Expr.cpp revision 9f9269e810bfe9aea0a57b09250be215808fc1a2
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Primary Expressions.
32//===----------------------------------------------------------------------===//
33
34void ExplicitTemplateArgumentList::initializeFrom(
35                                      const TemplateArgumentListInfo &Info) {
36  LAngleLoc = Info.getLAngleLoc();
37  RAngleLoc = Info.getRAngleLoc();
38  NumTemplateArgs = Info.size();
39
40  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
41  for (unsigned i = 0; i != NumTemplateArgs; ++i)
42    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
43}
44
45void ExplicitTemplateArgumentList::copyInto(
46                                      TemplateArgumentListInfo &Info) const {
47  Info.setLAngleLoc(LAngleLoc);
48  Info.setRAngleLoc(RAngleLoc);
49  for (unsigned I = 0; I != NumTemplateArgs; ++I)
50    Info.addArgument(getTemplateArgs()[I]);
51}
52
53std::size_t ExplicitTemplateArgumentList::sizeFor(
54                                      const TemplateArgumentListInfo &Info) {
55  return sizeof(ExplicitTemplateArgumentList) +
56         sizeof(TemplateArgumentLoc) * Info.size();
57}
58
59void DeclRefExpr::computeDependence() {
60  TypeDependent = false;
61  ValueDependent = false;
62
63  NamedDecl *D = getDecl();
64
65  // (TD) C++ [temp.dep.expr]p3:
66  //   An id-expression is type-dependent if it contains:
67  //
68  // and
69  //
70  // (VD) C++ [temp.dep.constexpr]p2:
71  //  An identifier is value-dependent if it is:
72
73  //  (TD)  - an identifier that was declared with dependent type
74  //  (VD)  - a name declared with a dependent type,
75  if (getType()->isDependentType()) {
76    TypeDependent = true;
77    ValueDependent = true;
78  }
79  //  (TD)  - a conversion-function-id that specifies a dependent type
80  else if (D->getDeclName().getNameKind()
81                               == DeclarationName::CXXConversionFunctionName &&
82           D->getDeclName().getCXXNameType()->isDependentType()) {
83    TypeDependent = true;
84    ValueDependent = true;
85  }
86  //  (TD)  - a template-id that is dependent,
87  else if (hasExplicitTemplateArgumentList() &&
88           TemplateSpecializationType::anyDependentTemplateArguments(
89                                                       getTemplateArgs(),
90                                                       getNumTemplateArgs())) {
91    TypeDependent = true;
92    ValueDependent = true;
93  }
94  //  (VD)  - the name of a non-type template parameter,
95  else if (isa<NonTypeTemplateParmDecl>(D))
96    ValueDependent = true;
97  //  (VD) - a constant with integral or enumeration type and is
98  //         initialized with an expression that is value-dependent.
99  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
100    if (Var->getType()->isIntegralType() &&
101        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
102      if (const Expr *Init = Var->getAnyInitializer())
103        if (Init->isValueDependent())
104          ValueDependent = true;
105    }
106  }
107  //  (TD)  - a nested-name-specifier or a qualified-id that names a
108  //          member of an unknown specialization.
109  //        (handled by DependentScopeDeclRefExpr)
110}
111
112DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
113                         SourceRange QualifierRange,
114                         ValueDecl *D, SourceLocation NameLoc,
115                         const TemplateArgumentListInfo *TemplateArgs,
116                         QualType T)
117  : Expr(DeclRefExprClass, T, false, false),
118    DecoratedD(D,
119               (Qualifier? HasQualifierFlag : 0) |
120               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
121    Loc(NameLoc) {
122  if (Qualifier) {
123    NameQualifier *NQ = getNameQualifier();
124    NQ->NNS = Qualifier;
125    NQ->Range = QualifierRange;
126  }
127
128  if (TemplateArgs)
129    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
130
131  computeDependence();
132}
133
134DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
135                                 NestedNameSpecifier *Qualifier,
136                                 SourceRange QualifierRange,
137                                 ValueDecl *D,
138                                 SourceLocation NameLoc,
139                                 QualType T,
140                                 const TemplateArgumentListInfo *TemplateArgs) {
141  std::size_t Size = sizeof(DeclRefExpr);
142  if (Qualifier != 0)
143    Size += sizeof(NameQualifier);
144
145  if (TemplateArgs)
146    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
147
148  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
149  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
150                               TemplateArgs, T);
151}
152
153SourceRange DeclRefExpr::getSourceRange() const {
154  // FIXME: Does not handle multi-token names well, e.g., operator[].
155  SourceRange R(Loc);
156
157  if (hasQualifier())
158    R.setBegin(getQualifierRange().getBegin());
159  if (hasExplicitTemplateArgumentList())
160    R.setEnd(getRAngleLoc());
161  return R;
162}
163
164// FIXME: Maybe this should use DeclPrinter with a special "print predefined
165// expr" policy instead.
166std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
167  ASTContext &Context = CurrentDecl->getASTContext();
168
169  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
170    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
171      return FD->getNameAsString();
172
173    llvm::SmallString<256> Name;
174    llvm::raw_svector_ostream Out(Name);
175
176    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
177      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
178        Out << "virtual ";
179      if (MD->isStatic())
180        Out << "static ";
181    }
182
183    PrintingPolicy Policy(Context.getLangOptions());
184    Policy.SuppressTagKind = true;
185
186    std::string Proto = FD->getQualifiedNameAsString(Policy);
187
188    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
189    const FunctionProtoType *FT = 0;
190    if (FD->hasWrittenPrototype())
191      FT = dyn_cast<FunctionProtoType>(AFT);
192
193    Proto += "(";
194    if (FT) {
195      llvm::raw_string_ostream POut(Proto);
196      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
197        if (i) POut << ", ";
198        std::string Param;
199        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
200        POut << Param;
201      }
202
203      if (FT->isVariadic()) {
204        if (FD->getNumParams()) POut << ", ";
205        POut << "...";
206      }
207    }
208    Proto += ")";
209
210    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
211      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
212      if (ThisQuals.hasConst())
213        Proto += " const";
214      if (ThisQuals.hasVolatile())
215        Proto += " volatile";
216    }
217
218    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
219      AFT->getResultType().getAsStringInternal(Proto, Policy);
220
221    Out << Proto;
222
223    Out.flush();
224    return Name.str().str();
225  }
226  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
227    llvm::SmallString<256> Name;
228    llvm::raw_svector_ostream Out(Name);
229    Out << (MD->isInstanceMethod() ? '-' : '+');
230    Out << '[';
231    Out << MD->getClassInterface()->getNameAsString();
232    if (const ObjCCategoryImplDecl *CID =
233        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
234      Out << '(';
235      Out <<  CID->getNameAsString();
236      Out <<  ')';
237    }
238    Out <<  ' ';
239    Out << MD->getSelector().getAsString();
240    Out <<  ']';
241
242    Out.flush();
243    return Name.str().str();
244  }
245  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
246    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
247    return "top level";
248  }
249  return "";
250}
251
252/// getValueAsApproximateDouble - This returns the value as an inaccurate
253/// double.  Note that this may cause loss of precision, but is useful for
254/// debugging dumps, etc.
255double FloatingLiteral::getValueAsApproximateDouble() const {
256  llvm::APFloat V = getValue();
257  bool ignored;
258  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
259            &ignored);
260  return V.convertToDouble();
261}
262
263StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
264                                     unsigned ByteLength, bool Wide,
265                                     QualType Ty,
266                                     const SourceLocation *Loc,
267                                     unsigned NumStrs) {
268  // Allocate enough space for the StringLiteral plus an array of locations for
269  // any concatenated string tokens.
270  void *Mem = C.Allocate(sizeof(StringLiteral)+
271                         sizeof(SourceLocation)*(NumStrs-1),
272                         llvm::alignof<StringLiteral>());
273  StringLiteral *SL = new (Mem) StringLiteral(Ty);
274
275  // OPTIMIZE: could allocate this appended to the StringLiteral.
276  char *AStrData = new (C, 1) char[ByteLength];
277  memcpy(AStrData, StrData, ByteLength);
278  SL->StrData = AStrData;
279  SL->ByteLength = ByteLength;
280  SL->IsWide = Wide;
281  SL->TokLocs[0] = Loc[0];
282  SL->NumConcatenated = NumStrs;
283
284  if (NumStrs != 1)
285    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
286  return SL;
287}
288
289StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
290  void *Mem = C.Allocate(sizeof(StringLiteral)+
291                         sizeof(SourceLocation)*(NumStrs-1),
292                         llvm::alignof<StringLiteral>());
293  StringLiteral *SL = new (Mem) StringLiteral(QualType());
294  SL->StrData = 0;
295  SL->ByteLength = 0;
296  SL->NumConcatenated = NumStrs;
297  return SL;
298}
299
300void StringLiteral::DoDestroy(ASTContext &C) {
301  C.Deallocate(const_cast<char*>(StrData));
302  Expr::DoDestroy(C);
303}
304
305void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
306  if (StrData)
307    C.Deallocate(const_cast<char*>(StrData));
308
309  char *AStrData = new (C, 1) char[Str.size()];
310  memcpy(AStrData, Str.data(), Str.size());
311  StrData = AStrData;
312  ByteLength = Str.size();
313}
314
315/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
316/// corresponds to, e.g. "sizeof" or "[pre]++".
317const char *UnaryOperator::getOpcodeStr(Opcode Op) {
318  switch (Op) {
319  default: assert(0 && "Unknown unary operator");
320  case PostInc: return "++";
321  case PostDec: return "--";
322  case PreInc:  return "++";
323  case PreDec:  return "--";
324  case AddrOf:  return "&";
325  case Deref:   return "*";
326  case Plus:    return "+";
327  case Minus:   return "-";
328  case Not:     return "~";
329  case LNot:    return "!";
330  case Real:    return "__real";
331  case Imag:    return "__imag";
332  case Extension: return "__extension__";
333  case OffsetOf: return "__builtin_offsetof";
334  }
335}
336
337UnaryOperator::Opcode
338UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
339  switch (OO) {
340  default: assert(false && "No unary operator for overloaded function");
341  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
342  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
343  case OO_Amp:        return AddrOf;
344  case OO_Star:       return Deref;
345  case OO_Plus:       return Plus;
346  case OO_Minus:      return Minus;
347  case OO_Tilde:      return Not;
348  case OO_Exclaim:    return LNot;
349  }
350}
351
352OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
353  switch (Opc) {
354  case PostInc: case PreInc: return OO_PlusPlus;
355  case PostDec: case PreDec: return OO_MinusMinus;
356  case AddrOf: return OO_Amp;
357  case Deref: return OO_Star;
358  case Plus: return OO_Plus;
359  case Minus: return OO_Minus;
360  case Not: return OO_Tilde;
361  case LNot: return OO_Exclaim;
362  default: return OO_None;
363  }
364}
365
366
367//===----------------------------------------------------------------------===//
368// Postfix Operators.
369//===----------------------------------------------------------------------===//
370
371CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
372                   unsigned numargs, QualType t, SourceLocation rparenloc)
373  : Expr(SC, t,
374         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
375         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
376    NumArgs(numargs) {
377
378  SubExprs = new (C) Stmt*[numargs+1];
379  SubExprs[FN] = fn;
380  for (unsigned i = 0; i != numargs; ++i)
381    SubExprs[i+ARGS_START] = args[i];
382
383  RParenLoc = rparenloc;
384}
385
386CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
387                   QualType t, SourceLocation rparenloc)
388  : Expr(CallExprClass, t,
389         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
390         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
391    NumArgs(numargs) {
392
393  SubExprs = new (C) Stmt*[numargs+1];
394  SubExprs[FN] = fn;
395  for (unsigned i = 0; i != numargs; ++i)
396    SubExprs[i+ARGS_START] = args[i];
397
398  RParenLoc = rparenloc;
399}
400
401CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
402  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
403  SubExprs = new (C) Stmt*[1];
404}
405
406void CallExpr::DoDestroy(ASTContext& C) {
407  DestroyChildren(C);
408  if (SubExprs) C.Deallocate(SubExprs);
409  this->~CallExpr();
410  C.Deallocate(this);
411}
412
413Decl *CallExpr::getCalleeDecl() {
414  Expr *CEE = getCallee()->IgnoreParenCasts();
415  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
416    return DRE->getDecl();
417  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
418    return ME->getMemberDecl();
419
420  return 0;
421}
422
423FunctionDecl *CallExpr::getDirectCallee() {
424  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
425}
426
427/// setNumArgs - This changes the number of arguments present in this call.
428/// Any orphaned expressions are deleted by this, and any new operands are set
429/// to null.
430void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
431  // No change, just return.
432  if (NumArgs == getNumArgs()) return;
433
434  // If shrinking # arguments, just delete the extras and forgot them.
435  if (NumArgs < getNumArgs()) {
436    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
437      getArg(i)->Destroy(C);
438    this->NumArgs = NumArgs;
439    return;
440  }
441
442  // Otherwise, we are growing the # arguments.  New an bigger argument array.
443  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
444  // Copy over args.
445  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
446    NewSubExprs[i] = SubExprs[i];
447  // Null out new args.
448  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
449    NewSubExprs[i] = 0;
450
451  if (SubExprs) C.Deallocate(SubExprs);
452  SubExprs = NewSubExprs;
453  this->NumArgs = NumArgs;
454}
455
456/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
457/// not, return 0.
458unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
459  // All simple function calls (e.g. func()) are implicitly cast to pointer to
460  // function. As a result, we try and obtain the DeclRefExpr from the
461  // ImplicitCastExpr.
462  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
463  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
464    return 0;
465
466  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
467  if (!DRE)
468    return 0;
469
470  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
471  if (!FDecl)
472    return 0;
473
474  if (!FDecl->getIdentifier())
475    return 0;
476
477  return FDecl->getBuiltinID();
478}
479
480QualType CallExpr::getCallReturnType() const {
481  QualType CalleeType = getCallee()->getType();
482  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
483    CalleeType = FnTypePtr->getPointeeType();
484  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
485    CalleeType = BPT->getPointeeType();
486
487  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
488  return FnType->getResultType();
489}
490
491MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
492                       SourceRange qualrange, ValueDecl *memberdecl,
493                       SourceLocation l, const TemplateArgumentListInfo *targs,
494                       QualType ty)
495  : Expr(MemberExprClass, ty,
496         base->isTypeDependent() || (qual && qual->isDependent()),
497         base->isValueDependent() || (qual && qual->isDependent())),
498    Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
499    HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) {
500  // Initialize the qualifier, if any.
501  if (HasQualifier) {
502    NameQualifier *NQ = getMemberQualifier();
503    NQ->NNS = qual;
504    NQ->Range = qualrange;
505  }
506
507  // Initialize the explicit template argument list, if any.
508  if (targs)
509    getExplicitTemplateArgumentList()->initializeFrom(*targs);
510}
511
512MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
513                               NestedNameSpecifier *qual,
514                               SourceRange qualrange,
515                               ValueDecl *memberdecl,
516                               SourceLocation l,
517                               const TemplateArgumentListInfo *targs,
518                               QualType ty) {
519  std::size_t Size = sizeof(MemberExpr);
520  if (qual != 0)
521    Size += sizeof(NameQualifier);
522
523  if (targs)
524    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
525
526  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
527  return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
528                              targs, ty);
529}
530
531const char *CastExpr::getCastKindName() const {
532  switch (getCastKind()) {
533  case CastExpr::CK_Unknown:
534    return "Unknown";
535  case CastExpr::CK_BitCast:
536    return "BitCast";
537  case CastExpr::CK_NoOp:
538    return "NoOp";
539  case CastExpr::CK_BaseToDerived:
540    return "BaseToDerived";
541  case CastExpr::CK_DerivedToBase:
542    return "DerivedToBase";
543  case CastExpr::CK_Dynamic:
544    return "Dynamic";
545  case CastExpr::CK_ToUnion:
546    return "ToUnion";
547  case CastExpr::CK_ArrayToPointerDecay:
548    return "ArrayToPointerDecay";
549  case CastExpr::CK_FunctionToPointerDecay:
550    return "FunctionToPointerDecay";
551  case CastExpr::CK_NullToMemberPointer:
552    return "NullToMemberPointer";
553  case CastExpr::CK_BaseToDerivedMemberPointer:
554    return "BaseToDerivedMemberPointer";
555  case CastExpr::CK_DerivedToBaseMemberPointer:
556    return "DerivedToBaseMemberPointer";
557  case CastExpr::CK_UserDefinedConversion:
558    return "UserDefinedConversion";
559  case CastExpr::CK_ConstructorConversion:
560    return "ConstructorConversion";
561  case CastExpr::CK_IntegralToPointer:
562    return "IntegralToPointer";
563  case CastExpr::CK_PointerToIntegral:
564    return "PointerToIntegral";
565  case CastExpr::CK_ToVoid:
566    return "ToVoid";
567  case CastExpr::CK_VectorSplat:
568    return "VectorSplat";
569  case CastExpr::CK_IntegralCast:
570    return "IntegralCast";
571  case CastExpr::CK_IntegralToFloating:
572    return "IntegralToFloating";
573  case CastExpr::CK_FloatingToIntegral:
574    return "FloatingToIntegral";
575  case CastExpr::CK_FloatingCast:
576    return "FloatingCast";
577  case CastExpr::CK_MemberPointerToBoolean:
578    return "MemberPointerToBoolean";
579  case CastExpr::CK_AnyPointerToObjCPointerCast:
580    return "AnyPointerToObjCPointerCast";
581  case CastExpr::CK_AnyPointerToBlockPointerCast:
582    return "AnyPointerToBlockPointerCast";
583  }
584
585  assert(0 && "Unhandled cast kind!");
586  return 0;
587}
588
589Expr *CastExpr::getSubExprAsWritten() {
590  Expr *SubExpr = 0;
591  CastExpr *E = this;
592  do {
593    SubExpr = E->getSubExpr();
594
595    // Skip any temporary bindings; they're implicit.
596    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
597      SubExpr = Binder->getSubExpr();
598
599    // Conversions by constructor and conversion functions have a
600    // subexpression describing the call; strip it off.
601    if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
602      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
603    else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
604      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
605
606    // If the subexpression we're left with is an implicit cast, look
607    // through that, too.
608  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
609
610  return SubExpr;
611}
612
613/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
614/// corresponds to, e.g. "<<=".
615const char *BinaryOperator::getOpcodeStr(Opcode Op) {
616  switch (Op) {
617  case PtrMemD:   return ".*";
618  case PtrMemI:   return "->*";
619  case Mul:       return "*";
620  case Div:       return "/";
621  case Rem:       return "%";
622  case Add:       return "+";
623  case Sub:       return "-";
624  case Shl:       return "<<";
625  case Shr:       return ">>";
626  case LT:        return "<";
627  case GT:        return ">";
628  case LE:        return "<=";
629  case GE:        return ">=";
630  case EQ:        return "==";
631  case NE:        return "!=";
632  case And:       return "&";
633  case Xor:       return "^";
634  case Or:        return "|";
635  case LAnd:      return "&&";
636  case LOr:       return "||";
637  case Assign:    return "=";
638  case MulAssign: return "*=";
639  case DivAssign: return "/=";
640  case RemAssign: return "%=";
641  case AddAssign: return "+=";
642  case SubAssign: return "-=";
643  case ShlAssign: return "<<=";
644  case ShrAssign: return ">>=";
645  case AndAssign: return "&=";
646  case XorAssign: return "^=";
647  case OrAssign:  return "|=";
648  case Comma:     return ",";
649  }
650
651  return "";
652}
653
654BinaryOperator::Opcode
655BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
656  switch (OO) {
657  default: assert(false && "Not an overloadable binary operator");
658  case OO_Plus: return Add;
659  case OO_Minus: return Sub;
660  case OO_Star: return Mul;
661  case OO_Slash: return Div;
662  case OO_Percent: return Rem;
663  case OO_Caret: return Xor;
664  case OO_Amp: return And;
665  case OO_Pipe: return Or;
666  case OO_Equal: return Assign;
667  case OO_Less: return LT;
668  case OO_Greater: return GT;
669  case OO_PlusEqual: return AddAssign;
670  case OO_MinusEqual: return SubAssign;
671  case OO_StarEqual: return MulAssign;
672  case OO_SlashEqual: return DivAssign;
673  case OO_PercentEqual: return RemAssign;
674  case OO_CaretEqual: return XorAssign;
675  case OO_AmpEqual: return AndAssign;
676  case OO_PipeEqual: return OrAssign;
677  case OO_LessLess: return Shl;
678  case OO_GreaterGreater: return Shr;
679  case OO_LessLessEqual: return ShlAssign;
680  case OO_GreaterGreaterEqual: return ShrAssign;
681  case OO_EqualEqual: return EQ;
682  case OO_ExclaimEqual: return NE;
683  case OO_LessEqual: return LE;
684  case OO_GreaterEqual: return GE;
685  case OO_AmpAmp: return LAnd;
686  case OO_PipePipe: return LOr;
687  case OO_Comma: return Comma;
688  case OO_ArrowStar: return PtrMemI;
689  }
690}
691
692OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
693  static const OverloadedOperatorKind OverOps[] = {
694    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
695    OO_Star, OO_Slash, OO_Percent,
696    OO_Plus, OO_Minus,
697    OO_LessLess, OO_GreaterGreater,
698    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
699    OO_EqualEqual, OO_ExclaimEqual,
700    OO_Amp,
701    OO_Caret,
702    OO_Pipe,
703    OO_AmpAmp,
704    OO_PipePipe,
705    OO_Equal, OO_StarEqual,
706    OO_SlashEqual, OO_PercentEqual,
707    OO_PlusEqual, OO_MinusEqual,
708    OO_LessLessEqual, OO_GreaterGreaterEqual,
709    OO_AmpEqual, OO_CaretEqual,
710    OO_PipeEqual,
711    OO_Comma
712  };
713  return OverOps[Opc];
714}
715
716InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
717                           Expr **initExprs, unsigned numInits,
718                           SourceLocation rbraceloc)
719  : Expr(InitListExprClass, QualType(), false, false),
720    InitExprs(0), NumInits(numInits), Capacity(numInits),
721    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
722    UnionFieldInit(0), HadArrayRangeDesignator(false)
723{
724  if (NumInits == 0)
725    return;
726
727  InitExprs = new (C) Stmt*[Capacity];
728
729  for (unsigned I = 0; I != NumInits; ++I) {
730    Expr *Ex = initExprs[I];
731    if (Ex->isTypeDependent())
732      TypeDependent = true;
733    if (Ex->isValueDependent())
734      ValueDependent = true;
735    InitExprs[I] = Ex;
736  }
737}
738
739void InitListExpr::DoDestroy(ASTContext &C) {
740  DestroyChildren(C);
741  if (InitExprs)
742    C.Deallocate(InitExprs);
743  this->~InitListExpr();
744  C.Deallocate((void*) this);
745}
746
747void InitListExpr::reserveInits(ASTContext &C, unsigned newCapacity) {
748  if (newCapacity > Capacity) {
749    if (!Capacity)
750      Capacity = newCapacity;
751    else if ((Capacity *= 2) < newCapacity)
752      Capacity = newCapacity;
753
754    Stmt **newInits = new (C) Stmt*[Capacity];
755    if (InitExprs) {
756      memcpy(newInits, InitExprs, NumInits * sizeof(*InitExprs));
757      C.Deallocate(InitExprs);
758    }
759    InitExprs = newInits;
760  }
761}
762
763void InitListExpr::resizeInits(ASTContext &C, unsigned N) {
764  // If the new number of expressions is less than the old one, destroy
765  // the expressions that are beyond the new size.
766  for (unsigned i = N, LastIdx = NumInits; i < LastIdx; ++i)
767    InitExprs[i]->Destroy(C);
768
769  // If we are expanding the number of expressions, reserve space.
770  reserveInits(C, N);
771
772  // If we are expanding the number of expressions, zero out beyond our
773  // current capacity.
774  for (unsigned i = NumInits; i < N; ++i)
775    InitExprs[i] = 0;
776
777  NumInits = N;
778}
779
780Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
781  if (Init >= NumInits) {
782    // Resize the number of initializers.  This will adjust the amount
783    // of memory allocated as well as zero-pad the initializers.
784    resizeInits(C, Init+1);
785  }
786
787  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
788  InitExprs[Init] = expr;
789  return Result;
790}
791
792/// getFunctionType - Return the underlying function type for this block.
793///
794const FunctionType *BlockExpr::getFunctionType() const {
795  return getType()->getAs<BlockPointerType>()->
796                    getPointeeType()->getAs<FunctionType>();
797}
798
799SourceLocation BlockExpr::getCaretLocation() const {
800  return TheBlock->getCaretLocation();
801}
802const Stmt *BlockExpr::getBody() const {
803  return TheBlock->getBody();
804}
805Stmt *BlockExpr::getBody() {
806  return TheBlock->getBody();
807}
808
809
810//===----------------------------------------------------------------------===//
811// Generic Expression Routines
812//===----------------------------------------------------------------------===//
813
814/// isUnusedResultAWarning - Return true if this immediate expression should
815/// be warned about if the result is unused.  If so, fill in Loc and Ranges
816/// with location to warn on and the source range[s] to report with the
817/// warning.
818bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
819                                  SourceRange &R2, ASTContext &Ctx) const {
820  // Don't warn if the expr is type dependent. The type could end up
821  // instantiating to void.
822  if (isTypeDependent())
823    return false;
824
825  switch (getStmtClass()) {
826  default:
827    Loc = getExprLoc();
828    R1 = getSourceRange();
829    return true;
830  case ParenExprClass:
831    return cast<ParenExpr>(this)->getSubExpr()->
832      isUnusedResultAWarning(Loc, R1, R2, Ctx);
833  case UnaryOperatorClass: {
834    const UnaryOperator *UO = cast<UnaryOperator>(this);
835
836    switch (UO->getOpcode()) {
837    default: break;
838    case UnaryOperator::PostInc:
839    case UnaryOperator::PostDec:
840    case UnaryOperator::PreInc:
841    case UnaryOperator::PreDec:                 // ++/--
842      return false;  // Not a warning.
843    case UnaryOperator::Deref:
844      // Dereferencing a volatile pointer is a side-effect.
845      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
846        return false;
847      break;
848    case UnaryOperator::Real:
849    case UnaryOperator::Imag:
850      // accessing a piece of a volatile complex is a side-effect.
851      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
852          .isVolatileQualified())
853        return false;
854      break;
855    case UnaryOperator::Extension:
856      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
857    }
858    Loc = UO->getOperatorLoc();
859    R1 = UO->getSubExpr()->getSourceRange();
860    return true;
861  }
862  case BinaryOperatorClass: {
863    const BinaryOperator *BO = cast<BinaryOperator>(this);
864    // Consider comma to have side effects if the LHS or RHS does.
865    if (BO->getOpcode() == BinaryOperator::Comma) {
866      // ((foo = <blah>), 0) is an idiom for hiding the result (and
867      // lvalue-ness) of an assignment written in a macro.
868      if (IntegerLiteral *IE =
869            dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
870        if (IE->getValue() == 0)
871          return false;
872
873      return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
874              BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
875    }
876
877    if (BO->isAssignmentOp())
878      return false;
879    Loc = BO->getOperatorLoc();
880    R1 = BO->getLHS()->getSourceRange();
881    R2 = BO->getRHS()->getSourceRange();
882    return true;
883  }
884  case CompoundAssignOperatorClass:
885    return false;
886
887  case ConditionalOperatorClass: {
888    // The condition must be evaluated, but if either the LHS or RHS is a
889    // warning, warn about them.
890    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
891    if (Exp->getLHS() &&
892        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
893      return true;
894    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
895  }
896
897  case MemberExprClass:
898    // If the base pointer or element is to a volatile pointer/field, accessing
899    // it is a side effect.
900    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
901      return false;
902    Loc = cast<MemberExpr>(this)->getMemberLoc();
903    R1 = SourceRange(Loc, Loc);
904    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
905    return true;
906
907  case ArraySubscriptExprClass:
908    // If the base pointer or element is to a volatile pointer/field, accessing
909    // it is a side effect.
910    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
911      return false;
912    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
913    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
914    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
915    return true;
916
917  case CallExprClass:
918  case CXXOperatorCallExprClass:
919  case CXXMemberCallExprClass: {
920    // If this is a direct call, get the callee.
921    const CallExpr *CE = cast<CallExpr>(this);
922    if (const Decl *FD = CE->getCalleeDecl()) {
923      // If the callee has attribute pure, const, or warn_unused_result, warn
924      // about it. void foo() { strlen("bar"); } should warn.
925      //
926      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
927      // updated to match for QoI.
928      if (FD->getAttr<WarnUnusedResultAttr>() ||
929          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
930        Loc = CE->getCallee()->getLocStart();
931        R1 = CE->getCallee()->getSourceRange();
932
933        if (unsigned NumArgs = CE->getNumArgs())
934          R2 = SourceRange(CE->getArg(0)->getLocStart(),
935                           CE->getArg(NumArgs-1)->getLocEnd());
936        return true;
937      }
938    }
939    return false;
940  }
941
942  case CXXTemporaryObjectExprClass:
943  case CXXConstructExprClass:
944    return false;
945
946  case ObjCMessageExprClass:
947    return false;
948
949  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
950#if 0
951    const ObjCImplicitSetterGetterRefExpr *Ref =
952      cast<ObjCImplicitSetterGetterRefExpr>(this);
953    // FIXME: We really want the location of the '.' here.
954    Loc = Ref->getLocation();
955    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
956    if (Ref->getBase())
957      R2 = Ref->getBase()->getSourceRange();
958#else
959    Loc = getExprLoc();
960    R1 = getSourceRange();
961#endif
962    return true;
963  }
964  case StmtExprClass: {
965    // Statement exprs don't logically have side effects themselves, but are
966    // sometimes used in macros in ways that give them a type that is unused.
967    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
968    // however, if the result of the stmt expr is dead, we don't want to emit a
969    // warning.
970    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
971    if (!CS->body_empty())
972      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
973        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
974
975    Loc = cast<StmtExpr>(this)->getLParenLoc();
976    R1 = getSourceRange();
977    return true;
978  }
979  case CStyleCastExprClass:
980    // If this is an explicit cast to void, allow it.  People do this when they
981    // think they know what they're doing :).
982    if (getType()->isVoidType())
983      return false;
984    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
985    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
986    return true;
987  case CXXFunctionalCastExprClass: {
988    const CastExpr *CE = cast<CastExpr>(this);
989
990    // If this is a cast to void or a constructor conversion, check the operand.
991    // Otherwise, the result of the cast is unused.
992    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
993        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
994      return (cast<CastExpr>(this)->getSubExpr()
995              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
996    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
997    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
998    return true;
999  }
1000
1001  case ImplicitCastExprClass:
1002    // Check the operand, since implicit casts are inserted by Sema
1003    return (cast<ImplicitCastExpr>(this)
1004            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1005
1006  case CXXDefaultArgExprClass:
1007    return (cast<CXXDefaultArgExpr>(this)
1008            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1009
1010  case CXXNewExprClass:
1011    // FIXME: In theory, there might be new expressions that don't have side
1012    // effects (e.g. a placement new with an uninitialized POD).
1013  case CXXDeleteExprClass:
1014    return false;
1015  case CXXBindTemporaryExprClass:
1016    return (cast<CXXBindTemporaryExpr>(this)
1017            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1018  case CXXExprWithTemporariesClass:
1019    return (cast<CXXExprWithTemporaries>(this)
1020            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1021  }
1022}
1023
1024/// DeclCanBeLvalue - Determine whether the given declaration can be
1025/// an lvalue. This is a helper routine for isLvalue.
1026static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
1027  // C++ [temp.param]p6:
1028  //   A non-type non-reference template-parameter is not an lvalue.
1029  if (const NonTypeTemplateParmDecl *NTTParm
1030        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
1031    return NTTParm->getType()->isReferenceType();
1032
1033  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
1034    // C++ 3.10p2: An lvalue refers to an object or function.
1035    (Ctx.getLangOptions().CPlusPlus &&
1036     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
1037}
1038
1039/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
1040/// incomplete type other than void. Nonarray expressions that can be lvalues:
1041///  - name, where name must be a variable
1042///  - e[i]
1043///  - (e), where e must be an lvalue
1044///  - e.name, where e must be an lvalue
1045///  - e->name
1046///  - *e, the type of e cannot be a function type
1047///  - string-constant
1048///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
1049///  - reference type [C++ [expr]]
1050///
1051Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
1052  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
1053
1054  isLvalueResult Res = isLvalueInternal(Ctx);
1055  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
1056    return Res;
1057
1058  // first, check the type (C99 6.3.2.1). Expressions with function
1059  // type in C are not lvalues, but they can be lvalues in C++.
1060  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
1061    return LV_NotObjectType;
1062
1063  // Allow qualified void which is an incomplete type other than void (yuck).
1064  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
1065    return LV_IncompleteVoidType;
1066
1067  return LV_Valid;
1068}
1069
1070// Check whether the expression can be sanely treated like an l-value
1071Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
1072  switch (getStmtClass()) {
1073  case ObjCIsaExprClass:
1074  case StringLiteralClass:  // C99 6.5.1p4
1075  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
1076    return LV_Valid;
1077  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
1078    // For vectors, make sure base is an lvalue (i.e. not a function call).
1079    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
1080      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
1081    return LV_Valid;
1082  case DeclRefExprClass: { // C99 6.5.1p2
1083    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
1084    if (DeclCanBeLvalue(RefdDecl, Ctx))
1085      return LV_Valid;
1086    break;
1087  }
1088  case BlockDeclRefExprClass: {
1089    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1090    if (isa<VarDecl>(BDR->getDecl()))
1091      return LV_Valid;
1092    break;
1093  }
1094  case MemberExprClass: {
1095    const MemberExpr *m = cast<MemberExpr>(this);
1096    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1097      NamedDecl *Member = m->getMemberDecl();
1098      // C++ [expr.ref]p4:
1099      //   If E2 is declared to have type "reference to T", then E1.E2
1100      //   is an lvalue.
1101      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1102        if (Value->getType()->isReferenceType())
1103          return LV_Valid;
1104
1105      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1106      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1107        return LV_Valid;
1108
1109      //   -- If E2 is a non-static data member [...]. If E1 is an
1110      //      lvalue, then E1.E2 is an lvalue.
1111      if (isa<FieldDecl>(Member)) {
1112        if (m->isArrow())
1113          return LV_Valid;
1114        return m->getBase()->isLvalue(Ctx);
1115      }
1116
1117      //   -- If it refers to a static member function [...], then
1118      //      E1.E2 is an lvalue.
1119      //   -- Otherwise, if E1.E2 refers to a non-static member
1120      //      function [...], then E1.E2 is not an lvalue.
1121      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1122        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1123
1124      //   -- If E2 is a member enumerator [...], the expression E1.E2
1125      //      is not an lvalue.
1126      if (isa<EnumConstantDecl>(Member))
1127        return LV_InvalidExpression;
1128
1129        // Not an lvalue.
1130      return LV_InvalidExpression;
1131    }
1132
1133    // C99 6.5.2.3p4
1134    if (m->isArrow())
1135      return LV_Valid;
1136    Expr *BaseExp = m->getBase();
1137    if (BaseExp->getStmtClass() == ObjCPropertyRefExprClass)
1138          return LV_SubObjCPropertySetting;
1139    return
1140      (BaseExp->getStmtClass() == ObjCImplicitSetterGetterRefExprClass) ?
1141       LV_SubObjCPropertyGetterSetting : BaseExp->isLvalue(Ctx);
1142  }
1143  case UnaryOperatorClass:
1144    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1145      return LV_Valid; // C99 6.5.3p4
1146
1147    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1148        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1149        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1150      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1151
1152    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1153        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1154         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1155      return LV_Valid;
1156    break;
1157  case ImplicitCastExprClass:
1158    if (cast<ImplicitCastExpr>(this)->isLvalueCast())
1159      return LV_Valid;
1160
1161    // If this is a conversion to a class temporary, make a note of
1162    // that.
1163    if (Ctx.getLangOptions().CPlusPlus && getType()->isRecordType())
1164      return LV_ClassTemporary;
1165
1166    break;
1167  case ParenExprClass: // C99 6.5.1p5
1168    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1169  case BinaryOperatorClass:
1170  case CompoundAssignOperatorClass: {
1171    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1172
1173    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1174        BinOp->getOpcode() == BinaryOperator::Comma)
1175      return BinOp->getRHS()->isLvalue(Ctx);
1176
1177    // C++ [expr.mptr.oper]p6
1178    // The result of a .* expression is an lvalue only if its first operand is
1179    // an lvalue and its second operand is a pointer to data member.
1180    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1181        !BinOp->getType()->isFunctionType())
1182      return BinOp->getLHS()->isLvalue(Ctx);
1183
1184    // The result of an ->* expression is an lvalue only if its second operand
1185    // is a pointer to data member.
1186    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1187        !BinOp->getType()->isFunctionType()) {
1188      QualType Ty = BinOp->getRHS()->getType();
1189      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1190        return LV_Valid;
1191    }
1192
1193    if (!BinOp->isAssignmentOp())
1194      return LV_InvalidExpression;
1195
1196    if (Ctx.getLangOptions().CPlusPlus)
1197      // C++ [expr.ass]p1:
1198      //   The result of an assignment operation [...] is an lvalue.
1199      return LV_Valid;
1200
1201
1202    // C99 6.5.16:
1203    //   An assignment expression [...] is not an lvalue.
1204    return LV_InvalidExpression;
1205  }
1206  case CallExprClass:
1207  case CXXOperatorCallExprClass:
1208  case CXXMemberCallExprClass: {
1209    // C++0x [expr.call]p10
1210    //   A function call is an lvalue if and only if the result type
1211    //   is an lvalue reference.
1212    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1213    if (ReturnType->isLValueReferenceType())
1214      return LV_Valid;
1215
1216    // If the function is returning a class temporary, make a note of
1217    // that.
1218    if (Ctx.getLangOptions().CPlusPlus && ReturnType->isRecordType())
1219      return LV_ClassTemporary;
1220
1221    break;
1222  }
1223  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1224    // FIXME: Is this what we want in C++?
1225    return LV_Valid;
1226  case ChooseExprClass:
1227    // __builtin_choose_expr is an lvalue if the selected operand is.
1228    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1229  case ExtVectorElementExprClass:
1230    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1231      return LV_DuplicateVectorComponents;
1232    return LV_Valid;
1233  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1234    return LV_Valid;
1235  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1236    return LV_Valid;
1237  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1238    return LV_Valid;
1239  case PredefinedExprClass:
1240    return LV_Valid;
1241  case UnresolvedLookupExprClass:
1242    return LV_Valid;
1243  case CXXDefaultArgExprClass:
1244    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1245  case CStyleCastExprClass:
1246  case CXXFunctionalCastExprClass:
1247  case CXXStaticCastExprClass:
1248  case CXXDynamicCastExprClass:
1249  case CXXReinterpretCastExprClass:
1250  case CXXConstCastExprClass:
1251    // The result of an explicit cast is an lvalue if the type we are
1252    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1253    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1254    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1255    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1256          isLValueReferenceType())
1257      return LV_Valid;
1258
1259    // If this is a conversion to a class temporary, make a note of
1260    // that.
1261    if (Ctx.getLangOptions().CPlusPlus &&
1262        cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isRecordType())
1263      return LV_ClassTemporary;
1264
1265    break;
1266  case CXXTypeidExprClass:
1267    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1268    return LV_Valid;
1269  case CXXBindTemporaryExprClass:
1270    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1271      isLvalueInternal(Ctx);
1272  case CXXBindReferenceExprClass:
1273    // Something that's bound to a reference is always an lvalue.
1274    return LV_Valid;
1275  case ConditionalOperatorClass: {
1276    // Complicated handling is only for C++.
1277    if (!Ctx.getLangOptions().CPlusPlus)
1278      return LV_InvalidExpression;
1279
1280    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1281    // everywhere there's an object converted to an rvalue. Also, any other
1282    // casts should be wrapped by ImplicitCastExprs. There's just the special
1283    // case involving throws to work out.
1284    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1285    Expr *True = Cond->getTrueExpr();
1286    Expr *False = Cond->getFalseExpr();
1287    // C++0x 5.16p2
1288    //   If either the second or the third operand has type (cv) void, [...]
1289    //   the result [...] is an rvalue.
1290    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1291      return LV_InvalidExpression;
1292
1293    // Both sides must be lvalues for the result to be an lvalue.
1294    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1295      return LV_InvalidExpression;
1296
1297    // That's it.
1298    return LV_Valid;
1299  }
1300
1301  case Expr::CXXExprWithTemporariesClass:
1302    return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx);
1303
1304  case Expr::ObjCMessageExprClass:
1305    if (const ObjCMethodDecl *Method
1306          = cast<ObjCMessageExpr>(this)->getMethodDecl())
1307      if (Method->getResultType()->isLValueReferenceType())
1308        return LV_Valid;
1309    break;
1310
1311  case Expr::CXXConstructExprClass:
1312  case Expr::CXXTemporaryObjectExprClass:
1313  case Expr::CXXZeroInitValueExprClass:
1314    return LV_ClassTemporary;
1315
1316  default:
1317    break;
1318  }
1319  return LV_InvalidExpression;
1320}
1321
1322/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1323/// does not have an incomplete type, does not have a const-qualified type, and
1324/// if it is a structure or union, does not have any member (including,
1325/// recursively, any member or element of all contained aggregates or unions)
1326/// with a const-qualified type.
1327Expr::isModifiableLvalueResult
1328Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1329  isLvalueResult lvalResult = isLvalue(Ctx);
1330
1331  switch (lvalResult) {
1332  case LV_Valid:
1333    // C++ 3.10p11: Functions cannot be modified, but pointers to
1334    // functions can be modifiable.
1335    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1336      return MLV_NotObjectType;
1337    break;
1338
1339  case LV_NotObjectType: return MLV_NotObjectType;
1340  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1341  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1342  case LV_InvalidExpression:
1343    // If the top level is a C-style cast, and the subexpression is a valid
1344    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1345    // GCC extension.  We don't support it, but we want to produce good
1346    // diagnostics when it happens so that the user knows why.
1347    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1348      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1349        if (Loc)
1350          *Loc = CE->getLParenLoc();
1351        return MLV_LValueCast;
1352      }
1353    }
1354    return MLV_InvalidExpression;
1355  case LV_MemberFunction: return MLV_MemberFunction;
1356  case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
1357  case LV_SubObjCPropertyGetterSetting:
1358    return MLV_SubObjCPropertyGetterSetting;
1359  case LV_ClassTemporary:
1360    return MLV_ClassTemporary;
1361  }
1362
1363  // The following is illegal:
1364  //   void takeclosure(void (^C)(void));
1365  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1366  //
1367  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1368    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1369      return MLV_NotBlockQualified;
1370  }
1371
1372  // Assigning to an 'implicit' property?
1373  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1374        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1375    if (Expr->getSetterMethod() == 0)
1376      return MLV_NoSetterProperty;
1377  }
1378
1379  QualType CT = Ctx.getCanonicalType(getType());
1380
1381  if (CT.isConstQualified())
1382    return MLV_ConstQualified;
1383  if (CT->isArrayType())
1384    return MLV_ArrayType;
1385  if (CT->isIncompleteType())
1386    return MLV_IncompleteType;
1387
1388  if (const RecordType *r = CT->getAs<RecordType>()) {
1389    if (r->hasConstFields())
1390      return MLV_ConstQualified;
1391  }
1392
1393  return MLV_Valid;
1394}
1395
1396/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1397/// returns true, if it is; false otherwise.
1398bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1399  switch (getStmtClass()) {
1400  default:
1401    return false;
1402  case ObjCIvarRefExprClass:
1403    return true;
1404  case Expr::UnaryOperatorClass:
1405    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1406  case ParenExprClass:
1407    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1408  case ImplicitCastExprClass:
1409    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1410  case CStyleCastExprClass:
1411    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1412  case DeclRefExprClass: {
1413    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1414    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1415      if (VD->hasGlobalStorage())
1416        return true;
1417      QualType T = VD->getType();
1418      // dereferencing to a  pointer is always a gc'able candidate,
1419      // unless it is __weak.
1420      return T->isPointerType() &&
1421             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1422    }
1423    return false;
1424  }
1425  case MemberExprClass: {
1426    const MemberExpr *M = cast<MemberExpr>(this);
1427    return M->getBase()->isOBJCGCCandidate(Ctx);
1428  }
1429  case ArraySubscriptExprClass:
1430    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1431  }
1432}
1433Expr* Expr::IgnoreParens() {
1434  Expr* E = this;
1435  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1436    E = P->getSubExpr();
1437
1438  return E;
1439}
1440
1441/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1442/// or CastExprs or ImplicitCastExprs, returning their operand.
1443Expr *Expr::IgnoreParenCasts() {
1444  Expr *E = this;
1445  while (true) {
1446    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1447      E = P->getSubExpr();
1448    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1449      E = P->getSubExpr();
1450    else
1451      return E;
1452  }
1453}
1454
1455/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1456/// value (including ptr->int casts of the same size).  Strip off any
1457/// ParenExpr or CastExprs, returning their operand.
1458Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1459  Expr *E = this;
1460  while (true) {
1461    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1462      E = P->getSubExpr();
1463      continue;
1464    }
1465
1466    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1467      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1468      // ptr<->int casts of the same width.  We also ignore all identify casts.
1469      Expr *SE = P->getSubExpr();
1470
1471      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1472        E = SE;
1473        continue;
1474      }
1475
1476      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1477          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1478          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1479        E = SE;
1480        continue;
1481      }
1482    }
1483
1484    return E;
1485  }
1486}
1487
1488bool Expr::isDefaultArgument() const {
1489  const Expr *E = this;
1490  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1491    E = ICE->getSubExprAsWritten();
1492
1493  return isa<CXXDefaultArgExpr>(E);
1494}
1495
1496/// hasAnyTypeDependentArguments - Determines if any of the expressions
1497/// in Exprs is type-dependent.
1498bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1499  for (unsigned I = 0; I < NumExprs; ++I)
1500    if (Exprs[I]->isTypeDependent())
1501      return true;
1502
1503  return false;
1504}
1505
1506/// hasAnyValueDependentArguments - Determines if any of the expressions
1507/// in Exprs is value-dependent.
1508bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1509  for (unsigned I = 0; I < NumExprs; ++I)
1510    if (Exprs[I]->isValueDependent())
1511      return true;
1512
1513  return false;
1514}
1515
1516bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1517  // This function is attempting whether an expression is an initializer
1518  // which can be evaluated at compile-time.  isEvaluatable handles most
1519  // of the cases, but it can't deal with some initializer-specific
1520  // expressions, and it can't deal with aggregates; we deal with those here,
1521  // and fall back to isEvaluatable for the other cases.
1522
1523  // FIXME: This function assumes the variable being assigned to
1524  // isn't a reference type!
1525
1526  switch (getStmtClass()) {
1527  default: break;
1528  case StringLiteralClass:
1529  case ObjCStringLiteralClass:
1530  case ObjCEncodeExprClass:
1531    return true;
1532  case CompoundLiteralExprClass: {
1533    // This handles gcc's extension that allows global initializers like
1534    // "struct x {int x;} x = (struct x) {};".
1535    // FIXME: This accepts other cases it shouldn't!
1536    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1537    return Exp->isConstantInitializer(Ctx);
1538  }
1539  case InitListExprClass: {
1540    // FIXME: This doesn't deal with fields with reference types correctly.
1541    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1542    // to bitfields.
1543    const InitListExpr *Exp = cast<InitListExpr>(this);
1544    unsigned numInits = Exp->getNumInits();
1545    for (unsigned i = 0; i < numInits; i++) {
1546      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1547        return false;
1548    }
1549    return true;
1550  }
1551  case ImplicitValueInitExprClass:
1552    return true;
1553  case ParenExprClass:
1554    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1555  case UnaryOperatorClass: {
1556    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1557    if (Exp->getOpcode() == UnaryOperator::Extension)
1558      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1559    break;
1560  }
1561  case BinaryOperatorClass: {
1562    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1563    // but this handles the common case.
1564    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1565    if (Exp->getOpcode() == BinaryOperator::Sub &&
1566        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1567        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1568      return true;
1569    break;
1570  }
1571  case ImplicitCastExprClass:
1572  case CStyleCastExprClass:
1573    // Handle casts with a destination that's a struct or union; this
1574    // deals with both the gcc no-op struct cast extension and the
1575    // cast-to-union extension.
1576    if (getType()->isRecordType())
1577      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1578
1579    // Integer->integer casts can be handled here, which is important for
1580    // things like (int)(&&x-&&y).  Scary but true.
1581    if (getType()->isIntegerType() &&
1582        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1583      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1584
1585    break;
1586  }
1587  return isEvaluatable(Ctx);
1588}
1589
1590/// isIntegerConstantExpr - this recursive routine will test if an expression is
1591/// an integer constant expression.
1592
1593/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1594/// comma, etc
1595///
1596/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1597/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1598/// cast+dereference.
1599
1600// CheckICE - This function does the fundamental ICE checking: the returned
1601// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1602// Note that to reduce code duplication, this helper does no evaluation
1603// itself; the caller checks whether the expression is evaluatable, and
1604// in the rare cases where CheckICE actually cares about the evaluated
1605// value, it calls into Evalute.
1606//
1607// Meanings of Val:
1608// 0: This expression is an ICE if it can be evaluated by Evaluate.
1609// 1: This expression is not an ICE, but if it isn't evaluated, it's
1610//    a legal subexpression for an ICE. This return value is used to handle
1611//    the comma operator in C99 mode.
1612// 2: This expression is not an ICE, and is not a legal subexpression for one.
1613
1614struct ICEDiag {
1615  unsigned Val;
1616  SourceLocation Loc;
1617
1618  public:
1619  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1620  ICEDiag() : Val(0) {}
1621};
1622
1623ICEDiag NoDiag() { return ICEDiag(); }
1624
1625static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1626  Expr::EvalResult EVResult;
1627  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1628      !EVResult.Val.isInt()) {
1629    return ICEDiag(2, E->getLocStart());
1630  }
1631  return NoDiag();
1632}
1633
1634static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1635  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1636  if (!E->getType()->isIntegralType()) {
1637    return ICEDiag(2, E->getLocStart());
1638  }
1639
1640  switch (E->getStmtClass()) {
1641#define STMT(Node, Base) case Expr::Node##Class:
1642#define EXPR(Node, Base)
1643#include "clang/AST/StmtNodes.def"
1644  case Expr::PredefinedExprClass:
1645  case Expr::FloatingLiteralClass:
1646  case Expr::ImaginaryLiteralClass:
1647  case Expr::StringLiteralClass:
1648  case Expr::ArraySubscriptExprClass:
1649  case Expr::MemberExprClass:
1650  case Expr::CompoundAssignOperatorClass:
1651  case Expr::CompoundLiteralExprClass:
1652  case Expr::ExtVectorElementExprClass:
1653  case Expr::InitListExprClass:
1654  case Expr::DesignatedInitExprClass:
1655  case Expr::ImplicitValueInitExprClass:
1656  case Expr::ParenListExprClass:
1657  case Expr::VAArgExprClass:
1658  case Expr::AddrLabelExprClass:
1659  case Expr::StmtExprClass:
1660  case Expr::CXXMemberCallExprClass:
1661  case Expr::CXXDynamicCastExprClass:
1662  case Expr::CXXTypeidExprClass:
1663  case Expr::CXXNullPtrLiteralExprClass:
1664  case Expr::CXXThisExprClass:
1665  case Expr::CXXThrowExprClass:
1666  case Expr::CXXNewExprClass:
1667  case Expr::CXXDeleteExprClass:
1668  case Expr::CXXPseudoDestructorExprClass:
1669  case Expr::UnresolvedLookupExprClass:
1670  case Expr::DependentScopeDeclRefExprClass:
1671  case Expr::CXXConstructExprClass:
1672  case Expr::CXXBindTemporaryExprClass:
1673  case Expr::CXXBindReferenceExprClass:
1674  case Expr::CXXExprWithTemporariesClass:
1675  case Expr::CXXTemporaryObjectExprClass:
1676  case Expr::CXXUnresolvedConstructExprClass:
1677  case Expr::CXXDependentScopeMemberExprClass:
1678  case Expr::UnresolvedMemberExprClass:
1679  case Expr::ObjCStringLiteralClass:
1680  case Expr::ObjCEncodeExprClass:
1681  case Expr::ObjCMessageExprClass:
1682  case Expr::ObjCSelectorExprClass:
1683  case Expr::ObjCProtocolExprClass:
1684  case Expr::ObjCIvarRefExprClass:
1685  case Expr::ObjCPropertyRefExprClass:
1686  case Expr::ObjCImplicitSetterGetterRefExprClass:
1687  case Expr::ObjCSuperExprClass:
1688  case Expr::ObjCIsaExprClass:
1689  case Expr::ShuffleVectorExprClass:
1690  case Expr::BlockExprClass:
1691  case Expr::BlockDeclRefExprClass:
1692  case Expr::NoStmtClass:
1693    return ICEDiag(2, E->getLocStart());
1694
1695  case Expr::GNUNullExprClass:
1696    // GCC considers the GNU __null value to be an integral constant expression.
1697    return NoDiag();
1698
1699  case Expr::ParenExprClass:
1700    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1701  case Expr::IntegerLiteralClass:
1702  case Expr::CharacterLiteralClass:
1703  case Expr::CXXBoolLiteralExprClass:
1704  case Expr::CXXZeroInitValueExprClass:
1705  case Expr::TypesCompatibleExprClass:
1706  case Expr::UnaryTypeTraitExprClass:
1707    return NoDiag();
1708  case Expr::CallExprClass:
1709  case Expr::CXXOperatorCallExprClass: {
1710    const CallExpr *CE = cast<CallExpr>(E);
1711    if (CE->isBuiltinCall(Ctx))
1712      return CheckEvalInICE(E, Ctx);
1713    return ICEDiag(2, E->getLocStart());
1714  }
1715  case Expr::DeclRefExprClass:
1716    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1717      return NoDiag();
1718    if (Ctx.getLangOptions().CPlusPlus &&
1719        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1720      // C++ 7.1.5.1p2
1721      //   A variable of non-volatile const-qualified integral or enumeration
1722      //   type initialized by an ICE can be used in ICEs.
1723      if (const VarDecl *Dcl =
1724              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1725        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1726        if (Quals.hasVolatile() || !Quals.hasConst())
1727          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1728
1729        // Look for a declaration of this variable that has an initializer.
1730        const VarDecl *ID = 0;
1731        const Expr *Init = Dcl->getAnyInitializer(ID);
1732        if (Init) {
1733          if (ID->isInitKnownICE()) {
1734            // We have already checked whether this subexpression is an
1735            // integral constant expression.
1736            if (ID->isInitICE())
1737              return NoDiag();
1738            else
1739              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1740          }
1741
1742          // It's an ICE whether or not the definition we found is
1743          // out-of-line.  See DR 721 and the discussion in Clang PR
1744          // 6206 for details.
1745
1746          if (Dcl->isCheckingICE()) {
1747            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1748          }
1749
1750          Dcl->setCheckingICE();
1751          ICEDiag Result = CheckICE(Init, Ctx);
1752          // Cache the result of the ICE test.
1753          Dcl->setInitKnownICE(Result.Val == 0);
1754          return Result;
1755        }
1756      }
1757    }
1758    return ICEDiag(2, E->getLocStart());
1759  case Expr::UnaryOperatorClass: {
1760    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1761    switch (Exp->getOpcode()) {
1762    case UnaryOperator::PostInc:
1763    case UnaryOperator::PostDec:
1764    case UnaryOperator::PreInc:
1765    case UnaryOperator::PreDec:
1766    case UnaryOperator::AddrOf:
1767    case UnaryOperator::Deref:
1768      return ICEDiag(2, E->getLocStart());
1769
1770    case UnaryOperator::Extension:
1771    case UnaryOperator::LNot:
1772    case UnaryOperator::Plus:
1773    case UnaryOperator::Minus:
1774    case UnaryOperator::Not:
1775    case UnaryOperator::Real:
1776    case UnaryOperator::Imag:
1777      return CheckICE(Exp->getSubExpr(), Ctx);
1778    case UnaryOperator::OffsetOf:
1779      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1780      // Evaluate matches the proposed gcc behavior for cases like
1781      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1782      // compliance: we should warn earlier for offsetof expressions with
1783      // array subscripts that aren't ICEs, and if the array subscripts
1784      // are ICEs, the value of the offsetof must be an integer constant.
1785      return CheckEvalInICE(E, Ctx);
1786    }
1787  }
1788  case Expr::SizeOfAlignOfExprClass: {
1789    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1790    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1791      return ICEDiag(2, E->getLocStart());
1792    return NoDiag();
1793  }
1794  case Expr::BinaryOperatorClass: {
1795    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1796    switch (Exp->getOpcode()) {
1797    case BinaryOperator::PtrMemD:
1798    case BinaryOperator::PtrMemI:
1799    case BinaryOperator::Assign:
1800    case BinaryOperator::MulAssign:
1801    case BinaryOperator::DivAssign:
1802    case BinaryOperator::RemAssign:
1803    case BinaryOperator::AddAssign:
1804    case BinaryOperator::SubAssign:
1805    case BinaryOperator::ShlAssign:
1806    case BinaryOperator::ShrAssign:
1807    case BinaryOperator::AndAssign:
1808    case BinaryOperator::XorAssign:
1809    case BinaryOperator::OrAssign:
1810      return ICEDiag(2, E->getLocStart());
1811
1812    case BinaryOperator::Mul:
1813    case BinaryOperator::Div:
1814    case BinaryOperator::Rem:
1815    case BinaryOperator::Add:
1816    case BinaryOperator::Sub:
1817    case BinaryOperator::Shl:
1818    case BinaryOperator::Shr:
1819    case BinaryOperator::LT:
1820    case BinaryOperator::GT:
1821    case BinaryOperator::LE:
1822    case BinaryOperator::GE:
1823    case BinaryOperator::EQ:
1824    case BinaryOperator::NE:
1825    case BinaryOperator::And:
1826    case BinaryOperator::Xor:
1827    case BinaryOperator::Or:
1828    case BinaryOperator::Comma: {
1829      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1830      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1831      if (Exp->getOpcode() == BinaryOperator::Div ||
1832          Exp->getOpcode() == BinaryOperator::Rem) {
1833        // Evaluate gives an error for undefined Div/Rem, so make sure
1834        // we don't evaluate one.
1835        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1836          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1837          if (REval == 0)
1838            return ICEDiag(1, E->getLocStart());
1839          if (REval.isSigned() && REval.isAllOnesValue()) {
1840            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1841            if (LEval.isMinSignedValue())
1842              return ICEDiag(1, E->getLocStart());
1843          }
1844        }
1845      }
1846      if (Exp->getOpcode() == BinaryOperator::Comma) {
1847        if (Ctx.getLangOptions().C99) {
1848          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1849          // if it isn't evaluated.
1850          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1851            return ICEDiag(1, E->getLocStart());
1852        } else {
1853          // In both C89 and C++, commas in ICEs are illegal.
1854          return ICEDiag(2, E->getLocStart());
1855        }
1856      }
1857      if (LHSResult.Val >= RHSResult.Val)
1858        return LHSResult;
1859      return RHSResult;
1860    }
1861    case BinaryOperator::LAnd:
1862    case BinaryOperator::LOr: {
1863      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1864      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1865      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1866        // Rare case where the RHS has a comma "side-effect"; we need
1867        // to actually check the condition to see whether the side
1868        // with the comma is evaluated.
1869        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1870            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1871          return RHSResult;
1872        return NoDiag();
1873      }
1874
1875      if (LHSResult.Val >= RHSResult.Val)
1876        return LHSResult;
1877      return RHSResult;
1878    }
1879    }
1880  }
1881  case Expr::ImplicitCastExprClass:
1882  case Expr::CStyleCastExprClass:
1883  case Expr::CXXFunctionalCastExprClass:
1884  case Expr::CXXNamedCastExprClass:
1885  case Expr::CXXStaticCastExprClass:
1886  case Expr::CXXReinterpretCastExprClass:
1887  case Expr::CXXConstCastExprClass: {
1888    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1889    if (SubExpr->getType()->isIntegralType())
1890      return CheckICE(SubExpr, Ctx);
1891    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1892      return NoDiag();
1893    return ICEDiag(2, E->getLocStart());
1894  }
1895  case Expr::ConditionalOperatorClass: {
1896    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1897    // If the condition (ignoring parens) is a __builtin_constant_p call,
1898    // then only the true side is actually considered in an integer constant
1899    // expression, and it is fully evaluated.  This is an important GNU
1900    // extension.  See GCC PR38377 for discussion.
1901    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1902      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1903        Expr::EvalResult EVResult;
1904        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1905            !EVResult.Val.isInt()) {
1906          return ICEDiag(2, E->getLocStart());
1907        }
1908        return NoDiag();
1909      }
1910    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1911    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1912    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1913    if (CondResult.Val == 2)
1914      return CondResult;
1915    if (TrueResult.Val == 2)
1916      return TrueResult;
1917    if (FalseResult.Val == 2)
1918      return FalseResult;
1919    if (CondResult.Val == 1)
1920      return CondResult;
1921    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1922      return NoDiag();
1923    // Rare case where the diagnostics depend on which side is evaluated
1924    // Note that if we get here, CondResult is 0, and at least one of
1925    // TrueResult and FalseResult is non-zero.
1926    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1927      return FalseResult;
1928    }
1929    return TrueResult;
1930  }
1931  case Expr::CXXDefaultArgExprClass:
1932    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1933  case Expr::ChooseExprClass: {
1934    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1935  }
1936  }
1937
1938  // Silence a GCC warning
1939  return ICEDiag(2, E->getLocStart());
1940}
1941
1942bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1943                                 SourceLocation *Loc, bool isEvaluated) const {
1944  ICEDiag d = CheckICE(this, Ctx);
1945  if (d.Val != 0) {
1946    if (Loc) *Loc = d.Loc;
1947    return false;
1948  }
1949  EvalResult EvalResult;
1950  if (!Evaluate(EvalResult, Ctx))
1951    llvm_unreachable("ICE cannot be evaluated!");
1952  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1953  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1954  Result = EvalResult.Val.getInt();
1955  return true;
1956}
1957
1958/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1959/// integer constant expression with the value zero, or if this is one that is
1960/// cast to void*.
1961bool Expr::isNullPointerConstant(ASTContext &Ctx,
1962                                 NullPointerConstantValueDependence NPC) const {
1963  if (isValueDependent()) {
1964    switch (NPC) {
1965    case NPC_NeverValueDependent:
1966      assert(false && "Unexpected value dependent expression!");
1967      // If the unthinkable happens, fall through to the safest alternative.
1968
1969    case NPC_ValueDependentIsNull:
1970      return isTypeDependent() || getType()->isIntegralType();
1971
1972    case NPC_ValueDependentIsNotNull:
1973      return false;
1974    }
1975  }
1976
1977  // Strip off a cast to void*, if it exists. Except in C++.
1978  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1979    if (!Ctx.getLangOptions().CPlusPlus) {
1980      // Check that it is a cast to void*.
1981      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1982        QualType Pointee = PT->getPointeeType();
1983        if (!Pointee.hasQualifiers() &&
1984            Pointee->isVoidType() &&                              // to void*
1985            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1986          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1987      }
1988    }
1989  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1990    // Ignore the ImplicitCastExpr type entirely.
1991    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1992  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1993    // Accept ((void*)0) as a null pointer constant, as many other
1994    // implementations do.
1995    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1996  } else if (const CXXDefaultArgExpr *DefaultArg
1997               = dyn_cast<CXXDefaultArgExpr>(this)) {
1998    // See through default argument expressions
1999    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2000  } else if (isa<GNUNullExpr>(this)) {
2001    // The GNU __null extension is always a null pointer constant.
2002    return true;
2003  }
2004
2005  // C++0x nullptr_t is always a null pointer constant.
2006  if (getType()->isNullPtrType())
2007    return true;
2008
2009  // This expression must be an integer type.
2010  if (!getType()->isIntegerType() ||
2011      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
2012    return false;
2013
2014  // If we have an integer constant expression, we need to *evaluate* it and
2015  // test for the value 0.
2016  llvm::APSInt Result;
2017  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
2018}
2019
2020FieldDecl *Expr::getBitField() {
2021  Expr *E = this->IgnoreParens();
2022
2023  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2024    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
2025      E = ICE->getSubExpr()->IgnoreParens();
2026    else
2027      break;
2028  }
2029
2030  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2031    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2032      if (Field->isBitField())
2033        return Field;
2034
2035  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
2036    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2037      return BinOp->getLHS()->getBitField();
2038
2039  return 0;
2040}
2041
2042bool Expr::refersToVectorElement() const {
2043  const Expr *E = this->IgnoreParens();
2044
2045  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2046    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
2047      E = ICE->getSubExpr()->IgnoreParens();
2048    else
2049      break;
2050  }
2051
2052  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2053    return ASE->getBase()->getType()->isVectorType();
2054
2055  if (isa<ExtVectorElementExpr>(E))
2056    return true;
2057
2058  return false;
2059}
2060
2061/// isArrow - Return true if the base expression is a pointer to vector,
2062/// return false if the base expression is a vector.
2063bool ExtVectorElementExpr::isArrow() const {
2064  return getBase()->getType()->isPointerType();
2065}
2066
2067unsigned ExtVectorElementExpr::getNumElements() const {
2068  if (const VectorType *VT = getType()->getAs<VectorType>())
2069    return VT->getNumElements();
2070  return 1;
2071}
2072
2073/// containsDuplicateElements - Return true if any element access is repeated.
2074bool ExtVectorElementExpr::containsDuplicateElements() const {
2075  // FIXME: Refactor this code to an accessor on the AST node which returns the
2076  // "type" of component access, and share with code below and in Sema.
2077  llvm::StringRef Comp = Accessor->getName();
2078
2079  // Halving swizzles do not contain duplicate elements.
2080  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2081    return false;
2082
2083  // Advance past s-char prefix on hex swizzles.
2084  if (Comp[0] == 's' || Comp[0] == 'S')
2085    Comp = Comp.substr(1);
2086
2087  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2088    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2089        return true;
2090
2091  return false;
2092}
2093
2094/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2095void ExtVectorElementExpr::getEncodedElementAccess(
2096                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2097  llvm::StringRef Comp = Accessor->getName();
2098  if (Comp[0] == 's' || Comp[0] == 'S')
2099    Comp = Comp.substr(1);
2100
2101  bool isHi =   Comp == "hi";
2102  bool isLo =   Comp == "lo";
2103  bool isEven = Comp == "even";
2104  bool isOdd  = Comp == "odd";
2105
2106  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2107    uint64_t Index;
2108
2109    if (isHi)
2110      Index = e + i;
2111    else if (isLo)
2112      Index = i;
2113    else if (isEven)
2114      Index = 2 * i;
2115    else if (isOdd)
2116      Index = 2 * i + 1;
2117    else
2118      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2119
2120    Elts.push_back(Index);
2121  }
2122}
2123
2124// constructor for instance messages.
2125ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, Expr *receiver,
2126                                 Selector selInfo,
2127                                 QualType retType, ObjCMethodDecl *mproto,
2128                                 SourceLocation LBrac, SourceLocation RBrac,
2129                                 Expr **ArgExprs, unsigned nargs)
2130  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2131    MethodProto(mproto) {
2132  NumArgs = nargs;
2133  SubExprs = new (C) Stmt*[NumArgs+1];
2134  SubExprs[RECEIVER] = receiver;
2135  if (NumArgs) {
2136    for (unsigned i = 0; i != NumArgs; ++i)
2137      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2138  }
2139  LBracloc = LBrac;
2140  RBracloc = RBrac;
2141}
2142
2143// constructor for class messages.
2144// FIXME: clsName should be typed to ObjCInterfaceType
2145ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, IdentifierInfo *clsName,
2146                                 Selector selInfo, QualType retType,
2147                                 ObjCMethodDecl *mproto,
2148                                 SourceLocation LBrac, SourceLocation RBrac,
2149                                 Expr **ArgExprs, unsigned nargs)
2150  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2151    MethodProto(mproto) {
2152  NumArgs = nargs;
2153  SubExprs = new (C) Stmt*[NumArgs+1];
2154  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
2155  if (NumArgs) {
2156    for (unsigned i = 0; i != NumArgs; ++i)
2157      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2158  }
2159  LBracloc = LBrac;
2160  RBracloc = RBrac;
2161}
2162
2163// constructor for class messages.
2164ObjCMessageExpr::ObjCMessageExpr(ASTContext &C, ObjCInterfaceDecl *cls,
2165                                 Selector selInfo, QualType retType,
2166                                 ObjCMethodDecl *mproto, SourceLocation LBrac,
2167                                 SourceLocation RBrac, Expr **ArgExprs,
2168                                 unsigned nargs)
2169: Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2170MethodProto(mproto) {
2171  NumArgs = nargs;
2172  SubExprs = new (C) Stmt*[NumArgs+1];
2173  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2174  if (NumArgs) {
2175    for (unsigned i = 0; i != NumArgs; ++i)
2176      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2177  }
2178  LBracloc = LBrac;
2179  RBracloc = RBrac;
2180}
2181
2182ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2183  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2184  switch (x & Flags) {
2185    default:
2186      assert(false && "Invalid ObjCMessageExpr.");
2187    case IsInstMeth:
2188      return ClassInfo(0, 0);
2189    case IsClsMethDeclUnknown:
2190      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
2191    case IsClsMethDeclKnown: {
2192      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2193      return ClassInfo(D, D->getIdentifier());
2194    }
2195  }
2196}
2197
2198void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2199  if (CI.first == 0 && CI.second == 0)
2200    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2201  else if (CI.first == 0)
2202    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
2203  else
2204    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
2205}
2206
2207void ObjCMessageExpr::DoDestroy(ASTContext &C) {
2208  DestroyChildren(C);
2209  if (SubExprs)
2210    C.Deallocate(SubExprs);
2211  this->~ObjCMessageExpr();
2212  C.Deallocate((void*) this);
2213}
2214
2215bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2216  return getCond()->EvaluateAsInt(C) != 0;
2217}
2218
2219void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2220                                 unsigned NumExprs) {
2221  if (SubExprs) C.Deallocate(SubExprs);
2222
2223  SubExprs = new (C) Stmt* [NumExprs];
2224  this->NumExprs = NumExprs;
2225  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2226}
2227
2228void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2229  DestroyChildren(C);
2230  if (SubExprs) C.Deallocate(SubExprs);
2231  this->~ShuffleVectorExpr();
2232  C.Deallocate(this);
2233}
2234
2235void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2236  // Override default behavior of traversing children. If this has a type
2237  // operand and the type is a variable-length array, the child iteration
2238  // will iterate over the size expression. However, this expression belongs
2239  // to the type, not to this, so we don't want to delete it.
2240  // We still want to delete this expression.
2241  if (isArgumentType()) {
2242    this->~SizeOfAlignOfExpr();
2243    C.Deallocate(this);
2244  }
2245  else
2246    Expr::DoDestroy(C);
2247}
2248
2249//===----------------------------------------------------------------------===//
2250//  DesignatedInitExpr
2251//===----------------------------------------------------------------------===//
2252
2253IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2254  assert(Kind == FieldDesignator && "Only valid on a field designator");
2255  if (Field.NameOrField & 0x01)
2256    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2257  else
2258    return getField()->getIdentifier();
2259}
2260
2261DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2262                                       unsigned NumDesignators,
2263                                       const Designator *Designators,
2264                                       SourceLocation EqualOrColonLoc,
2265                                       bool GNUSyntax,
2266                                       Expr **IndexExprs,
2267                                       unsigned NumIndexExprs,
2268                                       Expr *Init)
2269  : Expr(DesignatedInitExprClass, Ty,
2270         Init->isTypeDependent(), Init->isValueDependent()),
2271    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2272    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2273  this->Designators = new (C) Designator[NumDesignators];
2274
2275  // Record the initializer itself.
2276  child_iterator Child = child_begin();
2277  *Child++ = Init;
2278
2279  // Copy the designators and their subexpressions, computing
2280  // value-dependence along the way.
2281  unsigned IndexIdx = 0;
2282  for (unsigned I = 0; I != NumDesignators; ++I) {
2283    this->Designators[I] = Designators[I];
2284
2285    if (this->Designators[I].isArrayDesignator()) {
2286      // Compute type- and value-dependence.
2287      Expr *Index = IndexExprs[IndexIdx];
2288      ValueDependent = ValueDependent ||
2289        Index->isTypeDependent() || Index->isValueDependent();
2290
2291      // Copy the index expressions into permanent storage.
2292      *Child++ = IndexExprs[IndexIdx++];
2293    } else if (this->Designators[I].isArrayRangeDesignator()) {
2294      // Compute type- and value-dependence.
2295      Expr *Start = IndexExprs[IndexIdx];
2296      Expr *End = IndexExprs[IndexIdx + 1];
2297      ValueDependent = ValueDependent ||
2298        Start->isTypeDependent() || Start->isValueDependent() ||
2299        End->isTypeDependent() || End->isValueDependent();
2300
2301      // Copy the start/end expressions into permanent storage.
2302      *Child++ = IndexExprs[IndexIdx++];
2303      *Child++ = IndexExprs[IndexIdx++];
2304    }
2305  }
2306
2307  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2308}
2309
2310DesignatedInitExpr *
2311DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2312                           unsigned NumDesignators,
2313                           Expr **IndexExprs, unsigned NumIndexExprs,
2314                           SourceLocation ColonOrEqualLoc,
2315                           bool UsesColonSyntax, Expr *Init) {
2316  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2317                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2318  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2319                                      ColonOrEqualLoc, UsesColonSyntax,
2320                                      IndexExprs, NumIndexExprs, Init);
2321}
2322
2323DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2324                                                    unsigned NumIndexExprs) {
2325  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2326                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2327  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2328}
2329
2330void DesignatedInitExpr::setDesignators(ASTContext &C,
2331                                        const Designator *Desigs,
2332                                        unsigned NumDesigs) {
2333  DestroyDesignators(C);
2334
2335  Designators = new (C) Designator[NumDesigs];
2336  NumDesignators = NumDesigs;
2337  for (unsigned I = 0; I != NumDesigs; ++I)
2338    Designators[I] = Desigs[I];
2339}
2340
2341SourceRange DesignatedInitExpr::getSourceRange() const {
2342  SourceLocation StartLoc;
2343  Designator &First =
2344    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2345  if (First.isFieldDesignator()) {
2346    if (GNUSyntax)
2347      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2348    else
2349      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2350  } else
2351    StartLoc =
2352      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2353  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2354}
2355
2356Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2357  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2358  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2359  Ptr += sizeof(DesignatedInitExpr);
2360  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2361  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2362}
2363
2364Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2365  assert(D.Kind == Designator::ArrayRangeDesignator &&
2366         "Requires array range designator");
2367  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2368  Ptr += sizeof(DesignatedInitExpr);
2369  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2370  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2371}
2372
2373Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2374  assert(D.Kind == Designator::ArrayRangeDesignator &&
2375         "Requires array range designator");
2376  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2377  Ptr += sizeof(DesignatedInitExpr);
2378  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2379  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2380}
2381
2382/// \brief Replaces the designator at index @p Idx with the series
2383/// of designators in [First, Last).
2384void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2385                                          const Designator *First,
2386                                          const Designator *Last) {
2387  unsigned NumNewDesignators = Last - First;
2388  if (NumNewDesignators == 0) {
2389    std::copy_backward(Designators + Idx + 1,
2390                       Designators + NumDesignators,
2391                       Designators + Idx);
2392    --NumNewDesignators;
2393    return;
2394  } else if (NumNewDesignators == 1) {
2395    Designators[Idx] = *First;
2396    return;
2397  }
2398
2399  Designator *NewDesignators
2400    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2401  std::copy(Designators, Designators + Idx, NewDesignators);
2402  std::copy(First, Last, NewDesignators + Idx);
2403  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2404            NewDesignators + Idx + NumNewDesignators);
2405  DestroyDesignators(C);
2406  Designators = NewDesignators;
2407  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2408}
2409
2410void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2411  DestroyDesignators(C);
2412  Expr::DoDestroy(C);
2413}
2414
2415void DesignatedInitExpr::DestroyDesignators(ASTContext &C) {
2416  for (unsigned I = 0; I != NumDesignators; ++I)
2417    Designators[I].~Designator();
2418  C.Deallocate(Designators);
2419  Designators = 0;
2420}
2421
2422ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2423                             Expr **exprs, unsigned nexprs,
2424                             SourceLocation rparenloc)
2425: Expr(ParenListExprClass, QualType(),
2426       hasAnyTypeDependentArguments(exprs, nexprs),
2427       hasAnyValueDependentArguments(exprs, nexprs)),
2428  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2429
2430  Exprs = new (C) Stmt*[nexprs];
2431  for (unsigned i = 0; i != nexprs; ++i)
2432    Exprs[i] = exprs[i];
2433}
2434
2435void ParenListExpr::DoDestroy(ASTContext& C) {
2436  DestroyChildren(C);
2437  if (Exprs) C.Deallocate(Exprs);
2438  this->~ParenListExpr();
2439  C.Deallocate(this);
2440}
2441
2442//===----------------------------------------------------------------------===//
2443//  ExprIterator.
2444//===----------------------------------------------------------------------===//
2445
2446Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2447Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2448Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2449const Expr* ConstExprIterator::operator[](size_t idx) const {
2450  return cast<Expr>(I[idx]);
2451}
2452const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2453const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2454
2455//===----------------------------------------------------------------------===//
2456//  Child Iterators for iterating over subexpressions/substatements
2457//===----------------------------------------------------------------------===//
2458
2459// DeclRefExpr
2460Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2461Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2462
2463// ObjCIvarRefExpr
2464Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2465Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2466
2467// ObjCPropertyRefExpr
2468Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2469Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2470
2471// ObjCImplicitSetterGetterRefExpr
2472Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2473  return &Base;
2474}
2475Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2476  return &Base+1;
2477}
2478
2479// ObjCSuperExpr
2480Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2481Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2482
2483// ObjCIsaExpr
2484Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2485Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2486
2487// PredefinedExpr
2488Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2489Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2490
2491// IntegerLiteral
2492Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2493Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2494
2495// CharacterLiteral
2496Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2497Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2498
2499// FloatingLiteral
2500Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2501Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2502
2503// ImaginaryLiteral
2504Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2505Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2506
2507// StringLiteral
2508Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2509Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2510
2511// ParenExpr
2512Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2513Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2514
2515// UnaryOperator
2516Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2517Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2518
2519// SizeOfAlignOfExpr
2520Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2521  // If this is of a type and the type is a VLA type (and not a typedef), the
2522  // size expression of the VLA needs to be treated as an executable expression.
2523  // Why isn't this weirdness documented better in StmtIterator?
2524  if (isArgumentType()) {
2525    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2526                                   getArgumentType().getTypePtr()))
2527      return child_iterator(T);
2528    return child_iterator();
2529  }
2530  return child_iterator(&Argument.Ex);
2531}
2532Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2533  if (isArgumentType())
2534    return child_iterator();
2535  return child_iterator(&Argument.Ex + 1);
2536}
2537
2538// ArraySubscriptExpr
2539Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2540  return &SubExprs[0];
2541}
2542Stmt::child_iterator ArraySubscriptExpr::child_end() {
2543  return &SubExprs[0]+END_EXPR;
2544}
2545
2546// CallExpr
2547Stmt::child_iterator CallExpr::child_begin() {
2548  return &SubExprs[0];
2549}
2550Stmt::child_iterator CallExpr::child_end() {
2551  return &SubExprs[0]+NumArgs+ARGS_START;
2552}
2553
2554// MemberExpr
2555Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2556Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2557
2558// ExtVectorElementExpr
2559Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2560Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2561
2562// CompoundLiteralExpr
2563Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2564Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2565
2566// CastExpr
2567Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2568Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2569
2570// BinaryOperator
2571Stmt::child_iterator BinaryOperator::child_begin() {
2572  return &SubExprs[0];
2573}
2574Stmt::child_iterator BinaryOperator::child_end() {
2575  return &SubExprs[0]+END_EXPR;
2576}
2577
2578// ConditionalOperator
2579Stmt::child_iterator ConditionalOperator::child_begin() {
2580  return &SubExprs[0];
2581}
2582Stmt::child_iterator ConditionalOperator::child_end() {
2583  return &SubExprs[0]+END_EXPR;
2584}
2585
2586// AddrLabelExpr
2587Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2588Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2589
2590// StmtExpr
2591Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2592Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2593
2594// TypesCompatibleExpr
2595Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2596  return child_iterator();
2597}
2598
2599Stmt::child_iterator TypesCompatibleExpr::child_end() {
2600  return child_iterator();
2601}
2602
2603// ChooseExpr
2604Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2605Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2606
2607// GNUNullExpr
2608Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2609Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2610
2611// ShuffleVectorExpr
2612Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2613  return &SubExprs[0];
2614}
2615Stmt::child_iterator ShuffleVectorExpr::child_end() {
2616  return &SubExprs[0]+NumExprs;
2617}
2618
2619// VAArgExpr
2620Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2621Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2622
2623// InitListExpr
2624Stmt::child_iterator InitListExpr::child_begin() { return begin(); }
2625Stmt::child_iterator InitListExpr::child_end() { return end(); }
2626
2627// DesignatedInitExpr
2628Stmt::child_iterator DesignatedInitExpr::child_begin() {
2629  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2630  Ptr += sizeof(DesignatedInitExpr);
2631  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2632}
2633Stmt::child_iterator DesignatedInitExpr::child_end() {
2634  return child_iterator(&*child_begin() + NumSubExprs);
2635}
2636
2637// ImplicitValueInitExpr
2638Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2639  return child_iterator();
2640}
2641
2642Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2643  return child_iterator();
2644}
2645
2646// ParenListExpr
2647Stmt::child_iterator ParenListExpr::child_begin() {
2648  return &Exprs[0];
2649}
2650Stmt::child_iterator ParenListExpr::child_end() {
2651  return &Exprs[0]+NumExprs;
2652}
2653
2654// ObjCStringLiteral
2655Stmt::child_iterator ObjCStringLiteral::child_begin() {
2656  return &String;
2657}
2658Stmt::child_iterator ObjCStringLiteral::child_end() {
2659  return &String+1;
2660}
2661
2662// ObjCEncodeExpr
2663Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2664Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2665
2666// ObjCSelectorExpr
2667Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2668  return child_iterator();
2669}
2670Stmt::child_iterator ObjCSelectorExpr::child_end() {
2671  return child_iterator();
2672}
2673
2674// ObjCProtocolExpr
2675Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2676  return child_iterator();
2677}
2678Stmt::child_iterator ObjCProtocolExpr::child_end() {
2679  return child_iterator();
2680}
2681
2682// ObjCMessageExpr
2683Stmt::child_iterator ObjCMessageExpr::child_begin() {
2684  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2685}
2686Stmt::child_iterator ObjCMessageExpr::child_end() {
2687  return &SubExprs[0]+ARGS_START+getNumArgs();
2688}
2689
2690// Blocks
2691Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2692Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2693
2694Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2695Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2696