Expr.cpp revision 72c3f314d92d65c050ee1c07b7753623c044d6c7
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/TargetInfo.h"
22using namespace clang;
23
24//===----------------------------------------------------------------------===//
25// Primary Expressions.
26//===----------------------------------------------------------------------===//
27
28/// getValueAsApproximateDouble - This returns the value as an inaccurate
29/// double.  Note that this may cause loss of precision, but is useful for
30/// debugging dumps, etc.
31double FloatingLiteral::getValueAsApproximateDouble() const {
32  llvm::APFloat V = getValue();
33  bool ignored;
34  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
35            &ignored);
36  return V.convertToDouble();
37}
38
39
40StringLiteral::StringLiteral(const char *strData, unsigned byteLength,
41                             bool Wide, QualType t, SourceLocation firstLoc,
42                             SourceLocation lastLoc) :
43  Expr(StringLiteralClass, t) {
44  // OPTIMIZE: could allocate this appended to the StringLiteral.
45  char *AStrData = new char[byteLength];
46  memcpy(AStrData, strData, byteLength);
47  StrData = AStrData;
48  ByteLength = byteLength;
49  IsWide = Wide;
50  firstTokLoc = firstLoc;
51  lastTokLoc = lastLoc;
52}
53
54StringLiteral::~StringLiteral() {
55  delete[] StrData;
56}
57
58bool UnaryOperator::isPostfix(Opcode Op) {
59  switch (Op) {
60  case PostInc:
61  case PostDec:
62    return true;
63  default:
64    return false;
65  }
66}
67
68bool UnaryOperator::isPrefix(Opcode Op) {
69  switch (Op) {
70    case PreInc:
71    case PreDec:
72      return true;
73    default:
74      return false;
75  }
76}
77
78/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
79/// corresponds to, e.g. "sizeof" or "[pre]++".
80const char *UnaryOperator::getOpcodeStr(Opcode Op) {
81  switch (Op) {
82  default: assert(0 && "Unknown unary operator");
83  case PostInc: return "++";
84  case PostDec: return "--";
85  case PreInc:  return "++";
86  case PreDec:  return "--";
87  case AddrOf:  return "&";
88  case Deref:   return "*";
89  case Plus:    return "+";
90  case Minus:   return "-";
91  case Not:     return "~";
92  case LNot:    return "!";
93  case Real:    return "__real";
94  case Imag:    return "__imag";
95  case Extension: return "__extension__";
96  case OffsetOf: return "__builtin_offsetof";
97  }
98}
99
100//===----------------------------------------------------------------------===//
101// Postfix Operators.
102//===----------------------------------------------------------------------===//
103
104CallExpr::CallExpr(StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
105                   QualType t, SourceLocation rparenloc)
106  : Expr(SC, t), NumArgs(numargs) {
107  SubExprs = new Stmt*[numargs+1];
108  SubExprs[FN] = fn;
109  for (unsigned i = 0; i != numargs; ++i)
110    SubExprs[i+ARGS_START] = args[i];
111  RParenLoc = rparenloc;
112}
113
114CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
115                   SourceLocation rparenloc)
116  : Expr(CallExprClass, t), NumArgs(numargs) {
117  SubExprs = new Stmt*[numargs+1];
118  SubExprs[FN] = fn;
119  for (unsigned i = 0; i != numargs; ++i)
120    SubExprs[i+ARGS_START] = args[i];
121  RParenLoc = rparenloc;
122}
123
124/// setNumArgs - This changes the number of arguments present in this call.
125/// Any orphaned expressions are deleted by this, and any new operands are set
126/// to null.
127void CallExpr::setNumArgs(unsigned NumArgs) {
128  // No change, just return.
129  if (NumArgs == getNumArgs()) return;
130
131  // If shrinking # arguments, just delete the extras and forgot them.
132  if (NumArgs < getNumArgs()) {
133    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
134      delete getArg(i);
135    this->NumArgs = NumArgs;
136    return;
137  }
138
139  // Otherwise, we are growing the # arguments.  New an bigger argument array.
140  Stmt **NewSubExprs = new Stmt*[NumArgs+1];
141  // Copy over args.
142  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
143    NewSubExprs[i] = SubExprs[i];
144  // Null out new args.
145  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
146    NewSubExprs[i] = 0;
147
148  delete[] SubExprs;
149  SubExprs = NewSubExprs;
150  this->NumArgs = NumArgs;
151}
152
153/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
154/// not, return 0.
155unsigned CallExpr::isBuiltinCall() const {
156  // All simple function calls (e.g. func()) are implicitly cast to pointer to
157  // function. As a result, we try and obtain the DeclRefExpr from the
158  // ImplicitCastExpr.
159  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
160  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
161    return 0;
162
163  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
164  if (!DRE)
165    return 0;
166
167  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
168  if (!FDecl)
169    return 0;
170
171  if (!FDecl->getIdentifier())
172    return 0;
173
174  return FDecl->getIdentifier()->getBuiltinID();
175}
176
177
178/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
179/// corresponds to, e.g. "<<=".
180const char *BinaryOperator::getOpcodeStr(Opcode Op) {
181  switch (Op) {
182  default: assert(0 && "Unknown binary operator");
183  case Mul:       return "*";
184  case Div:       return "/";
185  case Rem:       return "%";
186  case Add:       return "+";
187  case Sub:       return "-";
188  case Shl:       return "<<";
189  case Shr:       return ">>";
190  case LT:        return "<";
191  case GT:        return ">";
192  case LE:        return "<=";
193  case GE:        return ">=";
194  case EQ:        return "==";
195  case NE:        return "!=";
196  case And:       return "&";
197  case Xor:       return "^";
198  case Or:        return "|";
199  case LAnd:      return "&&";
200  case LOr:       return "||";
201  case Assign:    return "=";
202  case MulAssign: return "*=";
203  case DivAssign: return "/=";
204  case RemAssign: return "%=";
205  case AddAssign: return "+=";
206  case SubAssign: return "-=";
207  case ShlAssign: return "<<=";
208  case ShrAssign: return ">>=";
209  case AndAssign: return "&=";
210  case XorAssign: return "^=";
211  case OrAssign:  return "|=";
212  case Comma:     return ",";
213  }
214}
215
216InitListExpr::InitListExpr(SourceLocation lbraceloc,
217                           Expr **initExprs, unsigned numInits,
218                           SourceLocation rbraceloc, bool hadDesignators)
219  : Expr(InitListExprClass, QualType()),
220    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), HadDesignators(hadDesignators) {
221
222  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
223}
224
225/// getFunctionType - Return the underlying function type for this block.
226///
227const FunctionType *BlockExpr::getFunctionType() const {
228  return getType()->getAsBlockPointerType()->
229                    getPointeeType()->getAsFunctionType();
230}
231
232SourceLocation BlockExpr::getCaretLocation() const {
233  return TheBlock->getCaretLocation();
234}
235const Stmt *BlockExpr::getBody() const { return TheBlock->getBody(); }
236Stmt *BlockExpr::getBody() { return TheBlock->getBody(); }
237
238
239//===----------------------------------------------------------------------===//
240// Generic Expression Routines
241//===----------------------------------------------------------------------===//
242
243/// hasLocalSideEffect - Return true if this immediate expression has side
244/// effects, not counting any sub-expressions.
245bool Expr::hasLocalSideEffect() const {
246  switch (getStmtClass()) {
247  default:
248    return false;
249  case ParenExprClass:
250    return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect();
251  case UnaryOperatorClass: {
252    const UnaryOperator *UO = cast<UnaryOperator>(this);
253
254    switch (UO->getOpcode()) {
255    default: return false;
256    case UnaryOperator::PostInc:
257    case UnaryOperator::PostDec:
258    case UnaryOperator::PreInc:
259    case UnaryOperator::PreDec:
260      return true;                     // ++/--
261
262    case UnaryOperator::Deref:
263      // Dereferencing a volatile pointer is a side-effect.
264      return getType().isVolatileQualified();
265    case UnaryOperator::Real:
266    case UnaryOperator::Imag:
267      // accessing a piece of a volatile complex is a side-effect.
268      return UO->getSubExpr()->getType().isVolatileQualified();
269
270    case UnaryOperator::Extension:
271      return UO->getSubExpr()->hasLocalSideEffect();
272    }
273  }
274  case BinaryOperatorClass: {
275    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
276    // Consider comma to have side effects if the LHS and RHS both do.
277    if (BinOp->getOpcode() == BinaryOperator::Comma)
278      return BinOp->getLHS()->hasLocalSideEffect() &&
279             BinOp->getRHS()->hasLocalSideEffect();
280
281    return BinOp->isAssignmentOp();
282  }
283  case CompoundAssignOperatorClass:
284    return true;
285
286  case ConditionalOperatorClass: {
287    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
288    return Exp->getCond()->hasLocalSideEffect()
289           || (Exp->getLHS() && Exp->getLHS()->hasLocalSideEffect())
290           || (Exp->getRHS() && Exp->getRHS()->hasLocalSideEffect());
291  }
292
293  case MemberExprClass:
294  case ArraySubscriptExprClass:
295    // If the base pointer or element is to a volatile pointer/field, accessing
296    // if is a side effect.
297    return getType().isVolatileQualified();
298
299  case CallExprClass:
300  case CXXOperatorCallExprClass:
301    // TODO: check attributes for pure/const.   "void foo() { strlen("bar"); }"
302    // should warn.
303    return true;
304  case ObjCMessageExprClass:
305    return true;
306  case StmtExprClass: {
307    // Statement exprs don't logically have side effects themselves, but are
308    // sometimes used in macros in ways that give them a type that is unused.
309    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
310    // however, if the result of the stmt expr is dead, we don't want to emit a
311    // warning.
312    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
313    if (!CS->body_empty())
314      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
315        return E->hasLocalSideEffect();
316    return false;
317  }
318  case CStyleCastExprClass:
319  case CXXFunctionalCastExprClass:
320    // If this is a cast to void, check the operand.  Otherwise, the result of
321    // the cast is unused.
322    if (getType()->isVoidType())
323      return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect();
324    return false;
325
326  case ImplicitCastExprClass:
327    // Check the operand, since implicit casts are inserted by Sema
328    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasLocalSideEffect();
329
330  case CXXDefaultArgExprClass:
331    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasLocalSideEffect();
332
333  case CXXNewExprClass:
334    // FIXME: In theory, there might be new expressions that don't have side
335    // effects (e.g. a placement new with an uninitialized POD).
336  case CXXDeleteExprClass:
337    return true;
338  }
339}
340
341/// DeclCanBeLvalue - Determine whether the given declaration can be
342/// an lvalue. This is a helper routine for isLvalue.
343static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
344  // C++ [temp.param]p6:
345  //   A non-type non-reference template-parameter is not an lvalue.
346  if (const NonTypeTemplateParmDecl *NTTParm
347        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
348    return NTTParm->getType()->isReferenceType();
349
350  return isa<VarDecl>(Decl) || isa<CXXFieldDecl>(Decl) ||
351    // C++ 3.10p2: An lvalue refers to an object or function.
352    (Ctx.getLangOptions().CPlusPlus &&
353     (isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl)));
354}
355
356/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
357/// incomplete type other than void. Nonarray expressions that can be lvalues:
358///  - name, where name must be a variable
359///  - e[i]
360///  - (e), where e must be an lvalue
361///  - e.name, where e must be an lvalue
362///  - e->name
363///  - *e, the type of e cannot be a function type
364///  - string-constant
365///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
366///  - reference type [C++ [expr]]
367///
368Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
369  // first, check the type (C99 6.3.2.1). Expressions with function
370  // type in C are not lvalues, but they can be lvalues in C++.
371  if (!Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
372    return LV_NotObjectType;
373
374  // Allow qualified void which is an incomplete type other than void (yuck).
375  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers())
376    return LV_IncompleteVoidType;
377
378  /// FIXME: Expressions can't have reference type, so the following
379  /// isn't needed.
380  if (TR->isReferenceType()) // C++ [expr]
381    return LV_Valid;
382
383  // the type looks fine, now check the expression
384  switch (getStmtClass()) {
385  case StringLiteralClass: // C99 6.5.1p4
386    return LV_Valid;
387  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
388    // For vectors, make sure base is an lvalue (i.e. not a function call).
389    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
390      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
391    return LV_Valid;
392  case DeclRefExprClass: { // C99 6.5.1p2
393    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
394    if (DeclCanBeLvalue(RefdDecl, Ctx))
395      return LV_Valid;
396    break;
397  }
398  case BlockDeclRefExprClass: {
399    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
400    if (isa<VarDecl>(BDR->getDecl()))
401      return LV_Valid;
402    break;
403  }
404  case MemberExprClass: { // C99 6.5.2.3p4
405    const MemberExpr *m = cast<MemberExpr>(this);
406    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
407  }
408  case UnaryOperatorClass:
409    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
410      return LV_Valid; // C99 6.5.3p4
411
412    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
413        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
414        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
415      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
416
417    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
418        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
419         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
420      return LV_Valid;
421    break;
422  case ImplicitCastExprClass:
423    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
424                                                       : LV_InvalidExpression;
425  case ParenExprClass: // C99 6.5.1p5
426    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
427  case BinaryOperatorClass:
428  case CompoundAssignOperatorClass: {
429    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
430
431    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
432        BinOp->getOpcode() == BinaryOperator::Comma)
433      return BinOp->getRHS()->isLvalue(Ctx);
434
435    if (!BinOp->isAssignmentOp())
436      return LV_InvalidExpression;
437
438    if (Ctx.getLangOptions().CPlusPlus)
439      // C++ [expr.ass]p1:
440      //   The result of an assignment operation [...] is an lvalue.
441      return LV_Valid;
442
443
444    // C99 6.5.16:
445    //   An assignment expression [...] is not an lvalue.
446    return LV_InvalidExpression;
447  }
448  case CallExprClass:
449  case CXXOperatorCallExprClass: {
450    // C++ [expr.call]p10:
451    //   A function call is an lvalue if and only if the result type
452    //   is a reference.
453    QualType CalleeType = cast<CallExpr>(this)->getCallee()->getType();
454    if (const PointerType *FnTypePtr = CalleeType->getAsPointerType())
455      if (const FunctionType *FnType
456            = FnTypePtr->getPointeeType()->getAsFunctionType())
457        if (FnType->getResultType()->isReferenceType())
458          return LV_Valid;
459
460    break;
461  }
462  case CompoundLiteralExprClass: // C99 6.5.2.5p5
463    return LV_Valid;
464  case ExtVectorElementExprClass:
465    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
466      return LV_DuplicateVectorComponents;
467    return LV_Valid;
468  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
469    return LV_Valid;
470  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
471    return LV_Valid;
472  case ObjCKVCRefExprClass: // FIXME: check if read-only property.
473      return LV_Valid;
474  case PredefinedExprClass:
475    return LV_Valid;
476  case VAArgExprClass:
477    return LV_Valid;
478  case CXXDefaultArgExprClass:
479    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
480  case CXXConditionDeclExprClass:
481    return LV_Valid;
482  case CStyleCastExprClass:
483  case CXXFunctionalCastExprClass:
484  case CXXStaticCastExprClass:
485  case CXXDynamicCastExprClass:
486  case CXXReinterpretCastExprClass:
487  case CXXConstCastExprClass:
488    // The result of an explicit cast is an lvalue if the type we are
489    // casting to is a reference type. See C++ [expr.cast]p1,
490    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
491    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
492    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isReferenceType())
493      return LV_Valid;
494    break;
495  case CXXTypeidExprClass:
496    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
497    return LV_Valid;
498  default:
499    break;
500  }
501  return LV_InvalidExpression;
502}
503
504/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
505/// does not have an incomplete type, does not have a const-qualified type, and
506/// if it is a structure or union, does not have any member (including,
507/// recursively, any member or element of all contained aggregates or unions)
508/// with a const-qualified type.
509Expr::isModifiableLvalueResult Expr::isModifiableLvalue(ASTContext &Ctx) const {
510  isLvalueResult lvalResult = isLvalue(Ctx);
511
512  switch (lvalResult) {
513  case LV_Valid:
514    // C++ 3.10p11: Functions cannot be modified, but pointers to
515    // functions can be modifiable.
516    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
517      return MLV_NotObjectType;
518    break;
519
520  case LV_NotObjectType: return MLV_NotObjectType;
521  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
522  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
523  case LV_InvalidExpression:
524    // If the top level is a C-style cast, and the subexpression is a valid
525    // lvalue, then this is probably a use of the old-school "cast as lvalue"
526    // GCC extension.  We don't support it, but we want to produce good
527    // diagnostics when it happens so that the user knows why.
528    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(this))
529      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid)
530        return MLV_LValueCast;
531    return MLV_InvalidExpression;
532  }
533
534  QualType CT = Ctx.getCanonicalType(getType());
535
536  if (CT.isConstQualified())
537    return MLV_ConstQualified;
538  if (CT->isArrayType())
539    return MLV_ArrayType;
540  if (CT->isIncompleteType())
541    return MLV_IncompleteType;
542
543  if (const RecordType *r = CT->getAsRecordType()) {
544    if (r->hasConstFields())
545      return MLV_ConstQualified;
546  }
547  // The following is illegal:
548  //   void takeclosure(void (^C)(void));
549  //   void func() { int x = 1; takeclosure(^{ x = 7 }); }
550  //
551  if (getStmtClass() == BlockDeclRefExprClass) {
552    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
553    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
554      return MLV_NotBlockQualified;
555  }
556  // Assigning to a readonly property?
557  if (getStmtClass() == ObjCPropertyRefExprClass) {
558    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(this);
559    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
560      QualType BaseType = PropExpr->getBase()->getType();
561      if (const PointerType *PTy = BaseType->getAsPointerType())
562        if (const ObjCInterfaceType *IFTy =
563            PTy->getPointeeType()->getAsObjCInterfaceType())
564          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
565            if (IFace->isPropertyReadonly(PDecl))
566              return MLV_ReadonlyProperty;
567    }
568  }
569  // Assigning to an 'implicit' property?
570  else if (getStmtClass() == ObjCKVCRefExprClass) {
571    const ObjCKVCRefExpr* KVCExpr = cast<ObjCKVCRefExpr>(this);
572    if (KVCExpr->getSetterMethod() == 0)
573      return MLV_NoSetterProperty;
574  }
575  return MLV_Valid;
576}
577
578/// hasGlobalStorage - Return true if this expression has static storage
579/// duration.  This means that the address of this expression is a link-time
580/// constant.
581bool Expr::hasGlobalStorage() const {
582  switch (getStmtClass()) {
583  default:
584    return false;
585  case ParenExprClass:
586    return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
587  case ImplicitCastExprClass:
588    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
589  case CompoundLiteralExprClass:
590    return cast<CompoundLiteralExpr>(this)->isFileScope();
591  case DeclRefExprClass: {
592    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
593    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
594      return VD->hasGlobalStorage();
595    if (isa<FunctionDecl>(D))
596      return true;
597    return false;
598  }
599  case MemberExprClass: {
600    const MemberExpr *M = cast<MemberExpr>(this);
601    return !M->isArrow() && M->getBase()->hasGlobalStorage();
602  }
603  case ArraySubscriptExprClass:
604    return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
605  case PredefinedExprClass:
606    return true;
607  case CXXDefaultArgExprClass:
608    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
609  }
610}
611
612Expr* Expr::IgnoreParens() {
613  Expr* E = this;
614  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
615    E = P->getSubExpr();
616
617  return E;
618}
619
620/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
621/// or CastExprs or ImplicitCastExprs, returning their operand.
622Expr *Expr::IgnoreParenCasts() {
623  Expr *E = this;
624  while (true) {
625    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
626      E = P->getSubExpr();
627    else if (CastExpr *P = dyn_cast<CastExpr>(E))
628      E = P->getSubExpr();
629    else
630      return E;
631  }
632}
633
634bool Expr::isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
635  switch (getStmtClass()) {
636  default:
637    if (!isEvaluatable(Ctx)) {
638      if (Loc) *Loc = getLocStart();
639      return false;
640    }
641    break;
642  case StringLiteralClass:
643    return true;
644  case InitListExprClass: {
645    const InitListExpr *Exp = cast<InitListExpr>(this);
646    unsigned numInits = Exp->getNumInits();
647    for (unsigned i = 0; i < numInits; i++) {
648      if (!Exp->getInit(i)->isConstantExpr(Ctx, Loc))
649        return false;
650    }
651  }
652  }
653
654  return true;
655}
656
657/// isIntegerConstantExpr - this recursive routine will test if an expression is
658/// an integer constant expression. Note: With the introduction of VLA's in
659/// C99 the result of the sizeof operator is no longer always a constant
660/// expression. The generalization of the wording to include any subexpression
661/// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions
662/// can appear as operands to other operators (e.g. &&, ||, ?:). For instance,
663/// "0 || f()" can be treated as a constant expression. In C90 this expression,
664/// occurring in a context requiring a constant, would have been a constraint
665/// violation. FIXME: This routine currently implements C90 semantics.
666/// To properly implement C99 semantics this routine will need to evaluate
667/// expressions involving operators previously mentioned.
668
669/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
670/// comma, etc
671///
672/// FIXME: This should ext-warn on overflow during evaluation!  ISO C does not
673/// permit this.  This includes things like (int)1e1000
674///
675/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
676/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
677/// cast+dereference.
678bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
679                                 SourceLocation *Loc, bool isEvaluated) const {
680  // Pretest for integral type; some parts of the code crash for types that
681  // can't be sized.
682  if (!getType()->isIntegralType()) {
683    if (Loc) *Loc = getLocStart();
684    return false;
685  }
686  switch (getStmtClass()) {
687  default:
688    if (Loc) *Loc = getLocStart();
689    return false;
690  case ParenExprClass:
691    return cast<ParenExpr>(this)->getSubExpr()->
692                     isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
693  case IntegerLiteralClass:
694    Result = cast<IntegerLiteral>(this)->getValue();
695    break;
696  case CharacterLiteralClass: {
697    const CharacterLiteral *CL = cast<CharacterLiteral>(this);
698    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
699    Result = CL->getValue();
700    Result.setIsUnsigned(!getType()->isSignedIntegerType());
701    break;
702  }
703  case CXXBoolLiteralExprClass: {
704    const CXXBoolLiteralExpr *BL = cast<CXXBoolLiteralExpr>(this);
705    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
706    Result = BL->getValue();
707    Result.setIsUnsigned(!getType()->isSignedIntegerType());
708    break;
709  }
710  case CXXZeroInitValueExprClass:
711    Result.clear();
712    break;
713  case TypesCompatibleExprClass: {
714    const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this);
715    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
716    // Per gcc docs "this built-in function ignores top level
717    // qualifiers".  We need to use the canonical version to properly
718    // be able to strip CRV qualifiers from the type.
719    QualType T0 = Ctx.getCanonicalType(TCE->getArgType1());
720    QualType T1 = Ctx.getCanonicalType(TCE->getArgType2());
721    Result = Ctx.typesAreCompatible(T0.getUnqualifiedType(),
722                                    T1.getUnqualifiedType());
723    break;
724  }
725  case CallExprClass:
726  case CXXOperatorCallExprClass: {
727    const CallExpr *CE = cast<CallExpr>(this);
728    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
729
730    // If this is a call to a builtin function, constant fold it otherwise
731    // reject it.
732    if (CE->isBuiltinCall()) {
733      APValue ResultAP;
734      if (CE->Evaluate(ResultAP, Ctx)) {
735        Result = ResultAP.getInt();
736        break;  // It is a constant, expand it.
737      }
738    }
739
740    if (Loc) *Loc = getLocStart();
741    return false;
742  }
743  case DeclRefExprClass:
744    if (const EnumConstantDecl *D =
745          dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) {
746      Result = D->getInitVal();
747      break;
748    }
749    if (Loc) *Loc = getLocStart();
750    return false;
751  case UnaryOperatorClass: {
752    const UnaryOperator *Exp = cast<UnaryOperator>(this);
753
754    // Get the operand value.  If this is offsetof, do not evalute the
755    // operand.  This affects C99 6.6p3.
756    if (!Exp->isOffsetOfOp() && !Exp->getSubExpr()->
757                        isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
758      return false;
759
760    switch (Exp->getOpcode()) {
761    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
762    // See C99 6.6p3.
763    default:
764      if (Loc) *Loc = Exp->getOperatorLoc();
765      return false;
766    case UnaryOperator::Extension:
767      return true;  // FIXME: this is wrong.
768    case UnaryOperator::LNot: {
769      bool Val = Result == 0;
770      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
771      Result = Val;
772      break;
773    }
774    case UnaryOperator::Plus:
775      break;
776    case UnaryOperator::Minus:
777      Result = -Result;
778      break;
779    case UnaryOperator::Not:
780      Result = ~Result;
781      break;
782    case UnaryOperator::OffsetOf:
783      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
784      Result = Exp->evaluateOffsetOf(Ctx);
785    }
786    break;
787  }
788  case SizeOfAlignOfExprClass: {
789    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(this);
790
791    // Return the result in the right width.
792    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
793
794    QualType ArgTy = Exp->getTypeOfArgument();
795    // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
796    if (ArgTy->isVoidType()) {
797      Result = 1;
798      break;
799    }
800
801    // alignof always evaluates to a constant, sizeof does if arg is not VLA.
802    if (Exp->isSizeOf() && !ArgTy->isConstantSizeType()) {
803      if (Loc) *Loc = Exp->getOperatorLoc();
804      return false;
805    }
806
807    // Get information about the size or align.
808    if (ArgTy->isFunctionType()) {
809      // GCC extension: sizeof(function) = 1.
810      Result = Exp->isSizeOf() ? 1 : 4;
811    } else {
812      unsigned CharSize = Ctx.Target.getCharWidth();
813      if (Exp->isSizeOf())
814        Result = Ctx.getTypeSize(ArgTy) / CharSize;
815      else
816        Result = Ctx.getTypeAlign(ArgTy) / CharSize;
817    }
818    break;
819  }
820  case BinaryOperatorClass: {
821    const BinaryOperator *Exp = cast<BinaryOperator>(this);
822    llvm::APSInt LHS, RHS;
823
824    // Initialize result to have correct signedness and width.
825    Result = llvm::APSInt(static_cast<uint32_t>(Ctx.getTypeSize(getType())),
826                          !getType()->isSignedIntegerType());
827
828    // The LHS of a constant expr is always evaluated and needed.
829    if (!Exp->getLHS()->isIntegerConstantExpr(LHS, Ctx, Loc, isEvaluated))
830      return false;
831
832    // The short-circuiting &&/|| operators don't necessarily evaluate their
833    // RHS.  Make sure to pass isEvaluated down correctly.
834    if (Exp->isLogicalOp()) {
835      bool RHSEval;
836      if (Exp->getOpcode() == BinaryOperator::LAnd)
837        RHSEval = LHS != 0;
838      else {
839        assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical");
840        RHSEval = LHS == 0;
841      }
842
843      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc,
844                                                isEvaluated & RHSEval))
845        return false;
846    } else {
847      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated))
848        return false;
849    }
850
851    switch (Exp->getOpcode()) {
852    default:
853      if (Loc) *Loc = getLocStart();
854      return false;
855    case BinaryOperator::Mul:
856      Result = LHS * RHS;
857      break;
858    case BinaryOperator::Div:
859      if (RHS == 0) {
860        if (!isEvaluated) break;
861        if (Loc) *Loc = getLocStart();
862        return false;
863      }
864      Result = LHS / RHS;
865      break;
866    case BinaryOperator::Rem:
867      if (RHS == 0) {
868        if (!isEvaluated) break;
869        if (Loc) *Loc = getLocStart();
870        return false;
871      }
872      Result = LHS % RHS;
873      break;
874    case BinaryOperator::Add: Result = LHS + RHS; break;
875    case BinaryOperator::Sub: Result = LHS - RHS; break;
876    case BinaryOperator::Shl:
877      Result = LHS <<
878        static_cast<uint32_t>(RHS.getLimitedValue(LHS.getBitWidth()-1));
879    break;
880    case BinaryOperator::Shr:
881      Result = LHS >>
882        static_cast<uint32_t>(RHS.getLimitedValue(LHS.getBitWidth()-1));
883      break;
884    case BinaryOperator::LT:  Result = LHS < RHS; break;
885    case BinaryOperator::GT:  Result = LHS > RHS; break;
886    case BinaryOperator::LE:  Result = LHS <= RHS; break;
887    case BinaryOperator::GE:  Result = LHS >= RHS; break;
888    case BinaryOperator::EQ:  Result = LHS == RHS; break;
889    case BinaryOperator::NE:  Result = LHS != RHS; break;
890    case BinaryOperator::And: Result = LHS & RHS; break;
891    case BinaryOperator::Xor: Result = LHS ^ RHS; break;
892    case BinaryOperator::Or:  Result = LHS | RHS; break;
893    case BinaryOperator::LAnd:
894      Result = LHS != 0 && RHS != 0;
895      break;
896    case BinaryOperator::LOr:
897      Result = LHS != 0 || RHS != 0;
898      break;
899
900    case BinaryOperator::Comma:
901      // C99 6.6p3: "shall not contain assignment, ..., or comma operators,
902      // *except* when they are contained within a subexpression that is not
903      // evaluated".  Note that Assignment can never happen due to constraints
904      // on the LHS subexpr, so we don't need to check it here.
905      if (isEvaluated) {
906        if (Loc) *Loc = getLocStart();
907        return false;
908      }
909
910      // The result of the constant expr is the RHS.
911      Result = RHS;
912      return true;
913    }
914
915    assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!");
916    break;
917  }
918  case ImplicitCastExprClass:
919  case CStyleCastExprClass:
920  case CXXFunctionalCastExprClass: {
921    const Expr *SubExpr = cast<CastExpr>(this)->getSubExpr();
922    SourceLocation CastLoc = getLocStart();
923
924    // C99 6.6p6: shall only convert arithmetic types to integer types.
925    if (!SubExpr->getType()->isArithmeticType() ||
926        !getType()->isIntegerType()) {
927      if (Loc) *Loc = SubExpr->getLocStart();
928      return false;
929    }
930
931    uint32_t DestWidth = static_cast<uint32_t>(Ctx.getTypeSize(getType()));
932
933    // Handle simple integer->integer casts.
934    if (SubExpr->getType()->isIntegerType()) {
935      if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
936        return false;
937
938      // Figure out if this is a truncate, extend or noop cast.
939      // If the input is signed, do a sign extend, noop, or truncate.
940      if (getType()->isBooleanType()) {
941        // Conversion to bool compares against zero.
942        Result = Result != 0;
943        Result.zextOrTrunc(DestWidth);
944      } else if (SubExpr->getType()->isSignedIntegerType())
945        Result.sextOrTrunc(DestWidth);
946      else  // If the input is unsigned, do a zero extend, noop, or truncate.
947        Result.zextOrTrunc(DestWidth);
948      break;
949    }
950
951    // Allow floating constants that are the immediate operands of casts or that
952    // are parenthesized.
953    const Expr *Operand = SubExpr;
954    while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand))
955      Operand = PE->getSubExpr();
956
957    // If this isn't a floating literal, we can't handle it.
958    const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand);
959    if (!FL) {
960      if (Loc) *Loc = Operand->getLocStart();
961      return false;
962    }
963
964    // If the destination is boolean, compare against zero.
965    if (getType()->isBooleanType()) {
966      Result = !FL->getValue().isZero();
967      Result.zextOrTrunc(DestWidth);
968      break;
969    }
970
971    // Determine whether we are converting to unsigned or signed.
972    bool DestSigned = getType()->isSignedIntegerType();
973
974    // TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can
975    // be called multiple times per AST.
976    uint64_t Space[4];
977    bool ignored;
978    (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned,
979                                          llvm::APFloat::rmTowardZero,
980                                          &ignored);
981    Result = llvm::APInt(DestWidth, 4, Space);
982    break;
983  }
984  case ConditionalOperatorClass: {
985    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
986
987    if (!Exp->getCond()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
988      return false;
989
990    const Expr *TrueExp  = Exp->getLHS();
991    const Expr *FalseExp = Exp->getRHS();
992    if (Result == 0) std::swap(TrueExp, FalseExp);
993
994    // Evaluate the false one first, discard the result.
995    if (FalseExp && !FalseExp->isIntegerConstantExpr(Result, Ctx, Loc, false))
996      return false;
997    // Evalute the true one, capture the result.
998    if (TrueExp &&
999        !TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1000      return false;
1001    break;
1002  }
1003  case CXXDefaultArgExprClass:
1004    return cast<CXXDefaultArgExpr>(this)
1005             ->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
1006  }
1007
1008  // Cases that are valid constant exprs fall through to here.
1009  Result.setIsUnsigned(getType()->isUnsignedIntegerType());
1010  return true;
1011}
1012
1013/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1014/// integer constant expression with the value zero, or if this is one that is
1015/// cast to void*.
1016bool Expr::isNullPointerConstant(ASTContext &Ctx) const
1017{
1018  // Strip off a cast to void*, if it exists. Except in C++.
1019  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1020    if (!Ctx.getLangOptions().CPlusPlus) {
1021      // Check that it is a cast to void*.
1022      if (const PointerType *PT = CE->getType()->getAsPointerType()) {
1023        QualType Pointee = PT->getPointeeType();
1024        if (Pointee.getCVRQualifiers() == 0 &&
1025            Pointee->isVoidType() &&                              // to void*
1026            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1027          return CE->getSubExpr()->isNullPointerConstant(Ctx);
1028      }
1029    }
1030  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1031    // Ignore the ImplicitCastExpr type entirely.
1032    return ICE->getSubExpr()->isNullPointerConstant(Ctx);
1033  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1034    // Accept ((void*)0) as a null pointer constant, as many other
1035    // implementations do.
1036    return PE->getSubExpr()->isNullPointerConstant(Ctx);
1037  } else if (const CXXDefaultArgExpr *DefaultArg
1038               = dyn_cast<CXXDefaultArgExpr>(this)) {
1039    // See through default argument expressions
1040    return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
1041  } else if (isa<GNUNullExpr>(this)) {
1042    // The GNU __null extension is always a null pointer constant.
1043    return true;
1044  }
1045
1046  // This expression must be an integer type.
1047  if (!getType()->isIntegerType())
1048    return false;
1049
1050  // If we have an integer constant expression, we need to *evaluate* it and
1051  // test for the value 0.
1052  // FIXME: We should probably return false if we're compiling in strict mode
1053  // and Diag is not null (this indicates that the value was foldable but not
1054  // an ICE.
1055  EvalResult Result;
1056  return Evaluate(Result, Ctx) && !Result.HasSideEffects &&
1057        Result.Val.isInt() && Result.Val.getInt() == 0;
1058}
1059
1060/// isBitField - Return true if this expression is a bit-field.
1061bool Expr::isBitField() {
1062  Expr *E = this->IgnoreParenCasts();
1063  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1064    return MemRef->getMemberDecl()->isBitField();
1065  return false;
1066}
1067
1068unsigned ExtVectorElementExpr::getNumElements() const {
1069  if (const VectorType *VT = getType()->getAsVectorType())
1070    return VT->getNumElements();
1071  return 1;
1072}
1073
1074/// containsDuplicateElements - Return true if any element access is repeated.
1075bool ExtVectorElementExpr::containsDuplicateElements() const {
1076  const char *compStr = Accessor.getName();
1077  unsigned length = Accessor.getLength();
1078
1079  for (unsigned i = 0; i != length-1; i++) {
1080    const char *s = compStr+i;
1081    for (const char c = *s++; *s; s++)
1082      if (c == *s)
1083        return true;
1084  }
1085  return false;
1086}
1087
1088/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1089void ExtVectorElementExpr::getEncodedElementAccess(
1090                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1091  bool isHi =   Accessor.isStr("hi");
1092  bool isLo =   Accessor.isStr("lo");
1093  bool isEven = Accessor.isStr("e");
1094  bool isOdd  = Accessor.isStr("o");
1095
1096  const char *compStr = Accessor.getName();
1097  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1098    uint64_t Index;
1099
1100    if (isHi)
1101      Index = e + i;
1102    else if (isLo)
1103      Index = i;
1104    else if (isEven)
1105      Index = 2 * i;
1106    else if (isOdd)
1107      Index = 2 * i + 1;
1108    else
1109      Index = ExtVectorType::getAccessorIdx(compStr[i]);
1110
1111    Elts.push_back(Index);
1112  }
1113}
1114
1115// constructor for instance messages.
1116ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1117                QualType retType, ObjCMethodDecl *mproto,
1118                SourceLocation LBrac, SourceLocation RBrac,
1119                Expr **ArgExprs, unsigned nargs)
1120  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1121    MethodProto(mproto) {
1122  NumArgs = nargs;
1123  SubExprs = new Stmt*[NumArgs+1];
1124  SubExprs[RECEIVER] = receiver;
1125  if (NumArgs) {
1126    for (unsigned i = 0; i != NumArgs; ++i)
1127      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1128  }
1129  LBracloc = LBrac;
1130  RBracloc = RBrac;
1131}
1132
1133// constructor for class messages.
1134// FIXME: clsName should be typed to ObjCInterfaceType
1135ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1136                QualType retType, ObjCMethodDecl *mproto,
1137                SourceLocation LBrac, SourceLocation RBrac,
1138                Expr **ArgExprs, unsigned nargs)
1139  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1140    MethodProto(mproto) {
1141  NumArgs = nargs;
1142  SubExprs = new Stmt*[NumArgs+1];
1143  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1144  if (NumArgs) {
1145    for (unsigned i = 0; i != NumArgs; ++i)
1146      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1147  }
1148  LBracloc = LBrac;
1149  RBracloc = RBrac;
1150}
1151
1152// constructor for class messages.
1153ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
1154                                 QualType retType, ObjCMethodDecl *mproto,
1155                                 SourceLocation LBrac, SourceLocation RBrac,
1156                                 Expr **ArgExprs, unsigned nargs)
1157: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1158MethodProto(mproto) {
1159  NumArgs = nargs;
1160  SubExprs = new Stmt*[NumArgs+1];
1161  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
1162  if (NumArgs) {
1163    for (unsigned i = 0; i != NumArgs; ++i)
1164      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1165  }
1166  LBracloc = LBrac;
1167  RBracloc = RBrac;
1168}
1169
1170ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
1171  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
1172  switch (x & Flags) {
1173    default:
1174      assert(false && "Invalid ObjCMessageExpr.");
1175    case IsInstMeth:
1176      return ClassInfo(0, 0);
1177    case IsClsMethDeclUnknown:
1178      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
1179    case IsClsMethDeclKnown: {
1180      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
1181      return ClassInfo(D, D->getIdentifier());
1182    }
1183  }
1184}
1185
1186bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1187  return getCond()->getIntegerConstantExprValue(C) != 0;
1188}
1189
1190static int64_t evaluateOffsetOf(ASTContext& C, const Expr *E)
1191{
1192  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1193    QualType Ty = ME->getBase()->getType();
1194
1195    RecordDecl *RD = Ty->getAsRecordType()->getDecl();
1196    const ASTRecordLayout &RL = C.getASTRecordLayout(RD);
1197    FieldDecl *FD = ME->getMemberDecl();
1198
1199    // FIXME: This is linear time.
1200    unsigned i = 0, e = 0;
1201    for (i = 0, e = RD->getNumMembers(); i != e; i++) {
1202      if (RD->getMember(i) == FD)
1203        break;
1204    }
1205
1206    return RL.getFieldOffset(i) + evaluateOffsetOf(C, ME->getBase());
1207  } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
1208    const Expr *Base = ASE->getBase();
1209
1210    int64_t size = C.getTypeSize(ASE->getType());
1211    size *= ASE->getIdx()->getIntegerConstantExprValue(C).getSExtValue();
1212
1213    return size + evaluateOffsetOf(C, Base);
1214  } else if (isa<CompoundLiteralExpr>(E))
1215    return 0;
1216
1217  assert(0 && "Unknown offsetof subexpression!");
1218  return 0;
1219}
1220
1221int64_t UnaryOperator::evaluateOffsetOf(ASTContext& C) const
1222{
1223  assert(Opc == OffsetOf && "Unary operator not offsetof!");
1224
1225  unsigned CharSize = C.Target.getCharWidth();
1226  return ::evaluateOffsetOf(C, cast<Expr>(Val)) / CharSize;
1227}
1228
1229void SizeOfAlignOfExpr::Destroy(ASTContext& C) {
1230  // Override default behavior of traversing children. If this has a type
1231  // operand and the type is a variable-length array, the child iteration
1232  // will iterate over the size expression. However, this expression belongs
1233  // to the type, not to this, so we don't want to delete it.
1234  // We still want to delete this expression.
1235  // FIXME: Same as in Stmt::Destroy - will be eventually in ASTContext's
1236  // pool allocator.
1237  if (isArgumentType())
1238    delete this;
1239  else
1240    Expr::Destroy(C);
1241}
1242
1243//===----------------------------------------------------------------------===//
1244//  ExprIterator.
1245//===----------------------------------------------------------------------===//
1246
1247Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
1248Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
1249Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
1250const Expr* ConstExprIterator::operator[](size_t idx) const {
1251  return cast<Expr>(I[idx]);
1252}
1253const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
1254const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
1255
1256//===----------------------------------------------------------------------===//
1257//  Child Iterators for iterating over subexpressions/substatements
1258//===----------------------------------------------------------------------===//
1259
1260// DeclRefExpr
1261Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
1262Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
1263
1264// ObjCIvarRefExpr
1265Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
1266Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
1267
1268// ObjCPropertyRefExpr
1269Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
1270Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
1271
1272// ObjCKVCRefExpr
1273Stmt::child_iterator ObjCKVCRefExpr::child_begin() { return &Base; }
1274Stmt::child_iterator ObjCKVCRefExpr::child_end() { return &Base+1; }
1275
1276// ObjCSuperExpr
1277Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
1278Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
1279
1280// PredefinedExpr
1281Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
1282Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
1283
1284// IntegerLiteral
1285Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
1286Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
1287
1288// CharacterLiteral
1289Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator(); }
1290Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
1291
1292// FloatingLiteral
1293Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
1294Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
1295
1296// ImaginaryLiteral
1297Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
1298Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
1299
1300// StringLiteral
1301Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
1302Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
1303
1304// ParenExpr
1305Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
1306Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
1307
1308// UnaryOperator
1309Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
1310Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
1311
1312// SizeOfAlignOfExpr
1313Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
1314  // If this is of a type and the type is a VLA type (and not a typedef), the
1315  // size expression of the VLA needs to be treated as an executable expression.
1316  // Why isn't this weirdness documented better in StmtIterator?
1317  if (isArgumentType()) {
1318    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
1319                                   getArgumentType().getTypePtr()))
1320      return child_iterator(T);
1321    return child_iterator();
1322  }
1323  return child_iterator(&Argument.Ex);
1324}
1325Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
1326  if (isArgumentType())
1327    return child_iterator();
1328  return child_iterator(&Argument.Ex + 1);
1329}
1330
1331// ArraySubscriptExpr
1332Stmt::child_iterator ArraySubscriptExpr::child_begin() {
1333  return &SubExprs[0];
1334}
1335Stmt::child_iterator ArraySubscriptExpr::child_end() {
1336  return &SubExprs[0]+END_EXPR;
1337}
1338
1339// CallExpr
1340Stmt::child_iterator CallExpr::child_begin() {
1341  return &SubExprs[0];
1342}
1343Stmt::child_iterator CallExpr::child_end() {
1344  return &SubExprs[0]+NumArgs+ARGS_START;
1345}
1346
1347// MemberExpr
1348Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
1349Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
1350
1351// ExtVectorElementExpr
1352Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
1353Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
1354
1355// CompoundLiteralExpr
1356Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
1357Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
1358
1359// CastExpr
1360Stmt::child_iterator CastExpr::child_begin() { return &Op; }
1361Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
1362
1363// BinaryOperator
1364Stmt::child_iterator BinaryOperator::child_begin() {
1365  return &SubExprs[0];
1366}
1367Stmt::child_iterator BinaryOperator::child_end() {
1368  return &SubExprs[0]+END_EXPR;
1369}
1370
1371// ConditionalOperator
1372Stmt::child_iterator ConditionalOperator::child_begin() {
1373  return &SubExprs[0];
1374}
1375Stmt::child_iterator ConditionalOperator::child_end() {
1376  return &SubExprs[0]+END_EXPR;
1377}
1378
1379// AddrLabelExpr
1380Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
1381Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
1382
1383// StmtExpr
1384Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
1385Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
1386
1387// TypesCompatibleExpr
1388Stmt::child_iterator TypesCompatibleExpr::child_begin() {
1389  return child_iterator();
1390}
1391
1392Stmt::child_iterator TypesCompatibleExpr::child_end() {
1393  return child_iterator();
1394}
1395
1396// ChooseExpr
1397Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
1398Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
1399
1400// GNUNullExpr
1401Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
1402Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
1403
1404// OverloadExpr
1405Stmt::child_iterator OverloadExpr::child_begin() { return &SubExprs[0]; }
1406Stmt::child_iterator OverloadExpr::child_end() { return &SubExprs[0]+NumExprs; }
1407
1408// ShuffleVectorExpr
1409Stmt::child_iterator ShuffleVectorExpr::child_begin() {
1410  return &SubExprs[0];
1411}
1412Stmt::child_iterator ShuffleVectorExpr::child_end() {
1413  return &SubExprs[0]+NumExprs;
1414}
1415
1416// VAArgExpr
1417Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
1418Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
1419
1420// InitListExpr
1421Stmt::child_iterator InitListExpr::child_begin() {
1422  return InitExprs.size() ? &InitExprs[0] : 0;
1423}
1424Stmt::child_iterator InitListExpr::child_end() {
1425  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
1426}
1427
1428// ObjCStringLiteral
1429Stmt::child_iterator ObjCStringLiteral::child_begin() {
1430  return child_iterator();
1431}
1432Stmt::child_iterator ObjCStringLiteral::child_end() {
1433  return child_iterator();
1434}
1435
1436// ObjCEncodeExpr
1437Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
1438Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
1439
1440// ObjCSelectorExpr
1441Stmt::child_iterator ObjCSelectorExpr::child_begin() {
1442  return child_iterator();
1443}
1444Stmt::child_iterator ObjCSelectorExpr::child_end() {
1445  return child_iterator();
1446}
1447
1448// ObjCProtocolExpr
1449Stmt::child_iterator ObjCProtocolExpr::child_begin() {
1450  return child_iterator();
1451}
1452Stmt::child_iterator ObjCProtocolExpr::child_end() {
1453  return child_iterator();
1454}
1455
1456// ObjCMessageExpr
1457Stmt::child_iterator ObjCMessageExpr::child_begin() {
1458  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
1459}
1460Stmt::child_iterator ObjCMessageExpr::child_end() {
1461  return &SubExprs[0]+ARGS_START+getNumArgs();
1462}
1463
1464// Blocks
1465Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
1466Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
1467
1468Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
1469Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
1470