ASTContext.cpp revision f396ad9b1fa0c74c9db16a8158c3882c9db774e2
1//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "CXXABI.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Comment.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExternalASTSource.h"
27#include "clang/AST/Mangle.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Capacity.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39
40using namespace clang;
41
42unsigned ASTContext::NumImplicitDefaultConstructors;
43unsigned ASTContext::NumImplicitDefaultConstructorsDeclared;
44unsigned ASTContext::NumImplicitCopyConstructors;
45unsigned ASTContext::NumImplicitCopyConstructorsDeclared;
46unsigned ASTContext::NumImplicitMoveConstructors;
47unsigned ASTContext::NumImplicitMoveConstructorsDeclared;
48unsigned ASTContext::NumImplicitCopyAssignmentOperators;
49unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
50unsigned ASTContext::NumImplicitMoveAssignmentOperators;
51unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
52unsigned ASTContext::NumImplicitDestructors;
53unsigned ASTContext::NumImplicitDestructorsDeclared;
54
55enum FloatingRank {
56  HalfRank, FloatRank, DoubleRank, LongDoubleRank
57};
58
59RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
60  if (!CommentsLoaded && ExternalSource) {
61    ExternalSource->ReadComments();
62    CommentsLoaded = true;
63  }
64
65  assert(D);
66
67  // User can not attach documentation to implicit declarations.
68  if (D->isImplicit())
69    return NULL;
70
71  // User can not attach documentation to implicit instantiations.
72  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
74      return NULL;
75  }
76
77  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
78    if (VD->isStaticDataMember() &&
79        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
80      return NULL;
81  }
82
83  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
84    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
85      return NULL;
86  }
87
88  if (const ClassTemplateSpecializationDecl *CTSD =
89          dyn_cast<ClassTemplateSpecializationDecl>(D)) {
90    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
91    if (TSK == TSK_ImplicitInstantiation ||
92        TSK == TSK_Undeclared)
93      return NULL;
94  }
95
96  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
97    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
98      return NULL;
99  }
100
101  // TODO: handle comments for function parameters properly.
102  if (isa<ParmVarDecl>(D))
103    return NULL;
104
105  // TODO: we could look up template parameter documentation in the template
106  // documentation.
107  if (isa<TemplateTypeParmDecl>(D) ||
108      isa<NonTypeTemplateParmDecl>(D) ||
109      isa<TemplateTemplateParmDecl>(D))
110    return NULL;
111
112  ArrayRef<RawComment *> RawComments = Comments.getComments();
113
114  // If there are no comments anywhere, we won't find anything.
115  if (RawComments.empty())
116    return NULL;
117
118  // Find declaration location.
119  // For Objective-C declarations we generally don't expect to have multiple
120  // declarators, thus use declaration starting location as the "declaration
121  // location".
122  // For all other declarations multiple declarators are used quite frequently,
123  // so we use the location of the identifier as the "declaration location".
124  SourceLocation DeclLoc;
125  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
126      isa<ObjCPropertyDecl>(D) ||
127      isa<RedeclarableTemplateDecl>(D) ||
128      isa<ClassTemplateSpecializationDecl>(D))
129    DeclLoc = D->getLocStart();
130  else
131    DeclLoc = D->getLocation();
132
133  // If the declaration doesn't map directly to a location in a file, we
134  // can't find the comment.
135  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
136    return NULL;
137
138  // Find the comment that occurs just after this declaration.
139  ArrayRef<RawComment *>::iterator Comment;
140  {
141    // When searching for comments during parsing, the comment we are looking
142    // for is usually among the last two comments we parsed -- check them
143    // first.
144    RawComment CommentAtDeclLoc(SourceMgr, SourceRange(DeclLoc));
145    BeforeThanCompare<RawComment> Compare(SourceMgr);
146    ArrayRef<RawComment *>::iterator MaybeBeforeDecl = RawComments.end() - 1;
147    bool Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
148    if (!Found && RawComments.size() >= 2) {
149      MaybeBeforeDecl--;
150      Found = Compare(*MaybeBeforeDecl, &CommentAtDeclLoc);
151    }
152
153    if (Found) {
154      Comment = MaybeBeforeDecl + 1;
155      assert(Comment == std::lower_bound(RawComments.begin(), RawComments.end(),
156                                         &CommentAtDeclLoc, Compare));
157    } else {
158      // Slow path.
159      Comment = std::lower_bound(RawComments.begin(), RawComments.end(),
160                                 &CommentAtDeclLoc, Compare);
161    }
162  }
163
164  // Decompose the location for the declaration and find the beginning of the
165  // file buffer.
166  std::pair<FileID, unsigned> DeclLocDecomp = SourceMgr.getDecomposedLoc(DeclLoc);
167
168  // First check whether we have a trailing comment.
169  if (Comment != RawComments.end() &&
170      (*Comment)->isDocumentation() && (*Comment)->isTrailingComment() &&
171      (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D))) {
172    std::pair<FileID, unsigned> CommentBeginDecomp
173      = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getBegin());
174    // Check that Doxygen trailing comment comes after the declaration, starts
175    // on the same line and in the same file as the declaration.
176    if (DeclLocDecomp.first == CommentBeginDecomp.first &&
177        SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second)
178          == SourceMgr.getLineNumber(CommentBeginDecomp.first,
179                                     CommentBeginDecomp.second)) {
180      return *Comment;
181    }
182  }
183
184  // The comment just after the declaration was not a trailing comment.
185  // Let's look at the previous comment.
186  if (Comment == RawComments.begin())
187    return NULL;
188  --Comment;
189
190  // Check that we actually have a non-member Doxygen comment.
191  if (!(*Comment)->isDocumentation() || (*Comment)->isTrailingComment())
192    return NULL;
193
194  // Decompose the end of the comment.
195  std::pair<FileID, unsigned> CommentEndDecomp
196    = SourceMgr.getDecomposedLoc((*Comment)->getSourceRange().getEnd());
197
198  // If the comment and the declaration aren't in the same file, then they
199  // aren't related.
200  if (DeclLocDecomp.first != CommentEndDecomp.first)
201    return NULL;
202
203  // Get the corresponding buffer.
204  bool Invalid = false;
205  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
206                                               &Invalid).data();
207  if (Invalid)
208    return NULL;
209
210  // Extract text between the comment and declaration.
211  StringRef Text(Buffer + CommentEndDecomp.second,
212                 DeclLocDecomp.second - CommentEndDecomp.second);
213
214  // There should be no other declarations or preprocessor directives between
215  // comment and declaration.
216  if (Text.find_first_of(",;{}#@") != StringRef::npos)
217    return NULL;
218
219  return *Comment;
220}
221
222namespace {
223/// If we have a 'templated' declaration for a template, adjust 'D' to
224/// refer to the actual template.
225/// If we have an implicit instantiation, adjust 'D' to refer to template.
226const Decl *adjustDeclToTemplate(const Decl *D) {
227  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
228    // Is this function declaration part of a function template?
229    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
230      return FTD;
231
232    // Nothing to do if function is not an implicit instantiation.
233    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
234      return D;
235
236    // Function is an implicit instantiation of a function template?
237    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
238      return FTD;
239
240    // Function is instantiated from a member definition of a class template?
241    if (const FunctionDecl *MemberDecl =
242            FD->getInstantiatedFromMemberFunction())
243      return MemberDecl;
244
245    return D;
246  }
247  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
248    // Static data member is instantiated from a member definition of a class
249    // template?
250    if (VD->isStaticDataMember())
251      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
252        return MemberDecl;
253
254    return D;
255  }
256  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
257    // Is this class declaration part of a class template?
258    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
259      return CTD;
260
261    // Class is an implicit instantiation of a class template or partial
262    // specialization?
263    if (const ClassTemplateSpecializationDecl *CTSD =
264            dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
265      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
266        return D;
267      llvm::PointerUnion<ClassTemplateDecl *,
268                         ClassTemplatePartialSpecializationDecl *>
269          PU = CTSD->getSpecializedTemplateOrPartial();
270      return PU.is<ClassTemplateDecl*>() ?
271          static_cast<const Decl*>(PU.get<ClassTemplateDecl *>()) :
272          static_cast<const Decl*>(
273              PU.get<ClassTemplatePartialSpecializationDecl *>());
274    }
275
276    // Class is instantiated from a member definition of a class template?
277    if (const MemberSpecializationInfo *Info =
278                   CRD->getMemberSpecializationInfo())
279      return Info->getInstantiatedFrom();
280
281    return D;
282  }
283  if (const EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
284    // Enum is instantiated from a member definition of a class template?
285    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
286      return MemberDecl;
287
288    return D;
289  }
290  // FIXME: Adjust alias templates?
291  return D;
292}
293} // unnamed namespace
294
295const RawComment *ASTContext::getRawCommentForAnyRedecl(
296                                                const Decl *D,
297                                                const Decl **OriginalDecl) const {
298  D = adjustDeclToTemplate(D);
299
300  // Check whether we have cached a comment for this declaration already.
301  {
302    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
303        RedeclComments.find(D);
304    if (Pos != RedeclComments.end()) {
305      const RawCommentAndCacheFlags &Raw = Pos->second;
306      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
307        if (OriginalDecl)
308          *OriginalDecl = Raw.getOriginalDecl();
309        return Raw.getRaw();
310      }
311    }
312  }
313
314  // Search for comments attached to declarations in the redeclaration chain.
315  const RawComment *RC = NULL;
316  const Decl *OriginalDeclForRC = NULL;
317  for (Decl::redecl_iterator I = D->redecls_begin(),
318                             E = D->redecls_end();
319       I != E; ++I) {
320    llvm::DenseMap<const Decl *, RawCommentAndCacheFlags>::iterator Pos =
321        RedeclComments.find(*I);
322    if (Pos != RedeclComments.end()) {
323      const RawCommentAndCacheFlags &Raw = Pos->second;
324      if (Raw.getKind() != RawCommentAndCacheFlags::NoCommentInDecl) {
325        RC = Raw.getRaw();
326        OriginalDeclForRC = Raw.getOriginalDecl();
327        break;
328      }
329    } else {
330      RC = getRawCommentForDeclNoCache(*I);
331      OriginalDeclForRC = *I;
332      RawCommentAndCacheFlags Raw;
333      if (RC) {
334        Raw.setRaw(RC);
335        Raw.setKind(RawCommentAndCacheFlags::FromDecl);
336      } else
337        Raw.setKind(RawCommentAndCacheFlags::NoCommentInDecl);
338      Raw.setOriginalDecl(*I);
339      RedeclComments[*I] = Raw;
340      if (RC)
341        break;
342    }
343  }
344
345  // If we found a comment, it should be a documentation comment.
346  assert(!RC || RC->isDocumentation());
347
348  if (OriginalDecl)
349    *OriginalDecl = OriginalDeclForRC;
350
351  // Update cache for every declaration in the redeclaration chain.
352  RawCommentAndCacheFlags Raw;
353  Raw.setRaw(RC);
354  Raw.setKind(RawCommentAndCacheFlags::FromRedecl);
355  Raw.setOriginalDecl(OriginalDeclForRC);
356
357  for (Decl::redecl_iterator I = D->redecls_begin(),
358                             E = D->redecls_end();
359       I != E; ++I) {
360    RawCommentAndCacheFlags &R = RedeclComments[*I];
361    if (R.getKind() == RawCommentAndCacheFlags::NoCommentInDecl)
362      R = Raw;
363  }
364
365  return RC;
366}
367
368static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
369                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
370  const DeclContext *DC = ObjCMethod->getDeclContext();
371  if (const ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(DC)) {
372    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
373    if (!ID)
374      return;
375    // Add redeclared method here.
376    for (ObjCInterfaceDecl::known_extensions_iterator
377           Ext = ID->known_extensions_begin(),
378           ExtEnd = ID->known_extensions_end();
379         Ext != ExtEnd; ++Ext) {
380      if (ObjCMethodDecl *RedeclaredMethod =
381            Ext->getMethod(ObjCMethod->getSelector(),
382                                  ObjCMethod->isInstanceMethod()))
383        Redeclared.push_back(RedeclaredMethod);
384    }
385  }
386}
387
388comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
389                                                    const Decl *D) const {
390  comments::DeclInfo *ThisDeclInfo = new (*this) comments::DeclInfo;
391  ThisDeclInfo->CommentDecl = D;
392  ThisDeclInfo->IsFilled = false;
393  ThisDeclInfo->fill();
394  ThisDeclInfo->CommentDecl = FC->getDecl();
395  comments::FullComment *CFC =
396    new (*this) comments::FullComment(FC->getBlocks(),
397                                      ThisDeclInfo);
398  return CFC;
399
400}
401
402comments::FullComment *ASTContext::getCommentForDecl(
403                                              const Decl *D,
404                                              const Preprocessor *PP) const {
405  D = adjustDeclToTemplate(D);
406
407  const Decl *Canonical = D->getCanonicalDecl();
408  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
409      ParsedComments.find(Canonical);
410
411  if (Pos != ParsedComments.end()) {
412    if (Canonical != D) {
413      comments::FullComment *FC = Pos->second;
414      comments::FullComment *CFC = cloneFullComment(FC, D);
415      return CFC;
416    }
417    return Pos->second;
418  }
419
420  const Decl *OriginalDecl;
421
422  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
423  if (!RC) {
424    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
425      SmallVector<const NamedDecl*, 8> Overridden;
426      const ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(D);
427      if (OMD && OMD->isPropertyAccessor())
428        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
429          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
430            return cloneFullComment(FC, D);
431      if (OMD)
432        addRedeclaredMethods(OMD, Overridden);
433      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
434      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
435        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
436          return cloneFullComment(FC, D);
437    }
438    else if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) {
439      // Attach any tag type's documentation to its typedef if latter
440      // does not have one of its own.
441      QualType QT = TD->getUnderlyingType();
442      if (const TagType *TT = QT->getAs<TagType>())
443        if (const Decl *TD = TT->getDecl())
444          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
445            return cloneFullComment(FC, D);
446    }
447    return NULL;
448  }
449
450  // If the RawComment was attached to other redeclaration of this Decl, we
451  // should parse the comment in context of that other Decl.  This is important
452  // because comments can contain references to parameter names which can be
453  // different across redeclarations.
454  if (D != OriginalDecl)
455    return getCommentForDecl(OriginalDecl, PP);
456
457  comments::FullComment *FC = RC->parse(*this, PP, D);
458  ParsedComments[Canonical] = FC;
459  return FC;
460}
461
462void
463ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
464                                               TemplateTemplateParmDecl *Parm) {
465  ID.AddInteger(Parm->getDepth());
466  ID.AddInteger(Parm->getPosition());
467  ID.AddBoolean(Parm->isParameterPack());
468
469  TemplateParameterList *Params = Parm->getTemplateParameters();
470  ID.AddInteger(Params->size());
471  for (TemplateParameterList::const_iterator P = Params->begin(),
472                                          PEnd = Params->end();
473       P != PEnd; ++P) {
474    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
475      ID.AddInteger(0);
476      ID.AddBoolean(TTP->isParameterPack());
477      continue;
478    }
479
480    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
481      ID.AddInteger(1);
482      ID.AddBoolean(NTTP->isParameterPack());
483      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
484      if (NTTP->isExpandedParameterPack()) {
485        ID.AddBoolean(true);
486        ID.AddInteger(NTTP->getNumExpansionTypes());
487        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
488          QualType T = NTTP->getExpansionType(I);
489          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
490        }
491      } else
492        ID.AddBoolean(false);
493      continue;
494    }
495
496    TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
497    ID.AddInteger(2);
498    Profile(ID, TTP);
499  }
500}
501
502TemplateTemplateParmDecl *
503ASTContext::getCanonicalTemplateTemplateParmDecl(
504                                          TemplateTemplateParmDecl *TTP) const {
505  // Check if we already have a canonical template template parameter.
506  llvm::FoldingSetNodeID ID;
507  CanonicalTemplateTemplateParm::Profile(ID, TTP);
508  void *InsertPos = 0;
509  CanonicalTemplateTemplateParm *Canonical
510    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
511  if (Canonical)
512    return Canonical->getParam();
513
514  // Build a canonical template parameter list.
515  TemplateParameterList *Params = TTP->getTemplateParameters();
516  SmallVector<NamedDecl *, 4> CanonParams;
517  CanonParams.reserve(Params->size());
518  for (TemplateParameterList::const_iterator P = Params->begin(),
519                                          PEnd = Params->end();
520       P != PEnd; ++P) {
521    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P))
522      CanonParams.push_back(
523                  TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(),
524                                               SourceLocation(),
525                                               SourceLocation(),
526                                               TTP->getDepth(),
527                                               TTP->getIndex(), 0, false,
528                                               TTP->isParameterPack()));
529    else if (NonTypeTemplateParmDecl *NTTP
530             = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
531      QualType T = getCanonicalType(NTTP->getType());
532      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
533      NonTypeTemplateParmDecl *Param;
534      if (NTTP->isExpandedParameterPack()) {
535        SmallVector<QualType, 2> ExpandedTypes;
536        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
537        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
538          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
539          ExpandedTInfos.push_back(
540                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
541        }
542
543        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
544                                                SourceLocation(),
545                                                SourceLocation(),
546                                                NTTP->getDepth(),
547                                                NTTP->getPosition(), 0,
548                                                T,
549                                                TInfo,
550                                                ExpandedTypes.data(),
551                                                ExpandedTypes.size(),
552                                                ExpandedTInfos.data());
553      } else {
554        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
555                                                SourceLocation(),
556                                                SourceLocation(),
557                                                NTTP->getDepth(),
558                                                NTTP->getPosition(), 0,
559                                                T,
560                                                NTTP->isParameterPack(),
561                                                TInfo);
562      }
563      CanonParams.push_back(Param);
564
565    } else
566      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
567                                           cast<TemplateTemplateParmDecl>(*P)));
568  }
569
570  TemplateTemplateParmDecl *CanonTTP
571    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
572                                       SourceLocation(), TTP->getDepth(),
573                                       TTP->getPosition(),
574                                       TTP->isParameterPack(),
575                                       0,
576                         TemplateParameterList::Create(*this, SourceLocation(),
577                                                       SourceLocation(),
578                                                       CanonParams.data(),
579                                                       CanonParams.size(),
580                                                       SourceLocation()));
581
582  // Get the new insert position for the node we care about.
583  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
584  assert(Canonical == 0 && "Shouldn't be in the map!");
585  (void)Canonical;
586
587  // Create the canonical template template parameter entry.
588  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
589  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
590  return CanonTTP;
591}
592
593CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
594  if (!LangOpts.CPlusPlus) return 0;
595
596  switch (T.getCXXABI().getKind()) {
597  case TargetCXXABI::GenericARM:
598  case TargetCXXABI::iOS:
599    return CreateARMCXXABI(*this);
600  case TargetCXXABI::GenericAArch64: // Same as Itanium at this level
601  case TargetCXXABI::GenericItanium:
602    return CreateItaniumCXXABI(*this);
603  case TargetCXXABI::Microsoft:
604    return CreateMicrosoftCXXABI(*this);
605  }
606  llvm_unreachable("Invalid CXXABI type!");
607}
608
609static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T,
610                                             const LangOptions &LOpts) {
611  if (LOpts.FakeAddressSpaceMap) {
612    // The fake address space map must have a distinct entry for each
613    // language-specific address space.
614    static const unsigned FakeAddrSpaceMap[] = {
615      1, // opencl_global
616      2, // opencl_local
617      3, // opencl_constant
618      4, // cuda_device
619      5, // cuda_constant
620      6  // cuda_shared
621    };
622    return &FakeAddrSpaceMap;
623  } else {
624    return &T.getAddressSpaceMap();
625  }
626}
627
628ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM,
629                       const TargetInfo *t,
630                       IdentifierTable &idents, SelectorTable &sels,
631                       Builtin::Context &builtins,
632                       unsigned size_reserve,
633                       bool DelayInitialization)
634  : FunctionProtoTypes(this_()),
635    TemplateSpecializationTypes(this_()),
636    DependentTemplateSpecializationTypes(this_()),
637    SubstTemplateTemplateParmPacks(this_()),
638    GlobalNestedNameSpecifier(0),
639    Int128Decl(0), UInt128Decl(0),
640    BuiltinVaListDecl(0),
641    ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0),
642    BOOLDecl(0),
643    CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0),
644    FILEDecl(0),
645    jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0),
646    BlockDescriptorType(0), BlockDescriptorExtendedType(0),
647    cudaConfigureCallDecl(0),
648    NullTypeSourceInfo(QualType()),
649    FirstLocalImport(), LastLocalImport(),
650    SourceMgr(SM), LangOpts(LOpts),
651    AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts),
652    Idents(idents), Selectors(sels),
653    BuiltinInfo(builtins),
654    DeclarationNames(*this),
655    ExternalSource(0), Listener(0),
656    Comments(SM), CommentsLoaded(false),
657    CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
658    LastSDM(0, 0),
659    UniqueBlockByRefTypeID(0)
660{
661  if (size_reserve > 0) Types.reserve(size_reserve);
662  TUDecl = TranslationUnitDecl::Create(*this);
663
664  if (!DelayInitialization) {
665    assert(t && "No target supplied for ASTContext initialization");
666    InitBuiltinTypes(*t);
667  }
668}
669
670ASTContext::~ASTContext() {
671  // Release the DenseMaps associated with DeclContext objects.
672  // FIXME: Is this the ideal solution?
673  ReleaseDeclContextMaps();
674
675  // Call all of the deallocation functions.
676  for (unsigned I = 0, N = Deallocations.size(); I != N; ++I)
677    Deallocations[I].first(Deallocations[I].second);
678
679  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
680  // because they can contain DenseMaps.
681  for (llvm::DenseMap<const ObjCContainerDecl*,
682       const ASTRecordLayout*>::iterator
683       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
684    // Increment in loop to prevent using deallocated memory.
685    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
686      R->Destroy(*this);
687
688  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
689       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
690    // Increment in loop to prevent using deallocated memory.
691    if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second))
692      R->Destroy(*this);
693  }
694
695  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
696                                                    AEnd = DeclAttrs.end();
697       A != AEnd; ++A)
698    A->second->~AttrVec();
699}
700
701void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) {
702  Deallocations.push_back(std::make_pair(Callback, Data));
703}
704
705void
706ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) {
707  ExternalSource.reset(Source.take());
708}
709
710void ASTContext::PrintStats() const {
711  llvm::errs() << "\n*** AST Context Stats:\n";
712  llvm::errs() << "  " << Types.size() << " types total.\n";
713
714  unsigned counts[] = {
715#define TYPE(Name, Parent) 0,
716#define ABSTRACT_TYPE(Name, Parent)
717#include "clang/AST/TypeNodes.def"
718    0 // Extra
719  };
720
721  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
722    Type *T = Types[i];
723    counts[(unsigned)T->getTypeClass()]++;
724  }
725
726  unsigned Idx = 0;
727  unsigned TotalBytes = 0;
728#define TYPE(Name, Parent)                                              \
729  if (counts[Idx])                                                      \
730    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
731                 << " types\n";                                         \
732  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
733  ++Idx;
734#define ABSTRACT_TYPE(Name, Parent)
735#include "clang/AST/TypeNodes.def"
736
737  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
738
739  // Implicit special member functions.
740  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
741               << NumImplicitDefaultConstructors
742               << " implicit default constructors created\n";
743  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
744               << NumImplicitCopyConstructors
745               << " implicit copy constructors created\n";
746  if (getLangOpts().CPlusPlus)
747    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
748                 << NumImplicitMoveConstructors
749                 << " implicit move constructors created\n";
750  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
751               << NumImplicitCopyAssignmentOperators
752               << " implicit copy assignment operators created\n";
753  if (getLangOpts().CPlusPlus)
754    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
755                 << NumImplicitMoveAssignmentOperators
756                 << " implicit move assignment operators created\n";
757  llvm::errs() << NumImplicitDestructorsDeclared << "/"
758               << NumImplicitDestructors
759               << " implicit destructors created\n";
760
761  if (ExternalSource.get()) {
762    llvm::errs() << "\n";
763    ExternalSource->PrintStats();
764  }
765
766  BumpAlloc.PrintStats();
767}
768
769TypedefDecl *ASTContext::getInt128Decl() const {
770  if (!Int128Decl) {
771    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty);
772    Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
773                                     getTranslationUnitDecl(),
774                                     SourceLocation(),
775                                     SourceLocation(),
776                                     &Idents.get("__int128_t"),
777                                     TInfo);
778  }
779
780  return Int128Decl;
781}
782
783TypedefDecl *ASTContext::getUInt128Decl() const {
784  if (!UInt128Decl) {
785    TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty);
786    UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
787                                     getTranslationUnitDecl(),
788                                     SourceLocation(),
789                                     SourceLocation(),
790                                     &Idents.get("__uint128_t"),
791                                     TInfo);
792  }
793
794  return UInt128Decl;
795}
796
797void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
798  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
799  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
800  Types.push_back(Ty);
801}
802
803void ASTContext::InitBuiltinTypes(const TargetInfo &Target) {
804  assert((!this->Target || this->Target == &Target) &&
805         "Incorrect target reinitialization");
806  assert(VoidTy.isNull() && "Context reinitialized?");
807
808  this->Target = &Target;
809
810  ABI.reset(createCXXABI(Target));
811  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
812
813  // C99 6.2.5p19.
814  InitBuiltinType(VoidTy,              BuiltinType::Void);
815
816  // C99 6.2.5p2.
817  InitBuiltinType(BoolTy,              BuiltinType::Bool);
818  // C99 6.2.5p3.
819  if (LangOpts.CharIsSigned)
820    InitBuiltinType(CharTy,            BuiltinType::Char_S);
821  else
822    InitBuiltinType(CharTy,            BuiltinType::Char_U);
823  // C99 6.2.5p4.
824  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
825  InitBuiltinType(ShortTy,             BuiltinType::Short);
826  InitBuiltinType(IntTy,               BuiltinType::Int);
827  InitBuiltinType(LongTy,              BuiltinType::Long);
828  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
829
830  // C99 6.2.5p6.
831  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
832  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
833  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
834  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
835  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
836
837  // C99 6.2.5p10.
838  InitBuiltinType(FloatTy,             BuiltinType::Float);
839  InitBuiltinType(DoubleTy,            BuiltinType::Double);
840  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
841
842  // GNU extension, 128-bit integers.
843  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
844  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
845
846  if (LangOpts.CPlusPlus && LangOpts.WChar) { // C++ 3.9.1p5
847    if (TargetInfo::isTypeSigned(Target.getWCharType()))
848      InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
849    else  // -fshort-wchar makes wchar_t be unsigned.
850      InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
851  } else // C99 (or C++ using -fno-wchar)
852    WCharTy = getFromTargetType(Target.getWCharType());
853
854  WIntTy = getFromTargetType(Target.getWIntType());
855
856  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
857    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
858  else // C99
859    Char16Ty = getFromTargetType(Target.getChar16Type());
860
861  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
862    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
863  else // C99
864    Char32Ty = getFromTargetType(Target.getChar32Type());
865
866  // Placeholder type for type-dependent expressions whose type is
867  // completely unknown. No code should ever check a type against
868  // DependentTy and users should never see it; however, it is here to
869  // help diagnose failures to properly check for type-dependent
870  // expressions.
871  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
872
873  // Placeholder type for functions.
874  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
875
876  // Placeholder type for bound members.
877  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
878
879  // Placeholder type for pseudo-objects.
880  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
881
882  // "any" type; useful for debugger-like clients.
883  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
884
885  // Placeholder type for unbridged ARC casts.
886  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
887
888  // Placeholder type for builtin functions.
889  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
890
891  // C99 6.2.5p11.
892  FloatComplexTy      = getComplexType(FloatTy);
893  DoubleComplexTy     = getComplexType(DoubleTy);
894  LongDoubleComplexTy = getComplexType(LongDoubleTy);
895
896  // Builtin types for 'id', 'Class', and 'SEL'.
897  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
898  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
899  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
900
901  if (LangOpts.OpenCL) {
902    InitBuiltinType(OCLImage1dTy, BuiltinType::OCLImage1d);
903    InitBuiltinType(OCLImage1dArrayTy, BuiltinType::OCLImage1dArray);
904    InitBuiltinType(OCLImage1dBufferTy, BuiltinType::OCLImage1dBuffer);
905    InitBuiltinType(OCLImage2dTy, BuiltinType::OCLImage2d);
906    InitBuiltinType(OCLImage2dArrayTy, BuiltinType::OCLImage2dArray);
907    InitBuiltinType(OCLImage3dTy, BuiltinType::OCLImage3d);
908
909    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
910    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
911  }
912
913  // Builtin type for __objc_yes and __objc_no
914  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
915                       SignedCharTy : BoolTy);
916
917  ObjCConstantStringType = QualType();
918
919  ObjCSuperType = QualType();
920
921  // void * type
922  VoidPtrTy = getPointerType(VoidTy);
923
924  // nullptr type (C++0x 2.14.7)
925  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
926
927  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
928  InitBuiltinType(HalfTy, BuiltinType::Half);
929
930  // Builtin type used to help define __builtin_va_list.
931  VaListTagTy = QualType();
932}
933
934DiagnosticsEngine &ASTContext::getDiagnostics() const {
935  return SourceMgr.getDiagnostics();
936}
937
938AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
939  AttrVec *&Result = DeclAttrs[D];
940  if (!Result) {
941    void *Mem = Allocate(sizeof(AttrVec));
942    Result = new (Mem) AttrVec;
943  }
944
945  return *Result;
946}
947
948/// \brief Erase the attributes corresponding to the given declaration.
949void ASTContext::eraseDeclAttrs(const Decl *D) {
950  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
951  if (Pos != DeclAttrs.end()) {
952    Pos->second->~AttrVec();
953    DeclAttrs.erase(Pos);
954  }
955}
956
957MemberSpecializationInfo *
958ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
959  assert(Var->isStaticDataMember() && "Not a static data member");
960  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
961    = InstantiatedFromStaticDataMember.find(Var);
962  if (Pos == InstantiatedFromStaticDataMember.end())
963    return 0;
964
965  return Pos->second;
966}
967
968void
969ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
970                                                TemplateSpecializationKind TSK,
971                                          SourceLocation PointOfInstantiation) {
972  assert(Inst->isStaticDataMember() && "Not a static data member");
973  assert(Tmpl->isStaticDataMember() && "Not a static data member");
974  assert(!InstantiatedFromStaticDataMember[Inst] &&
975         "Already noted what static data member was instantiated from");
976  InstantiatedFromStaticDataMember[Inst]
977    = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation);
978}
979
980FunctionDecl *ASTContext::getClassScopeSpecializationPattern(
981                                                     const FunctionDecl *FD){
982  assert(FD && "Specialization is 0");
983  llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos
984    = ClassScopeSpecializationPattern.find(FD);
985  if (Pos == ClassScopeSpecializationPattern.end())
986    return 0;
987
988  return Pos->second;
989}
990
991void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD,
992                                        FunctionDecl *Pattern) {
993  assert(FD && "Specialization is 0");
994  assert(Pattern && "Class scope specialization pattern is 0");
995  ClassScopeSpecializationPattern[FD] = Pattern;
996}
997
998NamedDecl *
999ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
1000  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
1001    = InstantiatedFromUsingDecl.find(UUD);
1002  if (Pos == InstantiatedFromUsingDecl.end())
1003    return 0;
1004
1005  return Pos->second;
1006}
1007
1008void
1009ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
1010  assert((isa<UsingDecl>(Pattern) ||
1011          isa<UnresolvedUsingValueDecl>(Pattern) ||
1012          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1013         "pattern decl is not a using decl");
1014  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1015  InstantiatedFromUsingDecl[Inst] = Pattern;
1016}
1017
1018UsingShadowDecl *
1019ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1020  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1021    = InstantiatedFromUsingShadowDecl.find(Inst);
1022  if (Pos == InstantiatedFromUsingShadowDecl.end())
1023    return 0;
1024
1025  return Pos->second;
1026}
1027
1028void
1029ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1030                                               UsingShadowDecl *Pattern) {
1031  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1032  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1033}
1034
1035FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1036  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1037    = InstantiatedFromUnnamedFieldDecl.find(Field);
1038  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1039    return 0;
1040
1041  return Pos->second;
1042}
1043
1044void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1045                                                     FieldDecl *Tmpl) {
1046  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1047  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1048  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1049         "Already noted what unnamed field was instantiated from");
1050
1051  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1052}
1053
1054bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
1055                                    const FieldDecl *LastFD) const {
1056  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1057          FD->getBitWidthValue(*this) == 0);
1058}
1059
1060bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
1061                                             const FieldDecl *LastFD) const {
1062  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1063          FD->getBitWidthValue(*this) == 0 &&
1064          LastFD->getBitWidthValue(*this) != 0);
1065}
1066
1067bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD,
1068                                         const FieldDecl *LastFD) const {
1069  return (FD->isBitField() && LastFD && LastFD->isBitField() &&
1070          FD->getBitWidthValue(*this) &&
1071          LastFD->getBitWidthValue(*this));
1072}
1073
1074bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD,
1075                                         const FieldDecl *LastFD) const {
1076  return (!FD->isBitField() && LastFD && LastFD->isBitField() &&
1077          LastFD->getBitWidthValue(*this));
1078}
1079
1080bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD,
1081                                             const FieldDecl *LastFD) const {
1082  return (FD->isBitField() && LastFD && !LastFD->isBitField() &&
1083          FD->getBitWidthValue(*this));
1084}
1085
1086ASTContext::overridden_cxx_method_iterator
1087ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1088  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1089    = OverriddenMethods.find(Method->getCanonicalDecl());
1090  if (Pos == OverriddenMethods.end())
1091    return 0;
1092
1093  return Pos->second.begin();
1094}
1095
1096ASTContext::overridden_cxx_method_iterator
1097ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1098  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1099    = OverriddenMethods.find(Method->getCanonicalDecl());
1100  if (Pos == OverriddenMethods.end())
1101    return 0;
1102
1103  return Pos->second.end();
1104}
1105
1106unsigned
1107ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1108  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos
1109    = OverriddenMethods.find(Method->getCanonicalDecl());
1110  if (Pos == OverriddenMethods.end())
1111    return 0;
1112
1113  return Pos->second.size();
1114}
1115
1116void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1117                                     const CXXMethodDecl *Overridden) {
1118  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1119  OverriddenMethods[Method].push_back(Overridden);
1120}
1121
1122void ASTContext::getOverriddenMethods(
1123                      const NamedDecl *D,
1124                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1125  assert(D);
1126
1127  if (const CXXMethodDecl *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1128    Overridden.append(CXXMethod->begin_overridden_methods(),
1129                      CXXMethod->end_overridden_methods());
1130    return;
1131  }
1132
1133  const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(D);
1134  if (!Method)
1135    return;
1136
1137  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1138  Method->getOverriddenMethods(OverDecls);
1139  Overridden.append(OverDecls.begin(), OverDecls.end());
1140}
1141
1142void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1143  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1144  assert(!Import->isFromASTFile() && "Non-local import declaration");
1145  if (!FirstLocalImport) {
1146    FirstLocalImport = Import;
1147    LastLocalImport = Import;
1148    return;
1149  }
1150
1151  LastLocalImport->NextLocalImport = Import;
1152  LastLocalImport = Import;
1153}
1154
1155//===----------------------------------------------------------------------===//
1156//                         Type Sizing and Analysis
1157//===----------------------------------------------------------------------===//
1158
1159/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1160/// scalar floating point type.
1161const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1162  const BuiltinType *BT = T->getAs<BuiltinType>();
1163  assert(BT && "Not a floating point type!");
1164  switch (BT->getKind()) {
1165  default: llvm_unreachable("Not a floating point type!");
1166  case BuiltinType::Half:       return Target->getHalfFormat();
1167  case BuiltinType::Float:      return Target->getFloatFormat();
1168  case BuiltinType::Double:     return Target->getDoubleFormat();
1169  case BuiltinType::LongDouble: return Target->getLongDoubleFormat();
1170  }
1171}
1172
1173/// getDeclAlign - Return a conservative estimate of the alignment of the
1174/// specified decl.  Note that bitfields do not have a valid alignment, so
1175/// this method will assert on them.
1176/// If @p RefAsPointee, references are treated like their underlying type
1177/// (for alignof), else they're treated like pointers (for CodeGen).
1178CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const {
1179  unsigned Align = Target->getCharWidth();
1180
1181  bool UseAlignAttrOnly = false;
1182  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1183    Align = AlignFromAttr;
1184
1185    // __attribute__((aligned)) can increase or decrease alignment
1186    // *except* on a struct or struct member, where it only increases
1187    // alignment unless 'packed' is also specified.
1188    //
1189    // It is an error for alignas to decrease alignment, so we can
1190    // ignore that possibility;  Sema should diagnose it.
1191    if (isa<FieldDecl>(D)) {
1192      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1193        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1194    } else {
1195      UseAlignAttrOnly = true;
1196    }
1197  }
1198  else if (isa<FieldDecl>(D))
1199      UseAlignAttrOnly =
1200        D->hasAttr<PackedAttr>() ||
1201        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1202
1203  // If we're using the align attribute only, just ignore everything
1204  // else about the declaration and its type.
1205  if (UseAlignAttrOnly) {
1206    // do nothing
1207
1208  } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1209    QualType T = VD->getType();
1210    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
1211      if (RefAsPointee)
1212        T = RT->getPointeeType();
1213      else
1214        T = getPointerType(RT->getPointeeType());
1215    }
1216    if (!T->isIncompleteType() && !T->isFunctionType()) {
1217      // Adjust alignments of declarations with array type by the
1218      // large-array alignment on the target.
1219      unsigned MinWidth = Target->getLargeArrayMinWidth();
1220      const ArrayType *arrayType;
1221      if (MinWidth && (arrayType = getAsArrayType(T))) {
1222        if (isa<VariableArrayType>(arrayType))
1223          Align = std::max(Align, Target->getLargeArrayAlign());
1224        else if (isa<ConstantArrayType>(arrayType) &&
1225                 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1226          Align = std::max(Align, Target->getLargeArrayAlign());
1227
1228        // Walk through any array types while we're at it.
1229        T = getBaseElementType(arrayType);
1230      }
1231      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1232    }
1233
1234    // Fields can be subject to extra alignment constraints, like if
1235    // the field is packed, the struct is packed, or the struct has a
1236    // a max-field-alignment constraint (#pragma pack).  So calculate
1237    // the actual alignment of the field within the struct, and then
1238    // (as we're expected to) constrain that by the alignment of the type.
1239    if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) {
1240      // So calculate the alignment of the field.
1241      const ASTRecordLayout &layout = getASTRecordLayout(field->getParent());
1242
1243      // Start with the record's overall alignment.
1244      unsigned fieldAlign = toBits(layout.getAlignment());
1245
1246      // Use the GCD of that and the offset within the record.
1247      uint64_t offset = layout.getFieldOffset(field->getFieldIndex());
1248      if (offset > 0) {
1249        // Alignment is always a power of 2, so the GCD will be a power of 2,
1250        // which means we get to do this crazy thing instead of Euclid's.
1251        uint64_t lowBitOfOffset = offset & (~offset + 1);
1252        if (lowBitOfOffset < fieldAlign)
1253          fieldAlign = static_cast<unsigned>(lowBitOfOffset);
1254      }
1255
1256      Align = std::min(Align, fieldAlign);
1257    }
1258  }
1259
1260  return toCharUnitsFromBits(Align);
1261}
1262
1263// getTypeInfoDataSizeInChars - Return the size of a type, in
1264// chars. If the type is a record, its data size is returned.  This is
1265// the size of the memcpy that's performed when assigning this type
1266// using a trivial copy/move assignment operator.
1267std::pair<CharUnits, CharUnits>
1268ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1269  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1270
1271  // In C++, objects can sometimes be allocated into the tail padding
1272  // of a base-class subobject.  We decide whether that's possible
1273  // during class layout, so here we can just trust the layout results.
1274  if (getLangOpts().CPlusPlus) {
1275    if (const RecordType *RT = T->getAs<RecordType>()) {
1276      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1277      sizeAndAlign.first = layout.getDataSize();
1278    }
1279  }
1280
1281  return sizeAndAlign;
1282}
1283
1284std::pair<CharUnits, CharUnits>
1285ASTContext::getTypeInfoInChars(const Type *T) const {
1286  std::pair<uint64_t, unsigned> Info = getTypeInfo(T);
1287  return std::make_pair(toCharUnitsFromBits(Info.first),
1288                        toCharUnitsFromBits(Info.second));
1289}
1290
1291std::pair<CharUnits, CharUnits>
1292ASTContext::getTypeInfoInChars(QualType T) const {
1293  return getTypeInfoInChars(T.getTypePtr());
1294}
1295
1296std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const {
1297  TypeInfoMap::iterator it = MemoizedTypeInfo.find(T);
1298  if (it != MemoizedTypeInfo.end())
1299    return it->second;
1300
1301  std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T);
1302  MemoizedTypeInfo.insert(std::make_pair(T, Info));
1303  return Info;
1304}
1305
1306/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1307/// method does not work on incomplete types.
1308///
1309/// FIXME: Pointers into different addr spaces could have different sizes and
1310/// alignment requirements: getPointerInfo should take an AddrSpace, this
1311/// should take a QualType, &c.
1312std::pair<uint64_t, unsigned>
1313ASTContext::getTypeInfoImpl(const Type *T) const {
1314  uint64_t Width=0;
1315  unsigned Align=8;
1316  switch (T->getTypeClass()) {
1317#define TYPE(Class, Base)
1318#define ABSTRACT_TYPE(Class, Base)
1319#define NON_CANONICAL_TYPE(Class, Base)
1320#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1321#include "clang/AST/TypeNodes.def"
1322    llvm_unreachable("Should not see dependent types");
1323
1324  case Type::FunctionNoProto:
1325  case Type::FunctionProto:
1326    // GCC extension: alignof(function) = 32 bits
1327    Width = 0;
1328    Align = 32;
1329    break;
1330
1331  case Type::IncompleteArray:
1332  case Type::VariableArray:
1333    Width = 0;
1334    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1335    break;
1336
1337  case Type::ConstantArray: {
1338    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
1339
1340    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
1341    uint64_t Size = CAT->getSize().getZExtValue();
1342    assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) &&
1343           "Overflow in array type bit size evaluation");
1344    Width = EltInfo.first*Size;
1345    Align = EltInfo.second;
1346    Width = llvm::RoundUpToAlignment(Width, Align);
1347    break;
1348  }
1349  case Type::ExtVector:
1350  case Type::Vector: {
1351    const VectorType *VT = cast<VectorType>(T);
1352    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
1353    Width = EltInfo.first*VT->getNumElements();
1354    Align = Width;
1355    // If the alignment is not a power of 2, round up to the next power of 2.
1356    // This happens for non-power-of-2 length vectors.
1357    if (Align & (Align-1)) {
1358      Align = llvm::NextPowerOf2(Align);
1359      Width = llvm::RoundUpToAlignment(Width, Align);
1360    }
1361    // Adjust the alignment based on the target max.
1362    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1363    if (TargetVectorAlign && TargetVectorAlign < Align)
1364      Align = TargetVectorAlign;
1365    break;
1366  }
1367
1368  case Type::Builtin:
1369    switch (cast<BuiltinType>(T)->getKind()) {
1370    default: llvm_unreachable("Unknown builtin type!");
1371    case BuiltinType::Void:
1372      // GCC extension: alignof(void) = 8 bits.
1373      Width = 0;
1374      Align = 8;
1375      break;
1376
1377    case BuiltinType::Bool:
1378      Width = Target->getBoolWidth();
1379      Align = Target->getBoolAlign();
1380      break;
1381    case BuiltinType::Char_S:
1382    case BuiltinType::Char_U:
1383    case BuiltinType::UChar:
1384    case BuiltinType::SChar:
1385      Width = Target->getCharWidth();
1386      Align = Target->getCharAlign();
1387      break;
1388    case BuiltinType::WChar_S:
1389    case BuiltinType::WChar_U:
1390      Width = Target->getWCharWidth();
1391      Align = Target->getWCharAlign();
1392      break;
1393    case BuiltinType::Char16:
1394      Width = Target->getChar16Width();
1395      Align = Target->getChar16Align();
1396      break;
1397    case BuiltinType::Char32:
1398      Width = Target->getChar32Width();
1399      Align = Target->getChar32Align();
1400      break;
1401    case BuiltinType::UShort:
1402    case BuiltinType::Short:
1403      Width = Target->getShortWidth();
1404      Align = Target->getShortAlign();
1405      break;
1406    case BuiltinType::UInt:
1407    case BuiltinType::Int:
1408      Width = Target->getIntWidth();
1409      Align = Target->getIntAlign();
1410      break;
1411    case BuiltinType::ULong:
1412    case BuiltinType::Long:
1413      Width = Target->getLongWidth();
1414      Align = Target->getLongAlign();
1415      break;
1416    case BuiltinType::ULongLong:
1417    case BuiltinType::LongLong:
1418      Width = Target->getLongLongWidth();
1419      Align = Target->getLongLongAlign();
1420      break;
1421    case BuiltinType::Int128:
1422    case BuiltinType::UInt128:
1423      Width = 128;
1424      Align = 128; // int128_t is 128-bit aligned on all targets.
1425      break;
1426    case BuiltinType::Half:
1427      Width = Target->getHalfWidth();
1428      Align = Target->getHalfAlign();
1429      break;
1430    case BuiltinType::Float:
1431      Width = Target->getFloatWidth();
1432      Align = Target->getFloatAlign();
1433      break;
1434    case BuiltinType::Double:
1435      Width = Target->getDoubleWidth();
1436      Align = Target->getDoubleAlign();
1437      break;
1438    case BuiltinType::LongDouble:
1439      Width = Target->getLongDoubleWidth();
1440      Align = Target->getLongDoubleAlign();
1441      break;
1442    case BuiltinType::NullPtr:
1443      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
1444      Align = Target->getPointerAlign(0); //   == sizeof(void*)
1445      break;
1446    case BuiltinType::ObjCId:
1447    case BuiltinType::ObjCClass:
1448    case BuiltinType::ObjCSel:
1449      Width = Target->getPointerWidth(0);
1450      Align = Target->getPointerAlign(0);
1451      break;
1452    case BuiltinType::OCLSampler:
1453      // Samplers are modeled as integers.
1454      Width = Target->getIntWidth();
1455      Align = Target->getIntAlign();
1456      break;
1457    case BuiltinType::OCLEvent:
1458    case BuiltinType::OCLImage1d:
1459    case BuiltinType::OCLImage1dArray:
1460    case BuiltinType::OCLImage1dBuffer:
1461    case BuiltinType::OCLImage2d:
1462    case BuiltinType::OCLImage2dArray:
1463    case BuiltinType::OCLImage3d:
1464      // Currently these types are pointers to opaque types.
1465      Width = Target->getPointerWidth(0);
1466      Align = Target->getPointerAlign(0);
1467      break;
1468    }
1469    break;
1470  case Type::ObjCObjectPointer:
1471    Width = Target->getPointerWidth(0);
1472    Align = Target->getPointerAlign(0);
1473    break;
1474  case Type::BlockPointer: {
1475    unsigned AS = getTargetAddressSpace(
1476        cast<BlockPointerType>(T)->getPointeeType());
1477    Width = Target->getPointerWidth(AS);
1478    Align = Target->getPointerAlign(AS);
1479    break;
1480  }
1481  case Type::LValueReference:
1482  case Type::RValueReference: {
1483    // alignof and sizeof should never enter this code path here, so we go
1484    // the pointer route.
1485    unsigned AS = getTargetAddressSpace(
1486        cast<ReferenceType>(T)->getPointeeType());
1487    Width = Target->getPointerWidth(AS);
1488    Align = Target->getPointerAlign(AS);
1489    break;
1490  }
1491  case Type::Pointer: {
1492    unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
1493    Width = Target->getPointerWidth(AS);
1494    Align = Target->getPointerAlign(AS);
1495    break;
1496  }
1497  case Type::MemberPointer: {
1498    const MemberPointerType *MPT = cast<MemberPointerType>(T);
1499    llvm::tie(Width, Align) = ABI->getMemberPointerWidthAndAlign(MPT);
1500    break;
1501  }
1502  case Type::Complex: {
1503    // Complex types have the same alignment as their elements, but twice the
1504    // size.
1505    std::pair<uint64_t, unsigned> EltInfo =
1506      getTypeInfo(cast<ComplexType>(T)->getElementType());
1507    Width = EltInfo.first*2;
1508    Align = EltInfo.second;
1509    break;
1510  }
1511  case Type::ObjCObject:
1512    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
1513  case Type::ObjCInterface: {
1514    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
1515    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
1516    Width = toBits(Layout.getSize());
1517    Align = toBits(Layout.getAlignment());
1518    break;
1519  }
1520  case Type::Record:
1521  case Type::Enum: {
1522    const TagType *TT = cast<TagType>(T);
1523
1524    if (TT->getDecl()->isInvalidDecl()) {
1525      Width = 8;
1526      Align = 8;
1527      break;
1528    }
1529
1530    if (const EnumType *ET = dyn_cast<EnumType>(TT))
1531      return getTypeInfo(ET->getDecl()->getIntegerType());
1532
1533    const RecordType *RT = cast<RecordType>(TT);
1534    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
1535    Width = toBits(Layout.getSize());
1536    Align = toBits(Layout.getAlignment());
1537    break;
1538  }
1539
1540  case Type::SubstTemplateTypeParm:
1541    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
1542                       getReplacementType().getTypePtr());
1543
1544  case Type::Auto: {
1545    const AutoType *A = cast<AutoType>(T);
1546    assert(A->isDeduced() && "Cannot request the size of a dependent type");
1547    return getTypeInfo(A->getDeducedType().getTypePtr());
1548  }
1549
1550  case Type::Paren:
1551    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
1552
1553  case Type::Typedef: {
1554    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
1555    std::pair<uint64_t, unsigned> Info
1556      = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
1557    // If the typedef has an aligned attribute on it, it overrides any computed
1558    // alignment we have.  This violates the GCC documentation (which says that
1559    // attribute(aligned) can only round up) but matches its implementation.
1560    if (unsigned AttrAlign = Typedef->getMaxAlignment())
1561      Align = AttrAlign;
1562    else
1563      Align = Info.second;
1564    Width = Info.first;
1565    break;
1566  }
1567
1568  case Type::TypeOfExpr:
1569    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
1570                         .getTypePtr());
1571
1572  case Type::TypeOf:
1573    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
1574
1575  case Type::Decltype:
1576    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
1577                        .getTypePtr());
1578
1579  case Type::UnaryTransform:
1580    return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType());
1581
1582  case Type::Elaborated:
1583    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
1584
1585  case Type::Attributed:
1586    return getTypeInfo(
1587                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
1588
1589  case Type::TemplateSpecialization: {
1590    assert(getCanonicalType(T) != T &&
1591           "Cannot request the size of a dependent type");
1592    const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
1593    // A type alias template specialization may refer to a typedef with the
1594    // aligned attribute on it.
1595    if (TST->isTypeAlias())
1596      return getTypeInfo(TST->getAliasedType().getTypePtr());
1597    else
1598      return getTypeInfo(getCanonicalType(T));
1599  }
1600
1601  case Type::Atomic: {
1602    // Start with the base type information.
1603    std::pair<uint64_t, unsigned> Info
1604      = getTypeInfo(cast<AtomicType>(T)->getValueType());
1605    Width = Info.first;
1606    Align = Info.second;
1607
1608    // If the size of the type doesn't exceed the platform's max
1609    // atomic promotion width, make the size and alignment more
1610    // favorable to atomic operations:
1611    if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth()) {
1612      // Round the size up to a power of 2.
1613      if (!llvm::isPowerOf2_64(Width))
1614        Width = llvm::NextPowerOf2(Width);
1615
1616      // Set the alignment equal to the size.
1617      Align = static_cast<unsigned>(Width);
1618    }
1619  }
1620
1621  }
1622
1623  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
1624  return std::make_pair(Width, Align);
1625}
1626
1627/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1628CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
1629  return CharUnits::fromQuantity(BitSize / getCharWidth());
1630}
1631
1632/// toBits - Convert a size in characters to a size in characters.
1633int64_t ASTContext::toBits(CharUnits CharSize) const {
1634  return CharSize.getQuantity() * getCharWidth();
1635}
1636
1637/// getTypeSizeInChars - Return the size of the specified type, in characters.
1638/// This method does not work on incomplete types.
1639CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
1640  return toCharUnitsFromBits(getTypeSize(T));
1641}
1642CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
1643  return toCharUnitsFromBits(getTypeSize(T));
1644}
1645
1646/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1647/// characters. This method does not work on incomplete types.
1648CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
1649  return toCharUnitsFromBits(getTypeAlign(T));
1650}
1651CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
1652  return toCharUnitsFromBits(getTypeAlign(T));
1653}
1654
1655/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1656/// type for the current target in bits.  This can be different than the ABI
1657/// alignment in cases where it is beneficial for performance to overalign
1658/// a data type.
1659unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
1660  unsigned ABIAlign = getTypeAlign(T);
1661
1662  // Double and long long should be naturally aligned if possible.
1663  if (const ComplexType* CT = T->getAs<ComplexType>())
1664    T = CT->getElementType().getTypePtr();
1665  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
1666      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
1667      T->isSpecificBuiltinType(BuiltinType::ULongLong))
1668    return std::max(ABIAlign, (unsigned)getTypeSize(T));
1669
1670  return ABIAlign;
1671}
1672
1673/// DeepCollectObjCIvars -
1674/// This routine first collects all declared, but not synthesized, ivars in
1675/// super class and then collects all ivars, including those synthesized for
1676/// current class. This routine is used for implementation of current class
1677/// when all ivars, declared and synthesized are known.
1678///
1679void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
1680                                      bool leafClass,
1681                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
1682  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
1683    DeepCollectObjCIvars(SuperClass, false, Ivars);
1684  if (!leafClass) {
1685    for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
1686         E = OI->ivar_end(); I != E; ++I)
1687      Ivars.push_back(*I);
1688  } else {
1689    ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
1690    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
1691         Iv= Iv->getNextIvar())
1692      Ivars.push_back(Iv);
1693  }
1694}
1695
1696/// CollectInheritedProtocols - Collect all protocols in current class and
1697/// those inherited by it.
1698void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
1699                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
1700  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1701    // We can use protocol_iterator here instead of
1702    // all_referenced_protocol_iterator since we are walking all categories.
1703    for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(),
1704         PE = OI->all_referenced_protocol_end(); P != PE; ++P) {
1705      ObjCProtocolDecl *Proto = (*P);
1706      Protocols.insert(Proto->getCanonicalDecl());
1707      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1708           PE = Proto->protocol_end(); P != PE; ++P) {
1709        Protocols.insert((*P)->getCanonicalDecl());
1710        CollectInheritedProtocols(*P, Protocols);
1711      }
1712    }
1713
1714    // Categories of this Interface.
1715    for (ObjCInterfaceDecl::visible_categories_iterator
1716           Cat = OI->visible_categories_begin(),
1717           CatEnd = OI->visible_categories_end();
1718         Cat != CatEnd; ++Cat) {
1719      CollectInheritedProtocols(*Cat, Protocols);
1720    }
1721
1722    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
1723      while (SD) {
1724        CollectInheritedProtocols(SD, Protocols);
1725        SD = SD->getSuperClass();
1726      }
1727  } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1728    for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(),
1729         PE = OC->protocol_end(); P != PE; ++P) {
1730      ObjCProtocolDecl *Proto = (*P);
1731      Protocols.insert(Proto->getCanonicalDecl());
1732      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1733           PE = Proto->protocol_end(); P != PE; ++P)
1734        CollectInheritedProtocols(*P, Protocols);
1735    }
1736  } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
1737    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
1738         PE = OP->protocol_end(); P != PE; ++P) {
1739      ObjCProtocolDecl *Proto = (*P);
1740      Protocols.insert(Proto->getCanonicalDecl());
1741      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
1742           PE = Proto->protocol_end(); P != PE; ++P)
1743        CollectInheritedProtocols(*P, Protocols);
1744    }
1745  }
1746}
1747
1748unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
1749  unsigned count = 0;
1750  // Count ivars declared in class extension.
1751  for (ObjCInterfaceDecl::known_extensions_iterator
1752         Ext = OI->known_extensions_begin(),
1753         ExtEnd = OI->known_extensions_end();
1754       Ext != ExtEnd; ++Ext) {
1755    count += Ext->ivar_size();
1756  }
1757
1758  // Count ivar defined in this class's implementation.  This
1759  // includes synthesized ivars.
1760  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
1761    count += ImplDecl->ivar_size();
1762
1763  return count;
1764}
1765
1766bool ASTContext::isSentinelNullExpr(const Expr *E) {
1767  if (!E)
1768    return false;
1769
1770  // nullptr_t is always treated as null.
1771  if (E->getType()->isNullPtrType()) return true;
1772
1773  if (E->getType()->isAnyPointerType() &&
1774      E->IgnoreParenCasts()->isNullPointerConstant(*this,
1775                                                Expr::NPC_ValueDependentIsNull))
1776    return true;
1777
1778  // Unfortunately, __null has type 'int'.
1779  if (isa<GNUNullExpr>(E)) return true;
1780
1781  return false;
1782}
1783
1784/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1785ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
1786  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1787    I = ObjCImpls.find(D);
1788  if (I != ObjCImpls.end())
1789    return cast<ObjCImplementationDecl>(I->second);
1790  return 0;
1791}
1792/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1793ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
1794  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
1795    I = ObjCImpls.find(D);
1796  if (I != ObjCImpls.end())
1797    return cast<ObjCCategoryImplDecl>(I->second);
1798  return 0;
1799}
1800
1801/// \brief Set the implementation of ObjCInterfaceDecl.
1802void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1803                           ObjCImplementationDecl *ImplD) {
1804  assert(IFaceD && ImplD && "Passed null params");
1805  ObjCImpls[IFaceD] = ImplD;
1806}
1807/// \brief Set the implementation of ObjCCategoryDecl.
1808void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
1809                           ObjCCategoryImplDecl *ImplD) {
1810  assert(CatD && ImplD && "Passed null params");
1811  ObjCImpls[CatD] = ImplD;
1812}
1813
1814const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
1815                                              const NamedDecl *ND) const {
1816  if (const ObjCInterfaceDecl *ID =
1817          dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
1818    return ID;
1819  if (const ObjCCategoryDecl *CD =
1820          dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
1821    return CD->getClassInterface();
1822  if (const ObjCImplDecl *IMD =
1823          dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
1824    return IMD->getClassInterface();
1825
1826  return 0;
1827}
1828
1829/// \brief Get the copy initialization expression of VarDecl,or NULL if
1830/// none exists.
1831Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) {
1832  assert(VD && "Passed null params");
1833  assert(VD->hasAttr<BlocksAttr>() &&
1834         "getBlockVarCopyInits - not __block var");
1835  llvm::DenseMap<const VarDecl*, Expr*>::iterator
1836    I = BlockVarCopyInits.find(VD);
1837  return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0;
1838}
1839
1840/// \brief Set the copy inialization expression of a block var decl.
1841void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) {
1842  assert(VD && Init && "Passed null params");
1843  assert(VD->hasAttr<BlocksAttr>() &&
1844         "setBlockVarCopyInits - not __block var");
1845  BlockVarCopyInits[VD] = Init;
1846}
1847
1848TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
1849                                                 unsigned DataSize) const {
1850  if (!DataSize)
1851    DataSize = TypeLoc::getFullDataSizeForType(T);
1852  else
1853    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
1854           "incorrect data size provided to CreateTypeSourceInfo!");
1855
1856  TypeSourceInfo *TInfo =
1857    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
1858  new (TInfo) TypeSourceInfo(T);
1859  return TInfo;
1860}
1861
1862TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
1863                                                     SourceLocation L) const {
1864  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
1865  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
1866  return DI;
1867}
1868
1869const ASTRecordLayout &
1870ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
1871  return getObjCLayout(D, 0);
1872}
1873
1874const ASTRecordLayout &
1875ASTContext::getASTObjCImplementationLayout(
1876                                        const ObjCImplementationDecl *D) const {
1877  return getObjCLayout(D->getClassInterface(), D);
1878}
1879
1880//===----------------------------------------------------------------------===//
1881//                   Type creation/memoization methods
1882//===----------------------------------------------------------------------===//
1883
1884QualType
1885ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
1886  unsigned fastQuals = quals.getFastQualifiers();
1887  quals.removeFastQualifiers();
1888
1889  // Check if we've already instantiated this type.
1890  llvm::FoldingSetNodeID ID;
1891  ExtQuals::Profile(ID, baseType, quals);
1892  void *insertPos = 0;
1893  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
1894    assert(eq->getQualifiers() == quals);
1895    return QualType(eq, fastQuals);
1896  }
1897
1898  // If the base type is not canonical, make the appropriate canonical type.
1899  QualType canon;
1900  if (!baseType->isCanonicalUnqualified()) {
1901    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
1902    canonSplit.Quals.addConsistentQualifiers(quals);
1903    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
1904
1905    // Re-find the insert position.
1906    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
1907  }
1908
1909  ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
1910  ExtQualNodes.InsertNode(eq, insertPos);
1911  return QualType(eq, fastQuals);
1912}
1913
1914QualType
1915ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const {
1916  QualType CanT = getCanonicalType(T);
1917  if (CanT.getAddressSpace() == AddressSpace)
1918    return T;
1919
1920  // If we are composing extended qualifiers together, merge together
1921  // into one ExtQuals node.
1922  QualifierCollector Quals;
1923  const Type *TypeNode = Quals.strip(T);
1924
1925  // If this type already has an address space specified, it cannot get
1926  // another one.
1927  assert(!Quals.hasAddressSpace() &&
1928         "Type cannot be in multiple addr spaces!");
1929  Quals.addAddressSpace(AddressSpace);
1930
1931  return getExtQualType(TypeNode, Quals);
1932}
1933
1934QualType ASTContext::getObjCGCQualType(QualType T,
1935                                       Qualifiers::GC GCAttr) const {
1936  QualType CanT = getCanonicalType(T);
1937  if (CanT.getObjCGCAttr() == GCAttr)
1938    return T;
1939
1940  if (const PointerType *ptr = T->getAs<PointerType>()) {
1941    QualType Pointee = ptr->getPointeeType();
1942    if (Pointee->isAnyPointerType()) {
1943      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
1944      return getPointerType(ResultType);
1945    }
1946  }
1947
1948  // If we are composing extended qualifiers together, merge together
1949  // into one ExtQuals node.
1950  QualifierCollector Quals;
1951  const Type *TypeNode = Quals.strip(T);
1952
1953  // If this type already has an ObjCGC specified, it cannot get
1954  // another one.
1955  assert(!Quals.hasObjCGCAttr() &&
1956         "Type cannot have multiple ObjCGCs!");
1957  Quals.addObjCGCAttr(GCAttr);
1958
1959  return getExtQualType(TypeNode, Quals);
1960}
1961
1962const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
1963                                                   FunctionType::ExtInfo Info) {
1964  if (T->getExtInfo() == Info)
1965    return T;
1966
1967  QualType Result;
1968  if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
1969    Result = getFunctionNoProtoType(FNPT->getResultType(), Info);
1970  } else {
1971    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
1972    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
1973    EPI.ExtInfo = Info;
1974    Result = getFunctionType(FPT->getResultType(),
1975                             ArrayRef<QualType>(FPT->arg_type_begin(),
1976                                                FPT->getNumArgs()),
1977                             EPI);
1978  }
1979
1980  return cast<FunctionType>(Result.getTypePtr());
1981}
1982
1983/// getComplexType - Return the uniqued reference to the type for a complex
1984/// number with the specified element type.
1985QualType ASTContext::getComplexType(QualType T) const {
1986  // Unique pointers, to guarantee there is only one pointer of a particular
1987  // structure.
1988  llvm::FoldingSetNodeID ID;
1989  ComplexType::Profile(ID, T);
1990
1991  void *InsertPos = 0;
1992  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
1993    return QualType(CT, 0);
1994
1995  // If the pointee type isn't canonical, this won't be a canonical type either,
1996  // so fill in the canonical type field.
1997  QualType Canonical;
1998  if (!T.isCanonical()) {
1999    Canonical = getComplexType(getCanonicalType(T));
2000
2001    // Get the new insert position for the node we care about.
2002    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
2003    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2004  }
2005  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
2006  Types.push_back(New);
2007  ComplexTypes.InsertNode(New, InsertPos);
2008  return QualType(New, 0);
2009}
2010
2011/// getPointerType - Return the uniqued reference to the type for a pointer to
2012/// the specified type.
2013QualType ASTContext::getPointerType(QualType T) const {
2014  // Unique pointers, to guarantee there is only one pointer of a particular
2015  // structure.
2016  llvm::FoldingSetNodeID ID;
2017  PointerType::Profile(ID, T);
2018
2019  void *InsertPos = 0;
2020  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2021    return QualType(PT, 0);
2022
2023  // If the pointee type isn't canonical, this won't be a canonical type either,
2024  // so fill in the canonical type field.
2025  QualType Canonical;
2026  if (!T.isCanonical()) {
2027    Canonical = getPointerType(getCanonicalType(T));
2028
2029    // Get the new insert position for the node we care about.
2030    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2031    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2032  }
2033  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
2034  Types.push_back(New);
2035  PointerTypes.InsertNode(New, InsertPos);
2036  return QualType(New, 0);
2037}
2038
2039/// getBlockPointerType - Return the uniqued reference to the type for
2040/// a pointer to the specified block.
2041QualType ASTContext::getBlockPointerType(QualType T) const {
2042  assert(T->isFunctionType() && "block of function types only");
2043  // Unique pointers, to guarantee there is only one block of a particular
2044  // structure.
2045  llvm::FoldingSetNodeID ID;
2046  BlockPointerType::Profile(ID, T);
2047
2048  void *InsertPos = 0;
2049  if (BlockPointerType *PT =
2050        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2051    return QualType(PT, 0);
2052
2053  // If the block pointee type isn't canonical, this won't be a canonical
2054  // type either so fill in the canonical type field.
2055  QualType Canonical;
2056  if (!T.isCanonical()) {
2057    Canonical = getBlockPointerType(getCanonicalType(T));
2058
2059    // Get the new insert position for the node we care about.
2060    BlockPointerType *NewIP =
2061      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2062    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2063  }
2064  BlockPointerType *New
2065    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
2066  Types.push_back(New);
2067  BlockPointerTypes.InsertNode(New, InsertPos);
2068  return QualType(New, 0);
2069}
2070
2071/// getLValueReferenceType - Return the uniqued reference to the type for an
2072/// lvalue reference to the specified type.
2073QualType
2074ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
2075  assert(getCanonicalType(T) != OverloadTy &&
2076         "Unresolved overloaded function type");
2077
2078  // Unique pointers, to guarantee there is only one pointer of a particular
2079  // structure.
2080  llvm::FoldingSetNodeID ID;
2081  ReferenceType::Profile(ID, T, SpelledAsLValue);
2082
2083  void *InsertPos = 0;
2084  if (LValueReferenceType *RT =
2085        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2086    return QualType(RT, 0);
2087
2088  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2089
2090  // If the referencee type isn't canonical, this won't be a canonical type
2091  // either, so fill in the canonical type field.
2092  QualType Canonical;
2093  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
2094    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2095    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
2096
2097    // Get the new insert position for the node we care about.
2098    LValueReferenceType *NewIP =
2099      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2100    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2101  }
2102
2103  LValueReferenceType *New
2104    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
2105                                                     SpelledAsLValue);
2106  Types.push_back(New);
2107  LValueReferenceTypes.InsertNode(New, InsertPos);
2108
2109  return QualType(New, 0);
2110}
2111
2112/// getRValueReferenceType - Return the uniqued reference to the type for an
2113/// rvalue reference to the specified type.
2114QualType ASTContext::getRValueReferenceType(QualType T) const {
2115  // Unique pointers, to guarantee there is only one pointer of a particular
2116  // structure.
2117  llvm::FoldingSetNodeID ID;
2118  ReferenceType::Profile(ID, T, false);
2119
2120  void *InsertPos = 0;
2121  if (RValueReferenceType *RT =
2122        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
2123    return QualType(RT, 0);
2124
2125  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
2126
2127  // If the referencee type isn't canonical, this won't be a canonical type
2128  // either, so fill in the canonical type field.
2129  QualType Canonical;
2130  if (InnerRef || !T.isCanonical()) {
2131    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
2132    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
2133
2134    // Get the new insert position for the node we care about.
2135    RValueReferenceType *NewIP =
2136      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
2137    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2138  }
2139
2140  RValueReferenceType *New
2141    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
2142  Types.push_back(New);
2143  RValueReferenceTypes.InsertNode(New, InsertPos);
2144  return QualType(New, 0);
2145}
2146
2147/// getMemberPointerType - Return the uniqued reference to the type for a
2148/// member pointer to the specified type, in the specified class.
2149QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
2150  // Unique pointers, to guarantee there is only one pointer of a particular
2151  // structure.
2152  llvm::FoldingSetNodeID ID;
2153  MemberPointerType::Profile(ID, T, Cls);
2154
2155  void *InsertPos = 0;
2156  if (MemberPointerType *PT =
2157      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
2158    return QualType(PT, 0);
2159
2160  // If the pointee or class type isn't canonical, this won't be a canonical
2161  // type either, so fill in the canonical type field.
2162  QualType Canonical;
2163  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
2164    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
2165
2166    // Get the new insert position for the node we care about.
2167    MemberPointerType *NewIP =
2168      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
2169    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2170  }
2171  MemberPointerType *New
2172    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
2173  Types.push_back(New);
2174  MemberPointerTypes.InsertNode(New, InsertPos);
2175  return QualType(New, 0);
2176}
2177
2178/// getConstantArrayType - Return the unique reference to the type for an
2179/// array of the specified element type.
2180QualType ASTContext::getConstantArrayType(QualType EltTy,
2181                                          const llvm::APInt &ArySizeIn,
2182                                          ArrayType::ArraySizeModifier ASM,
2183                                          unsigned IndexTypeQuals) const {
2184  assert((EltTy->isDependentType() ||
2185          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
2186         "Constant array of VLAs is illegal!");
2187
2188  // Convert the array size into a canonical width matching the pointer size for
2189  // the target.
2190  llvm::APInt ArySize(ArySizeIn);
2191  ArySize =
2192    ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy)));
2193
2194  llvm::FoldingSetNodeID ID;
2195  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals);
2196
2197  void *InsertPos = 0;
2198  if (ConstantArrayType *ATP =
2199      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
2200    return QualType(ATP, 0);
2201
2202  // If the element type isn't canonical or has qualifiers, this won't
2203  // be a canonical type either, so fill in the canonical type field.
2204  QualType Canon;
2205  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2206    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2207    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize,
2208                                 ASM, IndexTypeQuals);
2209    Canon = getQualifiedType(Canon, canonSplit.Quals);
2210
2211    // Get the new insert position for the node we care about.
2212    ConstantArrayType *NewIP =
2213      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
2214    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2215  }
2216
2217  ConstantArrayType *New = new(*this,TypeAlignment)
2218    ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals);
2219  ConstantArrayTypes.InsertNode(New, InsertPos);
2220  Types.push_back(New);
2221  return QualType(New, 0);
2222}
2223
2224/// getVariableArrayDecayedType - Turns the given type, which may be
2225/// variably-modified, into the corresponding type with all the known
2226/// sizes replaced with [*].
2227QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
2228  // Vastly most common case.
2229  if (!type->isVariablyModifiedType()) return type;
2230
2231  QualType result;
2232
2233  SplitQualType split = type.getSplitDesugaredType();
2234  const Type *ty = split.Ty;
2235  switch (ty->getTypeClass()) {
2236#define TYPE(Class, Base)
2237#define ABSTRACT_TYPE(Class, Base)
2238#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2239#include "clang/AST/TypeNodes.def"
2240    llvm_unreachable("didn't desugar past all non-canonical types?");
2241
2242  // These types should never be variably-modified.
2243  case Type::Builtin:
2244  case Type::Complex:
2245  case Type::Vector:
2246  case Type::ExtVector:
2247  case Type::DependentSizedExtVector:
2248  case Type::ObjCObject:
2249  case Type::ObjCInterface:
2250  case Type::ObjCObjectPointer:
2251  case Type::Record:
2252  case Type::Enum:
2253  case Type::UnresolvedUsing:
2254  case Type::TypeOfExpr:
2255  case Type::TypeOf:
2256  case Type::Decltype:
2257  case Type::UnaryTransform:
2258  case Type::DependentName:
2259  case Type::InjectedClassName:
2260  case Type::TemplateSpecialization:
2261  case Type::DependentTemplateSpecialization:
2262  case Type::TemplateTypeParm:
2263  case Type::SubstTemplateTypeParmPack:
2264  case Type::Auto:
2265  case Type::PackExpansion:
2266    llvm_unreachable("type should never be variably-modified");
2267
2268  // These types can be variably-modified but should never need to
2269  // further decay.
2270  case Type::FunctionNoProto:
2271  case Type::FunctionProto:
2272  case Type::BlockPointer:
2273  case Type::MemberPointer:
2274    return type;
2275
2276  // These types can be variably-modified.  All these modifications
2277  // preserve structure except as noted by comments.
2278  // TODO: if we ever care about optimizing VLAs, there are no-op
2279  // optimizations available here.
2280  case Type::Pointer:
2281    result = getPointerType(getVariableArrayDecayedType(
2282                              cast<PointerType>(ty)->getPointeeType()));
2283    break;
2284
2285  case Type::LValueReference: {
2286    const LValueReferenceType *lv = cast<LValueReferenceType>(ty);
2287    result = getLValueReferenceType(
2288                 getVariableArrayDecayedType(lv->getPointeeType()),
2289                                    lv->isSpelledAsLValue());
2290    break;
2291  }
2292
2293  case Type::RValueReference: {
2294    const RValueReferenceType *lv = cast<RValueReferenceType>(ty);
2295    result = getRValueReferenceType(
2296                 getVariableArrayDecayedType(lv->getPointeeType()));
2297    break;
2298  }
2299
2300  case Type::Atomic: {
2301    const AtomicType *at = cast<AtomicType>(ty);
2302    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
2303    break;
2304  }
2305
2306  case Type::ConstantArray: {
2307    const ConstantArrayType *cat = cast<ConstantArrayType>(ty);
2308    result = getConstantArrayType(
2309                 getVariableArrayDecayedType(cat->getElementType()),
2310                                  cat->getSize(),
2311                                  cat->getSizeModifier(),
2312                                  cat->getIndexTypeCVRQualifiers());
2313    break;
2314  }
2315
2316  case Type::DependentSizedArray: {
2317    const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty);
2318    result = getDependentSizedArrayType(
2319                 getVariableArrayDecayedType(dat->getElementType()),
2320                                        dat->getSizeExpr(),
2321                                        dat->getSizeModifier(),
2322                                        dat->getIndexTypeCVRQualifiers(),
2323                                        dat->getBracketsRange());
2324    break;
2325  }
2326
2327  // Turn incomplete types into [*] types.
2328  case Type::IncompleteArray: {
2329    const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty);
2330    result = getVariableArrayType(
2331                 getVariableArrayDecayedType(iat->getElementType()),
2332                                  /*size*/ 0,
2333                                  ArrayType::Normal,
2334                                  iat->getIndexTypeCVRQualifiers(),
2335                                  SourceRange());
2336    break;
2337  }
2338
2339  // Turn VLA types into [*] types.
2340  case Type::VariableArray: {
2341    const VariableArrayType *vat = cast<VariableArrayType>(ty);
2342    result = getVariableArrayType(
2343                 getVariableArrayDecayedType(vat->getElementType()),
2344                                  /*size*/ 0,
2345                                  ArrayType::Star,
2346                                  vat->getIndexTypeCVRQualifiers(),
2347                                  vat->getBracketsRange());
2348    break;
2349  }
2350  }
2351
2352  // Apply the top-level qualifiers from the original.
2353  return getQualifiedType(result, split.Quals);
2354}
2355
2356/// getVariableArrayType - Returns a non-unique reference to the type for a
2357/// variable array of the specified element type.
2358QualType ASTContext::getVariableArrayType(QualType EltTy,
2359                                          Expr *NumElts,
2360                                          ArrayType::ArraySizeModifier ASM,
2361                                          unsigned IndexTypeQuals,
2362                                          SourceRange Brackets) const {
2363  // Since we don't unique expressions, it isn't possible to unique VLA's
2364  // that have an expression provided for their size.
2365  QualType Canon;
2366
2367  // Be sure to pull qualifiers off the element type.
2368  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
2369    SplitQualType canonSplit = getCanonicalType(EltTy).split();
2370    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
2371                                 IndexTypeQuals, Brackets);
2372    Canon = getQualifiedType(Canon, canonSplit.Quals);
2373  }
2374
2375  VariableArrayType *New = new(*this, TypeAlignment)
2376    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
2377
2378  VariableArrayTypes.push_back(New);
2379  Types.push_back(New);
2380  return QualType(New, 0);
2381}
2382
2383/// getDependentSizedArrayType - Returns a non-unique reference to
2384/// the type for a dependently-sized array of the specified element
2385/// type.
2386QualType ASTContext::getDependentSizedArrayType(QualType elementType,
2387                                                Expr *numElements,
2388                                                ArrayType::ArraySizeModifier ASM,
2389                                                unsigned elementTypeQuals,
2390                                                SourceRange brackets) const {
2391  assert((!numElements || numElements->isTypeDependent() ||
2392          numElements->isValueDependent()) &&
2393         "Size must be type- or value-dependent!");
2394
2395  // Dependently-sized array types that do not have a specified number
2396  // of elements will have their sizes deduced from a dependent
2397  // initializer.  We do no canonicalization here at all, which is okay
2398  // because they can't be used in most locations.
2399  if (!numElements) {
2400    DependentSizedArrayType *newType
2401      = new (*this, TypeAlignment)
2402          DependentSizedArrayType(*this, elementType, QualType(),
2403                                  numElements, ASM, elementTypeQuals,
2404                                  brackets);
2405    Types.push_back(newType);
2406    return QualType(newType, 0);
2407  }
2408
2409  // Otherwise, we actually build a new type every time, but we
2410  // also build a canonical type.
2411
2412  SplitQualType canonElementType = getCanonicalType(elementType).split();
2413
2414  void *insertPos = 0;
2415  llvm::FoldingSetNodeID ID;
2416  DependentSizedArrayType::Profile(ID, *this,
2417                                   QualType(canonElementType.Ty, 0),
2418                                   ASM, elementTypeQuals, numElements);
2419
2420  // Look for an existing type with these properties.
2421  DependentSizedArrayType *canonTy =
2422    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2423
2424  // If we don't have one, build one.
2425  if (!canonTy) {
2426    canonTy = new (*this, TypeAlignment)
2427      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
2428                              QualType(), numElements, ASM, elementTypeQuals,
2429                              brackets);
2430    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
2431    Types.push_back(canonTy);
2432  }
2433
2434  // Apply qualifiers from the element type to the array.
2435  QualType canon = getQualifiedType(QualType(canonTy,0),
2436                                    canonElementType.Quals);
2437
2438  // If we didn't need extra canonicalization for the element type,
2439  // then just use that as our result.
2440  if (QualType(canonElementType.Ty, 0) == elementType)
2441    return canon;
2442
2443  // Otherwise, we need to build a type which follows the spelling
2444  // of the element type.
2445  DependentSizedArrayType *sugaredType
2446    = new (*this, TypeAlignment)
2447        DependentSizedArrayType(*this, elementType, canon, numElements,
2448                                ASM, elementTypeQuals, brackets);
2449  Types.push_back(sugaredType);
2450  return QualType(sugaredType, 0);
2451}
2452
2453QualType ASTContext::getIncompleteArrayType(QualType elementType,
2454                                            ArrayType::ArraySizeModifier ASM,
2455                                            unsigned elementTypeQuals) const {
2456  llvm::FoldingSetNodeID ID;
2457  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
2458
2459  void *insertPos = 0;
2460  if (IncompleteArrayType *iat =
2461       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
2462    return QualType(iat, 0);
2463
2464  // If the element type isn't canonical, this won't be a canonical type
2465  // either, so fill in the canonical type field.  We also have to pull
2466  // qualifiers off the element type.
2467  QualType canon;
2468
2469  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
2470    SplitQualType canonSplit = getCanonicalType(elementType).split();
2471    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
2472                                   ASM, elementTypeQuals);
2473    canon = getQualifiedType(canon, canonSplit.Quals);
2474
2475    // Get the new insert position for the node we care about.
2476    IncompleteArrayType *existing =
2477      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
2478    assert(!existing && "Shouldn't be in the map!"); (void) existing;
2479  }
2480
2481  IncompleteArrayType *newType = new (*this, TypeAlignment)
2482    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
2483
2484  IncompleteArrayTypes.InsertNode(newType, insertPos);
2485  Types.push_back(newType);
2486  return QualType(newType, 0);
2487}
2488
2489/// getVectorType - Return the unique reference to a vector type of
2490/// the specified element type and size. VectorType must be a built-in type.
2491QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
2492                                   VectorType::VectorKind VecKind) const {
2493  assert(vecType->isBuiltinType());
2494
2495  // Check if we've already instantiated a vector of this type.
2496  llvm::FoldingSetNodeID ID;
2497  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
2498
2499  void *InsertPos = 0;
2500  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2501    return QualType(VTP, 0);
2502
2503  // If the element type isn't canonical, this won't be a canonical type either,
2504  // so fill in the canonical type field.
2505  QualType Canonical;
2506  if (!vecType.isCanonical()) {
2507    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
2508
2509    // Get the new insert position for the node we care about.
2510    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2511    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2512  }
2513  VectorType *New = new (*this, TypeAlignment)
2514    VectorType(vecType, NumElts, Canonical, VecKind);
2515  VectorTypes.InsertNode(New, InsertPos);
2516  Types.push_back(New);
2517  return QualType(New, 0);
2518}
2519
2520/// getExtVectorType - Return the unique reference to an extended vector type of
2521/// the specified element type and size. VectorType must be a built-in type.
2522QualType
2523ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
2524  assert(vecType->isBuiltinType() || vecType->isDependentType());
2525
2526  // Check if we've already instantiated a vector of this type.
2527  llvm::FoldingSetNodeID ID;
2528  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
2529                      VectorType::GenericVector);
2530  void *InsertPos = 0;
2531  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
2532    return QualType(VTP, 0);
2533
2534  // If the element type isn't canonical, this won't be a canonical type either,
2535  // so fill in the canonical type field.
2536  QualType Canonical;
2537  if (!vecType.isCanonical()) {
2538    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
2539
2540    // Get the new insert position for the node we care about.
2541    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2542    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2543  }
2544  ExtVectorType *New = new (*this, TypeAlignment)
2545    ExtVectorType(vecType, NumElts, Canonical);
2546  VectorTypes.InsertNode(New, InsertPos);
2547  Types.push_back(New);
2548  return QualType(New, 0);
2549}
2550
2551QualType
2552ASTContext::getDependentSizedExtVectorType(QualType vecType,
2553                                           Expr *SizeExpr,
2554                                           SourceLocation AttrLoc) const {
2555  llvm::FoldingSetNodeID ID;
2556  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
2557                                       SizeExpr);
2558
2559  void *InsertPos = 0;
2560  DependentSizedExtVectorType *Canon
2561    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2562  DependentSizedExtVectorType *New;
2563  if (Canon) {
2564    // We already have a canonical version of this array type; use it as
2565    // the canonical type for a newly-built type.
2566    New = new (*this, TypeAlignment)
2567      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
2568                                  SizeExpr, AttrLoc);
2569  } else {
2570    QualType CanonVecTy = getCanonicalType(vecType);
2571    if (CanonVecTy == vecType) {
2572      New = new (*this, TypeAlignment)
2573        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
2574                                    AttrLoc);
2575
2576      DependentSizedExtVectorType *CanonCheck
2577        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
2578      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
2579      (void)CanonCheck;
2580      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
2581    } else {
2582      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
2583                                                      SourceLocation());
2584      New = new (*this, TypeAlignment)
2585        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
2586    }
2587  }
2588
2589  Types.push_back(New);
2590  return QualType(New, 0);
2591}
2592
2593/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
2594///
2595QualType
2596ASTContext::getFunctionNoProtoType(QualType ResultTy,
2597                                   const FunctionType::ExtInfo &Info) const {
2598  const CallingConv DefaultCC = Info.getCC();
2599  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2600                               CC_X86StdCall : DefaultCC;
2601  // Unique functions, to guarantee there is only one function of a particular
2602  // structure.
2603  llvm::FoldingSetNodeID ID;
2604  FunctionNoProtoType::Profile(ID, ResultTy, Info);
2605
2606  void *InsertPos = 0;
2607  if (FunctionNoProtoType *FT =
2608        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2609    return QualType(FT, 0);
2610
2611  QualType Canonical;
2612  if (!ResultTy.isCanonical() ||
2613      getCanonicalCallConv(CallConv) != CallConv) {
2614    Canonical =
2615      getFunctionNoProtoType(getCanonicalType(ResultTy),
2616                     Info.withCallingConv(getCanonicalCallConv(CallConv)));
2617
2618    // Get the new insert position for the node we care about.
2619    FunctionNoProtoType *NewIP =
2620      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2621    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2622  }
2623
2624  FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv);
2625  FunctionNoProtoType *New = new (*this, TypeAlignment)
2626    FunctionNoProtoType(ResultTy, Canonical, newInfo);
2627  Types.push_back(New);
2628  FunctionNoProtoTypes.InsertNode(New, InsertPos);
2629  return QualType(New, 0);
2630}
2631
2632/// \brief Determine whether \p T is canonical as the result type of a function.
2633static bool isCanonicalResultType(QualType T) {
2634  return T.isCanonical() &&
2635         (T.getObjCLifetime() == Qualifiers::OCL_None ||
2636          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
2637}
2638
2639/// getFunctionType - Return a normal function type with a typed argument
2640/// list.  isVariadic indicates whether the argument list includes '...'.
2641QualType
2642ASTContext::getFunctionType(QualType ResultTy, ArrayRef<QualType> ArgArray,
2643                            const FunctionProtoType::ExtProtoInfo &EPI) const {
2644  size_t NumArgs = ArgArray.size();
2645
2646  // Unique functions, to guarantee there is only one function of a particular
2647  // structure.
2648  llvm::FoldingSetNodeID ID;
2649  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
2650                             *this);
2651
2652  void *InsertPos = 0;
2653  if (FunctionProtoType *FTP =
2654        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
2655    return QualType(FTP, 0);
2656
2657  // Determine whether the type being created is already canonical or not.
2658  bool isCanonical =
2659    EPI.ExceptionSpecType == EST_None && isCanonicalResultType(ResultTy) &&
2660    !EPI.HasTrailingReturn;
2661  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
2662    if (!ArgArray[i].isCanonicalAsParam())
2663      isCanonical = false;
2664
2665  const CallingConv DefaultCC = EPI.ExtInfo.getCC();
2666  const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ?
2667                               CC_X86StdCall : DefaultCC;
2668
2669  // If this type isn't canonical, get the canonical version of it.
2670  // The exception spec is not part of the canonical type.
2671  QualType Canonical;
2672  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
2673    SmallVector<QualType, 16> CanonicalArgs;
2674    CanonicalArgs.reserve(NumArgs);
2675    for (unsigned i = 0; i != NumArgs; ++i)
2676      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
2677
2678    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
2679    CanonicalEPI.HasTrailingReturn = false;
2680    CanonicalEPI.ExceptionSpecType = EST_None;
2681    CanonicalEPI.NumExceptions = 0;
2682    CanonicalEPI.ExtInfo
2683      = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv));
2684
2685    // Result types do not have ARC lifetime qualifiers.
2686    QualType CanResultTy = getCanonicalType(ResultTy);
2687    if (ResultTy.getQualifiers().hasObjCLifetime()) {
2688      Qualifiers Qs = CanResultTy.getQualifiers();
2689      Qs.removeObjCLifetime();
2690      CanResultTy = getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
2691    }
2692
2693    Canonical = getFunctionType(CanResultTy, CanonicalArgs, CanonicalEPI);
2694
2695    // Get the new insert position for the node we care about.
2696    FunctionProtoType *NewIP =
2697      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
2698    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
2699  }
2700
2701  // FunctionProtoType objects are allocated with extra bytes after
2702  // them for three variable size arrays at the end:
2703  //  - parameter types
2704  //  - exception types
2705  //  - consumed-arguments flags
2706  // Instead of the exception types, there could be a noexcept
2707  // expression, or information used to resolve the exception
2708  // specification.
2709  size_t Size = sizeof(FunctionProtoType) +
2710                NumArgs * sizeof(QualType);
2711  if (EPI.ExceptionSpecType == EST_Dynamic) {
2712    Size += EPI.NumExceptions * sizeof(QualType);
2713  } else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) {
2714    Size += sizeof(Expr*);
2715  } else if (EPI.ExceptionSpecType == EST_Uninstantiated) {
2716    Size += 2 * sizeof(FunctionDecl*);
2717  } else if (EPI.ExceptionSpecType == EST_Unevaluated) {
2718    Size += sizeof(FunctionDecl*);
2719  }
2720  if (EPI.ConsumedArguments)
2721    Size += NumArgs * sizeof(bool);
2722
2723  FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment);
2724  FunctionProtoType::ExtProtoInfo newEPI = EPI;
2725  newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv);
2726  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
2727  Types.push_back(FTP);
2728  FunctionProtoTypes.InsertNode(FTP, InsertPos);
2729  return QualType(FTP, 0);
2730}
2731
2732#ifndef NDEBUG
2733static bool NeedsInjectedClassNameType(const RecordDecl *D) {
2734  if (!isa<CXXRecordDecl>(D)) return false;
2735  const CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
2736  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
2737    return true;
2738  if (RD->getDescribedClassTemplate() &&
2739      !isa<ClassTemplateSpecializationDecl>(RD))
2740    return true;
2741  return false;
2742}
2743#endif
2744
2745/// getInjectedClassNameType - Return the unique reference to the
2746/// injected class name type for the specified templated declaration.
2747QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
2748                                              QualType TST) const {
2749  assert(NeedsInjectedClassNameType(Decl));
2750  if (Decl->TypeForDecl) {
2751    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2752  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
2753    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
2754    Decl->TypeForDecl = PrevDecl->TypeForDecl;
2755    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
2756  } else {
2757    Type *newType =
2758      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
2759    Decl->TypeForDecl = newType;
2760    Types.push_back(newType);
2761  }
2762  return QualType(Decl->TypeForDecl, 0);
2763}
2764
2765/// getTypeDeclType - Return the unique reference to the type for the
2766/// specified type declaration.
2767QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
2768  assert(Decl && "Passed null for Decl param");
2769  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
2770
2771  if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl))
2772    return getTypedefType(Typedef);
2773
2774  assert(!isa<TemplateTypeParmDecl>(Decl) &&
2775         "Template type parameter types are always available.");
2776
2777  if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
2778    assert(!Record->getPreviousDecl() &&
2779           "struct/union has previous declaration");
2780    assert(!NeedsInjectedClassNameType(Record));
2781    return getRecordType(Record);
2782  } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
2783    assert(!Enum->getPreviousDecl() &&
2784           "enum has previous declaration");
2785    return getEnumType(Enum);
2786  } else if (const UnresolvedUsingTypenameDecl *Using =
2787               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
2788    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
2789    Decl->TypeForDecl = newType;
2790    Types.push_back(newType);
2791  } else
2792    llvm_unreachable("TypeDecl without a type?");
2793
2794  return QualType(Decl->TypeForDecl, 0);
2795}
2796
2797/// getTypedefType - Return the unique reference to the type for the
2798/// specified typedef name decl.
2799QualType
2800ASTContext::getTypedefType(const TypedefNameDecl *Decl,
2801                           QualType Canonical) const {
2802  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2803
2804  if (Canonical.isNull())
2805    Canonical = getCanonicalType(Decl->getUnderlyingType());
2806  TypedefType *newType = new(*this, TypeAlignment)
2807    TypedefType(Type::Typedef, Decl, Canonical);
2808  Decl->TypeForDecl = newType;
2809  Types.push_back(newType);
2810  return QualType(newType, 0);
2811}
2812
2813QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
2814  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2815
2816  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
2817    if (PrevDecl->TypeForDecl)
2818      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2819
2820  RecordType *newType = new (*this, TypeAlignment) RecordType(Decl);
2821  Decl->TypeForDecl = newType;
2822  Types.push_back(newType);
2823  return QualType(newType, 0);
2824}
2825
2826QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
2827  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
2828
2829  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
2830    if (PrevDecl->TypeForDecl)
2831      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
2832
2833  EnumType *newType = new (*this, TypeAlignment) EnumType(Decl);
2834  Decl->TypeForDecl = newType;
2835  Types.push_back(newType);
2836  return QualType(newType, 0);
2837}
2838
2839QualType ASTContext::getAttributedType(AttributedType::Kind attrKind,
2840                                       QualType modifiedType,
2841                                       QualType equivalentType) {
2842  llvm::FoldingSetNodeID id;
2843  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
2844
2845  void *insertPos = 0;
2846  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
2847  if (type) return QualType(type, 0);
2848
2849  QualType canon = getCanonicalType(equivalentType);
2850  type = new (*this, TypeAlignment)
2851           AttributedType(canon, attrKind, modifiedType, equivalentType);
2852
2853  Types.push_back(type);
2854  AttributedTypes.InsertNode(type, insertPos);
2855
2856  return QualType(type, 0);
2857}
2858
2859
2860/// \brief Retrieve a substitution-result type.
2861QualType
2862ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
2863                                         QualType Replacement) const {
2864  assert(Replacement.isCanonical()
2865         && "replacement types must always be canonical");
2866
2867  llvm::FoldingSetNodeID ID;
2868  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
2869  void *InsertPos = 0;
2870  SubstTemplateTypeParmType *SubstParm
2871    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2872
2873  if (!SubstParm) {
2874    SubstParm = new (*this, TypeAlignment)
2875      SubstTemplateTypeParmType(Parm, Replacement);
2876    Types.push_back(SubstParm);
2877    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2878  }
2879
2880  return QualType(SubstParm, 0);
2881}
2882
2883/// \brief Retrieve a
2884QualType ASTContext::getSubstTemplateTypeParmPackType(
2885                                          const TemplateTypeParmType *Parm,
2886                                              const TemplateArgument &ArgPack) {
2887#ifndef NDEBUG
2888  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
2889                                    PEnd = ArgPack.pack_end();
2890       P != PEnd; ++P) {
2891    assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type");
2892    assert(P->getAsType().isCanonical() && "Pack contains non-canonical type");
2893  }
2894#endif
2895
2896  llvm::FoldingSetNodeID ID;
2897  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
2898  void *InsertPos = 0;
2899  if (SubstTemplateTypeParmPackType *SubstParm
2900        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
2901    return QualType(SubstParm, 0);
2902
2903  QualType Canon;
2904  if (!Parm->isCanonicalUnqualified()) {
2905    Canon = getCanonicalType(QualType(Parm, 0));
2906    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
2907                                             ArgPack);
2908    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
2909  }
2910
2911  SubstTemplateTypeParmPackType *SubstParm
2912    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
2913                                                               ArgPack);
2914  Types.push_back(SubstParm);
2915  SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
2916  return QualType(SubstParm, 0);
2917}
2918
2919/// \brief Retrieve the template type parameter type for a template
2920/// parameter or parameter pack with the given depth, index, and (optionally)
2921/// name.
2922QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
2923                                             bool ParameterPack,
2924                                             TemplateTypeParmDecl *TTPDecl) const {
2925  llvm::FoldingSetNodeID ID;
2926  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
2927  void *InsertPos = 0;
2928  TemplateTypeParmType *TypeParm
2929    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2930
2931  if (TypeParm)
2932    return QualType(TypeParm, 0);
2933
2934  if (TTPDecl) {
2935    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
2936    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
2937
2938    TemplateTypeParmType *TypeCheck
2939      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
2940    assert(!TypeCheck && "Template type parameter canonical type broken");
2941    (void)TypeCheck;
2942  } else
2943    TypeParm = new (*this, TypeAlignment)
2944      TemplateTypeParmType(Depth, Index, ParameterPack);
2945
2946  Types.push_back(TypeParm);
2947  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
2948
2949  return QualType(TypeParm, 0);
2950}
2951
2952TypeSourceInfo *
2953ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
2954                                              SourceLocation NameLoc,
2955                                        const TemplateArgumentListInfo &Args,
2956                                              QualType Underlying) const {
2957  assert(!Name.getAsDependentTemplateName() &&
2958         "No dependent template names here!");
2959  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
2960
2961  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
2962  TemplateSpecializationTypeLoc TL =
2963      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
2964  TL.setTemplateKeywordLoc(SourceLocation());
2965  TL.setTemplateNameLoc(NameLoc);
2966  TL.setLAngleLoc(Args.getLAngleLoc());
2967  TL.setRAngleLoc(Args.getRAngleLoc());
2968  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
2969    TL.setArgLocInfo(i, Args[i].getLocInfo());
2970  return DI;
2971}
2972
2973QualType
2974ASTContext::getTemplateSpecializationType(TemplateName Template,
2975                                          const TemplateArgumentListInfo &Args,
2976                                          QualType Underlying) const {
2977  assert(!Template.getAsDependentTemplateName() &&
2978         "No dependent template names here!");
2979
2980  unsigned NumArgs = Args.size();
2981
2982  SmallVector<TemplateArgument, 4> ArgVec;
2983  ArgVec.reserve(NumArgs);
2984  for (unsigned i = 0; i != NumArgs; ++i)
2985    ArgVec.push_back(Args[i].getArgument());
2986
2987  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs,
2988                                       Underlying);
2989}
2990
2991#ifndef NDEBUG
2992static bool hasAnyPackExpansions(const TemplateArgument *Args,
2993                                 unsigned NumArgs) {
2994  for (unsigned I = 0; I != NumArgs; ++I)
2995    if (Args[I].isPackExpansion())
2996      return true;
2997
2998  return true;
2999}
3000#endif
3001
3002QualType
3003ASTContext::getTemplateSpecializationType(TemplateName Template,
3004                                          const TemplateArgument *Args,
3005                                          unsigned NumArgs,
3006                                          QualType Underlying) const {
3007  assert(!Template.getAsDependentTemplateName() &&
3008         "No dependent template names here!");
3009  // Look through qualified template names.
3010  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3011    Template = TemplateName(QTN->getTemplateDecl());
3012
3013  bool IsTypeAlias =
3014    Template.getAsTemplateDecl() &&
3015    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
3016  QualType CanonType;
3017  if (!Underlying.isNull())
3018    CanonType = getCanonicalType(Underlying);
3019  else {
3020    // We can get here with an alias template when the specialization contains
3021    // a pack expansion that does not match up with a parameter pack.
3022    assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) &&
3023           "Caller must compute aliased type");
3024    IsTypeAlias = false;
3025    CanonType = getCanonicalTemplateSpecializationType(Template, Args,
3026                                                       NumArgs);
3027  }
3028
3029  // Allocate the (non-canonical) template specialization type, but don't
3030  // try to unique it: these types typically have location information that
3031  // we don't unique and don't want to lose.
3032  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
3033                       sizeof(TemplateArgument) * NumArgs +
3034                       (IsTypeAlias? sizeof(QualType) : 0),
3035                       TypeAlignment);
3036  TemplateSpecializationType *Spec
3037    = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType,
3038                                         IsTypeAlias ? Underlying : QualType());
3039
3040  Types.push_back(Spec);
3041  return QualType(Spec, 0);
3042}
3043
3044QualType
3045ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template,
3046                                                   const TemplateArgument *Args,
3047                                                   unsigned NumArgs) const {
3048  assert(!Template.getAsDependentTemplateName() &&
3049         "No dependent template names here!");
3050
3051  // Look through qualified template names.
3052  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
3053    Template = TemplateName(QTN->getTemplateDecl());
3054
3055  // Build the canonical template specialization type.
3056  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
3057  SmallVector<TemplateArgument, 4> CanonArgs;
3058  CanonArgs.reserve(NumArgs);
3059  for (unsigned I = 0; I != NumArgs; ++I)
3060    CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
3061
3062  // Determine whether this canonical template specialization type already
3063  // exists.
3064  llvm::FoldingSetNodeID ID;
3065  TemplateSpecializationType::Profile(ID, CanonTemplate,
3066                                      CanonArgs.data(), NumArgs, *this);
3067
3068  void *InsertPos = 0;
3069  TemplateSpecializationType *Spec
3070    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3071
3072  if (!Spec) {
3073    // Allocate a new canonical template specialization type.
3074    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
3075                          sizeof(TemplateArgument) * NumArgs),
3076                         TypeAlignment);
3077    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
3078                                                CanonArgs.data(), NumArgs,
3079                                                QualType(), QualType());
3080    Types.push_back(Spec);
3081    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
3082  }
3083
3084  assert(Spec->isDependentType() &&
3085         "Non-dependent template-id type must have a canonical type");
3086  return QualType(Spec, 0);
3087}
3088
3089QualType
3090ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
3091                              NestedNameSpecifier *NNS,
3092                              QualType NamedType) const {
3093  llvm::FoldingSetNodeID ID;
3094  ElaboratedType::Profile(ID, Keyword, NNS, NamedType);
3095
3096  void *InsertPos = 0;
3097  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3098  if (T)
3099    return QualType(T, 0);
3100
3101  QualType Canon = NamedType;
3102  if (!Canon.isCanonical()) {
3103    Canon = getCanonicalType(NamedType);
3104    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
3105    assert(!CheckT && "Elaborated canonical type broken");
3106    (void)CheckT;
3107  }
3108
3109  T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon);
3110  Types.push_back(T);
3111  ElaboratedTypes.InsertNode(T, InsertPos);
3112  return QualType(T, 0);
3113}
3114
3115QualType
3116ASTContext::getParenType(QualType InnerType) const {
3117  llvm::FoldingSetNodeID ID;
3118  ParenType::Profile(ID, InnerType);
3119
3120  void *InsertPos = 0;
3121  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3122  if (T)
3123    return QualType(T, 0);
3124
3125  QualType Canon = InnerType;
3126  if (!Canon.isCanonical()) {
3127    Canon = getCanonicalType(InnerType);
3128    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
3129    assert(!CheckT && "Paren canonical type broken");
3130    (void)CheckT;
3131  }
3132
3133  T = new (*this) ParenType(InnerType, Canon);
3134  Types.push_back(T);
3135  ParenTypes.InsertNode(T, InsertPos);
3136  return QualType(T, 0);
3137}
3138
3139QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
3140                                          NestedNameSpecifier *NNS,
3141                                          const IdentifierInfo *Name,
3142                                          QualType Canon) const {
3143  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
3144
3145  if (Canon.isNull()) {
3146    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3147    ElaboratedTypeKeyword CanonKeyword = Keyword;
3148    if (Keyword == ETK_None)
3149      CanonKeyword = ETK_Typename;
3150
3151    if (CanonNNS != NNS || CanonKeyword != Keyword)
3152      Canon = getDependentNameType(CanonKeyword, CanonNNS, Name);
3153  }
3154
3155  llvm::FoldingSetNodeID ID;
3156  DependentNameType::Profile(ID, Keyword, NNS, Name);
3157
3158  void *InsertPos = 0;
3159  DependentNameType *T
3160    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
3161  if (T)
3162    return QualType(T, 0);
3163
3164  T = new (*this) DependentNameType(Keyword, NNS, Name, Canon);
3165  Types.push_back(T);
3166  DependentNameTypes.InsertNode(T, InsertPos);
3167  return QualType(T, 0);
3168}
3169
3170QualType
3171ASTContext::getDependentTemplateSpecializationType(
3172                                 ElaboratedTypeKeyword Keyword,
3173                                 NestedNameSpecifier *NNS,
3174                                 const IdentifierInfo *Name,
3175                                 const TemplateArgumentListInfo &Args) const {
3176  // TODO: avoid this copy
3177  SmallVector<TemplateArgument, 16> ArgCopy;
3178  for (unsigned I = 0, E = Args.size(); I != E; ++I)
3179    ArgCopy.push_back(Args[I].getArgument());
3180  return getDependentTemplateSpecializationType(Keyword, NNS, Name,
3181                                                ArgCopy.size(),
3182                                                ArgCopy.data());
3183}
3184
3185QualType
3186ASTContext::getDependentTemplateSpecializationType(
3187                                 ElaboratedTypeKeyword Keyword,
3188                                 NestedNameSpecifier *NNS,
3189                                 const IdentifierInfo *Name,
3190                                 unsigned NumArgs,
3191                                 const TemplateArgument *Args) const {
3192  assert((!NNS || NNS->isDependent()) &&
3193         "nested-name-specifier must be dependent");
3194
3195  llvm::FoldingSetNodeID ID;
3196  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
3197                                               Name, NumArgs, Args);
3198
3199  void *InsertPos = 0;
3200  DependentTemplateSpecializationType *T
3201    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3202  if (T)
3203    return QualType(T, 0);
3204
3205  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
3206
3207  ElaboratedTypeKeyword CanonKeyword = Keyword;
3208  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
3209
3210  bool AnyNonCanonArgs = false;
3211  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
3212  for (unsigned I = 0; I != NumArgs; ++I) {
3213    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
3214    if (!CanonArgs[I].structurallyEquals(Args[I]))
3215      AnyNonCanonArgs = true;
3216  }
3217
3218  QualType Canon;
3219  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
3220    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
3221                                                   Name, NumArgs,
3222                                                   CanonArgs.data());
3223
3224    // Find the insert position again.
3225    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
3226  }
3227
3228  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
3229                        sizeof(TemplateArgument) * NumArgs),
3230                       TypeAlignment);
3231  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
3232                                                    Name, NumArgs, Args, Canon);
3233  Types.push_back(T);
3234  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
3235  return QualType(T, 0);
3236}
3237
3238QualType ASTContext::getPackExpansionType(QualType Pattern,
3239                                          Optional<unsigned> NumExpansions) {
3240  llvm::FoldingSetNodeID ID;
3241  PackExpansionType::Profile(ID, Pattern, NumExpansions);
3242
3243  assert(Pattern->containsUnexpandedParameterPack() &&
3244         "Pack expansions must expand one or more parameter packs");
3245  void *InsertPos = 0;
3246  PackExpansionType *T
3247    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3248  if (T)
3249    return QualType(T, 0);
3250
3251  QualType Canon;
3252  if (!Pattern.isCanonical()) {
3253    Canon = getCanonicalType(Pattern);
3254    // The canonical type might not contain an unexpanded parameter pack, if it
3255    // contains an alias template specialization which ignores one of its
3256    // parameters.
3257    if (Canon->containsUnexpandedParameterPack()) {
3258      Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions);
3259
3260      // Find the insert position again, in case we inserted an element into
3261      // PackExpansionTypes and invalidated our insert position.
3262      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
3263    }
3264  }
3265
3266  T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions);
3267  Types.push_back(T);
3268  PackExpansionTypes.InsertNode(T, InsertPos);
3269  return QualType(T, 0);
3270}
3271
3272/// CmpProtocolNames - Comparison predicate for sorting protocols
3273/// alphabetically.
3274static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
3275                            const ObjCProtocolDecl *RHS) {
3276  return LHS->getDeclName() < RHS->getDeclName();
3277}
3278
3279static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols,
3280                                unsigned NumProtocols) {
3281  if (NumProtocols == 0) return true;
3282
3283  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
3284    return false;
3285
3286  for (unsigned i = 1; i != NumProtocols; ++i)
3287    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) ||
3288        Protocols[i]->getCanonicalDecl() != Protocols[i])
3289      return false;
3290  return true;
3291}
3292
3293static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
3294                                   unsigned &NumProtocols) {
3295  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
3296
3297  // Sort protocols, keyed by name.
3298  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
3299
3300  // Canonicalize.
3301  for (unsigned I = 0, N = NumProtocols; I != N; ++I)
3302    Protocols[I] = Protocols[I]->getCanonicalDecl();
3303
3304  // Remove duplicates.
3305  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
3306  NumProtocols = ProtocolsEnd-Protocols;
3307}
3308
3309QualType ASTContext::getObjCObjectType(QualType BaseType,
3310                                       ObjCProtocolDecl * const *Protocols,
3311                                       unsigned NumProtocols) const {
3312  // If the base type is an interface and there aren't any protocols
3313  // to add, then the interface type will do just fine.
3314  if (!NumProtocols && isa<ObjCInterfaceType>(BaseType))
3315    return BaseType;
3316
3317  // Look in the folding set for an existing type.
3318  llvm::FoldingSetNodeID ID;
3319  ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols);
3320  void *InsertPos = 0;
3321  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
3322    return QualType(QT, 0);
3323
3324  // Build the canonical type, which has the canonical base type and
3325  // a sorted-and-uniqued list of protocols.
3326  QualType Canonical;
3327  bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols);
3328  if (!ProtocolsSorted || !BaseType.isCanonical()) {
3329    if (!ProtocolsSorted) {
3330      SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols,
3331                                                     Protocols + NumProtocols);
3332      unsigned UniqueCount = NumProtocols;
3333
3334      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
3335      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3336                                    &Sorted[0], UniqueCount);
3337    } else {
3338      Canonical = getObjCObjectType(getCanonicalType(BaseType),
3339                                    Protocols, NumProtocols);
3340    }
3341
3342    // Regenerate InsertPos.
3343    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
3344  }
3345
3346  unsigned Size = sizeof(ObjCObjectTypeImpl);
3347  Size += NumProtocols * sizeof(ObjCProtocolDecl *);
3348  void *Mem = Allocate(Size, TypeAlignment);
3349  ObjCObjectTypeImpl *T =
3350    new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols);
3351
3352  Types.push_back(T);
3353  ObjCObjectTypes.InsertNode(T, InsertPos);
3354  return QualType(T, 0);
3355}
3356
3357/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
3358/// the given object type.
3359QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
3360  llvm::FoldingSetNodeID ID;
3361  ObjCObjectPointerType::Profile(ID, ObjectT);
3362
3363  void *InsertPos = 0;
3364  if (ObjCObjectPointerType *QT =
3365              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3366    return QualType(QT, 0);
3367
3368  // Find the canonical object type.
3369  QualType Canonical;
3370  if (!ObjectT.isCanonical()) {
3371    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
3372
3373    // Regenerate InsertPos.
3374    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3375  }
3376
3377  // No match.
3378  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
3379  ObjCObjectPointerType *QType =
3380    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
3381
3382  Types.push_back(QType);
3383  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
3384  return QualType(QType, 0);
3385}
3386
3387/// getObjCInterfaceType - Return the unique reference to the type for the
3388/// specified ObjC interface decl. The list of protocols is optional.
3389QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
3390                                          ObjCInterfaceDecl *PrevDecl) const {
3391  if (Decl->TypeForDecl)
3392    return QualType(Decl->TypeForDecl, 0);
3393
3394  if (PrevDecl) {
3395    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
3396    Decl->TypeForDecl = PrevDecl->TypeForDecl;
3397    return QualType(PrevDecl->TypeForDecl, 0);
3398  }
3399
3400  // Prefer the definition, if there is one.
3401  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
3402    Decl = Def;
3403
3404  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
3405  ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl);
3406  Decl->TypeForDecl = T;
3407  Types.push_back(T);
3408  return QualType(T, 0);
3409}
3410
3411/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
3412/// TypeOfExprType AST's (since expression's are never shared). For example,
3413/// multiple declarations that refer to "typeof(x)" all contain different
3414/// DeclRefExpr's. This doesn't effect the type checker, since it operates
3415/// on canonical type's (which are always unique).
3416QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
3417  TypeOfExprType *toe;
3418  if (tofExpr->isTypeDependent()) {
3419    llvm::FoldingSetNodeID ID;
3420    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
3421
3422    void *InsertPos = 0;
3423    DependentTypeOfExprType *Canon
3424      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
3425    if (Canon) {
3426      // We already have a "canonical" version of an identical, dependent
3427      // typeof(expr) type. Use that as our canonical type.
3428      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
3429                                          QualType((TypeOfExprType*)Canon, 0));
3430    } else {
3431      // Build a new, canonical typeof(expr) type.
3432      Canon
3433        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
3434      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
3435      toe = Canon;
3436    }
3437  } else {
3438    QualType Canonical = getCanonicalType(tofExpr->getType());
3439    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
3440  }
3441  Types.push_back(toe);
3442  return QualType(toe, 0);
3443}
3444
3445/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
3446/// TypeOfType AST's. The only motivation to unique these nodes would be
3447/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
3448/// an issue. This doesn't effect the type checker, since it operates
3449/// on canonical type's (which are always unique).
3450QualType ASTContext::getTypeOfType(QualType tofType) const {
3451  QualType Canonical = getCanonicalType(tofType);
3452  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
3453  Types.push_back(tot);
3454  return QualType(tot, 0);
3455}
3456
3457
3458/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
3459/// DecltypeType AST's. The only motivation to unique these nodes would be
3460/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
3461/// an issue. This doesn't effect the type checker, since it operates
3462/// on canonical types (which are always unique).
3463QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
3464  DecltypeType *dt;
3465
3466  // C++0x [temp.type]p2:
3467  //   If an expression e involves a template parameter, decltype(e) denotes a
3468  //   unique dependent type. Two such decltype-specifiers refer to the same
3469  //   type only if their expressions are equivalent (14.5.6.1).
3470  if (e->isInstantiationDependent()) {
3471    llvm::FoldingSetNodeID ID;
3472    DependentDecltypeType::Profile(ID, *this, e);
3473
3474    void *InsertPos = 0;
3475    DependentDecltypeType *Canon
3476      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
3477    if (Canon) {
3478      // We already have a "canonical" version of an equivalent, dependent
3479      // decltype type. Use that as our canonical type.
3480      dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3481                                       QualType((DecltypeType*)Canon, 0));
3482    } else {
3483      // Build a new, canonical typeof(expr) type.
3484      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
3485      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
3486      dt = Canon;
3487    }
3488  } else {
3489    dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType,
3490                                      getCanonicalType(UnderlyingType));
3491  }
3492  Types.push_back(dt);
3493  return QualType(dt, 0);
3494}
3495
3496/// getUnaryTransformationType - We don't unique these, since the memory
3497/// savings are minimal and these are rare.
3498QualType ASTContext::getUnaryTransformType(QualType BaseType,
3499                                           QualType UnderlyingType,
3500                                           UnaryTransformType::UTTKind Kind)
3501    const {
3502  UnaryTransformType *Ty =
3503    new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType,
3504                                                   Kind,
3505                                 UnderlyingType->isDependentType() ?
3506                                 QualType() : getCanonicalType(UnderlyingType));
3507  Types.push_back(Ty);
3508  return QualType(Ty, 0);
3509}
3510
3511/// getAutoType - We only unique auto types after they've been deduced.
3512QualType ASTContext::getAutoType(QualType DeducedType) const {
3513  void *InsertPos = 0;
3514  if (!DeducedType.isNull()) {
3515    // Look in the folding set for an existing type.
3516    llvm::FoldingSetNodeID ID;
3517    AutoType::Profile(ID, DeducedType);
3518    if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
3519      return QualType(AT, 0);
3520  }
3521
3522  AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType);
3523  Types.push_back(AT);
3524  if (InsertPos)
3525    AutoTypes.InsertNode(AT, InsertPos);
3526  return QualType(AT, 0);
3527}
3528
3529/// getAtomicType - Return the uniqued reference to the atomic type for
3530/// the given value type.
3531QualType ASTContext::getAtomicType(QualType T) const {
3532  // Unique pointers, to guarantee there is only one pointer of a particular
3533  // structure.
3534  llvm::FoldingSetNodeID ID;
3535  AtomicType::Profile(ID, T);
3536
3537  void *InsertPos = 0;
3538  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
3539    return QualType(AT, 0);
3540
3541  // If the atomic value type isn't canonical, this won't be a canonical type
3542  // either, so fill in the canonical type field.
3543  QualType Canonical;
3544  if (!T.isCanonical()) {
3545    Canonical = getAtomicType(getCanonicalType(T));
3546
3547    // Get the new insert position for the node we care about.
3548    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
3549    assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP;
3550  }
3551  AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
3552  Types.push_back(New);
3553  AtomicTypes.InsertNode(New, InsertPos);
3554  return QualType(New, 0);
3555}
3556
3557/// getAutoDeductType - Get type pattern for deducing against 'auto'.
3558QualType ASTContext::getAutoDeductType() const {
3559  if (AutoDeductTy.isNull())
3560    AutoDeductTy = getAutoType(QualType());
3561  assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern");
3562  return AutoDeductTy;
3563}
3564
3565/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
3566QualType ASTContext::getAutoRRefDeductType() const {
3567  if (AutoRRefDeductTy.isNull())
3568    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
3569  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
3570  return AutoRRefDeductTy;
3571}
3572
3573/// getTagDeclType - Return the unique reference to the type for the
3574/// specified TagDecl (struct/union/class/enum) decl.
3575QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
3576  assert (Decl);
3577  // FIXME: What is the design on getTagDeclType when it requires casting
3578  // away const?  mutable?
3579  return getTypeDeclType(const_cast<TagDecl*>(Decl));
3580}
3581
3582/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
3583/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
3584/// needs to agree with the definition in <stddef.h>.
3585CanQualType ASTContext::getSizeType() const {
3586  return getFromTargetType(Target->getSizeType());
3587}
3588
3589/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
3590CanQualType ASTContext::getIntMaxType() const {
3591  return getFromTargetType(Target->getIntMaxType());
3592}
3593
3594/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
3595CanQualType ASTContext::getUIntMaxType() const {
3596  return getFromTargetType(Target->getUIntMaxType());
3597}
3598
3599/// getSignedWCharType - Return the type of "signed wchar_t".
3600/// Used when in C++, as a GCC extension.
3601QualType ASTContext::getSignedWCharType() const {
3602  // FIXME: derive from "Target" ?
3603  return WCharTy;
3604}
3605
3606/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
3607/// Used when in C++, as a GCC extension.
3608QualType ASTContext::getUnsignedWCharType() const {
3609  // FIXME: derive from "Target" ?
3610  return UnsignedIntTy;
3611}
3612
3613QualType ASTContext::getIntPtrType() const {
3614  return getFromTargetType(Target->getIntPtrType());
3615}
3616
3617QualType ASTContext::getUIntPtrType() const {
3618  return getCorrespondingUnsignedType(getIntPtrType());
3619}
3620
3621/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
3622/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
3623QualType ASTContext::getPointerDiffType() const {
3624  return getFromTargetType(Target->getPtrDiffType(0));
3625}
3626
3627/// \brief Return the unique type for "pid_t" defined in
3628/// <sys/types.h>. We need this to compute the correct type for vfork().
3629QualType ASTContext::getProcessIDType() const {
3630  return getFromTargetType(Target->getProcessIDType());
3631}
3632
3633//===----------------------------------------------------------------------===//
3634//                              Type Operators
3635//===----------------------------------------------------------------------===//
3636
3637CanQualType ASTContext::getCanonicalParamType(QualType T) const {
3638  // Push qualifiers into arrays, and then discard any remaining
3639  // qualifiers.
3640  T = getCanonicalType(T);
3641  T = getVariableArrayDecayedType(T);
3642  const Type *Ty = T.getTypePtr();
3643  QualType Result;
3644  if (isa<ArrayType>(Ty)) {
3645    Result = getArrayDecayedType(QualType(Ty,0));
3646  } else if (isa<FunctionType>(Ty)) {
3647    Result = getPointerType(QualType(Ty, 0));
3648  } else {
3649    Result = QualType(Ty, 0);
3650  }
3651
3652  return CanQualType::CreateUnsafe(Result);
3653}
3654
3655QualType ASTContext::getUnqualifiedArrayType(QualType type,
3656                                             Qualifiers &quals) {
3657  SplitQualType splitType = type.getSplitUnqualifiedType();
3658
3659  // FIXME: getSplitUnqualifiedType() actually walks all the way to
3660  // the unqualified desugared type and then drops it on the floor.
3661  // We then have to strip that sugar back off with
3662  // getUnqualifiedDesugaredType(), which is silly.
3663  const ArrayType *AT =
3664    dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
3665
3666  // If we don't have an array, just use the results in splitType.
3667  if (!AT) {
3668    quals = splitType.Quals;
3669    return QualType(splitType.Ty, 0);
3670  }
3671
3672  // Otherwise, recurse on the array's element type.
3673  QualType elementType = AT->getElementType();
3674  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
3675
3676  // If that didn't change the element type, AT has no qualifiers, so we
3677  // can just use the results in splitType.
3678  if (elementType == unqualElementType) {
3679    assert(quals.empty()); // from the recursive call
3680    quals = splitType.Quals;
3681    return QualType(splitType.Ty, 0);
3682  }
3683
3684  // Otherwise, add in the qualifiers from the outermost type, then
3685  // build the type back up.
3686  quals.addConsistentQualifiers(splitType.Quals);
3687
3688  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
3689    return getConstantArrayType(unqualElementType, CAT->getSize(),
3690                                CAT->getSizeModifier(), 0);
3691  }
3692
3693  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
3694    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
3695  }
3696
3697  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) {
3698    return getVariableArrayType(unqualElementType,
3699                                VAT->getSizeExpr(),
3700                                VAT->getSizeModifier(),
3701                                VAT->getIndexTypeCVRQualifiers(),
3702                                VAT->getBracketsRange());
3703  }
3704
3705  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT);
3706  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
3707                                    DSAT->getSizeModifier(), 0,
3708                                    SourceRange());
3709}
3710
3711/// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types  that
3712/// may be similar (C++ 4.4), replaces T1 and T2 with the type that
3713/// they point to and return true. If T1 and T2 aren't pointer types
3714/// or pointer-to-member types, or if they are not similar at this
3715/// level, returns false and leaves T1 and T2 unchanged. Top-level
3716/// qualifiers on T1 and T2 are ignored. This function will typically
3717/// be called in a loop that successively "unwraps" pointer and
3718/// pointer-to-member types to compare them at each level.
3719bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) {
3720  const PointerType *T1PtrType = T1->getAs<PointerType>(),
3721                    *T2PtrType = T2->getAs<PointerType>();
3722  if (T1PtrType && T2PtrType) {
3723    T1 = T1PtrType->getPointeeType();
3724    T2 = T2PtrType->getPointeeType();
3725    return true;
3726  }
3727
3728  const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(),
3729                          *T2MPType = T2->getAs<MemberPointerType>();
3730  if (T1MPType && T2MPType &&
3731      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
3732                             QualType(T2MPType->getClass(), 0))) {
3733    T1 = T1MPType->getPointeeType();
3734    T2 = T2MPType->getPointeeType();
3735    return true;
3736  }
3737
3738  if (getLangOpts().ObjC1) {
3739    const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(),
3740                                *T2OPType = T2->getAs<ObjCObjectPointerType>();
3741    if (T1OPType && T2OPType) {
3742      T1 = T1OPType->getPointeeType();
3743      T2 = T2OPType->getPointeeType();
3744      return true;
3745    }
3746  }
3747
3748  // FIXME: Block pointers, too?
3749
3750  return false;
3751}
3752
3753DeclarationNameInfo
3754ASTContext::getNameForTemplate(TemplateName Name,
3755                               SourceLocation NameLoc) const {
3756  switch (Name.getKind()) {
3757  case TemplateName::QualifiedTemplate:
3758  case TemplateName::Template:
3759    // DNInfo work in progress: CHECKME: what about DNLoc?
3760    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
3761                               NameLoc);
3762
3763  case TemplateName::OverloadedTemplate: {
3764    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
3765    // DNInfo work in progress: CHECKME: what about DNLoc?
3766    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
3767  }
3768
3769  case TemplateName::DependentTemplate: {
3770    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3771    DeclarationName DName;
3772    if (DTN->isIdentifier()) {
3773      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
3774      return DeclarationNameInfo(DName, NameLoc);
3775    } else {
3776      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
3777      // DNInfo work in progress: FIXME: source locations?
3778      DeclarationNameLoc DNLoc;
3779      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
3780      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
3781      return DeclarationNameInfo(DName, NameLoc, DNLoc);
3782    }
3783  }
3784
3785  case TemplateName::SubstTemplateTemplateParm: {
3786    SubstTemplateTemplateParmStorage *subst
3787      = Name.getAsSubstTemplateTemplateParm();
3788    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
3789                               NameLoc);
3790  }
3791
3792  case TemplateName::SubstTemplateTemplateParmPack: {
3793    SubstTemplateTemplateParmPackStorage *subst
3794      = Name.getAsSubstTemplateTemplateParmPack();
3795    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
3796                               NameLoc);
3797  }
3798  }
3799
3800  llvm_unreachable("bad template name kind!");
3801}
3802
3803TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
3804  switch (Name.getKind()) {
3805  case TemplateName::QualifiedTemplate:
3806  case TemplateName::Template: {
3807    TemplateDecl *Template = Name.getAsTemplateDecl();
3808    if (TemplateTemplateParmDecl *TTP
3809          = dyn_cast<TemplateTemplateParmDecl>(Template))
3810      Template = getCanonicalTemplateTemplateParmDecl(TTP);
3811
3812    // The canonical template name is the canonical template declaration.
3813    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
3814  }
3815
3816  case TemplateName::OverloadedTemplate:
3817    llvm_unreachable("cannot canonicalize overloaded template");
3818
3819  case TemplateName::DependentTemplate: {
3820    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
3821    assert(DTN && "Non-dependent template names must refer to template decls.");
3822    return DTN->CanonicalTemplateName;
3823  }
3824
3825  case TemplateName::SubstTemplateTemplateParm: {
3826    SubstTemplateTemplateParmStorage *subst
3827      = Name.getAsSubstTemplateTemplateParm();
3828    return getCanonicalTemplateName(subst->getReplacement());
3829  }
3830
3831  case TemplateName::SubstTemplateTemplateParmPack: {
3832    SubstTemplateTemplateParmPackStorage *subst
3833                                  = Name.getAsSubstTemplateTemplateParmPack();
3834    TemplateTemplateParmDecl *canonParameter
3835      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
3836    TemplateArgument canonArgPack
3837      = getCanonicalTemplateArgument(subst->getArgumentPack());
3838    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
3839  }
3840  }
3841
3842  llvm_unreachable("bad template name!");
3843}
3844
3845bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
3846  X = getCanonicalTemplateName(X);
3847  Y = getCanonicalTemplateName(Y);
3848  return X.getAsVoidPointer() == Y.getAsVoidPointer();
3849}
3850
3851TemplateArgument
3852ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
3853  switch (Arg.getKind()) {
3854    case TemplateArgument::Null:
3855      return Arg;
3856
3857    case TemplateArgument::Expression:
3858      return Arg;
3859
3860    case TemplateArgument::Declaration: {
3861      ValueDecl *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
3862      return TemplateArgument(D, Arg.isDeclForReferenceParam());
3863    }
3864
3865    case TemplateArgument::NullPtr:
3866      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
3867                              /*isNullPtr*/true);
3868
3869    case TemplateArgument::Template:
3870      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
3871
3872    case TemplateArgument::TemplateExpansion:
3873      return TemplateArgument(getCanonicalTemplateName(
3874                                         Arg.getAsTemplateOrTemplatePattern()),
3875                              Arg.getNumTemplateExpansions());
3876
3877    case TemplateArgument::Integral:
3878      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
3879
3880    case TemplateArgument::Type:
3881      return TemplateArgument(getCanonicalType(Arg.getAsType()));
3882
3883    case TemplateArgument::Pack: {
3884      if (Arg.pack_size() == 0)
3885        return Arg;
3886
3887      TemplateArgument *CanonArgs
3888        = new (*this) TemplateArgument[Arg.pack_size()];
3889      unsigned Idx = 0;
3890      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
3891                                        AEnd = Arg.pack_end();
3892           A != AEnd; (void)++A, ++Idx)
3893        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
3894
3895      return TemplateArgument(CanonArgs, Arg.pack_size());
3896    }
3897  }
3898
3899  // Silence GCC warning
3900  llvm_unreachable("Unhandled template argument kind");
3901}
3902
3903NestedNameSpecifier *
3904ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
3905  if (!NNS)
3906    return 0;
3907
3908  switch (NNS->getKind()) {
3909  case NestedNameSpecifier::Identifier:
3910    // Canonicalize the prefix but keep the identifier the same.
3911    return NestedNameSpecifier::Create(*this,
3912                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
3913                                       NNS->getAsIdentifier());
3914
3915  case NestedNameSpecifier::Namespace:
3916    // A namespace is canonical; build a nested-name-specifier with
3917    // this namespace and no prefix.
3918    return NestedNameSpecifier::Create(*this, 0,
3919                                 NNS->getAsNamespace()->getOriginalNamespace());
3920
3921  case NestedNameSpecifier::NamespaceAlias:
3922    // A namespace is canonical; build a nested-name-specifier with
3923    // this namespace and no prefix.
3924    return NestedNameSpecifier::Create(*this, 0,
3925                                    NNS->getAsNamespaceAlias()->getNamespace()
3926                                                      ->getOriginalNamespace());
3927
3928  case NestedNameSpecifier::TypeSpec:
3929  case NestedNameSpecifier::TypeSpecWithTemplate: {
3930    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
3931
3932    // If we have some kind of dependent-named type (e.g., "typename T::type"),
3933    // break it apart into its prefix and identifier, then reconsititute those
3934    // as the canonical nested-name-specifier. This is required to canonicalize
3935    // a dependent nested-name-specifier involving typedefs of dependent-name
3936    // types, e.g.,
3937    //   typedef typename T::type T1;
3938    //   typedef typename T1::type T2;
3939    if (const DependentNameType *DNT = T->getAs<DependentNameType>())
3940      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
3941                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
3942
3943    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
3944    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
3945    // first place?
3946    return NestedNameSpecifier::Create(*this, 0, false,
3947                                       const_cast<Type*>(T.getTypePtr()));
3948  }
3949
3950  case NestedNameSpecifier::Global:
3951    // The global specifier is canonical and unique.
3952    return NNS;
3953  }
3954
3955  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3956}
3957
3958
3959const ArrayType *ASTContext::getAsArrayType(QualType T) const {
3960  // Handle the non-qualified case efficiently.
3961  if (!T.hasLocalQualifiers()) {
3962    // Handle the common positive case fast.
3963    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
3964      return AT;
3965  }
3966
3967  // Handle the common negative case fast.
3968  if (!isa<ArrayType>(T.getCanonicalType()))
3969    return 0;
3970
3971  // Apply any qualifiers from the array type to the element type.  This
3972  // implements C99 6.7.3p8: "If the specification of an array type includes
3973  // any type qualifiers, the element type is so qualified, not the array type."
3974
3975  // If we get here, we either have type qualifiers on the type, or we have
3976  // sugar such as a typedef in the way.  If we have type qualifiers on the type
3977  // we must propagate them down into the element type.
3978
3979  SplitQualType split = T.getSplitDesugaredType();
3980  Qualifiers qs = split.Quals;
3981
3982  // If we have a simple case, just return now.
3983  const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty);
3984  if (ATy == 0 || qs.empty())
3985    return ATy;
3986
3987  // Otherwise, we have an array and we have qualifiers on it.  Push the
3988  // qualifiers into the array element type and return a new array type.
3989  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
3990
3991  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
3992    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
3993                                                CAT->getSizeModifier(),
3994                                           CAT->getIndexTypeCVRQualifiers()));
3995  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
3996    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
3997                                                  IAT->getSizeModifier(),
3998                                           IAT->getIndexTypeCVRQualifiers()));
3999
4000  if (const DependentSizedArrayType *DSAT
4001        = dyn_cast<DependentSizedArrayType>(ATy))
4002    return cast<ArrayType>(
4003                     getDependentSizedArrayType(NewEltTy,
4004                                                DSAT->getSizeExpr(),
4005                                                DSAT->getSizeModifier(),
4006                                              DSAT->getIndexTypeCVRQualifiers(),
4007                                                DSAT->getBracketsRange()));
4008
4009  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
4010  return cast<ArrayType>(getVariableArrayType(NewEltTy,
4011                                              VAT->getSizeExpr(),
4012                                              VAT->getSizeModifier(),
4013                                              VAT->getIndexTypeCVRQualifiers(),
4014                                              VAT->getBracketsRange()));
4015}
4016
4017QualType ASTContext::getAdjustedParameterType(QualType T) const {
4018  // C99 6.7.5.3p7:
4019  //   A declaration of a parameter as "array of type" shall be
4020  //   adjusted to "qualified pointer to type", where the type
4021  //   qualifiers (if any) are those specified within the [ and ] of
4022  //   the array type derivation.
4023  if (T->isArrayType())
4024    return getArrayDecayedType(T);
4025
4026  // C99 6.7.5.3p8:
4027  //   A declaration of a parameter as "function returning type"
4028  //   shall be adjusted to "pointer to function returning type", as
4029  //   in 6.3.2.1.
4030  if (T->isFunctionType())
4031    return getPointerType(T);
4032
4033  return T;
4034}
4035
4036QualType ASTContext::getSignatureParameterType(QualType T) const {
4037  T = getVariableArrayDecayedType(T);
4038  T = getAdjustedParameterType(T);
4039  return T.getUnqualifiedType();
4040}
4041
4042/// getArrayDecayedType - Return the properly qualified result of decaying the
4043/// specified array type to a pointer.  This operation is non-trivial when
4044/// handling typedefs etc.  The canonical type of "T" must be an array type,
4045/// this returns a pointer to a properly qualified element of the array.
4046///
4047/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
4048QualType ASTContext::getArrayDecayedType(QualType Ty) const {
4049  // Get the element type with 'getAsArrayType' so that we don't lose any
4050  // typedefs in the element type of the array.  This also handles propagation
4051  // of type qualifiers from the array type into the element type if present
4052  // (C99 6.7.3p8).
4053  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
4054  assert(PrettyArrayType && "Not an array type!");
4055
4056  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
4057
4058  // int x[restrict 4] ->  int *restrict
4059  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
4060}
4061
4062QualType ASTContext::getBaseElementType(const ArrayType *array) const {
4063  return getBaseElementType(array->getElementType());
4064}
4065
4066QualType ASTContext::getBaseElementType(QualType type) const {
4067  Qualifiers qs;
4068  while (true) {
4069    SplitQualType split = type.getSplitDesugaredType();
4070    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
4071    if (!array) break;
4072
4073    type = array->getElementType();
4074    qs.addConsistentQualifiers(split.Quals);
4075  }
4076
4077  return getQualifiedType(type, qs);
4078}
4079
4080/// getConstantArrayElementCount - Returns number of constant array elements.
4081uint64_t
4082ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
4083  uint64_t ElementCount = 1;
4084  do {
4085    ElementCount *= CA->getSize().getZExtValue();
4086    CA = dyn_cast_or_null<ConstantArrayType>(
4087      CA->getElementType()->getAsArrayTypeUnsafe());
4088  } while (CA);
4089  return ElementCount;
4090}
4091
4092/// getFloatingRank - Return a relative rank for floating point types.
4093/// This routine will assert if passed a built-in type that isn't a float.
4094static FloatingRank getFloatingRank(QualType T) {
4095  if (const ComplexType *CT = T->getAs<ComplexType>())
4096    return getFloatingRank(CT->getElementType());
4097
4098  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
4099  switch (T->getAs<BuiltinType>()->getKind()) {
4100  default: llvm_unreachable("getFloatingRank(): not a floating type");
4101  case BuiltinType::Half:       return HalfRank;
4102  case BuiltinType::Float:      return FloatRank;
4103  case BuiltinType::Double:     return DoubleRank;
4104  case BuiltinType::LongDouble: return LongDoubleRank;
4105  }
4106}
4107
4108/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
4109/// point or a complex type (based on typeDomain/typeSize).
4110/// 'typeDomain' is a real floating point or complex type.
4111/// 'typeSize' is a real floating point or complex type.
4112QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
4113                                                       QualType Domain) const {
4114  FloatingRank EltRank = getFloatingRank(Size);
4115  if (Domain->isComplexType()) {
4116    switch (EltRank) {
4117    case HalfRank: llvm_unreachable("Complex half is not supported");
4118    case FloatRank:      return FloatComplexTy;
4119    case DoubleRank:     return DoubleComplexTy;
4120    case LongDoubleRank: return LongDoubleComplexTy;
4121    }
4122  }
4123
4124  assert(Domain->isRealFloatingType() && "Unknown domain!");
4125  switch (EltRank) {
4126  case HalfRank:       return HalfTy;
4127  case FloatRank:      return FloatTy;
4128  case DoubleRank:     return DoubleTy;
4129  case LongDoubleRank: return LongDoubleTy;
4130  }
4131  llvm_unreachable("getFloatingRank(): illegal value for rank");
4132}
4133
4134/// getFloatingTypeOrder - Compare the rank of the two specified floating
4135/// point types, ignoring the domain of the type (i.e. 'double' ==
4136/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4137/// LHS < RHS, return -1.
4138int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
4139  FloatingRank LHSR = getFloatingRank(LHS);
4140  FloatingRank RHSR = getFloatingRank(RHS);
4141
4142  if (LHSR == RHSR)
4143    return 0;
4144  if (LHSR > RHSR)
4145    return 1;
4146  return -1;
4147}
4148
4149/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
4150/// routine will assert if passed a built-in type that isn't an integer or enum,
4151/// or if it is not canonicalized.
4152unsigned ASTContext::getIntegerRank(const Type *T) const {
4153  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
4154
4155  switch (cast<BuiltinType>(T)->getKind()) {
4156  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
4157  case BuiltinType::Bool:
4158    return 1 + (getIntWidth(BoolTy) << 3);
4159  case BuiltinType::Char_S:
4160  case BuiltinType::Char_U:
4161  case BuiltinType::SChar:
4162  case BuiltinType::UChar:
4163    return 2 + (getIntWidth(CharTy) << 3);
4164  case BuiltinType::Short:
4165  case BuiltinType::UShort:
4166    return 3 + (getIntWidth(ShortTy) << 3);
4167  case BuiltinType::Int:
4168  case BuiltinType::UInt:
4169    return 4 + (getIntWidth(IntTy) << 3);
4170  case BuiltinType::Long:
4171  case BuiltinType::ULong:
4172    return 5 + (getIntWidth(LongTy) << 3);
4173  case BuiltinType::LongLong:
4174  case BuiltinType::ULongLong:
4175    return 6 + (getIntWidth(LongLongTy) << 3);
4176  case BuiltinType::Int128:
4177  case BuiltinType::UInt128:
4178    return 7 + (getIntWidth(Int128Ty) << 3);
4179  }
4180}
4181
4182/// \brief Whether this is a promotable bitfield reference according
4183/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
4184///
4185/// \returns the type this bit-field will promote to, or NULL if no
4186/// promotion occurs.
4187QualType ASTContext::isPromotableBitField(Expr *E) const {
4188  if (E->isTypeDependent() || E->isValueDependent())
4189    return QualType();
4190
4191  FieldDecl *Field = E->getBitField();
4192  if (!Field)
4193    return QualType();
4194
4195  QualType FT = Field->getType();
4196
4197  uint64_t BitWidth = Field->getBitWidthValue(*this);
4198  uint64_t IntSize = getTypeSize(IntTy);
4199  // GCC extension compatibility: if the bit-field size is less than or equal
4200  // to the size of int, it gets promoted no matter what its type is.
4201  // For instance, unsigned long bf : 4 gets promoted to signed int.
4202  if (BitWidth < IntSize)
4203    return IntTy;
4204
4205  if (BitWidth == IntSize)
4206    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
4207
4208  // Types bigger than int are not subject to promotions, and therefore act
4209  // like the base type.
4210  // FIXME: This doesn't quite match what gcc does, but what gcc does here
4211  // is ridiculous.
4212  return QualType();
4213}
4214
4215/// getPromotedIntegerType - Returns the type that Promotable will
4216/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
4217/// integer type.
4218QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
4219  assert(!Promotable.isNull());
4220  assert(Promotable->isPromotableIntegerType());
4221  if (const EnumType *ET = Promotable->getAs<EnumType>())
4222    return ET->getDecl()->getPromotionType();
4223
4224  if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) {
4225    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
4226    // (3.9.1) can be converted to a prvalue of the first of the following
4227    // types that can represent all the values of its underlying type:
4228    // int, unsigned int, long int, unsigned long int, long long int, or
4229    // unsigned long long int [...]
4230    // FIXME: Is there some better way to compute this?
4231    if (BT->getKind() == BuiltinType::WChar_S ||
4232        BT->getKind() == BuiltinType::WChar_U ||
4233        BT->getKind() == BuiltinType::Char16 ||
4234        BT->getKind() == BuiltinType::Char32) {
4235      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
4236      uint64_t FromSize = getTypeSize(BT);
4237      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
4238                                  LongLongTy, UnsignedLongLongTy };
4239      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
4240        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
4241        if (FromSize < ToSize ||
4242            (FromSize == ToSize &&
4243             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
4244          return PromoteTypes[Idx];
4245      }
4246      llvm_unreachable("char type should fit into long long");
4247    }
4248  }
4249
4250  // At this point, we should have a signed or unsigned integer type.
4251  if (Promotable->isSignedIntegerType())
4252    return IntTy;
4253  uint64_t PromotableSize = getIntWidth(Promotable);
4254  uint64_t IntSize = getIntWidth(IntTy);
4255  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
4256  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
4257}
4258
4259/// \brief Recurses in pointer/array types until it finds an objc retainable
4260/// type and returns its ownership.
4261Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
4262  while (!T.isNull()) {
4263    if (T.getObjCLifetime() != Qualifiers::OCL_None)
4264      return T.getObjCLifetime();
4265    if (T->isArrayType())
4266      T = getBaseElementType(T);
4267    else if (const PointerType *PT = T->getAs<PointerType>())
4268      T = PT->getPointeeType();
4269    else if (const ReferenceType *RT = T->getAs<ReferenceType>())
4270      T = RT->getPointeeType();
4271    else
4272      break;
4273  }
4274
4275  return Qualifiers::OCL_None;
4276}
4277
4278/// getIntegerTypeOrder - Returns the highest ranked integer type:
4279/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
4280/// LHS < RHS, return -1.
4281int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
4282  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
4283  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
4284  if (LHSC == RHSC) return 0;
4285
4286  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
4287  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
4288
4289  unsigned LHSRank = getIntegerRank(LHSC);
4290  unsigned RHSRank = getIntegerRank(RHSC);
4291
4292  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
4293    if (LHSRank == RHSRank) return 0;
4294    return LHSRank > RHSRank ? 1 : -1;
4295  }
4296
4297  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
4298  if (LHSUnsigned) {
4299    // If the unsigned [LHS] type is larger, return it.
4300    if (LHSRank >= RHSRank)
4301      return 1;
4302
4303    // If the signed type can represent all values of the unsigned type, it
4304    // wins.  Because we are dealing with 2's complement and types that are
4305    // powers of two larger than each other, this is always safe.
4306    return -1;
4307  }
4308
4309  // If the unsigned [RHS] type is larger, return it.
4310  if (RHSRank >= LHSRank)
4311    return -1;
4312
4313  // If the signed type can represent all values of the unsigned type, it
4314  // wins.  Because we are dealing with 2's complement and types that are
4315  // powers of two larger than each other, this is always safe.
4316  return 1;
4317}
4318
4319static RecordDecl *
4320CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
4321                 DeclContext *DC, IdentifierInfo *Id) {
4322  SourceLocation Loc;
4323  if (Ctx.getLangOpts().CPlusPlus)
4324    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4325  else
4326    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
4327}
4328
4329// getCFConstantStringType - Return the type used for constant CFStrings.
4330QualType ASTContext::getCFConstantStringType() const {
4331  if (!CFConstantStringTypeDecl) {
4332    CFConstantStringTypeDecl =
4333      CreateRecordDecl(*this, TTK_Struct, TUDecl,
4334                       &Idents.get("NSConstantString"));
4335    CFConstantStringTypeDecl->startDefinition();
4336
4337    QualType FieldTypes[4];
4338
4339    // const int *isa;
4340    FieldTypes[0] = getPointerType(IntTy.withConst());
4341    // int flags;
4342    FieldTypes[1] = IntTy;
4343    // const char *str;
4344    FieldTypes[2] = getPointerType(CharTy.withConst());
4345    // long length;
4346    FieldTypes[3] = LongTy;
4347
4348    // Create fields
4349    for (unsigned i = 0; i < 4; ++i) {
4350      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
4351                                           SourceLocation(),
4352                                           SourceLocation(), 0,
4353                                           FieldTypes[i], /*TInfo=*/0,
4354                                           /*BitWidth=*/0,
4355                                           /*Mutable=*/false,
4356                                           ICIS_NoInit);
4357      Field->setAccess(AS_public);
4358      CFConstantStringTypeDecl->addDecl(Field);
4359    }
4360
4361    CFConstantStringTypeDecl->completeDefinition();
4362  }
4363
4364  return getTagDeclType(CFConstantStringTypeDecl);
4365}
4366
4367QualType ASTContext::getObjCSuperType() const {
4368  if (ObjCSuperType.isNull()) {
4369    RecordDecl *ObjCSuperTypeDecl  =
4370      CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get("objc_super"));
4371    TUDecl->addDecl(ObjCSuperTypeDecl);
4372    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
4373  }
4374  return ObjCSuperType;
4375}
4376
4377void ASTContext::setCFConstantStringType(QualType T) {
4378  const RecordType *Rec = T->getAs<RecordType>();
4379  assert(Rec && "Invalid CFConstantStringType");
4380  CFConstantStringTypeDecl = Rec->getDecl();
4381}
4382
4383QualType ASTContext::getBlockDescriptorType() const {
4384  if (BlockDescriptorType)
4385    return getTagDeclType(BlockDescriptorType);
4386
4387  RecordDecl *T;
4388  // FIXME: Needs the FlagAppleBlock bit.
4389  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4390                       &Idents.get("__block_descriptor"));
4391  T->startDefinition();
4392
4393  QualType FieldTypes[] = {
4394    UnsignedLongTy,
4395    UnsignedLongTy,
4396  };
4397
4398  const char *FieldNames[] = {
4399    "reserved",
4400    "Size"
4401  };
4402
4403  for (size_t i = 0; i < 2; ++i) {
4404    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4405                                         SourceLocation(),
4406                                         &Idents.get(FieldNames[i]),
4407                                         FieldTypes[i], /*TInfo=*/0,
4408                                         /*BitWidth=*/0,
4409                                         /*Mutable=*/false,
4410                                         ICIS_NoInit);
4411    Field->setAccess(AS_public);
4412    T->addDecl(Field);
4413  }
4414
4415  T->completeDefinition();
4416
4417  BlockDescriptorType = T;
4418
4419  return getTagDeclType(BlockDescriptorType);
4420}
4421
4422QualType ASTContext::getBlockDescriptorExtendedType() const {
4423  if (BlockDescriptorExtendedType)
4424    return getTagDeclType(BlockDescriptorExtendedType);
4425
4426  RecordDecl *T;
4427  // FIXME: Needs the FlagAppleBlock bit.
4428  T = CreateRecordDecl(*this, TTK_Struct, TUDecl,
4429                       &Idents.get("__block_descriptor_withcopydispose"));
4430  T->startDefinition();
4431
4432  QualType FieldTypes[] = {
4433    UnsignedLongTy,
4434    UnsignedLongTy,
4435    getPointerType(VoidPtrTy),
4436    getPointerType(VoidPtrTy)
4437  };
4438
4439  const char *FieldNames[] = {
4440    "reserved",
4441    "Size",
4442    "CopyFuncPtr",
4443    "DestroyFuncPtr"
4444  };
4445
4446  for (size_t i = 0; i < 4; ++i) {
4447    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
4448                                         SourceLocation(),
4449                                         &Idents.get(FieldNames[i]),
4450                                         FieldTypes[i], /*TInfo=*/0,
4451                                         /*BitWidth=*/0,
4452                                         /*Mutable=*/false,
4453                                         ICIS_NoInit);
4454    Field->setAccess(AS_public);
4455    T->addDecl(Field);
4456  }
4457
4458  T->completeDefinition();
4459
4460  BlockDescriptorExtendedType = T;
4461
4462  return getTagDeclType(BlockDescriptorExtendedType);
4463}
4464
4465/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
4466/// requires copy/dispose. Note that this must match the logic
4467/// in buildByrefHelpers.
4468bool ASTContext::BlockRequiresCopying(QualType Ty,
4469                                      const VarDecl *D) {
4470  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
4471    const Expr *copyExpr = getBlockVarCopyInits(D);
4472    if (!copyExpr && record->hasTrivialDestructor()) return false;
4473
4474    return true;
4475  }
4476
4477  if (!Ty->isObjCRetainableType()) return false;
4478
4479  Qualifiers qs = Ty.getQualifiers();
4480
4481  // If we have lifetime, that dominates.
4482  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
4483    assert(getLangOpts().ObjCAutoRefCount);
4484
4485    switch (lifetime) {
4486      case Qualifiers::OCL_None: llvm_unreachable("impossible");
4487
4488      // These are just bits as far as the runtime is concerned.
4489      case Qualifiers::OCL_ExplicitNone:
4490      case Qualifiers::OCL_Autoreleasing:
4491        return false;
4492
4493      // Tell the runtime that this is ARC __weak, called by the
4494      // byref routines.
4495      case Qualifiers::OCL_Weak:
4496      // ARC __strong __block variables need to be retained.
4497      case Qualifiers::OCL_Strong:
4498        return true;
4499    }
4500    llvm_unreachable("fell out of lifetime switch!");
4501  }
4502  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
4503          Ty->isObjCObjectPointerType());
4504}
4505
4506bool ASTContext::getByrefLifetime(QualType Ty,
4507                              Qualifiers::ObjCLifetime &LifeTime,
4508                              bool &HasByrefExtendedLayout) const {
4509
4510  if (!getLangOpts().ObjC1 ||
4511      getLangOpts().getGC() != LangOptions::NonGC)
4512    return false;
4513
4514  HasByrefExtendedLayout = false;
4515  if (Ty->isRecordType()) {
4516    HasByrefExtendedLayout = true;
4517    LifeTime = Qualifiers::OCL_None;
4518  }
4519  else if (getLangOpts().ObjCAutoRefCount)
4520    LifeTime = Ty.getObjCLifetime();
4521  // MRR.
4522  else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
4523    LifeTime = Qualifiers::OCL_ExplicitNone;
4524  else
4525    LifeTime = Qualifiers::OCL_None;
4526  return true;
4527}
4528
4529TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
4530  if (!ObjCInstanceTypeDecl)
4531    ObjCInstanceTypeDecl = TypedefDecl::Create(*this,
4532                                               getTranslationUnitDecl(),
4533                                               SourceLocation(),
4534                                               SourceLocation(),
4535                                               &Idents.get("instancetype"),
4536                                     getTrivialTypeSourceInfo(getObjCIdType()));
4537  return ObjCInstanceTypeDecl;
4538}
4539
4540// This returns true if a type has been typedefed to BOOL:
4541// typedef <type> BOOL;
4542static bool isTypeTypedefedAsBOOL(QualType T) {
4543  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
4544    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
4545      return II->isStr("BOOL");
4546
4547  return false;
4548}
4549
4550/// getObjCEncodingTypeSize returns size of type for objective-c encoding
4551/// purpose.
4552CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
4553  if (!type->isIncompleteArrayType() && type->isIncompleteType())
4554    return CharUnits::Zero();
4555
4556  CharUnits sz = getTypeSizeInChars(type);
4557
4558  // Make all integer and enum types at least as large as an int
4559  if (sz.isPositive() && type->isIntegralOrEnumerationType())
4560    sz = std::max(sz, getTypeSizeInChars(IntTy));
4561  // Treat arrays as pointers, since that's how they're passed in.
4562  else if (type->isArrayType())
4563    sz = getTypeSizeInChars(VoidPtrTy);
4564  return sz;
4565}
4566
4567static inline
4568std::string charUnitsToString(const CharUnits &CU) {
4569  return llvm::itostr(CU.getQuantity());
4570}
4571
4572/// getObjCEncodingForBlock - Return the encoded type for this block
4573/// declaration.
4574std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
4575  std::string S;
4576
4577  const BlockDecl *Decl = Expr->getBlockDecl();
4578  QualType BlockTy =
4579      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
4580  // Encode result type.
4581  if (getLangOpts().EncodeExtendedBlockSig)
4582    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None,
4583                            BlockTy->getAs<FunctionType>()->getResultType(),
4584                            S, true /*Extended*/);
4585  else
4586    getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(),
4587                           S);
4588  // Compute size of all parameters.
4589  // Start with computing size of a pointer in number of bytes.
4590  // FIXME: There might(should) be a better way of doing this computation!
4591  SourceLocation Loc;
4592  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4593  CharUnits ParmOffset = PtrSize;
4594  for (BlockDecl::param_const_iterator PI = Decl->param_begin(),
4595       E = Decl->param_end(); PI != E; ++PI) {
4596    QualType PType = (*PI)->getType();
4597    CharUnits sz = getObjCEncodingTypeSize(PType);
4598    if (sz.isZero())
4599      continue;
4600    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
4601    ParmOffset += sz;
4602  }
4603  // Size of the argument frame
4604  S += charUnitsToString(ParmOffset);
4605  // Block pointer and offset.
4606  S += "@?0";
4607
4608  // Argument types.
4609  ParmOffset = PtrSize;
4610  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
4611       Decl->param_end(); PI != E; ++PI) {
4612    ParmVarDecl *PVDecl = *PI;
4613    QualType PType = PVDecl->getOriginalType();
4614    if (const ArrayType *AT =
4615          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4616      // Use array's original type only if it has known number of
4617      // elements.
4618      if (!isa<ConstantArrayType>(AT))
4619        PType = PVDecl->getType();
4620    } else if (PType->isFunctionType())
4621      PType = PVDecl->getType();
4622    if (getLangOpts().EncodeExtendedBlockSig)
4623      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
4624                                      S, true /*Extended*/);
4625    else
4626      getObjCEncodingForType(PType, S);
4627    S += charUnitsToString(ParmOffset);
4628    ParmOffset += getObjCEncodingTypeSize(PType);
4629  }
4630
4631  return S;
4632}
4633
4634bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl,
4635                                                std::string& S) {
4636  // Encode result type.
4637  getObjCEncodingForType(Decl->getResultType(), S);
4638  CharUnits ParmOffset;
4639  // Compute size of all parameters.
4640  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4641       E = Decl->param_end(); PI != E; ++PI) {
4642    QualType PType = (*PI)->getType();
4643    CharUnits sz = getObjCEncodingTypeSize(PType);
4644    if (sz.isZero())
4645      continue;
4646
4647    assert (sz.isPositive() &&
4648        "getObjCEncodingForFunctionDecl - Incomplete param type");
4649    ParmOffset += sz;
4650  }
4651  S += charUnitsToString(ParmOffset);
4652  ParmOffset = CharUnits::Zero();
4653
4654  // Argument types.
4655  for (FunctionDecl::param_const_iterator PI = Decl->param_begin(),
4656       E = Decl->param_end(); PI != E; ++PI) {
4657    ParmVarDecl *PVDecl = *PI;
4658    QualType PType = PVDecl->getOriginalType();
4659    if (const ArrayType *AT =
4660          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4661      // Use array's original type only if it has known number of
4662      // elements.
4663      if (!isa<ConstantArrayType>(AT))
4664        PType = PVDecl->getType();
4665    } else if (PType->isFunctionType())
4666      PType = PVDecl->getType();
4667    getObjCEncodingForType(PType, S);
4668    S += charUnitsToString(ParmOffset);
4669    ParmOffset += getObjCEncodingTypeSize(PType);
4670  }
4671
4672  return false;
4673}
4674
4675/// getObjCEncodingForMethodParameter - Return the encoded type for a single
4676/// method parameter or return type. If Extended, include class names and
4677/// block object types.
4678void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
4679                                                   QualType T, std::string& S,
4680                                                   bool Extended) const {
4681  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
4682  getObjCEncodingForTypeQualifier(QT, S);
4683  // Encode parameter type.
4684  getObjCEncodingForTypeImpl(T, S, true, true, 0,
4685                             true     /*OutermostType*/,
4686                             false    /*EncodingProperty*/,
4687                             false    /*StructField*/,
4688                             Extended /*EncodeBlockParameters*/,
4689                             Extended /*EncodeClassNames*/);
4690}
4691
4692/// getObjCEncodingForMethodDecl - Return the encoded type for this method
4693/// declaration.
4694bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
4695                                              std::string& S,
4696                                              bool Extended) const {
4697  // FIXME: This is not very efficient.
4698  // Encode return type.
4699  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
4700                                    Decl->getResultType(), S, Extended);
4701  // Compute size of all parameters.
4702  // Start with computing size of a pointer in number of bytes.
4703  // FIXME: There might(should) be a better way of doing this computation!
4704  SourceLocation Loc;
4705  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
4706  // The first two arguments (self and _cmd) are pointers; account for
4707  // their size.
4708  CharUnits ParmOffset = 2 * PtrSize;
4709  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4710       E = Decl->sel_param_end(); PI != E; ++PI) {
4711    QualType PType = (*PI)->getType();
4712    CharUnits sz = getObjCEncodingTypeSize(PType);
4713    if (sz.isZero())
4714      continue;
4715
4716    assert (sz.isPositive() &&
4717        "getObjCEncodingForMethodDecl - Incomplete param type");
4718    ParmOffset += sz;
4719  }
4720  S += charUnitsToString(ParmOffset);
4721  S += "@0:";
4722  S += charUnitsToString(PtrSize);
4723
4724  // Argument types.
4725  ParmOffset = 2 * PtrSize;
4726  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
4727       E = Decl->sel_param_end(); PI != E; ++PI) {
4728    const ParmVarDecl *PVDecl = *PI;
4729    QualType PType = PVDecl->getOriginalType();
4730    if (const ArrayType *AT =
4731          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
4732      // Use array's original type only if it has known number of
4733      // elements.
4734      if (!isa<ConstantArrayType>(AT))
4735        PType = PVDecl->getType();
4736    } else if (PType->isFunctionType())
4737      PType = PVDecl->getType();
4738    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
4739                                      PType, S, Extended);
4740    S += charUnitsToString(ParmOffset);
4741    ParmOffset += getObjCEncodingTypeSize(PType);
4742  }
4743
4744  return false;
4745}
4746
4747/// getObjCEncodingForPropertyDecl - Return the encoded type for this
4748/// property declaration. If non-NULL, Container must be either an
4749/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
4750/// NULL when getting encodings for protocol properties.
4751/// Property attributes are stored as a comma-delimited C string. The simple
4752/// attributes readonly and bycopy are encoded as single characters. The
4753/// parametrized attributes, getter=name, setter=name, and ivar=name, are
4754/// encoded as single characters, followed by an identifier. Property types
4755/// are also encoded as a parametrized attribute. The characters used to encode
4756/// these attributes are defined by the following enumeration:
4757/// @code
4758/// enum PropertyAttributes {
4759/// kPropertyReadOnly = 'R',   // property is read-only.
4760/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
4761/// kPropertyByref = '&',  // property is a reference to the value last assigned
4762/// kPropertyDynamic = 'D',    // property is dynamic
4763/// kPropertyGetter = 'G',     // followed by getter selector name
4764/// kPropertySetter = 'S',     // followed by setter selector name
4765/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
4766/// kPropertyType = 'T'              // followed by old-style type encoding.
4767/// kPropertyWeak = 'W'              // 'weak' property
4768/// kPropertyStrong = 'P'            // property GC'able
4769/// kPropertyNonAtomic = 'N'         // property non-atomic
4770/// };
4771/// @endcode
4772void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
4773                                                const Decl *Container,
4774                                                std::string& S) const {
4775  // Collect information from the property implementation decl(s).
4776  bool Dynamic = false;
4777  ObjCPropertyImplDecl *SynthesizePID = 0;
4778
4779  // FIXME: Duplicated code due to poor abstraction.
4780  if (Container) {
4781    if (const ObjCCategoryImplDecl *CID =
4782        dyn_cast<ObjCCategoryImplDecl>(Container)) {
4783      for (ObjCCategoryImplDecl::propimpl_iterator
4784             i = CID->propimpl_begin(), e = CID->propimpl_end();
4785           i != e; ++i) {
4786        ObjCPropertyImplDecl *PID = *i;
4787        if (PID->getPropertyDecl() == PD) {
4788          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4789            Dynamic = true;
4790          } else {
4791            SynthesizePID = PID;
4792          }
4793        }
4794      }
4795    } else {
4796      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
4797      for (ObjCCategoryImplDecl::propimpl_iterator
4798             i = OID->propimpl_begin(), e = OID->propimpl_end();
4799           i != e; ++i) {
4800        ObjCPropertyImplDecl *PID = *i;
4801        if (PID->getPropertyDecl() == PD) {
4802          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
4803            Dynamic = true;
4804          } else {
4805            SynthesizePID = PID;
4806          }
4807        }
4808      }
4809    }
4810  }
4811
4812  // FIXME: This is not very efficient.
4813  S = "T";
4814
4815  // Encode result type.
4816  // GCC has some special rules regarding encoding of properties which
4817  // closely resembles encoding of ivars.
4818  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
4819                             true /* outermost type */,
4820                             true /* encoding for property */);
4821
4822  if (PD->isReadOnly()) {
4823    S += ",R";
4824  } else {
4825    switch (PD->getSetterKind()) {
4826    case ObjCPropertyDecl::Assign: break;
4827    case ObjCPropertyDecl::Copy:   S += ",C"; break;
4828    case ObjCPropertyDecl::Retain: S += ",&"; break;
4829    case ObjCPropertyDecl::Weak:   S += ",W"; break;
4830    }
4831  }
4832
4833  // It really isn't clear at all what this means, since properties
4834  // are "dynamic by default".
4835  if (Dynamic)
4836    S += ",D";
4837
4838  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
4839    S += ",N";
4840
4841  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
4842    S += ",G";
4843    S += PD->getGetterName().getAsString();
4844  }
4845
4846  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
4847    S += ",S";
4848    S += PD->getSetterName().getAsString();
4849  }
4850
4851  if (SynthesizePID) {
4852    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
4853    S += ",V";
4854    S += OID->getNameAsString();
4855  }
4856
4857  // FIXME: OBJCGC: weak & strong
4858}
4859
4860/// getLegacyIntegralTypeEncoding -
4861/// Another legacy compatibility encoding: 32-bit longs are encoded as
4862/// 'l' or 'L' , but not always.  For typedefs, we need to use
4863/// 'i' or 'I' instead if encoding a struct field, or a pointer!
4864///
4865void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
4866  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
4867    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
4868      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
4869        PointeeTy = UnsignedIntTy;
4870      else
4871        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
4872          PointeeTy = IntTy;
4873    }
4874  }
4875}
4876
4877void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
4878                                        const FieldDecl *Field) const {
4879  // We follow the behavior of gcc, expanding structures which are
4880  // directly pointed to, and expanding embedded structures. Note that
4881  // these rules are sufficient to prevent recursive encoding of the
4882  // same type.
4883  getObjCEncodingForTypeImpl(T, S, true, true, Field,
4884                             true /* outermost type */);
4885}
4886
4887static char getObjCEncodingForPrimitiveKind(const ASTContext *C,
4888                                            BuiltinType::Kind kind) {
4889    switch (kind) {
4890    case BuiltinType::Void:       return 'v';
4891    case BuiltinType::Bool:       return 'B';
4892    case BuiltinType::Char_U:
4893    case BuiltinType::UChar:      return 'C';
4894    case BuiltinType::Char16:
4895    case BuiltinType::UShort:     return 'S';
4896    case BuiltinType::Char32:
4897    case BuiltinType::UInt:       return 'I';
4898    case BuiltinType::ULong:
4899        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
4900    case BuiltinType::UInt128:    return 'T';
4901    case BuiltinType::ULongLong:  return 'Q';
4902    case BuiltinType::Char_S:
4903    case BuiltinType::SChar:      return 'c';
4904    case BuiltinType::Short:      return 's';
4905    case BuiltinType::WChar_S:
4906    case BuiltinType::WChar_U:
4907    case BuiltinType::Int:        return 'i';
4908    case BuiltinType::Long:
4909      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
4910    case BuiltinType::LongLong:   return 'q';
4911    case BuiltinType::Int128:     return 't';
4912    case BuiltinType::Float:      return 'f';
4913    case BuiltinType::Double:     return 'd';
4914    case BuiltinType::LongDouble: return 'D';
4915    case BuiltinType::NullPtr:    return '*'; // like char*
4916
4917    case BuiltinType::Half:
4918      // FIXME: potentially need @encodes for these!
4919      return ' ';
4920
4921    case BuiltinType::ObjCId:
4922    case BuiltinType::ObjCClass:
4923    case BuiltinType::ObjCSel:
4924      llvm_unreachable("@encoding ObjC primitive type");
4925
4926    // OpenCL and placeholder types don't need @encodings.
4927    case BuiltinType::OCLImage1d:
4928    case BuiltinType::OCLImage1dArray:
4929    case BuiltinType::OCLImage1dBuffer:
4930    case BuiltinType::OCLImage2d:
4931    case BuiltinType::OCLImage2dArray:
4932    case BuiltinType::OCLImage3d:
4933    case BuiltinType::OCLEvent:
4934    case BuiltinType::OCLSampler:
4935    case BuiltinType::Dependent:
4936#define BUILTIN_TYPE(KIND, ID)
4937#define PLACEHOLDER_TYPE(KIND, ID) \
4938    case BuiltinType::KIND:
4939#include "clang/AST/BuiltinTypes.def"
4940      llvm_unreachable("invalid builtin type for @encode");
4941    }
4942    llvm_unreachable("invalid BuiltinType::Kind value");
4943}
4944
4945static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
4946  EnumDecl *Enum = ET->getDecl();
4947
4948  // The encoding of an non-fixed enum type is always 'i', regardless of size.
4949  if (!Enum->isFixed())
4950    return 'i';
4951
4952  // The encoding of a fixed enum type matches its fixed underlying type.
4953  const BuiltinType *BT = Enum->getIntegerType()->castAs<BuiltinType>();
4954  return getObjCEncodingForPrimitiveKind(C, BT->getKind());
4955}
4956
4957static void EncodeBitField(const ASTContext *Ctx, std::string& S,
4958                           QualType T, const FieldDecl *FD) {
4959  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
4960  S += 'b';
4961  // The NeXT runtime encodes bit fields as b followed by the number of bits.
4962  // The GNU runtime requires more information; bitfields are encoded as b,
4963  // then the offset (in bits) of the first element, then the type of the
4964  // bitfield, then the size in bits.  For example, in this structure:
4965  //
4966  // struct
4967  // {
4968  //    int integer;
4969  //    int flags:2;
4970  // };
4971  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
4972  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
4973  // information is not especially sensible, but we're stuck with it for
4974  // compatibility with GCC, although providing it breaks anything that
4975  // actually uses runtime introspection and wants to work on both runtimes...
4976  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
4977    const RecordDecl *RD = FD->getParent();
4978    const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
4979    S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex()));
4980    if (const EnumType *ET = T->getAs<EnumType>())
4981      S += ObjCEncodingForEnumType(Ctx, ET);
4982    else {
4983      const BuiltinType *BT = T->castAs<BuiltinType>();
4984      S += getObjCEncodingForPrimitiveKind(Ctx, BT->getKind());
4985    }
4986  }
4987  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
4988}
4989
4990// FIXME: Use SmallString for accumulating string.
4991void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
4992                                            bool ExpandPointedToStructures,
4993                                            bool ExpandStructures,
4994                                            const FieldDecl *FD,
4995                                            bool OutermostType,
4996                                            bool EncodingProperty,
4997                                            bool StructField,
4998                                            bool EncodeBlockParameters,
4999                                            bool EncodeClassNames,
5000                                            bool EncodePointerToObjCTypedef) const {
5001  CanQualType CT = getCanonicalType(T);
5002  switch (CT->getTypeClass()) {
5003  case Type::Builtin:
5004  case Type::Enum:
5005    if (FD && FD->isBitField())
5006      return EncodeBitField(this, S, T, FD);
5007    if (const BuiltinType *BT = dyn_cast<BuiltinType>(CT))
5008      S += getObjCEncodingForPrimitiveKind(this, BT->getKind());
5009    else
5010      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
5011    return;
5012
5013  case Type::Complex: {
5014    const ComplexType *CT = T->castAs<ComplexType>();
5015    S += 'j';
5016    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
5017                               false);
5018    return;
5019  }
5020
5021  case Type::Atomic: {
5022    const AtomicType *AT = T->castAs<AtomicType>();
5023    S += 'A';
5024    getObjCEncodingForTypeImpl(AT->getValueType(), S, false, false, 0,
5025                               false, false);
5026    return;
5027  }
5028
5029  // encoding for pointer or reference types.
5030  case Type::Pointer:
5031  case Type::LValueReference:
5032  case Type::RValueReference: {
5033    QualType PointeeTy;
5034    if (isa<PointerType>(CT)) {
5035      const PointerType *PT = T->castAs<PointerType>();
5036      if (PT->isObjCSelType()) {
5037        S += ':';
5038        return;
5039      }
5040      PointeeTy = PT->getPointeeType();
5041    } else {
5042      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
5043    }
5044
5045    bool isReadOnly = false;
5046    // For historical/compatibility reasons, the read-only qualifier of the
5047    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
5048    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
5049    // Also, do not emit the 'r' for anything but the outermost type!
5050    if (isa<TypedefType>(T.getTypePtr())) {
5051      if (OutermostType && T.isConstQualified()) {
5052        isReadOnly = true;
5053        S += 'r';
5054      }
5055    } else if (OutermostType) {
5056      QualType P = PointeeTy;
5057      while (P->getAs<PointerType>())
5058        P = P->getAs<PointerType>()->getPointeeType();
5059      if (P.isConstQualified()) {
5060        isReadOnly = true;
5061        S += 'r';
5062      }
5063    }
5064    if (isReadOnly) {
5065      // Another legacy compatibility encoding. Some ObjC qualifier and type
5066      // combinations need to be rearranged.
5067      // Rewrite "in const" from "nr" to "rn"
5068      if (StringRef(S).endswith("nr"))
5069        S.replace(S.end()-2, S.end(), "rn");
5070    }
5071
5072    if (PointeeTy->isCharType()) {
5073      // char pointer types should be encoded as '*' unless it is a
5074      // type that has been typedef'd to 'BOOL'.
5075      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
5076        S += '*';
5077        return;
5078      }
5079    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
5080      // GCC binary compat: Need to convert "struct objc_class *" to "#".
5081      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
5082        S += '#';
5083        return;
5084      }
5085      // GCC binary compat: Need to convert "struct objc_object *" to "@".
5086      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
5087        S += '@';
5088        return;
5089      }
5090      // fall through...
5091    }
5092    S += '^';
5093    getLegacyIntegralTypeEncoding(PointeeTy);
5094
5095    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
5096                               NULL);
5097    return;
5098  }
5099
5100  case Type::ConstantArray:
5101  case Type::IncompleteArray:
5102  case Type::VariableArray: {
5103    const ArrayType *AT = cast<ArrayType>(CT);
5104
5105    if (isa<IncompleteArrayType>(AT) && !StructField) {
5106      // Incomplete arrays are encoded as a pointer to the array element.
5107      S += '^';
5108
5109      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5110                                 false, ExpandStructures, FD);
5111    } else {
5112      S += '[';
5113
5114      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
5115        if (getTypeSize(CAT->getElementType()) == 0)
5116          S += '0';
5117        else
5118          S += llvm::utostr(CAT->getSize().getZExtValue());
5119      } else {
5120        //Variable length arrays are encoded as a regular array with 0 elements.
5121        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
5122               "Unknown array type!");
5123        S += '0';
5124      }
5125
5126      getObjCEncodingForTypeImpl(AT->getElementType(), S,
5127                                 false, ExpandStructures, FD);
5128      S += ']';
5129    }
5130    return;
5131  }
5132
5133  case Type::FunctionNoProto:
5134  case Type::FunctionProto:
5135    S += '?';
5136    return;
5137
5138  case Type::Record: {
5139    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
5140    S += RDecl->isUnion() ? '(' : '{';
5141    // Anonymous structures print as '?'
5142    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
5143      S += II->getName();
5144      if (ClassTemplateSpecializationDecl *Spec
5145          = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
5146        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
5147        llvm::raw_string_ostream OS(S);
5148        TemplateSpecializationType::PrintTemplateArgumentList(OS,
5149                                            TemplateArgs.data(),
5150                                            TemplateArgs.size(),
5151                                            (*this).getPrintingPolicy());
5152      }
5153    } else {
5154      S += '?';
5155    }
5156    if (ExpandStructures) {
5157      S += '=';
5158      if (!RDecl->isUnion()) {
5159        getObjCEncodingForStructureImpl(RDecl, S, FD);
5160      } else {
5161        for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5162                                     FieldEnd = RDecl->field_end();
5163             Field != FieldEnd; ++Field) {
5164          if (FD) {
5165            S += '"';
5166            S += Field->getNameAsString();
5167            S += '"';
5168          }
5169
5170          // Special case bit-fields.
5171          if (Field->isBitField()) {
5172            getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
5173                                       *Field);
5174          } else {
5175            QualType qt = Field->getType();
5176            getLegacyIntegralTypeEncoding(qt);
5177            getObjCEncodingForTypeImpl(qt, S, false, true,
5178                                       FD, /*OutermostType*/false,
5179                                       /*EncodingProperty*/false,
5180                                       /*StructField*/true);
5181          }
5182        }
5183      }
5184    }
5185    S += RDecl->isUnion() ? ')' : '}';
5186    return;
5187  }
5188
5189  case Type::BlockPointer: {
5190    const BlockPointerType *BT = T->castAs<BlockPointerType>();
5191    S += "@?"; // Unlike a pointer-to-function, which is "^?".
5192    if (EncodeBlockParameters) {
5193      const FunctionType *FT = BT->getPointeeType()->castAs<FunctionType>();
5194
5195      S += '<';
5196      // Block return type
5197      getObjCEncodingForTypeImpl(FT->getResultType(), S,
5198                                 ExpandPointedToStructures, ExpandStructures,
5199                                 FD,
5200                                 false /* OutermostType */,
5201                                 EncodingProperty,
5202                                 false /* StructField */,
5203                                 EncodeBlockParameters,
5204                                 EncodeClassNames);
5205      // Block self
5206      S += "@?";
5207      // Block parameters
5208      if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
5209        for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
5210               E = FPT->arg_type_end(); I && (I != E); ++I) {
5211          getObjCEncodingForTypeImpl(*I, S,
5212                                     ExpandPointedToStructures,
5213                                     ExpandStructures,
5214                                     FD,
5215                                     false /* OutermostType */,
5216                                     EncodingProperty,
5217                                     false /* StructField */,
5218                                     EncodeBlockParameters,
5219                                     EncodeClassNames);
5220        }
5221      }
5222      S += '>';
5223    }
5224    return;
5225  }
5226
5227  case Type::ObjCObject:
5228  case Type::ObjCInterface: {
5229    // Ignore protocol qualifiers when mangling at this level.
5230    T = T->castAs<ObjCObjectType>()->getBaseType();
5231
5232    // The assumption seems to be that this assert will succeed
5233    // because nested levels will have filtered out 'id' and 'Class'.
5234    const ObjCInterfaceType *OIT = T->castAs<ObjCInterfaceType>();
5235    // @encode(class_name)
5236    ObjCInterfaceDecl *OI = OIT->getDecl();
5237    S += '{';
5238    const IdentifierInfo *II = OI->getIdentifier();
5239    S += II->getName();
5240    S += '=';
5241    SmallVector<const ObjCIvarDecl*, 32> Ivars;
5242    DeepCollectObjCIvars(OI, true, Ivars);
5243    for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
5244      const FieldDecl *Field = cast<FieldDecl>(Ivars[i]);
5245      if (Field->isBitField())
5246        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field);
5247      else
5248        getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD,
5249                                   false, false, false, false, false,
5250                                   EncodePointerToObjCTypedef);
5251    }
5252    S += '}';
5253    return;
5254  }
5255
5256  case Type::ObjCObjectPointer: {
5257    const ObjCObjectPointerType *OPT = T->castAs<ObjCObjectPointerType>();
5258    if (OPT->isObjCIdType()) {
5259      S += '@';
5260      return;
5261    }
5262
5263    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
5264      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
5265      // Since this is a binary compatibility issue, need to consult with runtime
5266      // folks. Fortunately, this is a *very* obsure construct.
5267      S += '#';
5268      return;
5269    }
5270
5271    if (OPT->isObjCQualifiedIdType()) {
5272      getObjCEncodingForTypeImpl(getObjCIdType(), S,
5273                                 ExpandPointedToStructures,
5274                                 ExpandStructures, FD);
5275      if (FD || EncodingProperty || EncodeClassNames) {
5276        // Note that we do extended encoding of protocol qualifer list
5277        // Only when doing ivar or property encoding.
5278        S += '"';
5279        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5280             E = OPT->qual_end(); I != E; ++I) {
5281          S += '<';
5282          S += (*I)->getNameAsString();
5283          S += '>';
5284        }
5285        S += '"';
5286      }
5287      return;
5288    }
5289
5290    QualType PointeeTy = OPT->getPointeeType();
5291    if (!EncodingProperty &&
5292        isa<TypedefType>(PointeeTy.getTypePtr()) &&
5293        !EncodePointerToObjCTypedef) {
5294      // Another historical/compatibility reason.
5295      // We encode the underlying type which comes out as
5296      // {...};
5297      S += '^';
5298      getObjCEncodingForTypeImpl(PointeeTy, S,
5299                                 false, ExpandPointedToStructures,
5300                                 NULL,
5301                                 false, false, false, false, false,
5302                                 /*EncodePointerToObjCTypedef*/true);
5303      return;
5304    }
5305
5306    S += '@';
5307    if (OPT->getInterfaceDecl() &&
5308        (FD || EncodingProperty || EncodeClassNames)) {
5309      S += '"';
5310      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
5311      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
5312           E = OPT->qual_end(); I != E; ++I) {
5313        S += '<';
5314        S += (*I)->getNameAsString();
5315        S += '>';
5316      }
5317      S += '"';
5318    }
5319    return;
5320  }
5321
5322  // gcc just blithely ignores member pointers.
5323  // FIXME: we shoul do better than that.  'M' is available.
5324  case Type::MemberPointer:
5325    return;
5326
5327  case Type::Vector:
5328  case Type::ExtVector:
5329    // This matches gcc's encoding, even though technically it is
5330    // insufficient.
5331    // FIXME. We should do a better job than gcc.
5332    return;
5333
5334#define ABSTRACT_TYPE(KIND, BASE)
5335#define TYPE(KIND, BASE)
5336#define DEPENDENT_TYPE(KIND, BASE) \
5337  case Type::KIND:
5338#define NON_CANONICAL_TYPE(KIND, BASE) \
5339  case Type::KIND:
5340#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
5341  case Type::KIND:
5342#include "clang/AST/TypeNodes.def"
5343    llvm_unreachable("@encode for dependent type!");
5344  }
5345  llvm_unreachable("bad type kind!");
5346}
5347
5348void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
5349                                                 std::string &S,
5350                                                 const FieldDecl *FD,
5351                                                 bool includeVBases) const {
5352  assert(RDecl && "Expected non-null RecordDecl");
5353  assert(!RDecl->isUnion() && "Should not be called for unions");
5354  if (!RDecl->getDefinition())
5355    return;
5356
5357  CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
5358  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
5359  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
5360
5361  if (CXXRec) {
5362    for (CXXRecordDecl::base_class_iterator
5363           BI = CXXRec->bases_begin(),
5364           BE = CXXRec->bases_end(); BI != BE; ++BI) {
5365      if (!BI->isVirtual()) {
5366        CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5367        if (base->isEmpty())
5368          continue;
5369        uint64_t offs = toBits(layout.getBaseClassOffset(base));
5370        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5371                                  std::make_pair(offs, base));
5372      }
5373    }
5374  }
5375
5376  unsigned i = 0;
5377  for (RecordDecl::field_iterator Field = RDecl->field_begin(),
5378                               FieldEnd = RDecl->field_end();
5379       Field != FieldEnd; ++Field, ++i) {
5380    uint64_t offs = layout.getFieldOffset(i);
5381    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5382                              std::make_pair(offs, *Field));
5383  }
5384
5385  if (CXXRec && includeVBases) {
5386    for (CXXRecordDecl::base_class_iterator
5387           BI = CXXRec->vbases_begin(),
5388           BE = CXXRec->vbases_end(); BI != BE; ++BI) {
5389      CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl();
5390      if (base->isEmpty())
5391        continue;
5392      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
5393      if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
5394        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
5395                                  std::make_pair(offs, base));
5396    }
5397  }
5398
5399  CharUnits size;
5400  if (CXXRec) {
5401    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
5402  } else {
5403    size = layout.getSize();
5404  }
5405
5406  uint64_t CurOffs = 0;
5407  std::multimap<uint64_t, NamedDecl *>::iterator
5408    CurLayObj = FieldOrBaseOffsets.begin();
5409
5410  if (CXXRec && CXXRec->isDynamicClass() &&
5411      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
5412    if (FD) {
5413      S += "\"_vptr$";
5414      std::string recname = CXXRec->getNameAsString();
5415      if (recname.empty()) recname = "?";
5416      S += recname;
5417      S += '"';
5418    }
5419    S += "^^?";
5420    CurOffs += getTypeSize(VoidPtrTy);
5421  }
5422
5423  if (!RDecl->hasFlexibleArrayMember()) {
5424    // Mark the end of the structure.
5425    uint64_t offs = toBits(size);
5426    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
5427                              std::make_pair(offs, (NamedDecl*)0));
5428  }
5429
5430  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
5431    assert(CurOffs <= CurLayObj->first);
5432
5433    if (CurOffs < CurLayObj->first) {
5434      uint64_t padding = CurLayObj->first - CurOffs;
5435      // FIXME: There doesn't seem to be a way to indicate in the encoding that
5436      // packing/alignment of members is different that normal, in which case
5437      // the encoding will be out-of-sync with the real layout.
5438      // If the runtime switches to just consider the size of types without
5439      // taking into account alignment, we could make padding explicit in the
5440      // encoding (e.g. using arrays of chars). The encoding strings would be
5441      // longer then though.
5442      CurOffs += padding;
5443    }
5444
5445    NamedDecl *dcl = CurLayObj->second;
5446    if (dcl == 0)
5447      break; // reached end of structure.
5448
5449    if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) {
5450      // We expand the bases without their virtual bases since those are going
5451      // in the initial structure. Note that this differs from gcc which
5452      // expands virtual bases each time one is encountered in the hierarchy,
5453      // making the encoding type bigger than it really is.
5454      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false);
5455      assert(!base->isEmpty());
5456      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
5457    } else {
5458      FieldDecl *field = cast<FieldDecl>(dcl);
5459      if (FD) {
5460        S += '"';
5461        S += field->getNameAsString();
5462        S += '"';
5463      }
5464
5465      if (field->isBitField()) {
5466        EncodeBitField(this, S, field->getType(), field);
5467        CurOffs += field->getBitWidthValue(*this);
5468      } else {
5469        QualType qt = field->getType();
5470        getLegacyIntegralTypeEncoding(qt);
5471        getObjCEncodingForTypeImpl(qt, S, false, true, FD,
5472                                   /*OutermostType*/false,
5473                                   /*EncodingProperty*/false,
5474                                   /*StructField*/true);
5475        CurOffs += getTypeSize(field->getType());
5476      }
5477    }
5478  }
5479}
5480
5481void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
5482                                                 std::string& S) const {
5483  if (QT & Decl::OBJC_TQ_In)
5484    S += 'n';
5485  if (QT & Decl::OBJC_TQ_Inout)
5486    S += 'N';
5487  if (QT & Decl::OBJC_TQ_Out)
5488    S += 'o';
5489  if (QT & Decl::OBJC_TQ_Bycopy)
5490    S += 'O';
5491  if (QT & Decl::OBJC_TQ_Byref)
5492    S += 'R';
5493  if (QT & Decl::OBJC_TQ_Oneway)
5494    S += 'V';
5495}
5496
5497TypedefDecl *ASTContext::getObjCIdDecl() const {
5498  if (!ObjCIdDecl) {
5499    QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0);
5500    T = getObjCObjectPointerType(T);
5501    TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T);
5502    ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5503                                     getTranslationUnitDecl(),
5504                                     SourceLocation(), SourceLocation(),
5505                                     &Idents.get("id"), IdInfo);
5506  }
5507
5508  return ObjCIdDecl;
5509}
5510
5511TypedefDecl *ASTContext::getObjCSelDecl() const {
5512  if (!ObjCSelDecl) {
5513    QualType SelT = getPointerType(ObjCBuiltinSelTy);
5514    TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT);
5515    ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5516                                      getTranslationUnitDecl(),
5517                                      SourceLocation(), SourceLocation(),
5518                                      &Idents.get("SEL"), SelInfo);
5519  }
5520  return ObjCSelDecl;
5521}
5522
5523TypedefDecl *ASTContext::getObjCClassDecl() const {
5524  if (!ObjCClassDecl) {
5525    QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0);
5526    T = getObjCObjectPointerType(T);
5527    TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T);
5528    ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this),
5529                                        getTranslationUnitDecl(),
5530                                        SourceLocation(), SourceLocation(),
5531                                        &Idents.get("Class"), ClassInfo);
5532  }
5533
5534  return ObjCClassDecl;
5535}
5536
5537ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
5538  if (!ObjCProtocolClassDecl) {
5539    ObjCProtocolClassDecl
5540      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
5541                                  SourceLocation(),
5542                                  &Idents.get("Protocol"),
5543                                  /*PrevDecl=*/0,
5544                                  SourceLocation(), true);
5545  }
5546
5547  return ObjCProtocolClassDecl;
5548}
5549
5550//===----------------------------------------------------------------------===//
5551// __builtin_va_list Construction Functions
5552//===----------------------------------------------------------------------===//
5553
5554static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
5555  // typedef char* __builtin_va_list;
5556  QualType CharPtrType = Context->getPointerType(Context->CharTy);
5557  TypeSourceInfo *TInfo
5558    = Context->getTrivialTypeSourceInfo(CharPtrType);
5559
5560  TypedefDecl *VaListTypeDecl
5561    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5562                          Context->getTranslationUnitDecl(),
5563                          SourceLocation(), SourceLocation(),
5564                          &Context->Idents.get("__builtin_va_list"),
5565                          TInfo);
5566  return VaListTypeDecl;
5567}
5568
5569static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
5570  // typedef void* __builtin_va_list;
5571  QualType VoidPtrType = Context->getPointerType(Context->VoidTy);
5572  TypeSourceInfo *TInfo
5573    = Context->getTrivialTypeSourceInfo(VoidPtrType);
5574
5575  TypedefDecl *VaListTypeDecl
5576    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5577                          Context->getTranslationUnitDecl(),
5578                          SourceLocation(), SourceLocation(),
5579                          &Context->Idents.get("__builtin_va_list"),
5580                          TInfo);
5581  return VaListTypeDecl;
5582}
5583
5584static TypedefDecl *
5585CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
5586  RecordDecl *VaListTagDecl;
5587  if (Context->getLangOpts().CPlusPlus) {
5588    // namespace std { struct __va_list {
5589    NamespaceDecl *NS;
5590    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5591                               Context->getTranslationUnitDecl(),
5592                               /*Inline*/false, SourceLocation(),
5593                               SourceLocation(), &Context->Idents.get("std"),
5594                               /*PrevDecl*/0);
5595
5596    VaListTagDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5597                                          Context->getTranslationUnitDecl(),
5598                                          SourceLocation(), SourceLocation(),
5599                                          &Context->Idents.get("__va_list"));
5600    VaListTagDecl->setDeclContext(NS);
5601  } else {
5602    // struct __va_list
5603    VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5604                                   Context->getTranslationUnitDecl(),
5605                                   &Context->Idents.get("__va_list"));
5606  }
5607
5608  VaListTagDecl->startDefinition();
5609
5610  const size_t NumFields = 5;
5611  QualType FieldTypes[NumFields];
5612  const char *FieldNames[NumFields];
5613
5614  // void *__stack;
5615  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
5616  FieldNames[0] = "__stack";
5617
5618  // void *__gr_top;
5619  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
5620  FieldNames[1] = "__gr_top";
5621
5622  // void *__vr_top;
5623  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5624  FieldNames[2] = "__vr_top";
5625
5626  // int __gr_offs;
5627  FieldTypes[3] = Context->IntTy;
5628  FieldNames[3] = "__gr_offs";
5629
5630  // int __vr_offs;
5631  FieldTypes[4] = Context->IntTy;
5632  FieldNames[4] = "__vr_offs";
5633
5634  // Create fields
5635  for (unsigned i = 0; i < NumFields; ++i) {
5636    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5637                                         VaListTagDecl,
5638                                         SourceLocation(),
5639                                         SourceLocation(),
5640                                         &Context->Idents.get(FieldNames[i]),
5641                                         FieldTypes[i], /*TInfo=*/0,
5642                                         /*BitWidth=*/0,
5643                                         /*Mutable=*/false,
5644                                         ICIS_NoInit);
5645    Field->setAccess(AS_public);
5646    VaListTagDecl->addDecl(Field);
5647  }
5648  VaListTagDecl->completeDefinition();
5649  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5650  Context->VaListTagTy = VaListTagType;
5651
5652  // } __builtin_va_list;
5653  TypedefDecl *VaListTypedefDecl
5654    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5655                          Context->getTranslationUnitDecl(),
5656                          SourceLocation(), SourceLocation(),
5657                          &Context->Idents.get("__builtin_va_list"),
5658                          Context->getTrivialTypeSourceInfo(VaListTagType));
5659
5660  return VaListTypedefDecl;
5661}
5662
5663static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
5664  // typedef struct __va_list_tag {
5665  RecordDecl *VaListTagDecl;
5666
5667  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5668                                   Context->getTranslationUnitDecl(),
5669                                   &Context->Idents.get("__va_list_tag"));
5670  VaListTagDecl->startDefinition();
5671
5672  const size_t NumFields = 5;
5673  QualType FieldTypes[NumFields];
5674  const char *FieldNames[NumFields];
5675
5676  //   unsigned char gpr;
5677  FieldTypes[0] = Context->UnsignedCharTy;
5678  FieldNames[0] = "gpr";
5679
5680  //   unsigned char fpr;
5681  FieldTypes[1] = Context->UnsignedCharTy;
5682  FieldNames[1] = "fpr";
5683
5684  //   unsigned short reserved;
5685  FieldTypes[2] = Context->UnsignedShortTy;
5686  FieldNames[2] = "reserved";
5687
5688  //   void* overflow_arg_area;
5689  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5690  FieldNames[3] = "overflow_arg_area";
5691
5692  //   void* reg_save_area;
5693  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
5694  FieldNames[4] = "reg_save_area";
5695
5696  // Create fields
5697  for (unsigned i = 0; i < NumFields; ++i) {
5698    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
5699                                         SourceLocation(),
5700                                         SourceLocation(),
5701                                         &Context->Idents.get(FieldNames[i]),
5702                                         FieldTypes[i], /*TInfo=*/0,
5703                                         /*BitWidth=*/0,
5704                                         /*Mutable=*/false,
5705                                         ICIS_NoInit);
5706    Field->setAccess(AS_public);
5707    VaListTagDecl->addDecl(Field);
5708  }
5709  VaListTagDecl->completeDefinition();
5710  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5711  Context->VaListTagTy = VaListTagType;
5712
5713  // } __va_list_tag;
5714  TypedefDecl *VaListTagTypedefDecl
5715    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5716                          Context->getTranslationUnitDecl(),
5717                          SourceLocation(), SourceLocation(),
5718                          &Context->Idents.get("__va_list_tag"),
5719                          Context->getTrivialTypeSourceInfo(VaListTagType));
5720  QualType VaListTagTypedefType =
5721    Context->getTypedefType(VaListTagTypedefDecl);
5722
5723  // typedef __va_list_tag __builtin_va_list[1];
5724  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5725  QualType VaListTagArrayType
5726    = Context->getConstantArrayType(VaListTagTypedefType,
5727                                    Size, ArrayType::Normal, 0);
5728  TypeSourceInfo *TInfo
5729    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5730  TypedefDecl *VaListTypedefDecl
5731    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5732                          Context->getTranslationUnitDecl(),
5733                          SourceLocation(), SourceLocation(),
5734                          &Context->Idents.get("__builtin_va_list"),
5735                          TInfo);
5736
5737  return VaListTypedefDecl;
5738}
5739
5740static TypedefDecl *
5741CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
5742  // typedef struct __va_list_tag {
5743  RecordDecl *VaListTagDecl;
5744  VaListTagDecl = CreateRecordDecl(*Context, TTK_Struct,
5745                                   Context->getTranslationUnitDecl(),
5746                                   &Context->Idents.get("__va_list_tag"));
5747  VaListTagDecl->startDefinition();
5748
5749  const size_t NumFields = 4;
5750  QualType FieldTypes[NumFields];
5751  const char *FieldNames[NumFields];
5752
5753  //   unsigned gp_offset;
5754  FieldTypes[0] = Context->UnsignedIntTy;
5755  FieldNames[0] = "gp_offset";
5756
5757  //   unsigned fp_offset;
5758  FieldTypes[1] = Context->UnsignedIntTy;
5759  FieldNames[1] = "fp_offset";
5760
5761  //   void* overflow_arg_area;
5762  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
5763  FieldNames[2] = "overflow_arg_area";
5764
5765  //   void* reg_save_area;
5766  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
5767  FieldNames[3] = "reg_save_area";
5768
5769  // Create fields
5770  for (unsigned i = 0; i < NumFields; ++i) {
5771    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5772                                         VaListTagDecl,
5773                                         SourceLocation(),
5774                                         SourceLocation(),
5775                                         &Context->Idents.get(FieldNames[i]),
5776                                         FieldTypes[i], /*TInfo=*/0,
5777                                         /*BitWidth=*/0,
5778                                         /*Mutable=*/false,
5779                                         ICIS_NoInit);
5780    Field->setAccess(AS_public);
5781    VaListTagDecl->addDecl(Field);
5782  }
5783  VaListTagDecl->completeDefinition();
5784  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
5785  Context->VaListTagTy = VaListTagType;
5786
5787  // } __va_list_tag;
5788  TypedefDecl *VaListTagTypedefDecl
5789    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5790                          Context->getTranslationUnitDecl(),
5791                          SourceLocation(), SourceLocation(),
5792                          &Context->Idents.get("__va_list_tag"),
5793                          Context->getTrivialTypeSourceInfo(VaListTagType));
5794  QualType VaListTagTypedefType =
5795    Context->getTypedefType(VaListTagTypedefDecl);
5796
5797  // typedef __va_list_tag __builtin_va_list[1];
5798  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
5799  QualType VaListTagArrayType
5800    = Context->getConstantArrayType(VaListTagTypedefType,
5801                                      Size, ArrayType::Normal,0);
5802  TypeSourceInfo *TInfo
5803    = Context->getTrivialTypeSourceInfo(VaListTagArrayType);
5804  TypedefDecl *VaListTypedefDecl
5805    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5806                          Context->getTranslationUnitDecl(),
5807                          SourceLocation(), SourceLocation(),
5808                          &Context->Idents.get("__builtin_va_list"),
5809                          TInfo);
5810
5811  return VaListTypedefDecl;
5812}
5813
5814static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
5815  // typedef int __builtin_va_list[4];
5816  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
5817  QualType IntArrayType
5818    = Context->getConstantArrayType(Context->IntTy,
5819				    Size, ArrayType::Normal, 0);
5820  TypedefDecl *VaListTypedefDecl
5821    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5822                          Context->getTranslationUnitDecl(),
5823                          SourceLocation(), SourceLocation(),
5824                          &Context->Idents.get("__builtin_va_list"),
5825                          Context->getTrivialTypeSourceInfo(IntArrayType));
5826
5827  return VaListTypedefDecl;
5828}
5829
5830static TypedefDecl *
5831CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
5832  RecordDecl *VaListDecl;
5833  if (Context->getLangOpts().CPlusPlus) {
5834    // namespace std { struct __va_list {
5835    NamespaceDecl *NS;
5836    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
5837                               Context->getTranslationUnitDecl(),
5838                               /*Inline*/false, SourceLocation(),
5839                               SourceLocation(), &Context->Idents.get("std"),
5840                               /*PrevDecl*/0);
5841
5842    VaListDecl = CXXRecordDecl::Create(*Context, TTK_Struct,
5843                                       Context->getTranslationUnitDecl(),
5844                                       SourceLocation(), SourceLocation(),
5845                                       &Context->Idents.get("__va_list"));
5846
5847    VaListDecl->setDeclContext(NS);
5848
5849  } else {
5850    // struct __va_list {
5851    VaListDecl = CreateRecordDecl(*Context, TTK_Struct,
5852                                  Context->getTranslationUnitDecl(),
5853                                  &Context->Idents.get("__va_list"));
5854  }
5855
5856  VaListDecl->startDefinition();
5857
5858  // void * __ap;
5859  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
5860                                       VaListDecl,
5861                                       SourceLocation(),
5862                                       SourceLocation(),
5863                                       &Context->Idents.get("__ap"),
5864                                       Context->getPointerType(Context->VoidTy),
5865                                       /*TInfo=*/0,
5866                                       /*BitWidth=*/0,
5867                                       /*Mutable=*/false,
5868                                       ICIS_NoInit);
5869  Field->setAccess(AS_public);
5870  VaListDecl->addDecl(Field);
5871
5872  // };
5873  VaListDecl->completeDefinition();
5874
5875  // typedef struct __va_list __builtin_va_list;
5876  TypeSourceInfo *TInfo
5877    = Context->getTrivialTypeSourceInfo(Context->getRecordType(VaListDecl));
5878
5879  TypedefDecl *VaListTypeDecl
5880    = TypedefDecl::Create(const_cast<ASTContext &>(*Context),
5881                          Context->getTranslationUnitDecl(),
5882                          SourceLocation(), SourceLocation(),
5883                          &Context->Idents.get("__builtin_va_list"),
5884                          TInfo);
5885
5886  return VaListTypeDecl;
5887}
5888
5889static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
5890                                     TargetInfo::BuiltinVaListKind Kind) {
5891  switch (Kind) {
5892  case TargetInfo::CharPtrBuiltinVaList:
5893    return CreateCharPtrBuiltinVaListDecl(Context);
5894  case TargetInfo::VoidPtrBuiltinVaList:
5895    return CreateVoidPtrBuiltinVaListDecl(Context);
5896  case TargetInfo::AArch64ABIBuiltinVaList:
5897    return CreateAArch64ABIBuiltinVaListDecl(Context);
5898  case TargetInfo::PowerABIBuiltinVaList:
5899    return CreatePowerABIBuiltinVaListDecl(Context);
5900  case TargetInfo::X86_64ABIBuiltinVaList:
5901    return CreateX86_64ABIBuiltinVaListDecl(Context);
5902  case TargetInfo::PNaClABIBuiltinVaList:
5903    return CreatePNaClABIBuiltinVaListDecl(Context);
5904  case TargetInfo::AAPCSABIBuiltinVaList:
5905    return CreateAAPCSABIBuiltinVaListDecl(Context);
5906  }
5907
5908  llvm_unreachable("Unhandled __builtin_va_list type kind");
5909}
5910
5911TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
5912  if (!BuiltinVaListDecl)
5913    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
5914
5915  return BuiltinVaListDecl;
5916}
5917
5918QualType ASTContext::getVaListTagType() const {
5919  // Force the creation of VaListTagTy by building the __builtin_va_list
5920  // declaration.
5921  if (VaListTagTy.isNull())
5922    (void) getBuiltinVaListDecl();
5923
5924  return VaListTagTy;
5925}
5926
5927void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
5928  assert(ObjCConstantStringType.isNull() &&
5929         "'NSConstantString' type already set!");
5930
5931  ObjCConstantStringType = getObjCInterfaceType(Decl);
5932}
5933
5934/// \brief Retrieve the template name that corresponds to a non-empty
5935/// lookup.
5936TemplateName
5937ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
5938                                      UnresolvedSetIterator End) const {
5939  unsigned size = End - Begin;
5940  assert(size > 1 && "set is not overloaded!");
5941
5942  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
5943                          size * sizeof(FunctionTemplateDecl*));
5944  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
5945
5946  NamedDecl **Storage = OT->getStorage();
5947  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
5948    NamedDecl *D = *I;
5949    assert(isa<FunctionTemplateDecl>(D) ||
5950           (isa<UsingShadowDecl>(D) &&
5951            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
5952    *Storage++ = D;
5953  }
5954
5955  return TemplateName(OT);
5956}
5957
5958/// \brief Retrieve the template name that represents a qualified
5959/// template name such as \c std::vector.
5960TemplateName
5961ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
5962                                     bool TemplateKeyword,
5963                                     TemplateDecl *Template) const {
5964  assert(NNS && "Missing nested-name-specifier in qualified template name");
5965
5966  // FIXME: Canonicalization?
5967  llvm::FoldingSetNodeID ID;
5968  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
5969
5970  void *InsertPos = 0;
5971  QualifiedTemplateName *QTN =
5972    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5973  if (!QTN) {
5974    QTN = new (*this, llvm::alignOf<QualifiedTemplateName>())
5975        QualifiedTemplateName(NNS, TemplateKeyword, Template);
5976    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
5977  }
5978
5979  return TemplateName(QTN);
5980}
5981
5982/// \brief Retrieve the template name that represents a dependent
5983/// template name such as \c MetaFun::template apply.
5984TemplateName
5985ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
5986                                     const IdentifierInfo *Name) const {
5987  assert((!NNS || NNS->isDependent()) &&
5988         "Nested name specifier must be dependent");
5989
5990  llvm::FoldingSetNodeID ID;
5991  DependentTemplateName::Profile(ID, NNS, Name);
5992
5993  void *InsertPos = 0;
5994  DependentTemplateName *QTN =
5995    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
5996
5997  if (QTN)
5998    return TemplateName(QTN);
5999
6000  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6001  if (CanonNNS == NNS) {
6002    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6003        DependentTemplateName(NNS, Name);
6004  } else {
6005    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
6006    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6007        DependentTemplateName(NNS, Name, Canon);
6008    DependentTemplateName *CheckQTN =
6009      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6010    assert(!CheckQTN && "Dependent type name canonicalization broken");
6011    (void)CheckQTN;
6012  }
6013
6014  DependentTemplateNames.InsertNode(QTN, InsertPos);
6015  return TemplateName(QTN);
6016}
6017
6018/// \brief Retrieve the template name that represents a dependent
6019/// template name such as \c MetaFun::template operator+.
6020TemplateName
6021ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
6022                                     OverloadedOperatorKind Operator) const {
6023  assert((!NNS || NNS->isDependent()) &&
6024         "Nested name specifier must be dependent");
6025
6026  llvm::FoldingSetNodeID ID;
6027  DependentTemplateName::Profile(ID, NNS, Operator);
6028
6029  void *InsertPos = 0;
6030  DependentTemplateName *QTN
6031    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6032
6033  if (QTN)
6034    return TemplateName(QTN);
6035
6036  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
6037  if (CanonNNS == NNS) {
6038    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6039        DependentTemplateName(NNS, Operator);
6040  } else {
6041    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
6042    QTN = new (*this, llvm::alignOf<DependentTemplateName>())
6043        DependentTemplateName(NNS, Operator, Canon);
6044
6045    DependentTemplateName *CheckQTN
6046      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
6047    assert(!CheckQTN && "Dependent template name canonicalization broken");
6048    (void)CheckQTN;
6049  }
6050
6051  DependentTemplateNames.InsertNode(QTN, InsertPos);
6052  return TemplateName(QTN);
6053}
6054
6055TemplateName
6056ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
6057                                         TemplateName replacement) const {
6058  llvm::FoldingSetNodeID ID;
6059  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
6060
6061  void *insertPos = 0;
6062  SubstTemplateTemplateParmStorage *subst
6063    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
6064
6065  if (!subst) {
6066    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
6067    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
6068  }
6069
6070  return TemplateName(subst);
6071}
6072
6073TemplateName
6074ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
6075                                       const TemplateArgument &ArgPack) const {
6076  ASTContext &Self = const_cast<ASTContext &>(*this);
6077  llvm::FoldingSetNodeID ID;
6078  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
6079
6080  void *InsertPos = 0;
6081  SubstTemplateTemplateParmPackStorage *Subst
6082    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
6083
6084  if (!Subst) {
6085    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
6086                                                           ArgPack.pack_size(),
6087                                                         ArgPack.pack_begin());
6088    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
6089  }
6090
6091  return TemplateName(Subst);
6092}
6093
6094/// getFromTargetType - Given one of the integer types provided by
6095/// TargetInfo, produce the corresponding type. The unsigned @p Type
6096/// is actually a value of type @c TargetInfo::IntType.
6097CanQualType ASTContext::getFromTargetType(unsigned Type) const {
6098  switch (Type) {
6099  case TargetInfo::NoInt: return CanQualType();
6100  case TargetInfo::SignedShort: return ShortTy;
6101  case TargetInfo::UnsignedShort: return UnsignedShortTy;
6102  case TargetInfo::SignedInt: return IntTy;
6103  case TargetInfo::UnsignedInt: return UnsignedIntTy;
6104  case TargetInfo::SignedLong: return LongTy;
6105  case TargetInfo::UnsignedLong: return UnsignedLongTy;
6106  case TargetInfo::SignedLongLong: return LongLongTy;
6107  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
6108  }
6109
6110  llvm_unreachable("Unhandled TargetInfo::IntType value");
6111}
6112
6113//===----------------------------------------------------------------------===//
6114//                        Type Predicates.
6115//===----------------------------------------------------------------------===//
6116
6117/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
6118/// garbage collection attribute.
6119///
6120Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
6121  if (getLangOpts().getGC() == LangOptions::NonGC)
6122    return Qualifiers::GCNone;
6123
6124  assert(getLangOpts().ObjC1);
6125  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
6126
6127  // Default behaviour under objective-C's gc is for ObjC pointers
6128  // (or pointers to them) be treated as though they were declared
6129  // as __strong.
6130  if (GCAttrs == Qualifiers::GCNone) {
6131    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
6132      return Qualifiers::Strong;
6133    else if (Ty->isPointerType())
6134      return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
6135  } else {
6136    // It's not valid to set GC attributes on anything that isn't a
6137    // pointer.
6138#ifndef NDEBUG
6139    QualType CT = Ty->getCanonicalTypeInternal();
6140    while (const ArrayType *AT = dyn_cast<ArrayType>(CT))
6141      CT = AT->getElementType();
6142    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
6143#endif
6144  }
6145  return GCAttrs;
6146}
6147
6148//===----------------------------------------------------------------------===//
6149//                        Type Compatibility Testing
6150//===----------------------------------------------------------------------===//
6151
6152/// areCompatVectorTypes - Return true if the two specified vector types are
6153/// compatible.
6154static bool areCompatVectorTypes(const VectorType *LHS,
6155                                 const VectorType *RHS) {
6156  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
6157  return LHS->getElementType() == RHS->getElementType() &&
6158         LHS->getNumElements() == RHS->getNumElements();
6159}
6160
6161bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
6162                                          QualType SecondVec) {
6163  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
6164  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
6165
6166  if (hasSameUnqualifiedType(FirstVec, SecondVec))
6167    return true;
6168
6169  // Treat Neon vector types and most AltiVec vector types as if they are the
6170  // equivalent GCC vector types.
6171  const VectorType *First = FirstVec->getAs<VectorType>();
6172  const VectorType *Second = SecondVec->getAs<VectorType>();
6173  if (First->getNumElements() == Second->getNumElements() &&
6174      hasSameType(First->getElementType(), Second->getElementType()) &&
6175      First->getVectorKind() != VectorType::AltiVecPixel &&
6176      First->getVectorKind() != VectorType::AltiVecBool &&
6177      Second->getVectorKind() != VectorType::AltiVecPixel &&
6178      Second->getVectorKind() != VectorType::AltiVecBool)
6179    return true;
6180
6181  return false;
6182}
6183
6184//===----------------------------------------------------------------------===//
6185// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
6186//===----------------------------------------------------------------------===//
6187
6188/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
6189/// inheritance hierarchy of 'rProto'.
6190bool
6191ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
6192                                           ObjCProtocolDecl *rProto) const {
6193  if (declaresSameEntity(lProto, rProto))
6194    return true;
6195  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
6196       E = rProto->protocol_end(); PI != E; ++PI)
6197    if (ProtocolCompatibleWithProtocol(lProto, *PI))
6198      return true;
6199  return false;
6200}
6201
6202/// QualifiedIdConformsQualifiedId - compare id<pr,...> with id<pr1,...>
6203/// return true if lhs's protocols conform to rhs's protocol; false
6204/// otherwise.
6205bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
6206  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
6207    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
6208  return false;
6209}
6210
6211/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
6212/// Class<pr1, ...>.
6213bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs,
6214                                                      QualType rhs) {
6215  const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>();
6216  const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6217  assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible");
6218
6219  for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6220       E = lhsQID->qual_end(); I != E; ++I) {
6221    bool match = false;
6222    ObjCProtocolDecl *lhsProto = *I;
6223    for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6224         E = rhsOPT->qual_end(); J != E; ++J) {
6225      ObjCProtocolDecl *rhsProto = *J;
6226      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
6227        match = true;
6228        break;
6229      }
6230    }
6231    if (!match)
6232      return false;
6233  }
6234  return true;
6235}
6236
6237/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
6238/// ObjCQualifiedIDType.
6239bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
6240                                                   bool compare) {
6241  // Allow id<P..> and an 'id' or void* type in all cases.
6242  if (lhs->isVoidPointerType() ||
6243      lhs->isObjCIdType() || lhs->isObjCClassType())
6244    return true;
6245  else if (rhs->isVoidPointerType() ||
6246           rhs->isObjCIdType() || rhs->isObjCClassType())
6247    return true;
6248
6249  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
6250    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
6251
6252    if (!rhsOPT) return false;
6253
6254    if (rhsOPT->qual_empty()) {
6255      // If the RHS is a unqualified interface pointer "NSString*",
6256      // make sure we check the class hierarchy.
6257      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6258        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6259             E = lhsQID->qual_end(); I != E; ++I) {
6260          // when comparing an id<P> on lhs with a static type on rhs,
6261          // see if static class implements all of id's protocols, directly or
6262          // through its super class and categories.
6263          if (!rhsID->ClassImplementsProtocol(*I, true))
6264            return false;
6265        }
6266      }
6267      // If there are no qualifiers and no interface, we have an 'id'.
6268      return true;
6269    }
6270    // Both the right and left sides have qualifiers.
6271    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6272         E = lhsQID->qual_end(); I != E; ++I) {
6273      ObjCProtocolDecl *lhsProto = *I;
6274      bool match = false;
6275
6276      // when comparing an id<P> on lhs with a static type on rhs,
6277      // see if static class implements all of id's protocols, directly or
6278      // through its super class and categories.
6279      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
6280           E = rhsOPT->qual_end(); J != E; ++J) {
6281        ObjCProtocolDecl *rhsProto = *J;
6282        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6283            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6284          match = true;
6285          break;
6286        }
6287      }
6288      // If the RHS is a qualified interface pointer "NSString<P>*",
6289      // make sure we check the class hierarchy.
6290      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
6291        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
6292             E = lhsQID->qual_end(); I != E; ++I) {
6293          // when comparing an id<P> on lhs with a static type on rhs,
6294          // see if static class implements all of id's protocols, directly or
6295          // through its super class and categories.
6296          if (rhsID->ClassImplementsProtocol(*I, true)) {
6297            match = true;
6298            break;
6299          }
6300        }
6301      }
6302      if (!match)
6303        return false;
6304    }
6305
6306    return true;
6307  }
6308
6309  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
6310  assert(rhsQID && "One of the LHS/RHS should be id<x>");
6311
6312  if (const ObjCObjectPointerType *lhsOPT =
6313        lhs->getAsObjCInterfacePointerType()) {
6314    // If both the right and left sides have qualifiers.
6315    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
6316         E = lhsOPT->qual_end(); I != E; ++I) {
6317      ObjCProtocolDecl *lhsProto = *I;
6318      bool match = false;
6319
6320      // when comparing an id<P> on rhs with a static type on lhs,
6321      // see if static class implements all of id's protocols, directly or
6322      // through its super class and categories.
6323      // First, lhs protocols in the qualifier list must be found, direct
6324      // or indirect in rhs's qualifier list or it is a mismatch.
6325      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6326           E = rhsQID->qual_end(); J != E; ++J) {
6327        ObjCProtocolDecl *rhsProto = *J;
6328        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6329            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6330          match = true;
6331          break;
6332        }
6333      }
6334      if (!match)
6335        return false;
6336    }
6337
6338    // Static class's protocols, or its super class or category protocols
6339    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
6340    if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
6341      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6342      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
6343      // This is rather dubious but matches gcc's behavior. If lhs has
6344      // no type qualifier and its class has no static protocol(s)
6345      // assume that it is mismatch.
6346      if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty())
6347        return false;
6348      for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6349           LHSInheritedProtocols.begin(),
6350           E = LHSInheritedProtocols.end(); I != E; ++I) {
6351        bool match = false;
6352        ObjCProtocolDecl *lhsProto = (*I);
6353        for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
6354             E = rhsQID->qual_end(); J != E; ++J) {
6355          ObjCProtocolDecl *rhsProto = *J;
6356          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
6357              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
6358            match = true;
6359            break;
6360          }
6361        }
6362        if (!match)
6363          return false;
6364      }
6365    }
6366    return true;
6367  }
6368  return false;
6369}
6370
6371/// canAssignObjCInterfaces - Return true if the two interface types are
6372/// compatible for assignment from RHS to LHS.  This handles validation of any
6373/// protocol qualifiers on the LHS or RHS.
6374///
6375bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
6376                                         const ObjCObjectPointerType *RHSOPT) {
6377  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6378  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6379
6380  // If either type represents the built-in 'id' or 'Class' types, return true.
6381  if (LHS->isObjCUnqualifiedIdOrClass() ||
6382      RHS->isObjCUnqualifiedIdOrClass())
6383    return true;
6384
6385  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId())
6386    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6387                                             QualType(RHSOPT,0),
6388                                             false);
6389
6390  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass())
6391    return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0),
6392                                                QualType(RHSOPT,0));
6393
6394  // If we have 2 user-defined types, fall into that path.
6395  if (LHS->getInterface() && RHS->getInterface())
6396    return canAssignObjCInterfaces(LHS, RHS);
6397
6398  return false;
6399}
6400
6401/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
6402/// for providing type-safety for objective-c pointers used to pass/return
6403/// arguments in block literals. When passed as arguments, passing 'A*' where
6404/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
6405/// not OK. For the return type, the opposite is not OK.
6406bool ASTContext::canAssignObjCInterfacesInBlockPointer(
6407                                         const ObjCObjectPointerType *LHSOPT,
6408                                         const ObjCObjectPointerType *RHSOPT,
6409                                         bool BlockReturnType) {
6410  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
6411    return true;
6412
6413  if (LHSOPT->isObjCBuiltinType()) {
6414    return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType();
6415  }
6416
6417  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
6418    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
6419                                             QualType(RHSOPT,0),
6420                                             false);
6421
6422  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
6423  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
6424  if (LHS && RHS)  { // We have 2 user-defined types.
6425    if (LHS != RHS) {
6426      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
6427        return BlockReturnType;
6428      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
6429        return !BlockReturnType;
6430    }
6431    else
6432      return true;
6433  }
6434  return false;
6435}
6436
6437/// getIntersectionOfProtocols - This routine finds the intersection of set
6438/// of protocols inherited from two distinct objective-c pointer objects.
6439/// It is used to build composite qualifier list of the composite type of
6440/// the conditional expression involving two objective-c pointer objects.
6441static
6442void getIntersectionOfProtocols(ASTContext &Context,
6443                                const ObjCObjectPointerType *LHSOPT,
6444                                const ObjCObjectPointerType *RHSOPT,
6445      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
6446
6447  const ObjCObjectType* LHS = LHSOPT->getObjectType();
6448  const ObjCObjectType* RHS = RHSOPT->getObjectType();
6449  assert(LHS->getInterface() && "LHS must have an interface base");
6450  assert(RHS->getInterface() && "RHS must have an interface base");
6451
6452  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
6453  unsigned LHSNumProtocols = LHS->getNumProtocols();
6454  if (LHSNumProtocols > 0)
6455    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
6456  else {
6457    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
6458    Context.CollectInheritedProtocols(LHS->getInterface(),
6459                                      LHSInheritedProtocols);
6460    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(),
6461                                LHSInheritedProtocols.end());
6462  }
6463
6464  unsigned RHSNumProtocols = RHS->getNumProtocols();
6465  if (RHSNumProtocols > 0) {
6466    ObjCProtocolDecl **RHSProtocols =
6467      const_cast<ObjCProtocolDecl **>(RHS->qual_begin());
6468    for (unsigned i = 0; i < RHSNumProtocols; ++i)
6469      if (InheritedProtocolSet.count(RHSProtocols[i]))
6470        IntersectionOfProtocols.push_back(RHSProtocols[i]);
6471  } else {
6472    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
6473    Context.CollectInheritedProtocols(RHS->getInterface(),
6474                                      RHSInheritedProtocols);
6475    for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6476         RHSInheritedProtocols.begin(),
6477         E = RHSInheritedProtocols.end(); I != E; ++I)
6478      if (InheritedProtocolSet.count((*I)))
6479        IntersectionOfProtocols.push_back((*I));
6480  }
6481}
6482
6483/// areCommonBaseCompatible - Returns common base class of the two classes if
6484/// one found. Note that this is O'2 algorithm. But it will be called as the
6485/// last type comparison in a ?-exp of ObjC pointer types before a
6486/// warning is issued. So, its invokation is extremely rare.
6487QualType ASTContext::areCommonBaseCompatible(
6488                                          const ObjCObjectPointerType *Lptr,
6489                                          const ObjCObjectPointerType *Rptr) {
6490  const ObjCObjectType *LHS = Lptr->getObjectType();
6491  const ObjCObjectType *RHS = Rptr->getObjectType();
6492  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
6493  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
6494  if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl)))
6495    return QualType();
6496
6497  do {
6498    LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl));
6499    if (canAssignObjCInterfaces(LHS, RHS)) {
6500      SmallVector<ObjCProtocolDecl *, 8> Protocols;
6501      getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols);
6502
6503      QualType Result = QualType(LHS, 0);
6504      if (!Protocols.empty())
6505        Result = getObjCObjectType(Result, Protocols.data(), Protocols.size());
6506      Result = getObjCObjectPointerType(Result);
6507      return Result;
6508    }
6509  } while ((LDecl = LDecl->getSuperClass()));
6510
6511  return QualType();
6512}
6513
6514bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
6515                                         const ObjCObjectType *RHS) {
6516  assert(LHS->getInterface() && "LHS is not an interface type");
6517  assert(RHS->getInterface() && "RHS is not an interface type");
6518
6519  // Verify that the base decls are compatible: the RHS must be a subclass of
6520  // the LHS.
6521  if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface()))
6522    return false;
6523
6524  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
6525  // protocol qualified at all, then we are good.
6526  if (LHS->getNumProtocols() == 0)
6527    return true;
6528
6529  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't,
6530  // more detailed analysis is required.
6531  if (RHS->getNumProtocols() == 0) {
6532    // OK, if LHS is a superclass of RHS *and*
6533    // this superclass is assignment compatible with LHS.
6534    // false otherwise.
6535    bool IsSuperClass =
6536      LHS->getInterface()->isSuperClassOf(RHS->getInterface());
6537    if (IsSuperClass) {
6538      // OK if conversion of LHS to SuperClass results in narrowing of types
6539      // ; i.e., SuperClass may implement at least one of the protocols
6540      // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
6541      // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
6542      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
6543      CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
6544      // If super class has no protocols, it is not a match.
6545      if (SuperClassInheritedProtocols.empty())
6546        return false;
6547
6548      for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6549           LHSPE = LHS->qual_end();
6550           LHSPI != LHSPE; LHSPI++) {
6551        bool SuperImplementsProtocol = false;
6552        ObjCProtocolDecl *LHSProto = (*LHSPI);
6553
6554        for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I =
6555             SuperClassInheritedProtocols.begin(),
6556             E = SuperClassInheritedProtocols.end(); I != E; ++I) {
6557          ObjCProtocolDecl *SuperClassProto = (*I);
6558          if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
6559            SuperImplementsProtocol = true;
6560            break;
6561          }
6562        }
6563        if (!SuperImplementsProtocol)
6564          return false;
6565      }
6566      return true;
6567    }
6568    return false;
6569  }
6570
6571  for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(),
6572                                     LHSPE = LHS->qual_end();
6573       LHSPI != LHSPE; LHSPI++) {
6574    bool RHSImplementsProtocol = false;
6575
6576    // If the RHS doesn't implement the protocol on the left, the types
6577    // are incompatible.
6578    for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(),
6579                                       RHSPE = RHS->qual_end();
6580         RHSPI != RHSPE; RHSPI++) {
6581      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
6582        RHSImplementsProtocol = true;
6583        break;
6584      }
6585    }
6586    // FIXME: For better diagnostics, consider passing back the protocol name.
6587    if (!RHSImplementsProtocol)
6588      return false;
6589  }
6590  // The RHS implements all protocols listed on the LHS.
6591  return true;
6592}
6593
6594bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
6595  // get the "pointed to" types
6596  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
6597  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
6598
6599  if (!LHSOPT || !RHSOPT)
6600    return false;
6601
6602  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
6603         canAssignObjCInterfaces(RHSOPT, LHSOPT);
6604}
6605
6606bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
6607  return canAssignObjCInterfaces(
6608                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
6609                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
6610}
6611
6612/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
6613/// both shall have the identically qualified version of a compatible type.
6614/// C99 6.2.7p1: Two types have compatible types if their types are the
6615/// same. See 6.7.[2,3,5] for additional rules.
6616bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
6617                                    bool CompareUnqualified) {
6618  if (getLangOpts().CPlusPlus)
6619    return hasSameType(LHS, RHS);
6620
6621  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
6622}
6623
6624bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
6625  return typesAreCompatible(LHS, RHS);
6626}
6627
6628bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
6629  return !mergeTypes(LHS, RHS, true).isNull();
6630}
6631
6632/// mergeTransparentUnionType - if T is a transparent union type and a member
6633/// of T is compatible with SubType, return the merged type, else return
6634/// QualType()
6635QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
6636                                               bool OfBlockPointer,
6637                                               bool Unqualified) {
6638  if (const RecordType *UT = T->getAsUnionType()) {
6639    RecordDecl *UD = UT->getDecl();
6640    if (UD->hasAttr<TransparentUnionAttr>()) {
6641      for (RecordDecl::field_iterator it = UD->field_begin(),
6642           itend = UD->field_end(); it != itend; ++it) {
6643        QualType ET = it->getType().getUnqualifiedType();
6644        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
6645        if (!MT.isNull())
6646          return MT;
6647      }
6648    }
6649  }
6650
6651  return QualType();
6652}
6653
6654/// mergeFunctionArgumentTypes - merge two types which appear as function
6655/// argument types
6656QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs,
6657                                                bool OfBlockPointer,
6658                                                bool Unqualified) {
6659  // GNU extension: two types are compatible if they appear as a function
6660  // argument, one of the types is a transparent union type and the other
6661  // type is compatible with a union member
6662  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
6663                                              Unqualified);
6664  if (!lmerge.isNull())
6665    return lmerge;
6666
6667  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
6668                                              Unqualified);
6669  if (!rmerge.isNull())
6670    return rmerge;
6671
6672  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
6673}
6674
6675QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
6676                                        bool OfBlockPointer,
6677                                        bool Unqualified) {
6678  const FunctionType *lbase = lhs->getAs<FunctionType>();
6679  const FunctionType *rbase = rhs->getAs<FunctionType>();
6680  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
6681  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
6682  bool allLTypes = true;
6683  bool allRTypes = true;
6684
6685  // Check return type
6686  QualType retType;
6687  if (OfBlockPointer) {
6688    QualType RHS = rbase->getResultType();
6689    QualType LHS = lbase->getResultType();
6690    bool UnqualifiedResult = Unqualified;
6691    if (!UnqualifiedResult)
6692      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
6693    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
6694  }
6695  else
6696    retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false,
6697                         Unqualified);
6698  if (retType.isNull()) return QualType();
6699
6700  if (Unqualified)
6701    retType = retType.getUnqualifiedType();
6702
6703  CanQualType LRetType = getCanonicalType(lbase->getResultType());
6704  CanQualType RRetType = getCanonicalType(rbase->getResultType());
6705  if (Unqualified) {
6706    LRetType = LRetType.getUnqualifiedType();
6707    RRetType = RRetType.getUnqualifiedType();
6708  }
6709
6710  if (getCanonicalType(retType) != LRetType)
6711    allLTypes = false;
6712  if (getCanonicalType(retType) != RRetType)
6713    allRTypes = false;
6714
6715  // FIXME: double check this
6716  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
6717  //                           rbase->getRegParmAttr() != 0 &&
6718  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
6719  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
6720  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
6721
6722  // Compatible functions must have compatible calling conventions
6723  if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC()))
6724    return QualType();
6725
6726  // Regparm is part of the calling convention.
6727  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
6728    return QualType();
6729  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
6730    return QualType();
6731
6732  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
6733    return QualType();
6734
6735  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
6736  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
6737
6738  if (lbaseInfo.getNoReturn() != NoReturn)
6739    allLTypes = false;
6740  if (rbaseInfo.getNoReturn() != NoReturn)
6741    allRTypes = false;
6742
6743  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
6744
6745  if (lproto && rproto) { // two C99 style function prototypes
6746    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
6747           "C++ shouldn't be here");
6748    unsigned lproto_nargs = lproto->getNumArgs();
6749    unsigned rproto_nargs = rproto->getNumArgs();
6750
6751    // Compatible functions must have the same number of arguments
6752    if (lproto_nargs != rproto_nargs)
6753      return QualType();
6754
6755    // Variadic and non-variadic functions aren't compatible
6756    if (lproto->isVariadic() != rproto->isVariadic())
6757      return QualType();
6758
6759    if (lproto->getTypeQuals() != rproto->getTypeQuals())
6760      return QualType();
6761
6762    if (LangOpts.ObjCAutoRefCount &&
6763        !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto))
6764      return QualType();
6765
6766    // Check argument compatibility
6767    SmallVector<QualType, 10> types;
6768    for (unsigned i = 0; i < lproto_nargs; i++) {
6769      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
6770      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
6771      QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype,
6772                                                    OfBlockPointer,
6773                                                    Unqualified);
6774      if (argtype.isNull()) return QualType();
6775
6776      if (Unqualified)
6777        argtype = argtype.getUnqualifiedType();
6778
6779      types.push_back(argtype);
6780      if (Unqualified) {
6781        largtype = largtype.getUnqualifiedType();
6782        rargtype = rargtype.getUnqualifiedType();
6783      }
6784
6785      if (getCanonicalType(argtype) != getCanonicalType(largtype))
6786        allLTypes = false;
6787      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
6788        allRTypes = false;
6789    }
6790
6791    if (allLTypes) return lhs;
6792    if (allRTypes) return rhs;
6793
6794    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
6795    EPI.ExtInfo = einfo;
6796    return getFunctionType(retType, types, EPI);
6797  }
6798
6799  if (lproto) allRTypes = false;
6800  if (rproto) allLTypes = false;
6801
6802  const FunctionProtoType *proto = lproto ? lproto : rproto;
6803  if (proto) {
6804    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
6805    if (proto->isVariadic()) return QualType();
6806    // Check that the types are compatible with the types that
6807    // would result from default argument promotions (C99 6.7.5.3p15).
6808    // The only types actually affected are promotable integer
6809    // types and floats, which would be passed as a different
6810    // type depending on whether the prototype is visible.
6811    unsigned proto_nargs = proto->getNumArgs();
6812    for (unsigned i = 0; i < proto_nargs; ++i) {
6813      QualType argTy = proto->getArgType(i);
6814
6815      // Look at the converted type of enum types, since that is the type used
6816      // to pass enum values.
6817      if (const EnumType *Enum = argTy->getAs<EnumType>()) {
6818        argTy = Enum->getDecl()->getIntegerType();
6819        if (argTy.isNull())
6820          return QualType();
6821      }
6822
6823      if (argTy->isPromotableIntegerType() ||
6824          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
6825        return QualType();
6826    }
6827
6828    if (allLTypes) return lhs;
6829    if (allRTypes) return rhs;
6830
6831    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
6832    EPI.ExtInfo = einfo;
6833    return getFunctionType(retType,
6834                           ArrayRef<QualType>(proto->arg_type_begin(),
6835                                              proto->getNumArgs()),
6836                           EPI);
6837  }
6838
6839  if (allLTypes) return lhs;
6840  if (allRTypes) return rhs;
6841  return getFunctionNoProtoType(retType, einfo);
6842}
6843
6844/// Given that we have an enum type and a non-enum type, try to merge them.
6845static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
6846                                     QualType other, bool isBlockReturnType) {
6847  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
6848  // a signed integer type, or an unsigned integer type.
6849  // Compatibility is based on the underlying type, not the promotion
6850  // type.
6851  QualType underlyingType = ET->getDecl()->getIntegerType();
6852  if (underlyingType.isNull()) return QualType();
6853  if (Context.hasSameType(underlyingType, other))
6854    return other;
6855
6856  // In block return types, we're more permissive and accept any
6857  // integral type of the same size.
6858  if (isBlockReturnType && other->isIntegerType() &&
6859      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
6860    return other;
6861
6862  return QualType();
6863}
6864
6865QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
6866                                bool OfBlockPointer,
6867                                bool Unqualified, bool BlockReturnType) {
6868  // C++ [expr]: If an expression initially has the type "reference to T", the
6869  // type is adjusted to "T" prior to any further analysis, the expression
6870  // designates the object or function denoted by the reference, and the
6871  // expression is an lvalue unless the reference is an rvalue reference and
6872  // the expression is a function call (possibly inside parentheses).
6873  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
6874  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
6875
6876  if (Unqualified) {
6877    LHS = LHS.getUnqualifiedType();
6878    RHS = RHS.getUnqualifiedType();
6879  }
6880
6881  QualType LHSCan = getCanonicalType(LHS),
6882           RHSCan = getCanonicalType(RHS);
6883
6884  // If two types are identical, they are compatible.
6885  if (LHSCan == RHSCan)
6886    return LHS;
6887
6888  // If the qualifiers are different, the types aren't compatible... mostly.
6889  Qualifiers LQuals = LHSCan.getLocalQualifiers();
6890  Qualifiers RQuals = RHSCan.getLocalQualifiers();
6891  if (LQuals != RQuals) {
6892    // If any of these qualifiers are different, we have a type
6893    // mismatch.
6894    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
6895        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
6896        LQuals.getObjCLifetime() != RQuals.getObjCLifetime())
6897      return QualType();
6898
6899    // Exactly one GC qualifier difference is allowed: __strong is
6900    // okay if the other type has no GC qualifier but is an Objective
6901    // C object pointer (i.e. implicitly strong by default).  We fix
6902    // this by pretending that the unqualified type was actually
6903    // qualified __strong.
6904    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
6905    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
6906    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
6907
6908    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
6909      return QualType();
6910
6911    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
6912      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
6913    }
6914    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
6915      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
6916    }
6917    return QualType();
6918  }
6919
6920  // Okay, qualifiers are equal.
6921
6922  Type::TypeClass LHSClass = LHSCan->getTypeClass();
6923  Type::TypeClass RHSClass = RHSCan->getTypeClass();
6924
6925  // We want to consider the two function types to be the same for these
6926  // comparisons, just force one to the other.
6927  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
6928  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
6929
6930  // Same as above for arrays
6931  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
6932    LHSClass = Type::ConstantArray;
6933  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
6934    RHSClass = Type::ConstantArray;
6935
6936  // ObjCInterfaces are just specialized ObjCObjects.
6937  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
6938  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
6939
6940  // Canonicalize ExtVector -> Vector.
6941  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
6942  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
6943
6944  // If the canonical type classes don't match.
6945  if (LHSClass != RHSClass) {
6946    // Note that we only have special rules for turning block enum
6947    // returns into block int returns, not vice-versa.
6948    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
6949      return mergeEnumWithInteger(*this, ETy, RHS, false);
6950    }
6951    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
6952      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
6953    }
6954    // allow block pointer type to match an 'id' type.
6955    if (OfBlockPointer && !BlockReturnType) {
6956       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
6957         return LHS;
6958      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
6959        return RHS;
6960    }
6961
6962    return QualType();
6963  }
6964
6965  // The canonical type classes match.
6966  switch (LHSClass) {
6967#define TYPE(Class, Base)
6968#define ABSTRACT_TYPE(Class, Base)
6969#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
6970#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
6971#define DEPENDENT_TYPE(Class, Base) case Type::Class:
6972#include "clang/AST/TypeNodes.def"
6973    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
6974
6975  case Type::LValueReference:
6976  case Type::RValueReference:
6977  case Type::MemberPointer:
6978    llvm_unreachable("C++ should never be in mergeTypes");
6979
6980  case Type::ObjCInterface:
6981  case Type::IncompleteArray:
6982  case Type::VariableArray:
6983  case Type::FunctionProto:
6984  case Type::ExtVector:
6985    llvm_unreachable("Types are eliminated above");
6986
6987  case Type::Pointer:
6988  {
6989    // Merge two pointer types, while trying to preserve typedef info
6990    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
6991    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
6992    if (Unqualified) {
6993      LHSPointee = LHSPointee.getUnqualifiedType();
6994      RHSPointee = RHSPointee.getUnqualifiedType();
6995    }
6996    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
6997                                     Unqualified);
6998    if (ResultType.isNull()) return QualType();
6999    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7000      return LHS;
7001    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7002      return RHS;
7003    return getPointerType(ResultType);
7004  }
7005  case Type::BlockPointer:
7006  {
7007    // Merge two block pointer types, while trying to preserve typedef info
7008    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
7009    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
7010    if (Unqualified) {
7011      LHSPointee = LHSPointee.getUnqualifiedType();
7012      RHSPointee = RHSPointee.getUnqualifiedType();
7013    }
7014    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
7015                                     Unqualified);
7016    if (ResultType.isNull()) return QualType();
7017    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
7018      return LHS;
7019    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
7020      return RHS;
7021    return getBlockPointerType(ResultType);
7022  }
7023  case Type::Atomic:
7024  {
7025    // Merge two pointer types, while trying to preserve typedef info
7026    QualType LHSValue = LHS->getAs<AtomicType>()->getValueType();
7027    QualType RHSValue = RHS->getAs<AtomicType>()->getValueType();
7028    if (Unqualified) {
7029      LHSValue = LHSValue.getUnqualifiedType();
7030      RHSValue = RHSValue.getUnqualifiedType();
7031    }
7032    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
7033                                     Unqualified);
7034    if (ResultType.isNull()) return QualType();
7035    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
7036      return LHS;
7037    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
7038      return RHS;
7039    return getAtomicType(ResultType);
7040  }
7041  case Type::ConstantArray:
7042  {
7043    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
7044    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
7045    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
7046      return QualType();
7047
7048    QualType LHSElem = getAsArrayType(LHS)->getElementType();
7049    QualType RHSElem = getAsArrayType(RHS)->getElementType();
7050    if (Unqualified) {
7051      LHSElem = LHSElem.getUnqualifiedType();
7052      RHSElem = RHSElem.getUnqualifiedType();
7053    }
7054
7055    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
7056    if (ResultType.isNull()) return QualType();
7057    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7058      return LHS;
7059    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7060      return RHS;
7061    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
7062                                          ArrayType::ArraySizeModifier(), 0);
7063    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
7064                                          ArrayType::ArraySizeModifier(), 0);
7065    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
7066    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
7067    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
7068      return LHS;
7069    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
7070      return RHS;
7071    if (LVAT) {
7072      // FIXME: This isn't correct! But tricky to implement because
7073      // the array's size has to be the size of LHS, but the type
7074      // has to be different.
7075      return LHS;
7076    }
7077    if (RVAT) {
7078      // FIXME: This isn't correct! But tricky to implement because
7079      // the array's size has to be the size of RHS, but the type
7080      // has to be different.
7081      return RHS;
7082    }
7083    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
7084    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
7085    return getIncompleteArrayType(ResultType,
7086                                  ArrayType::ArraySizeModifier(), 0);
7087  }
7088  case Type::FunctionNoProto:
7089    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
7090  case Type::Record:
7091  case Type::Enum:
7092    return QualType();
7093  case Type::Builtin:
7094    // Only exactly equal builtin types are compatible, which is tested above.
7095    return QualType();
7096  case Type::Complex:
7097    // Distinct complex types are incompatible.
7098    return QualType();
7099  case Type::Vector:
7100    // FIXME: The merged type should be an ExtVector!
7101    if (areCompatVectorTypes(LHSCan->getAs<VectorType>(),
7102                             RHSCan->getAs<VectorType>()))
7103      return LHS;
7104    return QualType();
7105  case Type::ObjCObject: {
7106    // Check if the types are assignment compatible.
7107    // FIXME: This should be type compatibility, e.g. whether
7108    // "LHS x; RHS x;" at global scope is legal.
7109    const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>();
7110    const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>();
7111    if (canAssignObjCInterfaces(LHSIface, RHSIface))
7112      return LHS;
7113
7114    return QualType();
7115  }
7116  case Type::ObjCObjectPointer: {
7117    if (OfBlockPointer) {
7118      if (canAssignObjCInterfacesInBlockPointer(
7119                                          LHS->getAs<ObjCObjectPointerType>(),
7120                                          RHS->getAs<ObjCObjectPointerType>(),
7121                                          BlockReturnType))
7122        return LHS;
7123      return QualType();
7124    }
7125    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
7126                                RHS->getAs<ObjCObjectPointerType>()))
7127      return LHS;
7128
7129    return QualType();
7130  }
7131  }
7132
7133  llvm_unreachable("Invalid Type::Class!");
7134}
7135
7136bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs(
7137                   const FunctionProtoType *FromFunctionType,
7138                   const FunctionProtoType *ToFunctionType) {
7139  if (FromFunctionType->hasAnyConsumedArgs() !=
7140      ToFunctionType->hasAnyConsumedArgs())
7141    return false;
7142  FunctionProtoType::ExtProtoInfo FromEPI =
7143    FromFunctionType->getExtProtoInfo();
7144  FunctionProtoType::ExtProtoInfo ToEPI =
7145    ToFunctionType->getExtProtoInfo();
7146  if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments)
7147    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
7148         ArgIdx != NumArgs; ++ArgIdx)  {
7149      if (FromEPI.ConsumedArguments[ArgIdx] !=
7150          ToEPI.ConsumedArguments[ArgIdx])
7151        return false;
7152    }
7153  return true;
7154}
7155
7156/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
7157/// 'RHS' attributes and returns the merged version; including for function
7158/// return types.
7159QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
7160  QualType LHSCan = getCanonicalType(LHS),
7161  RHSCan = getCanonicalType(RHS);
7162  // If two types are identical, they are compatible.
7163  if (LHSCan == RHSCan)
7164    return LHS;
7165  if (RHSCan->isFunctionType()) {
7166    if (!LHSCan->isFunctionType())
7167      return QualType();
7168    QualType OldReturnType =
7169      cast<FunctionType>(RHSCan.getTypePtr())->getResultType();
7170    QualType NewReturnType =
7171      cast<FunctionType>(LHSCan.getTypePtr())->getResultType();
7172    QualType ResReturnType =
7173      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
7174    if (ResReturnType.isNull())
7175      return QualType();
7176    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
7177      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
7178      // In either case, use OldReturnType to build the new function type.
7179      const FunctionType *F = LHS->getAs<FunctionType>();
7180      if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) {
7181        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7182        EPI.ExtInfo = getFunctionExtInfo(LHS);
7183        QualType ResultType
7184          = getFunctionType(OldReturnType,
7185                            ArrayRef<QualType>(FPT->arg_type_begin(),
7186                                               FPT->getNumArgs()),
7187                            EPI);
7188        return ResultType;
7189      }
7190    }
7191    return QualType();
7192  }
7193
7194  // If the qualifiers are different, the types can still be merged.
7195  Qualifiers LQuals = LHSCan.getLocalQualifiers();
7196  Qualifiers RQuals = RHSCan.getLocalQualifiers();
7197  if (LQuals != RQuals) {
7198    // If any of these qualifiers are different, we have a type mismatch.
7199    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
7200        LQuals.getAddressSpace() != RQuals.getAddressSpace())
7201      return QualType();
7202
7203    // Exactly one GC qualifier difference is allowed: __strong is
7204    // okay if the other type has no GC qualifier but is an Objective
7205    // C object pointer (i.e. implicitly strong by default).  We fix
7206    // this by pretending that the unqualified type was actually
7207    // qualified __strong.
7208    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
7209    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
7210    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
7211
7212    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
7213      return QualType();
7214
7215    if (GC_L == Qualifiers::Strong)
7216      return LHS;
7217    if (GC_R == Qualifiers::Strong)
7218      return RHS;
7219    return QualType();
7220  }
7221
7222  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
7223    QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7224    QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType();
7225    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
7226    if (ResQT == LHSBaseQT)
7227      return LHS;
7228    if (ResQT == RHSBaseQT)
7229      return RHS;
7230  }
7231  return QualType();
7232}
7233
7234//===----------------------------------------------------------------------===//
7235//                         Integer Predicates
7236//===----------------------------------------------------------------------===//
7237
7238unsigned ASTContext::getIntWidth(QualType T) const {
7239  if (const EnumType *ET = dyn_cast<EnumType>(T))
7240    T = ET->getDecl()->getIntegerType();
7241  if (T->isBooleanType())
7242    return 1;
7243  // For builtin types, just use the standard type sizing method
7244  return (unsigned)getTypeSize(T);
7245}
7246
7247QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
7248  assert(T->hasSignedIntegerRepresentation() && "Unexpected type");
7249
7250  // Turn <4 x signed int> -> <4 x unsigned int>
7251  if (const VectorType *VTy = T->getAs<VectorType>())
7252    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
7253                         VTy->getNumElements(), VTy->getVectorKind());
7254
7255  // For enums, we return the unsigned version of the base type.
7256  if (const EnumType *ETy = T->getAs<EnumType>())
7257    T = ETy->getDecl()->getIntegerType();
7258
7259  const BuiltinType *BTy = T->getAs<BuiltinType>();
7260  assert(BTy && "Unexpected signed integer type");
7261  switch (BTy->getKind()) {
7262  case BuiltinType::Char_S:
7263  case BuiltinType::SChar:
7264    return UnsignedCharTy;
7265  case BuiltinType::Short:
7266    return UnsignedShortTy;
7267  case BuiltinType::Int:
7268    return UnsignedIntTy;
7269  case BuiltinType::Long:
7270    return UnsignedLongTy;
7271  case BuiltinType::LongLong:
7272    return UnsignedLongLongTy;
7273  case BuiltinType::Int128:
7274    return UnsignedInt128Ty;
7275  default:
7276    llvm_unreachable("Unexpected signed integer type");
7277  }
7278}
7279
7280ASTMutationListener::~ASTMutationListener() { }
7281
7282
7283//===----------------------------------------------------------------------===//
7284//                          Builtin Type Computation
7285//===----------------------------------------------------------------------===//
7286
7287/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
7288/// pointer over the consumed characters.  This returns the resultant type.  If
7289/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
7290/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
7291/// a vector of "i*".
7292///
7293/// RequiresICE is filled in on return to indicate whether the value is required
7294/// to be an Integer Constant Expression.
7295static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
7296                                  ASTContext::GetBuiltinTypeError &Error,
7297                                  bool &RequiresICE,
7298                                  bool AllowTypeModifiers) {
7299  // Modifiers.
7300  int HowLong = 0;
7301  bool Signed = false, Unsigned = false;
7302  RequiresICE = false;
7303
7304  // Read the prefixed modifiers first.
7305  bool Done = false;
7306  while (!Done) {
7307    switch (*Str++) {
7308    default: Done = true; --Str; break;
7309    case 'I':
7310      RequiresICE = true;
7311      break;
7312    case 'S':
7313      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
7314      assert(!Signed && "Can't use 'S' modifier multiple times!");
7315      Signed = true;
7316      break;
7317    case 'U':
7318      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
7319      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
7320      Unsigned = true;
7321      break;
7322    case 'L':
7323      assert(HowLong <= 2 && "Can't have LLLL modifier");
7324      ++HowLong;
7325      break;
7326    }
7327  }
7328
7329  QualType Type;
7330
7331  // Read the base type.
7332  switch (*Str++) {
7333  default: llvm_unreachable("Unknown builtin type letter!");
7334  case 'v':
7335    assert(HowLong == 0 && !Signed && !Unsigned &&
7336           "Bad modifiers used with 'v'!");
7337    Type = Context.VoidTy;
7338    break;
7339  case 'f':
7340    assert(HowLong == 0 && !Signed && !Unsigned &&
7341           "Bad modifiers used with 'f'!");
7342    Type = Context.FloatTy;
7343    break;
7344  case 'd':
7345    assert(HowLong < 2 && !Signed && !Unsigned &&
7346           "Bad modifiers used with 'd'!");
7347    if (HowLong)
7348      Type = Context.LongDoubleTy;
7349    else
7350      Type = Context.DoubleTy;
7351    break;
7352  case 's':
7353    assert(HowLong == 0 && "Bad modifiers used with 's'!");
7354    if (Unsigned)
7355      Type = Context.UnsignedShortTy;
7356    else
7357      Type = Context.ShortTy;
7358    break;
7359  case 'i':
7360    if (HowLong == 3)
7361      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
7362    else if (HowLong == 2)
7363      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
7364    else if (HowLong == 1)
7365      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
7366    else
7367      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
7368    break;
7369  case 'c':
7370    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
7371    if (Signed)
7372      Type = Context.SignedCharTy;
7373    else if (Unsigned)
7374      Type = Context.UnsignedCharTy;
7375    else
7376      Type = Context.CharTy;
7377    break;
7378  case 'b': // boolean
7379    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
7380    Type = Context.BoolTy;
7381    break;
7382  case 'z':  // size_t.
7383    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
7384    Type = Context.getSizeType();
7385    break;
7386  case 'F':
7387    Type = Context.getCFConstantStringType();
7388    break;
7389  case 'G':
7390    Type = Context.getObjCIdType();
7391    break;
7392  case 'H':
7393    Type = Context.getObjCSelType();
7394    break;
7395  case 'M':
7396    Type = Context.getObjCSuperType();
7397    break;
7398  case 'a':
7399    Type = Context.getBuiltinVaListType();
7400    assert(!Type.isNull() && "builtin va list type not initialized!");
7401    break;
7402  case 'A':
7403    // This is a "reference" to a va_list; however, what exactly
7404    // this means depends on how va_list is defined. There are two
7405    // different kinds of va_list: ones passed by value, and ones
7406    // passed by reference.  An example of a by-value va_list is
7407    // x86, where va_list is a char*. An example of by-ref va_list
7408    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
7409    // we want this argument to be a char*&; for x86-64, we want
7410    // it to be a __va_list_tag*.
7411    Type = Context.getBuiltinVaListType();
7412    assert(!Type.isNull() && "builtin va list type not initialized!");
7413    if (Type->isArrayType())
7414      Type = Context.getArrayDecayedType(Type);
7415    else
7416      Type = Context.getLValueReferenceType(Type);
7417    break;
7418  case 'V': {
7419    char *End;
7420    unsigned NumElements = strtoul(Str, &End, 10);
7421    assert(End != Str && "Missing vector size");
7422    Str = End;
7423
7424    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
7425                                             RequiresICE, false);
7426    assert(!RequiresICE && "Can't require vector ICE");
7427
7428    // TODO: No way to make AltiVec vectors in builtins yet.
7429    Type = Context.getVectorType(ElementType, NumElements,
7430                                 VectorType::GenericVector);
7431    break;
7432  }
7433  case 'E': {
7434    char *End;
7435
7436    unsigned NumElements = strtoul(Str, &End, 10);
7437    assert(End != Str && "Missing vector size");
7438
7439    Str = End;
7440
7441    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7442                                             false);
7443    Type = Context.getExtVectorType(ElementType, NumElements);
7444    break;
7445  }
7446  case 'X': {
7447    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
7448                                             false);
7449    assert(!RequiresICE && "Can't require complex ICE");
7450    Type = Context.getComplexType(ElementType);
7451    break;
7452  }
7453  case 'Y' : {
7454    Type = Context.getPointerDiffType();
7455    break;
7456  }
7457  case 'P':
7458    Type = Context.getFILEType();
7459    if (Type.isNull()) {
7460      Error = ASTContext::GE_Missing_stdio;
7461      return QualType();
7462    }
7463    break;
7464  case 'J':
7465    if (Signed)
7466      Type = Context.getsigjmp_bufType();
7467    else
7468      Type = Context.getjmp_bufType();
7469
7470    if (Type.isNull()) {
7471      Error = ASTContext::GE_Missing_setjmp;
7472      return QualType();
7473    }
7474    break;
7475  case 'K':
7476    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
7477    Type = Context.getucontext_tType();
7478
7479    if (Type.isNull()) {
7480      Error = ASTContext::GE_Missing_ucontext;
7481      return QualType();
7482    }
7483    break;
7484  case 'p':
7485    Type = Context.getProcessIDType();
7486    break;
7487  }
7488
7489  // If there are modifiers and if we're allowed to parse them, go for it.
7490  Done = !AllowTypeModifiers;
7491  while (!Done) {
7492    switch (char c = *Str++) {
7493    default: Done = true; --Str; break;
7494    case '*':
7495    case '&': {
7496      // Both pointers and references can have their pointee types
7497      // qualified with an address space.
7498      char *End;
7499      unsigned AddrSpace = strtoul(Str, &End, 10);
7500      if (End != Str && AddrSpace != 0) {
7501        Type = Context.getAddrSpaceQualType(Type, AddrSpace);
7502        Str = End;
7503      }
7504      if (c == '*')
7505        Type = Context.getPointerType(Type);
7506      else
7507        Type = Context.getLValueReferenceType(Type);
7508      break;
7509    }
7510    // FIXME: There's no way to have a built-in with an rvalue ref arg.
7511    case 'C':
7512      Type = Type.withConst();
7513      break;
7514    case 'D':
7515      Type = Context.getVolatileType(Type);
7516      break;
7517    case 'R':
7518      Type = Type.withRestrict();
7519      break;
7520    }
7521  }
7522
7523  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
7524         "Integer constant 'I' type must be an integer");
7525
7526  return Type;
7527}
7528
7529/// GetBuiltinType - Return the type for the specified builtin.
7530QualType ASTContext::GetBuiltinType(unsigned Id,
7531                                    GetBuiltinTypeError &Error,
7532                                    unsigned *IntegerConstantArgs) const {
7533  const char *TypeStr = BuiltinInfo.GetTypeString(Id);
7534
7535  SmallVector<QualType, 8> ArgTypes;
7536
7537  bool RequiresICE = false;
7538  Error = GE_None;
7539  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
7540                                       RequiresICE, true);
7541  if (Error != GE_None)
7542    return QualType();
7543
7544  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
7545
7546  while (TypeStr[0] && TypeStr[0] != '.') {
7547    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
7548    if (Error != GE_None)
7549      return QualType();
7550
7551    // If this argument is required to be an IntegerConstantExpression and the
7552    // caller cares, fill in the bitmask we return.
7553    if (RequiresICE && IntegerConstantArgs)
7554      *IntegerConstantArgs |= 1 << ArgTypes.size();
7555
7556    // Do array -> pointer decay.  The builtin should use the decayed type.
7557    if (Ty->isArrayType())
7558      Ty = getArrayDecayedType(Ty);
7559
7560    ArgTypes.push_back(Ty);
7561  }
7562
7563  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
7564         "'.' should only occur at end of builtin type list!");
7565
7566  FunctionType::ExtInfo EI;
7567  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
7568
7569  bool Variadic = (TypeStr[0] == '.');
7570
7571  // We really shouldn't be making a no-proto type here, especially in C++.
7572  if (ArgTypes.empty() && Variadic)
7573    return getFunctionNoProtoType(ResType, EI);
7574
7575  FunctionProtoType::ExtProtoInfo EPI;
7576  EPI.ExtInfo = EI;
7577  EPI.Variadic = Variadic;
7578
7579  return getFunctionType(ResType, ArgTypes, EPI);
7580}
7581
7582GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) {
7583  GVALinkage External = GVA_StrongExternal;
7584
7585  Linkage L = FD->getLinkage();
7586  switch (L) {
7587  case NoLinkage:
7588  case InternalLinkage:
7589  case UniqueExternalLinkage:
7590    return GVA_Internal;
7591
7592  case ExternalLinkage:
7593    switch (FD->getTemplateSpecializationKind()) {
7594    case TSK_Undeclared:
7595    case TSK_ExplicitSpecialization:
7596      External = GVA_StrongExternal;
7597      break;
7598
7599    case TSK_ExplicitInstantiationDefinition:
7600      return GVA_ExplicitTemplateInstantiation;
7601
7602    case TSK_ExplicitInstantiationDeclaration:
7603    case TSK_ImplicitInstantiation:
7604      External = GVA_TemplateInstantiation;
7605      break;
7606    }
7607  }
7608
7609  if (!FD->isInlined())
7610    return External;
7611
7612  if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
7613    // GNU or C99 inline semantics. Determine whether this symbol should be
7614    // externally visible.
7615    if (FD->isInlineDefinitionExternallyVisible())
7616      return External;
7617
7618    // C99 inline semantics, where the symbol is not externally visible.
7619    return GVA_C99Inline;
7620  }
7621
7622  // C++0x [temp.explicit]p9:
7623  //   [ Note: The intent is that an inline function that is the subject of
7624  //   an explicit instantiation declaration will still be implicitly
7625  //   instantiated when used so that the body can be considered for
7626  //   inlining, but that no out-of-line copy of the inline function would be
7627  //   generated in the translation unit. -- end note ]
7628  if (FD->getTemplateSpecializationKind()
7629                                       == TSK_ExplicitInstantiationDeclaration)
7630    return GVA_C99Inline;
7631
7632  return GVA_CXXInline;
7633}
7634
7635GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
7636  // If this is a static data member, compute the kind of template
7637  // specialization. Otherwise, this variable is not part of a
7638  // template.
7639  TemplateSpecializationKind TSK = TSK_Undeclared;
7640  if (VD->isStaticDataMember())
7641    TSK = VD->getTemplateSpecializationKind();
7642
7643  Linkage L = VD->getLinkage();
7644
7645  switch (L) {
7646  case NoLinkage:
7647  case InternalLinkage:
7648  case UniqueExternalLinkage:
7649    return GVA_Internal;
7650
7651  case ExternalLinkage:
7652    switch (TSK) {
7653    case TSK_Undeclared:
7654    case TSK_ExplicitSpecialization:
7655      return GVA_StrongExternal;
7656
7657    case TSK_ExplicitInstantiationDeclaration:
7658      llvm_unreachable("Variable should not be instantiated");
7659      // Fall through to treat this like any other instantiation.
7660
7661    case TSK_ExplicitInstantiationDefinition:
7662      return GVA_ExplicitTemplateInstantiation;
7663
7664    case TSK_ImplicitInstantiation:
7665      return GVA_TemplateInstantiation;
7666    }
7667  }
7668
7669  llvm_unreachable("Invalid Linkage!");
7670}
7671
7672bool ASTContext::DeclMustBeEmitted(const Decl *D) {
7673  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
7674    if (!VD->isFileVarDecl())
7675      return false;
7676  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7677    // We never need to emit an uninstantiated function template.
7678    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
7679      return false;
7680  } else
7681    return false;
7682
7683  // If this is a member of a class template, we do not need to emit it.
7684  if (D->getDeclContext()->isDependentContext())
7685    return false;
7686
7687  // Weak references don't produce any output by themselves.
7688  if (D->hasAttr<WeakRefAttr>())
7689    return false;
7690
7691  // Aliases and used decls are required.
7692  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
7693    return true;
7694
7695  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7696    // Forward declarations aren't required.
7697    if (!FD->doesThisDeclarationHaveABody())
7698      return FD->doesDeclarationForceExternallyVisibleDefinition();
7699
7700    // Constructors and destructors are required.
7701    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
7702      return true;
7703
7704    // The key function for a class is required.  This rule only comes
7705    // into play when inline functions can be key functions, though.
7706    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7707      if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7708        const CXXRecordDecl *RD = MD->getParent();
7709        if (MD->isOutOfLine() && RD->isDynamicClass()) {
7710          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
7711          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
7712            return true;
7713        }
7714      }
7715    }
7716
7717    GVALinkage Linkage = GetGVALinkageForFunction(FD);
7718
7719    // static, static inline, always_inline, and extern inline functions can
7720    // always be deferred.  Normal inline functions can be deferred in C99/C++.
7721    // Implicit template instantiations can also be deferred in C++.
7722    if (Linkage == GVA_Internal  || Linkage == GVA_C99Inline ||
7723        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
7724      return false;
7725    return true;
7726  }
7727
7728  const VarDecl *VD = cast<VarDecl>(D);
7729  assert(VD->isFileVarDecl() && "Expected file scoped var");
7730
7731  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly)
7732    return false;
7733
7734  // Variables that can be needed in other TUs are required.
7735  GVALinkage L = GetGVALinkageForVariable(VD);
7736  if (L != GVA_Internal && L != GVA_TemplateInstantiation)
7737    return true;
7738
7739  // Variables that have destruction with side-effects are required.
7740  if (VD->getType().isDestructedType())
7741    return true;
7742
7743  // Variables that have initialization with side-effects are required.
7744  if (VD->getInit() && VD->getInit()->HasSideEffects(*this))
7745    return true;
7746
7747  return false;
7748}
7749
7750CallingConv ASTContext::getDefaultCXXMethodCallConv(bool isVariadic) {
7751  // Pass through to the C++ ABI object
7752  return ABI->getDefaultMethodCallConv(isVariadic);
7753}
7754
7755CallingConv ASTContext::getCanonicalCallConv(CallingConv CC) const {
7756  if (CC == CC_C && !LangOpts.MRTD &&
7757      getTargetInfo().getCXXABI().isMemberFunctionCCDefault())
7758    return CC_Default;
7759  return CC;
7760}
7761
7762bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
7763  // Pass through to the C++ ABI object
7764  return ABI->isNearlyEmpty(RD);
7765}
7766
7767MangleContext *ASTContext::createMangleContext() {
7768  switch (Target->getCXXABI().getKind()) {
7769  case TargetCXXABI::GenericAArch64:
7770  case TargetCXXABI::GenericItanium:
7771  case TargetCXXABI::GenericARM:
7772  case TargetCXXABI::iOS:
7773    return createItaniumMangleContext(*this, getDiagnostics());
7774  case TargetCXXABI::Microsoft:
7775    return createMicrosoftMangleContext(*this, getDiagnostics());
7776  }
7777  llvm_unreachable("Unsupported ABI");
7778}
7779
7780CXXABI::~CXXABI() {}
7781
7782size_t ASTContext::getSideTableAllocatedMemory() const {
7783  return ASTRecordLayouts.getMemorySize()
7784    + llvm::capacity_in_bytes(ObjCLayouts)
7785    + llvm::capacity_in_bytes(KeyFunctions)
7786    + llvm::capacity_in_bytes(ObjCImpls)
7787    + llvm::capacity_in_bytes(BlockVarCopyInits)
7788    + llvm::capacity_in_bytes(DeclAttrs)
7789    + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember)
7790    + llvm::capacity_in_bytes(InstantiatedFromUsingDecl)
7791    + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl)
7792    + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl)
7793    + llvm::capacity_in_bytes(OverriddenMethods)
7794    + llvm::capacity_in_bytes(Types)
7795    + llvm::capacity_in_bytes(VariableArrayTypes)
7796    + llvm::capacity_in_bytes(ClassScopeSpecializationPattern);
7797}
7798
7799void ASTContext::addUnnamedTag(const TagDecl *Tag) {
7800  // FIXME: This mangling should be applied to function local classes too
7801  if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl() ||
7802      !isa<CXXRecordDecl>(Tag->getParent()) || Tag->getLinkage() != ExternalLinkage)
7803    return;
7804
7805  std::pair<llvm::DenseMap<const DeclContext *, unsigned>::iterator, bool> P =
7806    UnnamedMangleContexts.insert(std::make_pair(Tag->getParent(), 0));
7807  UnnamedMangleNumbers.insert(std::make_pair(Tag, P.first->second++));
7808}
7809
7810int ASTContext::getUnnamedTagManglingNumber(const TagDecl *Tag) const {
7811  llvm::DenseMap<const TagDecl *, unsigned>::const_iterator I =
7812    UnnamedMangleNumbers.find(Tag);
7813  return I != UnnamedMangleNumbers.end() ? I->second : -1;
7814}
7815
7816unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) {
7817  CXXRecordDecl *Lambda = CallOperator->getParent();
7818  return LambdaMangleContexts[Lambda->getDeclContext()]
7819           .getManglingNumber(CallOperator);
7820}
7821
7822
7823void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
7824  ParamIndices[D] = index;
7825}
7826
7827unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
7828  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
7829  assert(I != ParamIndices.end() &&
7830         "ParmIndices lacks entry set by ParmVarDecl");
7831  return I->second;
7832}
7833