Expr.cpp revision a3bddeda81ca784bed5501d79e1e7c53befaa91d
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30/// isKnownToHaveBooleanValue - Return true if this is an integer expression
31/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
32/// but also int expressions which are produced by things like comparisons in
33/// C.
34bool Expr::isKnownToHaveBooleanValue() const {
35  // If this value has _Bool type, it is obvious 0/1.
36  if (getType()->isBooleanType()) return true;
37  // If this is a non-scalar-integer type, we don't care enough to try.
38  if (!getType()->isIntegralType()) return false;
39
40  if (const ParenExpr *PE = dyn_cast<ParenExpr>(this))
41    return PE->getSubExpr()->isKnownToHaveBooleanValue();
42
43  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(this)) {
44    switch (UO->getOpcode()) {
45    case UnaryOperator::Plus:
46    case UnaryOperator::Extension:
47      return UO->getSubExpr()->isKnownToHaveBooleanValue();
48    default:
49      return false;
50    }
51  }
52
53  if (const CastExpr *CE = dyn_cast<CastExpr>(this))
54    return CE->getSubExpr()->isKnownToHaveBooleanValue();
55
56  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(this)) {
57    switch (BO->getOpcode()) {
58    default: return false;
59    case BinaryOperator::LT:   // Relational operators.
60    case BinaryOperator::GT:
61    case BinaryOperator::LE:
62    case BinaryOperator::GE:
63    case BinaryOperator::EQ:   // Equality operators.
64    case BinaryOperator::NE:
65    case BinaryOperator::LAnd: // AND operator.
66    case BinaryOperator::LOr:  // Logical OR operator.
67      return true;
68
69    case BinaryOperator::And:  // Bitwise AND operator.
70    case BinaryOperator::Xor:  // Bitwise XOR operator.
71    case BinaryOperator::Or:   // Bitwise OR operator.
72      // Handle things like (x==2)|(y==12).
73      return BO->getLHS()->isKnownToHaveBooleanValue() &&
74             BO->getRHS()->isKnownToHaveBooleanValue();
75
76    case BinaryOperator::Comma:
77    case BinaryOperator::Assign:
78      return BO->getRHS()->isKnownToHaveBooleanValue();
79    }
80  }
81
82  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(this))
83    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
84           CO->getFalseExpr()->isKnownToHaveBooleanValue();
85
86  return false;
87}
88
89//===----------------------------------------------------------------------===//
90// Primary Expressions.
91//===----------------------------------------------------------------------===//
92
93void ExplicitTemplateArgumentList::initializeFrom(
94                                      const TemplateArgumentListInfo &Info) {
95  LAngleLoc = Info.getLAngleLoc();
96  RAngleLoc = Info.getRAngleLoc();
97  NumTemplateArgs = Info.size();
98
99  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
100  for (unsigned i = 0; i != NumTemplateArgs; ++i)
101    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
102}
103
104void ExplicitTemplateArgumentList::copyInto(
105                                      TemplateArgumentListInfo &Info) const {
106  Info.setLAngleLoc(LAngleLoc);
107  Info.setRAngleLoc(RAngleLoc);
108  for (unsigned I = 0; I != NumTemplateArgs; ++I)
109    Info.addArgument(getTemplateArgs()[I]);
110}
111
112std::size_t ExplicitTemplateArgumentList::sizeFor(
113                                      const TemplateArgumentListInfo &Info) {
114  return sizeof(ExplicitTemplateArgumentList) +
115         sizeof(TemplateArgumentLoc) * Info.size();
116}
117
118void DeclRefExpr::computeDependence() {
119  TypeDependent = false;
120  ValueDependent = false;
121
122  NamedDecl *D = getDecl();
123
124  // (TD) C++ [temp.dep.expr]p3:
125  //   An id-expression is type-dependent if it contains:
126  //
127  // and
128  //
129  // (VD) C++ [temp.dep.constexpr]p2:
130  //  An identifier is value-dependent if it is:
131
132  //  (TD)  - an identifier that was declared with dependent type
133  //  (VD)  - a name declared with a dependent type,
134  if (getType()->isDependentType()) {
135    TypeDependent = true;
136    ValueDependent = true;
137  }
138  //  (TD)  - a conversion-function-id that specifies a dependent type
139  else if (D->getDeclName().getNameKind()
140                               == DeclarationName::CXXConversionFunctionName &&
141           D->getDeclName().getCXXNameType()->isDependentType()) {
142    TypeDependent = true;
143    ValueDependent = true;
144  }
145  //  (TD)  - a template-id that is dependent,
146  else if (hasExplicitTemplateArgumentList() &&
147           TemplateSpecializationType::anyDependentTemplateArguments(
148                                                       getTemplateArgs(),
149                                                       getNumTemplateArgs())) {
150    TypeDependent = true;
151    ValueDependent = true;
152  }
153  //  (VD)  - the name of a non-type template parameter,
154  else if (isa<NonTypeTemplateParmDecl>(D))
155    ValueDependent = true;
156  //  (VD) - a constant with integral or enumeration type and is
157  //         initialized with an expression that is value-dependent.
158  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
159    if (Var->getType()->isIntegralType() &&
160        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
161      if (const Expr *Init = Var->getAnyInitializer())
162        if (Init->isValueDependent())
163          ValueDependent = true;
164    }
165  }
166  //  (TD)  - a nested-name-specifier or a qualified-id that names a
167  //          member of an unknown specialization.
168  //        (handled by DependentScopeDeclRefExpr)
169}
170
171DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
172                         SourceRange QualifierRange,
173                         ValueDecl *D, SourceLocation NameLoc,
174                         const TemplateArgumentListInfo *TemplateArgs,
175                         QualType T)
176  : Expr(DeclRefExprClass, T, false, false),
177    DecoratedD(D,
178               (Qualifier? HasQualifierFlag : 0) |
179               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
180    Loc(NameLoc) {
181  if (Qualifier) {
182    NameQualifier *NQ = getNameQualifier();
183    NQ->NNS = Qualifier;
184    NQ->Range = QualifierRange;
185  }
186
187  if (TemplateArgs)
188    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
189
190  computeDependence();
191}
192
193DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
194                                 NestedNameSpecifier *Qualifier,
195                                 SourceRange QualifierRange,
196                                 ValueDecl *D,
197                                 SourceLocation NameLoc,
198                                 QualType T,
199                                 const TemplateArgumentListInfo *TemplateArgs) {
200  std::size_t Size = sizeof(DeclRefExpr);
201  if (Qualifier != 0)
202    Size += sizeof(NameQualifier);
203
204  if (TemplateArgs)
205    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
206
207  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
208  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
209                               TemplateArgs, T);
210}
211
212SourceRange DeclRefExpr::getSourceRange() const {
213  // FIXME: Does not handle multi-token names well, e.g., operator[].
214  SourceRange R(Loc);
215
216  if (hasQualifier())
217    R.setBegin(getQualifierRange().getBegin());
218  if (hasExplicitTemplateArgumentList())
219    R.setEnd(getRAngleLoc());
220  return R;
221}
222
223// FIXME: Maybe this should use DeclPrinter with a special "print predefined
224// expr" policy instead.
225std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
226  ASTContext &Context = CurrentDecl->getASTContext();
227
228  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
229    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
230      return FD->getNameAsString();
231
232    llvm::SmallString<256> Name;
233    llvm::raw_svector_ostream Out(Name);
234
235    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
236      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
237        Out << "virtual ";
238      if (MD->isStatic())
239        Out << "static ";
240    }
241
242    PrintingPolicy Policy(Context.getLangOptions());
243
244    std::string Proto = FD->getQualifiedNameAsString(Policy);
245
246    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
247    const FunctionProtoType *FT = 0;
248    if (FD->hasWrittenPrototype())
249      FT = dyn_cast<FunctionProtoType>(AFT);
250
251    Proto += "(";
252    if (FT) {
253      llvm::raw_string_ostream POut(Proto);
254      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
255        if (i) POut << ", ";
256        std::string Param;
257        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
258        POut << Param;
259      }
260
261      if (FT->isVariadic()) {
262        if (FD->getNumParams()) POut << ", ";
263        POut << "...";
264      }
265    }
266    Proto += ")";
267
268    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
269      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
270      if (ThisQuals.hasConst())
271        Proto += " const";
272      if (ThisQuals.hasVolatile())
273        Proto += " volatile";
274    }
275
276    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
277      AFT->getResultType().getAsStringInternal(Proto, Policy);
278
279    Out << Proto;
280
281    Out.flush();
282    return Name.str().str();
283  }
284  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
285    llvm::SmallString<256> Name;
286    llvm::raw_svector_ostream Out(Name);
287    Out << (MD->isInstanceMethod() ? '-' : '+');
288    Out << '[';
289
290    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
291    // a null check to avoid a crash.
292    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
293      Out << ID;
294
295    if (const ObjCCategoryImplDecl *CID =
296        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
297      Out << '(' << CID << ')';
298
299    Out <<  ' ';
300    Out << MD->getSelector().getAsString();
301    Out <<  ']';
302
303    Out.flush();
304    return Name.str().str();
305  }
306  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
307    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
308    return "top level";
309  }
310  return "";
311}
312
313/// getValueAsApproximateDouble - This returns the value as an inaccurate
314/// double.  Note that this may cause loss of precision, but is useful for
315/// debugging dumps, etc.
316double FloatingLiteral::getValueAsApproximateDouble() const {
317  llvm::APFloat V = getValue();
318  bool ignored;
319  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
320            &ignored);
321  return V.convertToDouble();
322}
323
324StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
325                                     unsigned ByteLength, bool Wide,
326                                     QualType Ty,
327                                     const SourceLocation *Loc,
328                                     unsigned NumStrs) {
329  // Allocate enough space for the StringLiteral plus an array of locations for
330  // any concatenated string tokens.
331  void *Mem = C.Allocate(sizeof(StringLiteral)+
332                         sizeof(SourceLocation)*(NumStrs-1),
333                         llvm::alignof<StringLiteral>());
334  StringLiteral *SL = new (Mem) StringLiteral(Ty);
335
336  // OPTIMIZE: could allocate this appended to the StringLiteral.
337  char *AStrData = new (C, 1) char[ByteLength];
338  memcpy(AStrData, StrData, ByteLength);
339  SL->StrData = AStrData;
340  SL->ByteLength = ByteLength;
341  SL->IsWide = Wide;
342  SL->TokLocs[0] = Loc[0];
343  SL->NumConcatenated = NumStrs;
344
345  if (NumStrs != 1)
346    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
347  return SL;
348}
349
350StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
351  void *Mem = C.Allocate(sizeof(StringLiteral)+
352                         sizeof(SourceLocation)*(NumStrs-1),
353                         llvm::alignof<StringLiteral>());
354  StringLiteral *SL = new (Mem) StringLiteral(QualType());
355  SL->StrData = 0;
356  SL->ByteLength = 0;
357  SL->NumConcatenated = NumStrs;
358  return SL;
359}
360
361void StringLiteral::DoDestroy(ASTContext &C) {
362  C.Deallocate(const_cast<char*>(StrData));
363  Expr::DoDestroy(C);
364}
365
366void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
367  if (StrData)
368    C.Deallocate(const_cast<char*>(StrData));
369
370  char *AStrData = new (C, 1) char[Str.size()];
371  memcpy(AStrData, Str.data(), Str.size());
372  StrData = AStrData;
373  ByteLength = Str.size();
374}
375
376/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
377/// corresponds to, e.g. "sizeof" or "[pre]++".
378const char *UnaryOperator::getOpcodeStr(Opcode Op) {
379  switch (Op) {
380  default: assert(0 && "Unknown unary operator");
381  case PostInc: return "++";
382  case PostDec: return "--";
383  case PreInc:  return "++";
384  case PreDec:  return "--";
385  case AddrOf:  return "&";
386  case Deref:   return "*";
387  case Plus:    return "+";
388  case Minus:   return "-";
389  case Not:     return "~";
390  case LNot:    return "!";
391  case Real:    return "__real";
392  case Imag:    return "__imag";
393  case Extension: return "__extension__";
394  case OffsetOf: return "__builtin_offsetof";
395  }
396}
397
398UnaryOperator::Opcode
399UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
400  switch (OO) {
401  default: assert(false && "No unary operator for overloaded function");
402  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
403  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
404  case OO_Amp:        return AddrOf;
405  case OO_Star:       return Deref;
406  case OO_Plus:       return Plus;
407  case OO_Minus:      return Minus;
408  case OO_Tilde:      return Not;
409  case OO_Exclaim:    return LNot;
410  }
411}
412
413OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
414  switch (Opc) {
415  case PostInc: case PreInc: return OO_PlusPlus;
416  case PostDec: case PreDec: return OO_MinusMinus;
417  case AddrOf: return OO_Amp;
418  case Deref: return OO_Star;
419  case Plus: return OO_Plus;
420  case Minus: return OO_Minus;
421  case Not: return OO_Tilde;
422  case LNot: return OO_Exclaim;
423  default: return OO_None;
424  }
425}
426
427
428//===----------------------------------------------------------------------===//
429// Postfix Operators.
430//===----------------------------------------------------------------------===//
431
432CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
433                   unsigned numargs, QualType t, SourceLocation rparenloc)
434  : Expr(SC, t,
435         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
436         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
437    NumArgs(numargs) {
438
439  SubExprs = new (C) Stmt*[numargs+1];
440  SubExprs[FN] = fn;
441  for (unsigned i = 0; i != numargs; ++i)
442    SubExprs[i+ARGS_START] = args[i];
443
444  RParenLoc = rparenloc;
445}
446
447CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
448                   QualType t, SourceLocation rparenloc)
449  : Expr(CallExprClass, t,
450         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
451         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
452    NumArgs(numargs) {
453
454  SubExprs = new (C) Stmt*[numargs+1];
455  SubExprs[FN] = fn;
456  for (unsigned i = 0; i != numargs; ++i)
457    SubExprs[i+ARGS_START] = args[i];
458
459  RParenLoc = rparenloc;
460}
461
462CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
463  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
464  SubExprs = new (C) Stmt*[1];
465}
466
467void CallExpr::DoDestroy(ASTContext& C) {
468  DestroyChildren(C);
469  if (SubExprs) C.Deallocate(SubExprs);
470  this->~CallExpr();
471  C.Deallocate(this);
472}
473
474Decl *CallExpr::getCalleeDecl() {
475  Expr *CEE = getCallee()->IgnoreParenCasts();
476  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
477    return DRE->getDecl();
478  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
479    return ME->getMemberDecl();
480
481  return 0;
482}
483
484FunctionDecl *CallExpr::getDirectCallee() {
485  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
486}
487
488/// setNumArgs - This changes the number of arguments present in this call.
489/// Any orphaned expressions are deleted by this, and any new operands are set
490/// to null.
491void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
492  // No change, just return.
493  if (NumArgs == getNumArgs()) return;
494
495  // If shrinking # arguments, just delete the extras and forgot them.
496  if (NumArgs < getNumArgs()) {
497    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
498      getArg(i)->Destroy(C);
499    this->NumArgs = NumArgs;
500    return;
501  }
502
503  // Otherwise, we are growing the # arguments.  New an bigger argument array.
504  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
505  // Copy over args.
506  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
507    NewSubExprs[i] = SubExprs[i];
508  // Null out new args.
509  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
510    NewSubExprs[i] = 0;
511
512  if (SubExprs) C.Deallocate(SubExprs);
513  SubExprs = NewSubExprs;
514  this->NumArgs = NumArgs;
515}
516
517/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
518/// not, return 0.
519unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
520  // All simple function calls (e.g. func()) are implicitly cast to pointer to
521  // function. As a result, we try and obtain the DeclRefExpr from the
522  // ImplicitCastExpr.
523  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
524  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
525    return 0;
526
527  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
528  if (!DRE)
529    return 0;
530
531  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
532  if (!FDecl)
533    return 0;
534
535  if (!FDecl->getIdentifier())
536    return 0;
537
538  return FDecl->getBuiltinID();
539}
540
541QualType CallExpr::getCallReturnType() const {
542  QualType CalleeType = getCallee()->getType();
543  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
544    CalleeType = FnTypePtr->getPointeeType();
545  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
546    CalleeType = BPT->getPointeeType();
547
548  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
549  return FnType->getResultType();
550}
551
552MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
553                               NestedNameSpecifier *qual,
554                               SourceRange qualrange,
555                               ValueDecl *memberdecl,
556                               DeclAccessPair founddecl,
557                               SourceLocation l,
558                               const TemplateArgumentListInfo *targs,
559                               QualType ty) {
560  std::size_t Size = sizeof(MemberExpr);
561
562  bool hasQualOrFound = (qual != 0 ||
563                         founddecl.getDecl() != memberdecl ||
564                         founddecl.getAccess() != memberdecl->getAccess());
565  if (hasQualOrFound)
566    Size += sizeof(MemberNameQualifier);
567
568  if (targs)
569    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
570
571  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
572  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, l, ty);
573
574  if (hasQualOrFound) {
575    if (qual && qual->isDependent()) {
576      E->setValueDependent(true);
577      E->setTypeDependent(true);
578    }
579    E->HasQualifierOrFoundDecl = true;
580
581    MemberNameQualifier *NQ = E->getMemberQualifier();
582    NQ->NNS = qual;
583    NQ->Range = qualrange;
584    NQ->FoundDecl = founddecl;
585  }
586
587  if (targs) {
588    E->HasExplicitTemplateArgumentList = true;
589    E->getExplicitTemplateArgumentList()->initializeFrom(*targs);
590  }
591
592  return E;
593}
594
595const char *CastExpr::getCastKindName() const {
596  switch (getCastKind()) {
597  case CastExpr::CK_Unknown:
598    return "Unknown";
599  case CastExpr::CK_BitCast:
600    return "BitCast";
601  case CastExpr::CK_NoOp:
602    return "NoOp";
603  case CastExpr::CK_BaseToDerived:
604    return "BaseToDerived";
605  case CastExpr::CK_DerivedToBase:
606    return "DerivedToBase";
607  case CastExpr::CK_UncheckedDerivedToBase:
608    return "UncheckedDerivedToBase";
609  case CastExpr::CK_Dynamic:
610    return "Dynamic";
611  case CastExpr::CK_ToUnion:
612    return "ToUnion";
613  case CastExpr::CK_ArrayToPointerDecay:
614    return "ArrayToPointerDecay";
615  case CastExpr::CK_FunctionToPointerDecay:
616    return "FunctionToPointerDecay";
617  case CastExpr::CK_NullToMemberPointer:
618    return "NullToMemberPointer";
619  case CastExpr::CK_BaseToDerivedMemberPointer:
620    return "BaseToDerivedMemberPointer";
621  case CastExpr::CK_DerivedToBaseMemberPointer:
622    return "DerivedToBaseMemberPointer";
623  case CastExpr::CK_UserDefinedConversion:
624    return "UserDefinedConversion";
625  case CastExpr::CK_ConstructorConversion:
626    return "ConstructorConversion";
627  case CastExpr::CK_IntegralToPointer:
628    return "IntegralToPointer";
629  case CastExpr::CK_PointerToIntegral:
630    return "PointerToIntegral";
631  case CastExpr::CK_ToVoid:
632    return "ToVoid";
633  case CastExpr::CK_VectorSplat:
634    return "VectorSplat";
635  case CastExpr::CK_IntegralCast:
636    return "IntegralCast";
637  case CastExpr::CK_IntegralToFloating:
638    return "IntegralToFloating";
639  case CastExpr::CK_FloatingToIntegral:
640    return "FloatingToIntegral";
641  case CastExpr::CK_FloatingCast:
642    return "FloatingCast";
643  case CastExpr::CK_MemberPointerToBoolean:
644    return "MemberPointerToBoolean";
645  case CastExpr::CK_AnyPointerToObjCPointerCast:
646    return "AnyPointerToObjCPointerCast";
647  case CastExpr::CK_AnyPointerToBlockPointerCast:
648    return "AnyPointerToBlockPointerCast";
649  }
650
651  assert(0 && "Unhandled cast kind!");
652  return 0;
653}
654
655void CastExpr::DoDestroy(ASTContext &C)
656{
657  if (InheritancePath)
658    InheritancePath->Destroy();
659  Expr::DoDestroy(C);
660}
661
662Expr *CastExpr::getSubExprAsWritten() {
663  Expr *SubExpr = 0;
664  CastExpr *E = this;
665  do {
666    SubExpr = E->getSubExpr();
667
668    // Skip any temporary bindings; they're implicit.
669    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
670      SubExpr = Binder->getSubExpr();
671
672    // Conversions by constructor and conversion functions have a
673    // subexpression describing the call; strip it off.
674    if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
675      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
676    else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
677      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
678
679    // If the subexpression we're left with is an implicit cast, look
680    // through that, too.
681  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
682
683  return SubExpr;
684}
685
686/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
687/// corresponds to, e.g. "<<=".
688const char *BinaryOperator::getOpcodeStr(Opcode Op) {
689  switch (Op) {
690  case PtrMemD:   return ".*";
691  case PtrMemI:   return "->*";
692  case Mul:       return "*";
693  case Div:       return "/";
694  case Rem:       return "%";
695  case Add:       return "+";
696  case Sub:       return "-";
697  case Shl:       return "<<";
698  case Shr:       return ">>";
699  case LT:        return "<";
700  case GT:        return ">";
701  case LE:        return "<=";
702  case GE:        return ">=";
703  case EQ:        return "==";
704  case NE:        return "!=";
705  case And:       return "&";
706  case Xor:       return "^";
707  case Or:        return "|";
708  case LAnd:      return "&&";
709  case LOr:       return "||";
710  case Assign:    return "=";
711  case MulAssign: return "*=";
712  case DivAssign: return "/=";
713  case RemAssign: return "%=";
714  case AddAssign: return "+=";
715  case SubAssign: return "-=";
716  case ShlAssign: return "<<=";
717  case ShrAssign: return ">>=";
718  case AndAssign: return "&=";
719  case XorAssign: return "^=";
720  case OrAssign:  return "|=";
721  case Comma:     return ",";
722  }
723
724  return "";
725}
726
727BinaryOperator::Opcode
728BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
729  switch (OO) {
730  default: assert(false && "Not an overloadable binary operator");
731  case OO_Plus: return Add;
732  case OO_Minus: return Sub;
733  case OO_Star: return Mul;
734  case OO_Slash: return Div;
735  case OO_Percent: return Rem;
736  case OO_Caret: return Xor;
737  case OO_Amp: return And;
738  case OO_Pipe: return Or;
739  case OO_Equal: return Assign;
740  case OO_Less: return LT;
741  case OO_Greater: return GT;
742  case OO_PlusEqual: return AddAssign;
743  case OO_MinusEqual: return SubAssign;
744  case OO_StarEqual: return MulAssign;
745  case OO_SlashEqual: return DivAssign;
746  case OO_PercentEqual: return RemAssign;
747  case OO_CaretEqual: return XorAssign;
748  case OO_AmpEqual: return AndAssign;
749  case OO_PipeEqual: return OrAssign;
750  case OO_LessLess: return Shl;
751  case OO_GreaterGreater: return Shr;
752  case OO_LessLessEqual: return ShlAssign;
753  case OO_GreaterGreaterEqual: return ShrAssign;
754  case OO_EqualEqual: return EQ;
755  case OO_ExclaimEqual: return NE;
756  case OO_LessEqual: return LE;
757  case OO_GreaterEqual: return GE;
758  case OO_AmpAmp: return LAnd;
759  case OO_PipePipe: return LOr;
760  case OO_Comma: return Comma;
761  case OO_ArrowStar: return PtrMemI;
762  }
763}
764
765OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
766  static const OverloadedOperatorKind OverOps[] = {
767    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
768    OO_Star, OO_Slash, OO_Percent,
769    OO_Plus, OO_Minus,
770    OO_LessLess, OO_GreaterGreater,
771    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
772    OO_EqualEqual, OO_ExclaimEqual,
773    OO_Amp,
774    OO_Caret,
775    OO_Pipe,
776    OO_AmpAmp,
777    OO_PipePipe,
778    OO_Equal, OO_StarEqual,
779    OO_SlashEqual, OO_PercentEqual,
780    OO_PlusEqual, OO_MinusEqual,
781    OO_LessLessEqual, OO_GreaterGreaterEqual,
782    OO_AmpEqual, OO_CaretEqual,
783    OO_PipeEqual,
784    OO_Comma
785  };
786  return OverOps[Opc];
787}
788
789InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
790                           Expr **initExprs, unsigned numInits,
791                           SourceLocation rbraceloc)
792  : Expr(InitListExprClass, QualType(), false, false),
793    InitExprs(C, numInits),
794    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
795    UnionFieldInit(0), HadArrayRangeDesignator(false)
796{
797  for (unsigned I = 0; I != numInits; ++I) {
798    if (initExprs[I]->isTypeDependent())
799      TypeDependent = true;
800    if (initExprs[I]->isValueDependent())
801      ValueDependent = true;
802  }
803
804  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
805}
806
807void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
808  if (NumInits > InitExprs.size())
809    InitExprs.reserve(C, NumInits);
810}
811
812void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
813  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
814       Idx < LastIdx; ++Idx)
815    InitExprs[Idx]->Destroy(C);
816  InitExprs.resize(C, NumInits, 0);
817}
818
819Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
820  if (Init >= InitExprs.size()) {
821    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
822    InitExprs.back() = expr;
823    return 0;
824  }
825
826  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
827  InitExprs[Init] = expr;
828  return Result;
829}
830
831/// getFunctionType - Return the underlying function type for this block.
832///
833const FunctionType *BlockExpr::getFunctionType() const {
834  return getType()->getAs<BlockPointerType>()->
835                    getPointeeType()->getAs<FunctionType>();
836}
837
838SourceLocation BlockExpr::getCaretLocation() const {
839  return TheBlock->getCaretLocation();
840}
841const Stmt *BlockExpr::getBody() const {
842  return TheBlock->getBody();
843}
844Stmt *BlockExpr::getBody() {
845  return TheBlock->getBody();
846}
847
848
849//===----------------------------------------------------------------------===//
850// Generic Expression Routines
851//===----------------------------------------------------------------------===//
852
853/// isUnusedResultAWarning - Return true if this immediate expression should
854/// be warned about if the result is unused.  If so, fill in Loc and Ranges
855/// with location to warn on and the source range[s] to report with the
856/// warning.
857bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
858                                  SourceRange &R2, ASTContext &Ctx) const {
859  // Don't warn if the expr is type dependent. The type could end up
860  // instantiating to void.
861  if (isTypeDependent())
862    return false;
863
864  switch (getStmtClass()) {
865  default:
866    if (getType()->isVoidType())
867      return false;
868    Loc = getExprLoc();
869    R1 = getSourceRange();
870    return true;
871  case ParenExprClass:
872    return cast<ParenExpr>(this)->getSubExpr()->
873      isUnusedResultAWarning(Loc, R1, R2, Ctx);
874  case UnaryOperatorClass: {
875    const UnaryOperator *UO = cast<UnaryOperator>(this);
876
877    switch (UO->getOpcode()) {
878    default: break;
879    case UnaryOperator::PostInc:
880    case UnaryOperator::PostDec:
881    case UnaryOperator::PreInc:
882    case UnaryOperator::PreDec:                 // ++/--
883      return false;  // Not a warning.
884    case UnaryOperator::Deref:
885      // Dereferencing a volatile pointer is a side-effect.
886      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
887        return false;
888      break;
889    case UnaryOperator::Real:
890    case UnaryOperator::Imag:
891      // accessing a piece of a volatile complex is a side-effect.
892      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
893          .isVolatileQualified())
894        return false;
895      break;
896    case UnaryOperator::Extension:
897      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
898    }
899    Loc = UO->getOperatorLoc();
900    R1 = UO->getSubExpr()->getSourceRange();
901    return true;
902  }
903  case BinaryOperatorClass: {
904    const BinaryOperator *BO = cast<BinaryOperator>(this);
905    switch (BO->getOpcode()) {
906      default:
907        break;
908      // Consider ',', '||', '&&' to have side effects if the LHS or RHS does.
909      case BinaryOperator::Comma:
910        // ((foo = <blah>), 0) is an idiom for hiding the result (and
911        // lvalue-ness) of an assignment written in a macro.
912        if (IntegerLiteral *IE =
913              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
914          if (IE->getValue() == 0)
915            return false;
916      case BinaryOperator::LAnd:
917      case BinaryOperator::LOr:
918        return (BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
919                BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
920    }
921    if (BO->isAssignmentOp())
922      return false;
923    Loc = BO->getOperatorLoc();
924    R1 = BO->getLHS()->getSourceRange();
925    R2 = BO->getRHS()->getSourceRange();
926    return true;
927  }
928  case CompoundAssignOperatorClass:
929    return false;
930
931  case ConditionalOperatorClass: {
932    // The condition must be evaluated, but if either the LHS or RHS is a
933    // warning, warn about them.
934    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
935    if (Exp->getLHS() &&
936        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
937      return true;
938    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
939  }
940
941  case MemberExprClass:
942    // If the base pointer or element is to a volatile pointer/field, accessing
943    // it is a side effect.
944    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
945      return false;
946    Loc = cast<MemberExpr>(this)->getMemberLoc();
947    R1 = SourceRange(Loc, Loc);
948    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
949    return true;
950
951  case ArraySubscriptExprClass:
952    // If the base pointer or element is to a volatile pointer/field, accessing
953    // it is a side effect.
954    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
955      return false;
956    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
957    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
958    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
959    return true;
960
961  case CallExprClass:
962  case CXXOperatorCallExprClass:
963  case CXXMemberCallExprClass: {
964    // If this is a direct call, get the callee.
965    const CallExpr *CE = cast<CallExpr>(this);
966    if (const Decl *FD = CE->getCalleeDecl()) {
967      // If the callee has attribute pure, const, or warn_unused_result, warn
968      // about it. void foo() { strlen("bar"); } should warn.
969      //
970      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
971      // updated to match for QoI.
972      if (FD->getAttr<WarnUnusedResultAttr>() ||
973          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
974        Loc = CE->getCallee()->getLocStart();
975        R1 = CE->getCallee()->getSourceRange();
976
977        if (unsigned NumArgs = CE->getNumArgs())
978          R2 = SourceRange(CE->getArg(0)->getLocStart(),
979                           CE->getArg(NumArgs-1)->getLocEnd());
980        return true;
981      }
982    }
983    return false;
984  }
985
986  case CXXTemporaryObjectExprClass:
987  case CXXConstructExprClass:
988    return false;
989
990  case ObjCMessageExprClass: {
991    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
992    const ObjCMethodDecl *MD = ME->getMethodDecl();
993    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
994      Loc = getExprLoc();
995      return true;
996    }
997    return false;
998  }
999
1000  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
1001#if 0
1002    const ObjCImplicitSetterGetterRefExpr *Ref =
1003      cast<ObjCImplicitSetterGetterRefExpr>(this);
1004    // FIXME: We really want the location of the '.' here.
1005    Loc = Ref->getLocation();
1006    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
1007    if (Ref->getBase())
1008      R2 = Ref->getBase()->getSourceRange();
1009#else
1010    Loc = getExprLoc();
1011    R1 = getSourceRange();
1012#endif
1013    return true;
1014  }
1015  case StmtExprClass: {
1016    // Statement exprs don't logically have side effects themselves, but are
1017    // sometimes used in macros in ways that give them a type that is unused.
1018    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1019    // however, if the result of the stmt expr is dead, we don't want to emit a
1020    // warning.
1021    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1022    if (!CS->body_empty())
1023      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1024        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1025
1026    if (getType()->isVoidType())
1027      return false;
1028    Loc = cast<StmtExpr>(this)->getLParenLoc();
1029    R1 = getSourceRange();
1030    return true;
1031  }
1032  case CStyleCastExprClass:
1033    // If this is an explicit cast to void, allow it.  People do this when they
1034    // think they know what they're doing :).
1035    if (getType()->isVoidType())
1036      return false;
1037    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1038    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1039    return true;
1040  case CXXFunctionalCastExprClass: {
1041    if (getType()->isVoidType())
1042      return false;
1043    const CastExpr *CE = cast<CastExpr>(this);
1044
1045    // If this is a cast to void or a constructor conversion, check the operand.
1046    // Otherwise, the result of the cast is unused.
1047    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
1048        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
1049      return (cast<CastExpr>(this)->getSubExpr()
1050              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1051    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1052    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1053    return true;
1054  }
1055
1056  case ImplicitCastExprClass:
1057    // Check the operand, since implicit casts are inserted by Sema
1058    return (cast<ImplicitCastExpr>(this)
1059            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1060
1061  case CXXDefaultArgExprClass:
1062    return (cast<CXXDefaultArgExpr>(this)
1063            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1064
1065  case CXXNewExprClass:
1066    // FIXME: In theory, there might be new expressions that don't have side
1067    // effects (e.g. a placement new with an uninitialized POD).
1068  case CXXDeleteExprClass:
1069    return false;
1070  case CXXBindTemporaryExprClass:
1071    return (cast<CXXBindTemporaryExpr>(this)
1072            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1073  case CXXExprWithTemporariesClass:
1074    return (cast<CXXExprWithTemporaries>(this)
1075            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1076  }
1077}
1078
1079/// DeclCanBeLvalue - Determine whether the given declaration can be
1080/// an lvalue. This is a helper routine for isLvalue.
1081static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
1082  // C++ [temp.param]p6:
1083  //   A non-type non-reference template-parameter is not an lvalue.
1084  if (const NonTypeTemplateParmDecl *NTTParm
1085        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
1086    return NTTParm->getType()->isReferenceType();
1087
1088  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
1089    // C++ 3.10p2: An lvalue refers to an object or function.
1090    (Ctx.getLangOptions().CPlusPlus &&
1091     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
1092}
1093
1094/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
1095/// incomplete type other than void. Nonarray expressions that can be lvalues:
1096///  - name, where name must be a variable
1097///  - e[i]
1098///  - (e), where e must be an lvalue
1099///  - e.name, where e must be an lvalue
1100///  - e->name
1101///  - *e, the type of e cannot be a function type
1102///  - string-constant
1103///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
1104///  - reference type [C++ [expr]]
1105///
1106Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
1107  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
1108
1109  isLvalueResult Res = isLvalueInternal(Ctx);
1110  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
1111    return Res;
1112
1113  // first, check the type (C99 6.3.2.1). Expressions with function
1114  // type in C are not lvalues, but they can be lvalues in C++.
1115  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
1116    return LV_NotObjectType;
1117
1118  // Allow qualified void which is an incomplete type other than void (yuck).
1119  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
1120    return LV_IncompleteVoidType;
1121
1122  return LV_Valid;
1123}
1124
1125// Check whether the expression can be sanely treated like an l-value
1126Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
1127  switch (getStmtClass()) {
1128  case ObjCIsaExprClass:
1129  case StringLiteralClass:  // C99 6.5.1p4
1130  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
1131    return LV_Valid;
1132  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
1133    // For vectors, make sure base is an lvalue (i.e. not a function call).
1134    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
1135      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
1136    return LV_Valid;
1137  case DeclRefExprClass: { // C99 6.5.1p2
1138    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
1139    if (DeclCanBeLvalue(RefdDecl, Ctx))
1140      return LV_Valid;
1141    break;
1142  }
1143  case BlockDeclRefExprClass: {
1144    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1145    if (isa<VarDecl>(BDR->getDecl()))
1146      return LV_Valid;
1147    break;
1148  }
1149  case MemberExprClass: {
1150    const MemberExpr *m = cast<MemberExpr>(this);
1151    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1152      NamedDecl *Member = m->getMemberDecl();
1153      // C++ [expr.ref]p4:
1154      //   If E2 is declared to have type "reference to T", then E1.E2
1155      //   is an lvalue.
1156      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1157        if (Value->getType()->isReferenceType())
1158          return LV_Valid;
1159
1160      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1161      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1162        return LV_Valid;
1163
1164      //   -- If E2 is a non-static data member [...]. If E1 is an
1165      //      lvalue, then E1.E2 is an lvalue.
1166      if (isa<FieldDecl>(Member)) {
1167        if (m->isArrow())
1168          return LV_Valid;
1169        return m->getBase()->isLvalue(Ctx);
1170      }
1171
1172      //   -- If it refers to a static member function [...], then
1173      //      E1.E2 is an lvalue.
1174      //   -- Otherwise, if E1.E2 refers to a non-static member
1175      //      function [...], then E1.E2 is not an lvalue.
1176      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1177        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1178
1179      //   -- If E2 is a member enumerator [...], the expression E1.E2
1180      //      is not an lvalue.
1181      if (isa<EnumConstantDecl>(Member))
1182        return LV_InvalidExpression;
1183
1184        // Not an lvalue.
1185      return LV_InvalidExpression;
1186    }
1187
1188    // C99 6.5.2.3p4
1189    if (m->isArrow())
1190      return LV_Valid;
1191    Expr *BaseExp = m->getBase();
1192    if (BaseExp->getStmtClass() == ObjCPropertyRefExprClass ||
1193        BaseExp->getStmtClass() == ObjCImplicitSetterGetterRefExprClass)
1194          return LV_SubObjCPropertySetting;
1195    return
1196       BaseExp->isLvalue(Ctx);
1197  }
1198  case UnaryOperatorClass:
1199    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1200      return LV_Valid; // C99 6.5.3p4
1201
1202    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1203        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1204        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1205      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1206
1207    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1208        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1209         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1210      return LV_Valid;
1211    break;
1212  case ImplicitCastExprClass:
1213    if (cast<ImplicitCastExpr>(this)->isLvalueCast())
1214      return LV_Valid;
1215
1216    // If this is a conversion to a class temporary, make a note of
1217    // that.
1218    if (Ctx.getLangOptions().CPlusPlus && getType()->isRecordType())
1219      return LV_ClassTemporary;
1220
1221    break;
1222  case ParenExprClass: // C99 6.5.1p5
1223    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1224  case BinaryOperatorClass:
1225  case CompoundAssignOperatorClass: {
1226    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1227
1228    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1229        BinOp->getOpcode() == BinaryOperator::Comma)
1230      return BinOp->getRHS()->isLvalue(Ctx);
1231
1232    // C++ [expr.mptr.oper]p6
1233    // The result of a .* expression is an lvalue only if its first operand is
1234    // an lvalue and its second operand is a pointer to data member.
1235    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1236        !BinOp->getType()->isFunctionType())
1237      return BinOp->getLHS()->isLvalue(Ctx);
1238
1239    // The result of an ->* expression is an lvalue only if its second operand
1240    // is a pointer to data member.
1241    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1242        !BinOp->getType()->isFunctionType()) {
1243      QualType Ty = BinOp->getRHS()->getType();
1244      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1245        return LV_Valid;
1246    }
1247
1248    if (!BinOp->isAssignmentOp())
1249      return LV_InvalidExpression;
1250
1251    if (Ctx.getLangOptions().CPlusPlus)
1252      // C++ [expr.ass]p1:
1253      //   The result of an assignment operation [...] is an lvalue.
1254      return LV_Valid;
1255
1256
1257    // C99 6.5.16:
1258    //   An assignment expression [...] is not an lvalue.
1259    return LV_InvalidExpression;
1260  }
1261  case CallExprClass:
1262  case CXXOperatorCallExprClass:
1263  case CXXMemberCallExprClass: {
1264    // C++0x [expr.call]p10
1265    //   A function call is an lvalue if and only if the result type
1266    //   is an lvalue reference.
1267    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1268    if (ReturnType->isLValueReferenceType())
1269      return LV_Valid;
1270
1271    // If the function is returning a class temporary, make a note of
1272    // that.
1273    if (Ctx.getLangOptions().CPlusPlus && ReturnType->isRecordType())
1274      return LV_ClassTemporary;
1275
1276    break;
1277  }
1278  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1279    // FIXME: Is this what we want in C++?
1280    return LV_Valid;
1281  case ChooseExprClass:
1282    // __builtin_choose_expr is an lvalue if the selected operand is.
1283    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1284  case ExtVectorElementExprClass:
1285    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1286      return LV_DuplicateVectorComponents;
1287    return LV_Valid;
1288  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1289    return LV_Valid;
1290  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1291    return LV_Valid;
1292  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1293    return LV_Valid;
1294  case PredefinedExprClass:
1295    return LV_Valid;
1296  case UnresolvedLookupExprClass:
1297    return LV_Valid;
1298  case CXXDefaultArgExprClass:
1299    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1300  case CStyleCastExprClass:
1301  case CXXFunctionalCastExprClass:
1302  case CXXStaticCastExprClass:
1303  case CXXDynamicCastExprClass:
1304  case CXXReinterpretCastExprClass:
1305  case CXXConstCastExprClass:
1306    // The result of an explicit cast is an lvalue if the type we are
1307    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1308    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1309    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1310    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1311          isLValueReferenceType())
1312      return LV_Valid;
1313
1314    // If this is a conversion to a class temporary, make a note of
1315    // that.
1316    if (Ctx.getLangOptions().CPlusPlus &&
1317        cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isRecordType())
1318      return LV_ClassTemporary;
1319
1320    break;
1321  case CXXTypeidExprClass:
1322    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1323    return LV_Valid;
1324  case CXXBindTemporaryExprClass:
1325    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1326      isLvalueInternal(Ctx);
1327  case CXXBindReferenceExprClass:
1328    // Something that's bound to a reference is always an lvalue.
1329    return LV_Valid;
1330  case ConditionalOperatorClass: {
1331    // Complicated handling is only for C++.
1332    if (!Ctx.getLangOptions().CPlusPlus)
1333      return LV_InvalidExpression;
1334
1335    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1336    // everywhere there's an object converted to an rvalue. Also, any other
1337    // casts should be wrapped by ImplicitCastExprs. There's just the special
1338    // case involving throws to work out.
1339    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1340    Expr *True = Cond->getTrueExpr();
1341    Expr *False = Cond->getFalseExpr();
1342    // C++0x 5.16p2
1343    //   If either the second or the third operand has type (cv) void, [...]
1344    //   the result [...] is an rvalue.
1345    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1346      return LV_InvalidExpression;
1347
1348    // Both sides must be lvalues for the result to be an lvalue.
1349    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1350      return LV_InvalidExpression;
1351
1352    // That's it.
1353    return LV_Valid;
1354  }
1355
1356  case Expr::CXXExprWithTemporariesClass:
1357    return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx);
1358
1359  case Expr::ObjCMessageExprClass:
1360    if (const ObjCMethodDecl *Method
1361          = cast<ObjCMessageExpr>(this)->getMethodDecl())
1362      if (Method->getResultType()->isLValueReferenceType())
1363        return LV_Valid;
1364    break;
1365
1366  case Expr::CXXConstructExprClass:
1367  case Expr::CXXTemporaryObjectExprClass:
1368  case Expr::CXXZeroInitValueExprClass:
1369    return LV_ClassTemporary;
1370
1371  default:
1372    break;
1373  }
1374  return LV_InvalidExpression;
1375}
1376
1377/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1378/// does not have an incomplete type, does not have a const-qualified type, and
1379/// if it is a structure or union, does not have any member (including,
1380/// recursively, any member or element of all contained aggregates or unions)
1381/// with a const-qualified type.
1382Expr::isModifiableLvalueResult
1383Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1384  isLvalueResult lvalResult = isLvalue(Ctx);
1385
1386  switch (lvalResult) {
1387  case LV_Valid:
1388    // C++ 3.10p11: Functions cannot be modified, but pointers to
1389    // functions can be modifiable.
1390    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1391      return MLV_NotObjectType;
1392    break;
1393
1394  case LV_NotObjectType: return MLV_NotObjectType;
1395  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1396  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1397  case LV_InvalidExpression:
1398    // If the top level is a C-style cast, and the subexpression is a valid
1399    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1400    // GCC extension.  We don't support it, but we want to produce good
1401    // diagnostics when it happens so that the user knows why.
1402    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1403      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1404        if (Loc)
1405          *Loc = CE->getLParenLoc();
1406        return MLV_LValueCast;
1407      }
1408    }
1409    return MLV_InvalidExpression;
1410  case LV_MemberFunction: return MLV_MemberFunction;
1411  case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
1412  case LV_ClassTemporary:
1413    return MLV_ClassTemporary;
1414  }
1415
1416  // The following is illegal:
1417  //   void takeclosure(void (^C)(void));
1418  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1419  //
1420  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1421    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1422      return MLV_NotBlockQualified;
1423  }
1424
1425  // Assigning to an 'implicit' property?
1426  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1427        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1428    if (Expr->getSetterMethod() == 0)
1429      return MLV_NoSetterProperty;
1430  }
1431
1432  QualType CT = Ctx.getCanonicalType(getType());
1433
1434  if (CT.isConstQualified())
1435    return MLV_ConstQualified;
1436  if (CT->isArrayType())
1437    return MLV_ArrayType;
1438  if (CT->isIncompleteType())
1439    return MLV_IncompleteType;
1440
1441  if (const RecordType *r = CT->getAs<RecordType>()) {
1442    if (r->hasConstFields())
1443      return MLV_ConstQualified;
1444  }
1445
1446  return MLV_Valid;
1447}
1448
1449/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1450/// returns true, if it is; false otherwise.
1451bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1452  switch (getStmtClass()) {
1453  default:
1454    return false;
1455  case ObjCIvarRefExprClass:
1456    return true;
1457  case Expr::UnaryOperatorClass:
1458    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1459  case ParenExprClass:
1460    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1461  case ImplicitCastExprClass:
1462    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1463  case CStyleCastExprClass:
1464    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1465  case DeclRefExprClass: {
1466    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1467    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1468      if (VD->hasGlobalStorage())
1469        return true;
1470      QualType T = VD->getType();
1471      // dereferencing to a  pointer is always a gc'able candidate,
1472      // unless it is __weak.
1473      return T->isPointerType() &&
1474             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1475    }
1476    return false;
1477  }
1478  case MemberExprClass: {
1479    const MemberExpr *M = cast<MemberExpr>(this);
1480    return M->getBase()->isOBJCGCCandidate(Ctx);
1481  }
1482  case ArraySubscriptExprClass:
1483    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1484  }
1485}
1486Expr* Expr::IgnoreParens() {
1487  Expr* E = this;
1488  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1489    E = P->getSubExpr();
1490
1491  return E;
1492}
1493
1494/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1495/// or CastExprs or ImplicitCastExprs, returning their operand.
1496Expr *Expr::IgnoreParenCasts() {
1497  Expr *E = this;
1498  while (true) {
1499    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1500      E = P->getSubExpr();
1501    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1502      E = P->getSubExpr();
1503    else
1504      return E;
1505  }
1506}
1507
1508/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1509/// value (including ptr->int casts of the same size).  Strip off any
1510/// ParenExpr or CastExprs, returning their operand.
1511Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1512  Expr *E = this;
1513  while (true) {
1514    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1515      E = P->getSubExpr();
1516      continue;
1517    }
1518
1519    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1520      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1521      // ptr<->int casts of the same width.  We also ignore all identify casts.
1522      Expr *SE = P->getSubExpr();
1523
1524      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1525        E = SE;
1526        continue;
1527      }
1528
1529      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1530          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1531          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1532        E = SE;
1533        continue;
1534      }
1535    }
1536
1537    return E;
1538  }
1539}
1540
1541bool Expr::isDefaultArgument() const {
1542  const Expr *E = this;
1543  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1544    E = ICE->getSubExprAsWritten();
1545
1546  return isa<CXXDefaultArgExpr>(E);
1547}
1548
1549/// \brief Skip over any no-op casts and any temporary-binding
1550/// expressions.
1551static const Expr *skipTemporaryBindingsAndNoOpCasts(const Expr *E) {
1552  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1553    if (ICE->getCastKind() == CastExpr::CK_NoOp)
1554      E = ICE->getSubExpr();
1555    else
1556      break;
1557  }
1558
1559  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
1560    E = BE->getSubExpr();
1561
1562  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1563    if (ICE->getCastKind() == CastExpr::CK_NoOp)
1564      E = ICE->getSubExpr();
1565    else
1566      break;
1567  }
1568
1569  return E;
1570}
1571
1572const Expr *Expr::getTemporaryObject() const {
1573  const Expr *E = skipTemporaryBindingsAndNoOpCasts(this);
1574
1575  // A cast can produce a temporary object. The object's construction
1576  // is represented as a CXXConstructExpr.
1577  if (const CastExpr *Cast = dyn_cast<CastExpr>(E)) {
1578    // Only user-defined and constructor conversions can produce
1579    // temporary objects.
1580    if (Cast->getCastKind() != CastExpr::CK_ConstructorConversion &&
1581        Cast->getCastKind() != CastExpr::CK_UserDefinedConversion)
1582      return 0;
1583
1584    // Strip off temporary bindings and no-op casts.
1585    const Expr *Sub = skipTemporaryBindingsAndNoOpCasts(Cast->getSubExpr());
1586
1587    // If this is a constructor conversion, see if we have an object
1588    // construction.
1589    if (Cast->getCastKind() == CastExpr::CK_ConstructorConversion)
1590      return dyn_cast<CXXConstructExpr>(Sub);
1591
1592    // If this is a user-defined conversion, see if we have a call to
1593    // a function that itself returns a temporary object.
1594    if (Cast->getCastKind() == CastExpr::CK_UserDefinedConversion)
1595      if (const CallExpr *CE = dyn_cast<CallExpr>(Sub))
1596        if (CE->getCallReturnType()->isRecordType())
1597          return CE;
1598
1599    return 0;
1600  }
1601
1602  // A call returning a class type returns a temporary.
1603  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
1604    if (CE->getCallReturnType()->isRecordType())
1605      return CE;
1606
1607    return 0;
1608  }
1609
1610  // Explicit temporary object constructors create temporaries.
1611  return dyn_cast<CXXTemporaryObjectExpr>(E);
1612}
1613
1614/// hasAnyTypeDependentArguments - Determines if any of the expressions
1615/// in Exprs is type-dependent.
1616bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1617  for (unsigned I = 0; I < NumExprs; ++I)
1618    if (Exprs[I]->isTypeDependent())
1619      return true;
1620
1621  return false;
1622}
1623
1624/// hasAnyValueDependentArguments - Determines if any of the expressions
1625/// in Exprs is value-dependent.
1626bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1627  for (unsigned I = 0; I < NumExprs; ++I)
1628    if (Exprs[I]->isValueDependent())
1629      return true;
1630
1631  return false;
1632}
1633
1634bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1635  // This function is attempting whether an expression is an initializer
1636  // which can be evaluated at compile-time.  isEvaluatable handles most
1637  // of the cases, but it can't deal with some initializer-specific
1638  // expressions, and it can't deal with aggregates; we deal with those here,
1639  // and fall back to isEvaluatable for the other cases.
1640
1641  // FIXME: This function assumes the variable being assigned to
1642  // isn't a reference type!
1643
1644  switch (getStmtClass()) {
1645  default: break;
1646  case StringLiteralClass:
1647  case ObjCStringLiteralClass:
1648  case ObjCEncodeExprClass:
1649    return true;
1650  case CompoundLiteralExprClass: {
1651    // This handles gcc's extension that allows global initializers like
1652    // "struct x {int x;} x = (struct x) {};".
1653    // FIXME: This accepts other cases it shouldn't!
1654    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1655    return Exp->isConstantInitializer(Ctx);
1656  }
1657  case InitListExprClass: {
1658    // FIXME: This doesn't deal with fields with reference types correctly.
1659    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1660    // to bitfields.
1661    const InitListExpr *Exp = cast<InitListExpr>(this);
1662    unsigned numInits = Exp->getNumInits();
1663    for (unsigned i = 0; i < numInits; i++) {
1664      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1665        return false;
1666    }
1667    return true;
1668  }
1669  case ImplicitValueInitExprClass:
1670    return true;
1671  case ParenExprClass:
1672    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1673  case UnaryOperatorClass: {
1674    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1675    if (Exp->getOpcode() == UnaryOperator::Extension)
1676      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1677    break;
1678  }
1679  case BinaryOperatorClass: {
1680    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1681    // but this handles the common case.
1682    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1683    if (Exp->getOpcode() == BinaryOperator::Sub &&
1684        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1685        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1686      return true;
1687    break;
1688  }
1689  case ImplicitCastExprClass:
1690  case CStyleCastExprClass:
1691    // Handle casts with a destination that's a struct or union; this
1692    // deals with both the gcc no-op struct cast extension and the
1693    // cast-to-union extension.
1694    if (getType()->isRecordType())
1695      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1696
1697    // Integer->integer casts can be handled here, which is important for
1698    // things like (int)(&&x-&&y).  Scary but true.
1699    if (getType()->isIntegerType() &&
1700        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1701      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1702
1703    break;
1704  }
1705  return isEvaluatable(Ctx);
1706}
1707
1708/// isIntegerConstantExpr - this recursive routine will test if an expression is
1709/// an integer constant expression.
1710
1711/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1712/// comma, etc
1713///
1714/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1715/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1716/// cast+dereference.
1717
1718// CheckICE - This function does the fundamental ICE checking: the returned
1719// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1720// Note that to reduce code duplication, this helper does no evaluation
1721// itself; the caller checks whether the expression is evaluatable, and
1722// in the rare cases where CheckICE actually cares about the evaluated
1723// value, it calls into Evalute.
1724//
1725// Meanings of Val:
1726// 0: This expression is an ICE if it can be evaluated by Evaluate.
1727// 1: This expression is not an ICE, but if it isn't evaluated, it's
1728//    a legal subexpression for an ICE. This return value is used to handle
1729//    the comma operator in C99 mode.
1730// 2: This expression is not an ICE, and is not a legal subexpression for one.
1731
1732struct ICEDiag {
1733  unsigned Val;
1734  SourceLocation Loc;
1735
1736  public:
1737  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1738  ICEDiag() : Val(0) {}
1739};
1740
1741ICEDiag NoDiag() { return ICEDiag(); }
1742
1743static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1744  Expr::EvalResult EVResult;
1745  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1746      !EVResult.Val.isInt()) {
1747    return ICEDiag(2, E->getLocStart());
1748  }
1749  return NoDiag();
1750}
1751
1752static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1753  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1754  if (!E->getType()->isIntegralType()) {
1755    return ICEDiag(2, E->getLocStart());
1756  }
1757
1758  switch (E->getStmtClass()) {
1759#define STMT(Node, Base) case Expr::Node##Class:
1760#define EXPR(Node, Base)
1761#include "clang/AST/StmtNodes.def"
1762  case Expr::PredefinedExprClass:
1763  case Expr::FloatingLiteralClass:
1764  case Expr::ImaginaryLiteralClass:
1765  case Expr::StringLiteralClass:
1766  case Expr::ArraySubscriptExprClass:
1767  case Expr::MemberExprClass:
1768  case Expr::CompoundAssignOperatorClass:
1769  case Expr::CompoundLiteralExprClass:
1770  case Expr::ExtVectorElementExprClass:
1771  case Expr::InitListExprClass:
1772  case Expr::DesignatedInitExprClass:
1773  case Expr::ImplicitValueInitExprClass:
1774  case Expr::ParenListExprClass:
1775  case Expr::VAArgExprClass:
1776  case Expr::AddrLabelExprClass:
1777  case Expr::StmtExprClass:
1778  case Expr::CXXMemberCallExprClass:
1779  case Expr::CXXDynamicCastExprClass:
1780  case Expr::CXXTypeidExprClass:
1781  case Expr::CXXNullPtrLiteralExprClass:
1782  case Expr::CXXThisExprClass:
1783  case Expr::CXXThrowExprClass:
1784  case Expr::CXXNewExprClass:
1785  case Expr::CXXDeleteExprClass:
1786  case Expr::CXXPseudoDestructorExprClass:
1787  case Expr::UnresolvedLookupExprClass:
1788  case Expr::DependentScopeDeclRefExprClass:
1789  case Expr::CXXConstructExprClass:
1790  case Expr::CXXBindTemporaryExprClass:
1791  case Expr::CXXBindReferenceExprClass:
1792  case Expr::CXXExprWithTemporariesClass:
1793  case Expr::CXXTemporaryObjectExprClass:
1794  case Expr::CXXUnresolvedConstructExprClass:
1795  case Expr::CXXDependentScopeMemberExprClass:
1796  case Expr::UnresolvedMemberExprClass:
1797  case Expr::ObjCStringLiteralClass:
1798  case Expr::ObjCEncodeExprClass:
1799  case Expr::ObjCMessageExprClass:
1800  case Expr::ObjCSelectorExprClass:
1801  case Expr::ObjCProtocolExprClass:
1802  case Expr::ObjCIvarRefExprClass:
1803  case Expr::ObjCPropertyRefExprClass:
1804  case Expr::ObjCImplicitSetterGetterRefExprClass:
1805  case Expr::ObjCSuperExprClass:
1806  case Expr::ObjCIsaExprClass:
1807  case Expr::ShuffleVectorExprClass:
1808  case Expr::BlockExprClass:
1809  case Expr::BlockDeclRefExprClass:
1810  case Expr::NoStmtClass:
1811    return ICEDiag(2, E->getLocStart());
1812
1813  case Expr::GNUNullExprClass:
1814    // GCC considers the GNU __null value to be an integral constant expression.
1815    return NoDiag();
1816
1817  case Expr::ParenExprClass:
1818    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1819  case Expr::IntegerLiteralClass:
1820  case Expr::CharacterLiteralClass:
1821  case Expr::CXXBoolLiteralExprClass:
1822  case Expr::CXXZeroInitValueExprClass:
1823  case Expr::TypesCompatibleExprClass:
1824  case Expr::UnaryTypeTraitExprClass:
1825    return NoDiag();
1826  case Expr::CallExprClass:
1827  case Expr::CXXOperatorCallExprClass: {
1828    const CallExpr *CE = cast<CallExpr>(E);
1829    if (CE->isBuiltinCall(Ctx))
1830      return CheckEvalInICE(E, Ctx);
1831    return ICEDiag(2, E->getLocStart());
1832  }
1833  case Expr::DeclRefExprClass:
1834    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1835      return NoDiag();
1836    if (Ctx.getLangOptions().CPlusPlus &&
1837        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1838      const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
1839
1840      // Parameter variables are never constants.  Without this check,
1841      // getAnyInitializer() can find a default argument, which leads
1842      // to chaos.
1843      if (isa<ParmVarDecl>(D))
1844        return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1845
1846      // C++ 7.1.5.1p2
1847      //   A variable of non-volatile const-qualified integral or enumeration
1848      //   type initialized by an ICE can be used in ICEs.
1849      if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
1850        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1851        if (Quals.hasVolatile() || !Quals.hasConst())
1852          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1853
1854        // Look for a declaration of this variable that has an initializer.
1855        const VarDecl *ID = 0;
1856        const Expr *Init = Dcl->getAnyInitializer(ID);
1857        if (Init) {
1858          if (ID->isInitKnownICE()) {
1859            // We have already checked whether this subexpression is an
1860            // integral constant expression.
1861            if (ID->isInitICE())
1862              return NoDiag();
1863            else
1864              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1865          }
1866
1867          // It's an ICE whether or not the definition we found is
1868          // out-of-line.  See DR 721 and the discussion in Clang PR
1869          // 6206 for details.
1870
1871          if (Dcl->isCheckingICE()) {
1872            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1873          }
1874
1875          Dcl->setCheckingICE();
1876          ICEDiag Result = CheckICE(Init, Ctx);
1877          // Cache the result of the ICE test.
1878          Dcl->setInitKnownICE(Result.Val == 0);
1879          return Result;
1880        }
1881      }
1882    }
1883    return ICEDiag(2, E->getLocStart());
1884  case Expr::UnaryOperatorClass: {
1885    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1886    switch (Exp->getOpcode()) {
1887    case UnaryOperator::PostInc:
1888    case UnaryOperator::PostDec:
1889    case UnaryOperator::PreInc:
1890    case UnaryOperator::PreDec:
1891    case UnaryOperator::AddrOf:
1892    case UnaryOperator::Deref:
1893      return ICEDiag(2, E->getLocStart());
1894
1895    case UnaryOperator::Extension:
1896    case UnaryOperator::LNot:
1897    case UnaryOperator::Plus:
1898    case UnaryOperator::Minus:
1899    case UnaryOperator::Not:
1900    case UnaryOperator::Real:
1901    case UnaryOperator::Imag:
1902      return CheckICE(Exp->getSubExpr(), Ctx);
1903    case UnaryOperator::OffsetOf:
1904      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1905      // Evaluate matches the proposed gcc behavior for cases like
1906      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1907      // compliance: we should warn earlier for offsetof expressions with
1908      // array subscripts that aren't ICEs, and if the array subscripts
1909      // are ICEs, the value of the offsetof must be an integer constant.
1910      return CheckEvalInICE(E, Ctx);
1911    }
1912  }
1913  case Expr::SizeOfAlignOfExprClass: {
1914    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1915    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1916      return ICEDiag(2, E->getLocStart());
1917    return NoDiag();
1918  }
1919  case Expr::BinaryOperatorClass: {
1920    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1921    switch (Exp->getOpcode()) {
1922    case BinaryOperator::PtrMemD:
1923    case BinaryOperator::PtrMemI:
1924    case BinaryOperator::Assign:
1925    case BinaryOperator::MulAssign:
1926    case BinaryOperator::DivAssign:
1927    case BinaryOperator::RemAssign:
1928    case BinaryOperator::AddAssign:
1929    case BinaryOperator::SubAssign:
1930    case BinaryOperator::ShlAssign:
1931    case BinaryOperator::ShrAssign:
1932    case BinaryOperator::AndAssign:
1933    case BinaryOperator::XorAssign:
1934    case BinaryOperator::OrAssign:
1935      return ICEDiag(2, E->getLocStart());
1936
1937    case BinaryOperator::Mul:
1938    case BinaryOperator::Div:
1939    case BinaryOperator::Rem:
1940    case BinaryOperator::Add:
1941    case BinaryOperator::Sub:
1942    case BinaryOperator::Shl:
1943    case BinaryOperator::Shr:
1944    case BinaryOperator::LT:
1945    case BinaryOperator::GT:
1946    case BinaryOperator::LE:
1947    case BinaryOperator::GE:
1948    case BinaryOperator::EQ:
1949    case BinaryOperator::NE:
1950    case BinaryOperator::And:
1951    case BinaryOperator::Xor:
1952    case BinaryOperator::Or:
1953    case BinaryOperator::Comma: {
1954      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1955      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1956      if (Exp->getOpcode() == BinaryOperator::Div ||
1957          Exp->getOpcode() == BinaryOperator::Rem) {
1958        // Evaluate gives an error for undefined Div/Rem, so make sure
1959        // we don't evaluate one.
1960        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1961          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1962          if (REval == 0)
1963            return ICEDiag(1, E->getLocStart());
1964          if (REval.isSigned() && REval.isAllOnesValue()) {
1965            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1966            if (LEval.isMinSignedValue())
1967              return ICEDiag(1, E->getLocStart());
1968          }
1969        }
1970      }
1971      if (Exp->getOpcode() == BinaryOperator::Comma) {
1972        if (Ctx.getLangOptions().C99) {
1973          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1974          // if it isn't evaluated.
1975          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1976            return ICEDiag(1, E->getLocStart());
1977        } else {
1978          // In both C89 and C++, commas in ICEs are illegal.
1979          return ICEDiag(2, E->getLocStart());
1980        }
1981      }
1982      if (LHSResult.Val >= RHSResult.Val)
1983        return LHSResult;
1984      return RHSResult;
1985    }
1986    case BinaryOperator::LAnd:
1987    case BinaryOperator::LOr: {
1988      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1989      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1990      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1991        // Rare case where the RHS has a comma "side-effect"; we need
1992        // to actually check the condition to see whether the side
1993        // with the comma is evaluated.
1994        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1995            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1996          return RHSResult;
1997        return NoDiag();
1998      }
1999
2000      if (LHSResult.Val >= RHSResult.Val)
2001        return LHSResult;
2002      return RHSResult;
2003    }
2004    }
2005  }
2006  case Expr::ImplicitCastExprClass:
2007  case Expr::CStyleCastExprClass:
2008  case Expr::CXXFunctionalCastExprClass:
2009  case Expr::CXXStaticCastExprClass:
2010  case Expr::CXXReinterpretCastExprClass:
2011  case Expr::CXXConstCastExprClass: {
2012    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
2013    if (SubExpr->getType()->isIntegralType())
2014      return CheckICE(SubExpr, Ctx);
2015    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
2016      return NoDiag();
2017    return ICEDiag(2, E->getLocStart());
2018  }
2019  case Expr::ConditionalOperatorClass: {
2020    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
2021    // If the condition (ignoring parens) is a __builtin_constant_p call,
2022    // then only the true side is actually considered in an integer constant
2023    // expression, and it is fully evaluated.  This is an important GNU
2024    // extension.  See GCC PR38377 for discussion.
2025    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
2026      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
2027        Expr::EvalResult EVResult;
2028        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
2029            !EVResult.Val.isInt()) {
2030          return ICEDiag(2, E->getLocStart());
2031        }
2032        return NoDiag();
2033      }
2034    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
2035    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
2036    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
2037    if (CondResult.Val == 2)
2038      return CondResult;
2039    if (TrueResult.Val == 2)
2040      return TrueResult;
2041    if (FalseResult.Val == 2)
2042      return FalseResult;
2043    if (CondResult.Val == 1)
2044      return CondResult;
2045    if (TrueResult.Val == 0 && FalseResult.Val == 0)
2046      return NoDiag();
2047    // Rare case where the diagnostics depend on which side is evaluated
2048    // Note that if we get here, CondResult is 0, and at least one of
2049    // TrueResult and FalseResult is non-zero.
2050    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
2051      return FalseResult;
2052    }
2053    return TrueResult;
2054  }
2055  case Expr::CXXDefaultArgExprClass:
2056    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
2057  case Expr::ChooseExprClass: {
2058    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
2059  }
2060  }
2061
2062  // Silence a GCC warning
2063  return ICEDiag(2, E->getLocStart());
2064}
2065
2066bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
2067                                 SourceLocation *Loc, bool isEvaluated) const {
2068  ICEDiag d = CheckICE(this, Ctx);
2069  if (d.Val != 0) {
2070    if (Loc) *Loc = d.Loc;
2071    return false;
2072  }
2073  EvalResult EvalResult;
2074  if (!Evaluate(EvalResult, Ctx))
2075    llvm_unreachable("ICE cannot be evaluated!");
2076  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
2077  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
2078  Result = EvalResult.Val.getInt();
2079  return true;
2080}
2081
2082/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
2083/// integer constant expression with the value zero, or if this is one that is
2084/// cast to void*.
2085bool Expr::isNullPointerConstant(ASTContext &Ctx,
2086                                 NullPointerConstantValueDependence NPC) const {
2087  if (isValueDependent()) {
2088    switch (NPC) {
2089    case NPC_NeverValueDependent:
2090      assert(false && "Unexpected value dependent expression!");
2091      // If the unthinkable happens, fall through to the safest alternative.
2092
2093    case NPC_ValueDependentIsNull:
2094      return isTypeDependent() || getType()->isIntegralType();
2095
2096    case NPC_ValueDependentIsNotNull:
2097      return false;
2098    }
2099  }
2100
2101  // Strip off a cast to void*, if it exists. Except in C++.
2102  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2103    if (!Ctx.getLangOptions().CPlusPlus) {
2104      // Check that it is a cast to void*.
2105      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2106        QualType Pointee = PT->getPointeeType();
2107        if (!Pointee.hasQualifiers() &&
2108            Pointee->isVoidType() &&                              // to void*
2109            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2110          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2111      }
2112    }
2113  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2114    // Ignore the ImplicitCastExpr type entirely.
2115    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2116  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2117    // Accept ((void*)0) as a null pointer constant, as many other
2118    // implementations do.
2119    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2120  } else if (const CXXDefaultArgExpr *DefaultArg
2121               = dyn_cast<CXXDefaultArgExpr>(this)) {
2122    // See through default argument expressions
2123    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2124  } else if (isa<GNUNullExpr>(this)) {
2125    // The GNU __null extension is always a null pointer constant.
2126    return true;
2127  }
2128
2129  // C++0x nullptr_t is always a null pointer constant.
2130  if (getType()->isNullPtrType())
2131    return true;
2132
2133  // This expression must be an integer type.
2134  if (!getType()->isIntegerType() ||
2135      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
2136    return false;
2137
2138  // If we have an integer constant expression, we need to *evaluate* it and
2139  // test for the value 0.
2140  llvm::APSInt Result;
2141  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
2142}
2143
2144FieldDecl *Expr::getBitField() {
2145  Expr *E = this->IgnoreParens();
2146
2147  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2148    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
2149      E = ICE->getSubExpr()->IgnoreParens();
2150    else
2151      break;
2152  }
2153
2154  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2155    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2156      if (Field->isBitField())
2157        return Field;
2158
2159  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
2160    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2161      return BinOp->getLHS()->getBitField();
2162
2163  return 0;
2164}
2165
2166bool Expr::refersToVectorElement() const {
2167  const Expr *E = this->IgnoreParens();
2168
2169  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2170    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
2171      E = ICE->getSubExpr()->IgnoreParens();
2172    else
2173      break;
2174  }
2175
2176  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2177    return ASE->getBase()->getType()->isVectorType();
2178
2179  if (isa<ExtVectorElementExpr>(E))
2180    return true;
2181
2182  return false;
2183}
2184
2185/// isArrow - Return true if the base expression is a pointer to vector,
2186/// return false if the base expression is a vector.
2187bool ExtVectorElementExpr::isArrow() const {
2188  return getBase()->getType()->isPointerType();
2189}
2190
2191unsigned ExtVectorElementExpr::getNumElements() const {
2192  if (const VectorType *VT = getType()->getAs<VectorType>())
2193    return VT->getNumElements();
2194  return 1;
2195}
2196
2197/// containsDuplicateElements - Return true if any element access is repeated.
2198bool ExtVectorElementExpr::containsDuplicateElements() const {
2199  // FIXME: Refactor this code to an accessor on the AST node which returns the
2200  // "type" of component access, and share with code below and in Sema.
2201  llvm::StringRef Comp = Accessor->getName();
2202
2203  // Halving swizzles do not contain duplicate elements.
2204  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2205    return false;
2206
2207  // Advance past s-char prefix on hex swizzles.
2208  if (Comp[0] == 's' || Comp[0] == 'S')
2209    Comp = Comp.substr(1);
2210
2211  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2212    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2213        return true;
2214
2215  return false;
2216}
2217
2218/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2219void ExtVectorElementExpr::getEncodedElementAccess(
2220                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2221  llvm::StringRef Comp = Accessor->getName();
2222  if (Comp[0] == 's' || Comp[0] == 'S')
2223    Comp = Comp.substr(1);
2224
2225  bool isHi =   Comp == "hi";
2226  bool isLo =   Comp == "lo";
2227  bool isEven = Comp == "even";
2228  bool isOdd  = Comp == "odd";
2229
2230  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2231    uint64_t Index;
2232
2233    if (isHi)
2234      Index = e + i;
2235    else if (isLo)
2236      Index = i;
2237    else if (isEven)
2238      Index = 2 * i;
2239    else if (isOdd)
2240      Index = 2 * i + 1;
2241    else
2242      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2243
2244    Elts.push_back(Index);
2245  }
2246}
2247
2248ObjCMessageExpr::ObjCMessageExpr(QualType T,
2249                                 SourceLocation LBracLoc,
2250                                 SourceLocation SuperLoc,
2251                                 bool IsInstanceSuper,
2252                                 QualType SuperType,
2253                                 Selector Sel,
2254                                 ObjCMethodDecl *Method,
2255                                 Expr **Args, unsigned NumArgs,
2256                                 SourceLocation RBracLoc)
2257  : Expr(ObjCMessageExprClass, T, /*TypeDependent=*/false,
2258         /*ValueDependent=*/false),
2259    NumArgs(NumArgs), Kind(IsInstanceSuper? SuperInstance : SuperClass),
2260    HasMethod(Method != 0), SuperLoc(SuperLoc),
2261    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2262                                                       : Sel.getAsOpaquePtr())),
2263    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2264{
2265  setReceiverPointer(SuperType.getAsOpaquePtr());
2266  if (NumArgs)
2267    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2268}
2269
2270ObjCMessageExpr::ObjCMessageExpr(QualType T,
2271                                 SourceLocation LBracLoc,
2272                                 TypeSourceInfo *Receiver,
2273                                 Selector Sel,
2274                                 ObjCMethodDecl *Method,
2275                                 Expr **Args, unsigned NumArgs,
2276                                 SourceLocation RBracLoc)
2277  : Expr(ObjCMessageExprClass, T, T->isDependentType(),
2278         (T->isDependentType() ||
2279          hasAnyValueDependentArguments(Args, NumArgs))),
2280    NumArgs(NumArgs), Kind(Class), HasMethod(Method != 0),
2281    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2282                                                       : Sel.getAsOpaquePtr())),
2283    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2284{
2285  setReceiverPointer(Receiver);
2286  if (NumArgs)
2287    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2288}
2289
2290ObjCMessageExpr::ObjCMessageExpr(QualType T,
2291                                 SourceLocation LBracLoc,
2292                                 Expr *Receiver,
2293                                 Selector Sel,
2294                                 ObjCMethodDecl *Method,
2295                                 Expr **Args, unsigned NumArgs,
2296                                 SourceLocation RBracLoc)
2297  : Expr(ObjCMessageExprClass, T, Receiver->isTypeDependent(),
2298         (Receiver->isTypeDependent() ||
2299          hasAnyValueDependentArguments(Args, NumArgs))),
2300    NumArgs(NumArgs), Kind(Instance), HasMethod(Method != 0),
2301    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2302                                                       : Sel.getAsOpaquePtr())),
2303    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2304{
2305  setReceiverPointer(Receiver);
2306  if (NumArgs)
2307    memcpy(getArgs(), Args, NumArgs * sizeof(Expr *));
2308}
2309
2310ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2311                                         SourceLocation LBracLoc,
2312                                         SourceLocation SuperLoc,
2313                                         bool IsInstanceSuper,
2314                                         QualType SuperType,
2315                                         Selector Sel,
2316                                         ObjCMethodDecl *Method,
2317                                         Expr **Args, unsigned NumArgs,
2318                                         SourceLocation RBracLoc) {
2319  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2320    NumArgs * sizeof(Expr *);
2321  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2322  return new (Mem) ObjCMessageExpr(T, LBracLoc, SuperLoc, IsInstanceSuper,
2323                                   SuperType, Sel, Method, Args, NumArgs,
2324                                   RBracLoc);
2325}
2326
2327ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2328                                         SourceLocation LBracLoc,
2329                                         TypeSourceInfo *Receiver,
2330                                         Selector Sel,
2331                                         ObjCMethodDecl *Method,
2332                                         Expr **Args, unsigned NumArgs,
2333                                         SourceLocation RBracLoc) {
2334  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2335    NumArgs * sizeof(Expr *);
2336  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2337  return new (Mem) ObjCMessageExpr(T, LBracLoc, Receiver, Sel, Method, Args,
2338                                   NumArgs, RBracLoc);
2339}
2340
2341ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2342                                         SourceLocation LBracLoc,
2343                                         Expr *Receiver,
2344                                         Selector Sel,
2345                                         ObjCMethodDecl *Method,
2346                                         Expr **Args, unsigned NumArgs,
2347                                         SourceLocation RBracLoc) {
2348  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2349    NumArgs * sizeof(Expr *);
2350  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2351  return new (Mem) ObjCMessageExpr(T, LBracLoc, Receiver, Sel, Method, Args,
2352                                   NumArgs, RBracLoc);
2353}
2354
2355ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
2356                                              unsigned NumArgs) {
2357  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2358    NumArgs * sizeof(Expr *);
2359  void *Mem = Context.Allocate(Size, llvm::AlignOf<ObjCMessageExpr>::Alignment);
2360  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
2361}
2362
2363Selector ObjCMessageExpr::getSelector() const {
2364  if (HasMethod)
2365    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
2366                                                               ->getSelector();
2367  return Selector(SelectorOrMethod);
2368}
2369
2370ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
2371  switch (getReceiverKind()) {
2372  case Instance:
2373    if (const ObjCObjectPointerType *Ptr
2374          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
2375      return Ptr->getInterfaceDecl();
2376    break;
2377
2378  case Class:
2379    if (const ObjCInterfaceType *Iface
2380                       = getClassReceiver()->getAs<ObjCInterfaceType>())
2381      return Iface->getDecl();
2382    break;
2383
2384  case SuperInstance:
2385    if (const ObjCObjectPointerType *Ptr
2386          = getSuperType()->getAs<ObjCObjectPointerType>())
2387      return Ptr->getInterfaceDecl();
2388    break;
2389
2390  case SuperClass:
2391    if (const ObjCObjectPointerType *Iface
2392                       = getSuperType()->getAs<ObjCObjectPointerType>())
2393      return Iface->getInterfaceDecl();
2394    break;
2395  }
2396
2397  return 0;
2398}
2399
2400bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2401  return getCond()->EvaluateAsInt(C) != 0;
2402}
2403
2404void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2405                                 unsigned NumExprs) {
2406  if (SubExprs) C.Deallocate(SubExprs);
2407
2408  SubExprs = new (C) Stmt* [NumExprs];
2409  this->NumExprs = NumExprs;
2410  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2411}
2412
2413void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2414  DestroyChildren(C);
2415  if (SubExprs) C.Deallocate(SubExprs);
2416  this->~ShuffleVectorExpr();
2417  C.Deallocate(this);
2418}
2419
2420void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2421  // Override default behavior of traversing children. If this has a type
2422  // operand and the type is a variable-length array, the child iteration
2423  // will iterate over the size expression. However, this expression belongs
2424  // to the type, not to this, so we don't want to delete it.
2425  // We still want to delete this expression.
2426  if (isArgumentType()) {
2427    this->~SizeOfAlignOfExpr();
2428    C.Deallocate(this);
2429  }
2430  else
2431    Expr::DoDestroy(C);
2432}
2433
2434//===----------------------------------------------------------------------===//
2435//  DesignatedInitExpr
2436//===----------------------------------------------------------------------===//
2437
2438IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2439  assert(Kind == FieldDesignator && "Only valid on a field designator");
2440  if (Field.NameOrField & 0x01)
2441    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2442  else
2443    return getField()->getIdentifier();
2444}
2445
2446DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2447                                       unsigned NumDesignators,
2448                                       const Designator *Designators,
2449                                       SourceLocation EqualOrColonLoc,
2450                                       bool GNUSyntax,
2451                                       Expr **IndexExprs,
2452                                       unsigned NumIndexExprs,
2453                                       Expr *Init)
2454  : Expr(DesignatedInitExprClass, Ty,
2455         Init->isTypeDependent(), Init->isValueDependent()),
2456    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2457    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2458  this->Designators = new (C) Designator[NumDesignators];
2459
2460  // Record the initializer itself.
2461  child_iterator Child = child_begin();
2462  *Child++ = Init;
2463
2464  // Copy the designators and their subexpressions, computing
2465  // value-dependence along the way.
2466  unsigned IndexIdx = 0;
2467  for (unsigned I = 0; I != NumDesignators; ++I) {
2468    this->Designators[I] = Designators[I];
2469
2470    if (this->Designators[I].isArrayDesignator()) {
2471      // Compute type- and value-dependence.
2472      Expr *Index = IndexExprs[IndexIdx];
2473      ValueDependent = ValueDependent ||
2474        Index->isTypeDependent() || Index->isValueDependent();
2475
2476      // Copy the index expressions into permanent storage.
2477      *Child++ = IndexExprs[IndexIdx++];
2478    } else if (this->Designators[I].isArrayRangeDesignator()) {
2479      // Compute type- and value-dependence.
2480      Expr *Start = IndexExprs[IndexIdx];
2481      Expr *End = IndexExprs[IndexIdx + 1];
2482      ValueDependent = ValueDependent ||
2483        Start->isTypeDependent() || Start->isValueDependent() ||
2484        End->isTypeDependent() || End->isValueDependent();
2485
2486      // Copy the start/end expressions into permanent storage.
2487      *Child++ = IndexExprs[IndexIdx++];
2488      *Child++ = IndexExprs[IndexIdx++];
2489    }
2490  }
2491
2492  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2493}
2494
2495DesignatedInitExpr *
2496DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2497                           unsigned NumDesignators,
2498                           Expr **IndexExprs, unsigned NumIndexExprs,
2499                           SourceLocation ColonOrEqualLoc,
2500                           bool UsesColonSyntax, Expr *Init) {
2501  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2502                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2503  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2504                                      ColonOrEqualLoc, UsesColonSyntax,
2505                                      IndexExprs, NumIndexExprs, Init);
2506}
2507
2508DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2509                                                    unsigned NumIndexExprs) {
2510  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2511                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2512  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2513}
2514
2515void DesignatedInitExpr::setDesignators(ASTContext &C,
2516                                        const Designator *Desigs,
2517                                        unsigned NumDesigs) {
2518  DestroyDesignators(C);
2519
2520  Designators = new (C) Designator[NumDesigs];
2521  NumDesignators = NumDesigs;
2522  for (unsigned I = 0; I != NumDesigs; ++I)
2523    Designators[I] = Desigs[I];
2524}
2525
2526SourceRange DesignatedInitExpr::getSourceRange() const {
2527  SourceLocation StartLoc;
2528  Designator &First =
2529    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2530  if (First.isFieldDesignator()) {
2531    if (GNUSyntax)
2532      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2533    else
2534      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2535  } else
2536    StartLoc =
2537      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2538  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2539}
2540
2541Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2542  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2543  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2544  Ptr += sizeof(DesignatedInitExpr);
2545  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2546  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2547}
2548
2549Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2550  assert(D.Kind == Designator::ArrayRangeDesignator &&
2551         "Requires array range designator");
2552  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2553  Ptr += sizeof(DesignatedInitExpr);
2554  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2555  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2556}
2557
2558Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2559  assert(D.Kind == Designator::ArrayRangeDesignator &&
2560         "Requires array range designator");
2561  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2562  Ptr += sizeof(DesignatedInitExpr);
2563  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2564  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2565}
2566
2567/// \brief Replaces the designator at index @p Idx with the series
2568/// of designators in [First, Last).
2569void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2570                                          const Designator *First,
2571                                          const Designator *Last) {
2572  unsigned NumNewDesignators = Last - First;
2573  if (NumNewDesignators == 0) {
2574    std::copy_backward(Designators + Idx + 1,
2575                       Designators + NumDesignators,
2576                       Designators + Idx);
2577    --NumNewDesignators;
2578    return;
2579  } else if (NumNewDesignators == 1) {
2580    Designators[Idx] = *First;
2581    return;
2582  }
2583
2584  Designator *NewDesignators
2585    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2586  std::copy(Designators, Designators + Idx, NewDesignators);
2587  std::copy(First, Last, NewDesignators + Idx);
2588  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2589            NewDesignators + Idx + NumNewDesignators);
2590  DestroyDesignators(C);
2591  Designators = NewDesignators;
2592  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2593}
2594
2595void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2596  DestroyDesignators(C);
2597  Expr::DoDestroy(C);
2598}
2599
2600void DesignatedInitExpr::DestroyDesignators(ASTContext &C) {
2601  for (unsigned I = 0; I != NumDesignators; ++I)
2602    Designators[I].~Designator();
2603  C.Deallocate(Designators);
2604  Designators = 0;
2605}
2606
2607ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2608                             Expr **exprs, unsigned nexprs,
2609                             SourceLocation rparenloc)
2610: Expr(ParenListExprClass, QualType(),
2611       hasAnyTypeDependentArguments(exprs, nexprs),
2612       hasAnyValueDependentArguments(exprs, nexprs)),
2613  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2614
2615  Exprs = new (C) Stmt*[nexprs];
2616  for (unsigned i = 0; i != nexprs; ++i)
2617    Exprs[i] = exprs[i];
2618}
2619
2620void ParenListExpr::DoDestroy(ASTContext& C) {
2621  DestroyChildren(C);
2622  if (Exprs) C.Deallocate(Exprs);
2623  this->~ParenListExpr();
2624  C.Deallocate(this);
2625}
2626
2627//===----------------------------------------------------------------------===//
2628//  ExprIterator.
2629//===----------------------------------------------------------------------===//
2630
2631Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2632Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2633Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2634const Expr* ConstExprIterator::operator[](size_t idx) const {
2635  return cast<Expr>(I[idx]);
2636}
2637const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2638const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2639
2640//===----------------------------------------------------------------------===//
2641//  Child Iterators for iterating over subexpressions/substatements
2642//===----------------------------------------------------------------------===//
2643
2644// DeclRefExpr
2645Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2646Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2647
2648// ObjCIvarRefExpr
2649Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2650Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2651
2652// ObjCPropertyRefExpr
2653Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2654Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2655
2656// ObjCImplicitSetterGetterRefExpr
2657Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2658  return &Base;
2659}
2660Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2661  return &Base+1;
2662}
2663
2664// ObjCSuperExpr
2665Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2666Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2667
2668// ObjCIsaExpr
2669Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2670Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2671
2672// PredefinedExpr
2673Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2674Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2675
2676// IntegerLiteral
2677Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2678Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2679
2680// CharacterLiteral
2681Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2682Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2683
2684// FloatingLiteral
2685Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2686Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2687
2688// ImaginaryLiteral
2689Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2690Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2691
2692// StringLiteral
2693Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2694Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2695
2696// ParenExpr
2697Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2698Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2699
2700// UnaryOperator
2701Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2702Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2703
2704// SizeOfAlignOfExpr
2705Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2706  // If this is of a type and the type is a VLA type (and not a typedef), the
2707  // size expression of the VLA needs to be treated as an executable expression.
2708  // Why isn't this weirdness documented better in StmtIterator?
2709  if (isArgumentType()) {
2710    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2711                                   getArgumentType().getTypePtr()))
2712      return child_iterator(T);
2713    return child_iterator();
2714  }
2715  return child_iterator(&Argument.Ex);
2716}
2717Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2718  if (isArgumentType())
2719    return child_iterator();
2720  return child_iterator(&Argument.Ex + 1);
2721}
2722
2723// ArraySubscriptExpr
2724Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2725  return &SubExprs[0];
2726}
2727Stmt::child_iterator ArraySubscriptExpr::child_end() {
2728  return &SubExprs[0]+END_EXPR;
2729}
2730
2731// CallExpr
2732Stmt::child_iterator CallExpr::child_begin() {
2733  return &SubExprs[0];
2734}
2735Stmt::child_iterator CallExpr::child_end() {
2736  return &SubExprs[0]+NumArgs+ARGS_START;
2737}
2738
2739// MemberExpr
2740Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2741Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2742
2743// ExtVectorElementExpr
2744Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2745Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2746
2747// CompoundLiteralExpr
2748Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2749Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2750
2751// CastExpr
2752Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2753Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2754
2755// BinaryOperator
2756Stmt::child_iterator BinaryOperator::child_begin() {
2757  return &SubExprs[0];
2758}
2759Stmt::child_iterator BinaryOperator::child_end() {
2760  return &SubExprs[0]+END_EXPR;
2761}
2762
2763// ConditionalOperator
2764Stmt::child_iterator ConditionalOperator::child_begin() {
2765  return &SubExprs[0];
2766}
2767Stmt::child_iterator ConditionalOperator::child_end() {
2768  return &SubExprs[0]+END_EXPR;
2769}
2770
2771// AddrLabelExpr
2772Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2773Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2774
2775// StmtExpr
2776Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2777Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2778
2779// TypesCompatibleExpr
2780Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2781  return child_iterator();
2782}
2783
2784Stmt::child_iterator TypesCompatibleExpr::child_end() {
2785  return child_iterator();
2786}
2787
2788// ChooseExpr
2789Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2790Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2791
2792// GNUNullExpr
2793Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2794Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2795
2796// ShuffleVectorExpr
2797Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2798  return &SubExprs[0];
2799}
2800Stmt::child_iterator ShuffleVectorExpr::child_end() {
2801  return &SubExprs[0]+NumExprs;
2802}
2803
2804// VAArgExpr
2805Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2806Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2807
2808// InitListExpr
2809Stmt::child_iterator InitListExpr::child_begin() {
2810  return InitExprs.size() ? &InitExprs[0] : 0;
2811}
2812Stmt::child_iterator InitListExpr::child_end() {
2813  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2814}
2815
2816// DesignatedInitExpr
2817Stmt::child_iterator DesignatedInitExpr::child_begin() {
2818  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2819  Ptr += sizeof(DesignatedInitExpr);
2820  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2821}
2822Stmt::child_iterator DesignatedInitExpr::child_end() {
2823  return child_iterator(&*child_begin() + NumSubExprs);
2824}
2825
2826// ImplicitValueInitExpr
2827Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2828  return child_iterator();
2829}
2830
2831Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2832  return child_iterator();
2833}
2834
2835// ParenListExpr
2836Stmt::child_iterator ParenListExpr::child_begin() {
2837  return &Exprs[0];
2838}
2839Stmt::child_iterator ParenListExpr::child_end() {
2840  return &Exprs[0]+NumExprs;
2841}
2842
2843// ObjCStringLiteral
2844Stmt::child_iterator ObjCStringLiteral::child_begin() {
2845  return &String;
2846}
2847Stmt::child_iterator ObjCStringLiteral::child_end() {
2848  return &String+1;
2849}
2850
2851// ObjCEncodeExpr
2852Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2853Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2854
2855// ObjCSelectorExpr
2856Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2857  return child_iterator();
2858}
2859Stmt::child_iterator ObjCSelectorExpr::child_end() {
2860  return child_iterator();
2861}
2862
2863// ObjCProtocolExpr
2864Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2865  return child_iterator();
2866}
2867Stmt::child_iterator ObjCProtocolExpr::child_end() {
2868  return child_iterator();
2869}
2870
2871// ObjCMessageExpr
2872Stmt::child_iterator ObjCMessageExpr::child_begin() {
2873  if (getReceiverKind() == Instance)
2874    return reinterpret_cast<Stmt **>(this + 1);
2875  return getArgs();
2876}
2877Stmt::child_iterator ObjCMessageExpr::child_end() {
2878  return getArgs() + getNumArgs();
2879}
2880
2881// Blocks
2882Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2883Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2884
2885Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2886Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2887