Expr.cpp revision 2f59979a7cc7929f53c9984423b0abeb83113442
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Primary Expressions.
32//===----------------------------------------------------------------------===//
33
34void ExplicitTemplateArgumentList::initializeFrom(
35                                      const TemplateArgumentListInfo &Info) {
36  LAngleLoc = Info.getLAngleLoc();
37  RAngleLoc = Info.getRAngleLoc();
38  NumTemplateArgs = Info.size();
39
40  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
41  for (unsigned i = 0; i != NumTemplateArgs; ++i)
42    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
43}
44
45void ExplicitTemplateArgumentList::copyInto(
46                                      TemplateArgumentListInfo &Info) const {
47  Info.setLAngleLoc(LAngleLoc);
48  Info.setRAngleLoc(RAngleLoc);
49  for (unsigned I = 0; I != NumTemplateArgs; ++I)
50    Info.addArgument(getTemplateArgs()[I]);
51}
52
53std::size_t ExplicitTemplateArgumentList::sizeFor(
54                                      const TemplateArgumentListInfo &Info) {
55  return sizeof(ExplicitTemplateArgumentList) +
56         sizeof(TemplateArgumentLoc) * Info.size();
57}
58
59void DeclRefExpr::computeDependence() {
60  TypeDependent = false;
61  ValueDependent = false;
62
63  NamedDecl *D = getDecl();
64
65  // (TD) C++ [temp.dep.expr]p3:
66  //   An id-expression is type-dependent if it contains:
67  //
68  // and
69  //
70  // (VD) C++ [temp.dep.constexpr]p2:
71  //  An identifier is value-dependent if it is:
72
73  //  (TD)  - an identifier that was declared with dependent type
74  //  (VD)  - a name declared with a dependent type,
75  if (getType()->isDependentType()) {
76    TypeDependent = true;
77    ValueDependent = true;
78  }
79  //  (TD)  - a conversion-function-id that specifies a dependent type
80  else if (D->getDeclName().getNameKind()
81                               == DeclarationName::CXXConversionFunctionName &&
82           D->getDeclName().getCXXNameType()->isDependentType()) {
83    TypeDependent = true;
84    ValueDependent = true;
85  }
86  //  (TD)  - a template-id that is dependent,
87  else if (hasExplicitTemplateArgumentList() &&
88           TemplateSpecializationType::anyDependentTemplateArguments(
89                                                       getTemplateArgs(),
90                                                       getNumTemplateArgs())) {
91    TypeDependent = true;
92    ValueDependent = true;
93  }
94  //  (VD)  - the name of a non-type template parameter,
95  else if (isa<NonTypeTemplateParmDecl>(D))
96    ValueDependent = true;
97  //  (VD) - a constant with integral or enumeration type and is
98  //         initialized with an expression that is value-dependent.
99  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
100    if (Var->getType()->isIntegralType() &&
101        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
102      if (const Expr *Init = Var->getAnyInitializer())
103        if (Init->isValueDependent())
104          ValueDependent = true;
105    }
106  }
107  //  (TD)  - a nested-name-specifier or a qualified-id that names a
108  //          member of an unknown specialization.
109  //        (handled by DependentScopeDeclRefExpr)
110}
111
112DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
113                         SourceRange QualifierRange,
114                         ValueDecl *D, SourceLocation NameLoc,
115                         const TemplateArgumentListInfo *TemplateArgs,
116                         QualType T)
117  : Expr(DeclRefExprClass, T, false, false),
118    DecoratedD(D,
119               (Qualifier? HasQualifierFlag : 0) |
120               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
121    Loc(NameLoc) {
122  if (Qualifier) {
123    NameQualifier *NQ = getNameQualifier();
124    NQ->NNS = Qualifier;
125    NQ->Range = QualifierRange;
126  }
127
128  if (TemplateArgs)
129    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
130
131  computeDependence();
132}
133
134DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
135                                 NestedNameSpecifier *Qualifier,
136                                 SourceRange QualifierRange,
137                                 ValueDecl *D,
138                                 SourceLocation NameLoc,
139                                 QualType T,
140                                 const TemplateArgumentListInfo *TemplateArgs) {
141  std::size_t Size = sizeof(DeclRefExpr);
142  if (Qualifier != 0)
143    Size += sizeof(NameQualifier);
144
145  if (TemplateArgs)
146    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
147
148  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
149  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
150                               TemplateArgs, T);
151}
152
153SourceRange DeclRefExpr::getSourceRange() const {
154  // FIXME: Does not handle multi-token names well, e.g., operator[].
155  SourceRange R(Loc);
156
157  if (hasQualifier())
158    R.setBegin(getQualifierRange().getBegin());
159  if (hasExplicitTemplateArgumentList())
160    R.setEnd(getRAngleLoc());
161  return R;
162}
163
164// FIXME: Maybe this should use DeclPrinter with a special "print predefined
165// expr" policy instead.
166std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
167  ASTContext &Context = CurrentDecl->getASTContext();
168
169  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
170    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
171      return FD->getNameAsString();
172
173    llvm::SmallString<256> Name;
174    llvm::raw_svector_ostream Out(Name);
175
176    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
177      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
178        Out << "virtual ";
179      if (MD->isStatic())
180        Out << "static ";
181    }
182
183    PrintingPolicy Policy(Context.getLangOptions());
184
185    std::string Proto = FD->getQualifiedNameAsString(Policy);
186
187    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
188    const FunctionProtoType *FT = 0;
189    if (FD->hasWrittenPrototype())
190      FT = dyn_cast<FunctionProtoType>(AFT);
191
192    Proto += "(";
193    if (FT) {
194      llvm::raw_string_ostream POut(Proto);
195      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
196        if (i) POut << ", ";
197        std::string Param;
198        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
199        POut << Param;
200      }
201
202      if (FT->isVariadic()) {
203        if (FD->getNumParams()) POut << ", ";
204        POut << "...";
205      }
206    }
207    Proto += ")";
208
209    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
210      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
211      if (ThisQuals.hasConst())
212        Proto += " const";
213      if (ThisQuals.hasVolatile())
214        Proto += " volatile";
215    }
216
217    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
218      AFT->getResultType().getAsStringInternal(Proto, Policy);
219
220    Out << Proto;
221
222    Out.flush();
223    return Name.str().str();
224  }
225  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
226    llvm::SmallString<256> Name;
227    llvm::raw_svector_ostream Out(Name);
228    Out << (MD->isInstanceMethod() ? '-' : '+');
229    Out << '[';
230
231    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
232    // a null check to avoid a crash.
233    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
234      Out << ID->getNameAsString();
235
236    if (const ObjCCategoryImplDecl *CID =
237        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
238      Out << '(';
239      Out <<  CID->getNameAsString();
240      Out <<  ')';
241    }
242    Out <<  ' ';
243    Out << MD->getSelector().getAsString();
244    Out <<  ']';
245
246    Out.flush();
247    return Name.str().str();
248  }
249  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
250    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
251    return "top level";
252  }
253  return "";
254}
255
256/// getValueAsApproximateDouble - This returns the value as an inaccurate
257/// double.  Note that this may cause loss of precision, but is useful for
258/// debugging dumps, etc.
259double FloatingLiteral::getValueAsApproximateDouble() const {
260  llvm::APFloat V = getValue();
261  bool ignored;
262  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
263            &ignored);
264  return V.convertToDouble();
265}
266
267StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
268                                     unsigned ByteLength, bool Wide,
269                                     QualType Ty,
270                                     const SourceLocation *Loc,
271                                     unsigned NumStrs) {
272  // Allocate enough space for the StringLiteral plus an array of locations for
273  // any concatenated string tokens.
274  void *Mem = C.Allocate(sizeof(StringLiteral)+
275                         sizeof(SourceLocation)*(NumStrs-1),
276                         llvm::alignof<StringLiteral>());
277  StringLiteral *SL = new (Mem) StringLiteral(Ty);
278
279  // OPTIMIZE: could allocate this appended to the StringLiteral.
280  char *AStrData = new (C, 1) char[ByteLength];
281  memcpy(AStrData, StrData, ByteLength);
282  SL->StrData = AStrData;
283  SL->ByteLength = ByteLength;
284  SL->IsWide = Wide;
285  SL->TokLocs[0] = Loc[0];
286  SL->NumConcatenated = NumStrs;
287
288  if (NumStrs != 1)
289    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
290  return SL;
291}
292
293StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
294  void *Mem = C.Allocate(sizeof(StringLiteral)+
295                         sizeof(SourceLocation)*(NumStrs-1),
296                         llvm::alignof<StringLiteral>());
297  StringLiteral *SL = new (Mem) StringLiteral(QualType());
298  SL->StrData = 0;
299  SL->ByteLength = 0;
300  SL->NumConcatenated = NumStrs;
301  return SL;
302}
303
304void StringLiteral::DoDestroy(ASTContext &C) {
305  C.Deallocate(const_cast<char*>(StrData));
306  Expr::DoDestroy(C);
307}
308
309void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
310  if (StrData)
311    C.Deallocate(const_cast<char*>(StrData));
312
313  char *AStrData = new (C, 1) char[Str.size()];
314  memcpy(AStrData, Str.data(), Str.size());
315  StrData = AStrData;
316  ByteLength = Str.size();
317}
318
319/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
320/// corresponds to, e.g. "sizeof" or "[pre]++".
321const char *UnaryOperator::getOpcodeStr(Opcode Op) {
322  switch (Op) {
323  default: assert(0 && "Unknown unary operator");
324  case PostInc: return "++";
325  case PostDec: return "--";
326  case PreInc:  return "++";
327  case PreDec:  return "--";
328  case AddrOf:  return "&";
329  case Deref:   return "*";
330  case Plus:    return "+";
331  case Minus:   return "-";
332  case Not:     return "~";
333  case LNot:    return "!";
334  case Real:    return "__real";
335  case Imag:    return "__imag";
336  case Extension: return "__extension__";
337  case OffsetOf: return "__builtin_offsetof";
338  }
339}
340
341UnaryOperator::Opcode
342UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
343  switch (OO) {
344  default: assert(false && "No unary operator for overloaded function");
345  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
346  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
347  case OO_Amp:        return AddrOf;
348  case OO_Star:       return Deref;
349  case OO_Plus:       return Plus;
350  case OO_Minus:      return Minus;
351  case OO_Tilde:      return Not;
352  case OO_Exclaim:    return LNot;
353  }
354}
355
356OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
357  switch (Opc) {
358  case PostInc: case PreInc: return OO_PlusPlus;
359  case PostDec: case PreDec: return OO_MinusMinus;
360  case AddrOf: return OO_Amp;
361  case Deref: return OO_Star;
362  case Plus: return OO_Plus;
363  case Minus: return OO_Minus;
364  case Not: return OO_Tilde;
365  case LNot: return OO_Exclaim;
366  default: return OO_None;
367  }
368}
369
370
371//===----------------------------------------------------------------------===//
372// Postfix Operators.
373//===----------------------------------------------------------------------===//
374
375CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
376                   unsigned numargs, QualType t, SourceLocation rparenloc)
377  : Expr(SC, t,
378         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
379         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
380    NumArgs(numargs) {
381
382  SubExprs = new (C) Stmt*[numargs+1];
383  SubExprs[FN] = fn;
384  for (unsigned i = 0; i != numargs; ++i)
385    SubExprs[i+ARGS_START] = args[i];
386
387  RParenLoc = rparenloc;
388}
389
390CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
391                   QualType t, SourceLocation rparenloc)
392  : Expr(CallExprClass, t,
393         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
394         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
395    NumArgs(numargs) {
396
397  SubExprs = new (C) Stmt*[numargs+1];
398  SubExprs[FN] = fn;
399  for (unsigned i = 0; i != numargs; ++i)
400    SubExprs[i+ARGS_START] = args[i];
401
402  RParenLoc = rparenloc;
403}
404
405CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
406  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
407  SubExprs = new (C) Stmt*[1];
408}
409
410void CallExpr::DoDestroy(ASTContext& C) {
411  DestroyChildren(C);
412  if (SubExprs) C.Deallocate(SubExprs);
413  this->~CallExpr();
414  C.Deallocate(this);
415}
416
417Decl *CallExpr::getCalleeDecl() {
418  Expr *CEE = getCallee()->IgnoreParenCasts();
419  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
420    return DRE->getDecl();
421  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
422    return ME->getMemberDecl();
423
424  return 0;
425}
426
427FunctionDecl *CallExpr::getDirectCallee() {
428  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
429}
430
431/// setNumArgs - This changes the number of arguments present in this call.
432/// Any orphaned expressions are deleted by this, and any new operands are set
433/// to null.
434void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
435  // No change, just return.
436  if (NumArgs == getNumArgs()) return;
437
438  // If shrinking # arguments, just delete the extras and forgot them.
439  if (NumArgs < getNumArgs()) {
440    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
441      getArg(i)->Destroy(C);
442    this->NumArgs = NumArgs;
443    return;
444  }
445
446  // Otherwise, we are growing the # arguments.  New an bigger argument array.
447  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
448  // Copy over args.
449  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
450    NewSubExprs[i] = SubExprs[i];
451  // Null out new args.
452  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
453    NewSubExprs[i] = 0;
454
455  if (SubExprs) C.Deallocate(SubExprs);
456  SubExprs = NewSubExprs;
457  this->NumArgs = NumArgs;
458}
459
460/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
461/// not, return 0.
462unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
463  // All simple function calls (e.g. func()) are implicitly cast to pointer to
464  // function. As a result, we try and obtain the DeclRefExpr from the
465  // ImplicitCastExpr.
466  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
467  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
468    return 0;
469
470  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
471  if (!DRE)
472    return 0;
473
474  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
475  if (!FDecl)
476    return 0;
477
478  if (!FDecl->getIdentifier())
479    return 0;
480
481  return FDecl->getBuiltinID();
482}
483
484QualType CallExpr::getCallReturnType() const {
485  QualType CalleeType = getCallee()->getType();
486  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
487    CalleeType = FnTypePtr->getPointeeType();
488  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
489    CalleeType = BPT->getPointeeType();
490
491  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
492  return FnType->getResultType();
493}
494
495MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
496                               NestedNameSpecifier *qual,
497                               SourceRange qualrange,
498                               ValueDecl *memberdecl,
499                               NamedDecl *founddecl,
500                               SourceLocation l,
501                               const TemplateArgumentListInfo *targs,
502                               QualType ty) {
503  std::size_t Size = sizeof(MemberExpr);
504
505  bool hasQualOrFound = (qual != 0 || founddecl != memberdecl);
506  if (hasQualOrFound)
507    Size += sizeof(MemberNameQualifier);
508
509  if (targs)
510    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
511
512  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
513  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, l, ty);
514
515  if (hasQualOrFound) {
516    if (qual && qual->isDependent()) {
517      E->setValueDependent(true);
518      E->setTypeDependent(true);
519    }
520    E->HasQualifierOrFoundDecl = true;
521
522    MemberNameQualifier *NQ = E->getMemberQualifier();
523    NQ->NNS = qual;
524    NQ->Range = qualrange;
525    NQ->FoundDecl = founddecl;
526  }
527
528  if (targs) {
529    E->HasExplicitTemplateArgumentList = true;
530    E->getExplicitTemplateArgumentList()->initializeFrom(*targs);
531  }
532
533  return E;
534}
535
536const char *CastExpr::getCastKindName() const {
537  switch (getCastKind()) {
538  case CastExpr::CK_Unknown:
539    return "Unknown";
540  case CastExpr::CK_BitCast:
541    return "BitCast";
542  case CastExpr::CK_NoOp:
543    return "NoOp";
544  case CastExpr::CK_BaseToDerived:
545    return "BaseToDerived";
546  case CastExpr::CK_DerivedToBase:
547    return "DerivedToBase";
548  case CastExpr::CK_UncheckedDerivedToBase:
549    return "UncheckedDerivedToBase";
550  case CastExpr::CK_Dynamic:
551    return "Dynamic";
552  case CastExpr::CK_ToUnion:
553    return "ToUnion";
554  case CastExpr::CK_ArrayToPointerDecay:
555    return "ArrayToPointerDecay";
556  case CastExpr::CK_FunctionToPointerDecay:
557    return "FunctionToPointerDecay";
558  case CastExpr::CK_NullToMemberPointer:
559    return "NullToMemberPointer";
560  case CastExpr::CK_BaseToDerivedMemberPointer:
561    return "BaseToDerivedMemberPointer";
562  case CastExpr::CK_DerivedToBaseMemberPointer:
563    return "DerivedToBaseMemberPointer";
564  case CastExpr::CK_UserDefinedConversion:
565    return "UserDefinedConversion";
566  case CastExpr::CK_ConstructorConversion:
567    return "ConstructorConversion";
568  case CastExpr::CK_IntegralToPointer:
569    return "IntegralToPointer";
570  case CastExpr::CK_PointerToIntegral:
571    return "PointerToIntegral";
572  case CastExpr::CK_ToVoid:
573    return "ToVoid";
574  case CastExpr::CK_VectorSplat:
575    return "VectorSplat";
576  case CastExpr::CK_IntegralCast:
577    return "IntegralCast";
578  case CastExpr::CK_IntegralToFloating:
579    return "IntegralToFloating";
580  case CastExpr::CK_FloatingToIntegral:
581    return "FloatingToIntegral";
582  case CastExpr::CK_FloatingCast:
583    return "FloatingCast";
584  case CastExpr::CK_MemberPointerToBoolean:
585    return "MemberPointerToBoolean";
586  case CastExpr::CK_AnyPointerToObjCPointerCast:
587    return "AnyPointerToObjCPointerCast";
588  case CastExpr::CK_AnyPointerToBlockPointerCast:
589    return "AnyPointerToBlockPointerCast";
590  }
591
592  assert(0 && "Unhandled cast kind!");
593  return 0;
594}
595
596Expr *CastExpr::getSubExprAsWritten() {
597  Expr *SubExpr = 0;
598  CastExpr *E = this;
599  do {
600    SubExpr = E->getSubExpr();
601
602    // Skip any temporary bindings; they're implicit.
603    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
604      SubExpr = Binder->getSubExpr();
605
606    // Conversions by constructor and conversion functions have a
607    // subexpression describing the call; strip it off.
608    if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
609      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
610    else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
611      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
612
613    // If the subexpression we're left with is an implicit cast, look
614    // through that, too.
615  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
616
617  return SubExpr;
618}
619
620/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
621/// corresponds to, e.g. "<<=".
622const char *BinaryOperator::getOpcodeStr(Opcode Op) {
623  switch (Op) {
624  case PtrMemD:   return ".*";
625  case PtrMemI:   return "->*";
626  case Mul:       return "*";
627  case Div:       return "/";
628  case Rem:       return "%";
629  case Add:       return "+";
630  case Sub:       return "-";
631  case Shl:       return "<<";
632  case Shr:       return ">>";
633  case LT:        return "<";
634  case GT:        return ">";
635  case LE:        return "<=";
636  case GE:        return ">=";
637  case EQ:        return "==";
638  case NE:        return "!=";
639  case And:       return "&";
640  case Xor:       return "^";
641  case Or:        return "|";
642  case LAnd:      return "&&";
643  case LOr:       return "||";
644  case Assign:    return "=";
645  case MulAssign: return "*=";
646  case DivAssign: return "/=";
647  case RemAssign: return "%=";
648  case AddAssign: return "+=";
649  case SubAssign: return "-=";
650  case ShlAssign: return "<<=";
651  case ShrAssign: return ">>=";
652  case AndAssign: return "&=";
653  case XorAssign: return "^=";
654  case OrAssign:  return "|=";
655  case Comma:     return ",";
656  }
657
658  return "";
659}
660
661BinaryOperator::Opcode
662BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
663  switch (OO) {
664  default: assert(false && "Not an overloadable binary operator");
665  case OO_Plus: return Add;
666  case OO_Minus: return Sub;
667  case OO_Star: return Mul;
668  case OO_Slash: return Div;
669  case OO_Percent: return Rem;
670  case OO_Caret: return Xor;
671  case OO_Amp: return And;
672  case OO_Pipe: return Or;
673  case OO_Equal: return Assign;
674  case OO_Less: return LT;
675  case OO_Greater: return GT;
676  case OO_PlusEqual: return AddAssign;
677  case OO_MinusEqual: return SubAssign;
678  case OO_StarEqual: return MulAssign;
679  case OO_SlashEqual: return DivAssign;
680  case OO_PercentEqual: return RemAssign;
681  case OO_CaretEqual: return XorAssign;
682  case OO_AmpEqual: return AndAssign;
683  case OO_PipeEqual: return OrAssign;
684  case OO_LessLess: return Shl;
685  case OO_GreaterGreater: return Shr;
686  case OO_LessLessEqual: return ShlAssign;
687  case OO_GreaterGreaterEqual: return ShrAssign;
688  case OO_EqualEqual: return EQ;
689  case OO_ExclaimEqual: return NE;
690  case OO_LessEqual: return LE;
691  case OO_GreaterEqual: return GE;
692  case OO_AmpAmp: return LAnd;
693  case OO_PipePipe: return LOr;
694  case OO_Comma: return Comma;
695  case OO_ArrowStar: return PtrMemI;
696  }
697}
698
699OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
700  static const OverloadedOperatorKind OverOps[] = {
701    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
702    OO_Star, OO_Slash, OO_Percent,
703    OO_Plus, OO_Minus,
704    OO_LessLess, OO_GreaterGreater,
705    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
706    OO_EqualEqual, OO_ExclaimEqual,
707    OO_Amp,
708    OO_Caret,
709    OO_Pipe,
710    OO_AmpAmp,
711    OO_PipePipe,
712    OO_Equal, OO_StarEqual,
713    OO_SlashEqual, OO_PercentEqual,
714    OO_PlusEqual, OO_MinusEqual,
715    OO_LessLessEqual, OO_GreaterGreaterEqual,
716    OO_AmpEqual, OO_CaretEqual,
717    OO_PipeEqual,
718    OO_Comma
719  };
720  return OverOps[Opc];
721}
722
723InitListExpr::InitListExpr(SourceLocation lbraceloc,
724                           Expr **initExprs, unsigned numInits,
725                           SourceLocation rbraceloc)
726  : Expr(InitListExprClass, QualType(), false, false),
727    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
728    UnionFieldInit(0), HadArrayRangeDesignator(false)
729{
730  for (unsigned I = 0; I != numInits; ++I) {
731    if (initExprs[I]->isTypeDependent())
732      TypeDependent = true;
733    if (initExprs[I]->isValueDependent())
734      ValueDependent = true;
735  }
736
737  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
738}
739
740void InitListExpr::reserveInits(unsigned NumInits) {
741  if (NumInits > InitExprs.size())
742    InitExprs.reserve(NumInits);
743}
744
745void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
746  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
747       Idx < LastIdx; ++Idx)
748    InitExprs[Idx]->Destroy(Context);
749  InitExprs.resize(NumInits, 0);
750}
751
752Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
753  if (Init >= InitExprs.size()) {
754    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
755    InitExprs.back() = expr;
756    return 0;
757  }
758
759  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
760  InitExprs[Init] = expr;
761  return Result;
762}
763
764/// getFunctionType - Return the underlying function type for this block.
765///
766const FunctionType *BlockExpr::getFunctionType() const {
767  return getType()->getAs<BlockPointerType>()->
768                    getPointeeType()->getAs<FunctionType>();
769}
770
771SourceLocation BlockExpr::getCaretLocation() const {
772  return TheBlock->getCaretLocation();
773}
774const Stmt *BlockExpr::getBody() const {
775  return TheBlock->getBody();
776}
777Stmt *BlockExpr::getBody() {
778  return TheBlock->getBody();
779}
780
781
782//===----------------------------------------------------------------------===//
783// Generic Expression Routines
784//===----------------------------------------------------------------------===//
785
786/// isUnusedResultAWarning - Return true if this immediate expression should
787/// be warned about if the result is unused.  If so, fill in Loc and Ranges
788/// with location to warn on and the source range[s] to report with the
789/// warning.
790bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
791                                  SourceRange &R2, ASTContext &Ctx) const {
792  // Don't warn if the expr is type dependent. The type could end up
793  // instantiating to void.
794  if (isTypeDependent())
795    return false;
796
797  switch (getStmtClass()) {
798  default:
799    if (getType()->isVoidType())
800      return false;
801    Loc = getExprLoc();
802    R1 = getSourceRange();
803    return true;
804  case ParenExprClass:
805    return cast<ParenExpr>(this)->getSubExpr()->
806      isUnusedResultAWarning(Loc, R1, R2, Ctx);
807  case UnaryOperatorClass: {
808    const UnaryOperator *UO = cast<UnaryOperator>(this);
809
810    switch (UO->getOpcode()) {
811    default: break;
812    case UnaryOperator::PostInc:
813    case UnaryOperator::PostDec:
814    case UnaryOperator::PreInc:
815    case UnaryOperator::PreDec:                 // ++/--
816      return false;  // Not a warning.
817    case UnaryOperator::Deref:
818      // Dereferencing a volatile pointer is a side-effect.
819      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
820        return false;
821      break;
822    case UnaryOperator::Real:
823    case UnaryOperator::Imag:
824      // accessing a piece of a volatile complex is a side-effect.
825      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
826          .isVolatileQualified())
827        return false;
828      break;
829    case UnaryOperator::Extension:
830      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
831    }
832    Loc = UO->getOperatorLoc();
833    R1 = UO->getSubExpr()->getSourceRange();
834    return true;
835  }
836  case BinaryOperatorClass: {
837    const BinaryOperator *BO = cast<BinaryOperator>(this);
838    // Consider comma to have side effects if the LHS or RHS does.
839    if (BO->getOpcode() == BinaryOperator::Comma) {
840      // ((foo = <blah>), 0) is an idiom for hiding the result (and
841      // lvalue-ness) of an assignment written in a macro.
842      if (IntegerLiteral *IE =
843            dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
844        if (IE->getValue() == 0)
845          return false;
846
847      return (BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
848              BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
849    }
850
851    if (BO->isAssignmentOp())
852      return false;
853    Loc = BO->getOperatorLoc();
854    R1 = BO->getLHS()->getSourceRange();
855    R2 = BO->getRHS()->getSourceRange();
856    return true;
857  }
858  case CompoundAssignOperatorClass:
859    return false;
860
861  case ConditionalOperatorClass: {
862    // The condition must be evaluated, but if either the LHS or RHS is a
863    // warning, warn about them.
864    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
865    if (Exp->getLHS() &&
866        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
867      return true;
868    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
869  }
870
871  case MemberExprClass:
872    // If the base pointer or element is to a volatile pointer/field, accessing
873    // it is a side effect.
874    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
875      return false;
876    Loc = cast<MemberExpr>(this)->getMemberLoc();
877    R1 = SourceRange(Loc, Loc);
878    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
879    return true;
880
881  case ArraySubscriptExprClass:
882    // If the base pointer or element is to a volatile pointer/field, accessing
883    // it is a side effect.
884    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
885      return false;
886    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
887    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
888    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
889    return true;
890
891  case CallExprClass:
892  case CXXOperatorCallExprClass:
893  case CXXMemberCallExprClass: {
894    // If this is a direct call, get the callee.
895    const CallExpr *CE = cast<CallExpr>(this);
896    if (const Decl *FD = CE->getCalleeDecl()) {
897      // If the callee has attribute pure, const, or warn_unused_result, warn
898      // about it. void foo() { strlen("bar"); } should warn.
899      //
900      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
901      // updated to match for QoI.
902      if (FD->getAttr<WarnUnusedResultAttr>() ||
903          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
904        Loc = CE->getCallee()->getLocStart();
905        R1 = CE->getCallee()->getSourceRange();
906
907        if (unsigned NumArgs = CE->getNumArgs())
908          R2 = SourceRange(CE->getArg(0)->getLocStart(),
909                           CE->getArg(NumArgs-1)->getLocEnd());
910        return true;
911      }
912    }
913    return false;
914  }
915
916  case CXXTemporaryObjectExprClass:
917  case CXXConstructExprClass:
918    return false;
919
920  case ObjCMessageExprClass: {
921    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
922    const ObjCMethodDecl *MD = ME->getMethodDecl();
923    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
924      Loc = getExprLoc();
925      return true;
926    }
927    return false;
928  }
929
930  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
931#if 0
932    const ObjCImplicitSetterGetterRefExpr *Ref =
933      cast<ObjCImplicitSetterGetterRefExpr>(this);
934    // FIXME: We really want the location of the '.' here.
935    Loc = Ref->getLocation();
936    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
937    if (Ref->getBase())
938      R2 = Ref->getBase()->getSourceRange();
939#else
940    Loc = getExprLoc();
941    R1 = getSourceRange();
942#endif
943    return true;
944  }
945  case StmtExprClass: {
946    // Statement exprs don't logically have side effects themselves, but are
947    // sometimes used in macros in ways that give them a type that is unused.
948    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
949    // however, if the result of the stmt expr is dead, we don't want to emit a
950    // warning.
951    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
952    if (!CS->body_empty())
953      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
954        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
955
956    if (getType()->isVoidType())
957      return false;
958    Loc = cast<StmtExpr>(this)->getLParenLoc();
959    R1 = getSourceRange();
960    return true;
961  }
962  case CStyleCastExprClass:
963    // If this is an explicit cast to void, allow it.  People do this when they
964    // think they know what they're doing :).
965    if (getType()->isVoidType())
966      return false;
967    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
968    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
969    return true;
970  case CXXFunctionalCastExprClass: {
971    if (getType()->isVoidType())
972      return false;
973    const CastExpr *CE = cast<CastExpr>(this);
974
975    // If this is a cast to void or a constructor conversion, check the operand.
976    // Otherwise, the result of the cast is unused.
977    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
978        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
979      return (cast<CastExpr>(this)->getSubExpr()
980              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
981    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
982    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
983    return true;
984  }
985
986  case ImplicitCastExprClass:
987    // Check the operand, since implicit casts are inserted by Sema
988    return (cast<ImplicitCastExpr>(this)
989            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
990
991  case CXXDefaultArgExprClass:
992    return (cast<CXXDefaultArgExpr>(this)
993            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
994
995  case CXXNewExprClass:
996    // FIXME: In theory, there might be new expressions that don't have side
997    // effects (e.g. a placement new with an uninitialized POD).
998  case CXXDeleteExprClass:
999    return false;
1000  case CXXBindTemporaryExprClass:
1001    return (cast<CXXBindTemporaryExpr>(this)
1002            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1003  case CXXExprWithTemporariesClass:
1004    return (cast<CXXExprWithTemporaries>(this)
1005            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1006  }
1007}
1008
1009/// DeclCanBeLvalue - Determine whether the given declaration can be
1010/// an lvalue. This is a helper routine for isLvalue.
1011static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
1012  // C++ [temp.param]p6:
1013  //   A non-type non-reference template-parameter is not an lvalue.
1014  if (const NonTypeTemplateParmDecl *NTTParm
1015        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
1016    return NTTParm->getType()->isReferenceType();
1017
1018  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
1019    // C++ 3.10p2: An lvalue refers to an object or function.
1020    (Ctx.getLangOptions().CPlusPlus &&
1021     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
1022}
1023
1024/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
1025/// incomplete type other than void. Nonarray expressions that can be lvalues:
1026///  - name, where name must be a variable
1027///  - e[i]
1028///  - (e), where e must be an lvalue
1029///  - e.name, where e must be an lvalue
1030///  - e->name
1031///  - *e, the type of e cannot be a function type
1032///  - string-constant
1033///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
1034///  - reference type [C++ [expr]]
1035///
1036Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
1037  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
1038
1039  isLvalueResult Res = isLvalueInternal(Ctx);
1040  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
1041    return Res;
1042
1043  // first, check the type (C99 6.3.2.1). Expressions with function
1044  // type in C are not lvalues, but they can be lvalues in C++.
1045  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
1046    return LV_NotObjectType;
1047
1048  // Allow qualified void which is an incomplete type other than void (yuck).
1049  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
1050    return LV_IncompleteVoidType;
1051
1052  return LV_Valid;
1053}
1054
1055// Check whether the expression can be sanely treated like an l-value
1056Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
1057  switch (getStmtClass()) {
1058  case ObjCIsaExprClass:
1059  case StringLiteralClass:  // C99 6.5.1p4
1060  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
1061    return LV_Valid;
1062  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
1063    // For vectors, make sure base is an lvalue (i.e. not a function call).
1064    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
1065      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
1066    return LV_Valid;
1067  case DeclRefExprClass: { // C99 6.5.1p2
1068    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
1069    if (DeclCanBeLvalue(RefdDecl, Ctx))
1070      return LV_Valid;
1071    break;
1072  }
1073  case BlockDeclRefExprClass: {
1074    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1075    if (isa<VarDecl>(BDR->getDecl()))
1076      return LV_Valid;
1077    break;
1078  }
1079  case MemberExprClass: {
1080    const MemberExpr *m = cast<MemberExpr>(this);
1081    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1082      NamedDecl *Member = m->getMemberDecl();
1083      // C++ [expr.ref]p4:
1084      //   If E2 is declared to have type "reference to T", then E1.E2
1085      //   is an lvalue.
1086      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1087        if (Value->getType()->isReferenceType())
1088          return LV_Valid;
1089
1090      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1091      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1092        return LV_Valid;
1093
1094      //   -- If E2 is a non-static data member [...]. If E1 is an
1095      //      lvalue, then E1.E2 is an lvalue.
1096      if (isa<FieldDecl>(Member)) {
1097        if (m->isArrow())
1098          return LV_Valid;
1099        return m->getBase()->isLvalue(Ctx);
1100      }
1101
1102      //   -- If it refers to a static member function [...], then
1103      //      E1.E2 is an lvalue.
1104      //   -- Otherwise, if E1.E2 refers to a non-static member
1105      //      function [...], then E1.E2 is not an lvalue.
1106      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1107        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1108
1109      //   -- If E2 is a member enumerator [...], the expression E1.E2
1110      //      is not an lvalue.
1111      if (isa<EnumConstantDecl>(Member))
1112        return LV_InvalidExpression;
1113
1114        // Not an lvalue.
1115      return LV_InvalidExpression;
1116    }
1117
1118    // C99 6.5.2.3p4
1119    if (m->isArrow())
1120      return LV_Valid;
1121    Expr *BaseExp = m->getBase();
1122    if (BaseExp->getStmtClass() == ObjCPropertyRefExprClass ||
1123        BaseExp->getStmtClass() == ObjCImplicitSetterGetterRefExprClass)
1124          return LV_SubObjCPropertySetting;
1125    return
1126       BaseExp->isLvalue(Ctx);
1127  }
1128  case UnaryOperatorClass:
1129    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1130      return LV_Valid; // C99 6.5.3p4
1131
1132    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1133        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1134        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1135      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1136
1137    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1138        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1139         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1140      return LV_Valid;
1141    break;
1142  case ImplicitCastExprClass:
1143    if (cast<ImplicitCastExpr>(this)->isLvalueCast())
1144      return LV_Valid;
1145
1146    // If this is a conversion to a class temporary, make a note of
1147    // that.
1148    if (Ctx.getLangOptions().CPlusPlus && getType()->isRecordType())
1149      return LV_ClassTemporary;
1150
1151    break;
1152  case ParenExprClass: // C99 6.5.1p5
1153    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1154  case BinaryOperatorClass:
1155  case CompoundAssignOperatorClass: {
1156    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1157
1158    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1159        BinOp->getOpcode() == BinaryOperator::Comma)
1160      return BinOp->getRHS()->isLvalue(Ctx);
1161
1162    // C++ [expr.mptr.oper]p6
1163    // The result of a .* expression is an lvalue only if its first operand is
1164    // an lvalue and its second operand is a pointer to data member.
1165    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1166        !BinOp->getType()->isFunctionType())
1167      return BinOp->getLHS()->isLvalue(Ctx);
1168
1169    // The result of an ->* expression is an lvalue only if its second operand
1170    // is a pointer to data member.
1171    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1172        !BinOp->getType()->isFunctionType()) {
1173      QualType Ty = BinOp->getRHS()->getType();
1174      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1175        return LV_Valid;
1176    }
1177
1178    if (!BinOp->isAssignmentOp())
1179      return LV_InvalidExpression;
1180
1181    if (Ctx.getLangOptions().CPlusPlus)
1182      // C++ [expr.ass]p1:
1183      //   The result of an assignment operation [...] is an lvalue.
1184      return LV_Valid;
1185
1186
1187    // C99 6.5.16:
1188    //   An assignment expression [...] is not an lvalue.
1189    return LV_InvalidExpression;
1190  }
1191  case CallExprClass:
1192  case CXXOperatorCallExprClass:
1193  case CXXMemberCallExprClass: {
1194    // C++0x [expr.call]p10
1195    //   A function call is an lvalue if and only if the result type
1196    //   is an lvalue reference.
1197    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1198    if (ReturnType->isLValueReferenceType())
1199      return LV_Valid;
1200
1201    // If the function is returning a class temporary, make a note of
1202    // that.
1203    if (Ctx.getLangOptions().CPlusPlus && ReturnType->isRecordType())
1204      return LV_ClassTemporary;
1205
1206    break;
1207  }
1208  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1209    // FIXME: Is this what we want in C++?
1210    return LV_Valid;
1211  case ChooseExprClass:
1212    // __builtin_choose_expr is an lvalue if the selected operand is.
1213    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1214  case ExtVectorElementExprClass:
1215    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1216      return LV_DuplicateVectorComponents;
1217    return LV_Valid;
1218  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1219    return LV_Valid;
1220  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1221    return LV_Valid;
1222  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1223    return LV_Valid;
1224  case PredefinedExprClass:
1225    return LV_Valid;
1226  case UnresolvedLookupExprClass:
1227    return LV_Valid;
1228  case CXXDefaultArgExprClass:
1229    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1230  case CStyleCastExprClass:
1231  case CXXFunctionalCastExprClass:
1232  case CXXStaticCastExprClass:
1233  case CXXDynamicCastExprClass:
1234  case CXXReinterpretCastExprClass:
1235  case CXXConstCastExprClass:
1236    // The result of an explicit cast is an lvalue if the type we are
1237    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1238    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1239    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1240    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1241          isLValueReferenceType())
1242      return LV_Valid;
1243
1244    // If this is a conversion to a class temporary, make a note of
1245    // that.
1246    if (Ctx.getLangOptions().CPlusPlus &&
1247        cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isRecordType())
1248      return LV_ClassTemporary;
1249
1250    break;
1251  case CXXTypeidExprClass:
1252    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1253    return LV_Valid;
1254  case CXXBindTemporaryExprClass:
1255    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1256      isLvalueInternal(Ctx);
1257  case CXXBindReferenceExprClass:
1258    // Something that's bound to a reference is always an lvalue.
1259    return LV_Valid;
1260  case ConditionalOperatorClass: {
1261    // Complicated handling is only for C++.
1262    if (!Ctx.getLangOptions().CPlusPlus)
1263      return LV_InvalidExpression;
1264
1265    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1266    // everywhere there's an object converted to an rvalue. Also, any other
1267    // casts should be wrapped by ImplicitCastExprs. There's just the special
1268    // case involving throws to work out.
1269    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1270    Expr *True = Cond->getTrueExpr();
1271    Expr *False = Cond->getFalseExpr();
1272    // C++0x 5.16p2
1273    //   If either the second or the third operand has type (cv) void, [...]
1274    //   the result [...] is an rvalue.
1275    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1276      return LV_InvalidExpression;
1277
1278    // Both sides must be lvalues for the result to be an lvalue.
1279    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1280      return LV_InvalidExpression;
1281
1282    // That's it.
1283    return LV_Valid;
1284  }
1285
1286  case Expr::CXXExprWithTemporariesClass:
1287    return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx);
1288
1289  case Expr::ObjCMessageExprClass:
1290    if (const ObjCMethodDecl *Method
1291          = cast<ObjCMessageExpr>(this)->getMethodDecl())
1292      if (Method->getResultType()->isLValueReferenceType())
1293        return LV_Valid;
1294    break;
1295
1296  case Expr::CXXConstructExprClass:
1297  case Expr::CXXTemporaryObjectExprClass:
1298  case Expr::CXXZeroInitValueExprClass:
1299    return LV_ClassTemporary;
1300
1301  default:
1302    break;
1303  }
1304  return LV_InvalidExpression;
1305}
1306
1307/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1308/// does not have an incomplete type, does not have a const-qualified type, and
1309/// if it is a structure or union, does not have any member (including,
1310/// recursively, any member or element of all contained aggregates or unions)
1311/// with a const-qualified type.
1312Expr::isModifiableLvalueResult
1313Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1314  isLvalueResult lvalResult = isLvalue(Ctx);
1315
1316  switch (lvalResult) {
1317  case LV_Valid:
1318    // C++ 3.10p11: Functions cannot be modified, but pointers to
1319    // functions can be modifiable.
1320    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1321      return MLV_NotObjectType;
1322    break;
1323
1324  case LV_NotObjectType: return MLV_NotObjectType;
1325  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1326  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1327  case LV_InvalidExpression:
1328    // If the top level is a C-style cast, and the subexpression is a valid
1329    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1330    // GCC extension.  We don't support it, but we want to produce good
1331    // diagnostics when it happens so that the user knows why.
1332    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1333      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1334        if (Loc)
1335          *Loc = CE->getLParenLoc();
1336        return MLV_LValueCast;
1337      }
1338    }
1339    return MLV_InvalidExpression;
1340  case LV_MemberFunction: return MLV_MemberFunction;
1341  case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
1342  case LV_ClassTemporary:
1343    return MLV_ClassTemporary;
1344  }
1345
1346  // The following is illegal:
1347  //   void takeclosure(void (^C)(void));
1348  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1349  //
1350  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1351    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1352      return MLV_NotBlockQualified;
1353  }
1354
1355  // Assigning to an 'implicit' property?
1356  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1357        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1358    if (Expr->getSetterMethod() == 0)
1359      return MLV_NoSetterProperty;
1360  }
1361
1362  QualType CT = Ctx.getCanonicalType(getType());
1363
1364  if (CT.isConstQualified())
1365    return MLV_ConstQualified;
1366  if (CT->isArrayType())
1367    return MLV_ArrayType;
1368  if (CT->isIncompleteType())
1369    return MLV_IncompleteType;
1370
1371  if (const RecordType *r = CT->getAs<RecordType>()) {
1372    if (r->hasConstFields())
1373      return MLV_ConstQualified;
1374  }
1375
1376  return MLV_Valid;
1377}
1378
1379/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1380/// returns true, if it is; false otherwise.
1381bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1382  switch (getStmtClass()) {
1383  default:
1384    return false;
1385  case ObjCIvarRefExprClass:
1386    return true;
1387  case Expr::UnaryOperatorClass:
1388    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1389  case ParenExprClass:
1390    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1391  case ImplicitCastExprClass:
1392    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1393  case CStyleCastExprClass:
1394    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1395  case DeclRefExprClass: {
1396    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1397    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1398      if (VD->hasGlobalStorage())
1399        return true;
1400      QualType T = VD->getType();
1401      // dereferencing to a  pointer is always a gc'able candidate,
1402      // unless it is __weak.
1403      return T->isPointerType() &&
1404             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1405    }
1406    return false;
1407  }
1408  case MemberExprClass: {
1409    const MemberExpr *M = cast<MemberExpr>(this);
1410    return M->getBase()->isOBJCGCCandidate(Ctx);
1411  }
1412  case ArraySubscriptExprClass:
1413    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1414  }
1415}
1416Expr* Expr::IgnoreParens() {
1417  Expr* E = this;
1418  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1419    E = P->getSubExpr();
1420
1421  return E;
1422}
1423
1424/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1425/// or CastExprs or ImplicitCastExprs, returning their operand.
1426Expr *Expr::IgnoreParenCasts() {
1427  Expr *E = this;
1428  while (true) {
1429    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1430      E = P->getSubExpr();
1431    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1432      E = P->getSubExpr();
1433    else
1434      return E;
1435  }
1436}
1437
1438/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1439/// value (including ptr->int casts of the same size).  Strip off any
1440/// ParenExpr or CastExprs, returning their operand.
1441Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1442  Expr *E = this;
1443  while (true) {
1444    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1445      E = P->getSubExpr();
1446      continue;
1447    }
1448
1449    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1450      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1451      // ptr<->int casts of the same width.  We also ignore all identify casts.
1452      Expr *SE = P->getSubExpr();
1453
1454      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1455        E = SE;
1456        continue;
1457      }
1458
1459      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1460          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1461          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1462        E = SE;
1463        continue;
1464      }
1465    }
1466
1467    return E;
1468  }
1469}
1470
1471bool Expr::isDefaultArgument() const {
1472  const Expr *E = this;
1473  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1474    E = ICE->getSubExprAsWritten();
1475
1476  return isa<CXXDefaultArgExpr>(E);
1477}
1478
1479/// \brief Skip over any no-op casts and any temporary-binding
1480/// expressions.
1481static const Expr *skipTemporaryBindingsAndNoOpCasts(const Expr *E) {
1482  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1483    if (ICE->getCastKind() == CastExpr::CK_NoOp)
1484      E = ICE->getSubExpr();
1485    else
1486      break;
1487  }
1488
1489  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
1490    E = BE->getSubExpr();
1491
1492  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1493    if (ICE->getCastKind() == CastExpr::CK_NoOp)
1494      E = ICE->getSubExpr();
1495    else
1496      break;
1497  }
1498
1499  return E;
1500}
1501
1502const Expr *Expr::getTemporaryObject() const {
1503  const Expr *E = skipTemporaryBindingsAndNoOpCasts(this);
1504
1505  // A cast can produce a temporary object. The object's construction
1506  // is represented as a CXXConstructExpr.
1507  if (const CastExpr *Cast = dyn_cast<CastExpr>(E)) {
1508    // Only user-defined and constructor conversions can produce
1509    // temporary objects.
1510    if (Cast->getCastKind() != CastExpr::CK_ConstructorConversion &&
1511        Cast->getCastKind() != CastExpr::CK_UserDefinedConversion)
1512      return 0;
1513
1514    // Strip off temporary bindings and no-op casts.
1515    const Expr *Sub = skipTemporaryBindingsAndNoOpCasts(Cast->getSubExpr());
1516
1517    // If this is a constructor conversion, see if we have an object
1518    // construction.
1519    if (Cast->getCastKind() == CastExpr::CK_ConstructorConversion)
1520      return dyn_cast<CXXConstructExpr>(Sub);
1521
1522    // If this is a user-defined conversion, see if we have a call to
1523    // a function that itself returns a temporary object.
1524    if (Cast->getCastKind() == CastExpr::CK_UserDefinedConversion)
1525      if (const CallExpr *CE = dyn_cast<CallExpr>(Sub))
1526        if (CE->getCallReturnType()->isRecordType())
1527          return CE;
1528
1529    return 0;
1530  }
1531
1532  // A call returning a class type returns a temporary.
1533  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
1534    if (CE->getCallReturnType()->isRecordType())
1535      return CE;
1536
1537    return 0;
1538  }
1539
1540  // Explicit temporary object constructors create temporaries.
1541  return dyn_cast<CXXTemporaryObjectExpr>(E);
1542}
1543
1544/// hasAnyTypeDependentArguments - Determines if any of the expressions
1545/// in Exprs is type-dependent.
1546bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1547  for (unsigned I = 0; I < NumExprs; ++I)
1548    if (Exprs[I]->isTypeDependent())
1549      return true;
1550
1551  return false;
1552}
1553
1554/// hasAnyValueDependentArguments - Determines if any of the expressions
1555/// in Exprs is value-dependent.
1556bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1557  for (unsigned I = 0; I < NumExprs; ++I)
1558    if (Exprs[I]->isValueDependent())
1559      return true;
1560
1561  return false;
1562}
1563
1564bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1565  // This function is attempting whether an expression is an initializer
1566  // which can be evaluated at compile-time.  isEvaluatable handles most
1567  // of the cases, but it can't deal with some initializer-specific
1568  // expressions, and it can't deal with aggregates; we deal with those here,
1569  // and fall back to isEvaluatable for the other cases.
1570
1571  // FIXME: This function assumes the variable being assigned to
1572  // isn't a reference type!
1573
1574  switch (getStmtClass()) {
1575  default: break;
1576  case StringLiteralClass:
1577  case ObjCStringLiteralClass:
1578  case ObjCEncodeExprClass:
1579    return true;
1580  case CompoundLiteralExprClass: {
1581    // This handles gcc's extension that allows global initializers like
1582    // "struct x {int x;} x = (struct x) {};".
1583    // FIXME: This accepts other cases it shouldn't!
1584    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1585    return Exp->isConstantInitializer(Ctx);
1586  }
1587  case InitListExprClass: {
1588    // FIXME: This doesn't deal with fields with reference types correctly.
1589    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1590    // to bitfields.
1591    const InitListExpr *Exp = cast<InitListExpr>(this);
1592    unsigned numInits = Exp->getNumInits();
1593    for (unsigned i = 0; i < numInits; i++) {
1594      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1595        return false;
1596    }
1597    return true;
1598  }
1599  case ImplicitValueInitExprClass:
1600    return true;
1601  case ParenExprClass:
1602    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1603  case UnaryOperatorClass: {
1604    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1605    if (Exp->getOpcode() == UnaryOperator::Extension)
1606      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1607    break;
1608  }
1609  case BinaryOperatorClass: {
1610    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1611    // but this handles the common case.
1612    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1613    if (Exp->getOpcode() == BinaryOperator::Sub &&
1614        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1615        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1616      return true;
1617    break;
1618  }
1619  case ImplicitCastExprClass:
1620  case CStyleCastExprClass:
1621    // Handle casts with a destination that's a struct or union; this
1622    // deals with both the gcc no-op struct cast extension and the
1623    // cast-to-union extension.
1624    if (getType()->isRecordType())
1625      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1626
1627    // Integer->integer casts can be handled here, which is important for
1628    // things like (int)(&&x-&&y).  Scary but true.
1629    if (getType()->isIntegerType() &&
1630        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1631      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1632
1633    break;
1634  }
1635  return isEvaluatable(Ctx);
1636}
1637
1638/// isIntegerConstantExpr - this recursive routine will test if an expression is
1639/// an integer constant expression.
1640
1641/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1642/// comma, etc
1643///
1644/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1645/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1646/// cast+dereference.
1647
1648// CheckICE - This function does the fundamental ICE checking: the returned
1649// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1650// Note that to reduce code duplication, this helper does no evaluation
1651// itself; the caller checks whether the expression is evaluatable, and
1652// in the rare cases where CheckICE actually cares about the evaluated
1653// value, it calls into Evalute.
1654//
1655// Meanings of Val:
1656// 0: This expression is an ICE if it can be evaluated by Evaluate.
1657// 1: This expression is not an ICE, but if it isn't evaluated, it's
1658//    a legal subexpression for an ICE. This return value is used to handle
1659//    the comma operator in C99 mode.
1660// 2: This expression is not an ICE, and is not a legal subexpression for one.
1661
1662struct ICEDiag {
1663  unsigned Val;
1664  SourceLocation Loc;
1665
1666  public:
1667  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1668  ICEDiag() : Val(0) {}
1669};
1670
1671ICEDiag NoDiag() { return ICEDiag(); }
1672
1673static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1674  Expr::EvalResult EVResult;
1675  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1676      !EVResult.Val.isInt()) {
1677    return ICEDiag(2, E->getLocStart());
1678  }
1679  return NoDiag();
1680}
1681
1682static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1683  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1684  if (!E->getType()->isIntegralType()) {
1685    return ICEDiag(2, E->getLocStart());
1686  }
1687
1688  switch (E->getStmtClass()) {
1689#define STMT(Node, Base) case Expr::Node##Class:
1690#define EXPR(Node, Base)
1691#include "clang/AST/StmtNodes.def"
1692  case Expr::PredefinedExprClass:
1693  case Expr::FloatingLiteralClass:
1694  case Expr::ImaginaryLiteralClass:
1695  case Expr::StringLiteralClass:
1696  case Expr::ArraySubscriptExprClass:
1697  case Expr::MemberExprClass:
1698  case Expr::CompoundAssignOperatorClass:
1699  case Expr::CompoundLiteralExprClass:
1700  case Expr::ExtVectorElementExprClass:
1701  case Expr::InitListExprClass:
1702  case Expr::DesignatedInitExprClass:
1703  case Expr::ImplicitValueInitExprClass:
1704  case Expr::ParenListExprClass:
1705  case Expr::VAArgExprClass:
1706  case Expr::AddrLabelExprClass:
1707  case Expr::StmtExprClass:
1708  case Expr::CXXMemberCallExprClass:
1709  case Expr::CXXDynamicCastExprClass:
1710  case Expr::CXXTypeidExprClass:
1711  case Expr::CXXNullPtrLiteralExprClass:
1712  case Expr::CXXThisExprClass:
1713  case Expr::CXXThrowExprClass:
1714  case Expr::CXXNewExprClass:
1715  case Expr::CXXDeleteExprClass:
1716  case Expr::CXXPseudoDestructorExprClass:
1717  case Expr::UnresolvedLookupExprClass:
1718  case Expr::DependentScopeDeclRefExprClass:
1719  case Expr::CXXConstructExprClass:
1720  case Expr::CXXBindTemporaryExprClass:
1721  case Expr::CXXBindReferenceExprClass:
1722  case Expr::CXXExprWithTemporariesClass:
1723  case Expr::CXXTemporaryObjectExprClass:
1724  case Expr::CXXUnresolvedConstructExprClass:
1725  case Expr::CXXDependentScopeMemberExprClass:
1726  case Expr::UnresolvedMemberExprClass:
1727  case Expr::ObjCStringLiteralClass:
1728  case Expr::ObjCEncodeExprClass:
1729  case Expr::ObjCMessageExprClass:
1730  case Expr::ObjCSelectorExprClass:
1731  case Expr::ObjCProtocolExprClass:
1732  case Expr::ObjCIvarRefExprClass:
1733  case Expr::ObjCPropertyRefExprClass:
1734  case Expr::ObjCImplicitSetterGetterRefExprClass:
1735  case Expr::ObjCSuperExprClass:
1736  case Expr::ObjCIsaExprClass:
1737  case Expr::ShuffleVectorExprClass:
1738  case Expr::BlockExprClass:
1739  case Expr::BlockDeclRefExprClass:
1740  case Expr::NoStmtClass:
1741    return ICEDiag(2, E->getLocStart());
1742
1743  case Expr::GNUNullExprClass:
1744    // GCC considers the GNU __null value to be an integral constant expression.
1745    return NoDiag();
1746
1747  case Expr::ParenExprClass:
1748    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1749  case Expr::IntegerLiteralClass:
1750  case Expr::CharacterLiteralClass:
1751  case Expr::CXXBoolLiteralExprClass:
1752  case Expr::CXXZeroInitValueExprClass:
1753  case Expr::TypesCompatibleExprClass:
1754  case Expr::UnaryTypeTraitExprClass:
1755    return NoDiag();
1756  case Expr::CallExprClass:
1757  case Expr::CXXOperatorCallExprClass: {
1758    const CallExpr *CE = cast<CallExpr>(E);
1759    if (CE->isBuiltinCall(Ctx))
1760      return CheckEvalInICE(E, Ctx);
1761    return ICEDiag(2, E->getLocStart());
1762  }
1763  case Expr::DeclRefExprClass:
1764    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1765      return NoDiag();
1766    if (Ctx.getLangOptions().CPlusPlus &&
1767        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1768      const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
1769
1770      // Parameter variables are never constants.  Without this check,
1771      // getAnyInitializer() can find a default argument, which leads
1772      // to chaos.
1773      if (isa<ParmVarDecl>(D))
1774        return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1775
1776      // C++ 7.1.5.1p2
1777      //   A variable of non-volatile const-qualified integral or enumeration
1778      //   type initialized by an ICE can be used in ICEs.
1779      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
1780        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1781        if (Quals.hasVolatile() || !Quals.hasConst())
1782          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1783
1784        // Look for a declaration of this variable that has an initializer.
1785        const VarDecl *ID = 0;
1786        const Expr *Init = Dcl->getAnyInitializer(ID);
1787        if (Init) {
1788          if (ID->isInitKnownICE()) {
1789            // We have already checked whether this subexpression is an
1790            // integral constant expression.
1791            if (ID->isInitICE())
1792              return NoDiag();
1793            else
1794              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1795          }
1796
1797          // It's an ICE whether or not the definition we found is
1798          // out-of-line.  See DR 721 and the discussion in Clang PR
1799          // 6206 for details.
1800
1801          if (Dcl->isCheckingICE()) {
1802            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1803          }
1804
1805          Dcl->setCheckingICE();
1806          ICEDiag Result = CheckICE(Init, Ctx);
1807          // Cache the result of the ICE test.
1808          Dcl->setInitKnownICE(Result.Val == 0);
1809          return Result;
1810        }
1811      }
1812    }
1813    return ICEDiag(2, E->getLocStart());
1814  case Expr::UnaryOperatorClass: {
1815    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1816    switch (Exp->getOpcode()) {
1817    case UnaryOperator::PostInc:
1818    case UnaryOperator::PostDec:
1819    case UnaryOperator::PreInc:
1820    case UnaryOperator::PreDec:
1821    case UnaryOperator::AddrOf:
1822    case UnaryOperator::Deref:
1823      return ICEDiag(2, E->getLocStart());
1824
1825    case UnaryOperator::Extension:
1826    case UnaryOperator::LNot:
1827    case UnaryOperator::Plus:
1828    case UnaryOperator::Minus:
1829    case UnaryOperator::Not:
1830    case UnaryOperator::Real:
1831    case UnaryOperator::Imag:
1832      return CheckICE(Exp->getSubExpr(), Ctx);
1833    case UnaryOperator::OffsetOf:
1834      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1835      // Evaluate matches the proposed gcc behavior for cases like
1836      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1837      // compliance: we should warn earlier for offsetof expressions with
1838      // array subscripts that aren't ICEs, and if the array subscripts
1839      // are ICEs, the value of the offsetof must be an integer constant.
1840      return CheckEvalInICE(E, Ctx);
1841    }
1842  }
1843  case Expr::SizeOfAlignOfExprClass: {
1844    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1845    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1846      return ICEDiag(2, E->getLocStart());
1847    return NoDiag();
1848  }
1849  case Expr::BinaryOperatorClass: {
1850    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1851    switch (Exp->getOpcode()) {
1852    case BinaryOperator::PtrMemD:
1853    case BinaryOperator::PtrMemI:
1854    case BinaryOperator::Assign:
1855    case BinaryOperator::MulAssign:
1856    case BinaryOperator::DivAssign:
1857    case BinaryOperator::RemAssign:
1858    case BinaryOperator::AddAssign:
1859    case BinaryOperator::SubAssign:
1860    case BinaryOperator::ShlAssign:
1861    case BinaryOperator::ShrAssign:
1862    case BinaryOperator::AndAssign:
1863    case BinaryOperator::XorAssign:
1864    case BinaryOperator::OrAssign:
1865      return ICEDiag(2, E->getLocStart());
1866
1867    case BinaryOperator::Mul:
1868    case BinaryOperator::Div:
1869    case BinaryOperator::Rem:
1870    case BinaryOperator::Add:
1871    case BinaryOperator::Sub:
1872    case BinaryOperator::Shl:
1873    case BinaryOperator::Shr:
1874    case BinaryOperator::LT:
1875    case BinaryOperator::GT:
1876    case BinaryOperator::LE:
1877    case BinaryOperator::GE:
1878    case BinaryOperator::EQ:
1879    case BinaryOperator::NE:
1880    case BinaryOperator::And:
1881    case BinaryOperator::Xor:
1882    case BinaryOperator::Or:
1883    case BinaryOperator::Comma: {
1884      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1885      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1886      if (Exp->getOpcode() == BinaryOperator::Div ||
1887          Exp->getOpcode() == BinaryOperator::Rem) {
1888        // Evaluate gives an error for undefined Div/Rem, so make sure
1889        // we don't evaluate one.
1890        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1891          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1892          if (REval == 0)
1893            return ICEDiag(1, E->getLocStart());
1894          if (REval.isSigned() && REval.isAllOnesValue()) {
1895            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1896            if (LEval.isMinSignedValue())
1897              return ICEDiag(1, E->getLocStart());
1898          }
1899        }
1900      }
1901      if (Exp->getOpcode() == BinaryOperator::Comma) {
1902        if (Ctx.getLangOptions().C99) {
1903          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1904          // if it isn't evaluated.
1905          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1906            return ICEDiag(1, E->getLocStart());
1907        } else {
1908          // In both C89 and C++, commas in ICEs are illegal.
1909          return ICEDiag(2, E->getLocStart());
1910        }
1911      }
1912      if (LHSResult.Val >= RHSResult.Val)
1913        return LHSResult;
1914      return RHSResult;
1915    }
1916    case BinaryOperator::LAnd:
1917    case BinaryOperator::LOr: {
1918      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1919      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1920      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1921        // Rare case where the RHS has a comma "side-effect"; we need
1922        // to actually check the condition to see whether the side
1923        // with the comma is evaluated.
1924        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1925            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1926          return RHSResult;
1927        return NoDiag();
1928      }
1929
1930      if (LHSResult.Val >= RHSResult.Val)
1931        return LHSResult;
1932      return RHSResult;
1933    }
1934    }
1935  }
1936  case Expr::ImplicitCastExprClass:
1937  case Expr::CStyleCastExprClass:
1938  case Expr::CXXFunctionalCastExprClass:
1939  case Expr::CXXNamedCastExprClass:
1940  case Expr::CXXStaticCastExprClass:
1941  case Expr::CXXReinterpretCastExprClass:
1942  case Expr::CXXConstCastExprClass: {
1943    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1944    if (SubExpr->getType()->isIntegralType())
1945      return CheckICE(SubExpr, Ctx);
1946    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1947      return NoDiag();
1948    return ICEDiag(2, E->getLocStart());
1949  }
1950  case Expr::ConditionalOperatorClass: {
1951    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1952    // If the condition (ignoring parens) is a __builtin_constant_p call,
1953    // then only the true side is actually considered in an integer constant
1954    // expression, and it is fully evaluated.  This is an important GNU
1955    // extension.  See GCC PR38377 for discussion.
1956    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1957      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1958        Expr::EvalResult EVResult;
1959        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1960            !EVResult.Val.isInt()) {
1961          return ICEDiag(2, E->getLocStart());
1962        }
1963        return NoDiag();
1964      }
1965    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1966    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1967    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1968    if (CondResult.Val == 2)
1969      return CondResult;
1970    if (TrueResult.Val == 2)
1971      return TrueResult;
1972    if (FalseResult.Val == 2)
1973      return FalseResult;
1974    if (CondResult.Val == 1)
1975      return CondResult;
1976    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1977      return NoDiag();
1978    // Rare case where the diagnostics depend on which side is evaluated
1979    // Note that if we get here, CondResult is 0, and at least one of
1980    // TrueResult and FalseResult is non-zero.
1981    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1982      return FalseResult;
1983    }
1984    return TrueResult;
1985  }
1986  case Expr::CXXDefaultArgExprClass:
1987    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1988  case Expr::ChooseExprClass: {
1989    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1990  }
1991  }
1992
1993  // Silence a GCC warning
1994  return ICEDiag(2, E->getLocStart());
1995}
1996
1997bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1998                                 SourceLocation *Loc, bool isEvaluated) const {
1999  ICEDiag d = CheckICE(this, Ctx);
2000  if (d.Val != 0) {
2001    if (Loc) *Loc = d.Loc;
2002    return false;
2003  }
2004  EvalResult EvalResult;
2005  if (!Evaluate(EvalResult, Ctx))
2006    llvm_unreachable("ICE cannot be evaluated!");
2007  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
2008  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
2009  Result = EvalResult.Val.getInt();
2010  return true;
2011}
2012
2013/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
2014/// integer constant expression with the value zero, or if this is one that is
2015/// cast to void*.
2016bool Expr::isNullPointerConstant(ASTContext &Ctx,
2017                                 NullPointerConstantValueDependence NPC) const {
2018  if (isValueDependent()) {
2019    switch (NPC) {
2020    case NPC_NeverValueDependent:
2021      assert(false && "Unexpected value dependent expression!");
2022      // If the unthinkable happens, fall through to the safest alternative.
2023
2024    case NPC_ValueDependentIsNull:
2025      return isTypeDependent() || getType()->isIntegralType();
2026
2027    case NPC_ValueDependentIsNotNull:
2028      return false;
2029    }
2030  }
2031
2032  // Strip off a cast to void*, if it exists. Except in C++.
2033  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2034    if (!Ctx.getLangOptions().CPlusPlus) {
2035      // Check that it is a cast to void*.
2036      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2037        QualType Pointee = PT->getPointeeType();
2038        if (!Pointee.hasQualifiers() &&
2039            Pointee->isVoidType() &&                              // to void*
2040            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2041          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2042      }
2043    }
2044  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2045    // Ignore the ImplicitCastExpr type entirely.
2046    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2047  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2048    // Accept ((void*)0) as a null pointer constant, as many other
2049    // implementations do.
2050    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2051  } else if (const CXXDefaultArgExpr *DefaultArg
2052               = dyn_cast<CXXDefaultArgExpr>(this)) {
2053    // See through default argument expressions
2054    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2055  } else if (isa<GNUNullExpr>(this)) {
2056    // The GNU __null extension is always a null pointer constant.
2057    return true;
2058  }
2059
2060  // C++0x nullptr_t is always a null pointer constant.
2061  if (getType()->isNullPtrType())
2062    return true;
2063
2064  // This expression must be an integer type.
2065  if (!getType()->isIntegerType() ||
2066      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
2067    return false;
2068
2069  // If we have an integer constant expression, we need to *evaluate* it and
2070  // test for the value 0.
2071  llvm::APSInt Result;
2072  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
2073}
2074
2075FieldDecl *Expr::getBitField() {
2076  Expr *E = this->IgnoreParens();
2077
2078  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2079    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
2080      E = ICE->getSubExpr()->IgnoreParens();
2081    else
2082      break;
2083  }
2084
2085  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2086    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2087      if (Field->isBitField())
2088        return Field;
2089
2090  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
2091    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2092      return BinOp->getLHS()->getBitField();
2093
2094  return 0;
2095}
2096
2097bool Expr::refersToVectorElement() const {
2098  const Expr *E = this->IgnoreParens();
2099
2100  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2101    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
2102      E = ICE->getSubExpr()->IgnoreParens();
2103    else
2104      break;
2105  }
2106
2107  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2108    return ASE->getBase()->getType()->isVectorType();
2109
2110  if (isa<ExtVectorElementExpr>(E))
2111    return true;
2112
2113  return false;
2114}
2115
2116/// isArrow - Return true if the base expression is a pointer to vector,
2117/// return false if the base expression is a vector.
2118bool ExtVectorElementExpr::isArrow() const {
2119  return getBase()->getType()->isPointerType();
2120}
2121
2122unsigned ExtVectorElementExpr::getNumElements() const {
2123  if (const VectorType *VT = getType()->getAs<VectorType>())
2124    return VT->getNumElements();
2125  return 1;
2126}
2127
2128/// containsDuplicateElements - Return true if any element access is repeated.
2129bool ExtVectorElementExpr::containsDuplicateElements() const {
2130  // FIXME: Refactor this code to an accessor on the AST node which returns the
2131  // "type" of component access, and share with code below and in Sema.
2132  llvm::StringRef Comp = Accessor->getName();
2133
2134  // Halving swizzles do not contain duplicate elements.
2135  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2136    return false;
2137
2138  // Advance past s-char prefix on hex swizzles.
2139  if (Comp[0] == 's' || Comp[0] == 'S')
2140    Comp = Comp.substr(1);
2141
2142  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2143    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2144        return true;
2145
2146  return false;
2147}
2148
2149/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2150void ExtVectorElementExpr::getEncodedElementAccess(
2151                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2152  llvm::StringRef Comp = Accessor->getName();
2153  if (Comp[0] == 's' || Comp[0] == 'S')
2154    Comp = Comp.substr(1);
2155
2156  bool isHi =   Comp == "hi";
2157  bool isLo =   Comp == "lo";
2158  bool isEven = Comp == "even";
2159  bool isOdd  = Comp == "odd";
2160
2161  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2162    uint64_t Index;
2163
2164    if (isHi)
2165      Index = e + i;
2166    else if (isLo)
2167      Index = i;
2168    else if (isEven)
2169      Index = 2 * i;
2170    else if (isOdd)
2171      Index = 2 * i + 1;
2172    else
2173      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2174
2175    Elts.push_back(Index);
2176  }
2177}
2178
2179// constructor for instance messages.
2180ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, Expr *receiver,
2181                                 Selector selInfo,
2182                                 QualType retType, ObjCMethodDecl *mproto,
2183                                 SourceLocation LBrac, SourceLocation RBrac,
2184                                 Expr **ArgExprs, unsigned nargs)
2185  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2186    MethodProto(mproto) {
2187  NumArgs = nargs;
2188  SubExprs = new (C) Stmt*[NumArgs+1];
2189  SubExprs[RECEIVER] = receiver;
2190  if (NumArgs) {
2191    for (unsigned i = 0; i != NumArgs; ++i)
2192      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2193  }
2194  LBracloc = LBrac;
2195  RBracloc = RBrac;
2196}
2197
2198// constructor for class messages.
2199// FIXME: clsName should be typed to ObjCInterfaceType
2200ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, IdentifierInfo *clsName,
2201                                 SourceLocation clsNameLoc, Selector selInfo,
2202                                 QualType retType, ObjCMethodDecl *mproto,
2203                                 SourceLocation LBrac, SourceLocation RBrac,
2204                                 Expr **ArgExprs, unsigned nargs)
2205  : Expr(ObjCMessageExprClass, retType, false, false), ClassNameLoc(clsNameLoc),
2206    SelName(selInfo), MethodProto(mproto) {
2207  NumArgs = nargs;
2208  SubExprs = new (C) Stmt*[NumArgs+1];
2209  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
2210  if (NumArgs) {
2211    for (unsigned i = 0; i != NumArgs; ++i)
2212      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2213  }
2214  LBracloc = LBrac;
2215  RBracloc = RBrac;
2216}
2217
2218// constructor for class messages.
2219ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, ObjCInterfaceDecl *cls,
2220                                 SourceLocation clsNameLoc, Selector selInfo,
2221                                 QualType retType,
2222                                 ObjCMethodDecl *mproto, SourceLocation LBrac,
2223                                 SourceLocation RBrac, Expr **ArgExprs,
2224                                 unsigned nargs)
2225  : Expr(ObjCMessageExprClass, retType, false, false), ClassNameLoc(clsNameLoc),
2226    SelName(selInfo), MethodProto(mproto)
2227{
2228  NumArgs = nargs;
2229  SubExprs = new (C) Stmt*[NumArgs+1];
2230  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2231  if (NumArgs) {
2232    for (unsigned i = 0; i != NumArgs; ++i)
2233      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2234  }
2235  LBracloc = LBrac;
2236  RBracloc = RBrac;
2237}
2238
2239ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2240  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2241  switch (x & Flags) {
2242    default:
2243      assert(false && "Invalid ObjCMessageExpr.");
2244    case IsInstMeth:
2245      return ClassInfo(0, 0, SourceLocation());
2246    case IsClsMethDeclUnknown:
2247      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags), ClassNameLoc);
2248    case IsClsMethDeclKnown: {
2249      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2250      return ClassInfo(D, D->getIdentifier(), ClassNameLoc);
2251    }
2252  }
2253}
2254
2255void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2256  if (CI.Decl == 0 && CI.Name == 0) {
2257    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2258    return;
2259  }
2260
2261  if (CI.Decl == 0)
2262    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.Name | IsClsMethDeclUnknown);
2263  else
2264    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.Decl | IsClsMethDeclKnown);
2265  ClassNameLoc = CI.Loc;
2266}
2267
2268void ObjCMessageExpr::DoDestroy(ASTContext &C) {
2269  DestroyChildren(C);
2270  if (SubExprs)
2271    C.Deallocate(SubExprs);
2272  this->~ObjCMessageExpr();
2273  C.Deallocate((void*) this);
2274}
2275
2276bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2277  return getCond()->EvaluateAsInt(C) != 0;
2278}
2279
2280void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2281                                 unsigned NumExprs) {
2282  if (SubExprs) C.Deallocate(SubExprs);
2283
2284  SubExprs = new (C) Stmt* [NumExprs];
2285  this->NumExprs = NumExprs;
2286  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2287}
2288
2289void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2290  DestroyChildren(C);
2291  if (SubExprs) C.Deallocate(SubExprs);
2292  this->~ShuffleVectorExpr();
2293  C.Deallocate(this);
2294}
2295
2296void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2297  // Override default behavior of traversing children. If this has a type
2298  // operand and the type is a variable-length array, the child iteration
2299  // will iterate over the size expression. However, this expression belongs
2300  // to the type, not to this, so we don't want to delete it.
2301  // We still want to delete this expression.
2302  if (isArgumentType()) {
2303    this->~SizeOfAlignOfExpr();
2304    C.Deallocate(this);
2305  }
2306  else
2307    Expr::DoDestroy(C);
2308}
2309
2310//===----------------------------------------------------------------------===//
2311//  DesignatedInitExpr
2312//===----------------------------------------------------------------------===//
2313
2314IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2315  assert(Kind == FieldDesignator && "Only valid on a field designator");
2316  if (Field.NameOrField & 0x01)
2317    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2318  else
2319    return getField()->getIdentifier();
2320}
2321
2322DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2323                                       unsigned NumDesignators,
2324                                       const Designator *Designators,
2325                                       SourceLocation EqualOrColonLoc,
2326                                       bool GNUSyntax,
2327                                       Expr **IndexExprs,
2328                                       unsigned NumIndexExprs,
2329                                       Expr *Init)
2330  : Expr(DesignatedInitExprClass, Ty,
2331         Init->isTypeDependent(), Init->isValueDependent()),
2332    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2333    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2334  this->Designators = new (C) Designator[NumDesignators];
2335
2336  // Record the initializer itself.
2337  child_iterator Child = child_begin();
2338  *Child++ = Init;
2339
2340  // Copy the designators and their subexpressions, computing
2341  // value-dependence along the way.
2342  unsigned IndexIdx = 0;
2343  for (unsigned I = 0; I != NumDesignators; ++I) {
2344    this->Designators[I] = Designators[I];
2345
2346    if (this->Designators[I].isArrayDesignator()) {
2347      // Compute type- and value-dependence.
2348      Expr *Index = IndexExprs[IndexIdx];
2349      ValueDependent = ValueDependent ||
2350        Index->isTypeDependent() || Index->isValueDependent();
2351
2352      // Copy the index expressions into permanent storage.
2353      *Child++ = IndexExprs[IndexIdx++];
2354    } else if (this->Designators[I].isArrayRangeDesignator()) {
2355      // Compute type- and value-dependence.
2356      Expr *Start = IndexExprs[IndexIdx];
2357      Expr *End = IndexExprs[IndexIdx + 1];
2358      ValueDependent = ValueDependent ||
2359        Start->isTypeDependent() || Start->isValueDependent() ||
2360        End->isTypeDependent() || End->isValueDependent();
2361
2362      // Copy the start/end expressions into permanent storage.
2363      *Child++ = IndexExprs[IndexIdx++];
2364      *Child++ = IndexExprs[IndexIdx++];
2365    }
2366  }
2367
2368  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2369}
2370
2371DesignatedInitExpr *
2372DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2373                           unsigned NumDesignators,
2374                           Expr **IndexExprs, unsigned NumIndexExprs,
2375                           SourceLocation ColonOrEqualLoc,
2376                           bool UsesColonSyntax, Expr *Init) {
2377  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2378                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2379  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2380                                      ColonOrEqualLoc, UsesColonSyntax,
2381                                      IndexExprs, NumIndexExprs, Init);
2382}
2383
2384DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2385                                                    unsigned NumIndexExprs) {
2386  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2387                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2388  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2389}
2390
2391void DesignatedInitExpr::setDesignators(ASTContext &C,
2392                                        const Designator *Desigs,
2393                                        unsigned NumDesigs) {
2394  DestroyDesignators(C);
2395
2396  Designators = new (C) Designator[NumDesigs];
2397  NumDesignators = NumDesigs;
2398  for (unsigned I = 0; I != NumDesigs; ++I)
2399    Designators[I] = Desigs[I];
2400}
2401
2402SourceRange DesignatedInitExpr::getSourceRange() const {
2403  SourceLocation StartLoc;
2404  Designator &First =
2405    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2406  if (First.isFieldDesignator()) {
2407    if (GNUSyntax)
2408      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2409    else
2410      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2411  } else
2412    StartLoc =
2413      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2414  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2415}
2416
2417Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2418  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2419  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2420  Ptr += sizeof(DesignatedInitExpr);
2421  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2422  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2423}
2424
2425Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2426  assert(D.Kind == Designator::ArrayRangeDesignator &&
2427         "Requires array range designator");
2428  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2429  Ptr += sizeof(DesignatedInitExpr);
2430  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2431  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2432}
2433
2434Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2435  assert(D.Kind == Designator::ArrayRangeDesignator &&
2436         "Requires array range designator");
2437  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2438  Ptr += sizeof(DesignatedInitExpr);
2439  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2440  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2441}
2442
2443/// \brief Replaces the designator at index @p Idx with the series
2444/// of designators in [First, Last).
2445void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2446                                          const Designator *First,
2447                                          const Designator *Last) {
2448  unsigned NumNewDesignators = Last - First;
2449  if (NumNewDesignators == 0) {
2450    std::copy_backward(Designators + Idx + 1,
2451                       Designators + NumDesignators,
2452                       Designators + Idx);
2453    --NumNewDesignators;
2454    return;
2455  } else if (NumNewDesignators == 1) {
2456    Designators[Idx] = *First;
2457    return;
2458  }
2459
2460  Designator *NewDesignators
2461    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2462  std::copy(Designators, Designators + Idx, NewDesignators);
2463  std::copy(First, Last, NewDesignators + Idx);
2464  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2465            NewDesignators + Idx + NumNewDesignators);
2466  DestroyDesignators(C);
2467  Designators = NewDesignators;
2468  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2469}
2470
2471void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2472  DestroyDesignators(C);
2473  Expr::DoDestroy(C);
2474}
2475
2476void DesignatedInitExpr::DestroyDesignators(ASTContext &C) {
2477  for (unsigned I = 0; I != NumDesignators; ++I)
2478    Designators[I].~Designator();
2479  C.Deallocate(Designators);
2480  Designators = 0;
2481}
2482
2483ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2484                             Expr **exprs, unsigned nexprs,
2485                             SourceLocation rparenloc)
2486: Expr(ParenListExprClass, QualType(),
2487       hasAnyTypeDependentArguments(exprs, nexprs),
2488       hasAnyValueDependentArguments(exprs, nexprs)),
2489  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2490
2491  Exprs = new (C) Stmt*[nexprs];
2492  for (unsigned i = 0; i != nexprs; ++i)
2493    Exprs[i] = exprs[i];
2494}
2495
2496void ParenListExpr::DoDestroy(ASTContext& C) {
2497  DestroyChildren(C);
2498  if (Exprs) C.Deallocate(Exprs);
2499  this->~ParenListExpr();
2500  C.Deallocate(this);
2501}
2502
2503//===----------------------------------------------------------------------===//
2504//  ExprIterator.
2505//===----------------------------------------------------------------------===//
2506
2507Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2508Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2509Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2510const Expr* ConstExprIterator::operator[](size_t idx) const {
2511  return cast<Expr>(I[idx]);
2512}
2513const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2514const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2515
2516//===----------------------------------------------------------------------===//
2517//  Child Iterators for iterating over subexpressions/substatements
2518//===----------------------------------------------------------------------===//
2519
2520// DeclRefExpr
2521Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2522Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2523
2524// ObjCIvarRefExpr
2525Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2526Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2527
2528// ObjCPropertyRefExpr
2529Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2530Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2531
2532// ObjCImplicitSetterGetterRefExpr
2533Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2534  return &Base;
2535}
2536Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2537  return &Base+1;
2538}
2539
2540// ObjCSuperExpr
2541Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2542Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2543
2544// ObjCIsaExpr
2545Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2546Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2547
2548// PredefinedExpr
2549Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2550Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2551
2552// IntegerLiteral
2553Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2554Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2555
2556// CharacterLiteral
2557Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2558Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2559
2560// FloatingLiteral
2561Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2562Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2563
2564// ImaginaryLiteral
2565Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2566Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2567
2568// StringLiteral
2569Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2570Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2571
2572// ParenExpr
2573Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2574Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2575
2576// UnaryOperator
2577Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2578Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2579
2580// SizeOfAlignOfExpr
2581Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2582  // If this is of a type and the type is a VLA type (and not a typedef), the
2583  // size expression of the VLA needs to be treated as an executable expression.
2584  // Why isn't this weirdness documented better in StmtIterator?
2585  if (isArgumentType()) {
2586    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2587                                   getArgumentType().getTypePtr()))
2588      return child_iterator(T);
2589    return child_iterator();
2590  }
2591  return child_iterator(&Argument.Ex);
2592}
2593Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2594  if (isArgumentType())
2595    return child_iterator();
2596  return child_iterator(&Argument.Ex + 1);
2597}
2598
2599// ArraySubscriptExpr
2600Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2601  return &SubExprs[0];
2602}
2603Stmt::child_iterator ArraySubscriptExpr::child_end() {
2604  return &SubExprs[0]+END_EXPR;
2605}
2606
2607// CallExpr
2608Stmt::child_iterator CallExpr::child_begin() {
2609  return &SubExprs[0];
2610}
2611Stmt::child_iterator CallExpr::child_end() {
2612  return &SubExprs[0]+NumArgs+ARGS_START;
2613}
2614
2615// MemberExpr
2616Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2617Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2618
2619// ExtVectorElementExpr
2620Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2621Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2622
2623// CompoundLiteralExpr
2624Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2625Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2626
2627// CastExpr
2628Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2629Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2630
2631// BinaryOperator
2632Stmt::child_iterator BinaryOperator::child_begin() {
2633  return &SubExprs[0];
2634}
2635Stmt::child_iterator BinaryOperator::child_end() {
2636  return &SubExprs[0]+END_EXPR;
2637}
2638
2639// ConditionalOperator
2640Stmt::child_iterator ConditionalOperator::child_begin() {
2641  return &SubExprs[0];
2642}
2643Stmt::child_iterator ConditionalOperator::child_end() {
2644  return &SubExprs[0]+END_EXPR;
2645}
2646
2647// AddrLabelExpr
2648Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2649Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2650
2651// StmtExpr
2652Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2653Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2654
2655// TypesCompatibleExpr
2656Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2657  return child_iterator();
2658}
2659
2660Stmt::child_iterator TypesCompatibleExpr::child_end() {
2661  return child_iterator();
2662}
2663
2664// ChooseExpr
2665Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2666Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2667
2668// GNUNullExpr
2669Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2670Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2671
2672// ShuffleVectorExpr
2673Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2674  return &SubExprs[0];
2675}
2676Stmt::child_iterator ShuffleVectorExpr::child_end() {
2677  return &SubExprs[0]+NumExprs;
2678}
2679
2680// VAArgExpr
2681Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2682Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2683
2684// InitListExpr
2685Stmt::child_iterator InitListExpr::child_begin() {
2686  return InitExprs.size() ? &InitExprs[0] : 0;
2687}
2688Stmt::child_iterator InitListExpr::child_end() {
2689  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2690}
2691
2692// DesignatedInitExpr
2693Stmt::child_iterator DesignatedInitExpr::child_begin() {
2694  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2695  Ptr += sizeof(DesignatedInitExpr);
2696  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2697}
2698Stmt::child_iterator DesignatedInitExpr::child_end() {
2699  return child_iterator(&*child_begin() + NumSubExprs);
2700}
2701
2702// ImplicitValueInitExpr
2703Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2704  return child_iterator();
2705}
2706
2707Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2708  return child_iterator();
2709}
2710
2711// ParenListExpr
2712Stmt::child_iterator ParenListExpr::child_begin() {
2713  return &Exprs[0];
2714}
2715Stmt::child_iterator ParenListExpr::child_end() {
2716  return &Exprs[0]+NumExprs;
2717}
2718
2719// ObjCStringLiteral
2720Stmt::child_iterator ObjCStringLiteral::child_begin() {
2721  return &String;
2722}
2723Stmt::child_iterator ObjCStringLiteral::child_end() {
2724  return &String+1;
2725}
2726
2727// ObjCEncodeExpr
2728Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2729Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2730
2731// ObjCSelectorExpr
2732Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2733  return child_iterator();
2734}
2735Stmt::child_iterator ObjCSelectorExpr::child_end() {
2736  return child_iterator();
2737}
2738
2739// ObjCProtocolExpr
2740Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2741  return child_iterator();
2742}
2743Stmt::child_iterator ObjCProtocolExpr::child_end() {
2744  return child_iterator();
2745}
2746
2747// ObjCMessageExpr
2748Stmt::child_iterator ObjCMessageExpr::child_begin() {
2749  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2750}
2751Stmt::child_iterator ObjCMessageExpr::child_end() {
2752  return &SubExprs[0]+ARGS_START+getNumArgs();
2753}
2754
2755// Blocks
2756Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2757Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2758
2759Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2760Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2761