Expr.cpp revision 2085fd6cd22ec5c268175251db10d7c60caf7aaa
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/Basic/TargetInfo.h"
23using namespace clang;
24
25//===----------------------------------------------------------------------===//
26// Primary Expressions.
27//===----------------------------------------------------------------------===//
28
29/// getValueAsApproximateDouble - This returns the value as an inaccurate
30/// double.  Note that this may cause loss of precision, but is useful for
31/// debugging dumps, etc.
32double FloatingLiteral::getValueAsApproximateDouble() const {
33  llvm::APFloat V = getValue();
34  bool ignored;
35  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
36            &ignored);
37  return V.convertToDouble();
38}
39
40StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
41                                     unsigned ByteLength, bool Wide,
42                                     QualType Ty,
43                                     SourceLocation *Loc, unsigned NumStrs) {
44  // Allocate enough space for the StringLiteral plus an array of locations for
45  // any concatenated string tokens.
46  void *Mem = C.Allocate(sizeof(StringLiteral)+
47                         sizeof(SourceLocation)*(NumStrs-1),
48                         llvm::alignof<StringLiteral>());
49  StringLiteral *SL = new (Mem) StringLiteral(Ty);
50
51  // OPTIMIZE: could allocate this appended to the StringLiteral.
52  char *AStrData = new (C, 1) char[ByteLength];
53  memcpy(AStrData, StrData, ByteLength);
54  SL->StrData = AStrData;
55  SL->ByteLength = ByteLength;
56  SL->IsWide = Wide;
57  SL->TokLocs[0] = Loc[0];
58  SL->NumConcatenated = NumStrs;
59
60  if (NumStrs != 1)
61    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
62  return SL;
63}
64
65
66void StringLiteral::Destroy(ASTContext &C) {
67  C.Deallocate(const_cast<char*>(StrData));
68  this->~StringLiteral();
69  C.Deallocate(this);
70}
71
72/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
73/// corresponds to, e.g. "sizeof" or "[pre]++".
74const char *UnaryOperator::getOpcodeStr(Opcode Op) {
75  switch (Op) {
76  default: assert(0 && "Unknown unary operator");
77  case PostInc: return "++";
78  case PostDec: return "--";
79  case PreInc:  return "++";
80  case PreDec:  return "--";
81  case AddrOf:  return "&";
82  case Deref:   return "*";
83  case Plus:    return "+";
84  case Minus:   return "-";
85  case Not:     return "~";
86  case LNot:    return "!";
87  case Real:    return "__real";
88  case Imag:    return "__imag";
89  case Extension: return "__extension__";
90  case OffsetOf: return "__builtin_offsetof";
91  }
92}
93
94//===----------------------------------------------------------------------===//
95// Postfix Operators.
96//===----------------------------------------------------------------------===//
97
98CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
99                   unsigned numargs, QualType t, SourceLocation rparenloc)
100  : Expr(SC, t,
101         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
102         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
103    NumArgs(numargs) {
104
105  SubExprs = new (C) Stmt*[numargs+1];
106  SubExprs[FN] = fn;
107  for (unsigned i = 0; i != numargs; ++i)
108    SubExprs[i+ARGS_START] = args[i];
109
110  RParenLoc = rparenloc;
111}
112
113CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
114                   QualType t, SourceLocation rparenloc)
115  : Expr(CallExprClass, t,
116         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
117         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
118    NumArgs(numargs) {
119
120  SubExprs = new (C) Stmt*[numargs+1];
121  SubExprs[FN] = fn;
122  for (unsigned i = 0; i != numargs; ++i)
123    SubExprs[i+ARGS_START] = args[i];
124
125  RParenLoc = rparenloc;
126}
127
128void CallExpr::Destroy(ASTContext& C) {
129  DestroyChildren(C);
130  if (SubExprs) C.Deallocate(SubExprs);
131  this->~CallExpr();
132  C.Deallocate(this);
133}
134
135/// setNumArgs - This changes the number of arguments present in this call.
136/// Any orphaned expressions are deleted by this, and any new operands are set
137/// to null.
138void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
139  // No change, just return.
140  if (NumArgs == getNumArgs()) return;
141
142  // If shrinking # arguments, just delete the extras and forgot them.
143  if (NumArgs < getNumArgs()) {
144    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
145      getArg(i)->Destroy(C);
146    this->NumArgs = NumArgs;
147    return;
148  }
149
150  // Otherwise, we are growing the # arguments.  New an bigger argument array.
151  Stmt **NewSubExprs = new Stmt*[NumArgs+1];
152  // Copy over args.
153  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
154    NewSubExprs[i] = SubExprs[i];
155  // Null out new args.
156  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
157    NewSubExprs[i] = 0;
158
159  delete [] SubExprs;
160  SubExprs = NewSubExprs;
161  this->NumArgs = NumArgs;
162}
163
164/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
165/// not, return 0.
166unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
167  // All simple function calls (e.g. func()) are implicitly cast to pointer to
168  // function. As a result, we try and obtain the DeclRefExpr from the
169  // ImplicitCastExpr.
170  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
171  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
172    return 0;
173
174  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
175  if (!DRE)
176    return 0;
177
178  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
179  if (!FDecl)
180    return 0;
181
182  if (!FDecl->getIdentifier())
183    return 0;
184
185  return FDecl->getBuiltinID(Context);
186}
187
188
189/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
190/// corresponds to, e.g. "<<=".
191const char *BinaryOperator::getOpcodeStr(Opcode Op) {
192  switch (Op) {
193  default: assert(0 && "Unknown binary operator");
194  case Mul:       return "*";
195  case Div:       return "/";
196  case Rem:       return "%";
197  case Add:       return "+";
198  case Sub:       return "-";
199  case Shl:       return "<<";
200  case Shr:       return ">>";
201  case LT:        return "<";
202  case GT:        return ">";
203  case LE:        return "<=";
204  case GE:        return ">=";
205  case EQ:        return "==";
206  case NE:        return "!=";
207  case And:       return "&";
208  case Xor:       return "^";
209  case Or:        return "|";
210  case LAnd:      return "&&";
211  case LOr:       return "||";
212  case Assign:    return "=";
213  case MulAssign: return "*=";
214  case DivAssign: return "/=";
215  case RemAssign: return "%=";
216  case AddAssign: return "+=";
217  case SubAssign: return "-=";
218  case ShlAssign: return "<<=";
219  case ShrAssign: return ">>=";
220  case AndAssign: return "&=";
221  case XorAssign: return "^=";
222  case OrAssign:  return "|=";
223  case Comma:     return ",";
224  }
225}
226
227InitListExpr::InitListExpr(SourceLocation lbraceloc,
228                           Expr **initExprs, unsigned numInits,
229                           SourceLocation rbraceloc)
230  : Expr(InitListExprClass, QualType()),
231    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
232    UnionFieldInit(0), HadArrayRangeDesignator(false) {
233
234  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
235}
236
237void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
238  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
239       Idx < LastIdx; ++Idx)
240    delete InitExprs[Idx];
241  InitExprs.resize(NumInits, 0);
242}
243
244Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
245  if (Init >= InitExprs.size()) {
246    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
247    InitExprs.back() = expr;
248    return 0;
249  }
250
251  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
252  InitExprs[Init] = expr;
253  return Result;
254}
255
256/// getFunctionType - Return the underlying function type for this block.
257///
258const FunctionType *BlockExpr::getFunctionType() const {
259  return getType()->getAsBlockPointerType()->
260                    getPointeeType()->getAsFunctionType();
261}
262
263SourceLocation BlockExpr::getCaretLocation() const {
264  return TheBlock->getCaretLocation();
265}
266const Stmt *BlockExpr::getBody() const { return TheBlock->getBody(); }
267Stmt *BlockExpr::getBody() { return TheBlock->getBody(); }
268
269
270//===----------------------------------------------------------------------===//
271// Generic Expression Routines
272//===----------------------------------------------------------------------===//
273
274/// isUnusedResultAWarning - Return true if this immediate expression should
275/// be warned about if the result is unused.  If so, fill in Loc and Ranges
276/// with location to warn on and the source range[s] to report with the
277/// warning.
278bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
279                                  SourceRange &R2) const {
280  switch (getStmtClass()) {
281  default:
282    Loc = getExprLoc();
283    R1 = getSourceRange();
284    return true;
285  case ParenExprClass:
286    return cast<ParenExpr>(this)->getSubExpr()->
287      isUnusedResultAWarning(Loc, R1, R2);
288  case UnaryOperatorClass: {
289    const UnaryOperator *UO = cast<UnaryOperator>(this);
290
291    switch (UO->getOpcode()) {
292    default: break;
293    case UnaryOperator::PostInc:
294    case UnaryOperator::PostDec:
295    case UnaryOperator::PreInc:
296    case UnaryOperator::PreDec:                 // ++/--
297      return false;  // Not a warning.
298    case UnaryOperator::Deref:
299      // Dereferencing a volatile pointer is a side-effect.
300      if (getType().isVolatileQualified())
301        return false;
302      break;
303    case UnaryOperator::Real:
304    case UnaryOperator::Imag:
305      // accessing a piece of a volatile complex is a side-effect.
306      if (UO->getSubExpr()->getType().isVolatileQualified())
307        return false;
308      break;
309    case UnaryOperator::Extension:
310      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
311    }
312    Loc = UO->getOperatorLoc();
313    R1 = UO->getSubExpr()->getSourceRange();
314    return true;
315  }
316  case BinaryOperatorClass: {
317    const BinaryOperator *BO = cast<BinaryOperator>(this);
318    // Consider comma to have side effects if the LHS or RHS does.
319    if (BO->getOpcode() == BinaryOperator::Comma)
320      return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2) ||
321             BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2);
322
323    if (BO->isAssignmentOp())
324      return false;
325    Loc = BO->getOperatorLoc();
326    R1 = BO->getLHS()->getSourceRange();
327    R2 = BO->getRHS()->getSourceRange();
328    return true;
329  }
330  case CompoundAssignOperatorClass:
331    return false;
332
333  case ConditionalOperatorClass: {
334    // The condition must be evaluated, but if either the LHS or RHS is a
335    // warning, warn about them.
336    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
337    if (Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2))
338      return true;
339    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2);
340  }
341
342  case MemberExprClass:
343    // If the base pointer or element is to a volatile pointer/field, accessing
344    // it is a side effect.
345    if (getType().isVolatileQualified())
346      return false;
347    Loc = cast<MemberExpr>(this)->getMemberLoc();
348    R1 = SourceRange(Loc, Loc);
349    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
350    return true;
351
352  case ArraySubscriptExprClass:
353    // If the base pointer or element is to a volatile pointer/field, accessing
354    // it is a side effect.
355    if (getType().isVolatileQualified())
356      return false;
357    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
358    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
359    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
360    return true;
361
362  case CallExprClass:
363  case CXXOperatorCallExprClass: {
364    // If this is a direct call, get the callee.
365    const CallExpr *CE = cast<CallExpr>(this);
366    const Expr *CalleeExpr = CE->getCallee()->IgnoreParenCasts();
367    if (const DeclRefExpr *CalleeDRE = dyn_cast<DeclRefExpr>(CalleeExpr)) {
368      // If the callee has attribute pure, const, or warn_unused_result, warn
369      // about it. void foo() { strlen("bar"); } should warn.
370      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeDRE->getDecl()))
371        if (FD->getAttr<WarnUnusedResultAttr>() ||
372            FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
373          Loc = CE->getCallee()->getLocStart();
374          R1 = CE->getCallee()->getSourceRange();
375
376          if (unsigned NumArgs = CE->getNumArgs())
377            R2 = SourceRange(CE->getArg(0)->getLocStart(),
378                             CE->getArg(NumArgs-1)->getLocEnd());
379          return true;
380        }
381    }
382    return false;
383  }
384  case ObjCMessageExprClass:
385    return false;
386  case StmtExprClass: {
387    // Statement exprs don't logically have side effects themselves, but are
388    // sometimes used in macros in ways that give them a type that is unused.
389    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
390    // however, if the result of the stmt expr is dead, we don't want to emit a
391    // warning.
392    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
393    if (!CS->body_empty())
394      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
395        return E->isUnusedResultAWarning(Loc, R1, R2);
396
397    Loc = cast<StmtExpr>(this)->getLParenLoc();
398    R1 = getSourceRange();
399    return true;
400  }
401  case CStyleCastExprClass:
402    // If this is a cast to void, check the operand.  Otherwise, the result of
403    // the cast is unused.
404    if (getType()->isVoidType())
405      return cast<CastExpr>(this)->getSubExpr()->isUnusedResultAWarning(Loc,
406                                                                        R1, R2);
407    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
408    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
409    return true;
410  case CXXFunctionalCastExprClass:
411    // If this is a cast to void, check the operand.  Otherwise, the result of
412    // the cast is unused.
413    if (getType()->isVoidType())
414      return cast<CastExpr>(this)->getSubExpr()->isUnusedResultAWarning(Loc,
415                                                                        R1, R2);
416    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
417    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
418    return true;
419
420  case ImplicitCastExprClass:
421    // Check the operand, since implicit casts are inserted by Sema
422    return cast<ImplicitCastExpr>(this)
423      ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
424
425  case CXXDefaultArgExprClass:
426    return cast<CXXDefaultArgExpr>(this)
427      ->getExpr()->isUnusedResultAWarning(Loc, R1, R2);
428
429  case CXXNewExprClass:
430    // FIXME: In theory, there might be new expressions that don't have side
431    // effects (e.g. a placement new with an uninitialized POD).
432  case CXXDeleteExprClass:
433    return false;
434  }
435}
436
437/// DeclCanBeLvalue - Determine whether the given declaration can be
438/// an lvalue. This is a helper routine for isLvalue.
439static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
440  // C++ [temp.param]p6:
441  //   A non-type non-reference template-parameter is not an lvalue.
442  if (const NonTypeTemplateParmDecl *NTTParm
443        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
444    return NTTParm->getType()->isReferenceType();
445
446  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
447    // C++ 3.10p2: An lvalue refers to an object or function.
448    (Ctx.getLangOptions().CPlusPlus &&
449     (isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl)));
450}
451
452/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
453/// incomplete type other than void. Nonarray expressions that can be lvalues:
454///  - name, where name must be a variable
455///  - e[i]
456///  - (e), where e must be an lvalue
457///  - e.name, where e must be an lvalue
458///  - e->name
459///  - *e, the type of e cannot be a function type
460///  - string-constant
461///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
462///  - reference type [C++ [expr]]
463///
464Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
465  // first, check the type (C99 6.3.2.1). Expressions with function
466  // type in C are not lvalues, but they can be lvalues in C++.
467  if (!Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
468    return LV_NotObjectType;
469
470  // Allow qualified void which is an incomplete type other than void (yuck).
471  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers())
472    return LV_IncompleteVoidType;
473
474  /// FIXME: Expressions can't have reference type, so the following
475  /// isn't needed.
476  if (TR->isReferenceType()) // C++ [expr]
477    return LV_Valid;
478
479  // the type looks fine, now check the expression
480  switch (getStmtClass()) {
481  case StringLiteralClass: // C99 6.5.1p4
482    return LV_Valid;
483  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
484    // For vectors, make sure base is an lvalue (i.e. not a function call).
485    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
486      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
487    return LV_Valid;
488  case DeclRefExprClass:
489  case QualifiedDeclRefExprClass: { // C99 6.5.1p2
490    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
491    if (DeclCanBeLvalue(RefdDecl, Ctx))
492      return LV_Valid;
493    break;
494  }
495  case BlockDeclRefExprClass: {
496    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
497    if (isa<VarDecl>(BDR->getDecl()))
498      return LV_Valid;
499    break;
500  }
501  case MemberExprClass: {
502    const MemberExpr *m = cast<MemberExpr>(this);
503    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
504      NamedDecl *Member = m->getMemberDecl();
505      // C++ [expr.ref]p4:
506      //   If E2 is declared to have type "reference to T", then E1.E2
507      //   is an lvalue.
508      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
509        if (Value->getType()->isReferenceType())
510          return LV_Valid;
511
512      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
513      if (isa<CXXClassVarDecl>(Member))
514        return LV_Valid;
515
516      //   -- If E2 is a non-static data member [...]. If E1 is an
517      //      lvalue, then E1.E2 is an lvalue.
518      if (isa<FieldDecl>(Member))
519        return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
520
521      //   -- If it refers to a static member function [...], then
522      //      E1.E2 is an lvalue.
523      //   -- Otherwise, if E1.E2 refers to a non-static member
524      //      function [...], then E1.E2 is not an lvalue.
525      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
526        return Method->isStatic()? LV_Valid : LV_MemberFunction;
527
528      //   -- If E2 is a member enumerator [...], the expression E1.E2
529      //      is not an lvalue.
530      if (isa<EnumConstantDecl>(Member))
531        return LV_InvalidExpression;
532
533        // Not an lvalue.
534      return LV_InvalidExpression;
535    }
536
537    // C99 6.5.2.3p4
538    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
539  }
540  case UnaryOperatorClass:
541    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
542      return LV_Valid; // C99 6.5.3p4
543
544    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
545        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
546        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
547      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
548
549    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
550        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
551         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
552      return LV_Valid;
553    break;
554  case ImplicitCastExprClass:
555    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
556                                                       : LV_InvalidExpression;
557  case ParenExprClass: // C99 6.5.1p5
558    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
559  case BinaryOperatorClass:
560  case CompoundAssignOperatorClass: {
561    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
562
563    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
564        BinOp->getOpcode() == BinaryOperator::Comma)
565      return BinOp->getRHS()->isLvalue(Ctx);
566
567    // C++ [expr.mptr.oper]p6
568    if ((BinOp->getOpcode() == BinaryOperator::PtrMemD ||
569         BinOp->getOpcode() == BinaryOperator::PtrMemI) &&
570        !BinOp->getType()->isFunctionType())
571      return BinOp->getLHS()->isLvalue(Ctx);
572
573    if (!BinOp->isAssignmentOp())
574      return LV_InvalidExpression;
575
576    if (Ctx.getLangOptions().CPlusPlus)
577      // C++ [expr.ass]p1:
578      //   The result of an assignment operation [...] is an lvalue.
579      return LV_Valid;
580
581
582    // C99 6.5.16:
583    //   An assignment expression [...] is not an lvalue.
584    return LV_InvalidExpression;
585  }
586  // FIXME: OverloadExprClass
587  case CallExprClass:
588  case CXXOperatorCallExprClass:
589  case CXXMemberCallExprClass: {
590    // C++ [expr.call]p10:
591    //   A function call is an lvalue if and only if the result type
592    //   is a reference.
593    QualType CalleeType = cast<CallExpr>(this)->getCallee()->getType();
594    if (const PointerType *FnTypePtr = CalleeType->getAsPointerType())
595      CalleeType = FnTypePtr->getPointeeType();
596    if (const FunctionType *FnType = CalleeType->getAsFunctionType())
597      if (FnType->getResultType()->isReferenceType())
598        return LV_Valid;
599
600    break;
601  }
602  case CompoundLiteralExprClass: // C99 6.5.2.5p5
603    return LV_Valid;
604  case ChooseExprClass:
605    // __builtin_choose_expr is an lvalue if the selected operand is.
606    if (cast<ChooseExpr>(this)->isConditionTrue(Ctx))
607      return cast<ChooseExpr>(this)->getLHS()->isLvalue(Ctx);
608    else
609      return cast<ChooseExpr>(this)->getRHS()->isLvalue(Ctx);
610
611  case ExtVectorElementExprClass:
612    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
613      return LV_DuplicateVectorComponents;
614    return LV_Valid;
615  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
616    return LV_Valid;
617  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
618    return LV_Valid;
619  case ObjCKVCRefExprClass: // FIXME: check if read-only property.
620    return LV_Valid;
621  case PredefinedExprClass:
622    return LV_Valid;
623  case VAArgExprClass:
624    return LV_NotObjectType;
625  case CXXDefaultArgExprClass:
626    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
627  case CXXConditionDeclExprClass:
628    return LV_Valid;
629  case CStyleCastExprClass:
630  case CXXFunctionalCastExprClass:
631  case CXXStaticCastExprClass:
632  case CXXDynamicCastExprClass:
633  case CXXReinterpretCastExprClass:
634  case CXXConstCastExprClass:
635    // The result of an explicit cast is an lvalue if the type we are
636    // casting to is a reference type. See C++ [expr.cast]p1,
637    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
638    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
639    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isReferenceType())
640      return LV_Valid;
641    break;
642  case CXXTypeidExprClass:
643    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
644    return LV_Valid;
645  default:
646    break;
647  }
648  return LV_InvalidExpression;
649}
650
651/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
652/// does not have an incomplete type, does not have a const-qualified type, and
653/// if it is a structure or union, does not have any member (including,
654/// recursively, any member or element of all contained aggregates or unions)
655/// with a const-qualified type.
656Expr::isModifiableLvalueResult Expr::isModifiableLvalue(ASTContext &Ctx) const {
657  isLvalueResult lvalResult = isLvalue(Ctx);
658
659  switch (lvalResult) {
660  case LV_Valid:
661    // C++ 3.10p11: Functions cannot be modified, but pointers to
662    // functions can be modifiable.
663    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
664      return MLV_NotObjectType;
665    break;
666
667  case LV_NotObjectType: return MLV_NotObjectType;
668  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
669  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
670  case LV_InvalidExpression:
671    // If the top level is a C-style cast, and the subexpression is a valid
672    // lvalue, then this is probably a use of the old-school "cast as lvalue"
673    // GCC extension.  We don't support it, but we want to produce good
674    // diagnostics when it happens so that the user knows why.
675    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(this))
676      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid)
677        return MLV_LValueCast;
678    return MLV_InvalidExpression;
679  case LV_MemberFunction: return MLV_MemberFunction;
680  }
681
682  QualType CT = Ctx.getCanonicalType(getType());
683
684  if (CT.isConstQualified())
685    return MLV_ConstQualified;
686  if (CT->isArrayType())
687    return MLV_ArrayType;
688  if (CT->isIncompleteType())
689    return MLV_IncompleteType;
690
691  if (const RecordType *r = CT->getAsRecordType()) {
692    if (r->hasConstFields())
693      return MLV_ConstQualified;
694  }
695  // The following is illegal:
696  //   void takeclosure(void (^C)(void));
697  //   void func() { int x = 1; takeclosure(^{ x = 7 }); }
698  //
699  if (getStmtClass() == BlockDeclRefExprClass) {
700    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
701    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
702      return MLV_NotBlockQualified;
703  }
704
705  // Assigning to an 'implicit' property?
706  else if (getStmtClass() == ObjCKVCRefExprClass) {
707    const ObjCKVCRefExpr* KVCExpr = cast<ObjCKVCRefExpr>(this);
708    if (KVCExpr->getSetterMethod() == 0)
709      return MLV_NoSetterProperty;
710  }
711  return MLV_Valid;
712}
713
714/// hasGlobalStorage - Return true if this expression has static storage
715/// duration.  This means that the address of this expression is a link-time
716/// constant.
717bool Expr::hasGlobalStorage() const {
718  switch (getStmtClass()) {
719  default:
720    return false;
721  case ParenExprClass:
722    return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
723  case ImplicitCastExprClass:
724    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
725  case CompoundLiteralExprClass:
726    return cast<CompoundLiteralExpr>(this)->isFileScope();
727  case DeclRefExprClass:
728  case QualifiedDeclRefExprClass: {
729    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
730    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
731      return VD->hasGlobalStorage();
732    if (isa<FunctionDecl>(D))
733      return true;
734    return false;
735  }
736  case MemberExprClass: {
737    const MemberExpr *M = cast<MemberExpr>(this);
738    return !M->isArrow() && M->getBase()->hasGlobalStorage();
739  }
740  case ArraySubscriptExprClass:
741    return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
742  case PredefinedExprClass:
743    return true;
744  case CXXDefaultArgExprClass:
745    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
746  }
747}
748
749Expr* Expr::IgnoreParens() {
750  Expr* E = this;
751  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
752    E = P->getSubExpr();
753
754  return E;
755}
756
757/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
758/// or CastExprs or ImplicitCastExprs, returning their operand.
759Expr *Expr::IgnoreParenCasts() {
760  Expr *E = this;
761  while (true) {
762    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
763      E = P->getSubExpr();
764    else if (CastExpr *P = dyn_cast<CastExpr>(E))
765      E = P->getSubExpr();
766    else
767      return E;
768  }
769}
770
771/// hasAnyTypeDependentArguments - Determines if any of the expressions
772/// in Exprs is type-dependent.
773bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
774  for (unsigned I = 0; I < NumExprs; ++I)
775    if (Exprs[I]->isTypeDependent())
776      return true;
777
778  return false;
779}
780
781/// hasAnyValueDependentArguments - Determines if any of the expressions
782/// in Exprs is value-dependent.
783bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
784  for (unsigned I = 0; I < NumExprs; ++I)
785    if (Exprs[I]->isValueDependent())
786      return true;
787
788  return false;
789}
790
791bool Expr::isConstantInitializer(ASTContext &Ctx) const {
792  // This function is attempting whether an expression is an initializer
793  // which can be evaluated at compile-time.  isEvaluatable handles most
794  // of the cases, but it can't deal with some initializer-specific
795  // expressions, and it can't deal with aggregates; we deal with those here,
796  // and fall back to isEvaluatable for the other cases.
797
798  switch (getStmtClass()) {
799  default: break;
800  case StringLiteralClass:
801    return true;
802  case CompoundLiteralExprClass: {
803    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
804    return Exp->isConstantInitializer(Ctx);
805  }
806  case InitListExprClass: {
807    const InitListExpr *Exp = cast<InitListExpr>(this);
808    unsigned numInits = Exp->getNumInits();
809    for (unsigned i = 0; i < numInits; i++) {
810      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
811        return false;
812    }
813    return true;
814  }
815  case ImplicitValueInitExprClass:
816    return true;
817  case ParenExprClass: {
818    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
819  }
820  case UnaryOperatorClass: {
821    const UnaryOperator* Exp = cast<UnaryOperator>(this);
822    if (Exp->getOpcode() == UnaryOperator::Extension)
823      return Exp->getSubExpr()->isConstantInitializer(Ctx);
824    break;
825  }
826  case CStyleCastExprClass:
827    // Handle casts with a destination that's a struct or union; this
828    // deals with both the gcc no-op struct cast extension and the
829    // cast-to-union extension.
830    if (getType()->isRecordType())
831      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
832    break;
833  case DesignatedInitExprClass:
834    return cast<DesignatedInitExpr>(this)->
835            getInit()->isConstantInitializer(Ctx);
836  }
837
838  return isEvaluatable(Ctx);
839}
840
841/// isIntegerConstantExpr - this recursive routine will test if an expression is
842/// an integer constant expression. Note: With the introduction of VLA's in
843/// C99 the result of the sizeof operator is no longer always a constant
844/// expression. The generalization of the wording to include any subexpression
845/// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions
846/// can appear as operands to other operators (e.g. &&, ||, ?:). For instance,
847/// "0 || f()" can be treated as a constant expression. In C90 this expression,
848/// occurring in a context requiring a constant, would have been a constraint
849/// violation. FIXME: This routine currently implements C90 semantics.
850/// To properly implement C99 semantics this routine will need to evaluate
851/// expressions involving operators previously mentioned.
852
853/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
854/// comma, etc
855///
856/// FIXME: This should ext-warn on overflow during evaluation!  ISO C does not
857/// permit this.  This includes things like (int)1e1000
858///
859/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
860/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
861/// cast+dereference.
862bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
863                                 SourceLocation *Loc, bool isEvaluated) const {
864  if (!isIntegerConstantExprInternal(Result, Ctx, Loc, isEvaluated))
865    return false;
866  assert(Result == EvaluateAsInt(Ctx) && "Inconsistent Evaluate() result!");
867  return true;
868}
869
870bool Expr::isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx,
871                                 SourceLocation *Loc, bool isEvaluated) const {
872
873  // Pretest for integral type; some parts of the code crash for types that
874  // can't be sized.
875  if (!getType()->isIntegralType()) {
876    if (Loc) *Loc = getLocStart();
877    return false;
878  }
879  switch (getStmtClass()) {
880  default:
881    if (Loc) *Loc = getLocStart();
882    return false;
883  case ParenExprClass:
884    return cast<ParenExpr>(this)->getSubExpr()->
885                     isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
886  case IntegerLiteralClass:
887    // NOTE: getValue() returns an APInt, we must set sign.
888    Result = cast<IntegerLiteral>(this)->getValue();
889    Result.setIsUnsigned(getType()->isUnsignedIntegerType());
890    break;
891  case CharacterLiteralClass: {
892    const CharacterLiteral *CL = cast<CharacterLiteral>(this);
893    Result = Ctx.MakeIntValue(CL->getValue(), getType());
894    break;
895  }
896  case CXXBoolLiteralExprClass: {
897    const CXXBoolLiteralExpr *BL = cast<CXXBoolLiteralExpr>(this);
898    Result = Ctx.MakeIntValue(BL->getValue(), getType());
899    break;
900  }
901  case CXXZeroInitValueExprClass:
902    Result = Ctx.MakeIntValue(0, getType());
903    break;
904  case TypesCompatibleExprClass: {
905    const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this);
906    // Per gcc docs "this built-in function ignores top level
907    // qualifiers".  We need to use the canonical version to properly
908    // be able to strip CRV qualifiers from the type.
909    QualType T0 = Ctx.getCanonicalType(TCE->getArgType1());
910    QualType T1 = Ctx.getCanonicalType(TCE->getArgType2());
911    Result = Ctx.MakeIntValue(Ctx.typesAreCompatible(T0.getUnqualifiedType(),
912                                                     T1.getUnqualifiedType()),
913                              getType());
914    break;
915  }
916  case CallExprClass:
917  case CXXOperatorCallExprClass: {
918    const CallExpr *CE = cast<CallExpr>(this);
919
920    // If this is a call to a builtin function, constant fold it otherwise
921    // reject it.
922    if (CE->isBuiltinCall(Ctx)) {
923      EvalResult EvalResult;
924      if (CE->Evaluate(EvalResult, Ctx)) {
925        assert(!EvalResult.HasSideEffects &&
926               "Foldable builtin call should not have side effects!");
927        Result = EvalResult.Val.getInt();
928        break;  // It is a constant, expand it.
929      }
930    }
931
932    if (Loc) *Loc = getLocStart();
933    return false;
934  }
935  case DeclRefExprClass:
936  case QualifiedDeclRefExprClass:
937    if (const EnumConstantDecl *D =
938          dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) {
939      Result = D->getInitVal();
940      break;
941    }
942    if (Ctx.getLangOptions().CPlusPlus &&
943        getType().getCVRQualifiers() == QualType::Const) {
944      // C++ 7.1.5.1p2
945      //   A variable of non-volatile const-qualified integral or enumeration
946      //   type initialized by an ICE can be used in ICEs.
947      if (const VarDecl *Dcl =
948              dyn_cast<VarDecl>(cast<DeclRefExpr>(this)->getDecl())) {
949        if (const Expr *Init = Dcl->getInit())
950          return Init->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
951      }
952    }
953    if (Loc) *Loc = getLocStart();
954    return false;
955  case UnaryOperatorClass: {
956    const UnaryOperator *Exp = cast<UnaryOperator>(this);
957
958    // Get the operand value.  If this is offsetof, do not evalute the
959    // operand.  This affects C99 6.6p3.
960    if (!Exp->isOffsetOfOp() && !Exp->getSubExpr()->
961                        isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
962      return false;
963
964    switch (Exp->getOpcode()) {
965    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
966    // See C99 6.6p3.
967    default:
968      if (Loc) *Loc = Exp->getOperatorLoc();
969      return false;
970    case UnaryOperator::Extension:
971      return true;  // FIXME: this is wrong.
972    case UnaryOperator::LNot: {
973      Result = Ctx.MakeIntValue(Result == 0, getType());
974      break;
975    }
976    case UnaryOperator::Plus:
977      break;
978    case UnaryOperator::Minus:
979      Result = -Result;
980      break;
981    case UnaryOperator::Not:
982      Result = ~Result;
983      break;
984    case UnaryOperator::OffsetOf:
985      Result = Ctx.MakeIntValue(Exp->evaluateOffsetOf(Ctx), getType());
986      break;
987    }
988    break;
989  }
990  case SizeOfAlignOfExprClass: {
991    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(this);
992
993    QualType ArgTy = Exp->getTypeOfArgument();
994    // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
995    if (ArgTy->isVoidType()) {
996      Result = Ctx.MakeIntValue(1, getType());
997      break;
998    }
999
1000    // alignof always evaluates to a constant, sizeof does if arg is not VLA.
1001    if (Exp->isSizeOf() && !ArgTy->isConstantSizeType()) {
1002      if (Loc) *Loc = Exp->getOperatorLoc();
1003      return false;
1004    }
1005
1006    // Get information about the size or align.
1007    if (ArgTy->isFunctionType()) {
1008      // GCC extension: sizeof(function) = 1.
1009      Result = Ctx.MakeIntValue(Exp->isSizeOf() ? 1 : 4, getType());
1010    } else {
1011      unsigned CharSize = Ctx.Target.getCharWidth();
1012      if (Exp->isSizeOf())
1013        Result = Ctx.MakeIntValue(Ctx.getTypeSize(ArgTy)/CharSize, getType());
1014      else
1015        Result = Ctx.MakeIntValue(Ctx.getTypeAlign(ArgTy)/CharSize, getType());
1016    }
1017    break;
1018  }
1019  case BinaryOperatorClass: {
1020    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1021    llvm::APSInt LHS, RHS;
1022
1023    // Initialize result to have correct signedness and width.
1024    Result = Ctx.MakeIntValue(0, getType());
1025
1026    // The LHS of a constant expr is always evaluated and needed.
1027    if (!Exp->getLHS()->isIntegerConstantExpr(LHS, Ctx, Loc, isEvaluated))
1028      return false;
1029
1030    // The short-circuiting &&/|| operators don't necessarily evaluate their
1031    // RHS.  Make sure to pass isEvaluated down correctly.
1032    if (Exp->isLogicalOp()) {
1033      bool RHSEval;
1034      if (Exp->getOpcode() == BinaryOperator::LAnd)
1035        RHSEval = LHS != 0;
1036      else {
1037        assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical");
1038        RHSEval = LHS == 0;
1039      }
1040
1041      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc,
1042                                                isEvaluated & RHSEval))
1043        return false;
1044    } else {
1045      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated))
1046        return false;
1047    }
1048
1049    switch (Exp->getOpcode()) {
1050    default:
1051      if (Loc) *Loc = getLocStart();
1052      return false;
1053    case BinaryOperator::Mul:
1054      Result = LHS * RHS;
1055      break;
1056    case BinaryOperator::Div:
1057      if (RHS == 0) {
1058        if (!isEvaluated) break;
1059        if (Loc) *Loc = getLocStart();
1060        return false;
1061      }
1062      Result = LHS / RHS;
1063      break;
1064    case BinaryOperator::Rem:
1065      if (RHS == 0) {
1066        if (!isEvaluated) break;
1067        if (Loc) *Loc = getLocStart();
1068        return false;
1069      }
1070      Result = LHS % RHS;
1071      break;
1072    case BinaryOperator::Add: Result = LHS + RHS; break;
1073    case BinaryOperator::Sub: Result = LHS - RHS; break;
1074    case BinaryOperator::Shl:
1075      Result = LHS <<
1076        static_cast<uint32_t>(RHS.getLimitedValue(LHS.getBitWidth()-1));
1077    break;
1078    case BinaryOperator::Shr:
1079      Result = LHS >>
1080        static_cast<uint32_t>(RHS.getLimitedValue(LHS.getBitWidth()-1));
1081      break;
1082    case BinaryOperator::LT:  Result = LHS < RHS; break;
1083    case BinaryOperator::GT:  Result = LHS > RHS; break;
1084    case BinaryOperator::LE:  Result = LHS <= RHS; break;
1085    case BinaryOperator::GE:  Result = LHS >= RHS; break;
1086    case BinaryOperator::EQ:  Result = LHS == RHS; break;
1087    case BinaryOperator::NE:  Result = LHS != RHS; break;
1088    case BinaryOperator::And: Result = LHS & RHS; break;
1089    case BinaryOperator::Xor: Result = LHS ^ RHS; break;
1090    case BinaryOperator::Or:  Result = LHS | RHS; break;
1091    case BinaryOperator::LAnd:
1092      Result = LHS != 0 && RHS != 0;
1093      break;
1094    case BinaryOperator::LOr:
1095      Result = LHS != 0 || RHS != 0;
1096      break;
1097
1098    case BinaryOperator::Comma:
1099      // C99 6.6p3: "shall not contain assignment, ..., or comma operators,
1100      // *except* when they are contained within a subexpression that is not
1101      // evaluated".  Note that Assignment can never happen due to constraints
1102      // on the LHS subexpr, so we don't need to check it here.
1103      if (isEvaluated) {
1104        if (Loc) *Loc = getLocStart();
1105        return false;
1106      }
1107
1108      // The result of the constant expr is the RHS.
1109      Result = RHS;
1110      break;
1111    }
1112
1113    assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!");
1114    break;
1115  }
1116  case ImplicitCastExprClass:
1117  case CStyleCastExprClass:
1118  case CXXFunctionalCastExprClass: {
1119    const Expr *SubExpr = cast<CastExpr>(this)->getSubExpr();
1120    SourceLocation CastLoc = getLocStart();
1121
1122    // C99 6.6p6: shall only convert arithmetic types to integer types.
1123    if (!SubExpr->getType()->isArithmeticType() ||
1124        !getType()->isIntegerType()) {
1125      if (Loc) *Loc = SubExpr->getLocStart();
1126      return false;
1127    }
1128
1129    uint32_t DestWidth = static_cast<uint32_t>(Ctx.getTypeSize(getType()));
1130
1131    // Handle simple integer->integer casts.
1132    if (SubExpr->getType()->isIntegerType()) {
1133      if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1134        return false;
1135
1136      // Figure out if this is a truncate, extend or noop cast.
1137      // If the input is signed, do a sign extend, noop, or truncate.
1138      if (getType()->isBooleanType()) {
1139        // Conversion to bool compares against zero.
1140        Result = Ctx.MakeIntValue(Result != 0, getType());
1141      } else if (SubExpr->getType()->isSignedIntegerType()) {
1142        Result.sextOrTrunc(DestWidth);
1143        Result.setIsUnsigned(getType()->isUnsignedIntegerType());
1144      } else {  // If the input is unsigned, do a zero extend, noop,
1145                // or truncate.
1146        Result.zextOrTrunc(DestWidth);
1147        Result.setIsUnsigned(getType()->isUnsignedIntegerType());
1148      }
1149      break;
1150    }
1151
1152    // Allow floating constants that are the immediate operands of casts or that
1153    // are parenthesized.
1154    const Expr *Operand = SubExpr->IgnoreParens();
1155
1156    // If this isn't a floating literal, we can't handle it.
1157    const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand);
1158    if (!FL) {
1159      if (Loc) *Loc = Operand->getLocStart();
1160      return false;
1161    }
1162
1163    // If the destination is boolean, compare against zero.
1164    if (getType()->isBooleanType()) {
1165      Result = Ctx.MakeIntValue(!FL->getValue().isZero(), getType());
1166      break;
1167    }
1168
1169    // Determine whether we are converting to unsigned or signed.
1170    bool DestSigned = getType()->isSignedIntegerType();
1171
1172    // TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can
1173    // be called multiple times per AST.
1174    uint64_t Space[4];
1175    bool ignored;
1176    (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned,
1177                                          llvm::APFloat::rmTowardZero,
1178                                          &ignored);
1179    Result = llvm::APInt(DestWidth, 4, Space);
1180    Result.setIsUnsigned(getType()->isUnsignedIntegerType());
1181    break;
1182  }
1183  case ConditionalOperatorClass: {
1184    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1185
1186    const Expr *Cond = Exp->getCond();
1187
1188    if (!Cond->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1189      return false;
1190
1191    const Expr *TrueExp  = Exp->getLHS();
1192    const Expr *FalseExp = Exp->getRHS();
1193    if (Result == 0) std::swap(TrueExp, FalseExp);
1194
1195    // If the condition (ignoring parens) is a __builtin_constant_p call,
1196    // then only the true side is actually considered in an integer constant
1197    // expression, and it is fully evaluated.  This is an important GNU
1198    // extension.  See GCC PR38377 for discussion.
1199    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Cond->IgnoreParenCasts()))
1200      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1201        EvalResult EVResult;
1202        if (!Evaluate(EVResult, Ctx) || EVResult.HasSideEffects)
1203          return false;
1204        assert(EVResult.Val.isInt() && "FP conditional expr not expected");
1205        Result = EVResult.Val.getInt();
1206        if (Loc) *Loc = EVResult.DiagLoc;
1207        return true;
1208      }
1209
1210    // Evaluate the false one first, discard the result.
1211    llvm::APSInt Tmp;
1212    if (FalseExp && !FalseExp->isIntegerConstantExpr(Tmp, Ctx, Loc, false))
1213      return false;
1214    // Evalute the true one, capture the result. Note that if TrueExp
1215    // is False then this is an instant of the gcc missing LHS
1216    // extension, and we will just reuse Result.
1217    if (TrueExp &&
1218        !TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1219      return false;
1220    break;
1221  }
1222  case CXXDefaultArgExprClass:
1223    return cast<CXXDefaultArgExpr>(this)
1224             ->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
1225
1226  case UnaryTypeTraitExprClass:
1227    Result = Ctx.MakeIntValue(cast<UnaryTypeTraitExpr>(this)->EvaluateTrait(),
1228                              getType());
1229    break;
1230  }
1231
1232  return true;
1233}
1234
1235/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1236/// integer constant expression with the value zero, or if this is one that is
1237/// cast to void*.
1238bool Expr::isNullPointerConstant(ASTContext &Ctx) const
1239{
1240  // Strip off a cast to void*, if it exists. Except in C++.
1241  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1242    if (!Ctx.getLangOptions().CPlusPlus) {
1243      // Check that it is a cast to void*.
1244      if (const PointerType *PT = CE->getType()->getAsPointerType()) {
1245        QualType Pointee = PT->getPointeeType();
1246        if (Pointee.getCVRQualifiers() == 0 &&
1247            Pointee->isVoidType() &&                              // to void*
1248            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1249          return CE->getSubExpr()->isNullPointerConstant(Ctx);
1250      }
1251    }
1252  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1253    // Ignore the ImplicitCastExpr type entirely.
1254    return ICE->getSubExpr()->isNullPointerConstant(Ctx);
1255  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1256    // Accept ((void*)0) as a null pointer constant, as many other
1257    // implementations do.
1258    return PE->getSubExpr()->isNullPointerConstant(Ctx);
1259  } else if (const CXXDefaultArgExpr *DefaultArg
1260               = dyn_cast<CXXDefaultArgExpr>(this)) {
1261    // See through default argument expressions
1262    return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
1263  } else if (isa<GNUNullExpr>(this)) {
1264    // The GNU __null extension is always a null pointer constant.
1265    return true;
1266  }
1267
1268  // This expression must be an integer type.
1269  if (!getType()->isIntegerType())
1270    return false;
1271
1272  // If we have an integer constant expression, we need to *evaluate* it and
1273  // test for the value 0.
1274  // FIXME: We should probably return false if we're compiling in strict mode
1275  // and Diag is not null (this indicates that the value was foldable but not
1276  // an ICE.
1277  EvalResult Result;
1278  return Evaluate(Result, Ctx) && !Result.HasSideEffects &&
1279        Result.Val.isInt() && Result.Val.getInt() == 0;
1280}
1281
1282/// isBitField - Return true if this expression is a bit-field.
1283bool Expr::isBitField() {
1284  Expr *E = this->IgnoreParenCasts();
1285  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1286    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1287        return Field->isBitField();
1288  return false;
1289}
1290
1291/// isArrow - Return true if the base expression is a pointer to vector,
1292/// return false if the base expression is a vector.
1293bool ExtVectorElementExpr::isArrow() const {
1294  return getBase()->getType()->isPointerType();
1295}
1296
1297unsigned ExtVectorElementExpr::getNumElements() const {
1298  if (const VectorType *VT = getType()->getAsVectorType())
1299    return VT->getNumElements();
1300  return 1;
1301}
1302
1303/// containsDuplicateElements - Return true if any element access is repeated.
1304bool ExtVectorElementExpr::containsDuplicateElements() const {
1305  const char *compStr = Accessor.getName();
1306  unsigned length = Accessor.getLength();
1307
1308  // Halving swizzles do not contain duplicate elements.
1309  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1310      !strcmp(compStr, "even") || !strcmp(compStr, "odd"))
1311    return false;
1312
1313  // Advance past s-char prefix on hex swizzles.
1314  if (*compStr == 's') {
1315    compStr++;
1316    length--;
1317  }
1318
1319  for (unsigned i = 0; i != length-1; i++) {
1320    const char *s = compStr+i;
1321    for (const char c = *s++; *s; s++)
1322      if (c == *s)
1323        return true;
1324  }
1325  return false;
1326}
1327
1328/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1329void ExtVectorElementExpr::getEncodedElementAccess(
1330                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1331  const char *compStr = Accessor.getName();
1332  if (*compStr == 's')
1333    compStr++;
1334
1335  bool isHi =   !strcmp(compStr, "hi");
1336  bool isLo =   !strcmp(compStr, "lo");
1337  bool isEven = !strcmp(compStr, "even");
1338  bool isOdd  = !strcmp(compStr, "odd");
1339
1340  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1341    uint64_t Index;
1342
1343    if (isHi)
1344      Index = e + i;
1345    else if (isLo)
1346      Index = i;
1347    else if (isEven)
1348      Index = 2 * i;
1349    else if (isOdd)
1350      Index = 2 * i + 1;
1351    else
1352      Index = ExtVectorType::getAccessorIdx(compStr[i]);
1353
1354    Elts.push_back(Index);
1355  }
1356}
1357
1358// constructor for instance messages.
1359ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1360                QualType retType, ObjCMethodDecl *mproto,
1361                SourceLocation LBrac, SourceLocation RBrac,
1362                Expr **ArgExprs, unsigned nargs)
1363  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1364    MethodProto(mproto) {
1365  NumArgs = nargs;
1366  SubExprs = new Stmt*[NumArgs+1];
1367  SubExprs[RECEIVER] = receiver;
1368  if (NumArgs) {
1369    for (unsigned i = 0; i != NumArgs; ++i)
1370      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1371  }
1372  LBracloc = LBrac;
1373  RBracloc = RBrac;
1374}
1375
1376// constructor for class messages.
1377// FIXME: clsName should be typed to ObjCInterfaceType
1378ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1379                QualType retType, ObjCMethodDecl *mproto,
1380                SourceLocation LBrac, SourceLocation RBrac,
1381                Expr **ArgExprs, unsigned nargs)
1382  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1383    MethodProto(mproto) {
1384  NumArgs = nargs;
1385  SubExprs = new Stmt*[NumArgs+1];
1386  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1387  if (NumArgs) {
1388    for (unsigned i = 0; i != NumArgs; ++i)
1389      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1390  }
1391  LBracloc = LBrac;
1392  RBracloc = RBrac;
1393}
1394
1395// constructor for class messages.
1396ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
1397                                 QualType retType, ObjCMethodDecl *mproto,
1398                                 SourceLocation LBrac, SourceLocation RBrac,
1399                                 Expr **ArgExprs, unsigned nargs)
1400: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1401MethodProto(mproto) {
1402  NumArgs = nargs;
1403  SubExprs = new Stmt*[NumArgs+1];
1404  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
1405  if (NumArgs) {
1406    for (unsigned i = 0; i != NumArgs; ++i)
1407      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1408  }
1409  LBracloc = LBrac;
1410  RBracloc = RBrac;
1411}
1412
1413ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
1414  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
1415  switch (x & Flags) {
1416    default:
1417      assert(false && "Invalid ObjCMessageExpr.");
1418    case IsInstMeth:
1419      return ClassInfo(0, 0);
1420    case IsClsMethDeclUnknown:
1421      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
1422    case IsClsMethDeclKnown: {
1423      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
1424      return ClassInfo(D, D->getIdentifier());
1425    }
1426  }
1427}
1428
1429bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1430  return getCond()->getIntegerConstantExprValue(C) != 0;
1431}
1432
1433static int64_t evaluateOffsetOf(ASTContext& C, const Expr *E) {
1434  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1435    QualType Ty = ME->getBase()->getType();
1436
1437    RecordDecl *RD = Ty->getAsRecordType()->getDecl();
1438    const ASTRecordLayout &RL = C.getASTRecordLayout(RD);
1439    if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
1440      // FIXME: This is linear time. And the fact that we're indexing
1441      // into the layout by position in the record means that we're
1442      // either stuck numbering the fields in the AST or we have to keep
1443      // the linear search (yuck and yuck).
1444      unsigned i = 0;
1445      for (RecordDecl::field_iterator Field = RD->field_begin(),
1446                                   FieldEnd = RD->field_end();
1447           Field != FieldEnd; (void)++Field, ++i) {
1448        if (*Field == FD)
1449          break;
1450      }
1451
1452      return RL.getFieldOffset(i) + evaluateOffsetOf(C, ME->getBase());
1453    }
1454  } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
1455    const Expr *Base = ASE->getBase();
1456
1457    int64_t size = C.getTypeSize(ASE->getType());
1458    size *= ASE->getIdx()->getIntegerConstantExprValue(C).getSExtValue();
1459
1460    return size + evaluateOffsetOf(C, Base);
1461  } else if (isa<CompoundLiteralExpr>(E))
1462    return 0;
1463
1464  assert(0 && "Unknown offsetof subexpression!");
1465  return 0;
1466}
1467
1468int64_t UnaryOperator::evaluateOffsetOf(ASTContext& C) const
1469{
1470  assert(Opc == OffsetOf && "Unary operator not offsetof!");
1471
1472  unsigned CharSize = C.Target.getCharWidth();
1473  return ::evaluateOffsetOf(C, cast<Expr>(Val)) / CharSize;
1474}
1475
1476void SizeOfAlignOfExpr::Destroy(ASTContext& C) {
1477  // Override default behavior of traversing children. If this has a type
1478  // operand and the type is a variable-length array, the child iteration
1479  // will iterate over the size expression. However, this expression belongs
1480  // to the type, not to this, so we don't want to delete it.
1481  // We still want to delete this expression.
1482  if (isArgumentType()) {
1483    this->~SizeOfAlignOfExpr();
1484    C.Deallocate(this);
1485  }
1486  else
1487    Expr::Destroy(C);
1488}
1489
1490void OverloadExpr::Destroy(ASTContext& C) {
1491  DestroyChildren(C);
1492  C.Deallocate(SubExprs);
1493  this->~OverloadExpr();
1494  C.Deallocate(this);
1495}
1496
1497//===----------------------------------------------------------------------===//
1498//  DesignatedInitExpr
1499//===----------------------------------------------------------------------===//
1500
1501IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
1502  assert(Kind == FieldDesignator && "Only valid on a field designator");
1503  if (Field.NameOrField & 0x01)
1504    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
1505  else
1506    return getField()->getIdentifier();
1507}
1508
1509DesignatedInitExpr *
1510DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
1511                           unsigned NumDesignators,
1512                           Expr **IndexExprs, unsigned NumIndexExprs,
1513                           SourceLocation ColonOrEqualLoc,
1514                           bool UsesColonSyntax, Expr *Init) {
1515  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
1516                         sizeof(Designator) * NumDesignators +
1517                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
1518  DesignatedInitExpr *DIE
1519    = new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators,
1520                                   ColonOrEqualLoc, UsesColonSyntax,
1521                                   NumIndexExprs + 1);
1522
1523  // Fill in the designators
1524  unsigned ExpectedNumSubExprs = 0;
1525  designators_iterator Desig = DIE->designators_begin();
1526  for (unsigned Idx = 0; Idx < NumDesignators; ++Idx, ++Desig) {
1527    new (static_cast<void*>(Desig)) Designator(Designators[Idx]);
1528    if (Designators[Idx].isArrayDesignator())
1529      ++ExpectedNumSubExprs;
1530    else if (Designators[Idx].isArrayRangeDesignator())
1531      ExpectedNumSubExprs += 2;
1532  }
1533  assert(ExpectedNumSubExprs == NumIndexExprs && "Wrong number of indices!");
1534
1535  // Fill in the subexpressions, including the initializer expression.
1536  child_iterator Child = DIE->child_begin();
1537  *Child++ = Init;
1538  for (unsigned Idx = 0; Idx < NumIndexExprs; ++Idx, ++Child)
1539    *Child = IndexExprs[Idx];
1540
1541  return DIE;
1542}
1543
1544SourceRange DesignatedInitExpr::getSourceRange() const {
1545  SourceLocation StartLoc;
1546  Designator &First =
1547    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
1548  if (First.isFieldDesignator()) {
1549    if (UsesColonSyntax)
1550      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
1551    else
1552      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
1553  } else
1554    StartLoc =
1555      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
1556  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
1557}
1558
1559DesignatedInitExpr::designators_iterator
1560DesignatedInitExpr::designators_begin() {
1561  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1562  Ptr += sizeof(DesignatedInitExpr);
1563  return static_cast<Designator*>(static_cast<void*>(Ptr));
1564}
1565
1566DesignatedInitExpr::designators_iterator DesignatedInitExpr::designators_end() {
1567  return designators_begin() + NumDesignators;
1568}
1569
1570Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
1571  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
1572  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1573  Ptr += sizeof(DesignatedInitExpr);
1574  Ptr += sizeof(Designator) * NumDesignators;
1575  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1576  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
1577}
1578
1579Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
1580  assert(D.Kind == Designator::ArrayRangeDesignator &&
1581         "Requires array range designator");
1582  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1583  Ptr += sizeof(DesignatedInitExpr);
1584  Ptr += sizeof(Designator) * NumDesignators;
1585  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1586  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
1587}
1588
1589Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
1590  assert(D.Kind == Designator::ArrayRangeDesignator &&
1591         "Requires array range designator");
1592  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1593  Ptr += sizeof(DesignatedInitExpr);
1594  Ptr += sizeof(Designator) * NumDesignators;
1595  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1596  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
1597}
1598
1599//===----------------------------------------------------------------------===//
1600//  ExprIterator.
1601//===----------------------------------------------------------------------===//
1602
1603Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
1604Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
1605Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
1606const Expr* ConstExprIterator::operator[](size_t idx) const {
1607  return cast<Expr>(I[idx]);
1608}
1609const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
1610const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
1611
1612//===----------------------------------------------------------------------===//
1613//  Child Iterators for iterating over subexpressions/substatements
1614//===----------------------------------------------------------------------===//
1615
1616// DeclRefExpr
1617Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
1618Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
1619
1620// ObjCIvarRefExpr
1621Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
1622Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
1623
1624// ObjCPropertyRefExpr
1625Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
1626Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
1627
1628// ObjCKVCRefExpr
1629Stmt::child_iterator ObjCKVCRefExpr::child_begin() { return &Base; }
1630Stmt::child_iterator ObjCKVCRefExpr::child_end() { return &Base+1; }
1631
1632// ObjCSuperExpr
1633Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
1634Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
1635
1636// PredefinedExpr
1637Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
1638Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
1639
1640// IntegerLiteral
1641Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
1642Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
1643
1644// CharacterLiteral
1645Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
1646Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
1647
1648// FloatingLiteral
1649Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
1650Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
1651
1652// ImaginaryLiteral
1653Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
1654Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
1655
1656// StringLiteral
1657Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
1658Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
1659
1660// ParenExpr
1661Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
1662Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
1663
1664// UnaryOperator
1665Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
1666Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
1667
1668// SizeOfAlignOfExpr
1669Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
1670  // If this is of a type and the type is a VLA type (and not a typedef), the
1671  // size expression of the VLA needs to be treated as an executable expression.
1672  // Why isn't this weirdness documented better in StmtIterator?
1673  if (isArgumentType()) {
1674    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
1675                                   getArgumentType().getTypePtr()))
1676      return child_iterator(T);
1677    return child_iterator();
1678  }
1679  return child_iterator(&Argument.Ex);
1680}
1681Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
1682  if (isArgumentType())
1683    return child_iterator();
1684  return child_iterator(&Argument.Ex + 1);
1685}
1686
1687// ArraySubscriptExpr
1688Stmt::child_iterator ArraySubscriptExpr::child_begin() {
1689  return &SubExprs[0];
1690}
1691Stmt::child_iterator ArraySubscriptExpr::child_end() {
1692  return &SubExprs[0]+END_EXPR;
1693}
1694
1695// CallExpr
1696Stmt::child_iterator CallExpr::child_begin() {
1697  return &SubExprs[0];
1698}
1699Stmt::child_iterator CallExpr::child_end() {
1700  return &SubExprs[0]+NumArgs+ARGS_START;
1701}
1702
1703// MemberExpr
1704Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
1705Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
1706
1707// ExtVectorElementExpr
1708Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
1709Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
1710
1711// CompoundLiteralExpr
1712Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
1713Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
1714
1715// CastExpr
1716Stmt::child_iterator CastExpr::child_begin() { return &Op; }
1717Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
1718
1719// BinaryOperator
1720Stmt::child_iterator BinaryOperator::child_begin() {
1721  return &SubExprs[0];
1722}
1723Stmt::child_iterator BinaryOperator::child_end() {
1724  return &SubExprs[0]+END_EXPR;
1725}
1726
1727// ConditionalOperator
1728Stmt::child_iterator ConditionalOperator::child_begin() {
1729  return &SubExprs[0];
1730}
1731Stmt::child_iterator ConditionalOperator::child_end() {
1732  return &SubExprs[0]+END_EXPR;
1733}
1734
1735// AddrLabelExpr
1736Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
1737Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
1738
1739// StmtExpr
1740Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
1741Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
1742
1743// TypesCompatibleExpr
1744Stmt::child_iterator TypesCompatibleExpr::child_begin() {
1745  return child_iterator();
1746}
1747
1748Stmt::child_iterator TypesCompatibleExpr::child_end() {
1749  return child_iterator();
1750}
1751
1752// ChooseExpr
1753Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
1754Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
1755
1756// GNUNullExpr
1757Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
1758Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
1759
1760// OverloadExpr
1761Stmt::child_iterator OverloadExpr::child_begin() { return &SubExprs[0]; }
1762Stmt::child_iterator OverloadExpr::child_end() { return &SubExprs[0]+NumExprs; }
1763
1764// ShuffleVectorExpr
1765Stmt::child_iterator ShuffleVectorExpr::child_begin() {
1766  return &SubExprs[0];
1767}
1768Stmt::child_iterator ShuffleVectorExpr::child_end() {
1769  return &SubExprs[0]+NumExprs;
1770}
1771
1772// VAArgExpr
1773Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
1774Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
1775
1776// InitListExpr
1777Stmt::child_iterator InitListExpr::child_begin() {
1778  return InitExprs.size() ? &InitExprs[0] : 0;
1779}
1780Stmt::child_iterator InitListExpr::child_end() {
1781  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
1782}
1783
1784// DesignatedInitExpr
1785Stmt::child_iterator DesignatedInitExpr::child_begin() {
1786  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1787  Ptr += sizeof(DesignatedInitExpr);
1788  Ptr += sizeof(Designator) * NumDesignators;
1789  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1790}
1791Stmt::child_iterator DesignatedInitExpr::child_end() {
1792  return child_iterator(&*child_begin() + NumSubExprs);
1793}
1794
1795// ImplicitValueInitExpr
1796Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
1797  return child_iterator();
1798}
1799
1800Stmt::child_iterator ImplicitValueInitExpr::child_end() {
1801  return child_iterator();
1802}
1803
1804// ObjCStringLiteral
1805Stmt::child_iterator ObjCStringLiteral::child_begin() {
1806  return child_iterator();
1807}
1808Stmt::child_iterator ObjCStringLiteral::child_end() {
1809  return child_iterator();
1810}
1811
1812// ObjCEncodeExpr
1813Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
1814Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
1815
1816// ObjCSelectorExpr
1817Stmt::child_iterator ObjCSelectorExpr::child_begin() {
1818  return child_iterator();
1819}
1820Stmt::child_iterator ObjCSelectorExpr::child_end() {
1821  return child_iterator();
1822}
1823
1824// ObjCProtocolExpr
1825Stmt::child_iterator ObjCProtocolExpr::child_begin() {
1826  return child_iterator();
1827}
1828Stmt::child_iterator ObjCProtocolExpr::child_end() {
1829  return child_iterator();
1830}
1831
1832// ObjCMessageExpr
1833Stmt::child_iterator ObjCMessageExpr::child_begin() {
1834  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
1835}
1836Stmt::child_iterator ObjCMessageExpr::child_end() {
1837  return &SubExprs[0]+ARGS_START+getNumArgs();
1838}
1839
1840// Blocks
1841Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
1842Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
1843
1844Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
1845Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
1846