ASTContext.cpp revision ea26cb522e88fc86b0d1cae61dcefcfe4cc20231
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExternalASTSource.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "RecordLayoutBuilder.h"
29
30using namespace clang;
31
32enum FloatingRank {
33  FloatRank, DoubleRank, LongDoubleRank
34};
35
36ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
37                       TargetInfo &t,
38                       IdentifierTable &idents, SelectorTable &sels,
39                       Builtin::Context &builtins,
40                       bool FreeMem, unsigned size_reserve) :
41  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
42  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
43  sigjmp_bufDecl(0), BlockDescriptorType(0), SourceMgr(SM), LangOpts(LOpts),
44  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
45  Idents(idents), Selectors(sels),
46  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
47  ObjCIdRedefinitionType = QualType();
48  ObjCClassRedefinitionType = QualType();
49  if (size_reserve > 0) Types.reserve(size_reserve);
50  TUDecl = TranslationUnitDecl::Create(*this);
51  InitBuiltinTypes();
52}
53
54ASTContext::~ASTContext() {
55  // Deallocate all the types.
56  while (!Types.empty()) {
57    Types.back()->Destroy(*this);
58    Types.pop_back();
59  }
60
61  {
62    llvm::FoldingSet<ExtQuals>::iterator
63      I = ExtQualNodes.begin(), E = ExtQualNodes.end();
64    while (I != E)
65      Deallocate(&*I++);
66  }
67
68  {
69    llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
70      I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end();
71    while (I != E) {
72      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
73      delete R;
74    }
75  }
76
77  {
78    llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>::iterator
79      I = ObjCLayouts.begin(), E = ObjCLayouts.end();
80    while (I != E) {
81      ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
82      delete R;
83    }
84  }
85
86  // Destroy nested-name-specifiers.
87  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
88         NNS = NestedNameSpecifiers.begin(),
89         NNSEnd = NestedNameSpecifiers.end();
90       NNS != NNSEnd;
91       /* Increment in loop */)
92    (*NNS++).Destroy(*this);
93
94  if (GlobalNestedNameSpecifier)
95    GlobalNestedNameSpecifier->Destroy(*this);
96
97  TUDecl->Destroy(*this);
98}
99
100void
101ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
102  ExternalSource.reset(Source.take());
103}
104
105void ASTContext::PrintStats() const {
106  fprintf(stderr, "*** AST Context Stats:\n");
107  fprintf(stderr, "  %d types total.\n", (int)Types.size());
108
109  unsigned counts[] = {
110#define TYPE(Name, Parent) 0,
111#define ABSTRACT_TYPE(Name, Parent)
112#include "clang/AST/TypeNodes.def"
113    0 // Extra
114  };
115
116  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
117    Type *T = Types[i];
118    counts[(unsigned)T->getTypeClass()]++;
119  }
120
121  unsigned Idx = 0;
122  unsigned TotalBytes = 0;
123#define TYPE(Name, Parent)                                              \
124  if (counts[Idx])                                                      \
125    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
126  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
127  ++Idx;
128#define ABSTRACT_TYPE(Name, Parent)
129#include "clang/AST/TypeNodes.def"
130
131  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
132
133  if (ExternalSource.get()) {
134    fprintf(stderr, "\n");
135    ExternalSource->PrintStats();
136  }
137}
138
139
140void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) {
141  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
142  R = QualType(Ty, 0);
143  Types.push_back(Ty);
144}
145
146void ASTContext::InitBuiltinTypes() {
147  assert(VoidTy.isNull() && "Context reinitialized?");
148
149  // C99 6.2.5p19.
150  InitBuiltinType(VoidTy,              BuiltinType::Void);
151
152  // C99 6.2.5p2.
153  InitBuiltinType(BoolTy,              BuiltinType::Bool);
154  // C99 6.2.5p3.
155  if (LangOpts.CharIsSigned)
156    InitBuiltinType(CharTy,            BuiltinType::Char_S);
157  else
158    InitBuiltinType(CharTy,            BuiltinType::Char_U);
159  // C99 6.2.5p4.
160  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
161  InitBuiltinType(ShortTy,             BuiltinType::Short);
162  InitBuiltinType(IntTy,               BuiltinType::Int);
163  InitBuiltinType(LongTy,              BuiltinType::Long);
164  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
165
166  // C99 6.2.5p6.
167  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
168  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
169  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
170  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
171  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
172
173  // C99 6.2.5p10.
174  InitBuiltinType(FloatTy,             BuiltinType::Float);
175  InitBuiltinType(DoubleTy,            BuiltinType::Double);
176  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
177
178  // GNU extension, 128-bit integers.
179  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
180  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
181
182  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
183    InitBuiltinType(WCharTy,           BuiltinType::WChar);
184  else // C99
185    WCharTy = getFromTargetType(Target.getWCharType());
186
187  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
188    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
189  else // C99
190    Char16Ty = getFromTargetType(Target.getChar16Type());
191
192  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
193    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
194  else // C99
195    Char32Ty = getFromTargetType(Target.getChar32Type());
196
197  // Placeholder type for functions.
198  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
199
200  // Placeholder type for type-dependent expressions whose type is
201  // completely unknown. No code should ever check a type against
202  // DependentTy and users should never see it; however, it is here to
203  // help diagnose failures to properly check for type-dependent
204  // expressions.
205  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
206
207  // Placeholder type for C++0x auto declarations whose real type has
208  // not yet been deduced.
209  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
210
211  // C99 6.2.5p11.
212  FloatComplexTy      = getComplexType(FloatTy);
213  DoubleComplexTy     = getComplexType(DoubleTy);
214  LongDoubleComplexTy = getComplexType(LongDoubleTy);
215
216  BuiltinVaListType = QualType();
217
218  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
219  ObjCIdTypedefType = QualType();
220  ObjCClassTypedefType = QualType();
221
222  // Builtin types for 'id' and 'Class'.
223  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
224  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
225
226  ObjCConstantStringType = QualType();
227
228  // void * type
229  VoidPtrTy = getPointerType(VoidTy);
230
231  // nullptr type (C++0x 2.14.7)
232  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
233}
234
235MemberSpecializationInfo *
236ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
237  assert(Var->isStaticDataMember() && "Not a static data member");
238  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
239    = InstantiatedFromStaticDataMember.find(Var);
240  if (Pos == InstantiatedFromStaticDataMember.end())
241    return 0;
242
243  return Pos->second;
244}
245
246void
247ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
248                                                TemplateSpecializationKind TSK) {
249  assert(Inst->isStaticDataMember() && "Not a static data member");
250  assert(Tmpl->isStaticDataMember() && "Not a static data member");
251  assert(!InstantiatedFromStaticDataMember[Inst] &&
252         "Already noted what static data member was instantiated from");
253  InstantiatedFromStaticDataMember[Inst]
254    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
255}
256
257UnresolvedUsingDecl *
258ASTContext::getInstantiatedFromUnresolvedUsingDecl(UsingDecl *UUD) {
259  llvm::DenseMap<UsingDecl *, UnresolvedUsingDecl *>::iterator Pos
260    = InstantiatedFromUnresolvedUsingDecl.find(UUD);
261  if (Pos == InstantiatedFromUnresolvedUsingDecl.end())
262    return 0;
263
264  return Pos->second;
265}
266
267void
268ASTContext::setInstantiatedFromUnresolvedUsingDecl(UsingDecl *UD,
269                                                   UnresolvedUsingDecl *UUD) {
270  assert(!InstantiatedFromUnresolvedUsingDecl[UD] &&
271         "Already noted what using decl what instantiated from");
272  InstantiatedFromUnresolvedUsingDecl[UD] = UUD;
273}
274
275FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
276  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
277    = InstantiatedFromUnnamedFieldDecl.find(Field);
278  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
279    return 0;
280
281  return Pos->second;
282}
283
284void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
285                                                     FieldDecl *Tmpl) {
286  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
287  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
288  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
289         "Already noted what unnamed field was instantiated from");
290
291  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
292}
293
294namespace {
295  class BeforeInTranslationUnit
296    : std::binary_function<SourceRange, SourceRange, bool> {
297    SourceManager *SourceMgr;
298
299  public:
300    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
301
302    bool operator()(SourceRange X, SourceRange Y) {
303      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
304    }
305  };
306}
307
308/// \brief Determine whether the given comment is a Doxygen-style comment.
309///
310/// \param Start the start of the comment text.
311///
312/// \param End the end of the comment text.
313///
314/// \param Member whether we want to check whether this is a member comment
315/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
316/// we only return true when we find a non-member comment.
317static bool
318isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
319                 bool Member = false) {
320  const char *BufferStart
321    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
322  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
323  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
324
325  if (End - Start < 4)
326    return false;
327
328  assert(Start[0] == '/' && "Not a comment?");
329  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
330    return false;
331  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
332    return false;
333
334  return (Start[3] == '<') == Member;
335}
336
337/// \brief Retrieve the comment associated with the given declaration, if
338/// it has one.
339const char *ASTContext::getCommentForDecl(const Decl *D) {
340  if (!D)
341    return 0;
342
343  // Check whether we have cached a comment string for this declaration
344  // already.
345  llvm::DenseMap<const Decl *, std::string>::iterator Pos
346    = DeclComments.find(D);
347  if (Pos != DeclComments.end())
348    return Pos->second.c_str();
349
350  // If we have an external AST source and have not yet loaded comments from
351  // that source, do so now.
352  if (ExternalSource && !LoadedExternalComments) {
353    std::vector<SourceRange> LoadedComments;
354    ExternalSource->ReadComments(LoadedComments);
355
356    if (!LoadedComments.empty())
357      Comments.insert(Comments.begin(), LoadedComments.begin(),
358                      LoadedComments.end());
359
360    LoadedExternalComments = true;
361  }
362
363  // If there are no comments anywhere, we won't find anything.
364  if (Comments.empty())
365    return 0;
366
367  // If the declaration doesn't map directly to a location in a file, we
368  // can't find the comment.
369  SourceLocation DeclStartLoc = D->getLocStart();
370  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
371    return 0;
372
373  // Find the comment that occurs just before this declaration.
374  std::vector<SourceRange>::iterator LastComment
375    = std::lower_bound(Comments.begin(), Comments.end(),
376                       SourceRange(DeclStartLoc),
377                       BeforeInTranslationUnit(&SourceMgr));
378
379  // Decompose the location for the start of the declaration and find the
380  // beginning of the file buffer.
381  std::pair<FileID, unsigned> DeclStartDecomp
382    = SourceMgr.getDecomposedLoc(DeclStartLoc);
383  const char *FileBufferStart
384    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
385
386  // First check whether we have a comment for a member.
387  if (LastComment != Comments.end() &&
388      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
389      isDoxygenComment(SourceMgr, *LastComment, true)) {
390    std::pair<FileID, unsigned> LastCommentEndDecomp
391      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
392    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
393        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
394          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
395                                     LastCommentEndDecomp.second)) {
396      // The Doxygen member comment comes after the declaration starts and
397      // is on the same line and in the same file as the declaration. This
398      // is the comment we want.
399      std::string &Result = DeclComments[D];
400      Result.append(FileBufferStart +
401                      SourceMgr.getFileOffset(LastComment->getBegin()),
402                    FileBufferStart + LastCommentEndDecomp.second + 1);
403      return Result.c_str();
404    }
405  }
406
407  if (LastComment == Comments.begin())
408    return 0;
409  --LastComment;
410
411  // Decompose the end of the comment.
412  std::pair<FileID, unsigned> LastCommentEndDecomp
413    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
414
415  // If the comment and the declaration aren't in the same file, then they
416  // aren't related.
417  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
418    return 0;
419
420  // Check that we actually have a Doxygen comment.
421  if (!isDoxygenComment(SourceMgr, *LastComment))
422    return 0;
423
424  // Compute the starting line for the declaration and for the end of the
425  // comment (this is expensive).
426  unsigned DeclStartLine
427    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
428  unsigned CommentEndLine
429    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
430                              LastCommentEndDecomp.second);
431
432  // If the comment does not end on the line prior to the declaration, then
433  // the comment is not associated with the declaration at all.
434  if (CommentEndLine + 1 != DeclStartLine)
435    return 0;
436
437  // We have a comment, but there may be more comments on the previous lines.
438  // Keep looking so long as the comments are still Doxygen comments and are
439  // still adjacent.
440  unsigned ExpectedLine
441    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
442  std::vector<SourceRange>::iterator FirstComment = LastComment;
443  while (FirstComment != Comments.begin()) {
444    // Look at the previous comment
445    --FirstComment;
446    std::pair<FileID, unsigned> Decomp
447      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
448
449    // If this previous comment is in a different file, we're done.
450    if (Decomp.first != DeclStartDecomp.first) {
451      ++FirstComment;
452      break;
453    }
454
455    // If this comment is not a Doxygen comment, we're done.
456    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
457      ++FirstComment;
458      break;
459    }
460
461    // If the line number is not what we expected, we're done.
462    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
463    if (Line != ExpectedLine) {
464      ++FirstComment;
465      break;
466    }
467
468    // Set the next expected line number.
469    ExpectedLine
470      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
471  }
472
473  // The iterator range [FirstComment, LastComment] contains all of the
474  // BCPL comments that, together, are associated with this declaration.
475  // Form a single comment block string for this declaration that concatenates
476  // all of these comments.
477  std::string &Result = DeclComments[D];
478  while (FirstComment != LastComment) {
479    std::pair<FileID, unsigned> DecompStart
480      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
481    std::pair<FileID, unsigned> DecompEnd
482      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
483    Result.append(FileBufferStart + DecompStart.second,
484                  FileBufferStart + DecompEnd.second + 1);
485    ++FirstComment;
486  }
487
488  // Append the last comment line.
489  Result.append(FileBufferStart +
490                  SourceMgr.getFileOffset(LastComment->getBegin()),
491                FileBufferStart + LastCommentEndDecomp.second + 1);
492  return Result.c_str();
493}
494
495//===----------------------------------------------------------------------===//
496//                         Type Sizing and Analysis
497//===----------------------------------------------------------------------===//
498
499/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
500/// scalar floating point type.
501const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
502  const BuiltinType *BT = T->getAs<BuiltinType>();
503  assert(BT && "Not a floating point type!");
504  switch (BT->getKind()) {
505  default: assert(0 && "Not a floating point type!");
506  case BuiltinType::Float:      return Target.getFloatFormat();
507  case BuiltinType::Double:     return Target.getDoubleFormat();
508  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
509  }
510}
511
512/// getDeclAlignInBytes - Return a conservative estimate of the alignment of the
513/// specified decl.  Note that bitfields do not have a valid alignment, so
514/// this method will assert on them.
515unsigned ASTContext::getDeclAlignInBytes(const Decl *D) {
516  unsigned Align = Target.getCharWidth();
517
518  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
519    Align = std::max(Align, AA->getAlignment());
520
521  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
522    QualType T = VD->getType();
523    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
524      unsigned AS = RT->getPointeeType().getAddressSpace();
525      Align = Target.getPointerAlign(AS);
526    } else if (!T->isIncompleteType() && !T->isFunctionType()) {
527      // Incomplete or function types default to 1.
528      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
529        T = cast<ArrayType>(T)->getElementType();
530
531      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
532    }
533  }
534
535  return Align / Target.getCharWidth();
536}
537
538/// getTypeSize - Return the size of the specified type, in bits.  This method
539/// does not work on incomplete types.
540///
541/// FIXME: Pointers into different addr spaces could have different sizes and
542/// alignment requirements: getPointerInfo should take an AddrSpace, this
543/// should take a QualType, &c.
544std::pair<uint64_t, unsigned>
545ASTContext::getTypeInfo(const Type *T) {
546  uint64_t Width=0;
547  unsigned Align=8;
548  switch (T->getTypeClass()) {
549#define TYPE(Class, Base)
550#define ABSTRACT_TYPE(Class, Base)
551#define NON_CANONICAL_TYPE(Class, Base)
552#define DEPENDENT_TYPE(Class, Base) case Type::Class:
553#include "clang/AST/TypeNodes.def"
554    assert(false && "Should not see dependent types");
555    break;
556
557  case Type::ObjCProtocolList:
558    assert(false && "Should not see protocol list types");
559    break;
560
561  case Type::FunctionNoProto:
562  case Type::FunctionProto:
563    // GCC extension: alignof(function) = 32 bits
564    Width = 0;
565    Align = 32;
566    break;
567
568  case Type::IncompleteArray:
569  case Type::VariableArray:
570    Width = 0;
571    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
572    break;
573
574  case Type::ConstantArray: {
575    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
576
577    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
578    Width = EltInfo.first*CAT->getSize().getZExtValue();
579    Align = EltInfo.second;
580    break;
581  }
582  case Type::ExtVector:
583  case Type::Vector: {
584    std::pair<uint64_t, unsigned> EltInfo =
585      getTypeInfo(cast<VectorType>(T)->getElementType());
586    Width = EltInfo.first*cast<VectorType>(T)->getNumElements();
587    Align = Width;
588    // If the alignment is not a power of 2, round up to the next power of 2.
589    // This happens for non-power-of-2 length vectors.
590    // FIXME: this should probably be a target property.
591    Align = 1 << llvm::Log2_32_Ceil(Align);
592    break;
593  }
594
595  case Type::Builtin:
596    switch (cast<BuiltinType>(T)->getKind()) {
597    default: assert(0 && "Unknown builtin type!");
598    case BuiltinType::Void:
599      // GCC extension: alignof(void) = 8 bits.
600      Width = 0;
601      Align = 8;
602      break;
603
604    case BuiltinType::Bool:
605      Width = Target.getBoolWidth();
606      Align = Target.getBoolAlign();
607      break;
608    case BuiltinType::Char_S:
609    case BuiltinType::Char_U:
610    case BuiltinType::UChar:
611    case BuiltinType::SChar:
612      Width = Target.getCharWidth();
613      Align = Target.getCharAlign();
614      break;
615    case BuiltinType::WChar:
616      Width = Target.getWCharWidth();
617      Align = Target.getWCharAlign();
618      break;
619    case BuiltinType::Char16:
620      Width = Target.getChar16Width();
621      Align = Target.getChar16Align();
622      break;
623    case BuiltinType::Char32:
624      Width = Target.getChar32Width();
625      Align = Target.getChar32Align();
626      break;
627    case BuiltinType::UShort:
628    case BuiltinType::Short:
629      Width = Target.getShortWidth();
630      Align = Target.getShortAlign();
631      break;
632    case BuiltinType::UInt:
633    case BuiltinType::Int:
634      Width = Target.getIntWidth();
635      Align = Target.getIntAlign();
636      break;
637    case BuiltinType::ULong:
638    case BuiltinType::Long:
639      Width = Target.getLongWidth();
640      Align = Target.getLongAlign();
641      break;
642    case BuiltinType::ULongLong:
643    case BuiltinType::LongLong:
644      Width = Target.getLongLongWidth();
645      Align = Target.getLongLongAlign();
646      break;
647    case BuiltinType::Int128:
648    case BuiltinType::UInt128:
649      Width = 128;
650      Align = 128; // int128_t is 128-bit aligned on all targets.
651      break;
652    case BuiltinType::Float:
653      Width = Target.getFloatWidth();
654      Align = Target.getFloatAlign();
655      break;
656    case BuiltinType::Double:
657      Width = Target.getDoubleWidth();
658      Align = Target.getDoubleAlign();
659      break;
660    case BuiltinType::LongDouble:
661      Width = Target.getLongDoubleWidth();
662      Align = Target.getLongDoubleAlign();
663      break;
664    case BuiltinType::NullPtr:
665      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
666      Align = Target.getPointerAlign(0); //   == sizeof(void*)
667      break;
668    }
669    break;
670  case Type::FixedWidthInt:
671    // FIXME: This isn't precisely correct; the width/alignment should depend
672    // on the available types for the target
673    Width = cast<FixedWidthIntType>(T)->getWidth();
674    Width = std::max(llvm::NextPowerOf2(Width - 1), (uint64_t)8);
675    Align = Width;
676    break;
677  case Type::ObjCObjectPointer:
678    Width = Target.getPointerWidth(0);
679    Align = Target.getPointerAlign(0);
680    break;
681  case Type::BlockPointer: {
682    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
683    Width = Target.getPointerWidth(AS);
684    Align = Target.getPointerAlign(AS);
685    break;
686  }
687  case Type::Pointer: {
688    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
689    Width = Target.getPointerWidth(AS);
690    Align = Target.getPointerAlign(AS);
691    break;
692  }
693  case Type::LValueReference:
694  case Type::RValueReference:
695    // "When applied to a reference or a reference type, the result is the size
696    // of the referenced type." C++98 5.3.3p2: expr.sizeof.
697    // FIXME: This is wrong for struct layout: a reference in a struct has
698    // pointer size.
699    return getTypeInfo(cast<ReferenceType>(T)->getPointeeType());
700  case Type::MemberPointer: {
701    // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
702    // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
703    // If we ever want to support other ABIs this needs to be abstracted.
704
705    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
706    std::pair<uint64_t, unsigned> PtrDiffInfo =
707      getTypeInfo(getPointerDiffType());
708    Width = PtrDiffInfo.first;
709    if (Pointee->isFunctionType())
710      Width *= 2;
711    Align = PtrDiffInfo.second;
712    break;
713  }
714  case Type::Complex: {
715    // Complex types have the same alignment as their elements, but twice the
716    // size.
717    std::pair<uint64_t, unsigned> EltInfo =
718      getTypeInfo(cast<ComplexType>(T)->getElementType());
719    Width = EltInfo.first*2;
720    Align = EltInfo.second;
721    break;
722  }
723  case Type::ObjCInterface: {
724    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
725    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
726    Width = Layout.getSize();
727    Align = Layout.getAlignment();
728    break;
729  }
730  case Type::Record:
731  case Type::Enum: {
732    const TagType *TT = cast<TagType>(T);
733
734    if (TT->getDecl()->isInvalidDecl()) {
735      Width = 1;
736      Align = 1;
737      break;
738    }
739
740    if (const EnumType *ET = dyn_cast<EnumType>(TT))
741      return getTypeInfo(ET->getDecl()->getIntegerType());
742
743    const RecordType *RT = cast<RecordType>(TT);
744    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
745    Width = Layout.getSize();
746    Align = Layout.getAlignment();
747    break;
748  }
749
750  case Type::SubstTemplateTypeParm: {
751    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
752                       getReplacementType().getTypePtr());
753  }
754
755  case Type::Elaborated: {
756    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType().getTypePtr());
757  }
758
759  case Type::Typedef: {
760    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
761    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
762      Align = Aligned->getAlignment();
763      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
764    } else
765      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
766    break;
767  }
768
769  case Type::TypeOfExpr:
770    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
771                         .getTypePtr());
772
773  case Type::TypeOf:
774    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
775
776  case Type::Decltype:
777    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
778                        .getTypePtr());
779
780  case Type::QualifiedName:
781    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
782
783  case Type::TemplateSpecialization:
784    assert(getCanonicalType(T) != T &&
785           "Cannot request the size of a dependent type");
786    // FIXME: this is likely to be wrong once we support template
787    // aliases, since a template alias could refer to a typedef that
788    // has an __aligned__ attribute on it.
789    return getTypeInfo(getCanonicalType(T));
790  }
791
792  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
793  return std::make_pair(Width, Align);
794}
795
796/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
797/// type for the current target in bits.  This can be different than the ABI
798/// alignment in cases where it is beneficial for performance to overalign
799/// a data type.
800unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
801  unsigned ABIAlign = getTypeAlign(T);
802
803  // Double and long long should be naturally aligned if possible.
804  if (const ComplexType* CT = T->getAs<ComplexType>())
805    T = CT->getElementType().getTypePtr();
806  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
807      T->isSpecificBuiltinType(BuiltinType::LongLong))
808    return std::max(ABIAlign, (unsigned)getTypeSize(T));
809
810  return ABIAlign;
811}
812
813static void CollectLocalObjCIvars(ASTContext *Ctx,
814                                  const ObjCInterfaceDecl *OI,
815                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
816  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
817       E = OI->ivar_end(); I != E; ++I) {
818    ObjCIvarDecl *IVDecl = *I;
819    if (!IVDecl->isInvalidDecl())
820      Fields.push_back(cast<FieldDecl>(IVDecl));
821  }
822}
823
824void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
825                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
826  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
827    CollectObjCIvars(SuperClass, Fields);
828  CollectLocalObjCIvars(this, OI, Fields);
829}
830
831/// ShallowCollectObjCIvars -
832/// Collect all ivars, including those synthesized, in the current class.
833///
834void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
835                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
836                                 bool CollectSynthesized) {
837  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
838         E = OI->ivar_end(); I != E; ++I) {
839     Ivars.push_back(*I);
840  }
841  if (CollectSynthesized)
842    CollectSynthesizedIvars(OI, Ivars);
843}
844
845void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
846                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
847  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
848       E = PD->prop_end(); I != E; ++I)
849    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
850      Ivars.push_back(Ivar);
851
852  // Also look into nested protocols.
853  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
854       E = PD->protocol_end(); P != E; ++P)
855    CollectProtocolSynthesizedIvars(*P, Ivars);
856}
857
858/// CollectSynthesizedIvars -
859/// This routine collect synthesized ivars for the designated class.
860///
861void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
862                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
863  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
864       E = OI->prop_end(); I != E; ++I) {
865    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
866      Ivars.push_back(Ivar);
867  }
868  // Also look into interface's protocol list for properties declared
869  // in the protocol and whose ivars are synthesized.
870  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
871       PE = OI->protocol_end(); P != PE; ++P) {
872    ObjCProtocolDecl *PD = (*P);
873    CollectProtocolSynthesizedIvars(PD, Ivars);
874  }
875}
876
877unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
878  unsigned count = 0;
879  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
880       E = PD->prop_end(); I != E; ++I)
881    if ((*I)->getPropertyIvarDecl())
882      ++count;
883
884  // Also look into nested protocols.
885  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
886       E = PD->protocol_end(); P != E; ++P)
887    count += CountProtocolSynthesizedIvars(*P);
888  return count;
889}
890
891unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
892  unsigned count = 0;
893  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
894       E = OI->prop_end(); I != E; ++I) {
895    if ((*I)->getPropertyIvarDecl())
896      ++count;
897  }
898  // Also look into interface's protocol list for properties declared
899  // in the protocol and whose ivars are synthesized.
900  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
901       PE = OI->protocol_end(); P != PE; ++P) {
902    ObjCProtocolDecl *PD = (*P);
903    count += CountProtocolSynthesizedIvars(PD);
904  }
905  return count;
906}
907
908/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
909ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
910  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
911    I = ObjCImpls.find(D);
912  if (I != ObjCImpls.end())
913    return cast<ObjCImplementationDecl>(I->second);
914  return 0;
915}
916/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
917ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
918  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
919    I = ObjCImpls.find(D);
920  if (I != ObjCImpls.end())
921    return cast<ObjCCategoryImplDecl>(I->second);
922  return 0;
923}
924
925/// \brief Set the implementation of ObjCInterfaceDecl.
926void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
927                           ObjCImplementationDecl *ImplD) {
928  assert(IFaceD && ImplD && "Passed null params");
929  ObjCImpls[IFaceD] = ImplD;
930}
931/// \brief Set the implementation of ObjCCategoryDecl.
932void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
933                           ObjCCategoryImplDecl *ImplD) {
934  assert(CatD && ImplD && "Passed null params");
935  ObjCImpls[CatD] = ImplD;
936}
937
938/// \brief Allocate an uninitialized DeclaratorInfo.
939///
940/// The caller should initialize the memory held by DeclaratorInfo using
941/// the TypeLoc wrappers.
942///
943/// \param T the type that will be the basis for type source info. This type
944/// should refer to how the declarator was written in source code, not to
945/// what type semantic analysis resolved the declarator to.
946DeclaratorInfo *ASTContext::CreateDeclaratorInfo(QualType T,
947                                                 unsigned DataSize) {
948  if (!DataSize)
949    DataSize = TypeLoc::getFullDataSizeForType(T);
950  else
951    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
952           "incorrect data size provided to CreateDeclaratorInfo!");
953
954  DeclaratorInfo *DInfo =
955    (DeclaratorInfo*)BumpAlloc.Allocate(sizeof(DeclaratorInfo) + DataSize, 8);
956  new (DInfo) DeclaratorInfo(T);
957  return DInfo;
958}
959
960/// getInterfaceLayoutImpl - Get or compute information about the
961/// layout of the given interface.
962///
963/// \param Impl - If given, also include the layout of the interface's
964/// implementation. This may differ by including synthesized ivars.
965const ASTRecordLayout &
966ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
967                          const ObjCImplementationDecl *Impl) {
968  assert(!D->isForwardDecl() && "Invalid interface decl!");
969
970  // Look up this layout, if already laid out, return what we have.
971  ObjCContainerDecl *Key =
972    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
973  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
974    return *Entry;
975
976  // Add in synthesized ivar count if laying out an implementation.
977  if (Impl) {
978    unsigned FieldCount = D->ivar_size();
979    unsigned SynthCount = CountSynthesizedIvars(D);
980    FieldCount += SynthCount;
981    // If there aren't any sythesized ivars then reuse the interface
982    // entry. Note we can't cache this because we simply free all
983    // entries later; however we shouldn't look up implementations
984    // frequently.
985    if (SynthCount == 0)
986      return getObjCLayout(D, 0);
987  }
988
989  const ASTRecordLayout *NewEntry =
990    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
991  ObjCLayouts[Key] = NewEntry;
992
993  return *NewEntry;
994}
995
996const ASTRecordLayout &
997ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
998  return getObjCLayout(D, 0);
999}
1000
1001const ASTRecordLayout &
1002ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
1003  return getObjCLayout(D->getClassInterface(), D);
1004}
1005
1006/// getASTRecordLayout - Get or compute information about the layout of the
1007/// specified record (struct/union/class), which indicates its size and field
1008/// position information.
1009const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
1010  D = D->getDefinition(*this);
1011  assert(D && "Cannot get layout of forward declarations!");
1012
1013  // Look up this layout, if already laid out, return what we have.
1014  // Note that we can't save a reference to the entry because this function
1015  // is recursive.
1016  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
1017  if (Entry) return *Entry;
1018
1019  const ASTRecordLayout *NewEntry =
1020    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
1021  ASTRecordLayouts[D] = NewEntry;
1022
1023  return *NewEntry;
1024}
1025
1026//===----------------------------------------------------------------------===//
1027//                   Type creation/memoization methods
1028//===----------------------------------------------------------------------===//
1029
1030QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
1031  unsigned Fast = Quals.getFastQualifiers();
1032  Quals.removeFastQualifiers();
1033
1034  // Check if we've already instantiated this type.
1035  llvm::FoldingSetNodeID ID;
1036  ExtQuals::Profile(ID, TypeNode, Quals);
1037  void *InsertPos = 0;
1038  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
1039    assert(EQ->getQualifiers() == Quals);
1040    QualType T = QualType(EQ, Fast);
1041    return T;
1042  }
1043
1044  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
1045  ExtQualNodes.InsertNode(New, InsertPos);
1046  QualType T = QualType(New, Fast);
1047  return T;
1048}
1049
1050QualType ASTContext::getVolatileType(QualType T) {
1051  QualType CanT = getCanonicalType(T);
1052  if (CanT.isVolatileQualified()) return T;
1053
1054  QualifierCollector Quals;
1055  const Type *TypeNode = Quals.strip(T);
1056  Quals.addVolatile();
1057
1058  return getExtQualType(TypeNode, Quals);
1059}
1060
1061QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
1062  QualType CanT = getCanonicalType(T);
1063  if (CanT.getAddressSpace() == AddressSpace)
1064    return T;
1065
1066  // If we are composing extended qualifiers together, merge together
1067  // into one ExtQuals node.
1068  QualifierCollector Quals;
1069  const Type *TypeNode = Quals.strip(T);
1070
1071  // If this type already has an address space specified, it cannot get
1072  // another one.
1073  assert(!Quals.hasAddressSpace() &&
1074         "Type cannot be in multiple addr spaces!");
1075  Quals.addAddressSpace(AddressSpace);
1076
1077  return getExtQualType(TypeNode, Quals);
1078}
1079
1080QualType ASTContext::getObjCGCQualType(QualType T,
1081                                       Qualifiers::GC GCAttr) {
1082  QualType CanT = getCanonicalType(T);
1083  if (CanT.getObjCGCAttr() == GCAttr)
1084    return T;
1085
1086  if (T->isPointerType()) {
1087    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1088    if (Pointee->isAnyPointerType()) {
1089      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1090      return getPointerType(ResultType);
1091    }
1092  }
1093
1094  // If we are composing extended qualifiers together, merge together
1095  // into one ExtQuals node.
1096  QualifierCollector Quals;
1097  const Type *TypeNode = Quals.strip(T);
1098
1099  // If this type already has an ObjCGC specified, it cannot get
1100  // another one.
1101  assert(!Quals.hasObjCGCAttr() &&
1102         "Type cannot have multiple ObjCGCs!");
1103  Quals.addObjCGCAttr(GCAttr);
1104
1105  return getExtQualType(TypeNode, Quals);
1106}
1107
1108QualType ASTContext::getNoReturnType(QualType T) {
1109  QualType ResultType;
1110  if (T->isPointerType()) {
1111    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
1112    ResultType = getNoReturnType(Pointee);
1113    ResultType = getPointerType(ResultType);
1114  } else if (T->isBlockPointerType()) {
1115    QualType Pointee = T->getAs<BlockPointerType>()->getPointeeType();
1116    ResultType = getNoReturnType(Pointee);
1117    ResultType = getBlockPointerType(ResultType);
1118  } else {
1119    assert (T->isFunctionType()
1120            && "can't noreturn qualify non-pointer to function or block type");
1121
1122    if (const FunctionNoProtoType *FNPT = T->getAs<FunctionNoProtoType>()) {
1123      ResultType = getFunctionNoProtoType(FNPT->getResultType(), true);
1124    } else {
1125      const FunctionProtoType *F = T->getAs<FunctionProtoType>();
1126      ResultType
1127        = getFunctionType(F->getResultType(), F->arg_type_begin(),
1128                          F->getNumArgs(), F->isVariadic(), F->getTypeQuals(),
1129                          F->hasExceptionSpec(), F->hasAnyExceptionSpec(),
1130                          F->getNumExceptions(), F->exception_begin(), true);
1131    }
1132  }
1133
1134  return getQualifiedType(ResultType, T.getQualifiers());
1135}
1136
1137/// getComplexType - Return the uniqued reference to the type for a complex
1138/// number with the specified element type.
1139QualType ASTContext::getComplexType(QualType T) {
1140  // Unique pointers, to guarantee there is only one pointer of a particular
1141  // structure.
1142  llvm::FoldingSetNodeID ID;
1143  ComplexType::Profile(ID, T);
1144
1145  void *InsertPos = 0;
1146  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1147    return QualType(CT, 0);
1148
1149  // If the pointee type isn't canonical, this won't be a canonical type either,
1150  // so fill in the canonical type field.
1151  QualType Canonical;
1152  if (!T->isCanonical()) {
1153    Canonical = getComplexType(getCanonicalType(T));
1154
1155    // Get the new insert position for the node we care about.
1156    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
1157    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1158  }
1159  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
1160  Types.push_back(New);
1161  ComplexTypes.InsertNode(New, InsertPos);
1162  return QualType(New, 0);
1163}
1164
1165QualType ASTContext::getFixedWidthIntType(unsigned Width, bool Signed) {
1166  llvm::DenseMap<unsigned, FixedWidthIntType*> &Map = Signed ?
1167     SignedFixedWidthIntTypes : UnsignedFixedWidthIntTypes;
1168  FixedWidthIntType *&Entry = Map[Width];
1169  if (!Entry)
1170    Entry = new FixedWidthIntType(Width, Signed);
1171  return QualType(Entry, 0);
1172}
1173
1174/// getPointerType - Return the uniqued reference to the type for a pointer to
1175/// the specified type.
1176QualType ASTContext::getPointerType(QualType T) {
1177  // Unique pointers, to guarantee there is only one pointer of a particular
1178  // structure.
1179  llvm::FoldingSetNodeID ID;
1180  PointerType::Profile(ID, T);
1181
1182  void *InsertPos = 0;
1183  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1184    return QualType(PT, 0);
1185
1186  // If the pointee type isn't canonical, this won't be a canonical type either,
1187  // so fill in the canonical type field.
1188  QualType Canonical;
1189  if (!T->isCanonical()) {
1190    Canonical = getPointerType(getCanonicalType(T));
1191
1192    // Get the new insert position for the node we care about.
1193    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1194    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1195  }
1196  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
1197  Types.push_back(New);
1198  PointerTypes.InsertNode(New, InsertPos);
1199  return QualType(New, 0);
1200}
1201
1202/// getBlockPointerType - Return the uniqued reference to the type for
1203/// a pointer to the specified block.
1204QualType ASTContext::getBlockPointerType(QualType T) {
1205  assert(T->isFunctionType() && "block of function types only");
1206  // Unique pointers, to guarantee there is only one block of a particular
1207  // structure.
1208  llvm::FoldingSetNodeID ID;
1209  BlockPointerType::Profile(ID, T);
1210
1211  void *InsertPos = 0;
1212  if (BlockPointerType *PT =
1213        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1214    return QualType(PT, 0);
1215
1216  // If the block pointee type isn't canonical, this won't be a canonical
1217  // type either so fill in the canonical type field.
1218  QualType Canonical;
1219  if (!T->isCanonical()) {
1220    Canonical = getBlockPointerType(getCanonicalType(T));
1221
1222    // Get the new insert position for the node we care about.
1223    BlockPointerType *NewIP =
1224      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1225    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1226  }
1227  BlockPointerType *New
1228    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
1229  Types.push_back(New);
1230  BlockPointerTypes.InsertNode(New, InsertPos);
1231  return QualType(New, 0);
1232}
1233
1234/// getLValueReferenceType - Return the uniqued reference to the type for an
1235/// lvalue reference to the specified type.
1236QualType ASTContext::getLValueReferenceType(QualType T) {
1237  // Unique pointers, to guarantee there is only one pointer of a particular
1238  // structure.
1239  llvm::FoldingSetNodeID ID;
1240  ReferenceType::Profile(ID, T);
1241
1242  void *InsertPos = 0;
1243  if (LValueReferenceType *RT =
1244        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1245    return QualType(RT, 0);
1246
1247  // If the referencee type isn't canonical, this won't be a canonical type
1248  // either, so fill in the canonical type field.
1249  QualType Canonical;
1250  if (!T->isCanonical()) {
1251    Canonical = getLValueReferenceType(getCanonicalType(T));
1252
1253    // Get the new insert position for the node we care about.
1254    LValueReferenceType *NewIP =
1255      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1256    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1257  }
1258
1259  LValueReferenceType *New
1260    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical);
1261  Types.push_back(New);
1262  LValueReferenceTypes.InsertNode(New, InsertPos);
1263  return QualType(New, 0);
1264}
1265
1266/// getRValueReferenceType - Return the uniqued reference to the type for an
1267/// rvalue reference to the specified type.
1268QualType ASTContext::getRValueReferenceType(QualType T) {
1269  // Unique pointers, to guarantee there is only one pointer of a particular
1270  // structure.
1271  llvm::FoldingSetNodeID ID;
1272  ReferenceType::Profile(ID, T);
1273
1274  void *InsertPos = 0;
1275  if (RValueReferenceType *RT =
1276        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
1277    return QualType(RT, 0);
1278
1279  // If the referencee type isn't canonical, this won't be a canonical type
1280  // either, so fill in the canonical type field.
1281  QualType Canonical;
1282  if (!T->isCanonical()) {
1283    Canonical = getRValueReferenceType(getCanonicalType(T));
1284
1285    // Get the new insert position for the node we care about.
1286    RValueReferenceType *NewIP =
1287      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
1288    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1289  }
1290
1291  RValueReferenceType *New
1292    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
1293  Types.push_back(New);
1294  RValueReferenceTypes.InsertNode(New, InsertPos);
1295  return QualType(New, 0);
1296}
1297
1298/// getMemberPointerType - Return the uniqued reference to the type for a
1299/// member pointer to the specified type, in the specified class.
1300QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
1301  // Unique pointers, to guarantee there is only one pointer of a particular
1302  // structure.
1303  llvm::FoldingSetNodeID ID;
1304  MemberPointerType::Profile(ID, T, Cls);
1305
1306  void *InsertPos = 0;
1307  if (MemberPointerType *PT =
1308      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1309    return QualType(PT, 0);
1310
1311  // If the pointee or class type isn't canonical, this won't be a canonical
1312  // type either, so fill in the canonical type field.
1313  QualType Canonical;
1314  if (!T->isCanonical()) {
1315    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
1316
1317    // Get the new insert position for the node we care about.
1318    MemberPointerType *NewIP =
1319      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
1320    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1321  }
1322  MemberPointerType *New
1323    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
1324  Types.push_back(New);
1325  MemberPointerTypes.InsertNode(New, InsertPos);
1326  return QualType(New, 0);
1327}
1328
1329/// getConstantArrayType - Return the unique reference to the type for an
1330/// array of the specified element type.
1331QualType ASTContext::getConstantArrayType(QualType EltTy,
1332                                          const llvm::APInt &ArySizeIn,
1333                                          ArrayType::ArraySizeModifier ASM,
1334                                          unsigned EltTypeQuals) {
1335  assert((EltTy->isDependentType() || EltTy->isConstantSizeType()) &&
1336         "Constant array of VLAs is illegal!");
1337
1338  // Convert the array size into a canonical width matching the pointer size for
1339  // the target.
1340  llvm::APInt ArySize(ArySizeIn);
1341  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
1342
1343  llvm::FoldingSetNodeID ID;
1344  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
1345
1346  void *InsertPos = 0;
1347  if (ConstantArrayType *ATP =
1348      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1349    return QualType(ATP, 0);
1350
1351  // If the element type isn't canonical, this won't be a canonical type either,
1352  // so fill in the canonical type field.
1353  QualType Canonical;
1354  if (!EltTy->isCanonical()) {
1355    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
1356                                     ASM, EltTypeQuals);
1357    // Get the new insert position for the node we care about.
1358    ConstantArrayType *NewIP =
1359      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1360    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1361  }
1362
1363  ConstantArrayType *New = new(*this,TypeAlignment)
1364    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
1365  ConstantArrayTypes.InsertNode(New, InsertPos);
1366  Types.push_back(New);
1367  return QualType(New, 0);
1368}
1369
1370/// getVariableArrayType - Returns a non-unique reference to the type for a
1371/// variable array of the specified element type.
1372QualType ASTContext::getVariableArrayType(QualType EltTy,
1373                                          Expr *NumElts,
1374                                          ArrayType::ArraySizeModifier ASM,
1375                                          unsigned EltTypeQuals,
1376                                          SourceRange Brackets) {
1377  // Since we don't unique expressions, it isn't possible to unique VLA's
1378  // that have an expression provided for their size.
1379
1380  VariableArrayType *New = new(*this, TypeAlignment)
1381    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
1382
1383  VariableArrayTypes.push_back(New);
1384  Types.push_back(New);
1385  return QualType(New, 0);
1386}
1387
1388/// getDependentSizedArrayType - Returns a non-unique reference to
1389/// the type for a dependently-sized array of the specified element
1390/// type.
1391QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
1392                                                Expr *NumElts,
1393                                                ArrayType::ArraySizeModifier ASM,
1394                                                unsigned EltTypeQuals,
1395                                                SourceRange Brackets) {
1396  assert((NumElts->isTypeDependent() || NumElts->isValueDependent()) &&
1397         "Size must be type- or value-dependent!");
1398
1399  llvm::FoldingSetNodeID ID;
1400  DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
1401                                   EltTypeQuals, NumElts);
1402
1403  void *InsertPos = 0;
1404  DependentSizedArrayType *Canon
1405    = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1406  DependentSizedArrayType *New;
1407  if (Canon) {
1408    // We already have a canonical version of this array type; use it as
1409    // the canonical type for a newly-built type.
1410    New = new (*this, TypeAlignment)
1411      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
1412                              NumElts, ASM, EltTypeQuals, Brackets);
1413  } else {
1414    QualType CanonEltTy = getCanonicalType(EltTy);
1415    if (CanonEltTy == EltTy) {
1416      New = new (*this, TypeAlignment)
1417        DependentSizedArrayType(*this, EltTy, QualType(),
1418                                NumElts, ASM, EltTypeQuals, Brackets);
1419      DependentSizedArrayTypes.InsertNode(New, InsertPos);
1420    } else {
1421      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
1422                                                  ASM, EltTypeQuals,
1423                                                  SourceRange());
1424      New = new (*this, TypeAlignment)
1425        DependentSizedArrayType(*this, EltTy, Canon,
1426                                NumElts, ASM, EltTypeQuals, Brackets);
1427    }
1428  }
1429
1430  Types.push_back(New);
1431  return QualType(New, 0);
1432}
1433
1434QualType ASTContext::getIncompleteArrayType(QualType EltTy,
1435                                            ArrayType::ArraySizeModifier ASM,
1436                                            unsigned EltTypeQuals) {
1437  llvm::FoldingSetNodeID ID;
1438  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
1439
1440  void *InsertPos = 0;
1441  if (IncompleteArrayType *ATP =
1442       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
1443    return QualType(ATP, 0);
1444
1445  // If the element type isn't canonical, this won't be a canonical type
1446  // either, so fill in the canonical type field.
1447  QualType Canonical;
1448
1449  if (!EltTy->isCanonical()) {
1450    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
1451                                       ASM, EltTypeQuals);
1452
1453    // Get the new insert position for the node we care about.
1454    IncompleteArrayType *NewIP =
1455      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
1456    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1457  }
1458
1459  IncompleteArrayType *New = new (*this, TypeAlignment)
1460    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
1461
1462  IncompleteArrayTypes.InsertNode(New, InsertPos);
1463  Types.push_back(New);
1464  return QualType(New, 0);
1465}
1466
1467/// getVectorType - Return the unique reference to a vector type of
1468/// the specified element type and size. VectorType must be a built-in type.
1469QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) {
1470  BuiltinType *baseType;
1471
1472  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1473  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
1474
1475  // Check if we've already instantiated a vector of this type.
1476  llvm::FoldingSetNodeID ID;
1477  VectorType::Profile(ID, vecType, NumElts, Type::Vector);
1478  void *InsertPos = 0;
1479  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1480    return QualType(VTP, 0);
1481
1482  // If the element type isn't canonical, this won't be a canonical type either,
1483  // so fill in the canonical type field.
1484  QualType Canonical;
1485  if (!vecType->isCanonical()) {
1486    Canonical = getVectorType(getCanonicalType(vecType), NumElts);
1487
1488    // Get the new insert position for the node we care about.
1489    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1490    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1491  }
1492  VectorType *New = new (*this, TypeAlignment)
1493    VectorType(vecType, NumElts, Canonical);
1494  VectorTypes.InsertNode(New, InsertPos);
1495  Types.push_back(New);
1496  return QualType(New, 0);
1497}
1498
1499/// getExtVectorType - Return the unique reference to an extended vector type of
1500/// the specified element type and size. VectorType must be a built-in type.
1501QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
1502  BuiltinType *baseType;
1503
1504  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
1505  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
1506
1507  // Check if we've already instantiated a vector of this type.
1508  llvm::FoldingSetNodeID ID;
1509  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector);
1510  void *InsertPos = 0;
1511  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
1512    return QualType(VTP, 0);
1513
1514  // If the element type isn't canonical, this won't be a canonical type either,
1515  // so fill in the canonical type field.
1516  QualType Canonical;
1517  if (!vecType->isCanonical()) {
1518    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
1519
1520    // Get the new insert position for the node we care about.
1521    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1522    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1523  }
1524  ExtVectorType *New = new (*this, TypeAlignment)
1525    ExtVectorType(vecType, NumElts, Canonical);
1526  VectorTypes.InsertNode(New, InsertPos);
1527  Types.push_back(New);
1528  return QualType(New, 0);
1529}
1530
1531QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
1532                                                    Expr *SizeExpr,
1533                                                    SourceLocation AttrLoc) {
1534  llvm::FoldingSetNodeID ID;
1535  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
1536                                       SizeExpr);
1537
1538  void *InsertPos = 0;
1539  DependentSizedExtVectorType *Canon
1540    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
1541  DependentSizedExtVectorType *New;
1542  if (Canon) {
1543    // We already have a canonical version of this array type; use it as
1544    // the canonical type for a newly-built type.
1545    New = new (*this, TypeAlignment)
1546      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
1547                                  SizeExpr, AttrLoc);
1548  } else {
1549    QualType CanonVecTy = getCanonicalType(vecType);
1550    if (CanonVecTy == vecType) {
1551      New = new (*this, TypeAlignment)
1552        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
1553                                    AttrLoc);
1554      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
1555    } else {
1556      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
1557                                                      SourceLocation());
1558      New = new (*this, TypeAlignment)
1559        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
1560    }
1561  }
1562
1563  Types.push_back(New);
1564  return QualType(New, 0);
1565}
1566
1567/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
1568///
1569QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn) {
1570  // Unique functions, to guarantee there is only one function of a particular
1571  // structure.
1572  llvm::FoldingSetNodeID ID;
1573  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn);
1574
1575  void *InsertPos = 0;
1576  if (FunctionNoProtoType *FT =
1577        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1578    return QualType(FT, 0);
1579
1580  QualType Canonical;
1581  if (!ResultTy->isCanonical()) {
1582    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn);
1583
1584    // Get the new insert position for the node we care about.
1585    FunctionNoProtoType *NewIP =
1586      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1587    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1588  }
1589
1590  FunctionNoProtoType *New = new (*this, TypeAlignment)
1591    FunctionNoProtoType(ResultTy, Canonical, NoReturn);
1592  Types.push_back(New);
1593  FunctionNoProtoTypes.InsertNode(New, InsertPos);
1594  return QualType(New, 0);
1595}
1596
1597/// getFunctionType - Return a normal function type with a typed argument
1598/// list.  isVariadic indicates whether the argument list includes '...'.
1599QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
1600                                     unsigned NumArgs, bool isVariadic,
1601                                     unsigned TypeQuals, bool hasExceptionSpec,
1602                                     bool hasAnyExceptionSpec, unsigned NumExs,
1603                                     const QualType *ExArray, bool NoReturn) {
1604  if (LangOpts.CPlusPlus) {
1605    for (unsigned i = 0; i != NumArgs; ++i)
1606      assert(!ArgArray[i].hasQualifiers() &&
1607             "C++ arguments can't have toplevel qualifiers!");
1608  }
1609
1610  // Unique functions, to guarantee there is only one function of a particular
1611  // structure.
1612  llvm::FoldingSetNodeID ID;
1613  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
1614                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1615                             NumExs, ExArray, NoReturn);
1616
1617  void *InsertPos = 0;
1618  if (FunctionProtoType *FTP =
1619        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
1620    return QualType(FTP, 0);
1621
1622  // Determine whether the type being created is already canonical or not.
1623  bool isCanonical = ResultTy->isCanonical();
1624  if (hasExceptionSpec)
1625    isCanonical = false;
1626  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
1627    if (!ArgArray[i]->isCanonical())
1628      isCanonical = false;
1629
1630  // If this type isn't canonical, get the canonical version of it.
1631  // The exception spec is not part of the canonical type.
1632  QualType Canonical;
1633  if (!isCanonical) {
1634    llvm::SmallVector<QualType, 16> CanonicalArgs;
1635    CanonicalArgs.reserve(NumArgs);
1636    for (unsigned i = 0; i != NumArgs; ++i)
1637      CanonicalArgs.push_back(getCanonicalType(ArgArray[i]));
1638
1639    Canonical = getFunctionType(getCanonicalType(ResultTy),
1640                                CanonicalArgs.data(), NumArgs,
1641                                isVariadic, TypeQuals, false,
1642                                false, 0, 0, NoReturn);
1643
1644    // Get the new insert position for the node we care about.
1645    FunctionProtoType *NewIP =
1646      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
1647    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
1648  }
1649
1650  // FunctionProtoType objects are allocated with extra bytes after them
1651  // for two variable size arrays (for parameter and exception types) at the
1652  // end of them.
1653  FunctionProtoType *FTP =
1654    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
1655                                 NumArgs*sizeof(QualType) +
1656                                 NumExs*sizeof(QualType), TypeAlignment);
1657  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
1658                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
1659                              ExArray, NumExs, Canonical, NoReturn);
1660  Types.push_back(FTP);
1661  FunctionProtoTypes.InsertNode(FTP, InsertPos);
1662  return QualType(FTP, 0);
1663}
1664
1665/// getTypeDeclType - Return the unique reference to the type for the
1666/// specified type declaration.
1667QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
1668  assert(Decl && "Passed null for Decl param");
1669  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1670
1671  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
1672    return getTypedefType(Typedef);
1673  else if (isa<TemplateTypeParmDecl>(Decl)) {
1674    assert(false && "Template type parameter types are always available.");
1675  } else if (ObjCInterfaceDecl *ObjCInterface
1676               = dyn_cast<ObjCInterfaceDecl>(Decl))
1677    return getObjCInterfaceType(ObjCInterface);
1678
1679  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
1680    if (PrevDecl)
1681      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1682    else
1683      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
1684  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
1685    if (PrevDecl)
1686      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1687    else
1688      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
1689  } else
1690    assert(false && "TypeDecl without a type?");
1691
1692  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
1693  return QualType(Decl->TypeForDecl, 0);
1694}
1695
1696/// getTypedefType - Return the unique reference to the type for the
1697/// specified typename decl.
1698QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
1699  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1700
1701  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
1702  Decl->TypeForDecl = new(*this, TypeAlignment)
1703    TypedefType(Type::Typedef, Decl, Canonical);
1704  Types.push_back(Decl->TypeForDecl);
1705  return QualType(Decl->TypeForDecl, 0);
1706}
1707
1708/// \brief Retrieve a substitution-result type.
1709QualType
1710ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
1711                                         QualType Replacement) {
1712  assert(Replacement->isCanonical()
1713         && "replacement types must always be canonical");
1714
1715  llvm::FoldingSetNodeID ID;
1716  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
1717  void *InsertPos = 0;
1718  SubstTemplateTypeParmType *SubstParm
1719    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1720
1721  if (!SubstParm) {
1722    SubstParm = new (*this, TypeAlignment)
1723      SubstTemplateTypeParmType(Parm, Replacement);
1724    Types.push_back(SubstParm);
1725    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
1726  }
1727
1728  return QualType(SubstParm, 0);
1729}
1730
1731/// \brief Retrieve the template type parameter type for a template
1732/// parameter or parameter pack with the given depth, index, and (optionally)
1733/// name.
1734QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
1735                                             bool ParameterPack,
1736                                             IdentifierInfo *Name) {
1737  llvm::FoldingSetNodeID ID;
1738  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
1739  void *InsertPos = 0;
1740  TemplateTypeParmType *TypeParm
1741    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
1742
1743  if (TypeParm)
1744    return QualType(TypeParm, 0);
1745
1746  if (Name) {
1747    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
1748    TypeParm = new (*this, TypeAlignment)
1749      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
1750  } else
1751    TypeParm = new (*this, TypeAlignment)
1752      TemplateTypeParmType(Depth, Index, ParameterPack);
1753
1754  Types.push_back(TypeParm);
1755  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
1756
1757  return QualType(TypeParm, 0);
1758}
1759
1760QualType
1761ASTContext::getTemplateSpecializationType(TemplateName Template,
1762                                          const TemplateArgument *Args,
1763                                          unsigned NumArgs,
1764                                          QualType Canon) {
1765  if (!Canon.isNull())
1766    Canon = getCanonicalType(Canon);
1767  else {
1768    // Build the canonical template specialization type.
1769    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
1770    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
1771    CanonArgs.reserve(NumArgs);
1772    for (unsigned I = 0; I != NumArgs; ++I)
1773      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
1774
1775    // Determine whether this canonical template specialization type already
1776    // exists.
1777    llvm::FoldingSetNodeID ID;
1778    TemplateSpecializationType::Profile(ID, CanonTemplate,
1779                                        CanonArgs.data(), NumArgs, *this);
1780
1781    void *InsertPos = 0;
1782    TemplateSpecializationType *Spec
1783      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
1784
1785    if (!Spec) {
1786      // Allocate a new canonical template specialization type.
1787      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1788                            sizeof(TemplateArgument) * NumArgs),
1789                           TypeAlignment);
1790      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
1791                                                  CanonArgs.data(), NumArgs,
1792                                                  Canon);
1793      Types.push_back(Spec);
1794      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
1795    }
1796
1797    if (Canon.isNull())
1798      Canon = QualType(Spec, 0);
1799    assert(Canon->isDependentType() &&
1800           "Non-dependent template-id type must have a canonical type");
1801  }
1802
1803  // Allocate the (non-canonical) template specialization type, but don't
1804  // try to unique it: these types typically have location information that
1805  // we don't unique and don't want to lose.
1806  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
1807                        sizeof(TemplateArgument) * NumArgs),
1808                       TypeAlignment);
1809  TemplateSpecializationType *Spec
1810    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
1811                                           Canon);
1812
1813  Types.push_back(Spec);
1814  return QualType(Spec, 0);
1815}
1816
1817QualType
1818ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
1819                                 QualType NamedType) {
1820  llvm::FoldingSetNodeID ID;
1821  QualifiedNameType::Profile(ID, NNS, NamedType);
1822
1823  void *InsertPos = 0;
1824  QualifiedNameType *T
1825    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
1826  if (T)
1827    return QualType(T, 0);
1828
1829  T = new (*this) QualifiedNameType(NNS, NamedType,
1830                                    getCanonicalType(NamedType));
1831  Types.push_back(T);
1832  QualifiedNameTypes.InsertNode(T, InsertPos);
1833  return QualType(T, 0);
1834}
1835
1836QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1837                                     const IdentifierInfo *Name,
1838                                     QualType Canon) {
1839  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1840
1841  if (Canon.isNull()) {
1842    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1843    if (CanonNNS != NNS)
1844      Canon = getTypenameType(CanonNNS, Name);
1845  }
1846
1847  llvm::FoldingSetNodeID ID;
1848  TypenameType::Profile(ID, NNS, Name);
1849
1850  void *InsertPos = 0;
1851  TypenameType *T
1852    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1853  if (T)
1854    return QualType(T, 0);
1855
1856  T = new (*this) TypenameType(NNS, Name, Canon);
1857  Types.push_back(T);
1858  TypenameTypes.InsertNode(T, InsertPos);
1859  return QualType(T, 0);
1860}
1861
1862QualType
1863ASTContext::getTypenameType(NestedNameSpecifier *NNS,
1864                            const TemplateSpecializationType *TemplateId,
1865                            QualType Canon) {
1866  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
1867
1868  if (Canon.isNull()) {
1869    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
1870    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
1871    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
1872      const TemplateSpecializationType *CanonTemplateId
1873        = CanonType->getAs<TemplateSpecializationType>();
1874      assert(CanonTemplateId &&
1875             "Canonical type must also be a template specialization type");
1876      Canon = getTypenameType(CanonNNS, CanonTemplateId);
1877    }
1878  }
1879
1880  llvm::FoldingSetNodeID ID;
1881  TypenameType::Profile(ID, NNS, TemplateId);
1882
1883  void *InsertPos = 0;
1884  TypenameType *T
1885    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
1886  if (T)
1887    return QualType(T, 0);
1888
1889  T = new (*this) TypenameType(NNS, TemplateId, Canon);
1890  Types.push_back(T);
1891  TypenameTypes.InsertNode(T, InsertPos);
1892  return QualType(T, 0);
1893}
1894
1895QualType
1896ASTContext::getElaboratedType(QualType UnderlyingType,
1897                              ElaboratedType::TagKind Tag) {
1898  llvm::FoldingSetNodeID ID;
1899  ElaboratedType::Profile(ID, UnderlyingType, Tag);
1900
1901  void *InsertPos = 0;
1902  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
1903  if (T)
1904    return QualType(T, 0);
1905
1906  QualType Canon = getCanonicalType(UnderlyingType);
1907
1908  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
1909  Types.push_back(T);
1910  ElaboratedTypes.InsertNode(T, InsertPos);
1911  return QualType(T, 0);
1912}
1913
1914/// CmpProtocolNames - Comparison predicate for sorting protocols
1915/// alphabetically.
1916static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
1917                            const ObjCProtocolDecl *RHS) {
1918  return LHS->getDeclName() < RHS->getDeclName();
1919}
1920
1921static void SortAndUniqueProtocols(ObjCProtocolDecl **&Protocols,
1922                                   unsigned &NumProtocols) {
1923  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
1924
1925  // Sort protocols, keyed by name.
1926  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
1927
1928  // Remove duplicates.
1929  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
1930  NumProtocols = ProtocolsEnd-Protocols;
1931}
1932
1933/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
1934/// the given interface decl and the conforming protocol list.
1935QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
1936                                              ObjCProtocolDecl **Protocols,
1937                                              unsigned NumProtocols) {
1938  // Sort the protocol list alphabetically to canonicalize it.
1939  if (NumProtocols)
1940    SortAndUniqueProtocols(Protocols, NumProtocols);
1941
1942  llvm::FoldingSetNodeID ID;
1943  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
1944
1945  void *InsertPos = 0;
1946  if (ObjCObjectPointerType *QT =
1947              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
1948    return QualType(QT, 0);
1949
1950  // No Match;
1951  ObjCObjectPointerType *QType = new (*this, TypeAlignment)
1952    ObjCObjectPointerType(InterfaceT, Protocols, NumProtocols);
1953
1954  Types.push_back(QType);
1955  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
1956  return QualType(QType, 0);
1957}
1958
1959/// getObjCInterfaceType - Return the unique reference to the type for the
1960/// specified ObjC interface decl. The list of protocols is optional.
1961QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1962                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
1963  if (NumProtocols)
1964    // Sort the protocol list alphabetically to canonicalize it.
1965    SortAndUniqueProtocols(Protocols, NumProtocols);
1966
1967  llvm::FoldingSetNodeID ID;
1968  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
1969
1970  void *InsertPos = 0;
1971  if (ObjCInterfaceType *QT =
1972      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
1973    return QualType(QT, 0);
1974
1975  // No Match;
1976  ObjCInterfaceType *QType = new (*this, TypeAlignment)
1977    ObjCInterfaceType(const_cast<ObjCInterfaceDecl*>(Decl),
1978                      Protocols, NumProtocols);
1979  Types.push_back(QType);
1980  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
1981  return QualType(QType, 0);
1982}
1983
1984QualType ASTContext::getObjCProtocolListType(QualType T,
1985                                             ObjCProtocolDecl **Protocols,
1986                                             unsigned NumProtocols) {
1987  llvm::FoldingSetNodeID ID;
1988  ObjCProtocolListType::Profile(ID, T, Protocols, NumProtocols);
1989
1990  void *InsertPos = 0;
1991  if (ObjCProtocolListType *QT =
1992      ObjCProtocolListTypes.FindNodeOrInsertPos(ID, InsertPos))
1993    return QualType(QT, 0);
1994
1995  // No Match;
1996  ObjCProtocolListType *QType = new (*this, TypeAlignment)
1997    ObjCProtocolListType(T, Protocols, NumProtocols);
1998  Types.push_back(QType);
1999  ObjCProtocolListTypes.InsertNode(QType, InsertPos);
2000  return QualType(QType, 0);
2001}
2002
2003/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
2004/// TypeOfExprType AST's (since expression's are never shared). For example,
2005/// multiple declarations that refer to "typeof(x)" all contain different
2006/// DeclRefExpr's. This doesn't effect the type checker, since it operates
2007/// on canonical type's (which are always unique).
2008QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
2009  TypeOfExprType *toe;
2010  if (tofExpr->isTypeDependent()) {
2011    llvm::FoldingSetNodeID ID;
2012    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
2013
2014    void *InsertPos = 0;
2015    DependentTypeOfExprType *Canon
2016      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
2017    if (Canon) {
2018      // We already have a "canonical" version of an identical, dependent
2019      // typeof(expr) type. Use that as our canonical type.
2020      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
2021                                          QualType((TypeOfExprType*)Canon, 0));
2022    }
2023    else {
2024      // Build a new, canonical typeof(expr) type.
2025      Canon
2026        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
2027      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
2028      toe = Canon;
2029    }
2030  } else {
2031    QualType Canonical = getCanonicalType(tofExpr->getType());
2032    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
2033  }
2034  Types.push_back(toe);
2035  return QualType(toe, 0);
2036}
2037
2038/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
2039/// TypeOfType AST's. The only motivation to unique these nodes would be
2040/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
2041/// an issue. This doesn't effect the type checker, since it operates
2042/// on canonical type's (which are always unique).
2043QualType ASTContext::getTypeOfType(QualType tofType) {
2044  QualType Canonical = getCanonicalType(tofType);
2045  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
2046  Types.push_back(tot);
2047  return QualType(tot, 0);
2048}
2049
2050/// getDecltypeForExpr - Given an expr, will return the decltype for that
2051/// expression, according to the rules in C++0x [dcl.type.simple]p4
2052static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
2053  if (e->isTypeDependent())
2054    return Context.DependentTy;
2055
2056  // If e is an id expression or a class member access, decltype(e) is defined
2057  // as the type of the entity named by e.
2058  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
2059    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
2060      return VD->getType();
2061  }
2062  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
2063    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2064      return FD->getType();
2065  }
2066  // If e is a function call or an invocation of an overloaded operator,
2067  // (parentheses around e are ignored), decltype(e) is defined as the
2068  // return type of that function.
2069  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
2070    return CE->getCallReturnType();
2071
2072  QualType T = e->getType();
2073
2074  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
2075  // defined as T&, otherwise decltype(e) is defined as T.
2076  if (e->isLvalue(Context) == Expr::LV_Valid)
2077    T = Context.getLValueReferenceType(T);
2078
2079  return T;
2080}
2081
2082/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
2083/// DecltypeType AST's. The only motivation to unique these nodes would be
2084/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
2085/// an issue. This doesn't effect the type checker, since it operates
2086/// on canonical type's (which are always unique).
2087QualType ASTContext::getDecltypeType(Expr *e) {
2088  DecltypeType *dt;
2089  if (e->isTypeDependent()) {
2090    llvm::FoldingSetNodeID ID;
2091    DependentDecltypeType::Profile(ID, *this, e);
2092
2093    void *InsertPos = 0;
2094    DependentDecltypeType *Canon
2095      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
2096    if (Canon) {
2097      // We already have a "canonical" version of an equivalent, dependent
2098      // decltype type. Use that as our canonical type.
2099      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
2100                                       QualType((DecltypeType*)Canon, 0));
2101    }
2102    else {
2103      // Build a new, canonical typeof(expr) type.
2104      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
2105      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
2106      dt = Canon;
2107    }
2108  } else {
2109    QualType T = getDecltypeForExpr(e, *this);
2110    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
2111  }
2112  Types.push_back(dt);
2113  return QualType(dt, 0);
2114}
2115
2116/// getTagDeclType - Return the unique reference to the type for the
2117/// specified TagDecl (struct/union/class/enum) decl.
2118QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
2119  assert (Decl);
2120  // FIXME: What is the design on getTagDeclType when it requires casting
2121  // away const?  mutable?
2122  return getTypeDeclType(const_cast<TagDecl*>(Decl));
2123}
2124
2125/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
2126/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
2127/// needs to agree with the definition in <stddef.h>.
2128QualType ASTContext::getSizeType() const {
2129  return getFromTargetType(Target.getSizeType());
2130}
2131
2132/// getSignedWCharType - Return the type of "signed wchar_t".
2133/// Used when in C++, as a GCC extension.
2134QualType ASTContext::getSignedWCharType() const {
2135  // FIXME: derive from "Target" ?
2136  return WCharTy;
2137}
2138
2139/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
2140/// Used when in C++, as a GCC extension.
2141QualType ASTContext::getUnsignedWCharType() const {
2142  // FIXME: derive from "Target" ?
2143  return UnsignedIntTy;
2144}
2145
2146/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
2147/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
2148QualType ASTContext::getPointerDiffType() const {
2149  return getFromTargetType(Target.getPtrDiffType(0));
2150}
2151
2152//===----------------------------------------------------------------------===//
2153//                              Type Operators
2154//===----------------------------------------------------------------------===//
2155
2156/// getCanonicalType - Return the canonical (structural) type corresponding to
2157/// the specified potentially non-canonical type.  The non-canonical version
2158/// of a type may have many "decorated" versions of types.  Decorators can
2159/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
2160/// to be free of any of these, allowing two canonical types to be compared
2161/// for exact equality with a simple pointer comparison.
2162CanQualType ASTContext::getCanonicalType(QualType T) {
2163  QualifierCollector Quals;
2164  const Type *Ptr = Quals.strip(T);
2165  QualType CanType = Ptr->getCanonicalTypeInternal();
2166
2167  // The canonical internal type will be the canonical type *except*
2168  // that we push type qualifiers down through array types.
2169
2170  // If there are no new qualifiers to push down, stop here.
2171  if (!Quals.hasQualifiers())
2172    return CanQualType::CreateUnsafe(CanType);
2173
2174  // If the type qualifiers are on an array type, get the canonical
2175  // type of the array with the qualifiers applied to the element
2176  // type.
2177  ArrayType *AT = dyn_cast<ArrayType>(CanType);
2178  if (!AT)
2179    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
2180
2181  // Get the canonical version of the element with the extra qualifiers on it.
2182  // This can recursively sink qualifiers through multiple levels of arrays.
2183  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
2184  NewEltTy = getCanonicalType(NewEltTy);
2185
2186  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
2187    return CanQualType::CreateUnsafe(
2188             getConstantArrayType(NewEltTy, CAT->getSize(),
2189                                  CAT->getSizeModifier(),
2190                                  CAT->getIndexTypeCVRQualifiers()));
2191  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
2192    return CanQualType::CreateUnsafe(
2193             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
2194                                    IAT->getIndexTypeCVRQualifiers()));
2195
2196  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
2197    return CanQualType::CreateUnsafe(
2198             getDependentSizedArrayType(NewEltTy,
2199                                        DSAT->getSizeExpr() ?
2200                                          DSAT->getSizeExpr()->Retain() : 0,
2201                                        DSAT->getSizeModifier(),
2202                                        DSAT->getIndexTypeCVRQualifiers(),
2203                                        DSAT->getBracketsRange()));
2204
2205  VariableArrayType *VAT = cast<VariableArrayType>(AT);
2206  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
2207                                                        VAT->getSizeExpr() ?
2208                                              VAT->getSizeExpr()->Retain() : 0,
2209                                                        VAT->getSizeModifier(),
2210                                              VAT->getIndexTypeCVRQualifiers(),
2211                                                     VAT->getBracketsRange()));
2212}
2213
2214TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
2215  // If this template name refers to a template, the canonical
2216  // template name merely stores the template itself.
2217  if (TemplateDecl *Template = Name.getAsTemplateDecl())
2218    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
2219
2220  // If this template name refers to a set of overloaded function templates,
2221  /// the canonical template name merely stores the set of function templates.
2222  if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl()) {
2223    OverloadedFunctionDecl *CanonOvl = 0;
2224    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2225                                                FEnd = Ovl->function_end();
2226         F != FEnd; ++F) {
2227      Decl *Canon = F->get()->getCanonicalDecl();
2228      if (CanonOvl || Canon != F->get()) {
2229        if (!CanonOvl)
2230          CanonOvl = OverloadedFunctionDecl::Create(*this,
2231                                                    Ovl->getDeclContext(),
2232                                                    Ovl->getDeclName());
2233
2234        CanonOvl->addOverload(
2235                    AnyFunctionDecl::getFromNamedDecl(cast<NamedDecl>(Canon)));
2236      }
2237    }
2238
2239    return TemplateName(CanonOvl? CanonOvl : Ovl);
2240  }
2241
2242  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
2243  assert(DTN && "Non-dependent template names must refer to template decls.");
2244  return DTN->CanonicalTemplateName;
2245}
2246
2247TemplateArgument
2248ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
2249  switch (Arg.getKind()) {
2250    case TemplateArgument::Null:
2251      return Arg;
2252
2253    case TemplateArgument::Expression:
2254      // FIXME: Build canonical expression?
2255      return Arg;
2256
2257    case TemplateArgument::Declaration:
2258      return TemplateArgument(SourceLocation(),
2259                              Arg.getAsDecl()->getCanonicalDecl());
2260
2261    case TemplateArgument::Integral:
2262      return TemplateArgument(SourceLocation(),
2263                              *Arg.getAsIntegral(),
2264                              getCanonicalType(Arg.getIntegralType()));
2265
2266    case TemplateArgument::Type:
2267      return TemplateArgument(SourceLocation(),
2268                              getCanonicalType(Arg.getAsType()));
2269
2270    case TemplateArgument::Pack: {
2271      // FIXME: Allocate in ASTContext
2272      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
2273      unsigned Idx = 0;
2274      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
2275                                        AEnd = Arg.pack_end();
2276           A != AEnd; (void)++A, ++Idx)
2277        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
2278
2279      TemplateArgument Result;
2280      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
2281      return Result;
2282    }
2283  }
2284
2285  // Silence GCC warning
2286  assert(false && "Unhandled template argument kind");
2287  return TemplateArgument();
2288}
2289
2290NestedNameSpecifier *
2291ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
2292  if (!NNS)
2293    return 0;
2294
2295  switch (NNS->getKind()) {
2296  case NestedNameSpecifier::Identifier:
2297    // Canonicalize the prefix but keep the identifier the same.
2298    return NestedNameSpecifier::Create(*this,
2299                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
2300                                       NNS->getAsIdentifier());
2301
2302  case NestedNameSpecifier::Namespace:
2303    // A namespace is canonical; build a nested-name-specifier with
2304    // this namespace and no prefix.
2305    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
2306
2307  case NestedNameSpecifier::TypeSpec:
2308  case NestedNameSpecifier::TypeSpecWithTemplate: {
2309    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
2310    return NestedNameSpecifier::Create(*this, 0,
2311                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
2312                                       T.getTypePtr());
2313  }
2314
2315  case NestedNameSpecifier::Global:
2316    // The global specifier is canonical and unique.
2317    return NNS;
2318  }
2319
2320  // Required to silence a GCC warning
2321  return 0;
2322}
2323
2324
2325const ArrayType *ASTContext::getAsArrayType(QualType T) {
2326  // Handle the non-qualified case efficiently.
2327  if (!T.hasQualifiers()) {
2328    // Handle the common positive case fast.
2329    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
2330      return AT;
2331  }
2332
2333  // Handle the common negative case fast.
2334  QualType CType = T->getCanonicalTypeInternal();
2335  if (!isa<ArrayType>(CType))
2336    return 0;
2337
2338  // Apply any qualifiers from the array type to the element type.  This
2339  // implements C99 6.7.3p8: "If the specification of an array type includes
2340  // any type qualifiers, the element type is so qualified, not the array type."
2341
2342  // If we get here, we either have type qualifiers on the type, or we have
2343  // sugar such as a typedef in the way.  If we have type qualifiers on the type
2344  // we must propagate them down into the element type.
2345
2346  QualifierCollector Qs;
2347  const Type *Ty = Qs.strip(T.getDesugaredType());
2348
2349  // If we have a simple case, just return now.
2350  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
2351  if (ATy == 0 || Qs.empty())
2352    return ATy;
2353
2354  // Otherwise, we have an array and we have qualifiers on it.  Push the
2355  // qualifiers into the array element type and return a new array type.
2356  // Get the canonical version of the element with the extra qualifiers on it.
2357  // This can recursively sink qualifiers through multiple levels of arrays.
2358  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
2359
2360  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
2361    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
2362                                                CAT->getSizeModifier(),
2363                                           CAT->getIndexTypeCVRQualifiers()));
2364  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
2365    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
2366                                                  IAT->getSizeModifier(),
2367                                           IAT->getIndexTypeCVRQualifiers()));
2368
2369  if (const DependentSizedArrayType *DSAT
2370        = dyn_cast<DependentSizedArrayType>(ATy))
2371    return cast<ArrayType>(
2372                     getDependentSizedArrayType(NewEltTy,
2373                                                DSAT->getSizeExpr() ?
2374                                              DSAT->getSizeExpr()->Retain() : 0,
2375                                                DSAT->getSizeModifier(),
2376                                              DSAT->getIndexTypeCVRQualifiers(),
2377                                                DSAT->getBracketsRange()));
2378
2379  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
2380  return cast<ArrayType>(getVariableArrayType(NewEltTy,
2381                                              VAT->getSizeExpr() ?
2382                                              VAT->getSizeExpr()->Retain() : 0,
2383                                              VAT->getSizeModifier(),
2384                                              VAT->getIndexTypeCVRQualifiers(),
2385                                              VAT->getBracketsRange()));
2386}
2387
2388
2389/// getArrayDecayedType - Return the properly qualified result of decaying the
2390/// specified array type to a pointer.  This operation is non-trivial when
2391/// handling typedefs etc.  The canonical type of "T" must be an array type,
2392/// this returns a pointer to a properly qualified element of the array.
2393///
2394/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2395QualType ASTContext::getArrayDecayedType(QualType Ty) {
2396  // Get the element type with 'getAsArrayType' so that we don't lose any
2397  // typedefs in the element type of the array.  This also handles propagation
2398  // of type qualifiers from the array type into the element type if present
2399  // (C99 6.7.3p8).
2400  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
2401  assert(PrettyArrayType && "Not an array type!");
2402
2403  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
2404
2405  // int x[restrict 4] ->  int *restrict
2406  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
2407}
2408
2409QualType ASTContext::getBaseElementType(QualType QT) {
2410  QualifierCollector Qs;
2411  while (true) {
2412    const Type *UT = Qs.strip(QT);
2413    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
2414      QT = AT->getElementType();
2415    } else {
2416      return Qs.apply(QT);
2417    }
2418  }
2419}
2420
2421QualType ASTContext::getBaseElementType(const ArrayType *AT) {
2422  QualType ElemTy = AT->getElementType();
2423
2424  if (const ArrayType *AT = getAsArrayType(ElemTy))
2425    return getBaseElementType(AT);
2426
2427  return ElemTy;
2428}
2429
2430/// getConstantArrayElementCount - Returns number of constant array elements.
2431uint64_t
2432ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
2433  uint64_t ElementCount = 1;
2434  do {
2435    ElementCount *= CA->getSize().getZExtValue();
2436    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
2437  } while (CA);
2438  return ElementCount;
2439}
2440
2441/// getFloatingRank - Return a relative rank for floating point types.
2442/// This routine will assert if passed a built-in type that isn't a float.
2443static FloatingRank getFloatingRank(QualType T) {
2444  if (const ComplexType *CT = T->getAs<ComplexType>())
2445    return getFloatingRank(CT->getElementType());
2446
2447  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
2448  switch (T->getAs<BuiltinType>()->getKind()) {
2449  default: assert(0 && "getFloatingRank(): not a floating type");
2450  case BuiltinType::Float:      return FloatRank;
2451  case BuiltinType::Double:     return DoubleRank;
2452  case BuiltinType::LongDouble: return LongDoubleRank;
2453  }
2454}
2455
2456/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
2457/// point or a complex type (based on typeDomain/typeSize).
2458/// 'typeDomain' is a real floating point or complex type.
2459/// 'typeSize' is a real floating point or complex type.
2460QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
2461                                                       QualType Domain) const {
2462  FloatingRank EltRank = getFloatingRank(Size);
2463  if (Domain->isComplexType()) {
2464    switch (EltRank) {
2465    default: assert(0 && "getFloatingRank(): illegal value for rank");
2466    case FloatRank:      return FloatComplexTy;
2467    case DoubleRank:     return DoubleComplexTy;
2468    case LongDoubleRank: return LongDoubleComplexTy;
2469    }
2470  }
2471
2472  assert(Domain->isRealFloatingType() && "Unknown domain!");
2473  switch (EltRank) {
2474  default: assert(0 && "getFloatingRank(): illegal value for rank");
2475  case FloatRank:      return FloatTy;
2476  case DoubleRank:     return DoubleTy;
2477  case LongDoubleRank: return LongDoubleTy;
2478  }
2479}
2480
2481/// getFloatingTypeOrder - Compare the rank of the two specified floating
2482/// point types, ignoring the domain of the type (i.e. 'double' ==
2483/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2484/// LHS < RHS, return -1.
2485int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
2486  FloatingRank LHSR = getFloatingRank(LHS);
2487  FloatingRank RHSR = getFloatingRank(RHS);
2488
2489  if (LHSR == RHSR)
2490    return 0;
2491  if (LHSR > RHSR)
2492    return 1;
2493  return -1;
2494}
2495
2496/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
2497/// routine will assert if passed a built-in type that isn't an integer or enum,
2498/// or if it is not canonicalized.
2499unsigned ASTContext::getIntegerRank(Type *T) {
2500  assert(T->isCanonical() && "T should be canonicalized");
2501  if (EnumType* ET = dyn_cast<EnumType>(T))
2502    T = ET->getDecl()->getIntegerType().getTypePtr();
2503
2504  if (T->isSpecificBuiltinType(BuiltinType::WChar))
2505    T = getFromTargetType(Target.getWCharType()).getTypePtr();
2506
2507  if (T->isSpecificBuiltinType(BuiltinType::Char16))
2508    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
2509
2510  if (T->isSpecificBuiltinType(BuiltinType::Char32))
2511    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
2512
2513  // There are two things which impact the integer rank: the width, and
2514  // the ordering of builtins.  The builtin ordering is encoded in the
2515  // bottom three bits; the width is encoded in the bits above that.
2516  if (FixedWidthIntType* FWIT = dyn_cast<FixedWidthIntType>(T))
2517    return FWIT->getWidth() << 3;
2518
2519  switch (cast<BuiltinType>(T)->getKind()) {
2520  default: assert(0 && "getIntegerRank(): not a built-in integer");
2521  case BuiltinType::Bool:
2522    return 1 + (getIntWidth(BoolTy) << 3);
2523  case BuiltinType::Char_S:
2524  case BuiltinType::Char_U:
2525  case BuiltinType::SChar:
2526  case BuiltinType::UChar:
2527    return 2 + (getIntWidth(CharTy) << 3);
2528  case BuiltinType::Short:
2529  case BuiltinType::UShort:
2530    return 3 + (getIntWidth(ShortTy) << 3);
2531  case BuiltinType::Int:
2532  case BuiltinType::UInt:
2533    return 4 + (getIntWidth(IntTy) << 3);
2534  case BuiltinType::Long:
2535  case BuiltinType::ULong:
2536    return 5 + (getIntWidth(LongTy) << 3);
2537  case BuiltinType::LongLong:
2538  case BuiltinType::ULongLong:
2539    return 6 + (getIntWidth(LongLongTy) << 3);
2540  case BuiltinType::Int128:
2541  case BuiltinType::UInt128:
2542    return 7 + (getIntWidth(Int128Ty) << 3);
2543  }
2544}
2545
2546/// \brief Whether this is a promotable bitfield reference according
2547/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2548///
2549/// \returns the type this bit-field will promote to, or NULL if no
2550/// promotion occurs.
2551QualType ASTContext::isPromotableBitField(Expr *E) {
2552  FieldDecl *Field = E->getBitField();
2553  if (!Field)
2554    return QualType();
2555
2556  QualType FT = Field->getType();
2557
2558  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
2559  uint64_t BitWidth = BitWidthAP.getZExtValue();
2560  uint64_t IntSize = getTypeSize(IntTy);
2561  // GCC extension compatibility: if the bit-field size is less than or equal
2562  // to the size of int, it gets promoted no matter what its type is.
2563  // For instance, unsigned long bf : 4 gets promoted to signed int.
2564  if (BitWidth < IntSize)
2565    return IntTy;
2566
2567  if (BitWidth == IntSize)
2568    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
2569
2570  // Types bigger than int are not subject to promotions, and therefore act
2571  // like the base type.
2572  // FIXME: This doesn't quite match what gcc does, but what gcc does here
2573  // is ridiculous.
2574  return QualType();
2575}
2576
2577/// getPromotedIntegerType - Returns the type that Promotable will
2578/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
2579/// integer type.
2580QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
2581  assert(!Promotable.isNull());
2582  assert(Promotable->isPromotableIntegerType());
2583  if (Promotable->isSignedIntegerType())
2584    return IntTy;
2585  uint64_t PromotableSize = getTypeSize(Promotable);
2586  uint64_t IntSize = getTypeSize(IntTy);
2587  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
2588  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
2589}
2590
2591/// getIntegerTypeOrder - Returns the highest ranked integer type:
2592/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
2593/// LHS < RHS, return -1.
2594int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
2595  Type *LHSC = getCanonicalType(LHS).getTypePtr();
2596  Type *RHSC = getCanonicalType(RHS).getTypePtr();
2597  if (LHSC == RHSC) return 0;
2598
2599  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
2600  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
2601
2602  unsigned LHSRank = getIntegerRank(LHSC);
2603  unsigned RHSRank = getIntegerRank(RHSC);
2604
2605  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
2606    if (LHSRank == RHSRank) return 0;
2607    return LHSRank > RHSRank ? 1 : -1;
2608  }
2609
2610  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
2611  if (LHSUnsigned) {
2612    // If the unsigned [LHS] type is larger, return it.
2613    if (LHSRank >= RHSRank)
2614      return 1;
2615
2616    // If the signed type can represent all values of the unsigned type, it
2617    // wins.  Because we are dealing with 2's complement and types that are
2618    // powers of two larger than each other, this is always safe.
2619    return -1;
2620  }
2621
2622  // If the unsigned [RHS] type is larger, return it.
2623  if (RHSRank >= LHSRank)
2624    return -1;
2625
2626  // If the signed type can represent all values of the unsigned type, it
2627  // wins.  Because we are dealing with 2's complement and types that are
2628  // powers of two larger than each other, this is always safe.
2629  return 1;
2630}
2631
2632// getCFConstantStringType - Return the type used for constant CFStrings.
2633QualType ASTContext::getCFConstantStringType() {
2634  if (!CFConstantStringTypeDecl) {
2635    CFConstantStringTypeDecl =
2636      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2637                         &Idents.get("NSConstantString"));
2638    QualType FieldTypes[4];
2639
2640    // const int *isa;
2641    FieldTypes[0] = getPointerType(IntTy.withConst());
2642    // int flags;
2643    FieldTypes[1] = IntTy;
2644    // const char *str;
2645    FieldTypes[2] = getPointerType(CharTy.withConst());
2646    // long length;
2647    FieldTypes[3] = LongTy;
2648
2649    // Create fields
2650    for (unsigned i = 0; i < 4; ++i) {
2651      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
2652                                           SourceLocation(), 0,
2653                                           FieldTypes[i], /*DInfo=*/0,
2654                                           /*BitWidth=*/0,
2655                                           /*Mutable=*/false);
2656      CFConstantStringTypeDecl->addDecl(Field);
2657    }
2658
2659    CFConstantStringTypeDecl->completeDefinition(*this);
2660  }
2661
2662  return getTagDeclType(CFConstantStringTypeDecl);
2663}
2664
2665void ASTContext::setCFConstantStringType(QualType T) {
2666  const RecordType *Rec = T->getAs<RecordType>();
2667  assert(Rec && "Invalid CFConstantStringType");
2668  CFConstantStringTypeDecl = Rec->getDecl();
2669}
2670
2671QualType ASTContext::getObjCFastEnumerationStateType() {
2672  if (!ObjCFastEnumerationStateTypeDecl) {
2673    ObjCFastEnumerationStateTypeDecl =
2674      RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2675                         &Idents.get("__objcFastEnumerationState"));
2676
2677    QualType FieldTypes[] = {
2678      UnsignedLongTy,
2679      getPointerType(ObjCIdTypedefType),
2680      getPointerType(UnsignedLongTy),
2681      getConstantArrayType(UnsignedLongTy,
2682                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2683    };
2684
2685    for (size_t i = 0; i < 4; ++i) {
2686      FieldDecl *Field = FieldDecl::Create(*this,
2687                                           ObjCFastEnumerationStateTypeDecl,
2688                                           SourceLocation(), 0,
2689                                           FieldTypes[i], /*DInfo=*/0,
2690                                           /*BitWidth=*/0,
2691                                           /*Mutable=*/false);
2692      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
2693    }
2694
2695    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
2696  }
2697
2698  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
2699}
2700
2701QualType ASTContext::getBlockDescriptorType() {
2702  if (BlockDescriptorType)
2703    return getTagDeclType(BlockDescriptorType);
2704
2705  RecordDecl *T;
2706  // FIXME: Needs the FlagAppleBlock bit.
2707  T = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2708                         &Idents.get("__block_descriptor"));
2709
2710  QualType FieldTypes[] = {
2711    UnsignedLongTy,
2712    UnsignedLongTy,
2713  };
2714
2715  const char *FieldNames[] = {
2716    "reserved",
2717    "Size",
2718  };
2719
2720  for (size_t i = 0; i < 2; ++i) {
2721    FieldDecl *Field = FieldDecl::Create(*this,
2722                                         T,
2723                                         SourceLocation(),
2724                                         &Idents.get(FieldNames[i]),
2725                                         FieldTypes[i], /*DInfo=*/0,
2726                                         /*BitWidth=*/0,
2727                                         /*Mutable=*/false);
2728    T->addDecl(Field);
2729  }
2730
2731  T->completeDefinition(*this);
2732
2733  BlockDescriptorType = T;
2734
2735  return getTagDeclType(BlockDescriptorType);
2736}
2737
2738void ASTContext::setBlockDescriptorType(QualType T) {
2739  const RecordType *Rec = T->getAs<RecordType>();
2740  assert(Rec && "Invalid BlockDescriptorType");
2741  BlockDescriptorType = Rec->getDecl();
2742}
2743
2744QualType ASTContext::BuildByRefType(QualType Ty) {
2745  //  type = struct __Block_byref_1_done {
2746  //    void *__isa;
2747  //    struct __Block_byref_1_done *__forwarding;
2748  //    unsigned int __flags;
2749  //    unsigned int __size;
2750  //    int done;
2751  //  } *
2752
2753  // FIXME: Build up reference type.
2754  return getPointerType(VoidPtrTy);
2755}
2756
2757
2758QualType ASTContext::getBlockParmType(
2759  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
2760  // FIXME: Move up
2761  static int UniqueBlockParmTypeID = 0;
2762  char Name[36];
2763  sprintf(Name, "__block_literal_%u", ++UniqueBlockParmTypeID);
2764  RecordDecl *T;
2765  T = RecordDecl::Create(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
2766                         &Idents.get(Name));
2767  QualType FieldTypes[] = {
2768    getPointerType(VoidPtrTy),
2769    IntTy,
2770    IntTy,
2771    getPointerType(VoidPtrTy),
2772    getPointerType(getBlockDescriptorType()),
2773  };
2774
2775  const char *FieldNames[] = {
2776    "__isa",
2777    "__flags",
2778    "__reserved",
2779    "__FuncPtr",
2780    "__descriptor"
2781  };
2782
2783  for (size_t i = 0; i < 5; ++i) {
2784    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
2785                                         &Idents.get(FieldNames[i]),
2786                                         FieldTypes[i], /*DInfo=*/0,
2787                                         /*BitWidth=*/0, /*Mutable=*/false);
2788    T->addDecl(Field);
2789  }
2790
2791  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
2792    const Expr *E = BlockDeclRefDecls[i];
2793    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
2794    clang::IdentifierInfo *Name = 0;
2795    if (BDRE) {
2796      const ValueDecl *D = BDRE->getDecl();
2797      Name = &Idents.get(D->getName());
2798    }
2799    QualType FieldType = E->getType();
2800
2801    if (BDRE && BDRE->isByRef())
2802      FieldType = BuildByRefType(FieldType);
2803
2804    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
2805                                         Name, FieldType, /*DInfo=*/0,
2806                                         /*BitWidth=*/0, /*Mutable=*/false);
2807    T->addDecl(Field);
2808  }
2809
2810  T->completeDefinition(*this);
2811
2812  return getPointerType(getTagDeclType(T));
2813}
2814
2815void ASTContext::setObjCFastEnumerationStateType(QualType T) {
2816  const RecordType *Rec = T->getAs<RecordType>();
2817  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
2818  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
2819}
2820
2821// This returns true if a type has been typedefed to BOOL:
2822// typedef <type> BOOL;
2823static bool isTypeTypedefedAsBOOL(QualType T) {
2824  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
2825    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
2826      return II->isStr("BOOL");
2827
2828  return false;
2829}
2830
2831/// getObjCEncodingTypeSize returns size of type for objective-c encoding
2832/// purpose.
2833int ASTContext::getObjCEncodingTypeSize(QualType type) {
2834  uint64_t sz = getTypeSize(type);
2835
2836  // Make all integer and enum types at least as large as an int
2837  if (sz > 0 && type->isIntegralType())
2838    sz = std::max(sz, getTypeSize(IntTy));
2839  // Treat arrays as pointers, since that's how they're passed in.
2840  else if (type->isArrayType())
2841    sz = getTypeSize(VoidPtrTy);
2842  return sz / getTypeSize(CharTy);
2843}
2844
2845/// getObjCEncodingForMethodDecl - Return the encoded type for this method
2846/// declaration.
2847void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
2848                                              std::string& S) {
2849  // FIXME: This is not very efficient.
2850  // Encode type qualifer, 'in', 'inout', etc. for the return type.
2851  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
2852  // Encode result type.
2853  getObjCEncodingForType(Decl->getResultType(), S);
2854  // Compute size of all parameters.
2855  // Start with computing size of a pointer in number of bytes.
2856  // FIXME: There might(should) be a better way of doing this computation!
2857  SourceLocation Loc;
2858  int PtrSize = getTypeSize(VoidPtrTy) / getTypeSize(CharTy);
2859  // The first two arguments (self and _cmd) are pointers; account for
2860  // their size.
2861  int ParmOffset = 2 * PtrSize;
2862  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2863       E = Decl->param_end(); PI != E; ++PI) {
2864    QualType PType = (*PI)->getType();
2865    int sz = getObjCEncodingTypeSize(PType);
2866    assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type");
2867    ParmOffset += sz;
2868  }
2869  S += llvm::utostr(ParmOffset);
2870  S += "@0:";
2871  S += llvm::utostr(PtrSize);
2872
2873  // Argument types.
2874  ParmOffset = 2 * PtrSize;
2875  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
2876       E = Decl->param_end(); PI != E; ++PI) {
2877    ParmVarDecl *PVDecl = *PI;
2878    QualType PType = PVDecl->getOriginalType();
2879    if (const ArrayType *AT =
2880          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
2881      // Use array's original type only if it has known number of
2882      // elements.
2883      if (!isa<ConstantArrayType>(AT))
2884        PType = PVDecl->getType();
2885    } else if (PType->isFunctionType())
2886      PType = PVDecl->getType();
2887    // Process argument qualifiers for user supplied arguments; such as,
2888    // 'in', 'inout', etc.
2889    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
2890    getObjCEncodingForType(PType, S);
2891    S += llvm::utostr(ParmOffset);
2892    ParmOffset += getObjCEncodingTypeSize(PType);
2893  }
2894}
2895
2896/// getObjCEncodingForPropertyDecl - Return the encoded type for this
2897/// property declaration. If non-NULL, Container must be either an
2898/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
2899/// NULL when getting encodings for protocol properties.
2900/// Property attributes are stored as a comma-delimited C string. The simple
2901/// attributes readonly and bycopy are encoded as single characters. The
2902/// parametrized attributes, getter=name, setter=name, and ivar=name, are
2903/// encoded as single characters, followed by an identifier. Property types
2904/// are also encoded as a parametrized attribute. The characters used to encode
2905/// these attributes are defined by the following enumeration:
2906/// @code
2907/// enum PropertyAttributes {
2908/// kPropertyReadOnly = 'R',   // property is read-only.
2909/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
2910/// kPropertyByref = '&',  // property is a reference to the value last assigned
2911/// kPropertyDynamic = 'D',    // property is dynamic
2912/// kPropertyGetter = 'G',     // followed by getter selector name
2913/// kPropertySetter = 'S',     // followed by setter selector name
2914/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
2915/// kPropertyType = 't'              // followed by old-style type encoding.
2916/// kPropertyWeak = 'W'              // 'weak' property
2917/// kPropertyStrong = 'P'            // property GC'able
2918/// kPropertyNonAtomic = 'N'         // property non-atomic
2919/// };
2920/// @endcode
2921void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
2922                                                const Decl *Container,
2923                                                std::string& S) {
2924  // Collect information from the property implementation decl(s).
2925  bool Dynamic = false;
2926  ObjCPropertyImplDecl *SynthesizePID = 0;
2927
2928  // FIXME: Duplicated code due to poor abstraction.
2929  if (Container) {
2930    if (const ObjCCategoryImplDecl *CID =
2931        dyn_cast<ObjCCategoryImplDecl>(Container)) {
2932      for (ObjCCategoryImplDecl::propimpl_iterator
2933             i = CID->propimpl_begin(), e = CID->propimpl_end();
2934           i != e; ++i) {
2935        ObjCPropertyImplDecl *PID = *i;
2936        if (PID->getPropertyDecl() == PD) {
2937          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2938            Dynamic = true;
2939          } else {
2940            SynthesizePID = PID;
2941          }
2942        }
2943      }
2944    } else {
2945      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
2946      for (ObjCCategoryImplDecl::propimpl_iterator
2947             i = OID->propimpl_begin(), e = OID->propimpl_end();
2948           i != e; ++i) {
2949        ObjCPropertyImplDecl *PID = *i;
2950        if (PID->getPropertyDecl() == PD) {
2951          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
2952            Dynamic = true;
2953          } else {
2954            SynthesizePID = PID;
2955          }
2956        }
2957      }
2958    }
2959  }
2960
2961  // FIXME: This is not very efficient.
2962  S = "T";
2963
2964  // Encode result type.
2965  // GCC has some special rules regarding encoding of properties which
2966  // closely resembles encoding of ivars.
2967  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
2968                             true /* outermost type */,
2969                             true /* encoding for property */);
2970
2971  if (PD->isReadOnly()) {
2972    S += ",R";
2973  } else {
2974    switch (PD->getSetterKind()) {
2975    case ObjCPropertyDecl::Assign: break;
2976    case ObjCPropertyDecl::Copy:   S += ",C"; break;
2977    case ObjCPropertyDecl::Retain: S += ",&"; break;
2978    }
2979  }
2980
2981  // It really isn't clear at all what this means, since properties
2982  // are "dynamic by default".
2983  if (Dynamic)
2984    S += ",D";
2985
2986  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
2987    S += ",N";
2988
2989  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
2990    S += ",G";
2991    S += PD->getGetterName().getAsString();
2992  }
2993
2994  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
2995    S += ",S";
2996    S += PD->getSetterName().getAsString();
2997  }
2998
2999  if (SynthesizePID) {
3000    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
3001    S += ",V";
3002    S += OID->getNameAsString();
3003  }
3004
3005  // FIXME: OBJCGC: weak & strong
3006}
3007
3008/// getLegacyIntegralTypeEncoding -
3009/// Another legacy compatibility encoding: 32-bit longs are encoded as
3010/// 'l' or 'L' , but not always.  For typedefs, we need to use
3011/// 'i' or 'I' instead if encoding a struct field, or a pointer!
3012///
3013void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
3014  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
3015    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
3016      if (BT->getKind() == BuiltinType::ULong &&
3017          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3018        PointeeTy = UnsignedIntTy;
3019      else
3020        if (BT->getKind() == BuiltinType::Long &&
3021            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
3022          PointeeTy = IntTy;
3023    }
3024  }
3025}
3026
3027void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
3028                                        const FieldDecl *Field) {
3029  // We follow the behavior of gcc, expanding structures which are
3030  // directly pointed to, and expanding embedded structures. Note that
3031  // these rules are sufficient to prevent recursive encoding of the
3032  // same type.
3033  getObjCEncodingForTypeImpl(T, S, true, true, Field,
3034                             true /* outermost type */);
3035}
3036
3037static void EncodeBitField(const ASTContext *Context, std::string& S,
3038                           const FieldDecl *FD) {
3039  const Expr *E = FD->getBitWidth();
3040  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
3041  ASTContext *Ctx = const_cast<ASTContext*>(Context);
3042  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
3043  S += 'b';
3044  S += llvm::utostr(N);
3045}
3046
3047// FIXME: Use SmallString for accumulating string.
3048void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
3049                                            bool ExpandPointedToStructures,
3050                                            bool ExpandStructures,
3051                                            const FieldDecl *FD,
3052                                            bool OutermostType,
3053                                            bool EncodingProperty) {
3054  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
3055    if (FD && FD->isBitField())
3056      return EncodeBitField(this, S, FD);
3057    char encoding;
3058    switch (BT->getKind()) {
3059    default: assert(0 && "Unhandled builtin type kind");
3060    case BuiltinType::Void:       encoding = 'v'; break;
3061    case BuiltinType::Bool:       encoding = 'B'; break;
3062    case BuiltinType::Char_U:
3063    case BuiltinType::UChar:      encoding = 'C'; break;
3064    case BuiltinType::UShort:     encoding = 'S'; break;
3065    case BuiltinType::UInt:       encoding = 'I'; break;
3066    case BuiltinType::ULong:
3067        encoding =
3068          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
3069        break;
3070    case BuiltinType::UInt128:    encoding = 'T'; break;
3071    case BuiltinType::ULongLong:  encoding = 'Q'; break;
3072    case BuiltinType::Char_S:
3073    case BuiltinType::SChar:      encoding = 'c'; break;
3074    case BuiltinType::Short:      encoding = 's'; break;
3075    case BuiltinType::Int:        encoding = 'i'; break;
3076    case BuiltinType::Long:
3077      encoding =
3078        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
3079      break;
3080    case BuiltinType::LongLong:   encoding = 'q'; break;
3081    case BuiltinType::Int128:     encoding = 't'; break;
3082    case BuiltinType::Float:      encoding = 'f'; break;
3083    case BuiltinType::Double:     encoding = 'd'; break;
3084    case BuiltinType::LongDouble: encoding = 'd'; break;
3085    }
3086
3087    S += encoding;
3088    return;
3089  }
3090
3091  if (const ComplexType *CT = T->getAs<ComplexType>()) {
3092    S += 'j';
3093    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
3094                               false);
3095    return;
3096  }
3097
3098  if (const PointerType *PT = T->getAs<PointerType>()) {
3099    QualType PointeeTy = PT->getPointeeType();
3100    bool isReadOnly = false;
3101    // For historical/compatibility reasons, the read-only qualifier of the
3102    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
3103    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
3104    // Also, do not emit the 'r' for anything but the outermost type!
3105    if (isa<TypedefType>(T.getTypePtr())) {
3106      if (OutermostType && T.isConstQualified()) {
3107        isReadOnly = true;
3108        S += 'r';
3109      }
3110    } else if (OutermostType) {
3111      QualType P = PointeeTy;
3112      while (P->getAs<PointerType>())
3113        P = P->getAs<PointerType>()->getPointeeType();
3114      if (P.isConstQualified()) {
3115        isReadOnly = true;
3116        S += 'r';
3117      }
3118    }
3119    if (isReadOnly) {
3120      // Another legacy compatibility encoding. Some ObjC qualifier and type
3121      // combinations need to be rearranged.
3122      // Rewrite "in const" from "nr" to "rn"
3123      const char * s = S.c_str();
3124      int len = S.length();
3125      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
3126        std::string replace = "rn";
3127        S.replace(S.end()-2, S.end(), replace);
3128      }
3129    }
3130    if (isObjCSelType(PointeeTy)) {
3131      S += ':';
3132      return;
3133    }
3134
3135    if (PointeeTy->isCharType()) {
3136      // char pointer types should be encoded as '*' unless it is a
3137      // type that has been typedef'd to 'BOOL'.
3138      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
3139        S += '*';
3140        return;
3141      }
3142    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
3143      // GCC binary compat: Need to convert "struct objc_class *" to "#".
3144      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
3145        S += '#';
3146        return;
3147      }
3148      // GCC binary compat: Need to convert "struct objc_object *" to "@".
3149      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
3150        S += '@';
3151        return;
3152      }
3153      // fall through...
3154    }
3155    S += '^';
3156    getLegacyIntegralTypeEncoding(PointeeTy);
3157
3158    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
3159                               NULL);
3160    return;
3161  }
3162
3163  if (const ArrayType *AT =
3164      // Ignore type qualifiers etc.
3165        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
3166    if (isa<IncompleteArrayType>(AT)) {
3167      // Incomplete arrays are encoded as a pointer to the array element.
3168      S += '^';
3169
3170      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3171                                 false, ExpandStructures, FD);
3172    } else {
3173      S += '[';
3174
3175      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
3176        S += llvm::utostr(CAT->getSize().getZExtValue());
3177      else {
3178        //Variable length arrays are encoded as a regular array with 0 elements.
3179        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
3180        S += '0';
3181      }
3182
3183      getObjCEncodingForTypeImpl(AT->getElementType(), S,
3184                                 false, ExpandStructures, FD);
3185      S += ']';
3186    }
3187    return;
3188  }
3189
3190  if (T->getAs<FunctionType>()) {
3191    S += '?';
3192    return;
3193  }
3194
3195  if (const RecordType *RTy = T->getAs<RecordType>()) {
3196    RecordDecl *RDecl = RTy->getDecl();
3197    S += RDecl->isUnion() ? '(' : '{';
3198    // Anonymous structures print as '?'
3199    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
3200      S += II->getName();
3201    } else {
3202      S += '?';
3203    }
3204    if (ExpandStructures) {
3205      S += '=';
3206      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
3207                                   FieldEnd = RDecl->field_end();
3208           Field != FieldEnd; ++Field) {
3209        if (FD) {
3210          S += '"';
3211          S += Field->getNameAsString();
3212          S += '"';
3213        }
3214
3215        // Special case bit-fields.
3216        if (Field->isBitField()) {
3217          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
3218                                     (*Field));
3219        } else {
3220          QualType qt = Field->getType();
3221          getLegacyIntegralTypeEncoding(qt);
3222          getObjCEncodingForTypeImpl(qt, S, false, true,
3223                                     FD);
3224        }
3225      }
3226    }
3227    S += RDecl->isUnion() ? ')' : '}';
3228    return;
3229  }
3230
3231  if (T->isEnumeralType()) {
3232    if (FD && FD->isBitField())
3233      EncodeBitField(this, S, FD);
3234    else
3235      S += 'i';
3236    return;
3237  }
3238
3239  if (T->isBlockPointerType()) {
3240    S += "@?"; // Unlike a pointer-to-function, which is "^?".
3241    return;
3242  }
3243
3244  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
3245    // @encode(class_name)
3246    ObjCInterfaceDecl *OI = OIT->getDecl();
3247    S += '{';
3248    const IdentifierInfo *II = OI->getIdentifier();
3249    S += II->getName();
3250    S += '=';
3251    llvm::SmallVector<FieldDecl*, 32> RecFields;
3252    CollectObjCIvars(OI, RecFields);
3253    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
3254      if (RecFields[i]->isBitField())
3255        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3256                                   RecFields[i]);
3257      else
3258        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
3259                                   FD);
3260    }
3261    S += '}';
3262    return;
3263  }
3264
3265  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
3266    if (OPT->isObjCIdType()) {
3267      S += '@';
3268      return;
3269    }
3270
3271    if (OPT->isObjCClassType()) {
3272      S += '#';
3273      return;
3274    }
3275
3276    if (OPT->isObjCQualifiedIdType()) {
3277      getObjCEncodingForTypeImpl(getObjCIdType(), S,
3278                                 ExpandPointedToStructures,
3279                                 ExpandStructures, FD);
3280      if (FD || EncodingProperty) {
3281        // Note that we do extended encoding of protocol qualifer list
3282        // Only when doing ivar or property encoding.
3283        S += '"';
3284        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3285             E = OPT->qual_end(); I != E; ++I) {
3286          S += '<';
3287          S += (*I)->getNameAsString();
3288          S += '>';
3289        }
3290        S += '"';
3291      }
3292      return;
3293    }
3294
3295    QualType PointeeTy = OPT->getPointeeType();
3296    if (!EncodingProperty &&
3297        isa<TypedefType>(PointeeTy.getTypePtr())) {
3298      // Another historical/compatibility reason.
3299      // We encode the underlying type which comes out as
3300      // {...};
3301      S += '^';
3302      getObjCEncodingForTypeImpl(PointeeTy, S,
3303                                 false, ExpandPointedToStructures,
3304                                 NULL);
3305      return;
3306    }
3307
3308    S += '@';
3309    if (FD || EncodingProperty) {
3310      S += '"';
3311      S += OPT->getInterfaceDecl()->getNameAsCString();
3312      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
3313           E = OPT->qual_end(); I != E; ++I) {
3314        S += '<';
3315        S += (*I)->getNameAsString();
3316        S += '>';
3317      }
3318      S += '"';
3319    }
3320    return;
3321  }
3322
3323  assert(0 && "@encode for type not implemented!");
3324}
3325
3326void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
3327                                                 std::string& S) const {
3328  if (QT & Decl::OBJC_TQ_In)
3329    S += 'n';
3330  if (QT & Decl::OBJC_TQ_Inout)
3331    S += 'N';
3332  if (QT & Decl::OBJC_TQ_Out)
3333    S += 'o';
3334  if (QT & Decl::OBJC_TQ_Bycopy)
3335    S += 'O';
3336  if (QT & Decl::OBJC_TQ_Byref)
3337    S += 'R';
3338  if (QT & Decl::OBJC_TQ_Oneway)
3339    S += 'V';
3340}
3341
3342void ASTContext::setBuiltinVaListType(QualType T) {
3343  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
3344
3345  BuiltinVaListType = T;
3346}
3347
3348void ASTContext::setObjCIdType(QualType T) {
3349  ObjCIdTypedefType = T;
3350}
3351
3352void ASTContext::setObjCSelType(QualType T) {
3353  ObjCSelType = T;
3354
3355  const TypedefType *TT = T->getAs<TypedefType>();
3356  if (!TT)
3357    return;
3358  TypedefDecl *TD = TT->getDecl();
3359
3360  // typedef struct objc_selector *SEL;
3361  const PointerType *ptr = TD->getUnderlyingType()->getAs<PointerType>();
3362  if (!ptr)
3363    return;
3364  const RecordType *rec = ptr->getPointeeType()->getAsStructureType();
3365  if (!rec)
3366    return;
3367  SelStructType = rec;
3368}
3369
3370void ASTContext::setObjCProtoType(QualType QT) {
3371  ObjCProtoType = QT;
3372}
3373
3374void ASTContext::setObjCClassType(QualType T) {
3375  ObjCClassTypedefType = T;
3376}
3377
3378void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
3379  assert(ObjCConstantStringType.isNull() &&
3380         "'NSConstantString' type already set!");
3381
3382  ObjCConstantStringType = getObjCInterfaceType(Decl);
3383}
3384
3385/// \brief Retrieve the template name that represents a qualified
3386/// template name such as \c std::vector.
3387TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3388                                                  bool TemplateKeyword,
3389                                                  TemplateDecl *Template) {
3390  llvm::FoldingSetNodeID ID;
3391  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3392
3393  void *InsertPos = 0;
3394  QualifiedTemplateName *QTN =
3395    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3396  if (!QTN) {
3397    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3398    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3399  }
3400
3401  return TemplateName(QTN);
3402}
3403
3404/// \brief Retrieve the template name that represents a qualified
3405/// template name such as \c std::vector.
3406TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
3407                                                  bool TemplateKeyword,
3408                                            OverloadedFunctionDecl *Template) {
3409  llvm::FoldingSetNodeID ID;
3410  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
3411
3412  void *InsertPos = 0;
3413  QualifiedTemplateName *QTN =
3414  QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3415  if (!QTN) {
3416    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
3417    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
3418  }
3419
3420  return TemplateName(QTN);
3421}
3422
3423/// \brief Retrieve the template name that represents a dependent
3424/// template name such as \c MetaFun::template apply.
3425TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
3426                                                  const IdentifierInfo *Name) {
3427  assert((!NNS || NNS->isDependent()) &&
3428         "Nested name specifier must be dependent");
3429
3430  llvm::FoldingSetNodeID ID;
3431  DependentTemplateName::Profile(ID, NNS, Name);
3432
3433  void *InsertPos = 0;
3434  DependentTemplateName *QTN =
3435    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
3436
3437  if (QTN)
3438    return TemplateName(QTN);
3439
3440  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3441  if (CanonNNS == NNS) {
3442    QTN = new (*this,4) DependentTemplateName(NNS, Name);
3443  } else {
3444    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
3445    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
3446  }
3447
3448  DependentTemplateNames.InsertNode(QTN, InsertPos);
3449  return TemplateName(QTN);
3450}
3451
3452/// getFromTargetType - Given one of the integer types provided by
3453/// TargetInfo, produce the corresponding type. The unsigned @p Type
3454/// is actually a value of type @c TargetInfo::IntType.
3455QualType ASTContext::getFromTargetType(unsigned Type) const {
3456  switch (Type) {
3457  case TargetInfo::NoInt: return QualType();
3458  case TargetInfo::SignedShort: return ShortTy;
3459  case TargetInfo::UnsignedShort: return UnsignedShortTy;
3460  case TargetInfo::SignedInt: return IntTy;
3461  case TargetInfo::UnsignedInt: return UnsignedIntTy;
3462  case TargetInfo::SignedLong: return LongTy;
3463  case TargetInfo::UnsignedLong: return UnsignedLongTy;
3464  case TargetInfo::SignedLongLong: return LongLongTy;
3465  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
3466  }
3467
3468  assert(false && "Unhandled TargetInfo::IntType value");
3469  return QualType();
3470}
3471
3472//===----------------------------------------------------------------------===//
3473//                        Type Predicates.
3474//===----------------------------------------------------------------------===//
3475
3476/// isObjCNSObjectType - Return true if this is an NSObject object using
3477/// NSObject attribute on a c-style pointer type.
3478/// FIXME - Make it work directly on types.
3479/// FIXME: Move to Type.
3480///
3481bool ASTContext::isObjCNSObjectType(QualType Ty) const {
3482  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
3483    if (TypedefDecl *TD = TDT->getDecl())
3484      if (TD->getAttr<ObjCNSObjectAttr>())
3485        return true;
3486  }
3487  return false;
3488}
3489
3490/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
3491/// garbage collection attribute.
3492///
3493Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
3494  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
3495  if (getLangOptions().ObjC1 &&
3496      getLangOptions().getGCMode() != LangOptions::NonGC) {
3497    GCAttrs = Ty.getObjCGCAttr();
3498    // Default behavious under objective-c's gc is for objective-c pointers
3499    // (or pointers to them) be treated as though they were declared
3500    // as __strong.
3501    if (GCAttrs == Qualifiers::GCNone) {
3502      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
3503        GCAttrs = Qualifiers::Strong;
3504      else if (Ty->isPointerType())
3505        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
3506    }
3507    // Non-pointers have none gc'able attribute regardless of the attribute
3508    // set on them.
3509    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
3510      return Qualifiers::GCNone;
3511  }
3512  return GCAttrs;
3513}
3514
3515//===----------------------------------------------------------------------===//
3516//                        Type Compatibility Testing
3517//===----------------------------------------------------------------------===//
3518
3519/// areCompatVectorTypes - Return true if the two specified vector types are
3520/// compatible.
3521static bool areCompatVectorTypes(const VectorType *LHS,
3522                                 const VectorType *RHS) {
3523  assert(LHS->isCanonical() && RHS->isCanonical());
3524  return LHS->getElementType() == RHS->getElementType() &&
3525         LHS->getNumElements() == RHS->getNumElements();
3526}
3527
3528//===----------------------------------------------------------------------===//
3529// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
3530//===----------------------------------------------------------------------===//
3531
3532/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
3533/// inheritance hierarchy of 'rProto'.
3534bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
3535                                                ObjCProtocolDecl *rProto) {
3536  if (lProto == rProto)
3537    return true;
3538  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
3539       E = rProto->protocol_end(); PI != E; ++PI)
3540    if (ProtocolCompatibleWithProtocol(lProto, *PI))
3541      return true;
3542  return false;
3543}
3544
3545/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
3546/// return true if lhs's protocols conform to rhs's protocol; false
3547/// otherwise.
3548bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
3549  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
3550    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
3551  return false;
3552}
3553
3554/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
3555/// ObjCQualifiedIDType.
3556bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
3557                                                   bool compare) {
3558  // Allow id<P..> and an 'id' or void* type in all cases.
3559  if (lhs->isVoidPointerType() ||
3560      lhs->isObjCIdType() || lhs->isObjCClassType())
3561    return true;
3562  else if (rhs->isVoidPointerType() ||
3563           rhs->isObjCIdType() || rhs->isObjCClassType())
3564    return true;
3565
3566  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
3567    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
3568
3569    if (!rhsOPT) return false;
3570
3571    if (rhsOPT->qual_empty()) {
3572      // If the RHS is a unqualified interface pointer "NSString*",
3573      // make sure we check the class hierarchy.
3574      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3575        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3576             E = lhsQID->qual_end(); I != E; ++I) {
3577          // when comparing an id<P> on lhs with a static type on rhs,
3578          // see if static class implements all of id's protocols, directly or
3579          // through its super class and categories.
3580          if (!rhsID->ClassImplementsProtocol(*I, true))
3581            return false;
3582        }
3583      }
3584      // If there are no qualifiers and no interface, we have an 'id'.
3585      return true;
3586    }
3587    // Both the right and left sides have qualifiers.
3588    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3589         E = lhsQID->qual_end(); I != E; ++I) {
3590      ObjCProtocolDecl *lhsProto = *I;
3591      bool match = false;
3592
3593      // when comparing an id<P> on lhs with a static type on rhs,
3594      // see if static class implements all of id's protocols, directly or
3595      // through its super class and categories.
3596      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
3597           E = rhsOPT->qual_end(); J != E; ++J) {
3598        ObjCProtocolDecl *rhsProto = *J;
3599        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3600            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3601          match = true;
3602          break;
3603        }
3604      }
3605      // If the RHS is a qualified interface pointer "NSString<P>*",
3606      // make sure we check the class hierarchy.
3607      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
3608        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
3609             E = lhsQID->qual_end(); I != E; ++I) {
3610          // when comparing an id<P> on lhs with a static type on rhs,
3611          // see if static class implements all of id's protocols, directly or
3612          // through its super class and categories.
3613          if (rhsID->ClassImplementsProtocol(*I, true)) {
3614            match = true;
3615            break;
3616          }
3617        }
3618      }
3619      if (!match)
3620        return false;
3621    }
3622
3623    return true;
3624  }
3625
3626  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
3627  assert(rhsQID && "One of the LHS/RHS should be id<x>");
3628
3629  if (const ObjCObjectPointerType *lhsOPT =
3630        lhs->getAsObjCInterfacePointerType()) {
3631    if (lhsOPT->qual_empty()) {
3632      bool match = false;
3633      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
3634        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
3635             E = rhsQID->qual_end(); I != E; ++I) {
3636          // when comparing an id<P> on lhs with a static type on rhs,
3637          // see if static class implements all of id's protocols, directly or
3638          // through its super class and categories.
3639          if (lhsID->ClassImplementsProtocol(*I, true)) {
3640            match = true;
3641            break;
3642          }
3643        }
3644        if (!match)
3645          return false;
3646      }
3647      return true;
3648    }
3649    // Both the right and left sides have qualifiers.
3650    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
3651         E = lhsOPT->qual_end(); I != E; ++I) {
3652      ObjCProtocolDecl *lhsProto = *I;
3653      bool match = false;
3654
3655      // when comparing an id<P> on lhs with a static type on rhs,
3656      // see if static class implements all of id's protocols, directly or
3657      // through its super class and categories.
3658      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
3659           E = rhsQID->qual_end(); J != E; ++J) {
3660        ObjCProtocolDecl *rhsProto = *J;
3661        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
3662            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
3663          match = true;
3664          break;
3665        }
3666      }
3667      if (!match)
3668        return false;
3669    }
3670    return true;
3671  }
3672  return false;
3673}
3674
3675/// canAssignObjCInterfaces - Return true if the two interface types are
3676/// compatible for assignment from RHS to LHS.  This handles validation of any
3677/// protocol qualifiers on the LHS or RHS.
3678///
3679bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
3680                                         const ObjCObjectPointerType *RHSOPT) {
3681  // If either type represents the built-in 'id' or 'Class' types, return true.
3682  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
3683    return true;
3684
3685  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
3686    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
3687                                             QualType(RHSOPT,0),
3688                                             false);
3689
3690  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
3691  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
3692  if (LHS && RHS) // We have 2 user-defined types.
3693    return canAssignObjCInterfaces(LHS, RHS);
3694
3695  return false;
3696}
3697
3698bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
3699                                         const ObjCInterfaceType *RHS) {
3700  // Verify that the base decls are compatible: the RHS must be a subclass of
3701  // the LHS.
3702  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
3703    return false;
3704
3705  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
3706  // protocol qualified at all, then we are good.
3707  if (LHS->getNumProtocols() == 0)
3708    return true;
3709
3710  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
3711  // isn't a superset.
3712  if (RHS->getNumProtocols() == 0)
3713    return true;  // FIXME: should return false!
3714
3715  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
3716                                        LHSPE = LHS->qual_end();
3717       LHSPI != LHSPE; LHSPI++) {
3718    bool RHSImplementsProtocol = false;
3719
3720    // If the RHS doesn't implement the protocol on the left, the types
3721    // are incompatible.
3722    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
3723                                          RHSPE = RHS->qual_end();
3724         RHSPI != RHSPE; RHSPI++) {
3725      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
3726        RHSImplementsProtocol = true;
3727        break;
3728      }
3729    }
3730    // FIXME: For better diagnostics, consider passing back the protocol name.
3731    if (!RHSImplementsProtocol)
3732      return false;
3733  }
3734  // The RHS implements all protocols listed on the LHS.
3735  return true;
3736}
3737
3738bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
3739  // get the "pointed to" types
3740  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
3741  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
3742
3743  if (!LHSOPT || !RHSOPT)
3744    return false;
3745
3746  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
3747         canAssignObjCInterfaces(RHSOPT, LHSOPT);
3748}
3749
3750/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
3751/// both shall have the identically qualified version of a compatible type.
3752/// C99 6.2.7p1: Two types have compatible types if their types are the
3753/// same. See 6.7.[2,3,5] for additional rules.
3754bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
3755  return !mergeTypes(LHS, RHS).isNull();
3756}
3757
3758QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
3759  const FunctionType *lbase = lhs->getAs<FunctionType>();
3760  const FunctionType *rbase = rhs->getAs<FunctionType>();
3761  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
3762  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
3763  bool allLTypes = true;
3764  bool allRTypes = true;
3765
3766  // Check return type
3767  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
3768  if (retType.isNull()) return QualType();
3769  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
3770    allLTypes = false;
3771  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
3772    allRTypes = false;
3773  // FIXME: double check this
3774  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
3775  if (NoReturn != lbase->getNoReturnAttr())
3776    allLTypes = false;
3777  if (NoReturn != rbase->getNoReturnAttr())
3778    allRTypes = false;
3779
3780  if (lproto && rproto) { // two C99 style function prototypes
3781    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
3782           "C++ shouldn't be here");
3783    unsigned lproto_nargs = lproto->getNumArgs();
3784    unsigned rproto_nargs = rproto->getNumArgs();
3785
3786    // Compatible functions must have the same number of arguments
3787    if (lproto_nargs != rproto_nargs)
3788      return QualType();
3789
3790    // Variadic and non-variadic functions aren't compatible
3791    if (lproto->isVariadic() != rproto->isVariadic())
3792      return QualType();
3793
3794    if (lproto->getTypeQuals() != rproto->getTypeQuals())
3795      return QualType();
3796
3797    // Check argument compatibility
3798    llvm::SmallVector<QualType, 10> types;
3799    for (unsigned i = 0; i < lproto_nargs; i++) {
3800      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
3801      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
3802      QualType argtype = mergeTypes(largtype, rargtype);
3803      if (argtype.isNull()) return QualType();
3804      types.push_back(argtype);
3805      if (getCanonicalType(argtype) != getCanonicalType(largtype))
3806        allLTypes = false;
3807      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
3808        allRTypes = false;
3809    }
3810    if (allLTypes) return lhs;
3811    if (allRTypes) return rhs;
3812    return getFunctionType(retType, types.begin(), types.size(),
3813                           lproto->isVariadic(), lproto->getTypeQuals(),
3814                           NoReturn);
3815  }
3816
3817  if (lproto) allRTypes = false;
3818  if (rproto) allLTypes = false;
3819
3820  const FunctionProtoType *proto = lproto ? lproto : rproto;
3821  if (proto) {
3822    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
3823    if (proto->isVariadic()) return QualType();
3824    // Check that the types are compatible with the types that
3825    // would result from default argument promotions (C99 6.7.5.3p15).
3826    // The only types actually affected are promotable integer
3827    // types and floats, which would be passed as a different
3828    // type depending on whether the prototype is visible.
3829    unsigned proto_nargs = proto->getNumArgs();
3830    for (unsigned i = 0; i < proto_nargs; ++i) {
3831      QualType argTy = proto->getArgType(i);
3832      if (argTy->isPromotableIntegerType() ||
3833          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
3834        return QualType();
3835    }
3836
3837    if (allLTypes) return lhs;
3838    if (allRTypes) return rhs;
3839    return getFunctionType(retType, proto->arg_type_begin(),
3840                           proto->getNumArgs(), proto->isVariadic(),
3841                           proto->getTypeQuals(), NoReturn);
3842  }
3843
3844  if (allLTypes) return lhs;
3845  if (allRTypes) return rhs;
3846  return getFunctionNoProtoType(retType, NoReturn);
3847}
3848
3849QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
3850  // C++ [expr]: If an expression initially has the type "reference to T", the
3851  // type is adjusted to "T" prior to any further analysis, the expression
3852  // designates the object or function denoted by the reference, and the
3853  // expression is an lvalue unless the reference is an rvalue reference and
3854  // the expression is a function call (possibly inside parentheses).
3855  // FIXME: C++ shouldn't be going through here!  The rules are different
3856  // enough that they should be handled separately.
3857  // FIXME: Merging of lvalue and rvalue references is incorrect. C++ *really*
3858  // shouldn't be going through here!
3859  if (const ReferenceType *RT = LHS->getAs<ReferenceType>())
3860    LHS = RT->getPointeeType();
3861  if (const ReferenceType *RT = RHS->getAs<ReferenceType>())
3862    RHS = RT->getPointeeType();
3863
3864  QualType LHSCan = getCanonicalType(LHS),
3865           RHSCan = getCanonicalType(RHS);
3866
3867  // If two types are identical, they are compatible.
3868  if (LHSCan == RHSCan)
3869    return LHS;
3870
3871  // If the qualifiers are different, the types aren't compatible... mostly.
3872  Qualifiers LQuals = LHSCan.getQualifiers();
3873  Qualifiers RQuals = RHSCan.getQualifiers();
3874  if (LQuals != RQuals) {
3875    // If any of these qualifiers are different, we have a type
3876    // mismatch.
3877    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
3878        LQuals.getAddressSpace() != RQuals.getAddressSpace())
3879      return QualType();
3880
3881    // Exactly one GC qualifier difference is allowed: __strong is
3882    // okay if the other type has no GC qualifier but is an Objective
3883    // C object pointer (i.e. implicitly strong by default).  We fix
3884    // this by pretending that the unqualified type was actually
3885    // qualified __strong.
3886    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
3887    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
3888    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
3889
3890    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
3891      return QualType();
3892
3893    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
3894      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
3895    }
3896    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
3897      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
3898    }
3899    return QualType();
3900  }
3901
3902  // Okay, qualifiers are equal.
3903
3904  Type::TypeClass LHSClass = LHSCan->getTypeClass();
3905  Type::TypeClass RHSClass = RHSCan->getTypeClass();
3906
3907  // We want to consider the two function types to be the same for these
3908  // comparisons, just force one to the other.
3909  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
3910  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
3911
3912  // Same as above for arrays
3913  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
3914    LHSClass = Type::ConstantArray;
3915  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
3916    RHSClass = Type::ConstantArray;
3917
3918  // Canonicalize ExtVector -> Vector.
3919  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
3920  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
3921
3922  // If the canonical type classes don't match.
3923  if (LHSClass != RHSClass) {
3924    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
3925    // a signed integer type, or an unsigned integer type.
3926    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
3927      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
3928        return RHS;
3929    }
3930    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
3931      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
3932        return LHS;
3933    }
3934
3935    return QualType();
3936  }
3937
3938  // The canonical type classes match.
3939  switch (LHSClass) {
3940#define TYPE(Class, Base)
3941#define ABSTRACT_TYPE(Class, Base)
3942#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3943#define DEPENDENT_TYPE(Class, Base) case Type::Class:
3944#include "clang/AST/TypeNodes.def"
3945    assert(false && "Non-canonical and dependent types shouldn't get here");
3946    return QualType();
3947
3948  case Type::LValueReference:
3949  case Type::RValueReference:
3950  case Type::MemberPointer:
3951    assert(false && "C++ should never be in mergeTypes");
3952    return QualType();
3953
3954  case Type::IncompleteArray:
3955  case Type::VariableArray:
3956  case Type::FunctionProto:
3957  case Type::ExtVector:
3958    assert(false && "Types are eliminated above");
3959    return QualType();
3960
3961  case Type::Pointer:
3962  {
3963    // Merge two pointer types, while trying to preserve typedef info
3964    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
3965    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
3966    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3967    if (ResultType.isNull()) return QualType();
3968    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3969      return LHS;
3970    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3971      return RHS;
3972    return getPointerType(ResultType);
3973  }
3974  case Type::BlockPointer:
3975  {
3976    // Merge two block pointer types, while trying to preserve typedef info
3977    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
3978    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
3979    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
3980    if (ResultType.isNull()) return QualType();
3981    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
3982      return LHS;
3983    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
3984      return RHS;
3985    return getBlockPointerType(ResultType);
3986  }
3987  case Type::ConstantArray:
3988  {
3989    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
3990    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
3991    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
3992      return QualType();
3993
3994    QualType LHSElem = getAsArrayType(LHS)->getElementType();
3995    QualType RHSElem = getAsArrayType(RHS)->getElementType();
3996    QualType ResultType = mergeTypes(LHSElem, RHSElem);
3997    if (ResultType.isNull()) return QualType();
3998    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
3999      return LHS;
4000    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4001      return RHS;
4002    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
4003                                          ArrayType::ArraySizeModifier(), 0);
4004    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
4005                                          ArrayType::ArraySizeModifier(), 0);
4006    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
4007    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
4008    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
4009      return LHS;
4010    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
4011      return RHS;
4012    if (LVAT) {
4013      // FIXME: This isn't correct! But tricky to implement because
4014      // the array's size has to be the size of LHS, but the type
4015      // has to be different.
4016      return LHS;
4017    }
4018    if (RVAT) {
4019      // FIXME: This isn't correct! But tricky to implement because
4020      // the array's size has to be the size of RHS, but the type
4021      // has to be different.
4022      return RHS;
4023    }
4024    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
4025    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
4026    return getIncompleteArrayType(ResultType,
4027                                  ArrayType::ArraySizeModifier(), 0);
4028  }
4029  case Type::FunctionNoProto:
4030    return mergeFunctionTypes(LHS, RHS);
4031  case Type::Record:
4032  case Type::Enum:
4033    return QualType();
4034  case Type::Builtin:
4035    // Only exactly equal builtin types are compatible, which is tested above.
4036    return QualType();
4037  case Type::Complex:
4038    // Distinct complex types are incompatible.
4039    return QualType();
4040  case Type::Vector:
4041    // FIXME: The merged type should be an ExtVector!
4042    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
4043      return LHS;
4044    return QualType();
4045  case Type::ObjCInterface: {
4046    // Check if the interfaces are assignment compatible.
4047    // FIXME: This should be type compatibility, e.g. whether
4048    // "LHS x; RHS x;" at global scope is legal.
4049    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
4050    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
4051    if (LHSIface && RHSIface &&
4052        canAssignObjCInterfaces(LHSIface, RHSIface))
4053      return LHS;
4054
4055    return QualType();
4056  }
4057  case Type::ObjCObjectPointer: {
4058    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
4059                                RHS->getAs<ObjCObjectPointerType>()))
4060      return LHS;
4061
4062    return QualType();
4063  }
4064  case Type::FixedWidthInt:
4065    // Distinct fixed-width integers are not compatible.
4066    return QualType();
4067  case Type::TemplateSpecialization:
4068    assert(false && "Dependent types have no size");
4069    break;
4070  }
4071
4072  return QualType();
4073}
4074
4075//===----------------------------------------------------------------------===//
4076//                         Integer Predicates
4077//===----------------------------------------------------------------------===//
4078
4079unsigned ASTContext::getIntWidth(QualType T) {
4080  if (T == BoolTy)
4081    return 1;
4082  if (FixedWidthIntType *FWIT = dyn_cast<FixedWidthIntType>(T)) {
4083    return FWIT->getWidth();
4084  }
4085  // For builtin types, just use the standard type sizing method
4086  return (unsigned)getTypeSize(T);
4087}
4088
4089QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
4090  assert(T->isSignedIntegerType() && "Unexpected type");
4091
4092  // Turn <4 x signed int> -> <4 x unsigned int>
4093  if (const VectorType *VTy = T->getAs<VectorType>())
4094    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
4095                         VTy->getNumElements());
4096
4097  // For enums, we return the unsigned version of the base type.
4098  if (const EnumType *ETy = T->getAs<EnumType>())
4099    T = ETy->getDecl()->getIntegerType();
4100
4101  const BuiltinType *BTy = T->getAs<BuiltinType>();
4102  assert(BTy && "Unexpected signed integer type");
4103  switch (BTy->getKind()) {
4104  case BuiltinType::Char_S:
4105  case BuiltinType::SChar:
4106    return UnsignedCharTy;
4107  case BuiltinType::Short:
4108    return UnsignedShortTy;
4109  case BuiltinType::Int:
4110    return UnsignedIntTy;
4111  case BuiltinType::Long:
4112    return UnsignedLongTy;
4113  case BuiltinType::LongLong:
4114    return UnsignedLongLongTy;
4115  case BuiltinType::Int128:
4116    return UnsignedInt128Ty;
4117  default:
4118    assert(0 && "Unexpected signed integer type");
4119    return QualType();
4120  }
4121}
4122
4123ExternalASTSource::~ExternalASTSource() { }
4124
4125void ExternalASTSource::PrintStats() { }
4126
4127
4128//===----------------------------------------------------------------------===//
4129//                          Builtin Type Computation
4130//===----------------------------------------------------------------------===//
4131
4132/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
4133/// pointer over the consumed characters.  This returns the resultant type.
4134static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
4135                                  ASTContext::GetBuiltinTypeError &Error,
4136                                  bool AllowTypeModifiers = true) {
4137  // Modifiers.
4138  int HowLong = 0;
4139  bool Signed = false, Unsigned = false;
4140
4141  // Read the modifiers first.
4142  bool Done = false;
4143  while (!Done) {
4144    switch (*Str++) {
4145    default: Done = true; --Str; break;
4146    case 'S':
4147      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
4148      assert(!Signed && "Can't use 'S' modifier multiple times!");
4149      Signed = true;
4150      break;
4151    case 'U':
4152      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
4153      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
4154      Unsigned = true;
4155      break;
4156    case 'L':
4157      assert(HowLong <= 2 && "Can't have LLLL modifier");
4158      ++HowLong;
4159      break;
4160    }
4161  }
4162
4163  QualType Type;
4164
4165  // Read the base type.
4166  switch (*Str++) {
4167  default: assert(0 && "Unknown builtin type letter!");
4168  case 'v':
4169    assert(HowLong == 0 && !Signed && !Unsigned &&
4170           "Bad modifiers used with 'v'!");
4171    Type = Context.VoidTy;
4172    break;
4173  case 'f':
4174    assert(HowLong == 0 && !Signed && !Unsigned &&
4175           "Bad modifiers used with 'f'!");
4176    Type = Context.FloatTy;
4177    break;
4178  case 'd':
4179    assert(HowLong < 2 && !Signed && !Unsigned &&
4180           "Bad modifiers used with 'd'!");
4181    if (HowLong)
4182      Type = Context.LongDoubleTy;
4183    else
4184      Type = Context.DoubleTy;
4185    break;
4186  case 's':
4187    assert(HowLong == 0 && "Bad modifiers used with 's'!");
4188    if (Unsigned)
4189      Type = Context.UnsignedShortTy;
4190    else
4191      Type = Context.ShortTy;
4192    break;
4193  case 'i':
4194    if (HowLong == 3)
4195      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
4196    else if (HowLong == 2)
4197      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
4198    else if (HowLong == 1)
4199      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
4200    else
4201      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
4202    break;
4203  case 'c':
4204    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
4205    if (Signed)
4206      Type = Context.SignedCharTy;
4207    else if (Unsigned)
4208      Type = Context.UnsignedCharTy;
4209    else
4210      Type = Context.CharTy;
4211    break;
4212  case 'b': // boolean
4213    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
4214    Type = Context.BoolTy;
4215    break;
4216  case 'z':  // size_t.
4217    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
4218    Type = Context.getSizeType();
4219    break;
4220  case 'F':
4221    Type = Context.getCFConstantStringType();
4222    break;
4223  case 'a':
4224    Type = Context.getBuiltinVaListType();
4225    assert(!Type.isNull() && "builtin va list type not initialized!");
4226    break;
4227  case 'A':
4228    // This is a "reference" to a va_list; however, what exactly
4229    // this means depends on how va_list is defined. There are two
4230    // different kinds of va_list: ones passed by value, and ones
4231    // passed by reference.  An example of a by-value va_list is
4232    // x86, where va_list is a char*. An example of by-ref va_list
4233    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
4234    // we want this argument to be a char*&; for x86-64, we want
4235    // it to be a __va_list_tag*.
4236    Type = Context.getBuiltinVaListType();
4237    assert(!Type.isNull() && "builtin va list type not initialized!");
4238    if (Type->isArrayType()) {
4239      Type = Context.getArrayDecayedType(Type);
4240    } else {
4241      Type = Context.getLValueReferenceType(Type);
4242    }
4243    break;
4244  case 'V': {
4245    char *End;
4246    unsigned NumElements = strtoul(Str, &End, 10);
4247    assert(End != Str && "Missing vector size");
4248
4249    Str = End;
4250
4251    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4252    Type = Context.getVectorType(ElementType, NumElements);
4253    break;
4254  }
4255  case 'X': {
4256    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
4257    Type = Context.getComplexType(ElementType);
4258    break;
4259  }
4260  case 'P':
4261    Type = Context.getFILEType();
4262    if (Type.isNull()) {
4263      Error = ASTContext::GE_Missing_stdio;
4264      return QualType();
4265    }
4266    break;
4267  case 'J':
4268    if (Signed)
4269      Type = Context.getsigjmp_bufType();
4270    else
4271      Type = Context.getjmp_bufType();
4272
4273    if (Type.isNull()) {
4274      Error = ASTContext::GE_Missing_setjmp;
4275      return QualType();
4276    }
4277    break;
4278  }
4279
4280  if (!AllowTypeModifiers)
4281    return Type;
4282
4283  Done = false;
4284  while (!Done) {
4285    switch (*Str++) {
4286      default: Done = true; --Str; break;
4287      case '*':
4288        Type = Context.getPointerType(Type);
4289        break;
4290      case '&':
4291        Type = Context.getLValueReferenceType(Type);
4292        break;
4293      // FIXME: There's no way to have a built-in with an rvalue ref arg.
4294      case 'C':
4295        Type = Type.withConst();
4296        break;
4297    }
4298  }
4299
4300  return Type;
4301}
4302
4303/// GetBuiltinType - Return the type for the specified builtin.
4304QualType ASTContext::GetBuiltinType(unsigned id,
4305                                    GetBuiltinTypeError &Error) {
4306  const char *TypeStr = BuiltinInfo.GetTypeString(id);
4307
4308  llvm::SmallVector<QualType, 8> ArgTypes;
4309
4310  Error = GE_None;
4311  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
4312  if (Error != GE_None)
4313    return QualType();
4314  while (TypeStr[0] && TypeStr[0] != '.') {
4315    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
4316    if (Error != GE_None)
4317      return QualType();
4318
4319    // Do array -> pointer decay.  The builtin should use the decayed type.
4320    if (Ty->isArrayType())
4321      Ty = getArrayDecayedType(Ty);
4322
4323    ArgTypes.push_back(Ty);
4324  }
4325
4326  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
4327         "'.' should only occur at end of builtin type list!");
4328
4329  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
4330  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
4331    return getFunctionNoProtoType(ResType);
4332  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
4333                         TypeStr[0] == '.', 0);
4334}
4335
4336QualType
4337ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
4338  // Perform the usual unary conversions. We do this early so that
4339  // integral promotions to "int" can allow us to exit early, in the
4340  // lhs == rhs check. Also, for conversion purposes, we ignore any
4341  // qualifiers.  For example, "const float" and "float" are
4342  // equivalent.
4343  if (lhs->isPromotableIntegerType())
4344    lhs = getPromotedIntegerType(lhs);
4345  else
4346    lhs = lhs.getUnqualifiedType();
4347  if (rhs->isPromotableIntegerType())
4348    rhs = getPromotedIntegerType(rhs);
4349  else
4350    rhs = rhs.getUnqualifiedType();
4351
4352  // If both types are identical, no conversion is needed.
4353  if (lhs == rhs)
4354    return lhs;
4355
4356  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
4357  // The caller can deal with this (e.g. pointer + int).
4358  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
4359    return lhs;
4360
4361  // At this point, we have two different arithmetic types.
4362
4363  // Handle complex types first (C99 6.3.1.8p1).
4364  if (lhs->isComplexType() || rhs->isComplexType()) {
4365    // if we have an integer operand, the result is the complex type.
4366    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
4367      // convert the rhs to the lhs complex type.
4368      return lhs;
4369    }
4370    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
4371      // convert the lhs to the rhs complex type.
4372      return rhs;
4373    }
4374    // This handles complex/complex, complex/float, or float/complex.
4375    // When both operands are complex, the shorter operand is converted to the
4376    // type of the longer, and that is the type of the result. This corresponds
4377    // to what is done when combining two real floating-point operands.
4378    // The fun begins when size promotion occur across type domains.
4379    // From H&S 6.3.4: When one operand is complex and the other is a real
4380    // floating-point type, the less precise type is converted, within it's
4381    // real or complex domain, to the precision of the other type. For example,
4382    // when combining a "long double" with a "double _Complex", the
4383    // "double _Complex" is promoted to "long double _Complex".
4384    int result = getFloatingTypeOrder(lhs, rhs);
4385
4386    if (result > 0) { // The left side is bigger, convert rhs.
4387      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
4388    } else if (result < 0) { // The right side is bigger, convert lhs.
4389      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
4390    }
4391    // At this point, lhs and rhs have the same rank/size. Now, make sure the
4392    // domains match. This is a requirement for our implementation, C99
4393    // does not require this promotion.
4394    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
4395      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
4396        return rhs;
4397      } else { // handle "_Complex double, double".
4398        return lhs;
4399      }
4400    }
4401    return lhs; // The domain/size match exactly.
4402  }
4403  // Now handle "real" floating types (i.e. float, double, long double).
4404  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
4405    // if we have an integer operand, the result is the real floating type.
4406    if (rhs->isIntegerType()) {
4407      // convert rhs to the lhs floating point type.
4408      return lhs;
4409    }
4410    if (rhs->isComplexIntegerType()) {
4411      // convert rhs to the complex floating point type.
4412      return getComplexType(lhs);
4413    }
4414    if (lhs->isIntegerType()) {
4415      // convert lhs to the rhs floating point type.
4416      return rhs;
4417    }
4418    if (lhs->isComplexIntegerType()) {
4419      // convert lhs to the complex floating point type.
4420      return getComplexType(rhs);
4421    }
4422    // We have two real floating types, float/complex combos were handled above.
4423    // Convert the smaller operand to the bigger result.
4424    int result = getFloatingTypeOrder(lhs, rhs);
4425    if (result > 0) // convert the rhs
4426      return lhs;
4427    assert(result < 0 && "illegal float comparison");
4428    return rhs;   // convert the lhs
4429  }
4430  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
4431    // Handle GCC complex int extension.
4432    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
4433    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
4434
4435    if (lhsComplexInt && rhsComplexInt) {
4436      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
4437                              rhsComplexInt->getElementType()) >= 0)
4438        return lhs; // convert the rhs
4439      return rhs;
4440    } else if (lhsComplexInt && rhs->isIntegerType()) {
4441      // convert the rhs to the lhs complex type.
4442      return lhs;
4443    } else if (rhsComplexInt && lhs->isIntegerType()) {
4444      // convert the lhs to the rhs complex type.
4445      return rhs;
4446    }
4447  }
4448  // Finally, we have two differing integer types.
4449  // The rules for this case are in C99 6.3.1.8
4450  int compare = getIntegerTypeOrder(lhs, rhs);
4451  bool lhsSigned = lhs->isSignedIntegerType(),
4452       rhsSigned = rhs->isSignedIntegerType();
4453  QualType destType;
4454  if (lhsSigned == rhsSigned) {
4455    // Same signedness; use the higher-ranked type
4456    destType = compare >= 0 ? lhs : rhs;
4457  } else if (compare != (lhsSigned ? 1 : -1)) {
4458    // The unsigned type has greater than or equal rank to the
4459    // signed type, so use the unsigned type
4460    destType = lhsSigned ? rhs : lhs;
4461  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
4462    // The two types are different widths; if we are here, that
4463    // means the signed type is larger than the unsigned type, so
4464    // use the signed type.
4465    destType = lhsSigned ? lhs : rhs;
4466  } else {
4467    // The signed type is higher-ranked than the unsigned type,
4468    // but isn't actually any bigger (like unsigned int and long
4469    // on most 32-bit systems).  Use the unsigned type corresponding
4470    // to the signed type.
4471    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
4472  }
4473  return destType;
4474}
4475