2263  // Otherwise, we actually build a new type every time, but we
2264  // also build a canonical type.
2265
2266  SplitQualType canonElementType = getCanonicalType(elementType).split();
2267
2268  void *insertPos = 0;
2269  llvm::FoldingSetNodeID ID;
2270  DependentSizedArrayType::Profile(ID, *this,
2271                                   QualType(canonElementType.Ty, 0),
2272                                   ASM, elementTypeQuals, numElements);
2273
2274  // Look for an existing type with these properties.
2275  DependentSizedArrayType *canonTy =
2276    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2277
2278  // If we don't have one, build one.
2279  if (!canonTy) {
2280    canonTy = new (*this, TypeAlignment)
2281      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2282                              QualType(), numElements, ASM, elementTypeQuals,
2283                              brackets);
2284    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2285    Types.push_back(canonTy);
2286  }
2287
2288  // Apply qualifiers from the element type to the array.
2289  QualType canon = getQualifiedType(QualType(canonTy,0),
2290                                    canonElementType.Quals);
2291
2292  // If we didn't need extra canonicalization for the element type,
2293  // then just use that as our result.
2294  if (QualType(canonElementType.Ty, 0) == elementType)
2295    return canon;
2296
2297  // Otherwise, we need to build a type which follows the spelling
2298  // of the element type.
2299  DependentSizedArrayType *sugaredType
2300    = new (*this, TypeAlignment)
2301        DependentSizedArrayType(*this, elementType, canon, numElements,
2302                                ASM, elementTypeQuals, brackets);
2303  Types.push_back(sugaredType);
2304  return QualType(sugaredType, 0);
2305}
2306
2307QualType ASTContext::getIncompleteArrayType(QualType elementType,
2308                                            ArrayType::ArraySizeModifier ASM,
2309                                            unsigned elementTypeQuals) const {
2310  llvm::FoldingSetNodeID ID;
2311  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2312
2313  void *insertPos = 0;
2314  if (IncompleteArrayType *iat =
2315       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2316    return QualType(iat, 0);
2317
2318  // If the element type isn't canonical, this won't be a canonical type
2319  // either, so fill in the canonical type field.  We also have to pull
2320  // qualifiers off the element type.
2321  QualType canon;
2322
2323  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2324    SplitQualType canonSplit = getCanonicalType(elementType).split();
2325    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2326                                   ASM, elementTypeQuals);
2327    canon = getQualifiedType(canon, canonSplit.Quals);
2328
2329    // Get the new insert position for the node we care about.
2330    IncompleteArrayType *existing =
2331      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2332    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2333  }
2334
2335  IncompleteArrayType *newType = new (*this, TypeAlignment)
2336    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2337
2338  IncompleteArrayTypes.InsertNode(newType, insertPos);
2339  Types.push_back(newType);
2340  return QualType(newType, 0);
2341}
2342
2343/// getVectorType - Return the unique reference to a vector type of
2344/// the specified element type and size. VectorType must be a built-in type.
2345QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2346                                   VectorType::VectorKind VecKind) const {
2347  assert(vecType->isBuiltinType());
2348
2349  // Check if we've already instantiated a vector of this type.
2350  llvm::FoldingSetNodeID ID;
2351  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2352
2353  void *InsertPos = 0;
2354  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2355    return QualType(VTP, 0);
2356
2357  // If the element type isn't canonical, this won't be a canonical type either,
2358  // so fill in the canonical type field.
2359  QualType Canonical;
2360  if (!vecType.isCanonical()) {
2361    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2362
2363    // Get the new insert position for the node we care about.
2364    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2365    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2366  }
2367  VectorType *New = new (*this, TypeAlignment)
2368    VectorType(vecType, NumElts, Canonical, VecKind);
2369  VectorTypes.InsertNode(New, InsertPos);
2370  Types.push_back(New);
2371  return QualType(New, 0);
2372}
2373
2374/// getExtVectorType - Return the unique reference to an extended vector type of
2375/// the specified element type and size. VectorType must be a built-in type.
2376QualType
2377ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2378  assert(vecType->isBuiltinType() || vecType->isDependentType());
2379
2380  // Check if we've already instantiated a vector of this type.
2381  llvm::FoldingSetNodeID ID;
2382  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2383                      VectorType::GenericVector);
2384  void *InsertPos = 0;
2385  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2386    return QualType(VTP, 0);
2387
2388  // If the element type isn't canonical, this won't be a canonical type either,
2389  // so fill in the canonical type field.
2390  QualType Canonical;
2391  if (!vecType.isCanonical()) {
2392    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2393
2394    // Get the new insert position for the node we care about.
2395    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2396    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2397  }
2398  ExtVectorType *New = new (*this, TypeAlignment)
2399    ExtVectorType(vecType, NumElts, Canonical);
2400  VectorTypes.InsertNode(New, InsertPos);
2401  Types.push_back(New);
2402  return QualType(New, 0);
2403}
2404
2405QualType
2406ASTContext::getDependentSizedExtVectorType(QualType vecType,
2407                                           Expr *SizeExpr,
2408                                           SourceLocation AttrLoc) const {
2409  llvm::FoldingSetNodeID ID;
2410  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2411                                       SizeExpr);
2412
2413  void *InsertPos = 0;
2414  DependentSizedExtVectorType *Canon
2415    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2416  DependentSizedExtVectorType *New;
2417  if (Canon) {
2418    // We already have a canonical version of this array type; use it as
2419    // the canonical type for a newly-built type.
2420    New = new (*this, TypeAlignment)
2421      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2422                                  SizeExpr, AttrLoc);
2423  } else {
2424    QualType CanonVecTy = getCanonicalType(vecType);
2425    if (CanonVecTy == vecType) {
2426      New = new (*this, TypeAlignment)
2427        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2428                                    AttrLoc);
2429
2430      DependentSizedExtVectorType *CanonCheck
2431        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2432      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2433      (void)CanonCheck;
2434      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2435    } else {
2436      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2437                                                      SourceLocation());
2438      New = new (*this, TypeAlignment)
2439        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2440    }
2441  }
2442
2443  Types.push_back(New);
2444  return QualType(New, 0);
2445}
2446
2447/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2448///
2449QualType
2450ASTContext::getFunctionNoProtoType(QualType ResultTy,
2451                                   const FunctionType::ExtInfo &Info) const {
2452  const CallingConv DefaultCC = Info.getCC();
2453  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2454                               CC_X86StdCall : DefaultCC;
2455  // Unique functions, to guarantee there is only one function of a particular
2456  // structure.
2457  llvm::FoldingSetNodeID ID;
2458  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2459
2460  void *InsertPos = 0;
2461  if (FunctionNoProtoType *FT =
2462        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2463    return QualType(FT, 0);
2464
2465  QualType Canonical;
2466  if (!ResultTy.isCanonical() ||
2467      getCanonicalCallConv(CallConv) != CallConv) {
2468    Canonical =
2469      getFunctionNoProtoType(getCanonicalType(ResultTy),
2470                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2471
2472    // Get the new insert position for the node we care about.
2473    FunctionNoProtoType *NewIP =
2474      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2475    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2476  }
2477
2478  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2479  FunctionNoProtoType *New = new (*this, TypeAlignment)
2480    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2481  Types.push_back(New);
2482  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2483  return QualType(New, 0);
2484}
2485
2486/// getFunctionType - Return a normal function type with a typed argument
2487/// list.  isVariadic indicates whether the argument list includes '...'.
2488QualType
2489ASTContext::getFunctionType(QualType ResultTy,
2490                            const QualType *ArgArray, unsigned NumArgs,
2491                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2492  // Unique functions, to guarantee there is only one function of a particular
2493  // structure.
2494  llvm::FoldingSetNodeID ID;
2495  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this);
2496
2497  void *InsertPos = 0;
2498  if (FunctionProtoType *FTP =
2499        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2500    return QualType(FTP, 0);
2501
2502  // Determine whether the type being created is already canonical or not.
2503  bool isCanonical =
2504    EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() &&
2505    !EPI.HasTrailingReturn;
2506  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2507    if (!ArgArray[i].isCanonicalAsParam())
2508      isCanonical = false;
2509
2510  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2511  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2512                               CC_X86StdCall : DefaultCC;
2513
2514  // If this type isn't canonical, get the canonical version of it.
2515  // The exception spec is not part of the canonical type.
2516  QualType Canonical;
2517  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2518    SmallVector<QualType, 16> CanonicalArgs;
2519    CanonicalArgs.reserve(NumArgs);
2520    for (unsigned i = 0; i != NumArgs; ++i)
2521      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2522
2523    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2524    CanonicalEPI.HasTrailingReturn = false;
2525    CanonicalEPI.ExceptionSpecType = EST_None;
2526    CanonicalEPI.NumExceptions = 0;
2527    CanonicalEPI.ExtInfo
2528      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2529
2530    Canonical = getFunctionType(getCanonicalType(ResultTy),
2531                                CanonicalArgs.data(), NumArgs,
2532                                CanonicalEPI);
2533
2534    // Get the new insert position for the node we care about.
2535    FunctionProtoType *NewIP =
2536      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2537    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2538  }
2539
2540  // FunctionProtoType objects are allocated with extra bytes after
2541  // them for three variable size arrays at the end:
2542  //  - parameter types
2543  //  - exception types
2544  //  - consumed-arguments flags
2545  // Instead of the exception types, there could be a noexcept
2546  // expression, or information used to resolve the exception
2547  // specification.
2548  size_t Size = sizeof(FunctionProtoType) +
2549                NumArgs * sizeof(QualType);
2550  if (EPI.ExceptionSpecType == EST_Dynamic) {
2551    Size += EPI.NumExceptions * sizeof(QualType);
2552  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2553    Size += sizeof(Expr*);
2554  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2555    Size += 2 * sizeof(FunctionDecl*);
2556  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2557    Size += sizeof(FunctionDecl*);
2558  }
2559  if (EPI.ConsumedArguments)
2560    Size += NumArgs * sizeof(bool);
2561
2562  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2563  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2564  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2565  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI);
2566  Types.push_back(FTP);
2567  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2568  return QualType(FTP, 0);
2569}
2570
2571#ifndef NDEBUG
2572static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2573  if (!isa<CXXRecordDecl>(D)) return false;
2574  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2575  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2576    return true;
2577  if (RD->getDescribedClassTemplate() &&
2578      !isa<ClassTemplateSpecializationDecl>(RD))
2579    return true;
2580  return false;
2581}
2582#endif
2583
2584/// getInjectedClassNameType - Return the unique reference to the
2585/// injected class name type for the specified templated declaration.
2586QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2587                                              QualType TST) const {
2588  assert(NeedsInjectedClassNameType(Decl));
2589  if (Decl->TypeForDecl) {
2590    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2591  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2592    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2593    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2594    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2595  } else {
2596    Type *newType =
2597      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2598    Decl->TypeForDecl = newType;
2599    Types.push_back(newType);
2600  }
2601  return QualType(Decl->TypeForDecl, 0);
2602}
2603
2604/// getTypeDeclType - Return the unique reference to the type for the
2605/// specified type declaration.
2606QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2607  assert(Decl && "Passed null for Decl param");
2608  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2609
2610  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2611    return getTypedefType(Typedef);
2612
2613  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2614         "Template type parameter types are always available.");
2615
2616  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2617    assert(!Record->getPreviousDecl() &&
2618           "struct/union has previous declaration");
2619    assert(!NeedsInjectedClassNameType(Record));
2620    return getRecordType(Record);
2621  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2622    assert(!Enum->getPreviousDecl() &&
2623           "enum has previous declaration");
2624    return getEnumType(Enum);
2625  } else if (const UnresolvedUsingTypenameDecl *Using =
2626               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2627    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2628    Decl->TypeForDecl = newType;
2629    Types.push_back(newType);
2630  } else
2631    llvm_unreachable("TypeDecl without a type?");
2632
2633  return QualType(Decl->TypeForDecl, 0);
2634}
2635
2636/// getTypedefType - Return the unique reference to the type for the
2637/// specified typedef name decl.
2638QualType
2639ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2640                           QualType Canonical) const {
2641  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2642
2643  if (Canonical.isNull())
2644    Canonical = getCanonicalType(Decl->getUnderlyingType());
2645  TypedefType *newType = new(*this, TypeAlignment)
2646    TypedefType(Type::Typedef, Decl, Canonical);
2647  Decl->TypeForDecl = newType;
2648  Types.push_back(newType);
2649  return QualType(newType, 0);
2650}
2651
2652QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2653  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2654
2655  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2656    if (PrevDecl->TypeForDecl)
2657      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2658
2659  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2660  Decl->TypeForDecl = newType;
2661  Types.push_back(newType);
2662  return QualType(newType, 0);
2663}
2664
2665QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2666  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2667
2668  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2669    if (PrevDecl->TypeForDecl)
2670      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2671
2672  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2673  Decl->TypeForDecl = newType;
2674  Types.push_back(newType);
2675  return QualType(newType, 0);
2676}
2677
2678QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2679                                       QualType modifiedType,
2680                                       QualType equivalentType) {
2681  llvm::FoldingSetNodeID id;
2682  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2683
2684  void *insertPos = 0;
2685  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2686  if (type) return QualType(type, 0);
2687
2688  QualType canon = getCanonicalType(equivalentType);
2689  type = new (*this, TypeAlignment)
2690           AttributedType(canon, attrKind, modifiedType, equivalentType);
2691
2692  Types.push_back(type);
2693  AttributedTypes.InsertNode(type, insertPos);
2694
2695  return QualType(type, 0);
2696}
2697
2698
2699/// \brief Retrieve a substitution-result type.
2700QualType
2701ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2702                                         QualType Replacement) const {
2703  assert(Replacement.isCanonical()
2704         && "replacement types must always be canonical");
2705
2706  llvm::FoldingSetNodeID ID;
2707  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2708  void *InsertPos = 0;
2709  SubstTemplateTypeParmType *SubstParm
2710    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2711
2712  if (!SubstParm) {
2713    SubstParm = new (*this, TypeAlignment)
2714      SubstTemplateTypeParmType(Parm, Replacement);
2715    Types.push_back(SubstParm);
2716    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2717  }
2718
2719  return QualType(SubstParm, 0);
2720}
2721
2722/// \brief Retrieve a
2723QualType ASTContext::getSubstTemplateTypeParmPackType(
2724                                          const TemplateTypeParmType *Parm,
2725                                              const TemplateArgument &ArgPack) {
2726#ifndef NDEBUG
2727  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2728                                    PEnd = ArgPack.pack_end();
2729       P != PEnd; ++P) {
2730    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2731    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2732  }
2733#endif
2734
2735  llvm::FoldingSetNodeID ID;
2736  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2737  void *InsertPos = 0;
2738  if (SubstTemplateTypeParmPackType *SubstParm
2739        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2740    return QualType(SubstParm, 0);
2741
2742  QualType Canon;
2743  if (!Parm->isCanonicalUnqualified()) {
2744    Canon = getCanonicalType(QualType(Parm, 0));
2745    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2746                                             ArgPack);
2747    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2748  }
2749
2750  SubstTemplateTypeParmPackType *SubstParm
2751    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2752                                                               ArgPack);
2753  Types.push_back(SubstParm);
2754  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2755  return QualType(SubstParm, 0);
2756}
2757
2758/// \brief Retrieve the template type parameter type for a template
2759/// parameter or parameter pack with the given depth, index, and (optionally)
2760/// name.
2761QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2762                                             bool ParameterPack,
2763                                             TemplateTypeParmDecl *TTPDecl) const {
2764  llvm::FoldingSetNodeID ID;
2765  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2766  void *InsertPos = 0;
2767  TemplateTypeParmType *TypeParm
2768    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2769
2770  if (TypeParm)
2771    return QualType(TypeParm, 0);
2772
2773  if (TTPDecl) {
2774    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2775    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2776
2777    TemplateTypeParmType *TypeCheck
2778      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2779    assert(!TypeCheck && "Template type parameter canonical type broken");
2780    (void)TypeCheck;
2781  } else
2782    TypeParm = new (*this, TypeAlignment)
2783      TemplateTypeParmType(Depth, Index, ParameterPack);
2784
2785  Types.push_back(TypeParm);
2786  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2787
2788  return QualType(TypeParm, 0);
2789}
2790
2791TypeSourceInfo *
2792ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2793                                              SourceLocation NameLoc,
2794                                        const TemplateArgumentListInfo &Args,
2795                                              QualType Underlying) const {
2796  assert(!Name.getAsDependentTemplateName() &&
2797         "No dependent template names here!");
2798  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2799
2800  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2801  TemplateSpecializationTypeLoc TL
2802    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
2803  TL.setTemplateKeywordLoc(SourceLocation());
2804  TL.setTemplateNameLoc(NameLoc);
2805  TL.setLAngleLoc(Args.getLAngleLoc());
2806  TL.setRAngleLoc(Args.getRAngleLoc());
2807  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2808    TL.setArgLocInfo(i, Args[i].getLocInfo());
2809  return DI;
2810}
2811
2812QualType
2813ASTContext::getTemplateSpecializationType(TemplateName Template,
2814                                          const TemplateArgumentListInfo &Args,
2815                                          QualType Underlying) const {
2816  assert(!Template.getAsDependentTemplateName() &&
2817         "No dependent template names here!");
2818
2819  unsigned NumArgs = Args.size();
2820
2821  SmallVector<TemplateArgument, 4> ArgVec;
2822  ArgVec.reserve(NumArgs);
2823  for (unsigned i = 0; i != NumArgs; ++i)
2824    ArgVec.push_back(Args[i].getArgument());
2825
2826  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2827                                       Underlying);
2828}
2829
2830#ifndef NDEBUG
2831static bool hasAnyPackExpansions(const TemplateArgument *Args,
2832                                 unsigned NumArgs) {
2833  for (unsigned I = 0; I != NumArgs; ++I)
2834    if (Args[I].isPackExpansion())
2835      return true;
2836
2837  return true;
2838}
2839#endif
2840
2841QualType
2842ASTContext::getTemplateSpecializationType(TemplateName Template,
2843                                          const TemplateArgument *Args,
2844                                          unsigned NumArgs,
2845                                          QualType Underlying) const {
2846  assert(!Template.getAsDependentTemplateName() &&
2847         "No dependent template names here!");
2848  // Look through qualified template names.
2849  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2850    Template = TemplateName(QTN->getTemplateDecl());
2851
2852  bool IsTypeAlias =
2853    Template.getAsTemplateDecl() &&
2854    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
2855  QualType CanonType;
2856  if (!Underlying.isNull())
2857    CanonType = getCanonicalType(Underlying);
2858  else {
2859    // We can get here with an alias template when the specialization contains
2860    // a pack expansion that does not match up with a parameter pack.
2861    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
2862           "Caller must compute aliased type");
2863    IsTypeAlias = false;
2864    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
2865                                                       NumArgs);
2866  }
2867
2868  // Allocate the (non-canonical) template specialization type, but don't
2869  // try to unique it: these types typically have location information that
2870  // we don't unique and don't want to lose.
2871  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
2872                       sizeof(TemplateArgument) * NumArgs +
2873                       (IsTypeAlias? sizeof(QualType) : 0),
2874                       TypeAlignment);
2875  TemplateSpecializationType *Spec
2876    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
2877                                         IsTypeAlias ? Underlying : QualType());
2878
2879  Types.push_back(Spec);
2880  return QualType(Spec, 0);
2881}
2882
2883QualType
2884ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
2885                                                   const TemplateArgument *Args,
2886                                                   unsigned NumArgs) const {
2887  assert(!Template.getAsDependentTemplateName() &&
2888         "No dependent template names here!");
2889
2890  // Look through qualified template names.
2891  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
2892    Template = TemplateName(QTN->getTemplateDecl());
2893
2894  // Build the canonical template specialization type.
2895  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
2896  SmallVector<TemplateArgument, 4> CanonArgs;
2897  CanonArgs.reserve(NumArgs);
2898  for (unsigned I = 0; I != NumArgs; ++I)
2899    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
2900
2901  // Determine whether this canonical template specialization type already
2902  // exists.
2903  llvm::FoldingSetNodeID ID;
2904  TemplateSpecializationType::Profile(ID, CanonTemplate,
2905                                      CanonArgs.data(), NumArgs, *this);
2906
2907  void *InsertPos = 0;
2908  TemplateSpecializationType *Spec
2909    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
2910
2911  if (!Spec) {
2912    // Allocate a new canonical template specialization type.
2913    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
2914                          sizeof(TemplateArgument) * NumArgs),
2915                         TypeAlignment);
2916    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
2917                                                CanonArgs.data(), NumArgs,
2918                                                QualType(), QualType());
2919    Types.push_back(Spec);
2920    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
2921  }
2922
2923  assert(Spec->isDependentType() &&
2924         "Non-dependent template-id type must have a canonical type");
2925  return QualType(Spec, 0);
2926}
2927
2928QualType
2929ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
2930                              NestedNameSpecifier *NNS,
2931                              QualType NamedType) const {
2932  llvm::FoldingSetNodeID ID;
2933  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
2934
2935  void *InsertPos = 0;
2936  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2937  if (T)
2938    return QualType(T, 0);
2939
2940  QualType Canon = NamedType;
2941  if (!Canon.isCanonical()) {
2942    Canon = getCanonicalType(NamedType);
2943    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
2944    assert(!CheckT && "Elaborated canonical type broken");
2945    (void)CheckT;
2946  }
2947
2948  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
2949  Types.push_back(T);
2950  ElaboratedTypes.InsertNode(T, InsertPos);
2951  return QualType(T, 0);
2952}
2953
2954QualType
2955ASTContext::getParenType(QualType InnerType) const {
2956  llvm::FoldingSetNodeID ID;
2957  ParenType::Profile(ID, InnerType);
2958
2959  void *InsertPos = 0;
2960  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2961  if (T)
2962    return QualType(T, 0);
2963
2964  QualType Canon = InnerType;
2965  if (!Canon.isCanonical()) {
2966    Canon = getCanonicalType(InnerType);
2967    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
2968    assert(!CheckT && "Paren canonical type broken");
2969    (void)CheckT;
2970  }
2971
2972  T = new (*this) ParenType(InnerType, Canon);
2973  Types.push_back(T);
2974  ParenTypes.InsertNode(T, InsertPos);
2975  return QualType(T, 0);
2976}
2977
2978QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
2979                                          NestedNameSpecifier *NNS,
2980                                          const IdentifierInfo *Name,
2981                                          QualType Canon) const {
2982  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
2983
2984  if (Canon.isNull()) {
2985    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
2986    ElaboratedTypeKeyword CanonKeyword = Keyword;
2987    if (Keyword == ETK_None)
2988      CanonKeyword = ETK_Typename;
2989
2990    if (CanonNNS != NNS || CanonKeyword != Keyword)
2991      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
2992  }
2993
2994  llvm::FoldingSetNodeID ID;
2995  DependentNameType::Profile(ID, Keyword, NNS, Name);
2996
2997  void *InsertPos = 0;
2998  DependentNameType *T
2999    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3000  if (T)
3001    return QualType(T, 0);
3002
3003  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3004  Types.push_back(T);
3005  DependentNameTypes.InsertNode(T, InsertPos);
3006  return QualType(T, 0);
3007}
3008
3009QualType
3010ASTContext::getDependentTemplateSpecializationType(
3011                                 ElaboratedTypeKeyword Keyword,
3012                                 NestedNameSpecifier *NNS,
3013                                 const IdentifierInfo *Name,
3014                                 const TemplateArgumentListInfo &Args) const {
3015  // TODO: avoid this copy
3016  SmallVector<TemplateArgument, 16> ArgCopy;
3017  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3018    ArgCopy.push_back(Args[I].getArgument());
3019  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3020                                                ArgCopy.size(),
3021                                                ArgCopy.data());
3022}
3023
3024QualType
3025ASTContext::getDependentTemplateSpecializationType(
3026                                 ElaboratedTypeKeyword Keyword,
3027                                 NestedNameSpecifier *NNS,
3028                                 const IdentifierInfo *Name,
3029                                 unsigned NumArgs,
3030                                 const TemplateArgument *Args) const {
3031  assert((!NNS || NNS->isDependent()) &&
3032         "nested-name-specifier must be dependent");
3033
3034  llvm::FoldingSetNodeID ID;
3035  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3036                                               Name, NumArgs, Args);
3037
3038  void *InsertPos = 0;
3039  DependentTemplateSpecializationType *T
3040    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3041  if (T)
3042    return QualType(T, 0);
3043
3044  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3045
3046  ElaboratedTypeKeyword CanonKeyword = Keyword;
3047  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3048
3049  bool AnyNonCanonArgs = false;
3050  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3051  for (unsigned I = 0; I != NumArgs; ++I) {
3052    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3053    if (!CanonArgs[I].structurallyEquals(Args[I]))
3054      AnyNonCanonArgs = true;
3055  }
3056
3057  QualType Canon;
3058  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3059    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3060                                                   Name, NumArgs,
3061                                                   CanonArgs.data());
3062
3063    // Find the insert position again.
3064    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3065  }
3066
3067  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3068                        sizeof(TemplateArgument) * NumArgs),
3069                       TypeAlignment);
3070  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3071                                                    Name, NumArgs, Args, Canon);
3072  Types.push_back(T);
3073  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3074  return QualType(T, 0);
3075}
3076
3077QualType ASTContext::getPackExpansionType(QualType Pattern,
3078                                      llvm::Optional<unsigned> NumExpansions) {
3079  llvm::FoldingSetNodeID ID;
3080  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3081
3082  assert(Pattern->containsUnexpandedParameterPack() &&
3083         "Pack expansions must expand one or more parameter packs");
3084  void *InsertPos = 0;
3085  PackExpansionType *T
3086    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3087  if (T)
3088    return QualType(T, 0);
3089
3090  QualType Canon;
3091  if (!Pattern.isCanonical()) {
3092    Canon = getCanonicalType(Pattern);
3093    // The canonical type might not contain an unexpanded parameter pack, if it
3094    // contains an alias template specialization which ignores one of its
3095    // parameters.
3096    if (Canon->containsUnexpandedParameterPack()) {
3097      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3098
3099      // Find the insert position again, in case we inserted an element into
3100      // PackExpansionTypes and invalidated our insert position.
3101      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3102    }
3103  }
3104
3105  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3106  Types.push_back(T);
3107  PackExpansionTypes.InsertNode(T, InsertPos);
3108  return QualType(T, 0);
3109}
3110
3111/// CmpProtocolNames - Comparison predicate for sorting protocols
3112/// alphabetically.
3113static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3114                            const ObjCProtocolDecl *RHS) {
3115  return LHS->getDeclName() < RHS->getDeclName();
3116}
3117
3118static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3119                                unsigned NumProtocols) {
3120  if (NumProtocols == 0) return true;
3121
3122  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3123    return false;
3124
3125  for (unsigned i = 1; i != NumProtocols; ++i)
3126    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3127        Protocols[i]->getCanonicalDecl() != Protocols[i])
3128      return false;
3129  return true;
3130}
3131
3132static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3133                                   unsigned &NumProtocols) {
3134  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3135
3136  // Sort protocols, keyed by name.
3137  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3138
3139  // Canonicalize.
3140  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3141    Protocols[I] = Protocols[I]->getCanonicalDecl();
3142
3143  // Remove duplicates.
3144  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3145  NumProtocols = ProtocolsEnd-Protocols;
3146}
3147
3148QualType ASTContext::getObjCObjectType(QualType BaseType,
3149                                       ObjCProtocolDecl * const *Protocols,
3150                                       unsigned NumProtocols) const {
3151  // If the base type is an interface and there aren't any protocols
3152  // to add, then the interface type will do just fine.
3153  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3154    return BaseType;
3155
3156  // Look in the folding set for an existing type.
3157  llvm::FoldingSetNodeID ID;
3158  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3159  void *InsertPos = 0;
3160  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3161    return QualType(QT, 0);
3162
3163  // Build the canonical type, which has the canonical base type and
3164  // a sorted-and-uniqued list of protocols.
3165  QualType Canonical;
3166  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3167  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3168    if (!ProtocolsSorted) {
3169      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3170                                                     Protocols + NumProtocols);
3171      unsigned UniqueCount = NumProtocols;
3172
3173      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3174      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3175                                    &Sorted[0], UniqueCount);
3176    } else {
3177      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3178                                    Protocols, NumProtocols);
3179    }
3180
3181    // Regenerate InsertPos.
3182    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3183  }
3184
3185  unsigned Size = sizeof(ObjCObjectTypeImpl);
3186  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3187  void *Mem = Allocate(Size, TypeAlignment);
3188  ObjCObjectTypeImpl *T =
3189    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3190
3191  Types.push_back(T);
3192  ObjCObjectTypes.InsertNode(T, InsertPos);
3193  return QualType(T, 0);
3194}
3195
3196/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3197/// the given object type.
3198QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3199  llvm::FoldingSetNodeID ID;
3200  ObjCObjectPointerType::Profile(ID, ObjectT);
3201
3202  void *InsertPos = 0;
3203  if (ObjCObjectPointerType *QT =
3204              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3205    return QualType(QT, 0);
3206
3207  // Find the canonical object type.
3208  QualType Canonical;
3209  if (!ObjectT.isCanonical()) {
3210    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3211
3212    // Regenerate InsertPos.
3213    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3214  }
3215
3216  // No match.
3217  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3218  ObjCObjectPointerType *QType =
3219    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3220
3221  Types.push_back(QType);
3222  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3223  return QualType(QType, 0);
3224}
3225
3226/// getObjCInterfaceType - Return the unique reference to the type for the
3227/// specified ObjC interface decl. The list of protocols is optional.
3228QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3229                                          ObjCInterfaceDecl *PrevDecl) const {
3230  if (Decl->TypeForDecl)
3231    return QualType(Decl->TypeForDecl, 0);
3232
3233  if (PrevDecl) {
3234    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3235    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3236    return QualType(PrevDecl->TypeForDecl, 0);
3237  }
3238
3239  // Prefer the definition, if there is one.
3240  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3241    Decl = Def;
3242
3243  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3244  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3245  Decl->TypeForDecl = T;
3246  Types.push_back(T);
3247  return QualType(T, 0);
3248}
3249
3250/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3251/// TypeOfExprType AST's (since expression's are never shared). For example,
3252/// multiple declarations that refer to "typeof(x)" all contain different
3253/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3254/// on canonical type's (which are always unique).
3255QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3256  TypeOfExprType *toe;
3257  if (tofExpr->isTypeDependent()) {
3258    llvm::FoldingSetNodeID ID;
3259    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3260
3261    void *InsertPos = 0;
3262    DependentTypeOfExprType *Canon
3263      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3264    if (Canon) {
3265      // We already have a "canonical" version of an identical, dependent
3266      // typeof(expr) type. Use that as our canonical type.
3267      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3268                                          QualType((TypeOfExprType*)Canon, 0));
3269    } else {
3270      // Build a new, canonical typeof(expr) type.
3271      Canon
3272        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3273      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3274      toe = Canon;
3275    }
3276  } else {
3277    QualType Canonical = getCanonicalType(tofExpr->getType());
3278    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3279  }
3280  Types.push_back(toe);
3281  return QualType(toe, 0);
3282}
3283
3284/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3285/// TypeOfType AST's. The only motivation to unique these nodes would be
3286/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3287/// an issue. This doesn't effect the type checker, since it operates
3288/// on canonical type's (which are always unique).
3289QualType ASTContext::getTypeOfType(QualType tofType) const {
3290  QualType Canonical = getCanonicalType(tofType);
3291  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3292  Types.push_back(tot);
3293  return QualType(tot, 0);
3294}
3295
3296
3297/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3298/// DecltypeType AST's. The only motivation to unique these nodes would be
3299/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3300/// an issue. This doesn't effect the type checker, since it operates
3301/// on canonical types (which are always unique).
3302QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3303  DecltypeType *dt;
3304
3305  // C++0x [temp.type]p2:
3306  //   If an expression e involves a template parameter, decltype(e) denotes a
3307  //   unique dependent type. Two such decltype-specifiers refer to the same
3308  //   type only if their expressions are equivalent (14.5.6.1).
3309  if (e->isInstantiationDependent()) {
3310    llvm::FoldingSetNodeID ID;
3311    DependentDecltypeType::Profile(ID, *this, e);
3312
3313    void *InsertPos = 0;
3314    DependentDecltypeType *Canon
3315      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3316    if (Canon) {
3317      // We already have a "canonical" version of an equivalent, dependent
3318      // decltype type. Use that as our canonical type.
3319      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3320                                       QualType((DecltypeType*)Canon, 0));
3321    } else {
3322      // Build a new, canonical typeof(expr) type.
3323      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3324      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3325      dt = Canon;
3326    }
3327  } else {
3328    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3329                                      getCanonicalType(UnderlyingType));
3330  }
3331  Types.push_back(dt);
3332  return QualType(dt, 0);
3333}
3334
3335/// getUnaryTransformationType - We don't unique these, since the memory
3336/// savings are minimal and these are rare.
3337QualType ASTContext::getUnaryTransformType(QualType BaseType,
3338                                           QualType UnderlyingType,
3339                                           UnaryTransformType::UTTKind Kind)
3340    const {
3341  UnaryTransformType *Ty =
3342    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3343                                                   Kind,
3344                                 UnderlyingType->isDependentType() ?
3345                                 QualType() : getCanonicalType(UnderlyingType));
3346  Types.push_back(Ty);
3347  return QualType(Ty, 0);
3348}
3349
3350/// getAutoType - We only unique auto types after they've been deduced.
3351QualType ASTContext::getAutoType(QualType DeducedType) const {
3352  void *InsertPos = 0;
3353  if (!DeducedType.isNull()) {
3354    // Look in the folding set for an existing type.
3355    llvm::FoldingSetNodeID ID;
3356    AutoType::Profile(ID, DeducedType);
3357    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3358      return QualType(AT, 0);
3359  }
3360
3361  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3362  Types.push_back(AT);
3363  if (InsertPos)
3364    AutoTypes.InsertNode(AT, InsertPos);
3365  return QualType(AT, 0);
3366}
3367
3368/// getAtomicType - Return the uniqued reference to the atomic type for
3369/// the given value type.
3370QualType ASTContext::getAtomicType(QualType T) const {
3371  // Unique pointers, to guarantee there is only one pointer of a particular
3372  // structure.
3373  llvm::FoldingSetNodeID ID;
3374  AtomicType::Profile(ID, T);
3375
3376  void *InsertPos = 0;
3377  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3378    return QualType(AT, 0);
3379
3380  // If the atomic value type isn't canonical, this won't be a canonical type
3381  // either, so fill in the canonical type field.
3382  QualType Canonical;
3383  if (!T.isCanonical()) {
3384    Canonical = getAtomicType(getCanonicalType(T));
3385
3386    // Get the new insert position for the node we care about.
3387    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3388    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3389  }
3390  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3391  Types.push_back(New);
3392  AtomicTypes.InsertNode(New, InsertPos);
3393  return QualType(New, 0);
3394}
3395
3396/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3397QualType ASTContext::getAutoDeductType() const {
3398  if (AutoDeductTy.isNull())
3399    AutoDeductTy = getAutoType(QualType());
3400  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3401  return AutoDeductTy;
3402}
3403
3404/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3405QualType ASTContext::getAutoRRefDeductType() const {
3406  if (AutoRRefDeductTy.isNull())
3407    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3408  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3409  return AutoRRefDeductTy;
3410}
3411
3412/// getTagDeclType - Return the unique reference to the type for the
3413/// specified TagDecl (struct/union/class/enum) decl.
3414QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3415  assert (Decl);
3416  // FIXME: What is the design on getTagDeclType when it requires casting
3417  // away const?  mutable?
3418  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3419}
3420
3421/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3422/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3423/// needs to agree with the definition in <stddef.h>.
3424CanQualType ASTContext::getSizeType() const {
3425  return getFromTargetType(Target->getSizeType());
3426}
3427
3428/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3429CanQualType ASTContext::getIntMaxType() const {
3430  return getFromTargetType(Target->getIntMaxType());
3431}
3432
3433/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3434CanQualType ASTContext::getUIntMaxType() const {
3435  return getFromTargetType(Target->getUIntMaxType());
3436}
3437
3438/// getSignedWCharType - Return the type of "signed wchar_t".
3439/// Used when in C++, as a GCC extension.
3440QualType ASTContext::getSignedWCharType() const {
3441  // FIXME: derive from "Target" ?
3442  return WCharTy;
3443}
3444
3445/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3446/// Used when in C++, as a GCC extension.
3447QualType ASTContext::getUnsignedWCharType() const {
3448  // FIXME: derive from "Target" ?
3449  return UnsignedIntTy;
3450}
3451
3452/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3453/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3454QualType ASTContext::getPointerDiffType() const {
3455  return getFromTargetType(Target->getPtrDiffType(0));
3456}
3457
3458//===----------------------------------------------------------------------===//
3459//                              Type Operators
3460//===----------------------------------------------------------------------===//
3461
3462CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3463  // Push qualifiers into arrays, and then discard any remaining
3464  // qualifiers.
3465  T = getCanonicalType(T);
3466  T = getVariableArrayDecayedType(T);
3467  const Type *Ty = T.getTypePtr();
3468  QualType Result;
3469  if (isa<ArrayType>(Ty)) {
3470    Result = getArrayDecayedType(QualType(Ty,0));
3471  } else if (isa<FunctionType>(Ty)) {
3472    Result = getPointerType(QualType(Ty, 0));
3473  } else {
3474    Result = QualType(Ty, 0);
3475  }
3476
3477  return CanQualType::CreateUnsafe(Result);
3478}
3479
3480QualType ASTContext::getUnqualifiedArrayType(QualType type,
3481                                             Qualifiers &quals) {
3482  SplitQualType splitType = type.getSplitUnqualifiedType();
3483
3484  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3485  // the unqualified desugared type and then drops it on the floor.
3486  // We then have to strip that sugar back off with
3487  // getUnqualifiedDesugaredType(), which is silly.
3488  const ArrayType *AT =
3489    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3490
3491  // If we don't have an array, just use the results in splitType.
3492  if (!AT) {
3493    quals = splitType.Quals;
3494    return QualType(splitType.Ty, 0);
3495  }
3496
3497  // Otherwise, recurse on the array's element type.
3498  QualType elementType = AT->getElementType();
3499  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3500
3501  // If that didn't change the element type, AT has no qualifiers, so we
3502  // can just use the results in splitType.
3503  if (elementType == unqualElementType) {
3504    assert(quals.empty()); // from the recursive call
3505    quals = splitType.Quals;
3506    return QualType(splitType.Ty, 0);
3507  }
3508
3509  // Otherwise, add in the qualifiers from the outermost type, then
3510  // build the type back up.
3511  quals.addConsistentQualifiers(splitType.Quals);
3512
3513  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3514    return getConstantArrayType(unqualElementType, CAT->getSize(),
3515                                CAT->getSizeModifier(), 0);
3516  }
3517
3518  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3519    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3520  }
3521
3522  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3523    return getVariableArrayType(unqualElementType,
3524                                VAT->getSizeExpr(),
3525                                VAT->getSizeModifier(),
3526                                VAT->getIndexTypeCVRQualifiers(),
3527                                VAT->getBracketsRange());
3528  }
3529
3530  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3531  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3532                                    DSAT->getSizeModifier(), 0,
3533                                    SourceRange());
3534}
3535
3536/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3537/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3538/// they point to and return true. If T1 and T2 aren't pointer types
3539/// or pointer-to-member types, or if they are not similar at this
3540/// level, returns false and leaves T1 and T2 unchanged. Top-level
3541/// qualifiers on T1 and T2 are ignored. This function will typically
3542/// be called in a loop that successively "unwraps" pointer and
3543/// pointer-to-member types to compare them at each level.
3544bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3545  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3546                    *T2PtrType = T2->getAs<PointerType>();
3547  if (T1PtrType && T2PtrType) {
3548    T1 = T1PtrType->getPointeeType();
3549    T2 = T2PtrType->getPointeeType();
3550    return true;
3551  }
3552
3553  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3554                          *T2MPType = T2->getAs<MemberPointerType>();
3555  if (T1MPType && T2MPType &&
3556      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3557                             QualType(T2MPType->getClass(), 0))) {
3558    T1 = T1MPType->getPointeeType();
3559    T2 = T2MPType->getPointeeType();
3560    return true;
3561  }
3562
3563  if (getLangOpts().ObjC1) {
3564    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3565                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3566    if (T1OPType && T2OPType) {
3567      T1 = T1OPType->getPointeeType();
3568      T2 = T2OPType->getPointeeType();
3569      return true;
3570    }
3571  }
3572
3573  // FIXME: Block pointers, too?
3574
3575  return false;
3576}
3577
3578DeclarationNameInfo
3579ASTContext::getNameForTemplate(TemplateName Name,
3580                               SourceLocation NameLoc) const {
3581  switch (Name.getKind()) {
3582  case TemplateName::QualifiedTemplate:
3583  case TemplateName::Template:
3584    // DNInfo work in progress: CHECKME: what about DNLoc?
3585    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3586                               NameLoc);
3587
3588  case TemplateName::OverloadedTemplate: {
3589    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3590    // DNInfo work in progress: CHECKME: what about DNLoc?
3591    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3592  }
3593
3594  case TemplateName::DependentTemplate: {
3595    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3596    DeclarationName DName;
3597    if (DTN->isIdentifier()) {
3598      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3599      return DeclarationNameInfo(DName, NameLoc);
3600    } else {
3601      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3602      // DNInfo work in progress: FIXME: source locations?
3603      DeclarationNameLoc DNLoc;
3604      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3605      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3606      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3607    }
3608  }
3609
3610  case TemplateName::SubstTemplateTemplateParm: {
3611    SubstTemplateTemplateParmStorage *subst
3612      = Name.getAsSubstTemplateTemplateParm();
3613    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3614                               NameLoc);
3615  }
3616
3617  case TemplateName::SubstTemplateTemplateParmPack: {
3618    SubstTemplateTemplateParmPackStorage *subst
3619      = Name.getAsSubstTemplateTemplateParmPack();
3620    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3621                               NameLoc);
3622  }
3623  }
3624
3625  llvm_unreachable("bad template name kind!");
3626}
3627
3628TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3629  switch (Name.getKind()) {
3630  case TemplateName::QualifiedTemplate:
3631  case TemplateName::Template: {
3632    TemplateDecl *Template = Name.getAsTemplateDecl();
3633    if (TemplateTemplateParmDecl *TTP
3634          = dyn_cast<TemplateTemplateParmDecl>(Template))
3635      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3636
3637    // The canonical template name is the canonical template declaration.
3638    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3639  }
3640
3641  case TemplateName::OverloadedTemplate:
3642    llvm_unreachable("cannot canonicalize overloaded template");
3643
3644  case TemplateName::DependentTemplate: {
3645    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3646    assert(DTN && "Non-dependent template names must refer to template decls.");
3647    return DTN->CanonicalTemplateName;
3648  }
3649
3650  case TemplateName::SubstTemplateTemplateParm: {
3651    SubstTemplateTemplateParmStorage *subst
3652      = Name.getAsSubstTemplateTemplateParm();
3653    return getCanonicalTemplateName(subst->getReplacement());
3654  }
3655
3656  case TemplateName::SubstTemplateTemplateParmPack: {
3657    SubstTemplateTemplateParmPackStorage *subst
3658                                  = Name.getAsSubstTemplateTemplateParmPack();
3659    TemplateTemplateParmDecl *canonParameter
3660      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3661    TemplateArgument canonArgPack
3662      = getCanonicalTemplateArgument(subst->getArgumentPack());
3663    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3664  }
3665  }
3666
3667  llvm_unreachable("bad template name!");
3668}
3669
3670bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3671  X = getCanonicalTemplateName(X);
3672  Y = getCanonicalTemplateName(Y);
3673  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3674}
3675
3676TemplateArgument
3677ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3678  switch (Arg.getKind()) {
3679    case TemplateArgument::Null:
3680      return Arg;
3681
3682    case TemplateArgument::Expression:
3683      return Arg;
3684
3685    case TemplateArgument::Declaration: {
3686      if (Decl *D = Arg.getAsDecl())
3687          return TemplateArgument(D->getCanonicalDecl());
3688      return TemplateArgument((Decl*)0);
3689    }
3690
3691    case TemplateArgument::Template:
3692      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3693
3694    case TemplateArgument::TemplateExpansion:
3695      return TemplateArgument(getCanonicalTemplateName(
3696                                         Arg.getAsTemplateOrTemplatePattern()),
3697                              Arg.getNumTemplateExpansions());
3698
3699    case TemplateArgument::Integral:
3700      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3701
3702    case TemplateArgument::Type:
3703      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3704
3705    case TemplateArgument::Pack: {
3706      if (Arg.pack_size() == 0)
3707        return Arg;
3708
3709      TemplateArgument *CanonArgs
3710        = new (*this) TemplateArgument[Arg.pack_size()];
3711      unsigned Idx = 0;
3712      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3713                                        AEnd = Arg.pack_end();
3714           A != AEnd; (void)++A, ++Idx)
3715        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3716
3717      return TemplateArgument(CanonArgs, Arg.pack_size());
3718    }
3719  }
3720
3721  // Silence GCC warning
3722  llvm_unreachable("Unhandled template argument kind");
3723}
3724
3725NestedNameSpecifier *
3726ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3727  if (!NNS)
3728    return 0;
3729
3730  switch (NNS->getKind()) {
3731  case NestedNameSpecifier::Identifier:
3732    // Canonicalize the prefix but keep the identifier the same.
3733    return NestedNameSpecifier::Create(*this,
3734                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3735                                       NNS->getAsIdentifier());
3736
3737  case NestedNameSpecifier::Namespace:
3738    // A namespace is canonical; build a nested-name-specifier with
3739    // this namespace and no prefix.
3740    return NestedNameSpecifier::Create(*this, 0,
3741                                 NNS->getAsNamespace()->getOriginalNamespace());
3742
3743  case NestedNameSpecifier::NamespaceAlias:
3744    // A namespace is canonical; build a nested-name-specifier with
3745    // this namespace and no prefix.
3746    return NestedNameSpecifier::Create(*this, 0,
3747                                    NNS->getAsNamespaceAlias()->getNamespace()
3748                                                      ->getOriginalNamespace());
3749
3750  case NestedNameSpecifier::TypeSpec:
3751  case NestedNameSpecifier::TypeSpecWithTemplate: {
3752    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3753
3754    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3755    // break it apart into its prefix and identifier, then reconsititute those
3756    // as the canonical nested-name-specifier. This is required to canonicalize
3757    // a dependent nested-name-specifier involving typedefs of dependent-name
3758    // types, e.g.,
3759    //   typedef typename T::type T1;
3760    //   typedef typename T1::type T2;
3761    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3762      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3763                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3764
3765    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3766    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3767    // first place?
3768    return NestedNameSpecifier::Create(*this, 0, false,
3769                                       const_cast<Type*>(T.getTypePtr()));
3770  }
3771
3772  case NestedNameSpecifier::Global:
3773    // The global specifier is canonical and unique.
3774    return NNS;
3775  }
3776
3777  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3778}
3779
3780
3781const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3782  // Handle the non-qualified case efficiently.
3783  if (!T.hasLocalQualifiers()) {
3784    // Handle the common positive case fast.
3785    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3786      return AT;
3787  }
3788
3789  // Handle the common negative case fast.
3790  if (!isa<ArrayType>(T.getCanonicalType()))
3791    return 0;
3792
3793  // Apply any qualifiers from the array type to the element type.  This
3794  // implements C99 6.7.3p8: "If the specification of an array type includes
3795  // any type qualifiers, the element type is so qualified, not the array type."
3796
3797  // If we get here, we either have type qualifiers on the type, or we have
3798  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3799  // we must propagate them down into the element type.
3800
3801  SplitQualType split = T.getSplitDesugaredType();
3802  Qualifiers qs = split.Quals;
3803
3804  // If we have a simple case, just return now.
3805  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3806  if (ATy == 0 || qs.empty())
3807    return ATy;
3808
3809  // Otherwise, we have an array and we have qualifiers on it.  Push the
3810  // qualifiers into the array element type and return a new array type.
3811  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3812
3813  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3814    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3815                                                CAT->getSizeModifier(),
3816                                           CAT->getIndexTypeCVRQualifiers()));
3817  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3818    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3819                                                  IAT->getSizeModifier(),
3820                                           IAT->getIndexTypeCVRQualifiers()));
3821
3822  if (const DependentSizedArrayType *DSAT
3823        = dyn_cast<DependentSizedArrayType>(ATy))
3824    return cast<ArrayType>(
3825                     getDependentSizedArrayType(NewEltTy,
3826                                                DSAT->getSizeExpr(),
3827                                                DSAT->getSizeModifier(),
3828                                              DSAT->getIndexTypeCVRQualifiers(),
3829                                                DSAT->getBracketsRange()));
3830
3831  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
3832  return cast<ArrayType>(getVariableArrayType(NewEltTy,
3833                                              VAT->getSizeExpr(),
3834                                              VAT->getSizeModifier(),
3835                                              VAT->getIndexTypeCVRQualifiers(),
3836                                              VAT->getBracketsRange()));
3837}
3838
3839QualType ASTContext::getAdjustedParameterType(QualType T) const {
3840  // C99 6.7.5.3p7:
3841  //   A declaration of a parameter as "array of type" shall be
3842  //   adjusted to "qualified pointer to type", where the type
3843  //   qualifiers (if any) are those specified within the [ and ] of
3844  //   the array type derivation.
3845  if (T->isArrayType())
3846    return getArrayDecayedType(T);
3847
3848  // C99 6.7.5.3p8:
3849  //   A declaration of a parameter as "function returning type"
3850  //   shall be adjusted to "pointer to function returning type", as
3851  //   in 6.3.2.1.
3852  if (T->isFunctionType())
3853    return getPointerType(T);
3854
3855  return T;
3856}
3857
3858QualType ASTContext::getSignatureParameterType(QualType T) const {
3859  T = getVariableArrayDecayedType(T);
3860  T = getAdjustedParameterType(T);
3861  return T.getUnqualifiedType();
3862}
3863
3864/// getArrayDecayedType - Return the properly qualified result of decaying the
3865/// specified array type to a pointer.  This operation is non-trivial when
3866/// handling typedefs etc.  The canonical type of "T" must be an array type,
3867/// this returns a pointer to a properly qualified element of the array.
3868///
3869/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
3870QualType ASTContext::getArrayDecayedType(QualType Ty) const {
3871  // Get the element type with 'getAsArrayType' so that we don't lose any
3872  // typedefs in the element type of the array.  This also handles propagation
3873  // of type qualifiers from the array type into the element type if present
3874  // (C99 6.7.3p8).
3875  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
3876  assert(PrettyArrayType && "Not an array type!");
3877
3878  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
3879
3880  // int x[restrict 4] ->  int *restrict
3881  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
3882}
3883
3884QualType ASTContext::getBaseElementType(const ArrayType *array) const {
3885  return getBaseElementType(array->getElementType());
3886}
3887
3888QualType ASTContext::getBaseElementType(QualType type) const {
3889  Qualifiers qs;
3890  while (true) {
3891    SplitQualType split = type.getSplitDesugaredType();
3892    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
3893    if (!array) break;
3894
3895    type = array->getElementType();
3896    qs.addConsistentQualifiers(split.Quals);
3897  }
3898
3899  return getQualifiedType(type, qs);
3900}
3901
3902/// getConstantArrayElementCount - Returns number of constant array elements.
3903uint64_t
3904ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
3905  uint64_t ElementCount = 1;
3906  do {
3907    ElementCount *= CA->getSize().getZExtValue();
3908    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
3909  } while (CA);
3910  return ElementCount;
3911}
3912
3913/// getFloatingRank - Return a relative rank for floating point types.
3914/// This routine will assert if passed a built-in type that isn't a float.
3915static FloatingRank getFloatingRank(QualType T) {
3916  if (const ComplexType *CT = T->getAs<ComplexType>())
3917    return getFloatingRank(CT->getElementType());
3918
3919  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
3920  switch (T->getAs<BuiltinType>()->getKind()) {
3921  default: llvm_unreachable("getFloatingRank(): not a floating type");
3922  case BuiltinType::Half:       return HalfRank;
3923  case BuiltinType::Float:      return FloatRank;
3924  case BuiltinType::Double:     return DoubleRank;
3925  case BuiltinType::LongDouble: return LongDoubleRank;
3926  }
3927}
3928
3929/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
3930/// point or a complex type (based on typeDomain/typeSize).
3931/// 'typeDomain' is a real floating point or complex type.
3932/// 'typeSize' is a real floating point or complex type.
3933QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
3934                                                       QualType Domain) const {
3935  FloatingRank EltRank = getFloatingRank(Size);
3936  if (Domain->isComplexType()) {
3937    switch (EltRank) {
3938    case HalfRank: llvm_unreachable("Complex half is not supported");
3939    case FloatRank:      return FloatComplexTy;
3940    case DoubleRank:     return DoubleComplexTy;
3941    case LongDoubleRank: return LongDoubleComplexTy;
3942    }
3943  }
3944
3945  assert(Domain->isRealFloatingType() && "Unknown domain!");
3946  switch (EltRank) {
3947  case HalfRank: llvm_unreachable("Half ranks are not valid here");
3948  case FloatRank:      return FloatTy;
3949  case DoubleRank:     return DoubleTy;
3950  case LongDoubleRank: return LongDoubleTy;
3951  }
3952  llvm_unreachable("getFloatingRank(): illegal value for rank");
3953}
3954
3955/// getFloatingTypeOrder - Compare the rank of the two specified floating
3956/// point types, ignoring the domain of the type (i.e. 'double' ==
3957/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
3958/// LHS < RHS, return -1.
3959int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
3960  FloatingRank LHSR = getFloatingRank(LHS);
3961  FloatingRank RHSR = getFloatingRank(RHS);
3962
3963  if (LHSR == RHSR)
3964    return 0;
3965  if (LHSR > RHSR)
3966    return 1;
3967  return -1;
3968}
3969
3970/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
3971/// routine will assert if passed a built-in type that isn't an integer or enum,
3972/// or if it is not canonicalized.
3973unsigned ASTContext::getIntegerRank(const Type *T) const {
3974  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
3975
3976  switch (cast<BuiltinType>(T)->getKind()) {
3977  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
3978  case BuiltinType::Bool:
3979    return 1 + (getIntWidth(BoolTy) << 3);
3980  case BuiltinType::Char_S:
3981  case BuiltinType::Char_U:
3982  case BuiltinType::SChar:
3983  case BuiltinType::UChar:
3984    return 2 + (getIntWidth(CharTy) << 3);
3985  case BuiltinType::Short:
3986  case BuiltinType::UShort:
3987    return 3 + (getIntWidth(ShortTy) << 3);
3988  case BuiltinType::Int:
3989  case BuiltinType::UInt:
3990    return 4 + (getIntWidth(IntTy) << 3);
3991  case BuiltinType::Long:
3992  case BuiltinType::ULong:
3993    return 5 + (getIntWidth(LongTy) << 3);
3994  case BuiltinType::LongLong:
3995  case BuiltinType::ULongLong:
3996    return 6 + (getIntWidth(LongLongTy) << 3);
3997  case BuiltinType::Int128:
3998  case BuiltinType::UInt128:
3999    return 7 + (getIntWidth(Int128Ty) << 3);
4000  }
4001}
4002
4003/// \brief Whether this is a promotable bitfield reference according
4004/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4005///
4006/// \returns the type this bit-field will promote to, or NULL if no
4007/// promotion occurs.
4008QualType ASTContext::isPromotableBitField(Expr *E) const {
4009  if (E->isTypeDependent() || E->isValueDependent())
4010    return QualType();
4011
4012  FieldDecl *Field = E->getBitField();
4013  if (!Field)
4014    return QualType();
4015
4016  QualType FT = Field->getType();
4017
4018  uint64_t BitWidth = Field->getBitWidthValue(*this);
4019  uint64_t IntSize = getTypeSize(IntTy);
4020  // GCC extension compatibility: if the bit-field size is less than or equal
4021  // to the size of int, it gets promoted no matter what its type is.
4022  // For instance, unsigned long bf : 4 gets promoted to signed int.
4023  if (BitWidth < IntSize)
4024    return IntTy;
4025
4026  if (BitWidth == IntSize)
4027    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4028
4029  // Types bigger than int are not subject to promotions, and therefore act
4030  // like the base type.
4031  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4032  // is ridiculous.
4033  return QualType();
4034}
4035
4036/// getPromotedIntegerType - Returns the type that Promotable will
4037/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4038/// integer type.
4039QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4040  assert(!Promotable.isNull());
4041  assert(Promotable->isPromotableIntegerType());
4042  if (const EnumType *ET = Promotable->getAs<EnumType>())
4043    return ET->getDecl()->getPromotionType();
4044
4045  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4046    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4047    // (3.9.1) can be converted to a prvalue of the first of the following
4048    // types that can represent all the values of its underlying type:
4049    // int, unsigned int, long int, unsigned long int, long long int, or
4050    // unsigned long long int [...]
4051    // FIXME: Is there some better way to compute this?
4052    if (BT->getKind() == BuiltinType::WChar_S ||
4053        BT->getKind() == BuiltinType::WChar_U ||
4054        BT->getKind() == BuiltinType::Char16 ||
4055        BT->getKind() == BuiltinType::Char32) {
4056      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4057      uint64_t FromSize = getTypeSize(BT);
4058      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4059                                  LongLongTy, UnsignedLongLongTy };
4060      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4061        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4062        if (FromSize < ToSize ||
4063            (FromSize == ToSize &&
4064             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4065          return PromoteTypes[Idx];
4066      }
4067      llvm_unreachable("char type should fit into long long");
4068    }
4069  }
4070
4071  // At this point, we should have a signed or unsigned integer type.
4072  if (Promotable->isSignedIntegerType())
4073    return IntTy;
4074  uint64_t PromotableSize = getTypeSize(Promotable);
4075  uint64_t IntSize = getTypeSize(IntTy);
4076  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4077  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4078}
4079
4080/// \brief Recurses in pointer/array types until it finds an objc retainable
4081/// type and returns its ownership.
4082Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4083  while (!T.isNull()) {
4084    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4085      return T.getObjCLifetime();
4086    if (T->isArrayType())
4087      T = getBaseElementType(T);
4088    else if (const PointerType *PT = T->getAs<PointerType>())
4089      T = PT->getPointeeType();
4090    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4091      T = RT->getPointeeType();
4092    else
4093      break;
4094  }
4095
4096  return Qualifiers::OCL_None;
4097}
4098
4099/// getIntegerTypeOrder - Returns the highest ranked integer type:
4100/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4101/// LHS < RHS, return -1.
4102int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4103  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4104  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4105  if (LHSC == RHSC) return 0;
4106
4107  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4108  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4109
4110  unsigned LHSRank = getIntegerRank(LHSC);
4111  unsigned RHSRank = getIntegerRank(RHSC);
4112
4113  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4114    if (LHSRank == RHSRank) return 0;
4115    return LHSRank > RHSRank ? 1 : -1;
4116  }
4117
4118  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4119  if (LHSUnsigned) {
4120    // If the unsigned [LHS] type is larger, return it.
4121    if (LHSRank >= RHSRank)
4122      return 1;
4123
4124    // If the signed type can represent all values of the unsigned type, it
4125    // wins.  Because we are dealing with 2's complement and types that are
4126    // powers of two larger than each other, this is always safe.
4127    return -1;
4128  }
4129
4130  // If the unsigned [RHS] type is larger, return it.
4131  if (RHSRank >= LHSRank)
4132    return -1;
4133
4134  // If the signed type can represent all values of the unsigned type, it
4135  // wins.  Because we are dealing with 2's complement and types that are
4136  // powers of two larger than each other, this is always safe.
4137  return 1;
4138}
4139
4140static RecordDecl *
4141CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4142                 DeclContext *DC, IdentifierInfo *Id) {
4143  SourceLocation Loc;
4144  if (Ctx.getLangOpts().CPlusPlus)
4145    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4146  else
4147    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4148}
4149
4150// getCFConstantStringType - Return the type used for constant CFStrings.
4151QualType ASTContext::getCFConstantStringType() const {
4152  if (!CFConstantStringTypeDecl) {
4153    CFConstantStringTypeDecl =
4154      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4155                       &Idents.get("NSConstantString"));
4156    CFConstantStringTypeDecl->startDefinition();
4157
4158    QualType FieldTypes[4];
4159
4160    // const int *isa;
4161    FieldTypes[0] = getPointerType(IntTy.withConst());
4162    // int flags;
4163    FieldTypes[1] = IntTy;
4164    // const char *str;
4165    FieldTypes[2] = getPointerType(CharTy.withConst());
4166    // long length;
4167    FieldTypes[3] = LongTy;
4168
4169    // Create fields
4170    for (unsigned i = 0; i < 4; ++i) {
4171      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4172                                           SourceLocation(),
4173                                           SourceLocation(), 0,
4174                                           FieldTypes[i], /*TInfo=*/0,
4175                                           /*BitWidth=*/0,
4176                                           /*Mutable=*/false,
4177                                           ICIS_NoInit);
4178      Field->setAccess(AS_public);
4179      CFConstantStringTypeDecl->addDecl(Field);
4180    }
4181
4182    CFConstantStringTypeDecl->completeDefinition();
4183  }
4184
4185  return getTagDeclType(CFConstantStringTypeDecl);
4186}
4187
4188void ASTContext::setCFConstantStringType(QualType T) {
4189  const RecordType *Rec = T->getAs<RecordType>();
4190  assert(Rec && "Invalid CFConstantStringType");
4191  CFConstantStringTypeDecl = Rec->getDecl();
4192}
4193
4194QualType ASTContext::getBlockDescriptorType() const {
4195  if (BlockDescriptorType)
4196    return getTagDeclType(BlockDescriptorType);
4197
4198  RecordDecl *T;
4199  // FIXME: Needs the FlagAppleBlock bit.
4200  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4201                       &Idents.get("__block_descriptor"));
4202  T->startDefinition();
4203
4204  QualType FieldTypes[] = {
4205    UnsignedLongTy,
4206    UnsignedLongTy,
4207  };
4208
4209  const char *FieldNames[] = {
4210    "reserved",
4211    "Size"
4212  };
4213
4214  for (size_t i = 0; i < 2; ++i) {
4215    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4216                                         SourceLocation(),
4217                                         &Idents.get(FieldNames[i]),
4218                                         FieldTypes[i], /*TInfo=*/0,
4219                                         /*BitWidth=*/0,
4220                                         /*Mutable=*/false,
4221                                         ICIS_NoInit);
4222    Field->setAccess(AS_public);
4223    T->addDecl(Field);
4224  }
4225
4226  T->completeDefinition();
4227
4228  BlockDescriptorType = T;
4229
4230  return getTagDeclType(BlockDescriptorType);
4231}
4232
4233QualType ASTContext::getBlockDescriptorExtendedType() const {
4234  if (BlockDescriptorExtendedType)
4235    return getTagDeclType(BlockDescriptorExtendedType);
4236
4237  RecordDecl *T;
4238  // FIXME: Needs the FlagAppleBlock bit.
4239  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4240                       &Idents.get("__block_descriptor_withcopydispose"));
4241  T->startDefinition();
4242
4243  QualType FieldTypes[] = {
4244    UnsignedLongTy,
4245    UnsignedLongTy,
4246    getPointerType(VoidPtrTy),
4247    getPointerType(VoidPtrTy)
4248  };
4249
4250  const char *FieldNames[] = {
4251    "reserved",
4252    "Size",
4253    "CopyFuncPtr",
4254    "DestroyFuncPtr"
4255  };
4256
4257  for (size_t i = 0; i < 4; ++i) {
4258    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4259                                         SourceLocation(),
4260                                         &Idents.get(FieldNames[i]),
4261                                         FieldTypes[i], /*TInfo=*/0,
4262                                         /*BitWidth=*/0,
4263                                         /*Mutable=*/false,
4264                                         ICIS_NoInit);
4265    Field->setAccess(AS_public);
4266    T->addDecl(Field);
4267  }
4268
4269  T->completeDefinition();
4270
4271  BlockDescriptorExtendedType = T;
4272
4273  return getTagDeclType(BlockDescriptorExtendedType);
4274}
4275
4276bool ASTContext::BlockRequiresCopying(QualType Ty) const {
4277  if (Ty->isObjCRetainableType())
4278    return true;
4279  if (getLangOpts().CPlusPlus) {
4280    if (const RecordType *RT = Ty->getAs<RecordType>()) {
4281      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4282      return RD->hasConstCopyConstructor();
4283
4284    }
4285  }
4286  return false;
4287}
4288
4289QualType
4290ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const {
4291  //  type = struct __Block_byref_1_X {
4292  //    void *__isa;
4293  //    struct __Block_byref_1_X *__forwarding;
4294  //    unsigned int __flags;
4295  //    unsigned int __size;
4296  //    void *__copy_helper;            // as needed
4297  //    void *__destroy_help            // as needed
4298  //    int X;
4299  //  } *
4300
4301  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
4302
4303  // FIXME: Move up
4304  SmallString<36> Name;
4305  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
4306                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
4307  RecordDecl *T;
4308  T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str()));
4309  T->startDefinition();
4310  QualType Int32Ty = IntTy;
4311  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
4312  QualType FieldTypes[] = {
4313    getPointerType(VoidPtrTy),
4314    getPointerType(getTagDeclType(T)),
4315    Int32Ty,
4316    Int32Ty,
4317    getPointerType(VoidPtrTy),
4318    getPointerType(VoidPtrTy),
4319    Ty
4320  };
4321
4322  StringRef FieldNames[] = {
4323    "__isa",
4324    "__forwarding",
4325    "__flags",
4326    "__size",
4327    "__copy_helper",
4328    "__destroy_helper",
4329    DeclName,
4330  };
4331
4332  for (size_t i = 0; i < 7; ++i) {
4333    if (!HasCopyAndDispose && i >=4 && i <= 5)
4334      continue;
4335    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4336                                         SourceLocation(),
4337                                         &Idents.get(FieldNames[i]),
4338                                         FieldTypes[i], /*TInfo=*/0,
4339                                         /*BitWidth=*/0, /*Mutable=*/false,
4340                                         ICIS_NoInit);
4341    Field->setAccess(AS_public);
4342    T->addDecl(Field);
4343  }
4344
4345  T->completeDefinition();
4346
4347  return getPointerType(getTagDeclType(T));
4348}
4349
4350TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4351  if (!ObjCInstanceTypeDecl)
4352    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4353                                               getTranslationUnitDecl(),
4354                                               SourceLocation(),
4355                                               SourceLocation(),
4356                                               &Idents.get("instancetype"),
4357                                     getTrivialTypeSourceInfo(getObjCIdType()));
4358  return ObjCInstanceTypeDecl;
4359}
4360
4361// This returns true if a type has been typedefed to BOOL:
4362// typedef <type> BOOL;
4363static bool isTypeTypedefedAsBOOL(QualType T) {
4364  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4365    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4366      return II->isStr("BOOL");
4367
4368  return false;
4369}
4370
4371/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4372/// purpose.
4373CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4374  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4375    return CharUnits::Zero();
4376
4377  CharUnits sz = getTypeSizeInChars(type);
4378
4379  // Make all integer and enum types at least as large as an int
4380  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4381    sz = std::max(sz, getTypeSizeInChars(IntTy));
4382  // Treat arrays as pointers, since that's how they're passed in.
4383  else if (type->isArrayType())
4384    sz = getTypeSizeInChars(VoidPtrTy);
4385  return sz;
4386}
4387
4388static inline
4389std::string charUnitsToString(const CharUnits &CU) {
4390  return llvm::itostr(CU.getQuantity());
4391}
4392
4393/// getObjCEncodingForBlock - Return the encoded type for this block
4394/// declaration.
4395std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4396  std::string S;
4397
4398  const BlockDecl *Decl = Expr->getBlockDecl();
4399  QualType BlockTy =
4400      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4401  // Encode result type.
4402  getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S);
4403  // Compute size of all parameters.
4404  // Start with computing size of a pointer in number of bytes.
4405  // FIXME: There might(should) be a better way of doing this computation!
4406  SourceLocation Loc;
4407  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4408  CharUnits ParmOffset = PtrSize;
4409  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4410       E = Decl->param_end(); PI != E; ++PI) {
4411    QualType PType = (*PI)->getType();
4412    CharUnits sz = getObjCEncodingTypeSize(PType);
4413    if (sz.isZero())
4414      continue;
4415    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4416    ParmOffset += sz;
4417  }
4418  // Size of the argument frame
4419  S += charUnitsToString(ParmOffset);
4420  // Block pointer and offset.
4421  S += "@?0";
4422
4423  // Argument types.
4424  ParmOffset = PtrSize;
4425  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4426       Decl->param_end(); PI != E; ++PI) {
4427    ParmVarDecl *PVDecl = *PI;
4428    QualType PType = PVDecl->getOriginalType();
4429    if (const ArrayType *AT =
4430          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4431      // Use array's original type only if it has known number of
4432      // elements.
4433      if (!isa<ConstantArrayType>(AT))
4434        PType = PVDecl->getType();
4435    } else if (PType->isFunctionType())
4436      PType = PVDecl->getType();
4437    getObjCEncodingForType(PType, S);
4438    S += charUnitsToString(ParmOffset);
4439    ParmOffset += getObjCEncodingTypeSize(PType);
4440  }
4441
4442  return S;
4443}
4444
4445bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4446                                                std::string& S) {
4447  // Encode result type.
4448  getObjCEncodingForType(Decl->getResultType(), S);
4449  CharUnits ParmOffset;
4450  // Compute size of all parameters.
4451  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4452       E = Decl->param_end(); PI != E; ++PI) {
4453    QualType PType = (*PI)->getType();
4454    CharUnits sz = getObjCEncodingTypeSize(PType);
4455    if (sz.isZero())
4456      continue;
4457
4458    assert (sz.isPositive() &&
4459        "getObjCEncodingForFunctionDecl - Incomplete param type");
4460    ParmOffset += sz;
4461  }
4462  S += charUnitsToString(ParmOffset);
4463  ParmOffset = CharUnits::Zero();
4464
4465  // Argument types.
4466  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4467       E = Decl->param_end(); PI != E; ++PI) {
4468    ParmVarDecl *PVDecl = *PI;
4469    QualType PType = PVDecl->getOriginalType();
4470    if (const ArrayType *AT =
4471          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4472      // Use array's original type only if it has known number of
4473      // elements.
4474      if (!isa<ConstantArrayType>(AT))
4475        PType = PVDecl->getType();
4476    } else if (PType->isFunctionType())
4477      PType = PVDecl->getType();
4478    getObjCEncodingForType(PType, S);
4479    S += charUnitsToString(ParmOffset);
4480    ParmOffset += getObjCEncodingTypeSize(PType);
4481  }
4482
4483  return false;
4484}
4485
4486/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4487/// method parameter or return type. If Extended, include class names and
4488/// block object types.
4489void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4490                                                   QualType T, std::string& S,
4491                                                   bool Extended) const {
4492  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4493  getObjCEncodingForTypeQualifier(QT, S);
4494  // Encode parameter type.
4495  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4496                             true     /*OutermostType*/,
4497                             false    /*EncodingProperty*/,
4498                             false    /*StructField*/,
4499                             Extended /*EncodeBlockParameters*/,
4500                             Extended /*EncodeClassNames*/);
4501}
4502
4503/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4504/// declaration.
4505bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4506                                              std::string& S,
4507                                              bool Extended) const {
4508  // FIXME: This is not very efficient.
4509  // Encode return type.
4510  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4511                                    Decl->getResultType(), S, Extended);
4512  // Compute size of all parameters.
4513  // Start with computing size of a pointer in number of bytes.
4514  // FIXME: There might(should) be a better way of doing this computation!
4515  SourceLocation Loc;
4516  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4517  // The first two arguments (self and _cmd) are pointers; account for
4518  // their size.
4519  CharUnits ParmOffset = 2 * PtrSize;
4520  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4521       E = Decl->sel_param_end(); PI != E; ++PI) {
4522    QualType PType = (*PI)->getType();
4523    CharUnits sz = getObjCEncodingTypeSize(PType);
4524    if (sz.isZero())
4525      continue;
4526
4527    assert (sz.isPositive() &&
4528        "getObjCEncodingForMethodDecl - Incomplete param type");
4529    ParmOffset += sz;
4530  }
4531  S += charUnitsToString(ParmOffset);
4532  S += "@0:";
4533  S += charUnitsToString(PtrSize);
4534
4535  // Argument types.
4536  ParmOffset = 2 * PtrSize;
4537  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4538       E = Decl->sel_param_end(); PI != E; ++PI) {
4539    const ParmVarDecl *PVDecl = *PI;
4540    QualType PType = PVDecl->getOriginalType();
4541    if (const ArrayType *AT =
4542          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4543      // Use array's original type only if it has known number of
4544      // elements.
4545      if (!isa<ConstantArrayType>(AT))
4546        PType = PVDecl->getType();
4547    } else if (PType->isFunctionType())
4548      PType = PVDecl->getType();
4549    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4550                                      PType, S, Extended);
4551    S += charUnitsToString(ParmOffset);
4552    ParmOffset += getObjCEncodingTypeSize(PType);
4553  }
4554
4555  return false;
4556}
4557
4558/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4559/// property declaration. If non-NULL, Container must be either an
4560/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4561/// NULL when getting encodings for protocol properties.
4562/// Property attributes are stored as a comma-delimited C string. The simple
4563/// attributes readonly and bycopy are encoded as single characters. The
4564/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4565/// encoded as single characters, followed by an identifier. Property types
4566/// are also encoded as a parametrized attribute. The characters used to encode
4567/// these attributes are defined by the following enumeration:
4568/// @code
4569/// enum PropertyAttributes {
4570/// kPropertyReadOnly = 'R',   // property is read-only.
4571/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4572/// kPropertyByref = '&',  // property is a reference to the value last assigned
4573/// kPropertyDynamic = 'D',    // property is dynamic
4574/// kPropertyGetter = 'G',     // followed by getter selector name
4575/// kPropertySetter = 'S',     // followed by setter selector name
4576/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4577/// kPropertyType = 'T'              // followed by old-style type encoding.
4578/// kPropertyWeak = 'W'              // 'weak' property
4579/// kPropertyStrong = 'P'            // property GC'able
4580/// kPropertyNonAtomic = 'N'         // property non-atomic
4581/// };
4582/// @endcode
4583void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4584                                                const Decl *Container,
4585                                                std::string& S) const {
4586  // Collect information from the property implementation decl(s).
4587  bool Dynamic = false;
4588  ObjCPropertyImplDecl *SynthesizePID = 0;
4589
4590  // FIXME: Duplicated code due to poor abstraction.
4591  if (Container) {
4592    if (const ObjCCategoryImplDecl *CID =
4593        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4594      for (ObjCCategoryImplDecl::propimpl_iterator
4595             i = CID->propimpl_begin(), e = CID->propimpl_end();
4596           i != e; ++i) {
4597        ObjCPropertyImplDecl *PID = *i;
4598        if (PID->getPropertyDecl() == PD) {
4599          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4600            Dynamic = true;
4601          } else {
4602            SynthesizePID = PID;
4603          }
4604        }
4605      }
4606    } else {
4607      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4608      for (ObjCCategoryImplDecl::propimpl_iterator
4609             i = OID->propimpl_begin(), e = OID->propimpl_end();
4610           i != e; ++i) {
4611        ObjCPropertyImplDecl *PID = *i;
4612        if (PID->getPropertyDecl() == PD) {
4613          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4614            Dynamic = true;
4615          } else {
4616            SynthesizePID = PID;
4617          }
4618        }
4619      }
4620    }
4621  }
4622
4623  // FIXME: This is not very efficient.
4624  S = "T";
4625
4626  // Encode result type.
4627  // GCC has some special rules regarding encoding of properties which
4628  // closely resembles encoding of ivars.
4629  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4630                             true /* outermost type */,
4631                             true /* encoding for property */);
4632
4633  if (PD->isReadOnly()) {
4634    S += ",R";
4635  } else {
4636    switch (PD->getSetterKind()) {
4637    case ObjCPropertyDecl::Assign: break;
4638    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4639    case ObjCPropertyDecl::Retain: S += ",&"; break;
4640    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4641    }
4642  }
4643
4644  // It really isn't clear at all what this means, since properties
4645  // are "dynamic by default".
4646  if (Dynamic)
4647    S += ",D";
4648
4649  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4650    S += ",N";
4651
4652  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4653    S += ",G";
4654    S += PD->getGetterName().getAsString();
4655  }
4656
4657  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4658    S += ",S";
4659    S += PD->getSetterName().getAsString();
4660  }
4661
4662  if (SynthesizePID) {
4663    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4664    S += ",V";
4665    S += OID->getNameAsString();
4666  }
4667
4668  // FIXME: OBJCGC: weak & strong
4669}
4670
4671/// getLegacyIntegralTypeEncoding -
4672/// Another legacy compatibility encoding: 32-bit longs are encoded as
4673/// 'l' or 'L' , but not always.  For typedefs, we need to use
4674/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4675///
4676void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4677  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4678    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4679      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4680        PointeeTy = UnsignedIntTy;
4681      else
4682        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4683          PointeeTy = IntTy;
4684    }
4685  }
4686}
4687
4688void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4689                                        const FieldDecl *Field) const {
4690  // We follow the behavior of gcc, expanding structures which are
4691  // directly pointed to, and expanding embedded structures. Note that
4692  // these rules are sufficient to prevent recursive encoding of the
4693  // same type.
4694  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4695                             true /* outermost type */);
4696}
4697
4698static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) {
4699    switch (T->getAs<BuiltinType>()->getKind()) {
4700    default: llvm_unreachable("Unhandled builtin type kind");
4701    case BuiltinType::Void:       return 'v';
4702    case BuiltinType::Bool:       return 'B';
4703    case BuiltinType::Char_U:
4704    case BuiltinType::UChar:      return 'C';
4705    case BuiltinType::UShort:     return 'S';
4706    case BuiltinType::UInt:       return 'I';
4707    case BuiltinType::ULong:
4708        return C->getIntWidth(T) == 32 ? 'L' : 'Q';
4709    case BuiltinType::UInt128:    return 'T';
4710    case BuiltinType::ULongLong:  return 'Q';
4711    case BuiltinType::Char_S:
4712    case BuiltinType::SChar:      return 'c';
4713    case BuiltinType::Short:      return 's';
4714    case BuiltinType::WChar_S:
4715    case BuiltinType::WChar_U:
4716    case BuiltinType::Int:        return 'i';
4717    case BuiltinType::Long:
4718      return C->getIntWidth(T) == 32 ? 'l' : 'q';
4719    case BuiltinType::LongLong:   return 'q';
4720    case BuiltinType::Int128:     return 't';
4721    case BuiltinType::Float:      return 'f';
4722    case BuiltinType::Double:     return 'd';
4723    case BuiltinType::LongDouble: return 'D';
4724    }
4725}
4726
4727static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4728  EnumDecl *Enum = ET->getDecl();
4729
4730  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4731  if (!Enum->isFixed())
4732    return 'i';
4733
4734  // The encoding of a fixed enum type matches its fixed underlying type.
4735  return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType());
4736}
4737
4738static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4739                           QualType T, const FieldDecl *FD) {
4740  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4741  S += 'b';
4742  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4743  // The GNU runtime requires more information; bitfields are encoded as b,
4744  // then the offset (in bits) of the first element, then the type of the
4745  // bitfield, then the size in bits.  For example, in this structure:
4746  //
4747  // struct
4748  // {
4749  //    int integer;
4750  //    int flags:2;
4751  // };
4752  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4753  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4754  // information is not especially sensible, but we're stuck with it for
4755  // compatibility with GCC, although providing it breaks anything that
4756  // actually uses runtime introspection and wants to work on both runtimes...
4757  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4758    const RecordDecl *RD = FD->getParent();
4759    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4760    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4761    if (const EnumType *ET = T->getAs<EnumType>())
4762      S += ObjCEncodingForEnumType(Ctx, ET);
4763    else
4764      S += ObjCEncodingForPrimitiveKind(Ctx, T);
4765  }
4766  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4767}
4768
4769// FIXME: Use SmallString for accumulating string.
4770void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4771                                            bool ExpandPointedToStructures,
4772                                            bool ExpandStructures,
4773                                            const FieldDecl *FD,
4774                                            bool OutermostType,
4775                                            bool EncodingProperty,
4776                                            bool StructField,
4777                                            bool EncodeBlockParameters,
4778                                            bool EncodeClassNames) const {
4779  if (T->getAs<BuiltinType>()) {
4780    if (FD && FD->isBitField())
4781      return EncodeBitField(this, S, T, FD);
4782    S += ObjCEncodingForPrimitiveKind(this, T);
4783    return;
4784  }
4785
4786  if (const ComplexType *CT = T->getAs<ComplexType>()) {
4787    S += 'j';
4788    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
4789                               false);
4790    return;
4791  }
4792
4793  // encoding for pointer or r3eference types.
4794  QualType PointeeTy;
4795  if (const PointerType *PT = T->getAs<PointerType>()) {
4796    if (PT->isObjCSelType()) {
4797      S += ':';
4798      return;
4799    }
4800    PointeeTy = PT->getPointeeType();
4801  }
4802  else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4803    PointeeTy = RT->getPointeeType();
4804  if (!PointeeTy.isNull()) {
4805    bool isReadOnly = false;
4806    // For historical/compatibility reasons, the read-only qualifier of the
4807    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
4808    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
4809    // Also, do not emit the 'r' for anything but the outermost type!
4810    if (isa<TypedefType>(T.getTypePtr())) {
4811      if (OutermostType && T.isConstQualified()) {
4812        isReadOnly = true;
4813        S += 'r';
4814      }
4815    } else if (OutermostType) {
4816      QualType P = PointeeTy;
4817      while (P->getAs<PointerType>())
4818        P = P->getAs<PointerType>()->getPointeeType();
4819      if (P.isConstQualified()) {
4820        isReadOnly = true;
4821        S += 'r';
4822      }
4823    }
4824    if (isReadOnly) {
4825      // Another legacy compatibility encoding. Some ObjC qualifier and type
4826      // combinations need to be rearranged.
4827      // Rewrite "in const" from "nr" to "rn"
4828      if (StringRef(S).endswith("nr"))
4829        S.replace(S.end()-2, S.end(), "rn");
4830    }
4831
4832    if (PointeeTy->isCharType()) {
4833      // char pointer types should be encoded as '*' unless it is a
4834      // type that has been typedef'd to 'BOOL'.
4835      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
4836        S += '*';
4837        return;
4838      }
4839    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
4840      // GCC binary compat: Need to convert "struct objc_class *" to "#".
4841      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
4842        S += '#';
4843        return;
4844      }
4845      // GCC binary compat: Need to convert "struct objc_object *" to "@".
4846      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
4847        S += '@';
4848        return;
4849      }
4850      // fall through...
4851    }
4852    S += '^';
4853    getLegacyIntegralTypeEncoding(PointeeTy);
4854
4855    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
4856                               NULL);
4857    return;
4858  }
4859
4860  if (const ArrayType *AT =
4861      // Ignore type qualifiers etc.
4862        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
4863    if (isa<IncompleteArrayType>(AT) && !StructField) {
4864      // Incomplete arrays are encoded as a pointer to the array element.
4865      S += '^';
4866
4867      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4868                                 false, ExpandStructures, FD);
4869    } else {
4870      S += '[';
4871
4872      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
4873        if (getTypeSize(CAT->getElementType()) == 0)
4874          S += '0';
4875        else
4876          S += llvm::utostr(CAT->getSize().getZExtValue());
4877      } else {
4878        //Variable length arrays are encoded as a regular array with 0 elements.
4879        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
4880               "Unknown array type!");
4881        S += '0';
4882      }
4883
4884      getObjCEncodingForTypeImpl(AT->getElementType(), S,
4885                                 false, ExpandStructures, FD);
4886      S += ']';
4887    }
4888    return;
4889  }
4890
4891  if (T->getAs<FunctionType>()) {
4892    S += '?';
4893    return;
4894  }
4895
4896  if (const RecordType *RTy = T->getAs<RecordType>()) {
4897    RecordDecl *RDecl = RTy->getDecl();
4898    S += RDecl->isUnion() ? '(' : '{';
4899    // Anonymous structures print as '?'
4900    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
4901      S += II->getName();
4902      if (ClassTemplateSpecializationDecl *Spec
4903          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
4904        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
4905        std::string TemplateArgsStr
4906          = TemplateSpecializationType::PrintTemplateArgumentList(
4907                                            TemplateArgs.data(),
4908                                            TemplateArgs.size(),
4909                                            (*this).getPrintingPolicy());
4910
4911        S += TemplateArgsStr;
4912      }
4913    } else {
4914      S += '?';
4915    }
4916    if (ExpandStructures) {
4917      S += '=';
4918      if (!RDecl->isUnion()) {
4919        getObjCEncodingForStructureImpl(RDecl, S, FD);
4920      } else {
4921        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
4922                                     FieldEnd = RDecl->field_end();
4923             Field != FieldEnd; ++Field) {
4924          if (FD) {
4925            S += '"';
4926            S += Field->getNameAsString();
4927            S += '"';
4928          }
4929
4930          // Special case bit-fields.
4931          if (Field->isBitField()) {
4932            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
4933                                       *Field);
4934          } else {
4935            QualType qt = Field->getType();
4936            getLegacyIntegralTypeEncoding(qt);
4937            getObjCEncodingForTypeImpl(qt, S, false, true,
4938                                       FD, /*OutermostType*/false,
4939                                       /*EncodingProperty*/false,
4940                                       /*StructField*/true);
4941          }
4942        }
4943      }
4944    }
4945    S += RDecl->isUnion() ? ')' : '}';
4946    return;
4947  }
4948
4949  if (const EnumType *ET = T->getAs<EnumType>()) {
4950    if (FD && FD->isBitField())
4951      EncodeBitField(this, S, T, FD);
4952    else
4953      S += ObjCEncodingForEnumType(this, ET);
4954    return;
4955  }
4956
4957  if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) {
4958    S += "@?"; // Unlike a pointer-to-function, which is "^?".
4959    if (EncodeBlockParameters) {
4960      const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>();
4961
4962      S += '<';
4963      // Block return type
4964      getObjCEncodingForTypeImpl(FT->getResultType(), S,
4965                                 ExpandPointedToStructures, ExpandStructures,
4966                                 FD,
4967                                 false /* OutermostType */,
4968                                 EncodingProperty,
4969                                 false /* StructField */,
4970                                 EncodeBlockParameters,
4971                                 EncodeClassNames);
4972      // Block self
4973      S += "@?";
4974      // Block parameters
4975      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
4976        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
4977               E = FPT->arg_type_end(); I && (I != E); ++I) {
4978          getObjCEncodingForTypeImpl(*I, S,
4979                                     ExpandPointedToStructures,
4980                                     ExpandStructures,
4981                                     FD,
4982                                     false /* OutermostType */,
4983                                     EncodingProperty,
4984                                     false /* StructField */,
4985                                     EncodeBlockParameters,
4986                                     EncodeClassNames);
4987        }
4988      }
4989      S += '>';
4990    }
4991    return;
4992  }
4993
4994  // Ignore protocol qualifiers when mangling at this level.
4995  if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>())
4996    T = OT->getBaseType();
4997
4998  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
4999    // @encode(class_name)
5000    ObjCInterfaceDecl *OI = OIT->getDecl();
5001    S += '{';
5002    const IdentifierInfo *II = OI->getIdentifier();
5003    S += II->getName();
5004    S += '=';
5005    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5006    DeepCollectObjCIvars(OI, true, Ivars);
5007    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5008      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5009      if (Field->isBitField())
5010        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5011      else
5012        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD);
5013    }
5014    S += '}';
5015    return;
5016  }
5017
5018  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
5019    if (OPT->isObjCIdType()) {
5020      S += '@';
5021      return;
5022    }
5023
5024    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5025      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5026      // Since this is a binary compatibility issue, need to consult with runtime
5027      // folks. Fortunately, this is a *very* obsure construct.
5028      S += '#';
5029      return;
5030    }
5031
5032    if (OPT->isObjCQualifiedIdType()) {
5033      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5034                                 ExpandPointedToStructures,
5035                                 ExpandStructures, FD);
5036      if (FD || EncodingProperty || EncodeClassNames) {
5037        // Note that we do extended encoding of protocol qualifer list
5038        // Only when doing ivar or property encoding.
5039        S += '"';
5040        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5041             E = OPT->qual_end(); I != E; ++I) {
5042          S += '<';
5043          S += (*I)->getNameAsString();
5044          S += '>';
5045        }
5046        S += '"';
5047      }
5048      return;
5049    }
5050
5051    QualType PointeeTy = OPT->getPointeeType();
5052    if (!EncodingProperty &&
5053        isa<TypedefType>(PointeeTy.getTypePtr())) {
5054      // Another historical/compatibility reason.
5055      // We encode the underlying type which comes out as
5056      // {...};
5057      S += '^';
5058      getObjCEncodingForTypeImpl(PointeeTy, S,
5059                                 false, ExpandPointedToStructures,
5060                                 NULL);
5061      return;
5062    }
5063
5064    S += '@';
5065    if (OPT->getInterfaceDecl() &&
5066        (FD || EncodingProperty || EncodeClassNames)) {
5067      S += '"';
5068      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5069      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5070           E = OPT->qual_end(); I != E; ++I) {
5071        S += '<';
5072        S += (*I)->getNameAsString();
5073        S += '>';
5074      }
5075      S += '"';
5076    }
5077    return;
5078  }
5079
5080  // gcc just blithely ignores member pointers.
5081  // TODO: maybe there should be a mangling for these
5082  if (T->getAs<MemberPointerType>())
5083    return;
5084
5085  if (T->isVectorType()) {
5086    // This matches gcc's encoding, even though technically it is
5087    // insufficient.
5088    // FIXME. We should do a better job than gcc.
5089    return;
5090  }
5091
5092  llvm_unreachable("@encode for type not implemented!");
5093}
5094
5095void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5096                                                 std::string &S,
5097                                                 const FieldDecl *FD,
5098                                                 bool includeVBases) const {
5099  assert(RDecl && "Expected non-null RecordDecl");
5100  assert(!RDecl->isUnion() && "Should not be called for unions");
5101  if (!RDecl->getDefinition())
5102    return;
5103
5104  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5105  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5106  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5107
5108  if (CXXRec) {
5109    for (CXXRecordDecl::base_class_iterator
5110           BI = CXXRec->bases_begin(),
5111           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5112      if (!BI->isVirtual()) {
5113        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5114        if (base->isEmpty())
5115          continue;
5116        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5117        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5118                                  std::make_pair(offs, base));
5119      }
5120    }
5121  }
5122
5123  unsigned i = 0;
5124  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5125                               FieldEnd = RDecl->field_end();
5126       Field != FieldEnd; ++Field, ++i) {
5127    uint64_t offs = layout.getFieldOffset(i);
5128    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5129                              std::make_pair(offs, *Field));
5130  }
5131
5132  if (CXXRec && includeVBases) {
5133    for (CXXRecordDecl::base_class_iterator
5134           BI = CXXRec->vbases_begin(),
5135           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5136      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5137      if (base->isEmpty())
5138        continue;
5139      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5140      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5141        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5142                                  std::make_pair(offs, base));
5143    }
5144  }
5145
5146  CharUnits size;
5147  if (CXXRec) {
5148    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5149  } else {
5150    size = layout.getSize();
5151  }
5152
5153  uint64_t CurOffs = 0;
5154  std::multimap<uint64_t, NamedDecl *>::iterator
5155    CurLayObj = FieldOrBaseOffsets.begin();
5156
5157  if (CXXRec && CXXRec->isDynamicClass() &&
5158      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5159    if (FD) {
5160      S += "\"_vptr$";
5161      std::string recname = CXXRec->getNameAsString();
5162      if (recname.empty()) recname = "?";
5163      S += recname;
5164      S += '"';
5165    }
5166    S += "^^?";
5167    CurOffs += getTypeSize(VoidPtrTy);
5168  }
5169
5170  if (!RDecl->hasFlexibleArrayMember()) {
5171    // Mark the end of the structure.
5172    uint64_t offs = toBits(size);
5173    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5174                              std::make_pair(offs, (NamedDecl*)0));
5175  }
5176
5177  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5178    assert(CurOffs <= CurLayObj->first);
5179
5180    if (CurOffs < CurLayObj->first) {
5181      uint64_t padding = CurLayObj->first - CurOffs;
5182      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5183      // packing/alignment of members is different that normal, in which case
5184      // the encoding will be out-of-sync with the real layout.
5185      // If the runtime switches to just consider the size of types without
5186      // taking into account alignment, we could make padding explicit in the
5187      // encoding (e.g. using arrays of chars). The encoding strings would be
5188      // longer then though.
5189      CurOffs += padding;
5190    }
5191
5192    NamedDecl *dcl = CurLayObj->second;
5193    if (dcl == 0)
5194      break; // reached end of structure.
5195
5196    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5197      // We expand the bases without their virtual bases since those are going
5198      // in the initial structure. Note that this differs from gcc which
5199      // expands virtual bases each time one is encountered in the hierarchy,
5200      // making the encoding type bigger than it really is.
5201      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5202      assert(!base->isEmpty());
5203      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5204    } else {
5205      FieldDecl *field = cast<FieldDecl>(dcl);
5206      if (FD) {
5207        S += '"';
5208        S += field->getNameAsString();
5209        S += '"';
5210      }
5211
5212      if (field->isBitField()) {
5213        EncodeBitField(this, S, field->getType(), field);
5214        CurOffs += field->getBitWidthValue(*this);
5215      } else {
5216        QualType qt = field->getType();
5217        getLegacyIntegralTypeEncoding(qt);
5218        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5219                                   /*OutermostType*/false,
5220                                   /*EncodingProperty*/false,
5221                                   /*StructField*/true);
5222        CurOffs += getTypeSize(field->getType());
5223      }
5224    }
5225  }
5226}
5227
5228void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5229                                                 std::string& S) const {
5230  if (QT & Decl::OBJC_TQ_In)
5231    S += 'n';
5232  if (QT & Decl::OBJC_TQ_Inout)
5233    S += 'N';
5234  if (QT & Decl::OBJC_TQ_Out)
5235    S += 'o';
5236  if (QT & Decl::OBJC_TQ_Bycopy)
5237    S += 'O';
5238  if (QT & Decl::OBJC_TQ_Byref)
5239    S += 'R';
5240  if (QT & Decl::OBJC_TQ_Oneway)
5241    S += 'V';
5242}
5243
5244TypedefDecl *ASTContext::getObjCIdDecl() const {
5245  if (!ObjCIdDecl) {
5246    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5247    T = getObjCObjectPointerType(T);
5248    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5249    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5250                                     getTranslationUnitDecl(),
5251                                     SourceLocation(), SourceLocation(),
5252                                     &Idents.get("id"), IdInfo);
5253  }
5254
5255  return ObjCIdDecl;
5256}
5257
5258TypedefDecl *ASTContext::getObjCSelDecl() const {
5259  if (!ObjCSelDecl) {
5260    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5261    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5262    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5263                                      getTranslationUnitDecl(),
5264                                      SourceLocation(), SourceLocation(),
5265                                      &Idents.get("SEL"), SelInfo);
5266  }
5267  return ObjCSelDecl;
5268}
5269
5270TypedefDecl *ASTContext::getObjCClassDecl() const {
5271  if (!ObjCClassDecl) {
5272    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5273    T = getObjCObjectPointerType(T);
5274    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5275    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5276                                        getTranslationUnitDecl(),
5277                                        SourceLocation(), SourceLocation(),
5278                                        &Idents.get("Class"), ClassInfo);
5279  }
5280
5281  return ObjCClassDecl;
5282}
5283
5284ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5285  if (!ObjCProtocolClassDecl) {
5286    ObjCProtocolClassDecl
5287      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5288                                  SourceLocation(),
5289                                  &Idents.get("Protocol"),
5290                                  /*PrevDecl=*/0,
5291                                  SourceLocation(), true);
5292  }
5293
5294  return ObjCProtocolClassDecl;
5295}
5296
5297//===----------------------------------------------------------------------===//
5298// __builtin_va_list Construction Functions
5299//===----------------------------------------------------------------------===//
5300
5301static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5302  // typedef char* __builtin_va_list;
5303  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5304  TypeSourceInfo *TInfo
5305    = Context->getTrivialTypeSourceInfo(CharPtrType);
5306
5307  TypedefDecl *VaListTypeDecl
5308    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5309                          Context->getTranslationUnitDecl(),
5310                          SourceLocation(), SourceLocation(),
5311                          &Context->Idents.get("__builtin_va_list"),
5312                          TInfo);
5313  return VaListTypeDecl;
5314}
5315
5316static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5317  // typedef void* __builtin_va_list;
5318  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5319  TypeSourceInfo *TInfo
5320    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5321
5322  TypedefDecl *VaListTypeDecl
5323    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5324                          Context->getTranslationUnitDecl(),
5325                          SourceLocation(), SourceLocation(),
5326                          &Context->Idents.get("__builtin_va_list"),
5327                          TInfo);
5328  return VaListTypeDecl;
5329}
5330
5331static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5332  // typedef struct __va_list_tag {
5333  RecordDecl *VaListTagDecl;
5334
5335  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5336                                   Context->getTranslationUnitDecl(),
5337                                   &Context->Idents.get("__va_list_tag"));
5338  VaListTagDecl->startDefinition();
5339
5340  const size_t NumFields = 5;
5341  QualType FieldTypes[NumFields];
5342  const char *FieldNames[NumFields];
5343
5344  //   unsigned char gpr;
5345  FieldTypes[0] = Context->UnsignedCharTy;
5346  FieldNames[0] = "gpr";
5347
5348  //   unsigned char fpr;
5349  FieldTypes[1] = Context->UnsignedCharTy;
5350  FieldNames[1] = "fpr";
5351
5352  //   unsigned short reserved;
5353  FieldTypes[2] = Context->UnsignedShortTy;
5354  FieldNames[2] = "reserved";
5355
5356  //   void* overflow_arg_area;
5357  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5358  FieldNames[3] = "overflow_arg_area";
5359
5360  //   void* reg_save_area;
5361  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5362  FieldNames[4] = "reg_save_area";
5363
5364  // Create fields
5365  for (unsigned i = 0; i < NumFields; ++i) {
5366    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5367                                         SourceLocation(),
5368                                         SourceLocation(),
5369                                         &Context->Idents.get(FieldNames[i]),
5370                                         FieldTypes[i], /*TInfo=*/0,
5371                                         /*BitWidth=*/0,
5372                                         /*Mutable=*/false,
5373                                         ICIS_NoInit);
5374    Field->setAccess(AS_public);
5375    VaListTagDecl->addDecl(Field);
5376  }
5377  VaListTagDecl->completeDefinition();
5378  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5379  Context->VaListTagTy = VaListTagType;
5380
5381  // } __va_list_tag;
5382  TypedefDecl *VaListTagTypedefDecl
5383    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5384                          Context->getTranslationUnitDecl(),
5385                          SourceLocation(), SourceLocation(),
5386                          &Context->Idents.get("__va_list_tag"),
5387                          Context->getTrivialTypeSourceInfo(VaListTagType));
5388  QualType VaListTagTypedefType =
5389    Context->getTypedefType(VaListTagTypedefDecl);
5390
5391  // typedef __va_list_tag __builtin_va_list[1];
5392  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5393  QualType VaListTagArrayType
5394    = Context->getConstantArrayType(VaListTagTypedefType,
5395                                    Size, ArrayType::Normal, 0);
5396  TypeSourceInfo *TInfo
5397    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5398  TypedefDecl *VaListTypedefDecl
5399    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5400                          Context->getTranslationUnitDecl(),
5401                          SourceLocation(), SourceLocation(),
5402                          &Context->Idents.get("__builtin_va_list"),
5403                          TInfo);
5404
5405  return VaListTypedefDecl;
5406}
5407
5408static TypedefDecl *
5409CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5410  // typedef struct __va_list_tag {
5411  RecordDecl *VaListTagDecl;
5412  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5413                                   Context->getTranslationUnitDecl(),
5414                                   &Context->Idents.get("__va_list_tag"));
5415  VaListTagDecl->startDefinition();
5416
5417  const size_t NumFields = 4;
5418  QualType FieldTypes[NumFields];
5419  const char *FieldNames[NumFields];
5420
5421  //   unsigned gp_offset;
5422  FieldTypes[0] = Context->UnsignedIntTy;
5423  FieldNames[0] = "gp_offset";
5424
5425  //   unsigned fp_offset;
5426  FieldTypes[1] = Context->UnsignedIntTy;
5427  FieldNames[1] = "fp_offset";
5428
5429  //   void* overflow_arg_area;
5430  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5431  FieldNames[2] = "overflow_arg_area";
5432
5433  //   void* reg_save_area;
5434  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5435  FieldNames[3] = "reg_save_area";
5436
5437  // Create fields
5438  for (unsigned i = 0; i < NumFields; ++i) {
5439    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5440                                         VaListTagDecl,
5441                                         SourceLocation(),
5442                                         SourceLocation(),
5443                                         &Context->Idents.get(FieldNames[i]),
5444                                         FieldTypes[i], /*TInfo=*/0,
5445                                         /*BitWidth=*/0,
5446                                         /*Mutable=*/false,
5447                                         ICIS_NoInit);
5448    Field->setAccess(AS_public);
5449    VaListTagDecl->addDecl(Field);
5450  }
5451  VaListTagDecl->completeDefinition();
5452  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5453  Context->VaListTagTy = VaListTagType;
5454
5455  // } __va_list_tag;
5456  TypedefDecl *VaListTagTypedefDecl
5457    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5458                          Context->getTranslationUnitDecl(),
5459                          SourceLocation(), SourceLocation(),
5460                          &Context->Idents.get("__va_list_tag"),
5461                          Context->getTrivialTypeSourceInfo(VaListTagType));
5462  QualType VaListTagTypedefType =
5463    Context->getTypedefType(VaListTagTypedefDecl);
5464
5465  // typedef __va_list_tag __builtin_va_list[1];
5466  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5467  QualType VaListTagArrayType
5468    = Context->getConstantArrayType(VaListTagTypedefType,
5469                                      Size, ArrayType::Normal,0);
5470  TypeSourceInfo *TInfo
5471    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5472  TypedefDecl *VaListTypedefDecl
5473    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5474                          Context->getTranslationUnitDecl(),
5475                          SourceLocation(), SourceLocation(),
5476                          &Context->Idents.get("__builtin_va_list"),
5477                          TInfo);
5478
5479  return VaListTypedefDecl;
5480}
5481
5482static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5483  // typedef int __builtin_va_list[4];
5484  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5485  QualType IntArrayType
5486    = Context->getConstantArrayType(Context->IntTy,
5487				    Size, ArrayType::Normal, 0);
5488  TypedefDecl *VaListTypedefDecl
5489    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5490                          Context->getTranslationUnitDecl(),
5491                          SourceLocation(), SourceLocation(),
5492                          &Context->Idents.get("__builtin_va_list"),
5493                          Context->getTrivialTypeSourceInfo(IntArrayType));
5494
5495  return VaListTypedefDecl;
5496}
5497
5498static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5499                                     TargetInfo::BuiltinVaListKind Kind) {
5500  switch (Kind) {
5501  case TargetInfo::CharPtrBuiltinVaList:
5502    return CreateCharPtrBuiltinVaListDecl(Context);
5503  case TargetInfo::VoidPtrBuiltinVaList:
5504    return CreateVoidPtrBuiltinVaListDecl(Context);
5505  case TargetInfo::PowerABIBuiltinVaList:
5506    return CreatePowerABIBuiltinVaListDecl(Context);
5507  case TargetInfo::X86_64ABIBuiltinVaList:
5508    return CreateX86_64ABIBuiltinVaListDecl(Context);
5509  case TargetInfo::PNaClABIBuiltinVaList:
5510    return CreatePNaClABIBuiltinVaListDecl(Context);
5511  }
5512
5513  llvm_unreachable("Unhandled __builtin_va_list type kind");
5514}
5515
5516TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5517  if (!BuiltinVaListDecl)
5518    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5519
5520  return BuiltinVaListDecl;
5521}
5522
5523QualType ASTContext::getVaListTagType() const {
5524  // Force the creation of VaListTagTy by building the __builtin_va_list
5525  // declaration.
5526  if (VaListTagTy.isNull())
5527    (void) getBuiltinVaListDecl();
5528
5529  return VaListTagTy;
5530}
5531
5532void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5533  assert(ObjCConstantStringType.isNull() &&
5534         "'NSConstantString' type already set!");
5535
5536  ObjCConstantStringType = getObjCInterfaceType(Decl);
5537}
5538
5539/// \brief Retrieve the template name that corresponds to a non-empty
5540/// lookup.
5541TemplateName
5542ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5543                                      UnresolvedSetIterator End) const {
5544  unsigned size = End - Begin;
5545  assert(size > 1 && "set is not overloaded!");
5546
5547  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5548                          size * sizeof(FunctionTemplateDecl*));
5549  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5550
5551  NamedDecl **Storage = OT->getStorage();
5552  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5553    NamedDecl *D = *I;
5554    assert(isa<FunctionTemplateDecl>(D) ||
5555           (isa<UsingShadowDecl>(D) &&
5556            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5557    *Storage++ = D;
5558  }
5559
5560  return TemplateName(OT);
5561}
5562
5563/// \brief Retrieve the template name that represents a qualified
5564/// template name such as \c std::vector.
5565TemplateName
5566ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5567                                     bool TemplateKeyword,
5568                                     TemplateDecl *Template) const {
5569  assert(NNS && "Missing nested-name-specifier in qualified template name");
5570
5571  // FIXME: Canonicalization?
5572  llvm::FoldingSetNodeID ID;
5573  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5574
5575  void *InsertPos = 0;
5576  QualifiedTemplateName *QTN =
5577    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5578  if (!QTN) {
5579    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5580        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5581    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5582  }
5583
5584  return TemplateName(QTN);
5585}
5586
5587/// \brief Retrieve the template name that represents a dependent
5588/// template name such as \c MetaFun::template apply.
5589TemplateName
5590ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5591                                     const IdentifierInfo *Name) const {
5592  assert((!NNS || NNS->isDependent()) &&
5593         "Nested name specifier must be dependent");
5594
5595  llvm::FoldingSetNodeID ID;
5596  DependentTemplateName::Profile(ID, NNS, Name);
5597
5598  void *InsertPos = 0;
5599  DependentTemplateName *QTN =
5600    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5601
5602  if (QTN)
5603    return TemplateName(QTN);
5604
5605  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5606  if (CanonNNS == NNS) {
5607    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5608        DependentTemplateName(NNS, Name);
5609  } else {
5610    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
5611    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5612        DependentTemplateName(NNS, Name, Canon);
5613    DependentTemplateName *CheckQTN =
5614      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5615    assert(!CheckQTN && "Dependent type name canonicalization broken");
5616    (void)CheckQTN;
5617  }
5618
5619  DependentTemplateNames.InsertNode(QTN, InsertPos);
5620  return TemplateName(QTN);
5621}
5622
5623/// \brief Retrieve the template name that represents a dependent
5624/// template name such as \c MetaFun::template operator+.
5625TemplateName
5626ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5627                                     OverloadedOperatorKind Operator) const {
5628  assert((!NNS || NNS->isDependent()) &&
5629         "Nested name specifier must be dependent");
5630
5631  llvm::FoldingSetNodeID ID;
5632  DependentTemplateName::Profile(ID, NNS, Operator);
5633
5634  void *InsertPos = 0;
5635  DependentTemplateName *QTN
5636    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5637
5638  if (QTN)
5639    return TemplateName(QTN);
5640
5641  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5642  if (CanonNNS == NNS) {
5643    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5644        DependentTemplateName(NNS, Operator);
5645  } else {
5646    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
5647    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
5648        DependentTemplateName(NNS, Operator, Canon);
5649
5650    DependentTemplateName *CheckQTN
5651      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5652    assert(!CheckQTN && "Dependent template name canonicalization broken");
5653    (void)CheckQTN;
5654  }
5655
5656  DependentTemplateNames.InsertNode(QTN, InsertPos);
5657  return TemplateName(QTN);
5658}
5659
5660TemplateName
5661ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
5662                                         TemplateName replacement) const {
5663  llvm::FoldingSetNodeID ID;
5664  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
5665
5666  void *insertPos = 0;
5667  SubstTemplateTemplateParmStorage *subst
5668    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
5669
5670  if (!subst) {
5671    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
5672    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
5673  }
5674
5675  return TemplateName(subst);
5676}
5677
5678TemplateName
5679ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
5680                                       const TemplateArgument &ArgPack) const {
5681  ASTContext &Self = const_cast<ASTContext &>(*this);
5682  llvm::FoldingSetNodeID ID;
5683  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
5684
5685  void *InsertPos = 0;
5686  SubstTemplateTemplateParmPackStorage *Subst
5687    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
5688
5689  if (!Subst) {
5690    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
5691                                                           ArgPack.pack_size(),
5692                                                         ArgPack.pack_begin());
5693    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
5694  }
5695
5696  return TemplateName(Subst);
5697}
5698
5699/// getFromTargetType - Given one of the integer types provided by
5700/// TargetInfo, produce the corresponding type. The unsigned @p Type
5701/// is actually a value of type @c TargetInfo::IntType.
5702CanQualType ASTContext::getFromTargetType(unsigned Type) const {
5703  switch (Type) {
5704  case TargetInfo::NoInt: return CanQualType();
5705  case TargetInfo::SignedShort: return ShortTy;
5706  case TargetInfo::UnsignedShort: return UnsignedShortTy;
5707  case TargetInfo::SignedInt: return IntTy;
5708  case TargetInfo::UnsignedInt: return UnsignedIntTy;
5709  case TargetInfo::SignedLong: return LongTy;
5710  case TargetInfo::UnsignedLong: return UnsignedLongTy;
5711  case TargetInfo::SignedLongLong: return LongLongTy;
5712  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
5713  }
5714
5715  llvm_unreachable("Unhandled TargetInfo::IntType value");
5716}
5717
5718//===----------------------------------------------------------------------===//
5719//                        Type Predicates.
5720//===----------------------------------------------------------------------===//
5721
5722/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
5723/// garbage collection attribute.
5724///
5725Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
5726  if (getLangOpts().getGC() == LangOptions::NonGC)
5727    return Qualifiers::GCNone;
5728
5729  assert(getLangOpts().ObjC1);
5730  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
5731
5732  // Default behaviour under objective-C's gc is for ObjC pointers
5733  // (or pointers to them) be treated as though they were declared
5734  // as __strong.
5735  if (GCAttrs == Qualifiers::GCNone) {
5736    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
5737      return Qualifiers::Strong;
5738    else if (Ty->isPointerType())
5739      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
5740  } else {
5741    // It's not valid to set GC attributes on anything that isn't a
5742    // pointer.
5743#ifndef NDEBUG
5744    QualType CT = Ty->getCanonicalTypeInternal();
5745    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
5746      CT = AT->getElementType();
5747    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
5748#endif
5749  }
5750  return GCAttrs;
5751}
5752
5753//===----------------------------------------------------------------------===//
5754//                        Type Compatibility Testing
5755//===----------------------------------------------------------------------===//
5756
5757/// areCompatVectorTypes - Return true if the two specified vector types are
5758/// compatible.
5759static bool areCompatVectorTypes(const VectorType *LHS,
5760                                 const VectorType *RHS) {
5761  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
5762  return LHS->getElementType() == RHS->getElementType() &&
5763         LHS->getNumElements() == RHS->getNumElements();
5764}
5765
5766bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
5767                                          QualType SecondVec) {
5768  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
5769  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
5770
5771  if (hasSameUnqualifiedType(FirstVec, SecondVec))
5772    return true;
5773
5774  // Treat Neon vector types and most AltiVec vector types as if they are the
5775  // equivalent GCC vector types.
5776  const VectorType *First = FirstVec->getAs<VectorType>();
5777  const VectorType *Second = SecondVec->getAs<VectorType>();
5778  if (First->getNumElements() == Second->getNumElements() &&
5779      hasSameType(First->getElementType(), Second->getElementType()) &&
5780      First->getVectorKind() != VectorType::AltiVecPixel &&
5781      First->getVectorKind() != VectorType::AltiVecBool &&
5782      Second->getVectorKind() != VectorType::AltiVecPixel &&
5783      Second->getVectorKind() != VectorType::AltiVecBool)
5784    return true;
5785
5786  return false;
5787}
5788
5789//===----------------------------------------------------------------------===//
5790// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
5791//===----------------------------------------------------------------------===//
5792
5793/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
5794/// inheritance hierarchy of 'rProto'.
5795bool
5796ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
5797                                           ObjCProtocolDecl *rProto) const {
5798  if (declaresSameEntity(lProto, rProto))
5799    return true;
5800  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
5801       E = rProto->protocol_end(); PI != E; ++PI)
5802    if (ProtocolCompatibleWithProtocol(lProto, *PI))
5803      return true;
5804  return false;
5805}
5806
5807/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
5808/// return true if lhs's protocols conform to rhs's protocol; false
5809/// otherwise.
5810bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
5811  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
5812    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
5813  return false;
5814}
5815
5816/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
5817/// Class<pr1, ...>.
5818bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
5819                                                      QualType rhs) {
5820  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
5821  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5822  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
5823
5824  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5825       E = lhsQID->qual_end(); I != E; ++I) {
5826    bool match = false;
5827    ObjCProtocolDecl *lhsProto = *I;
5828    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5829         E = rhsOPT->qual_end(); J != E; ++J) {
5830      ObjCProtocolDecl *rhsProto = *J;
5831      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
5832        match = true;
5833        break;
5834      }
5835    }
5836    if (!match)
5837      return false;
5838  }
5839  return true;
5840}
5841
5842/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
5843/// ObjCQualifiedIDType.
5844bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
5845                                                   bool compare) {
5846  // Allow id<P..> and an 'id' or void* type in all cases.
5847  if (lhs->isVoidPointerType() ||
5848      lhs->isObjCIdType() || lhs->isObjCClassType())
5849    return true;
5850  else if (rhs->isVoidPointerType() ||
5851           rhs->isObjCIdType() || rhs->isObjCClassType())
5852    return true;
5853
5854  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
5855    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
5856
5857    if (!rhsOPT) return false;
5858
5859    if (rhsOPT->qual_empty()) {
5860      // If the RHS is a unqualified interface pointer "NSString*",
5861      // make sure we check the class hierarchy.
5862      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5863        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5864             E = lhsQID->qual_end(); I != E; ++I) {
5865          // when comparing an id<P> on lhs with a static type on rhs,
5866          // see if static class implements all of id's protocols, directly or
5867          // through its super class and categories.
5868          if (!rhsID->ClassImplementsProtocol(*I, true))
5869            return false;
5870        }
5871      }
5872      // If there are no qualifiers and no interface, we have an 'id'.
5873      return true;
5874    }
5875    // Both the right and left sides have qualifiers.
5876    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5877         E = lhsQID->qual_end(); I != E; ++I) {
5878      ObjCProtocolDecl *lhsProto = *I;
5879      bool match = false;
5880
5881      // when comparing an id<P> on lhs with a static type on rhs,
5882      // see if static class implements all of id's protocols, directly or
5883      // through its super class and categories.
5884      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
5885           E = rhsOPT->qual_end(); J != E; ++J) {
5886        ObjCProtocolDecl *rhsProto = *J;
5887        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5888            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5889          match = true;
5890          break;
5891        }
5892      }
5893      // If the RHS is a qualified interface pointer "NSString<P>*",
5894      // make sure we check the class hierarchy.
5895      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
5896        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
5897             E = lhsQID->qual_end(); I != E; ++I) {
5898          // when comparing an id<P> on lhs with a static type on rhs,
5899          // see if static class implements all of id's protocols, directly or
5900          // through its super class and categories.
5901          if (rhsID->ClassImplementsProtocol(*I, true)) {
5902            match = true;
5903            break;
5904          }
5905        }
5906      }
5907      if (!match)
5908        return false;
5909    }
5910
5911    return true;
5912  }
5913
5914  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
5915  assert(rhsQID && "One of the LHS/RHS should be id<x>");
5916
5917  if (const ObjCObjectPointerType *lhsOPT =
5918        lhs->getAsObjCInterfacePointerType()) {
5919    // If both the right and left sides have qualifiers.
5920    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
5921         E = lhsOPT->qual_end(); I != E; ++I) {
5922      ObjCProtocolDecl *lhsProto = *I;
5923      bool match = false;
5924
5925      // when comparing an id<P> on rhs with a static type on lhs,
5926      // see if static class implements all of id's protocols, directly or
5927      // through its super class and categories.
5928      // First, lhs protocols in the qualifier list must be found, direct
5929      // or indirect in rhs's qualifier list or it is a mismatch.
5930      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5931           E = rhsQID->qual_end(); J != E; ++J) {
5932        ObjCProtocolDecl *rhsProto = *J;
5933        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5934            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5935          match = true;
5936          break;
5937        }
5938      }
5939      if (!match)
5940        return false;
5941    }
5942
5943    // Static class's protocols, or its super class or category protocols
5944    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
5945    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
5946      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
5947      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
5948      // This is rather dubious but matches gcc's behavior. If lhs has
5949      // no type qualifier and its class has no static protocol(s)
5950      // assume that it is mismatch.
5951      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
5952        return false;
5953      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
5954           LHSInheritedProtocols.begin(),
5955           E = LHSInheritedProtocols.end(); I != E; ++I) {
5956        bool match = false;
5957        ObjCProtocolDecl *lhsProto = (*I);
5958        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
5959             E = rhsQID->qual_end(); J != E; ++J) {
5960          ObjCProtocolDecl *rhsProto = *J;
5961          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
5962              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
5963            match = true;
5964            break;
5965          }
5966        }
5967        if (!match)
5968          return false;
5969      }
5970    }
5971    return true;
5972  }
5973  return false;
5974}
5975
5976/// canAssignObjCInterfaces - Return true if the two interface types are
5977/// compatible for assignment from RHS to LHS.  This handles validation of any
5978/// protocol qualifiers on the LHS or RHS.
5979///
5980bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
5981                                         const ObjCObjectPointerType *RHSOPT) {
5982  const ObjCObjectType* LHS = LHSOPT->getObjectType();
5983  const ObjCObjectType* RHS = RHSOPT->getObjectType();
5984
5985  // If either type represents the built-in 'id' or 'Class' types, return true.
5986  if (LHS->isObjCUnqualifiedIdOrClass() ||
5987      RHS->isObjCUnqualifiedIdOrClass())
5988    return true;
5989
5990  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
5991    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
5992                                             QualType(RHSOPT,0),
5993                                             false);
5994
5995  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
5996    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
5997                                                QualType(RHSOPT,0));
5998
5999  // If we have 2 user-defined types, fall into that path.
6000  if (LHS->getInterface() && RHS->getInterface())
6001    return canAssignObjCInterfaces(LHS, RHS);
6002
6003  return false;
6004}
6005
6006/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6007/// for providing type-safety for objective-c pointers used to pass/return
6008/// arguments in block literals. When passed as arguments, passing 'A*' where
6009/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6010/// not OK. For the return type, the opposite is not OK.
6011bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6012                                         const ObjCObjectPointerType *LHSOPT,
6013                                         const ObjCObjectPointerType *RHSOPT,
6014                                         bool BlockReturnType) {
6015  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6016    return true;
6017
6018  if (LHSOPT->isObjCBuiltinType()) {
6019    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6020  }
6021
6022  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6023    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6024                                             QualType(RHSOPT,0),
6025                                             false);
6026
6027  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6028  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6029  if (LHS && RHS)  { // We have 2 user-defined types.
6030    if (LHS != RHS) {
6031      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6032        return BlockReturnType;
6033      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6034        return !BlockReturnType;
6035    }
6036    else
6037      return true;
6038  }
6039  return false;
6040}
6041
6042/// getIntersectionOfProtocols - This routine finds the intersection of set
6043/// of protocols inherited from two distinct objective-c pointer objects.
6044/// It is used to build composite qualifier list of the composite type of
6045/// the conditional expression involving two objective-c pointer objects.
6046static
6047void getIntersectionOfProtocols(ASTContext &Context,
6048                                const ObjCObjectPointerType *LHSOPT,
6049                                const ObjCObjectPointerType *RHSOPT,
6050      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6051
6052  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6053  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6054  assert(LHS->getInterface() && "LHS must have an interface base");
6055  assert(RHS->getInterface() && "RHS must have an interface base");
6056
6057  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6058  unsigned LHSNumProtocols = LHS->getNumProtocols();
6059  if (LHSNumProtocols > 0)
6060    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6061  else {
6062    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6063    Context.CollectInheritedProtocols(LHS->getInterface(),
6064                                      LHSInheritedProtocols);
6065    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6066                                LHSInheritedProtocols.end());
6067  }
6068
6069  unsigned RHSNumProtocols = RHS->getNumProtocols();
6070  if (RHSNumProtocols > 0) {
6071    ObjCProtocolDecl **RHSProtocols =
6072      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6073    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6074      if (InheritedProtocolSet.count(RHSProtocols[i]))
6075        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6076  } else {
6077    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6078    Context.CollectInheritedProtocols(RHS->getInterface(),
6079                                      RHSInheritedProtocols);
6080    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6081         RHSInheritedProtocols.begin(),
6082         E = RHSInheritedProtocols.end(); I != E; ++I)
6083      if (InheritedProtocolSet.count((*I)))
6084        IntersectionOfProtocols.push_back((*I));
6085  }
6086}
6087
6088/// areCommonBaseCompatible - Returns common base class of the two classes if
6089/// one found. Note that this is O'2 algorithm. But it will be called as the
6090/// last type comparison in a ?-exp of ObjC pointer types before a
6091/// warning is issued. So, its invokation is extremely rare.
6092QualType ASTContext::areCommonBaseCompatible(
6093                                          const ObjCObjectPointerType *Lptr,
6094                                          const ObjCObjectPointerType *Rptr) {
6095  const ObjCObjectType *LHS = Lptr->getObjectType();
6096  const ObjCObjectType *RHS = Rptr->getObjectType();
6097  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6098  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6099  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6100    return QualType();
6101
6102  do {
6103    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6104    if (canAssignObjCInterfaces(LHS, RHS)) {
6105      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6106      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6107
6108      QualType Result = QualType(LHS, 0);
6109      if (!Protocols.empty())
6110        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6111      Result = getObjCObjectPointerType(Result);
6112      return Result;
6113    }
6114  } while ((LDecl = LDecl->getSuperClass()));
6115
6116  return QualType();
6117}
6118
6119bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6120                                         const ObjCObjectType *RHS) {
6121  assert(LHS->getInterface() && "LHS is not an interface type");
6122  assert(RHS->getInterface() && "RHS is not an interface type");
6123
6124  // Verify that the base decls are compatible: the RHS must be a subclass of
6125  // the LHS.
6126  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6127    return false;
6128
6129  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6130  // protocol qualified at all, then we are good.
6131  if (LHS->getNumProtocols() == 0)
6132    return true;
6133
6134  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6135  // more detailed analysis is required.
6136  if (RHS->getNumProtocols() == 0) {
6137    // OK, if LHS is a superclass of RHS *and*
6138    // this superclass is assignment compatible with LHS.
6139    // false otherwise.
6140    bool IsSuperClass =
6141      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6142    if (IsSuperClass) {
6143      // OK if conversion of LHS to SuperClass results in narrowing of types
6144      // ; i.e., SuperClass may implement at least one of the protocols
6145      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6146      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6147      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6148      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6149      // If super class has no protocols, it is not a match.
6150      if (SuperClassInheritedProtocols.empty())
6151        return false;
6152
6153      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6154           LHSPE = LHS->qual_end();
6155           LHSPI != LHSPE; LHSPI++) {
6156        bool SuperImplementsProtocol = false;
6157        ObjCProtocolDecl *LHSProto = (*LHSPI);
6158
6159        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6160             SuperClassInheritedProtocols.begin(),
6161             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6162          ObjCProtocolDecl *SuperClassProto = (*I);
6163          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6164            SuperImplementsProtocol = true;
6165            break;
6166          }
6167        }
6168        if (!SuperImplementsProtocol)
6169          return false;
6170      }
6171      return true;
6172    }
6173    return false;
6174  }
6175
6176  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6177                                     LHSPE = LHS->qual_end();
6178       LHSPI != LHSPE; LHSPI++) {
6179    bool RHSImplementsProtocol = false;
6180
6181    // If the RHS doesn't implement the protocol on the left, the types
6182    // are incompatible.
6183    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6184                                       RHSPE = RHS->qual_end();
6185         RHSPI != RHSPE; RHSPI++) {
6186      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6187        RHSImplementsProtocol = true;
6188        break;
6189      }
6190    }
6191    // FIXME: For better diagnostics, consider passing back the protocol name.
6192    if (!RHSImplementsProtocol)
6193      return false;
6194  }
6195  // The RHS implements all protocols listed on the LHS.
6196  return true;
6197}
6198
6199bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6200  // get the "pointed to" types
6201  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6202  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6203
6204  if (!LHSOPT || !RHSOPT)
6205    return false;
6206
6207  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6208         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6209}
6210
6211bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6212  return canAssignObjCInterfaces(
6213                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6214                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6215}
6216
6217/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6218/// both shall have the identically qualified version of a compatible type.
6219/// C99 6.2.7p1: Two types have compatible types if their types are the
6220/// same. See 6.7.[2,3,5] for additional rules.
6221bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6222                                    bool CompareUnqualified) {
6223  if (getLangOpts().CPlusPlus)
6224    return hasSameType(LHS, RHS);
6225
6226  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6227}
6228
6229bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6230  return typesAreCompatible(LHS, RHS);
6231}
6232
6233bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6234  return !mergeTypes(LHS, RHS, true).isNull();
6235}
6236
6237/// mergeTransparentUnionType - if T is a transparent union type and a member
6238/// of T is compatible with SubType, return the merged type, else return
6239/// QualType()
6240QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6241                                               bool OfBlockPointer,
6242                                               bool Unqualified) {
6243  if (const RecordType *UT = T->getAsUnionType()) {
6244    RecordDecl *UD = UT->getDecl();
6245    if (UD->hasAttr<TransparentUnionAttr>()) {
6246      for (RecordDecl::field_iterator it = UD->field_begin(),
6247           itend = UD->field_end(); it != itend; ++it) {
6248        QualType ET = it->getType().getUnqualifiedType();
6249        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6250        if (!MT.isNull())
6251          return MT;
6252      }
6253    }
6254  }
6255
6256  return QualType();
6257}
6258
6259/// mergeFunctionArgumentTypes - merge two types which appear as function
6260/// argument types
6261QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6262                                                bool OfBlockPointer,
6263                                                bool Unqualified) {
6264  // GNU extension: two types are compatible if they appear as a function
6265  // argument, one of the types is a transparent union type and the other
6266  // type is compatible with a union member
6267  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6268                                              Unqualified);
6269  if (!lmerge.isNull())
6270    return lmerge;
6271
6272  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6273                                              Unqualified);
6274  if (!rmerge.isNull())
6275    return rmerge;
6276
6277  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6278}
6279
6280QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6281                                        bool OfBlockPointer,
6282                                        bool Unqualified) {
6283  const FunctionType *lbase = lhs->getAs<FunctionType>();
6284  const FunctionType *rbase = rhs->getAs<FunctionType>();
6285  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6286  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6287  bool allLTypes = true;
6288  bool allRTypes = true;
6289
6290  // Check return type
6291  QualType retType;
6292  if (OfBlockPointer) {
6293    QualType RHS = rbase->getResultType();
6294    QualType LHS = lbase->getResultType();
6295    bool UnqualifiedResult = Unqualified;
6296    if (!UnqualifiedResult)
6297      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6298    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6299  }
6300  else
6301    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6302                         Unqualified);
6303  if (retType.isNull()) return QualType();
6304
6305  if (Unqualified)
6306    retType = retType.getUnqualifiedType();
6307
6308  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6309  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6310  if (Unqualified) {
6311    LRetType = LRetType.getUnqualifiedType();
6312    RRetType = RRetType.getUnqualifiedType();
6313  }
6314
6315  if (getCanonicalType(retType) != LRetType)
6316    allLTypes = false;
6317  if (getCanonicalType(retType) != RRetType)
6318    allRTypes = false;
6319
6320  // FIXME: double check this
6321  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6322  //                           rbase->getRegParmAttr() != 0 &&
6323  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6324  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6325  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6326
6327  // Compatible functions must have compatible calling conventions
6328  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6329    return QualType();
6330
6331  // Regparm is part of the calling convention.
6332  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6333    return QualType();
6334  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6335    return QualType();
6336
6337  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6338    return QualType();
6339
6340  // functypes which return are preferred over those that do not.
6341  if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn())
6342    allLTypes = false;
6343  else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn())
6344    allRTypes = false;
6345  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6346  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6347
6348  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6349
6350  if (lproto && rproto) { // two C99 style function prototypes
6351    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6352           "C++ shouldn't be here");
6353    unsigned lproto_nargs = lproto->getNumArgs();
6354    unsigned rproto_nargs = rproto->getNumArgs();
6355
6356    // Compatible functions must have the same number of arguments
6357    if (lproto_nargs != rproto_nargs)
6358      return QualType();
6359
6360    // Variadic and non-variadic functions aren't compatible
6361    if (lproto->isVariadic() != rproto->isVariadic())
6362      return QualType();
6363
6364    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6365      return QualType();
6366
6367    if (LangOpts.ObjCAutoRefCount &&
6368        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6369      return QualType();
6370
6371    // Check argument compatibility
6372    SmallVector<QualType, 10> types;
6373    for (unsigned i = 0; i < lproto_nargs; i++) {
6374      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6375      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6376      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6377                                                    OfBlockPointer,
6378                                                    Unqualified);
6379      if (argtype.isNull()) return QualType();
6380
6381      if (Unqualified)
6382        argtype = argtype.getUnqualifiedType();
6383
6384      types.push_back(argtype);
6385      if (Unqualified) {
6386        largtype = largtype.getUnqualifiedType();
6387        rargtype = rargtype.getUnqualifiedType();
6388      }
6389
6390      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6391        allLTypes = false;
6392      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6393        allRTypes = false;
6394    }
6395
6396    if (allLTypes) return lhs;
6397    if (allRTypes) return rhs;
6398
6399    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6400    EPI.ExtInfo = einfo;
6401    return getFunctionType(retType, types.begin(), types.size(), EPI);
6402  }
6403
6404  if (lproto) allRTypes = false;
6405  if (rproto) allLTypes = false;
6406
6407  const FunctionProtoType *proto = lproto ? lproto : rproto;
6408  if (proto) {
6409    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6410    if (proto->isVariadic()) return QualType();
6411    // Check that the types are compatible with the types that
6412    // would result from default argument promotions (C99 6.7.5.3p15).
6413    // The only types actually affected are promotable integer
6414    // types and floats, which would be passed as a different
6415    // type depending on whether the prototype is visible.
6416    unsigned proto_nargs = proto->getNumArgs();
6417    for (unsigned i = 0; i < proto_nargs; ++i) {
6418      QualType argTy = proto->getArgType(i);
6419
6420      // Look at the converted type of enum types, since that is the type used
6421      // to pass enum values.
6422      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6423        argTy = Enum->getDecl()->getIntegerType();
6424        if (argTy.isNull())
6425          return QualType();
6426      }
6427
6428      if (argTy->isPromotableIntegerType() ||
6429          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6430        return QualType();
6431    }
6432
6433    if (allLTypes) return lhs;
6434    if (allRTypes) return rhs;
6435
6436    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6437    EPI.ExtInfo = einfo;
6438    return getFunctionType(retType, proto->arg_type_begin(),
6439                           proto->getNumArgs(), EPI);
6440  }
6441
6442  if (allLTypes) return lhs;
6443  if (allRTypes) return rhs;
6444  return getFunctionNoProtoType(retType, einfo);
6445}
6446
6447QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6448                                bool OfBlockPointer,
6449                                bool Unqualified, bool BlockReturnType) {
6450  // C++ [expr]: If an expression initially has the type "reference to T", the
6451  // type is adjusted to "T" prior to any further analysis, the expression
6452  // designates the object or function denoted by the reference, and the
6453  // expression is an lvalue unless the reference is an rvalue reference and
6454  // the expression is a function call (possibly inside parentheses).
6455  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6456  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6457
6458  if (Unqualified) {
6459    LHS = LHS.getUnqualifiedType();
6460    RHS = RHS.getUnqualifiedType();
6461  }
6462
6463  QualType LHSCan = getCanonicalType(LHS),
6464           RHSCan = getCanonicalType(RHS);
6465
6466  // If two types are identical, they are compatible.
6467  if (LHSCan == RHSCan)
6468    return LHS;
6469
6470  // If the qualifiers are different, the types aren't compatible... mostly.
6471  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6472  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6473  if (LQuals != RQuals) {
6474    // If any of these qualifiers are different, we have a type
6475    // mismatch.
6476    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6477        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6478        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6479      return QualType();
6480
6481    // Exactly one GC qualifier difference is allowed: __strong is
6482    // okay if the other type has no GC qualifier but is an Objective
6483    // C object pointer (i.e. implicitly strong by default).  We fix
6484    // this by pretending that the unqualified type was actually
6485    // qualified __strong.
6486    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6487    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6488    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6489
6490    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6491      return QualType();
6492
6493    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6494      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6495    }
6496    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6497      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6498    }
6499    return QualType();
6500  }
6501
6502  // Okay, qualifiers are equal.
6503
6504  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6505  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6506
6507  // We want to consider the two function types to be the same for these
6508  // comparisons, just force one to the other.
6509  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6510  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6511
6512  // Same as above for arrays
6513  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6514    LHSClass = Type::ConstantArray;
6515  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6516    RHSClass = Type::ConstantArray;
6517
6518  // ObjCInterfaces are just specialized ObjCObjects.
6519  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6520  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6521
6522  // Canonicalize ExtVector -> Vector.
6523  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6524  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6525
6526  // If the canonical type classes don't match.
6527  if (LHSClass != RHSClass) {
6528    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6529    // a signed integer type, or an unsigned integer type.
6530    // Compatibility is based on the underlying type, not the promotion
6531    // type.
6532    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6533      QualType TINT = ETy->getDecl()->getIntegerType();
6534      if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType()))
6535        return RHS;
6536    }
6537    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6538      QualType TINT = ETy->getDecl()->getIntegerType();
6539      if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType()))
6540        return LHS;
6541    }
6542    // allow block pointer type to match an 'id' type.
6543    if (OfBlockPointer && !BlockReturnType) {
6544       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6545         return LHS;
6546      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6547        return RHS;
6548    }
6549
6550    return QualType();
6551  }
6552
6553  // The canonical type classes match.
6554  switch (LHSClass) {
6555#define TYPE(Class, Base)
6556#define ABSTRACT_TYPE(Class, Base)
6557#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6558#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6559#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6560#include "clang/AST/TypeNodes.def"
6561    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6562
6563  case Type::LValueReference:
6564  case Type::RValueReference:
6565  case Type::MemberPointer:
6566    llvm_unreachable("C++ should never be in mergeTypes");
6567
6568  case Type::ObjCInterface:
6569  case Type::IncompleteArray:
6570  case Type::VariableArray:
6571  case Type::FunctionProto:
6572  case Type::ExtVector:
6573    llvm_unreachable("Types are eliminated above");
6574
6575  case Type::Pointer:
6576  {
6577    // Merge two pointer types, while trying to preserve typedef info
6578    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6579    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6580    if (Unqualified) {
6581      LHSPointee = LHSPointee.getUnqualifiedType();
6582      RHSPointee = RHSPointee.getUnqualifiedType();
6583    }
6584    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6585                                     Unqualified);
6586    if (ResultType.isNull()) return QualType();
6587    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6588      return LHS;
6589    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6590      return RHS;
6591    return getPointerType(ResultType);
6592  }
6593  case Type::BlockPointer:
6594  {
6595    // Merge two block pointer types, while trying to preserve typedef info
6596    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
6597    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
6598    if (Unqualified) {
6599      LHSPointee = LHSPointee.getUnqualifiedType();
6600      RHSPointee = RHSPointee.getUnqualifiedType();
6601    }
6602    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
6603                                     Unqualified);
6604    if (ResultType.isNull()) return QualType();
6605    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
6606      return LHS;
6607    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
6608      return RHS;
6609    return getBlockPointerType(ResultType);
6610  }
6611  case Type::Atomic:
6612  {
6613    // Merge two pointer types, while trying to preserve typedef info
6614    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
6615    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
6616    if (Unqualified) {
6617      LHSValue = LHSValue.getUnqualifiedType();
6618      RHSValue = RHSValue.getUnqualifiedType();
6619    }
6620    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
6621                                     Unqualified);
6622    if (ResultType.isNull()) return QualType();
6623    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
6624      return LHS;
6625    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
6626      return RHS;
6627    return getAtomicType(ResultType);
6628  }
6629  case Type::ConstantArray:
6630  {
6631    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
6632    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
6633    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
6634      return QualType();
6635
6636    QualType LHSElem = getAsArrayType(LHS)->getElementType();
6637    QualType RHSElem = getAsArrayType(RHS)->getElementType();
6638    if (Unqualified) {
6639      LHSElem = LHSElem.getUnqualifiedType();
6640      RHSElem = RHSElem.getUnqualifiedType();
6641    }
6642
6643    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
6644    if (ResultType.isNull()) return QualType();
6645    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6646      return LHS;
6647    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6648      return RHS;
6649    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
6650                                          ArrayType::ArraySizeModifier(), 0);
6651    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
6652                                          ArrayType::ArraySizeModifier(), 0);
6653    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
6654    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
6655    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
6656      return LHS;
6657    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
6658      return RHS;
6659    if (LVAT) {
6660      // FIXME: This isn't correct! But tricky to implement because
6661      // the array's size has to be the size of LHS, but the type
6662      // has to be different.
6663      return LHS;
6664    }
6665    if (RVAT) {
6666      // FIXME: This isn't correct! But tricky to implement because
6667      // the array's size has to be the size of RHS, but the type
6668      // has to be different.
6669      return RHS;
6670    }
6671    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
6672    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
6673    return getIncompleteArrayType(ResultType,
6674                                  ArrayType::ArraySizeModifier(), 0);
6675  }
6676  case Type::FunctionNoProto:
6677    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
6678  case Type::Record:
6679  case Type::Enum:
6680    return QualType();
6681  case Type::Builtin:
6682    // Only exactly equal builtin types are compatible, which is tested above.
6683    return QualType();
6684  case Type::Complex:
6685    // Distinct complex types are incompatible.
6686    return QualType();
6687  case Type::Vector:
6688    // FIXME: The merged type should be an ExtVector!
6689    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
6690                             RHSCan->getAs<VectorType>()))
6691      return LHS;
6692    return QualType();
6693  case Type::ObjCObject: {
6694    // Check if the types are assignment compatible.
6695    // FIXME: This should be type compatibility, e.g. whether
6696    // "LHS x; RHS x;" at global scope is legal.
6697    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
6698    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
6699    if (canAssignObjCInterfaces(LHSIface, RHSIface))
6700      return LHS;
6701
6702    return QualType();
6703  }
6704  case Type::ObjCObjectPointer: {
6705    if (OfBlockPointer) {
6706      if (canAssignObjCInterfacesInBlockPointer(
6707                                          LHS->getAs<ObjCObjectPointerType>(),
6708                                          RHS->getAs<ObjCObjectPointerType>(),
6709                                          BlockReturnType))
6710        return LHS;
6711      return QualType();
6712    }
6713    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
6714                                RHS->getAs<ObjCObjectPointerType>()))
6715      return LHS;
6716
6717    return QualType();
6718  }
6719  }
6720
6721  llvm_unreachable("Invalid Type::Class!");
6722}
6723
6724bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
6725                   const FunctionProtoType *FromFunctionType,
6726                   const FunctionProtoType *ToFunctionType) {
6727  if (FromFunctionType->hasAnyConsumedArgs() !=
6728      ToFunctionType->hasAnyConsumedArgs())
6729    return false;
6730  FunctionProtoType::ExtProtoInfo FromEPI =
6731    FromFunctionType->getExtProtoInfo();
6732  FunctionProtoType::ExtProtoInfo ToEPI =
6733    ToFunctionType->getExtProtoInfo();
6734  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
6735    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
6736         ArgIdx != NumArgs; ++ArgIdx)  {
6737      if (FromEPI.ConsumedArguments[ArgIdx] !=
6738          ToEPI.ConsumedArguments[ArgIdx])
6739        return false;
6740    }
6741  return true;
6742}
6743
6744/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
6745/// 'RHS' attributes and returns the merged version; including for function
6746/// return types.
6747QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
6748  QualType LHSCan = getCanonicalType(LHS),
6749  RHSCan = getCanonicalType(RHS);
6750  // If two types are identical, they are compatible.
6751  if (LHSCan == RHSCan)
6752    return LHS;
6753  if (RHSCan->isFunctionType()) {
6754    if (!LHSCan->isFunctionType())
6755      return QualType();
6756    QualType OldReturnType =
6757      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
6758    QualType NewReturnType =
6759      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
6760    QualType ResReturnType =
6761      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
6762    if (ResReturnType.isNull())
6763      return QualType();
6764    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
6765      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
6766      // In either case, use OldReturnType to build the new function type.
6767      const FunctionType *F = LHS->getAs<FunctionType>();
6768      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
6769        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6770        EPI.ExtInfo = getFunctionExtInfo(LHS);
6771        QualType ResultType
6772          = getFunctionType(OldReturnType, FPT->arg_type_begin(),
6773                            FPT->getNumArgs(), EPI);
6774        return ResultType;
6775      }
6776    }
6777    return QualType();
6778  }
6779
6780  // If the qualifiers are different, the types can still be merged.
6781  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6782  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6783  if (LQuals != RQuals) {
6784    // If any of these qualifiers are different, we have a type mismatch.
6785    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6786        LQuals.getAddressSpace() != RQuals.getAddressSpace())
6787      return QualType();
6788
6789    // Exactly one GC qualifier difference is allowed: __strong is
6790    // okay if the other type has no GC qualifier but is an Objective
6791    // C object pointer (i.e. implicitly strong by default).  We fix
6792    // this by pretending that the unqualified type was actually
6793    // qualified __strong.
6794    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6795    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6796    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6797
6798    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6799      return QualType();
6800
6801    if (GC_L == Qualifiers::Strong)
6802      return LHS;
6803    if (GC_R == Qualifiers::Strong)
6804      return RHS;
6805    return QualType();
6806  }
6807
6808  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
6809    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6810    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
6811    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
6812    if (ResQT == LHSBaseQT)
6813      return LHS;
6814    if (ResQT == RHSBaseQT)
6815      return RHS;
6816  }
6817  return QualType();
6818}
6819
6820//===----------------------------------------------------------------------===//
6821//                         Integer Predicates
6822//===----------------------------------------------------------------------===//
6823
6824unsigned ASTContext::getIntWidth(QualType T) const {
6825  if (const EnumType *ET = dyn_cast<EnumType>(T))
6826    T = ET->getDecl()->getIntegerType();
6827  if (T->isBooleanType())
6828    return 1;
6829  // For builtin types, just use the standard type sizing method
6830  return (unsigned)getTypeSize(T);
6831}
6832
6833QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
6834  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
6835
6836  // Turn <4 x signed int> -> <4 x unsigned int>
6837  if (const VectorType *VTy = T->getAs<VectorType>())
6838    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
6839                         VTy->getNumElements(), VTy->getVectorKind());
6840
6841  // For enums, we return the unsigned version of the base type.
6842  if (const EnumType *ETy = T->getAs<EnumType>())
6843    T = ETy->getDecl()->getIntegerType();
6844
6845  const BuiltinType *BTy = T->getAs<BuiltinType>();
6846  assert(BTy && "Unexpected signed integer type");
6847  switch (BTy->getKind()) {
6848  case BuiltinType::Char_S:
6849  case BuiltinType::SChar:
6850    return UnsignedCharTy;
6851  case BuiltinType::Short:
6852    return UnsignedShortTy;
6853  case BuiltinType::Int:
6854    return UnsignedIntTy;
6855  case BuiltinType::Long:
6856    return UnsignedLongTy;
6857  case BuiltinType::LongLong:
6858    return UnsignedLongLongTy;
6859  case BuiltinType::Int128:
6860    return UnsignedInt128Ty;
6861  default:
6862    llvm_unreachable("Unexpected signed integer type");
6863  }
6864}
6865
6866ASTMutationListener::~ASTMutationListener() { }
6867
6868
6869//===----------------------------------------------------------------------===//
6870//                          Builtin Type Computation
6871//===----------------------------------------------------------------------===//
6872
6873/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
6874/// pointer over the consumed characters.  This returns the resultant type.  If
6875/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
6876/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
6877/// a vector of "i*".
6878///
6879/// RequiresICE is filled in on return to indicate whether the value is required
6880/// to be an Integer Constant Expression.
6881static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
6882                                  ASTContext::GetBuiltinTypeError &Error,
6883                                  bool &RequiresICE,
6884                                  bool AllowTypeModifiers) {
6885  // Modifiers.
6886  int HowLong = 0;
6887  bool Signed = false, Unsigned = false;
6888  RequiresICE = false;
6889
6890  // Read the prefixed modifiers first.
6891  bool Done = false;
6892  while (!Done) {
6893    switch (*Str++) {
6894    default: Done = true; --Str; break;
6895    case 'I':
6896      RequiresICE = true;
6897      break;
6898    case 'S':
6899      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
6900      assert(!Signed && "Can't use 'S' modifier multiple times!");
6901      Signed = true;
6902      break;
6903    case 'U':
6904      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
6905      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
6906      Unsigned = true;
6907      break;
6908    case 'L':
6909      assert(HowLong <= 2 && "Can't have LLLL modifier");
6910      ++HowLong;
6911      break;
6912    }
6913  }
6914
6915  QualType Type;
6916
6917  // Read the base type.
6918  switch (*Str++) {
6919  default: llvm_unreachable("Unknown builtin type letter!");
6920  case 'v':
6921    assert(HowLong == 0 && !Signed && !Unsigned &&
6922           "Bad modifiers used with 'v'!");
6923    Type = Context.VoidTy;
6924    break;
6925  case 'f':
6926    assert(HowLong == 0 && !Signed && !Unsigned &&
6927           "Bad modifiers used with 'f'!");
6928    Type = Context.FloatTy;
6929    break;
6930  case 'd':
6931    assert(HowLong < 2 && !Signed && !Unsigned &&
6932           "Bad modifiers used with 'd'!");
6933    if (HowLong)
6934      Type = Context.LongDoubleTy;
6935    else
6936      Type = Context.DoubleTy;
6937    break;
6938  case 's':
6939    assert(HowLong == 0 && "Bad modifiers used with 's'!");
6940    if (Unsigned)
6941      Type = Context.UnsignedShortTy;
6942    else
6943      Type = Context.ShortTy;
6944    break;
6945  case 'i':
6946    if (HowLong == 3)
6947      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
6948    else if (HowLong == 2)
6949      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
6950    else if (HowLong == 1)
6951      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
6952    else
6953      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
6954    break;
6955  case 'c':
6956    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
6957    if (Signed)
6958      Type = Context.SignedCharTy;
6959    else if (Unsigned)
6960      Type = Context.UnsignedCharTy;
6961    else
6962      Type = Context.CharTy;
6963    break;
6964  case 'b': // boolean
6965    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
6966    Type = Context.BoolTy;
6967    break;
6968  case 'z':  // size_t.
6969    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
6970    Type = Context.getSizeType();
6971    break;
6972  case 'F':
6973    Type = Context.getCFConstantStringType();
6974    break;
6975  case 'G':
6976    Type = Context.getObjCIdType();
6977    break;
6978  case 'H':
6979    Type = Context.getObjCSelType();
6980    break;
6981  case 'a':
6982    Type = Context.getBuiltinVaListType();
6983    assert(!Type.isNull() && "builtin va list type not initialized!");
6984    break;
6985  case 'A':
6986    // This is a "reference" to a va_list; however, what exactly
6987    // this means depends on how va_list is defined. There are two
6988    // different kinds of va_list: ones passed by value, and ones
6989    // passed by reference.  An example of a by-value va_list is
6990    // x86, where va_list is a char*. An example of by-ref va_list
6991    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
6992    // we want this argument to be a char*&; for x86-64, we want
6993    // it to be a __va_list_tag*.
6994    Type = Context.getBuiltinVaListType();
6995    assert(!Type.isNull() && "builtin va list type not initialized!");
6996    if (Type->isArrayType())
6997      Type = Context.getArrayDecayedType(Type);
6998    else
6999      Type = Context.getLValueReferenceType(Type);
7000    break;
7001  case 'V': {
7002    char *End;
7003    unsigned NumElements = strtoul(Str, &End, 10);
7004    assert(End != Str && "Missing vector size");
7005    Str = End;
7006
7007    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7008                                             RequiresICE, false);
7009    assert(!RequiresICE && "Can't require vector ICE");
7010
7011    // TODO: No way to make AltiVec vectors in builtins yet.
7012    Type = Context.getVectorType(ElementType, NumElements,
7013                                 VectorType::GenericVector);
7014    break;
7015  }
7016  case 'E': {
7017    char *End;
7018
7019    unsigned NumElements = strtoul(Str, &End, 10);
7020    assert(End != Str && "Missing vector size");
7021
7022    Str = End;
7023
7024    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7025                                             false);
7026    Type = Context.getExtVectorType(ElementType, NumElements);
7027    break;
7028  }
7029  case 'X': {
7030    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7031                                             false);
7032    assert(!RequiresICE && "Can't require complex ICE");
7033    Type = Context.getComplexType(ElementType);
7034    break;
7035  }
7036  case 'Y' : {
7037    Type = Context.getPointerDiffType();
7038    break;
7039  }
7040  case 'P':
7041    Type = Context.getFILEType();
7042    if (Type.isNull()) {
7043      Error = ASTContext::GE_Missing_stdio;
7044      return QualType();
7045    }
7046    break;
7047  case 'J':
7048    if (Signed)
7049      Type = Context.getsigjmp_bufType();
7050    else
7051      Type = Context.getjmp_bufType();
7052
7053    if (Type.isNull()) {
7054      Error = ASTContext::GE_Missing_setjmp;
7055      return QualType();
7056    }
7057    break;
7058  case 'K':
7059    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7060    Type = Context.getucontext_tType();
7061
7062    if (Type.isNull()) {
7063      Error = ASTContext::GE_Missing_ucontext;
7064      return QualType();
7065    }
7066    break;
7067  }
7068
7069  // If there are modifiers and if we're allowed to parse them, go for it.
7070  Done = !AllowTypeModifiers;
7071  while (!Done) {
7072    switch (char c = *Str++) {
7073    default: Done = true; --Str; break;
7074    case '*':
7075    case '&': {
7076      // Both pointers and references can have their pointee types
7077      // qualified with an address space.
7078      char *End;
7079      unsigned AddrSpace = strtoul(Str, &End, 10);
7080      if (End != Str && AddrSpace != 0) {
7081        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7082        Str = End;
7083      }
7084      if (c == '*')
7085        Type = Context.getPointerType(Type);
7086      else
7087        Type = Context.getLValueReferenceType(Type);
7088      break;
7089    }
7090    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7091    case 'C':
7092      Type = Type.withConst();
7093      break;
7094    case 'D':
7095      Type = Context.getVolatileType(Type);
7096      break;
7097    case 'R':
7098      Type = Type.withRestrict();
7099      break;
7100    }
7101  }
7102
7103  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7104         "Integer constant 'I' type must be an integer");
7105
7106  return Type;
7107}
7108
7109/// GetBuiltinType - Return the type for the specified builtin.
7110QualType ASTContext::GetBuiltinType(unsigned Id,
7111                                    GetBuiltinTypeError &Error,
7112                                    unsigned *IntegerConstantArgs) const {
7113  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7114
7115  SmallVector<QualType, 8> ArgTypes;
7116
7117  bool RequiresICE = false;
7118  Error = GE_None;
7119  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7120                                       RequiresICE, true);
7121  if (Error != GE_None)
7122    return QualType();
7123
7124  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7125
7126  while (TypeStr[0] && TypeStr[0] != '.') {
7127    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7128    if (Error != GE_None)
7129      return QualType();
7130
7131    // If this argument is required to be an IntegerConstantExpression and the
7132    // caller cares, fill in the bitmask we return.
7133    if (RequiresICE && IntegerConstantArgs)
7134      *IntegerConstantArgs |= 1 << ArgTypes.size();
7135
7136    // Do array -> pointer decay.  The builtin should use the decayed type.
7137    if (Ty->isArrayType())
7138      Ty = getArrayDecayedType(Ty);
7139
7140    ArgTypes.push_back(Ty);
7141  }
7142
7143  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7144         "'.' should only occur at end of builtin type list!");
7145
7146  FunctionType::ExtInfo EI;
7147  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7148
7149  bool Variadic = (TypeStr[0] == '.');
7150
7151  // We really shouldn't be making a no-proto type here, especially in C++.
7152  if (ArgTypes.empty() && Variadic)
7153    return getFunctionNoProtoType(ResType, EI);
7154
7155  FunctionProtoType::ExtProtoInfo EPI;
7156  EPI.ExtInfo = EI;
7157  EPI.Variadic = Variadic;
7158
7159  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI);
7160}
7161
7162GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7163  GVALinkage External = GVA_StrongExternal;
7164
7165  Linkage L = FD->getLinkage();
7166  switch (L) {
7167  case NoLinkage:
7168  case InternalLinkage:
7169  case UniqueExternalLinkage:
7170    return GVA_Internal;
7171
7172  case ExternalLinkage:
7173    switch (FD->getTemplateSpecializationKind()) {
7174    case TSK_Undeclared:
7175    case TSK_ExplicitSpecialization:
7176      External = GVA_StrongExternal;
7177      break;
7178
7179    case TSK_ExplicitInstantiationDefinition:
7180      return GVA_ExplicitTemplateInstantiation;
7181
7182    case TSK_ExplicitInstantiationDeclaration:
7183    case TSK_ImplicitInstantiation:
7184      External = GVA_TemplateInstantiation;
7185      break;
7186    }
7187  }
7188
7189  if (!FD->isInlined())
7190    return External;
7191
7192  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7193    // GNU or C99 inline semantics. Determine whether this symbol should be
7194    // externally visible.
7195    if (FD->isInlineDefinitionExternallyVisible())
7196      return External;
7197
7198    // C99 inline semantics, where the symbol is not externally visible.
7199    return GVA_C99Inline;
7200  }
7201
7202  // C++0x [temp.explicit]p9:
7203  //   [ Note: The intent is that an inline function that is the subject of
7204  //   an explicit instantiation declaration will still be implicitly
7205  //   instantiated when used so that the body can be considered for
7206  //   inlining, but that no out-of-line copy of the inline function would be
7207  //   generated in the translation unit. -- end note ]
7208  if (FD->getTemplateSpecializationKind()
7209                                       == TSK_ExplicitInstantiationDeclaration)
7210    return GVA_C99Inline;
7211
7212  return GVA_CXXInline;
7213}
7214
7215GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7216  // If this is a static data member, compute the kind of template
7217  // specialization. Otherwise, this variable is not part of a
7218  // template.
7219  TemplateSpecializationKind TSK = TSK_Undeclared;
7220  if (VD->isStaticDataMember())
7221    TSK = VD->getTemplateSpecializationKind();
7222
7223  Linkage L = VD->getLinkage();
7224  if (L == ExternalLinkage && getLangOpts().CPlusPlus &&
7225      VD->getType()->getLinkage() == UniqueExternalLinkage)
7226    L = UniqueExternalLinkage;
7227
7228  switch (L) {
7229  case NoLinkage:
7230  case InternalLinkage:
7231  case UniqueExternalLinkage:
7232    return GVA_Internal;
7233
7234  case ExternalLinkage:
7235    switch (TSK) {
7236    case TSK_Undeclared:
7237    case TSK_ExplicitSpecialization:
7238      return GVA_StrongExternal;
7239
7240    case TSK_ExplicitInstantiationDeclaration:
7241      llvm_unreachable("Variable should not be instantiated");
7242      // Fall through to treat this like any other instantiation.
7243
7244    case TSK_ExplicitInstantiationDefinition:
7245      return GVA_ExplicitTemplateInstantiation;
7246
7247    case TSK_ImplicitInstantiation:
7248      return GVA_TemplateInstantiation;
7249    }
7250  }
7251
7252  llvm_unreachable("Invalid Linkage!");
7253}
7254
7255bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7256  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7257    if (!VD->isFileVarDecl())
7258      return false;
7259  } else if (!isa<FunctionDecl>(D))
7260    return false;
7261
7262  // Weak references don't produce any output by themselves.
7263  if (D->hasAttr<WeakRefAttr>())
7264    return false;
7265
7266  // Aliases and used decls are required.
7267  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7268    return true;
7269
7270  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7271    // Forward declarations aren't required.
7272    if (!FD->doesThisDeclarationHaveABody())
7273      return FD->doesDeclarationForceExternallyVisibleDefinition();
7274
7275    // Constructors and destructors are required.
7276    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7277      return true;
7278
7279    // The key function for a class is required.
7280    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7281      const CXXRecordDecl *RD = MD->getParent();
7282      if (MD->isOutOfLine() && RD->isDynamicClass()) {
7283        const CXXMethodDecl *KeyFunc = getKeyFunction(RD);
7284        if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7285          return true;
7286      }
7287    }
7288
7289    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7290
7291    // static, static inline, always_inline, and extern inline functions can
7292    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7293    // Implicit template instantiations can also be deferred in C++.
7294    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7295        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7296      return false;
7297    return true;
7298  }
7299
7300  const VarDecl *VD = cast<VarDecl>(D);
7301  assert(VD->isFileVarDecl() && "Expected file scoped var");
7302
7303  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7304    return false;
7305
7306  // Structs that have non-trivial constructors or destructors are required.
7307
7308  // FIXME: Handle references.
7309  // FIXME: Be more selective about which constructors we care about.
7310  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
7311    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
7312      if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() &&
7313                                   RD->hasTrivialCopyConstructor() &&
7314                                   RD->hasTrivialMoveConstructor() &&
7315                                   RD->hasTrivialDestructor()))
7316        return true;
7317    }
7318  }
7319
7320  GVALinkage L = GetGVALinkageForVariable(VD);
7321  if (L == GVA_Internal || L == GVA_TemplateInstantiation) {
7322    if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this)))
7323      return false;
7324  }
7325
7326  return true;
7327}
7328
7329CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7330  // Pass through to the C++ ABI object
7331  return ABI->getDefaultMethodCallConv(isVariadic);
7332}
7333
7334CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7335  if (CC == CC_C && !LangOpts.MRTD && getTargetInfo().getCXXABI() != CXXABI_Microsoft)
7336    return CC_Default;
7337  return CC;
7338}
7339
7340bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7341  // Pass through to the C++ ABI object
7342  return ABI->isNearlyEmpty(RD);
7343}
7344
7345MangleContext *ASTContext::createMangleContext() {
7346  switch (Target->getCXXABI()) {
7347  case CXXABI_ARM:
7348  case CXXABI_Itanium:
7349    return createItaniumMangleContext(*this, getDiagnostics());
7350  case CXXABI_Microsoft:
7351    return createMicrosoftMangleContext(*this, getDiagnostics());
7352  }
7353  llvm_unreachable("Unsupported ABI");
7354}
7355
7356CXXABI::~CXXABI() {}
7357
7358size_t ASTContext::getSideTableAllocatedMemory() const {
7359  return ASTRecordLayouts.getMemorySize()
7360    + llvm::capacity_in_bytes(ObjCLayouts)
7361    + llvm::capacity_in_bytes(KeyFunctions)
7362    + llvm::capacity_in_bytes(ObjCImpls)
7363    + llvm::capacity_in_bytes(BlockVarCopyInits)
7364    + llvm::capacity_in_bytes(DeclAttrs)
7365    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7366    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7367    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7368    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7369    + llvm::capacity_in_bytes(OverriddenMethods)
7370    + llvm::capacity_in_bytes(Types)
7371    + llvm::capacity_in_bytes(VariableArrayTypes)
7372    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7373}
7374
7375unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7376  CXXRecordDecl *Lambda = CallOperator->getParent();
7377  return LambdaMangleContexts[Lambda->getDeclContext()]
7378           .getManglingNumber(CallOperator);
7379}
7380
7381
7382void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7383  ParamIndices[D] = index;
7384}
7385
7386unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7387  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7388  assert(I != ParamIndices.end() &&
7389         "ParmIndices lacks entry set by ParmVarDecl");
7390  return I->second;
7391}
7392