Expr.cpp revision c0c30b203cd1e17a8688d3719e3ac7400f758709
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Primary Expressions.
32//===----------------------------------------------------------------------===//
33
34void ExplicitTemplateArgumentList::initializeFrom(
35                                      const TemplateArgumentListInfo &Info) {
36  LAngleLoc = Info.getLAngleLoc();
37  RAngleLoc = Info.getRAngleLoc();
38  NumTemplateArgs = Info.size();
39
40  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
41  for (unsigned i = 0; i != NumTemplateArgs; ++i)
42    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
43}
44
45void ExplicitTemplateArgumentList::copyInto(
46                                      TemplateArgumentListInfo &Info) const {
47  Info.setLAngleLoc(LAngleLoc);
48  Info.setRAngleLoc(RAngleLoc);
49  for (unsigned I = 0; I != NumTemplateArgs; ++I)
50    Info.addArgument(getTemplateArgs()[I]);
51}
52
53std::size_t ExplicitTemplateArgumentList::sizeFor(
54                                      const TemplateArgumentListInfo &Info) {
55  return sizeof(ExplicitTemplateArgumentList) +
56         sizeof(TemplateArgumentLoc) * Info.size();
57}
58
59void DeclRefExpr::computeDependence() {
60  TypeDependent = false;
61  ValueDependent = false;
62
63  NamedDecl *D = getDecl();
64
65  // (TD) C++ [temp.dep.expr]p3:
66  //   An id-expression is type-dependent if it contains:
67  //
68  // and
69  //
70  // (VD) C++ [temp.dep.constexpr]p2:
71  //  An identifier is value-dependent if it is:
72
73  //  (TD)  - an identifier that was declared with dependent type
74  //  (VD)  - a name declared with a dependent type,
75  if (getType()->isDependentType()) {
76    TypeDependent = true;
77    ValueDependent = true;
78  }
79  //  (TD)  - a conversion-function-id that specifies a dependent type
80  else if (D->getDeclName().getNameKind()
81                               == DeclarationName::CXXConversionFunctionName &&
82           D->getDeclName().getCXXNameType()->isDependentType()) {
83    TypeDependent = true;
84    ValueDependent = true;
85  }
86  //  (TD)  - a template-id that is dependent,
87  else if (hasExplicitTemplateArgumentList() &&
88           TemplateSpecializationType::anyDependentTemplateArguments(
89                                                       getTemplateArgs(),
90                                                       getNumTemplateArgs())) {
91    TypeDependent = true;
92    ValueDependent = true;
93  }
94  //  (VD)  - the name of a non-type template parameter,
95  else if (isa<NonTypeTemplateParmDecl>(D))
96    ValueDependent = true;
97  //  (VD) - a constant with integral or enumeration type and is
98  //         initialized with an expression that is value-dependent.
99  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
100    if (Var->getType()->isIntegralType() &&
101        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
102      if (const Expr *Init = Var->getAnyInitializer())
103        if (Init->isValueDependent())
104          ValueDependent = true;
105    }
106  }
107  //  (TD)  - a nested-name-specifier or a qualified-id that names a
108  //          member of an unknown specialization.
109  //        (handled by DependentScopeDeclRefExpr)
110}
111
112DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
113                         SourceRange QualifierRange,
114                         ValueDecl *D, SourceLocation NameLoc,
115                         const TemplateArgumentListInfo *TemplateArgs,
116                         QualType T)
117  : Expr(DeclRefExprClass, T, false, false),
118    DecoratedD(D,
119               (Qualifier? HasQualifierFlag : 0) |
120               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
121    Loc(NameLoc) {
122  if (Qualifier) {
123    NameQualifier *NQ = getNameQualifier();
124    NQ->NNS = Qualifier;
125    NQ->Range = QualifierRange;
126  }
127
128  if (TemplateArgs)
129    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
130
131  computeDependence();
132}
133
134DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
135                                 NestedNameSpecifier *Qualifier,
136                                 SourceRange QualifierRange,
137                                 ValueDecl *D,
138                                 SourceLocation NameLoc,
139                                 QualType T,
140                                 const TemplateArgumentListInfo *TemplateArgs) {
141  std::size_t Size = sizeof(DeclRefExpr);
142  if (Qualifier != 0)
143    Size += sizeof(NameQualifier);
144
145  if (TemplateArgs)
146    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
147
148  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
149  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
150                               TemplateArgs, T);
151}
152
153SourceRange DeclRefExpr::getSourceRange() const {
154  // FIXME: Does not handle multi-token names well, e.g., operator[].
155  SourceRange R(Loc);
156
157  if (hasQualifier())
158    R.setBegin(getQualifierRange().getBegin());
159  if (hasExplicitTemplateArgumentList())
160    R.setEnd(getRAngleLoc());
161  return R;
162}
163
164// FIXME: Maybe this should use DeclPrinter with a special "print predefined
165// expr" policy instead.
166std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
167  ASTContext &Context = CurrentDecl->getASTContext();
168
169  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
170    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
171      return FD->getNameAsString();
172
173    llvm::SmallString<256> Name;
174    llvm::raw_svector_ostream Out(Name);
175
176    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
177      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
178        Out << "virtual ";
179      if (MD->isStatic())
180        Out << "static ";
181    }
182
183    PrintingPolicy Policy(Context.getLangOptions());
184    Policy.SuppressTagKind = true;
185
186    std::string Proto = FD->getQualifiedNameAsString(Policy);
187
188    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
189    const FunctionProtoType *FT = 0;
190    if (FD->hasWrittenPrototype())
191      FT = dyn_cast<FunctionProtoType>(AFT);
192
193    Proto += "(";
194    if (FT) {
195      llvm::raw_string_ostream POut(Proto);
196      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
197        if (i) POut << ", ";
198        std::string Param;
199        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
200        POut << Param;
201      }
202
203      if (FT->isVariadic()) {
204        if (FD->getNumParams()) POut << ", ";
205        POut << "...";
206      }
207    }
208    Proto += ")";
209
210    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
211      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
212      if (ThisQuals.hasConst())
213        Proto += " const";
214      if (ThisQuals.hasVolatile())
215        Proto += " volatile";
216    }
217
218    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
219      AFT->getResultType().getAsStringInternal(Proto, Policy);
220
221    Out << Proto;
222
223    Out.flush();
224    return Name.str().str();
225  }
226  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
227    llvm::SmallString<256> Name;
228    llvm::raw_svector_ostream Out(Name);
229    Out << (MD->isInstanceMethod() ? '-' : '+');
230    Out << '[';
231    Out << MD->getClassInterface()->getNameAsString();
232    if (const ObjCCategoryImplDecl *CID =
233        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
234      Out << '(';
235      Out <<  CID->getNameAsString();
236      Out <<  ')';
237    }
238    Out <<  ' ';
239    Out << MD->getSelector().getAsString();
240    Out <<  ']';
241
242    Out.flush();
243    return Name.str().str();
244  }
245  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
246    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
247    return "top level";
248  }
249  return "";
250}
251
252/// getValueAsApproximateDouble - This returns the value as an inaccurate
253/// double.  Note that this may cause loss of precision, but is useful for
254/// debugging dumps, etc.
255double FloatingLiteral::getValueAsApproximateDouble() const {
256  llvm::APFloat V = getValue();
257  bool ignored;
258  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
259            &ignored);
260  return V.convertToDouble();
261}
262
263StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
264                                     unsigned ByteLength, bool Wide,
265                                     QualType Ty,
266                                     const SourceLocation *Loc,
267                                     unsigned NumStrs) {
268  // Allocate enough space for the StringLiteral plus an array of locations for
269  // any concatenated string tokens.
270  void *Mem = C.Allocate(sizeof(StringLiteral)+
271                         sizeof(SourceLocation)*(NumStrs-1),
272                         llvm::alignof<StringLiteral>());
273  StringLiteral *SL = new (Mem) StringLiteral(Ty);
274
275  // OPTIMIZE: could allocate this appended to the StringLiteral.
276  char *AStrData = new (C, 1) char[ByteLength];
277  memcpy(AStrData, StrData, ByteLength);
278  SL->StrData = AStrData;
279  SL->ByteLength = ByteLength;
280  SL->IsWide = Wide;
281  SL->TokLocs[0] = Loc[0];
282  SL->NumConcatenated = NumStrs;
283
284  if (NumStrs != 1)
285    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
286  return SL;
287}
288
289StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
290  void *Mem = C.Allocate(sizeof(StringLiteral)+
291                         sizeof(SourceLocation)*(NumStrs-1),
292                         llvm::alignof<StringLiteral>());
293  StringLiteral *SL = new (Mem) StringLiteral(QualType());
294  SL->StrData = 0;
295  SL->ByteLength = 0;
296  SL->NumConcatenated = NumStrs;
297  return SL;
298}
299
300void StringLiteral::DoDestroy(ASTContext &C) {
301  C.Deallocate(const_cast<char*>(StrData));
302  Expr::DoDestroy(C);
303}
304
305void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
306  if (StrData)
307    C.Deallocate(const_cast<char*>(StrData));
308
309  char *AStrData = new (C, 1) char[Str.size()];
310  memcpy(AStrData, Str.data(), Str.size());
311  StrData = AStrData;
312  ByteLength = Str.size();
313}
314
315/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
316/// corresponds to, e.g. "sizeof" or "[pre]++".
317const char *UnaryOperator::getOpcodeStr(Opcode Op) {
318  switch (Op) {
319  default: assert(0 && "Unknown unary operator");
320  case PostInc: return "++";
321  case PostDec: return "--";
322  case PreInc:  return "++";
323  case PreDec:  return "--";
324  case AddrOf:  return "&";
325  case Deref:   return "*";
326  case Plus:    return "+";
327  case Minus:   return "-";
328  case Not:     return "~";
329  case LNot:    return "!";
330  case Real:    return "__real";
331  case Imag:    return "__imag";
332  case Extension: return "__extension__";
333  case OffsetOf: return "__builtin_offsetof";
334  }
335}
336
337UnaryOperator::Opcode
338UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
339  switch (OO) {
340  default: assert(false && "No unary operator for overloaded function");
341  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
342  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
343  case OO_Amp:        return AddrOf;
344  case OO_Star:       return Deref;
345  case OO_Plus:       return Plus;
346  case OO_Minus:      return Minus;
347  case OO_Tilde:      return Not;
348  case OO_Exclaim:    return LNot;
349  }
350}
351
352OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
353  switch (Opc) {
354  case PostInc: case PreInc: return OO_PlusPlus;
355  case PostDec: case PreDec: return OO_MinusMinus;
356  case AddrOf: return OO_Amp;
357  case Deref: return OO_Star;
358  case Plus: return OO_Plus;
359  case Minus: return OO_Minus;
360  case Not: return OO_Tilde;
361  case LNot: return OO_Exclaim;
362  default: return OO_None;
363  }
364}
365
366
367//===----------------------------------------------------------------------===//
368// Postfix Operators.
369//===----------------------------------------------------------------------===//
370
371CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
372                   unsigned numargs, QualType t, SourceLocation rparenloc)
373  : Expr(SC, t,
374         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
375         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
376    NumArgs(numargs) {
377
378  SubExprs = new (C) Stmt*[numargs+1];
379  SubExprs[FN] = fn;
380  for (unsigned i = 0; i != numargs; ++i)
381    SubExprs[i+ARGS_START] = args[i];
382
383  RParenLoc = rparenloc;
384}
385
386CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
387                   QualType t, SourceLocation rparenloc)
388  : Expr(CallExprClass, t,
389         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
390         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
391    NumArgs(numargs) {
392
393  SubExprs = new (C) Stmt*[numargs+1];
394  SubExprs[FN] = fn;
395  for (unsigned i = 0; i != numargs; ++i)
396    SubExprs[i+ARGS_START] = args[i];
397
398  RParenLoc = rparenloc;
399}
400
401CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
402  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
403  SubExprs = new (C) Stmt*[1];
404}
405
406void CallExpr::DoDestroy(ASTContext& C) {
407  DestroyChildren(C);
408  if (SubExprs) C.Deallocate(SubExprs);
409  this->~CallExpr();
410  C.Deallocate(this);
411}
412
413Decl *CallExpr::getCalleeDecl() {
414  Expr *CEE = getCallee()->IgnoreParenCasts();
415  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
416    return DRE->getDecl();
417  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
418    return ME->getMemberDecl();
419
420  return 0;
421}
422
423FunctionDecl *CallExpr::getDirectCallee() {
424  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
425}
426
427/// setNumArgs - This changes the number of arguments present in this call.
428/// Any orphaned expressions are deleted by this, and any new operands are set
429/// to null.
430void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
431  // No change, just return.
432  if (NumArgs == getNumArgs()) return;
433
434  // If shrinking # arguments, just delete the extras and forgot them.
435  if (NumArgs < getNumArgs()) {
436    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
437      getArg(i)->Destroy(C);
438    this->NumArgs = NumArgs;
439    return;
440  }
441
442  // Otherwise, we are growing the # arguments.  New an bigger argument array.
443  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
444  // Copy over args.
445  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
446    NewSubExprs[i] = SubExprs[i];
447  // Null out new args.
448  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
449    NewSubExprs[i] = 0;
450
451  if (SubExprs) C.Deallocate(SubExprs);
452  SubExprs = NewSubExprs;
453  this->NumArgs = NumArgs;
454}
455
456/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
457/// not, return 0.
458unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
459  // All simple function calls (e.g. func()) are implicitly cast to pointer to
460  // function. As a result, we try and obtain the DeclRefExpr from the
461  // ImplicitCastExpr.
462  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
463  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
464    return 0;
465
466  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
467  if (!DRE)
468    return 0;
469
470  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
471  if (!FDecl)
472    return 0;
473
474  if (!FDecl->getIdentifier())
475    return 0;
476
477  return FDecl->getBuiltinID();
478}
479
480QualType CallExpr::getCallReturnType() const {
481  QualType CalleeType = getCallee()->getType();
482  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
483    CalleeType = FnTypePtr->getPointeeType();
484  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
485    CalleeType = BPT->getPointeeType();
486
487  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
488  return FnType->getResultType();
489}
490
491MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
492                       SourceRange qualrange, ValueDecl *memberdecl,
493                       SourceLocation l, const TemplateArgumentListInfo *targs,
494                       QualType ty)
495  : Expr(MemberExprClass, ty,
496         base->isTypeDependent() || (qual && qual->isDependent()),
497         base->isValueDependent() || (qual && qual->isDependent())),
498    Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
499    HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) {
500  // Initialize the qualifier, if any.
501  if (HasQualifier) {
502    NameQualifier *NQ = getMemberQualifier();
503    NQ->NNS = qual;
504    NQ->Range = qualrange;
505  }
506
507  // Initialize the explicit template argument list, if any.
508  if (targs)
509    getExplicitTemplateArgumentList()->initializeFrom(*targs);
510}
511
512MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
513                               NestedNameSpecifier *qual,
514                               SourceRange qualrange,
515                               ValueDecl *memberdecl,
516                               SourceLocation l,
517                               const TemplateArgumentListInfo *targs,
518                               QualType ty) {
519  std::size_t Size = sizeof(MemberExpr);
520  if (qual != 0)
521    Size += sizeof(NameQualifier);
522
523  if (targs)
524    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
525
526  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
527  return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
528                              targs, ty);
529}
530
531const char *CastExpr::getCastKindName() const {
532  switch (getCastKind()) {
533  case CastExpr::CK_Unknown:
534    return "Unknown";
535  case CastExpr::CK_BitCast:
536    return "BitCast";
537  case CastExpr::CK_NoOp:
538    return "NoOp";
539  case CastExpr::CK_BaseToDerived:
540    return "BaseToDerived";
541  case CastExpr::CK_DerivedToBase:
542    return "DerivedToBase";
543  case CastExpr::CK_Dynamic:
544    return "Dynamic";
545  case CastExpr::CK_ToUnion:
546    return "ToUnion";
547  case CastExpr::CK_ArrayToPointerDecay:
548    return "ArrayToPointerDecay";
549  case CastExpr::CK_FunctionToPointerDecay:
550    return "FunctionToPointerDecay";
551  case CastExpr::CK_NullToMemberPointer:
552    return "NullToMemberPointer";
553  case CastExpr::CK_BaseToDerivedMemberPointer:
554    return "BaseToDerivedMemberPointer";
555  case CastExpr::CK_DerivedToBaseMemberPointer:
556    return "DerivedToBaseMemberPointer";
557  case CastExpr::CK_UserDefinedConversion:
558    return "UserDefinedConversion";
559  case CastExpr::CK_ConstructorConversion:
560    return "ConstructorConversion";
561  case CastExpr::CK_IntegralToPointer:
562    return "IntegralToPointer";
563  case CastExpr::CK_PointerToIntegral:
564    return "PointerToIntegral";
565  case CastExpr::CK_ToVoid:
566    return "ToVoid";
567  case CastExpr::CK_VectorSplat:
568    return "VectorSplat";
569  case CastExpr::CK_IntegralCast:
570    return "IntegralCast";
571  case CastExpr::CK_IntegralToFloating:
572    return "IntegralToFloating";
573  case CastExpr::CK_FloatingToIntegral:
574    return "FloatingToIntegral";
575  case CastExpr::CK_FloatingCast:
576    return "FloatingCast";
577  case CastExpr::CK_MemberPointerToBoolean:
578    return "MemberPointerToBoolean";
579  case CastExpr::CK_AnyPointerToObjCPointerCast:
580    return "AnyPointerToObjCPointerCast";
581  case CastExpr::CK_AnyPointerToBlockPointerCast:
582    return "AnyPointerToBlockPointerCast";
583  }
584
585  assert(0 && "Unhandled cast kind!");
586  return 0;
587}
588
589Expr *CastExpr::getSubExprAsWritten() {
590  Expr *SubExpr = 0;
591  CastExpr *E = this;
592  do {
593    SubExpr = E->getSubExpr();
594
595    // Skip any temporary bindings; they're implicit.
596    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
597      SubExpr = Binder->getSubExpr();
598
599    // Conversions by constructor and conversion functions have a
600    // subexpression describing the call; strip it off.
601    if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
602      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
603    else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
604      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
605
606    // If the subexpression we're left with is an implicit cast, look
607    // through that, too.
608  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
609
610  return SubExpr;
611}
612
613/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
614/// corresponds to, e.g. "<<=".
615const char *BinaryOperator::getOpcodeStr(Opcode Op) {
616  switch (Op) {
617  case PtrMemD:   return ".*";
618  case PtrMemI:   return "->*";
619  case Mul:       return "*";
620  case Div:       return "/";
621  case Rem:       return "%";
622  case Add:       return "+";
623  case Sub:       return "-";
624  case Shl:       return "<<";
625  case Shr:       return ">>";
626  case LT:        return "<";
627  case GT:        return ">";
628  case LE:        return "<=";
629  case GE:        return ">=";
630  case EQ:        return "==";
631  case NE:        return "!=";
632  case And:       return "&";
633  case Xor:       return "^";
634  case Or:        return "|";
635  case LAnd:      return "&&";
636  case LOr:       return "||";
637  case Assign:    return "=";
638  case MulAssign: return "*=";
639  case DivAssign: return "/=";
640  case RemAssign: return "%=";
641  case AddAssign: return "+=";
642  case SubAssign: return "-=";
643  case ShlAssign: return "<<=";
644  case ShrAssign: return ">>=";
645  case AndAssign: return "&=";
646  case XorAssign: return "^=";
647  case OrAssign:  return "|=";
648  case Comma:     return ",";
649  }
650
651  return "";
652}
653
654BinaryOperator::Opcode
655BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
656  switch (OO) {
657  default: assert(false && "Not an overloadable binary operator");
658  case OO_Plus: return Add;
659  case OO_Minus: return Sub;
660  case OO_Star: return Mul;
661  case OO_Slash: return Div;
662  case OO_Percent: return Rem;
663  case OO_Caret: return Xor;
664  case OO_Amp: return And;
665  case OO_Pipe: return Or;
666  case OO_Equal: return Assign;
667  case OO_Less: return LT;
668  case OO_Greater: return GT;
669  case OO_PlusEqual: return AddAssign;
670  case OO_MinusEqual: return SubAssign;
671  case OO_StarEqual: return MulAssign;
672  case OO_SlashEqual: return DivAssign;
673  case OO_PercentEqual: return RemAssign;
674  case OO_CaretEqual: return XorAssign;
675  case OO_AmpEqual: return AndAssign;
676  case OO_PipeEqual: return OrAssign;
677  case OO_LessLess: return Shl;
678  case OO_GreaterGreater: return Shr;
679  case OO_LessLessEqual: return ShlAssign;
680  case OO_GreaterGreaterEqual: return ShrAssign;
681  case OO_EqualEqual: return EQ;
682  case OO_ExclaimEqual: return NE;
683  case OO_LessEqual: return LE;
684  case OO_GreaterEqual: return GE;
685  case OO_AmpAmp: return LAnd;
686  case OO_PipePipe: return LOr;
687  case OO_Comma: return Comma;
688  case OO_ArrowStar: return PtrMemI;
689  }
690}
691
692OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
693  static const OverloadedOperatorKind OverOps[] = {
694    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
695    OO_Star, OO_Slash, OO_Percent,
696    OO_Plus, OO_Minus,
697    OO_LessLess, OO_GreaterGreater,
698    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
699    OO_EqualEqual, OO_ExclaimEqual,
700    OO_Amp,
701    OO_Caret,
702    OO_Pipe,
703    OO_AmpAmp,
704    OO_PipePipe,
705    OO_Equal, OO_StarEqual,
706    OO_SlashEqual, OO_PercentEqual,
707    OO_PlusEqual, OO_MinusEqual,
708    OO_LessLessEqual, OO_GreaterGreaterEqual,
709    OO_AmpEqual, OO_CaretEqual,
710    OO_PipeEqual,
711    OO_Comma
712  };
713  return OverOps[Opc];
714}
715
716InitListExpr::InitListExpr(SourceLocation lbraceloc,
717                           Expr **initExprs, unsigned numInits,
718                           SourceLocation rbraceloc)
719  : Expr(InitListExprClass, QualType(), false, false),
720    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
721    UnionFieldInit(0), HadArrayRangeDesignator(false)
722{
723  for (unsigned I = 0; I != numInits; ++I) {
724    if (initExprs[I]->isTypeDependent())
725      TypeDependent = true;
726    if (initExprs[I]->isValueDependent())
727      ValueDependent = true;
728  }
729
730  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
731}
732
733void InitListExpr::reserveInits(unsigned NumInits) {
734  if (NumInits > InitExprs.size())
735    InitExprs.reserve(NumInits);
736}
737
738void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
739  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
740       Idx < LastIdx; ++Idx)
741    InitExprs[Idx]->Destroy(Context);
742  InitExprs.resize(NumInits, 0);
743}
744
745Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
746  if (Init >= InitExprs.size()) {
747    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
748    InitExprs.back() = expr;
749    return 0;
750  }
751
752  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
753  InitExprs[Init] = expr;
754  return Result;
755}
756
757/// getFunctionType - Return the underlying function type for this block.
758///
759const FunctionType *BlockExpr::getFunctionType() const {
760  return getType()->getAs<BlockPointerType>()->
761                    getPointeeType()->getAs<FunctionType>();
762}
763
764SourceLocation BlockExpr::getCaretLocation() const {
765  return TheBlock->getCaretLocation();
766}
767const Stmt *BlockExpr::getBody() const {
768  return TheBlock->getBody();
769}
770Stmt *BlockExpr::getBody() {
771  return TheBlock->getBody();
772}
773
774
775//===----------------------------------------------------------------------===//
776// Generic Expression Routines
777//===----------------------------------------------------------------------===//
778
779/// isUnusedResultAWarning - Return true if this immediate expression should
780/// be warned about if the result is unused.  If so, fill in Loc and Ranges
781/// with location to warn on and the source range[s] to report with the
782/// warning.
783bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
784                                  SourceRange &R2, ASTContext &Ctx) const {
785  // Don't warn if the expr is type dependent. The type could end up
786  // instantiating to void.
787  if (isTypeDependent())
788    return false;
789
790  switch (getStmtClass()) {
791  default:
792    Loc = getExprLoc();
793    R1 = getSourceRange();
794    return true;
795  case ParenExprClass:
796    return cast<ParenExpr>(this)->getSubExpr()->
797      isUnusedResultAWarning(Loc, R1, R2, Ctx);
798  case UnaryOperatorClass: {
799    const UnaryOperator *UO = cast<UnaryOperator>(this);
800
801    switch (UO->getOpcode()) {
802    default: break;
803    case UnaryOperator::PostInc:
804    case UnaryOperator::PostDec:
805    case UnaryOperator::PreInc:
806    case UnaryOperator::PreDec:                 // ++/--
807      return false;  // Not a warning.
808    case UnaryOperator::Deref:
809      // Dereferencing a volatile pointer is a side-effect.
810      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
811        return false;
812      break;
813    case UnaryOperator::Real:
814    case UnaryOperator::Imag:
815      // accessing a piece of a volatile complex is a side-effect.
816      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
817          .isVolatileQualified())
818        return false;
819      break;
820    case UnaryOperator::Extension:
821      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
822    }
823    Loc = UO->getOperatorLoc();
824    R1 = UO->getSubExpr()->getSourceRange();
825    return true;
826  }
827  case BinaryOperatorClass: {
828    const BinaryOperator *BO = cast<BinaryOperator>(this);
829    // Consider comma to have side effects if the LHS or RHS does.
830    if (BO->getOpcode() == BinaryOperator::Comma)
831      return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
832              BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
833
834    if (BO->isAssignmentOp())
835      return false;
836    Loc = BO->getOperatorLoc();
837    R1 = BO->getLHS()->getSourceRange();
838    R2 = BO->getRHS()->getSourceRange();
839    return true;
840  }
841  case CompoundAssignOperatorClass:
842    return false;
843
844  case ConditionalOperatorClass: {
845    // The condition must be evaluated, but if either the LHS or RHS is a
846    // warning, warn about them.
847    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
848    if (Exp->getLHS() &&
849        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
850      return true;
851    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
852  }
853
854  case MemberExprClass:
855    // If the base pointer or element is to a volatile pointer/field, accessing
856    // it is a side effect.
857    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
858      return false;
859    Loc = cast<MemberExpr>(this)->getMemberLoc();
860    R1 = SourceRange(Loc, Loc);
861    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
862    return true;
863
864  case ArraySubscriptExprClass:
865    // If the base pointer or element is to a volatile pointer/field, accessing
866    // it is a side effect.
867    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
868      return false;
869    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
870    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
871    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
872    return true;
873
874  case CallExprClass:
875  case CXXOperatorCallExprClass:
876  case CXXMemberCallExprClass: {
877    // If this is a direct call, get the callee.
878    const CallExpr *CE = cast<CallExpr>(this);
879    if (const Decl *FD = CE->getCalleeDecl()) {
880      // If the callee has attribute pure, const, or warn_unused_result, warn
881      // about it. void foo() { strlen("bar"); } should warn.
882      //
883      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
884      // updated to match for QoI.
885      if (FD->getAttr<WarnUnusedResultAttr>() ||
886          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
887        Loc = CE->getCallee()->getLocStart();
888        R1 = CE->getCallee()->getSourceRange();
889
890        if (unsigned NumArgs = CE->getNumArgs())
891          R2 = SourceRange(CE->getArg(0)->getLocStart(),
892                           CE->getArg(NumArgs-1)->getLocEnd());
893        return true;
894      }
895    }
896    return false;
897  }
898
899  case CXXTemporaryObjectExprClass:
900  case CXXConstructExprClass:
901    return false;
902
903  case ObjCMessageExprClass:
904    return false;
905
906  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
907#if 0
908    const ObjCImplicitSetterGetterRefExpr *Ref =
909      cast<ObjCImplicitSetterGetterRefExpr>(this);
910    // FIXME: We really want the location of the '.' here.
911    Loc = Ref->getLocation();
912    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
913    if (Ref->getBase())
914      R2 = Ref->getBase()->getSourceRange();
915#else
916    Loc = getExprLoc();
917    R1 = getSourceRange();
918#endif
919    return true;
920  }
921  case StmtExprClass: {
922    // Statement exprs don't logically have side effects themselves, but are
923    // sometimes used in macros in ways that give them a type that is unused.
924    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
925    // however, if the result of the stmt expr is dead, we don't want to emit a
926    // warning.
927    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
928    if (!CS->body_empty())
929      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
930        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
931
932    Loc = cast<StmtExpr>(this)->getLParenLoc();
933    R1 = getSourceRange();
934    return true;
935  }
936  case CStyleCastExprClass:
937    // If this is an explicit cast to void, allow it.  People do this when they
938    // think they know what they're doing :).
939    if (getType()->isVoidType())
940      return false;
941    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
942    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
943    return true;
944  case CXXFunctionalCastExprClass: {
945    const CastExpr *CE = cast<CastExpr>(this);
946
947    // If this is a cast to void or a constructor conversion, check the operand.
948    // Otherwise, the result of the cast is unused.
949    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
950        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
951      return (cast<CastExpr>(this)->getSubExpr()
952              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
953    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
954    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
955    return true;
956  }
957
958  case ImplicitCastExprClass:
959    // Check the operand, since implicit casts are inserted by Sema
960    return (cast<ImplicitCastExpr>(this)
961            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
962
963  case CXXDefaultArgExprClass:
964    return (cast<CXXDefaultArgExpr>(this)
965            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
966
967  case CXXNewExprClass:
968    // FIXME: In theory, there might be new expressions that don't have side
969    // effects (e.g. a placement new with an uninitialized POD).
970  case CXXDeleteExprClass:
971    return false;
972  case CXXBindTemporaryExprClass:
973    return (cast<CXXBindTemporaryExpr>(this)
974            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
975  case CXXExprWithTemporariesClass:
976    return (cast<CXXExprWithTemporaries>(this)
977            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
978  }
979}
980
981/// DeclCanBeLvalue - Determine whether the given declaration can be
982/// an lvalue. This is a helper routine for isLvalue.
983static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
984  // C++ [temp.param]p6:
985  //   A non-type non-reference template-parameter is not an lvalue.
986  if (const NonTypeTemplateParmDecl *NTTParm
987        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
988    return NTTParm->getType()->isReferenceType();
989
990  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
991    // C++ 3.10p2: An lvalue refers to an object or function.
992    (Ctx.getLangOptions().CPlusPlus &&
993     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
994}
995
996/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
997/// incomplete type other than void. Nonarray expressions that can be lvalues:
998///  - name, where name must be a variable
999///  - e[i]
1000///  - (e), where e must be an lvalue
1001///  - e.name, where e must be an lvalue
1002///  - e->name
1003///  - *e, the type of e cannot be a function type
1004///  - string-constant
1005///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
1006///  - reference type [C++ [expr]]
1007///
1008Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
1009  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
1010
1011  isLvalueResult Res = isLvalueInternal(Ctx);
1012  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
1013    return Res;
1014
1015  // first, check the type (C99 6.3.2.1). Expressions with function
1016  // type in C are not lvalues, but they can be lvalues in C++.
1017  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
1018    return LV_NotObjectType;
1019
1020  // Allow qualified void which is an incomplete type other than void (yuck).
1021  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
1022    return LV_IncompleteVoidType;
1023
1024  return LV_Valid;
1025}
1026
1027// Check whether the expression can be sanely treated like an l-value
1028Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
1029  switch (getStmtClass()) {
1030  case ObjCIsaExprClass:
1031  case StringLiteralClass:  // C99 6.5.1p4
1032  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
1033    return LV_Valid;
1034  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
1035    // For vectors, make sure base is an lvalue (i.e. not a function call).
1036    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
1037      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
1038    return LV_Valid;
1039  case DeclRefExprClass: { // C99 6.5.1p2
1040    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
1041    if (DeclCanBeLvalue(RefdDecl, Ctx))
1042      return LV_Valid;
1043    break;
1044  }
1045  case BlockDeclRefExprClass: {
1046    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1047    if (isa<VarDecl>(BDR->getDecl()))
1048      return LV_Valid;
1049    break;
1050  }
1051  case MemberExprClass: {
1052    const MemberExpr *m = cast<MemberExpr>(this);
1053    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1054      NamedDecl *Member = m->getMemberDecl();
1055      // C++ [expr.ref]p4:
1056      //   If E2 is declared to have type "reference to T", then E1.E2
1057      //   is an lvalue.
1058      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1059        if (Value->getType()->isReferenceType())
1060          return LV_Valid;
1061
1062      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1063      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1064        return LV_Valid;
1065
1066      //   -- If E2 is a non-static data member [...]. If E1 is an
1067      //      lvalue, then E1.E2 is an lvalue.
1068      if (isa<FieldDecl>(Member)) {
1069        if (m->isArrow())
1070          return LV_Valid;
1071        Expr *BaseExp = m->getBase();
1072        if (BaseExp->getStmtClass() == ObjCPropertyRefExprClass)
1073          return LV_SubObjCPropertySetting;
1074        return
1075          (BaseExp->getStmtClass() == ObjCImplicitSetterGetterRefExprClass) ?
1076           LV_SubObjCPropertyGetterSetting : BaseExp->isLvalue(Ctx);
1077      }
1078
1079      //   -- If it refers to a static member function [...], then
1080      //      E1.E2 is an lvalue.
1081      //   -- Otherwise, if E1.E2 refers to a non-static member
1082      //      function [...], then E1.E2 is not an lvalue.
1083      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1084        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1085
1086      //   -- If E2 is a member enumerator [...], the expression E1.E2
1087      //      is not an lvalue.
1088      if (isa<EnumConstantDecl>(Member))
1089        return LV_InvalidExpression;
1090
1091        // Not an lvalue.
1092      return LV_InvalidExpression;
1093    }
1094
1095    // C99 6.5.2.3p4
1096    if (m->isArrow())
1097      return LV_Valid;
1098    Expr *BaseExp = m->getBase();
1099    if (BaseExp->getStmtClass() == ObjCPropertyRefExprClass)
1100          return LV_SubObjCPropertySetting;
1101    return
1102      (BaseExp->getStmtClass() == ObjCImplicitSetterGetterRefExprClass) ?
1103       LV_SubObjCPropertyGetterSetting : BaseExp->isLvalue(Ctx);
1104  }
1105  case UnaryOperatorClass:
1106    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1107      return LV_Valid; // C99 6.5.3p4
1108
1109    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1110        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1111        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1112      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1113
1114    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1115        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1116         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1117      return LV_Valid;
1118    break;
1119  case ImplicitCastExprClass:
1120    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
1121                                                       : LV_InvalidExpression;
1122  case ParenExprClass: // C99 6.5.1p5
1123    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1124  case BinaryOperatorClass:
1125  case CompoundAssignOperatorClass: {
1126    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1127
1128    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1129        BinOp->getOpcode() == BinaryOperator::Comma)
1130      return BinOp->getRHS()->isLvalue(Ctx);
1131
1132    // C++ [expr.mptr.oper]p6
1133    // The result of a .* expression is an lvalue only if its first operand is
1134    // an lvalue and its second operand is a pointer to data member.
1135    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1136        !BinOp->getType()->isFunctionType())
1137      return BinOp->getLHS()->isLvalue(Ctx);
1138
1139    // The result of an ->* expression is an lvalue only if its second operand
1140    // is a pointer to data member.
1141    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1142        !BinOp->getType()->isFunctionType()) {
1143      QualType Ty = BinOp->getRHS()->getType();
1144      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1145        return LV_Valid;
1146    }
1147
1148    if (!BinOp->isAssignmentOp())
1149      return LV_InvalidExpression;
1150
1151    if (Ctx.getLangOptions().CPlusPlus)
1152      // C++ [expr.ass]p1:
1153      //   The result of an assignment operation [...] is an lvalue.
1154      return LV_Valid;
1155
1156
1157    // C99 6.5.16:
1158    //   An assignment expression [...] is not an lvalue.
1159    return LV_InvalidExpression;
1160  }
1161  case CallExprClass:
1162  case CXXOperatorCallExprClass:
1163  case CXXMemberCallExprClass: {
1164    // C++0x [expr.call]p10
1165    //   A function call is an lvalue if and only if the result type
1166    //   is an lvalue reference.
1167    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1168    if (ReturnType->isLValueReferenceType())
1169      return LV_Valid;
1170
1171    break;
1172  }
1173  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1174    return LV_Valid;
1175  case ChooseExprClass:
1176    // __builtin_choose_expr is an lvalue if the selected operand is.
1177    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1178  case ExtVectorElementExprClass:
1179    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1180      return LV_DuplicateVectorComponents;
1181    return LV_Valid;
1182  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1183    return LV_Valid;
1184  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1185    return LV_Valid;
1186  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1187    return LV_Valid;
1188  case PredefinedExprClass:
1189    return LV_Valid;
1190  case UnresolvedLookupExprClass:
1191    return LV_Valid;
1192  case CXXDefaultArgExprClass:
1193    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1194  case CStyleCastExprClass:
1195  case CXXFunctionalCastExprClass:
1196  case CXXStaticCastExprClass:
1197  case CXXDynamicCastExprClass:
1198  case CXXReinterpretCastExprClass:
1199  case CXXConstCastExprClass:
1200    // The result of an explicit cast is an lvalue if the type we are
1201    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1202    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1203    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1204    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1205          isLValueReferenceType())
1206      return LV_Valid;
1207    break;
1208  case CXXTypeidExprClass:
1209    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1210    return LV_Valid;
1211  case CXXBindTemporaryExprClass:
1212    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1213      isLvalueInternal(Ctx);
1214  case CXXBindReferenceExprClass:
1215    // Something that's bound to a reference is always an lvalue.
1216    return LV_Valid;
1217  case ConditionalOperatorClass: {
1218    // Complicated handling is only for C++.
1219    if (!Ctx.getLangOptions().CPlusPlus)
1220      return LV_InvalidExpression;
1221
1222    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1223    // everywhere there's an object converted to an rvalue. Also, any other
1224    // casts should be wrapped by ImplicitCastExprs. There's just the special
1225    // case involving throws to work out.
1226    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1227    Expr *True = Cond->getTrueExpr();
1228    Expr *False = Cond->getFalseExpr();
1229    // C++0x 5.16p2
1230    //   If either the second or the third operand has type (cv) void, [...]
1231    //   the result [...] is an rvalue.
1232    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1233      return LV_InvalidExpression;
1234
1235    // Both sides must be lvalues for the result to be an lvalue.
1236    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1237      return LV_InvalidExpression;
1238
1239    // That's it.
1240    return LV_Valid;
1241  }
1242
1243  case Expr::CXXExprWithTemporariesClass:
1244    return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx);
1245
1246  case Expr::ObjCMessageExprClass:
1247    if (const ObjCMethodDecl *Method
1248          = cast<ObjCMessageExpr>(this)->getMethodDecl())
1249      if (Method->getResultType()->isLValueReferenceType())
1250        return LV_Valid;
1251    break;
1252
1253  default:
1254    break;
1255  }
1256  return LV_InvalidExpression;
1257}
1258
1259/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1260/// does not have an incomplete type, does not have a const-qualified type, and
1261/// if it is a structure or union, does not have any member (including,
1262/// recursively, any member or element of all contained aggregates or unions)
1263/// with a const-qualified type.
1264Expr::isModifiableLvalueResult
1265Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1266  isLvalueResult lvalResult = isLvalue(Ctx);
1267
1268  switch (lvalResult) {
1269  case LV_Valid:
1270    // C++ 3.10p11: Functions cannot be modified, but pointers to
1271    // functions can be modifiable.
1272    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1273      return MLV_NotObjectType;
1274    break;
1275
1276  case LV_NotObjectType: return MLV_NotObjectType;
1277  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1278  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1279  case LV_InvalidExpression:
1280    // If the top level is a C-style cast, and the subexpression is a valid
1281    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1282    // GCC extension.  We don't support it, but we want to produce good
1283    // diagnostics when it happens so that the user knows why.
1284    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1285      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1286        if (Loc)
1287          *Loc = CE->getLParenLoc();
1288        return MLV_LValueCast;
1289      }
1290    }
1291    return MLV_InvalidExpression;
1292  case LV_MemberFunction: return MLV_MemberFunction;
1293  case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
1294  case LV_SubObjCPropertyGetterSetting:
1295    return MLV_SubObjCPropertyGetterSetting;
1296  }
1297
1298  // The following is illegal:
1299  //   void takeclosure(void (^C)(void));
1300  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1301  //
1302  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1303    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1304      return MLV_NotBlockQualified;
1305  }
1306
1307  // Assigning to an 'implicit' property?
1308  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1309        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1310    if (Expr->getSetterMethod() == 0)
1311      return MLV_NoSetterProperty;
1312  }
1313
1314  QualType CT = Ctx.getCanonicalType(getType());
1315
1316  if (CT.isConstQualified())
1317    return MLV_ConstQualified;
1318  if (CT->isArrayType())
1319    return MLV_ArrayType;
1320  if (CT->isIncompleteType())
1321    return MLV_IncompleteType;
1322
1323  if (const RecordType *r = CT->getAs<RecordType>()) {
1324    if (r->hasConstFields())
1325      return MLV_ConstQualified;
1326  }
1327
1328  return MLV_Valid;
1329}
1330
1331/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1332/// returns true, if it is; false otherwise.
1333bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1334  switch (getStmtClass()) {
1335  default:
1336    return false;
1337  case ObjCIvarRefExprClass:
1338    return true;
1339  case Expr::UnaryOperatorClass:
1340    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1341  case ParenExprClass:
1342    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1343  case ImplicitCastExprClass:
1344    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1345  case CStyleCastExprClass:
1346    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1347  case DeclRefExprClass: {
1348    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1349    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1350      if (VD->hasGlobalStorage())
1351        return true;
1352      QualType T = VD->getType();
1353      // dereferencing to a  pointer is always a gc'able candidate,
1354      // unless it is __weak.
1355      return T->isPointerType() &&
1356             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1357    }
1358    return false;
1359  }
1360  case MemberExprClass: {
1361    const MemberExpr *M = cast<MemberExpr>(this);
1362    return M->getBase()->isOBJCGCCandidate(Ctx);
1363  }
1364  case ArraySubscriptExprClass:
1365    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1366  }
1367}
1368Expr* Expr::IgnoreParens() {
1369  Expr* E = this;
1370  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1371    E = P->getSubExpr();
1372
1373  return E;
1374}
1375
1376/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1377/// or CastExprs or ImplicitCastExprs, returning their operand.
1378Expr *Expr::IgnoreParenCasts() {
1379  Expr *E = this;
1380  while (true) {
1381    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1382      E = P->getSubExpr();
1383    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1384      E = P->getSubExpr();
1385    else
1386      return E;
1387  }
1388}
1389
1390/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1391/// value (including ptr->int casts of the same size).  Strip off any
1392/// ParenExpr or CastExprs, returning their operand.
1393Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1394  Expr *E = this;
1395  while (true) {
1396    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1397      E = P->getSubExpr();
1398      continue;
1399    }
1400
1401    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1402      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1403      // ptr<->int casts of the same width.  We also ignore all identify casts.
1404      Expr *SE = P->getSubExpr();
1405
1406      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1407        E = SE;
1408        continue;
1409      }
1410
1411      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1412          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1413          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1414        E = SE;
1415        continue;
1416      }
1417    }
1418
1419    return E;
1420  }
1421}
1422
1423bool Expr::isDefaultArgument() const {
1424  const Expr *E = this;
1425  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
1426    E = ICE->getSubExprAsWritten();
1427
1428  return isa<CXXDefaultArgExpr>(E);
1429}
1430
1431/// hasAnyTypeDependentArguments - Determines if any of the expressions
1432/// in Exprs is type-dependent.
1433bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1434  for (unsigned I = 0; I < NumExprs; ++I)
1435    if (Exprs[I]->isTypeDependent())
1436      return true;
1437
1438  return false;
1439}
1440
1441/// hasAnyValueDependentArguments - Determines if any of the expressions
1442/// in Exprs is value-dependent.
1443bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1444  for (unsigned I = 0; I < NumExprs; ++I)
1445    if (Exprs[I]->isValueDependent())
1446      return true;
1447
1448  return false;
1449}
1450
1451bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1452  // This function is attempting whether an expression is an initializer
1453  // which can be evaluated at compile-time.  isEvaluatable handles most
1454  // of the cases, but it can't deal with some initializer-specific
1455  // expressions, and it can't deal with aggregates; we deal with those here,
1456  // and fall back to isEvaluatable for the other cases.
1457
1458  // FIXME: This function assumes the variable being assigned to
1459  // isn't a reference type!
1460
1461  switch (getStmtClass()) {
1462  default: break;
1463  case StringLiteralClass:
1464  case ObjCStringLiteralClass:
1465  case ObjCEncodeExprClass:
1466    return true;
1467  case CompoundLiteralExprClass: {
1468    // This handles gcc's extension that allows global initializers like
1469    // "struct x {int x;} x = (struct x) {};".
1470    // FIXME: This accepts other cases it shouldn't!
1471    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1472    return Exp->isConstantInitializer(Ctx);
1473  }
1474  case InitListExprClass: {
1475    // FIXME: This doesn't deal with fields with reference types correctly.
1476    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1477    // to bitfields.
1478    const InitListExpr *Exp = cast<InitListExpr>(this);
1479    unsigned numInits = Exp->getNumInits();
1480    for (unsigned i = 0; i < numInits; i++) {
1481      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1482        return false;
1483    }
1484    return true;
1485  }
1486  case ImplicitValueInitExprClass:
1487    return true;
1488  case ParenExprClass:
1489    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1490  case UnaryOperatorClass: {
1491    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1492    if (Exp->getOpcode() == UnaryOperator::Extension)
1493      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1494    break;
1495  }
1496  case BinaryOperatorClass: {
1497    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1498    // but this handles the common case.
1499    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1500    if (Exp->getOpcode() == BinaryOperator::Sub &&
1501        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1502        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1503      return true;
1504    break;
1505  }
1506  case ImplicitCastExprClass:
1507  case CStyleCastExprClass:
1508    // Handle casts with a destination that's a struct or union; this
1509    // deals with both the gcc no-op struct cast extension and the
1510    // cast-to-union extension.
1511    if (getType()->isRecordType())
1512      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1513
1514    // Integer->integer casts can be handled here, which is important for
1515    // things like (int)(&&x-&&y).  Scary but true.
1516    if (getType()->isIntegerType() &&
1517        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1518      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1519
1520    break;
1521  }
1522  return isEvaluatable(Ctx);
1523}
1524
1525/// isIntegerConstantExpr - this recursive routine will test if an expression is
1526/// an integer constant expression.
1527
1528/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1529/// comma, etc
1530///
1531/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1532/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1533/// cast+dereference.
1534
1535// CheckICE - This function does the fundamental ICE checking: the returned
1536// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1537// Note that to reduce code duplication, this helper does no evaluation
1538// itself; the caller checks whether the expression is evaluatable, and
1539// in the rare cases where CheckICE actually cares about the evaluated
1540// value, it calls into Evalute.
1541//
1542// Meanings of Val:
1543// 0: This expression is an ICE if it can be evaluated by Evaluate.
1544// 1: This expression is not an ICE, but if it isn't evaluated, it's
1545//    a legal subexpression for an ICE. This return value is used to handle
1546//    the comma operator in C99 mode.
1547// 2: This expression is not an ICE, and is not a legal subexpression for one.
1548
1549struct ICEDiag {
1550  unsigned Val;
1551  SourceLocation Loc;
1552
1553  public:
1554  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1555  ICEDiag() : Val(0) {}
1556};
1557
1558ICEDiag NoDiag() { return ICEDiag(); }
1559
1560static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1561  Expr::EvalResult EVResult;
1562  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1563      !EVResult.Val.isInt()) {
1564    return ICEDiag(2, E->getLocStart());
1565  }
1566  return NoDiag();
1567}
1568
1569static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1570  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1571  if (!E->getType()->isIntegralType()) {
1572    return ICEDiag(2, E->getLocStart());
1573  }
1574
1575  switch (E->getStmtClass()) {
1576#define STMT(Node, Base) case Expr::Node##Class:
1577#define EXPR(Node, Base)
1578#include "clang/AST/StmtNodes.def"
1579  case Expr::PredefinedExprClass:
1580  case Expr::FloatingLiteralClass:
1581  case Expr::ImaginaryLiteralClass:
1582  case Expr::StringLiteralClass:
1583  case Expr::ArraySubscriptExprClass:
1584  case Expr::MemberExprClass:
1585  case Expr::CompoundAssignOperatorClass:
1586  case Expr::CompoundLiteralExprClass:
1587  case Expr::ExtVectorElementExprClass:
1588  case Expr::InitListExprClass:
1589  case Expr::DesignatedInitExprClass:
1590  case Expr::ImplicitValueInitExprClass:
1591  case Expr::ParenListExprClass:
1592  case Expr::VAArgExprClass:
1593  case Expr::AddrLabelExprClass:
1594  case Expr::StmtExprClass:
1595  case Expr::CXXMemberCallExprClass:
1596  case Expr::CXXDynamicCastExprClass:
1597  case Expr::CXXTypeidExprClass:
1598  case Expr::CXXNullPtrLiteralExprClass:
1599  case Expr::CXXThisExprClass:
1600  case Expr::CXXThrowExprClass:
1601  case Expr::CXXNewExprClass:
1602  case Expr::CXXDeleteExprClass:
1603  case Expr::CXXPseudoDestructorExprClass:
1604  case Expr::UnresolvedLookupExprClass:
1605  case Expr::DependentScopeDeclRefExprClass:
1606  case Expr::CXXConstructExprClass:
1607  case Expr::CXXBindTemporaryExprClass:
1608  case Expr::CXXBindReferenceExprClass:
1609  case Expr::CXXExprWithTemporariesClass:
1610  case Expr::CXXTemporaryObjectExprClass:
1611  case Expr::CXXUnresolvedConstructExprClass:
1612  case Expr::CXXDependentScopeMemberExprClass:
1613  case Expr::UnresolvedMemberExprClass:
1614  case Expr::ObjCStringLiteralClass:
1615  case Expr::ObjCEncodeExprClass:
1616  case Expr::ObjCMessageExprClass:
1617  case Expr::ObjCSelectorExprClass:
1618  case Expr::ObjCProtocolExprClass:
1619  case Expr::ObjCIvarRefExprClass:
1620  case Expr::ObjCPropertyRefExprClass:
1621  case Expr::ObjCImplicitSetterGetterRefExprClass:
1622  case Expr::ObjCSuperExprClass:
1623  case Expr::ObjCIsaExprClass:
1624  case Expr::ShuffleVectorExprClass:
1625  case Expr::BlockExprClass:
1626  case Expr::BlockDeclRefExprClass:
1627  case Expr::NoStmtClass:
1628    return ICEDiag(2, E->getLocStart());
1629
1630  case Expr::GNUNullExprClass:
1631    // GCC considers the GNU __null value to be an integral constant expression.
1632    return NoDiag();
1633
1634  case Expr::ParenExprClass:
1635    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1636  case Expr::IntegerLiteralClass:
1637  case Expr::CharacterLiteralClass:
1638  case Expr::CXXBoolLiteralExprClass:
1639  case Expr::CXXZeroInitValueExprClass:
1640  case Expr::TypesCompatibleExprClass:
1641  case Expr::UnaryTypeTraitExprClass:
1642    return NoDiag();
1643  case Expr::CallExprClass:
1644  case Expr::CXXOperatorCallExprClass: {
1645    const CallExpr *CE = cast<CallExpr>(E);
1646    if (CE->isBuiltinCall(Ctx))
1647      return CheckEvalInICE(E, Ctx);
1648    return ICEDiag(2, E->getLocStart());
1649  }
1650  case Expr::DeclRefExprClass:
1651    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1652      return NoDiag();
1653    if (Ctx.getLangOptions().CPlusPlus &&
1654        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1655      // C++ 7.1.5.1p2
1656      //   A variable of non-volatile const-qualified integral or enumeration
1657      //   type initialized by an ICE can be used in ICEs.
1658      if (const VarDecl *Dcl =
1659              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1660        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1661        if (Quals.hasVolatile() || !Quals.hasConst())
1662          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1663
1664        // Look for a declaration of this variable that has an initializer.
1665        const VarDecl *ID = 0;
1666        const Expr *Init = Dcl->getAnyInitializer(ID);
1667        if (Init) {
1668          if (ID->isInitKnownICE()) {
1669            // We have already checked whether this subexpression is an
1670            // integral constant expression.
1671            if (ID->isInitICE())
1672              return NoDiag();
1673            else
1674              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1675          }
1676
1677          // It's an ICE whether or not the definition we found is
1678          // out-of-line.  See DR 721 and the discussion in Clang PR
1679          // 6206 for details.
1680
1681          if (Dcl->isCheckingICE()) {
1682            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1683          }
1684
1685          Dcl->setCheckingICE();
1686          ICEDiag Result = CheckICE(Init, Ctx);
1687          // Cache the result of the ICE test.
1688          Dcl->setInitKnownICE(Result.Val == 0);
1689          return Result;
1690        }
1691      }
1692    }
1693    return ICEDiag(2, E->getLocStart());
1694  case Expr::UnaryOperatorClass: {
1695    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1696    switch (Exp->getOpcode()) {
1697    case UnaryOperator::PostInc:
1698    case UnaryOperator::PostDec:
1699    case UnaryOperator::PreInc:
1700    case UnaryOperator::PreDec:
1701    case UnaryOperator::AddrOf:
1702    case UnaryOperator::Deref:
1703      return ICEDiag(2, E->getLocStart());
1704
1705    case UnaryOperator::Extension:
1706    case UnaryOperator::LNot:
1707    case UnaryOperator::Plus:
1708    case UnaryOperator::Minus:
1709    case UnaryOperator::Not:
1710    case UnaryOperator::Real:
1711    case UnaryOperator::Imag:
1712      return CheckICE(Exp->getSubExpr(), Ctx);
1713    case UnaryOperator::OffsetOf:
1714      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1715      // Evaluate matches the proposed gcc behavior for cases like
1716      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1717      // compliance: we should warn earlier for offsetof expressions with
1718      // array subscripts that aren't ICEs, and if the array subscripts
1719      // are ICEs, the value of the offsetof must be an integer constant.
1720      return CheckEvalInICE(E, Ctx);
1721    }
1722  }
1723  case Expr::SizeOfAlignOfExprClass: {
1724    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1725    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1726      return ICEDiag(2, E->getLocStart());
1727    return NoDiag();
1728  }
1729  case Expr::BinaryOperatorClass: {
1730    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1731    switch (Exp->getOpcode()) {
1732    case BinaryOperator::PtrMemD:
1733    case BinaryOperator::PtrMemI:
1734    case BinaryOperator::Assign:
1735    case BinaryOperator::MulAssign:
1736    case BinaryOperator::DivAssign:
1737    case BinaryOperator::RemAssign:
1738    case BinaryOperator::AddAssign:
1739    case BinaryOperator::SubAssign:
1740    case BinaryOperator::ShlAssign:
1741    case BinaryOperator::ShrAssign:
1742    case BinaryOperator::AndAssign:
1743    case BinaryOperator::XorAssign:
1744    case BinaryOperator::OrAssign:
1745      return ICEDiag(2, E->getLocStart());
1746
1747    case BinaryOperator::Mul:
1748    case BinaryOperator::Div:
1749    case BinaryOperator::Rem:
1750    case BinaryOperator::Add:
1751    case BinaryOperator::Sub:
1752    case BinaryOperator::Shl:
1753    case BinaryOperator::Shr:
1754    case BinaryOperator::LT:
1755    case BinaryOperator::GT:
1756    case BinaryOperator::LE:
1757    case BinaryOperator::GE:
1758    case BinaryOperator::EQ:
1759    case BinaryOperator::NE:
1760    case BinaryOperator::And:
1761    case BinaryOperator::Xor:
1762    case BinaryOperator::Or:
1763    case BinaryOperator::Comma: {
1764      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1765      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1766      if (Exp->getOpcode() == BinaryOperator::Div ||
1767          Exp->getOpcode() == BinaryOperator::Rem) {
1768        // Evaluate gives an error for undefined Div/Rem, so make sure
1769        // we don't evaluate one.
1770        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1771          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1772          if (REval == 0)
1773            return ICEDiag(1, E->getLocStart());
1774          if (REval.isSigned() && REval.isAllOnesValue()) {
1775            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1776            if (LEval.isMinSignedValue())
1777              return ICEDiag(1, E->getLocStart());
1778          }
1779        }
1780      }
1781      if (Exp->getOpcode() == BinaryOperator::Comma) {
1782        if (Ctx.getLangOptions().C99) {
1783          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1784          // if it isn't evaluated.
1785          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1786            return ICEDiag(1, E->getLocStart());
1787        } else {
1788          // In both C89 and C++, commas in ICEs are illegal.
1789          return ICEDiag(2, E->getLocStart());
1790        }
1791      }
1792      if (LHSResult.Val >= RHSResult.Val)
1793        return LHSResult;
1794      return RHSResult;
1795    }
1796    case BinaryOperator::LAnd:
1797    case BinaryOperator::LOr: {
1798      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1799      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1800      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1801        // Rare case where the RHS has a comma "side-effect"; we need
1802        // to actually check the condition to see whether the side
1803        // with the comma is evaluated.
1804        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1805            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1806          return RHSResult;
1807        return NoDiag();
1808      }
1809
1810      if (LHSResult.Val >= RHSResult.Val)
1811        return LHSResult;
1812      return RHSResult;
1813    }
1814    }
1815  }
1816  case Expr::ImplicitCastExprClass:
1817  case Expr::CStyleCastExprClass:
1818  case Expr::CXXFunctionalCastExprClass:
1819  case Expr::CXXNamedCastExprClass:
1820  case Expr::CXXStaticCastExprClass:
1821  case Expr::CXXReinterpretCastExprClass:
1822  case Expr::CXXConstCastExprClass: {
1823    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1824    if (SubExpr->getType()->isIntegralType())
1825      return CheckICE(SubExpr, Ctx);
1826    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1827      return NoDiag();
1828    return ICEDiag(2, E->getLocStart());
1829  }
1830  case Expr::ConditionalOperatorClass: {
1831    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1832    // If the condition (ignoring parens) is a __builtin_constant_p call,
1833    // then only the true side is actually considered in an integer constant
1834    // expression, and it is fully evaluated.  This is an important GNU
1835    // extension.  See GCC PR38377 for discussion.
1836    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1837      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1838        Expr::EvalResult EVResult;
1839        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1840            !EVResult.Val.isInt()) {
1841          return ICEDiag(2, E->getLocStart());
1842        }
1843        return NoDiag();
1844      }
1845    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1846    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1847    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1848    if (CondResult.Val == 2)
1849      return CondResult;
1850    if (TrueResult.Val == 2)
1851      return TrueResult;
1852    if (FalseResult.Val == 2)
1853      return FalseResult;
1854    if (CondResult.Val == 1)
1855      return CondResult;
1856    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1857      return NoDiag();
1858    // Rare case where the diagnostics depend on which side is evaluated
1859    // Note that if we get here, CondResult is 0, and at least one of
1860    // TrueResult and FalseResult is non-zero.
1861    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1862      return FalseResult;
1863    }
1864    return TrueResult;
1865  }
1866  case Expr::CXXDefaultArgExprClass:
1867    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1868  case Expr::ChooseExprClass: {
1869    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1870  }
1871  }
1872
1873  // Silence a GCC warning
1874  return ICEDiag(2, E->getLocStart());
1875}
1876
1877bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1878                                 SourceLocation *Loc, bool isEvaluated) const {
1879  ICEDiag d = CheckICE(this, Ctx);
1880  if (d.Val != 0) {
1881    if (Loc) *Loc = d.Loc;
1882    return false;
1883  }
1884  EvalResult EvalResult;
1885  if (!Evaluate(EvalResult, Ctx))
1886    llvm_unreachable("ICE cannot be evaluated!");
1887  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1888  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1889  Result = EvalResult.Val.getInt();
1890  return true;
1891}
1892
1893/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1894/// integer constant expression with the value zero, or if this is one that is
1895/// cast to void*.
1896bool Expr::isNullPointerConstant(ASTContext &Ctx,
1897                                 NullPointerConstantValueDependence NPC) const {
1898  if (isValueDependent()) {
1899    switch (NPC) {
1900    case NPC_NeverValueDependent:
1901      assert(false && "Unexpected value dependent expression!");
1902      // If the unthinkable happens, fall through to the safest alternative.
1903
1904    case NPC_ValueDependentIsNull:
1905      return isTypeDependent() || getType()->isIntegralType();
1906
1907    case NPC_ValueDependentIsNotNull:
1908      return false;
1909    }
1910  }
1911
1912  // Strip off a cast to void*, if it exists. Except in C++.
1913  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1914    if (!Ctx.getLangOptions().CPlusPlus) {
1915      // Check that it is a cast to void*.
1916      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1917        QualType Pointee = PT->getPointeeType();
1918        if (!Pointee.hasQualifiers() &&
1919            Pointee->isVoidType() &&                              // to void*
1920            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1921          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1922      }
1923    }
1924  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1925    // Ignore the ImplicitCastExpr type entirely.
1926    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1927  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1928    // Accept ((void*)0) as a null pointer constant, as many other
1929    // implementations do.
1930    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1931  } else if (const CXXDefaultArgExpr *DefaultArg
1932               = dyn_cast<CXXDefaultArgExpr>(this)) {
1933    // See through default argument expressions
1934    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1935  } else if (isa<GNUNullExpr>(this)) {
1936    // The GNU __null extension is always a null pointer constant.
1937    return true;
1938  }
1939
1940  // C++0x nullptr_t is always a null pointer constant.
1941  if (getType()->isNullPtrType())
1942    return true;
1943
1944  // This expression must be an integer type.
1945  if (!getType()->isIntegerType() ||
1946      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1947    return false;
1948
1949  // If we have an integer constant expression, we need to *evaluate* it and
1950  // test for the value 0.
1951  llvm::APSInt Result;
1952  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1953}
1954
1955FieldDecl *Expr::getBitField() {
1956  Expr *E = this->IgnoreParens();
1957
1958  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1959    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
1960      E = ICE->getSubExpr()->IgnoreParens();
1961    else
1962      break;
1963  }
1964
1965  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1966    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1967      if (Field->isBitField())
1968        return Field;
1969
1970  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1971    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1972      return BinOp->getLHS()->getBitField();
1973
1974  return 0;
1975}
1976
1977bool Expr::refersToVectorElement() const {
1978  const Expr *E = this->IgnoreParens();
1979
1980  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
1981    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
1982      E = ICE->getSubExpr()->IgnoreParens();
1983    else
1984      break;
1985  }
1986
1987  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
1988    return ASE->getBase()->getType()->isVectorType();
1989
1990  if (isa<ExtVectorElementExpr>(E))
1991    return true;
1992
1993  return false;
1994}
1995
1996/// isArrow - Return true if the base expression is a pointer to vector,
1997/// return false if the base expression is a vector.
1998bool ExtVectorElementExpr::isArrow() const {
1999  return getBase()->getType()->isPointerType();
2000}
2001
2002unsigned ExtVectorElementExpr::getNumElements() const {
2003  if (const VectorType *VT = getType()->getAs<VectorType>())
2004    return VT->getNumElements();
2005  return 1;
2006}
2007
2008/// containsDuplicateElements - Return true if any element access is repeated.
2009bool ExtVectorElementExpr::containsDuplicateElements() const {
2010  // FIXME: Refactor this code to an accessor on the AST node which returns the
2011  // "type" of component access, and share with code below and in Sema.
2012  llvm::StringRef Comp = Accessor->getName();
2013
2014  // Halving swizzles do not contain duplicate elements.
2015  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2016    return false;
2017
2018  // Advance past s-char prefix on hex swizzles.
2019  if (Comp[0] == 's' || Comp[0] == 'S')
2020    Comp = Comp.substr(1);
2021
2022  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2023    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
2024        return true;
2025
2026  return false;
2027}
2028
2029/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2030void ExtVectorElementExpr::getEncodedElementAccess(
2031                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
2032  llvm::StringRef Comp = Accessor->getName();
2033  if (Comp[0] == 's' || Comp[0] == 'S')
2034    Comp = Comp.substr(1);
2035
2036  bool isHi =   Comp == "hi";
2037  bool isLo =   Comp == "lo";
2038  bool isEven = Comp == "even";
2039  bool isOdd  = Comp == "odd";
2040
2041  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2042    uint64_t Index;
2043
2044    if (isHi)
2045      Index = e + i;
2046    else if (isLo)
2047      Index = i;
2048    else if (isEven)
2049      Index = 2 * i;
2050    else if (isOdd)
2051      Index = 2 * i + 1;
2052    else
2053      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2054
2055    Elts.push_back(Index);
2056  }
2057}
2058
2059// constructor for instance messages.
2060ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
2061                QualType retType, ObjCMethodDecl *mproto,
2062                SourceLocation LBrac, SourceLocation RBrac,
2063                Expr **ArgExprs, unsigned nargs)
2064  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2065    MethodProto(mproto) {
2066  NumArgs = nargs;
2067  SubExprs = new Stmt*[NumArgs+1];
2068  SubExprs[RECEIVER] = receiver;
2069  if (NumArgs) {
2070    for (unsigned i = 0; i != NumArgs; ++i)
2071      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2072  }
2073  LBracloc = LBrac;
2074  RBracloc = RBrac;
2075}
2076
2077// constructor for class messages.
2078// FIXME: clsName should be typed to ObjCInterfaceType
2079ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
2080                QualType retType, ObjCMethodDecl *mproto,
2081                SourceLocation LBrac, SourceLocation RBrac,
2082                Expr **ArgExprs, unsigned nargs)
2083  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2084    MethodProto(mproto) {
2085  NumArgs = nargs;
2086  SubExprs = new Stmt*[NumArgs+1];
2087  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
2088  if (NumArgs) {
2089    for (unsigned i = 0; i != NumArgs; ++i)
2090      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2091  }
2092  LBracloc = LBrac;
2093  RBracloc = RBrac;
2094}
2095
2096// constructor for class messages.
2097ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
2098                                 QualType retType, ObjCMethodDecl *mproto,
2099                                 SourceLocation LBrac, SourceLocation RBrac,
2100                                 Expr **ArgExprs, unsigned nargs)
2101: Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
2102MethodProto(mproto) {
2103  NumArgs = nargs;
2104  SubExprs = new Stmt*[NumArgs+1];
2105  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2106  if (NumArgs) {
2107    for (unsigned i = 0; i != NumArgs; ++i)
2108      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2109  }
2110  LBracloc = LBrac;
2111  RBracloc = RBrac;
2112}
2113
2114ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2115  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2116  switch (x & Flags) {
2117    default:
2118      assert(false && "Invalid ObjCMessageExpr.");
2119    case IsInstMeth:
2120      return ClassInfo(0, 0);
2121    case IsClsMethDeclUnknown:
2122      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
2123    case IsClsMethDeclKnown: {
2124      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2125      return ClassInfo(D, D->getIdentifier());
2126    }
2127  }
2128}
2129
2130void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2131  if (CI.first == 0 && CI.second == 0)
2132    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2133  else if (CI.first == 0)
2134    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
2135  else
2136    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
2137}
2138
2139
2140bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2141  return getCond()->EvaluateAsInt(C) != 0;
2142}
2143
2144void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2145                                 unsigned NumExprs) {
2146  if (SubExprs) C.Deallocate(SubExprs);
2147
2148  SubExprs = new (C) Stmt* [NumExprs];
2149  this->NumExprs = NumExprs;
2150  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2151}
2152
2153void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2154  DestroyChildren(C);
2155  if (SubExprs) C.Deallocate(SubExprs);
2156  this->~ShuffleVectorExpr();
2157  C.Deallocate(this);
2158}
2159
2160void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2161  // Override default behavior of traversing children. If this has a type
2162  // operand and the type is a variable-length array, the child iteration
2163  // will iterate over the size expression. However, this expression belongs
2164  // to the type, not to this, so we don't want to delete it.
2165  // We still want to delete this expression.
2166  if (isArgumentType()) {
2167    this->~SizeOfAlignOfExpr();
2168    C.Deallocate(this);
2169  }
2170  else
2171    Expr::DoDestroy(C);
2172}
2173
2174//===----------------------------------------------------------------------===//
2175//  DesignatedInitExpr
2176//===----------------------------------------------------------------------===//
2177
2178IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2179  assert(Kind == FieldDesignator && "Only valid on a field designator");
2180  if (Field.NameOrField & 0x01)
2181    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2182  else
2183    return getField()->getIdentifier();
2184}
2185
2186DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
2187                                       unsigned NumDesignators,
2188                                       const Designator *Designators,
2189                                       SourceLocation EqualOrColonLoc,
2190                                       bool GNUSyntax,
2191                                       Expr **IndexExprs,
2192                                       unsigned NumIndexExprs,
2193                                       Expr *Init)
2194  : Expr(DesignatedInitExprClass, Ty,
2195         Init->isTypeDependent(), Init->isValueDependent()),
2196    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2197    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2198  this->Designators = new (C) Designator[NumDesignators];
2199
2200  // Record the initializer itself.
2201  child_iterator Child = child_begin();
2202  *Child++ = Init;
2203
2204  // Copy the designators and their subexpressions, computing
2205  // value-dependence along the way.
2206  unsigned IndexIdx = 0;
2207  for (unsigned I = 0; I != NumDesignators; ++I) {
2208    this->Designators[I] = Designators[I];
2209
2210    if (this->Designators[I].isArrayDesignator()) {
2211      // Compute type- and value-dependence.
2212      Expr *Index = IndexExprs[IndexIdx];
2213      ValueDependent = ValueDependent ||
2214        Index->isTypeDependent() || Index->isValueDependent();
2215
2216      // Copy the index expressions into permanent storage.
2217      *Child++ = IndexExprs[IndexIdx++];
2218    } else if (this->Designators[I].isArrayRangeDesignator()) {
2219      // Compute type- and value-dependence.
2220      Expr *Start = IndexExprs[IndexIdx];
2221      Expr *End = IndexExprs[IndexIdx + 1];
2222      ValueDependent = ValueDependent ||
2223        Start->isTypeDependent() || Start->isValueDependent() ||
2224        End->isTypeDependent() || End->isValueDependent();
2225
2226      // Copy the start/end expressions into permanent storage.
2227      *Child++ = IndexExprs[IndexIdx++];
2228      *Child++ = IndexExprs[IndexIdx++];
2229    }
2230  }
2231
2232  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2233}
2234
2235DesignatedInitExpr *
2236DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2237                           unsigned NumDesignators,
2238                           Expr **IndexExprs, unsigned NumIndexExprs,
2239                           SourceLocation ColonOrEqualLoc,
2240                           bool UsesColonSyntax, Expr *Init) {
2241  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2242                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2243  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
2244                                      ColonOrEqualLoc, UsesColonSyntax,
2245                                      IndexExprs, NumIndexExprs, Init);
2246}
2247
2248DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2249                                                    unsigned NumIndexExprs) {
2250  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2251                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2252  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2253}
2254
2255void DesignatedInitExpr::setDesignators(ASTContext &C,
2256                                        const Designator *Desigs,
2257                                        unsigned NumDesigs) {
2258  DestroyDesignators(C);
2259
2260  Designators = new (C) Designator[NumDesigs];
2261  NumDesignators = NumDesigs;
2262  for (unsigned I = 0; I != NumDesigs; ++I)
2263    Designators[I] = Desigs[I];
2264}
2265
2266SourceRange DesignatedInitExpr::getSourceRange() const {
2267  SourceLocation StartLoc;
2268  Designator &First =
2269    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2270  if (First.isFieldDesignator()) {
2271    if (GNUSyntax)
2272      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2273    else
2274      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2275  } else
2276    StartLoc =
2277      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2278  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2279}
2280
2281Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2282  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2283  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2284  Ptr += sizeof(DesignatedInitExpr);
2285  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2286  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2287}
2288
2289Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2290  assert(D.Kind == Designator::ArrayRangeDesignator &&
2291         "Requires array range designator");
2292  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2293  Ptr += sizeof(DesignatedInitExpr);
2294  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2295  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2296}
2297
2298Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2299  assert(D.Kind == Designator::ArrayRangeDesignator &&
2300         "Requires array range designator");
2301  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2302  Ptr += sizeof(DesignatedInitExpr);
2303  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2304  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2305}
2306
2307/// \brief Replaces the designator at index @p Idx with the series
2308/// of designators in [First, Last).
2309void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
2310                                          const Designator *First,
2311                                          const Designator *Last) {
2312  unsigned NumNewDesignators = Last - First;
2313  if (NumNewDesignators == 0) {
2314    std::copy_backward(Designators + Idx + 1,
2315                       Designators + NumDesignators,
2316                       Designators + Idx);
2317    --NumNewDesignators;
2318    return;
2319  } else if (NumNewDesignators == 1) {
2320    Designators[Idx] = *First;
2321    return;
2322  }
2323
2324  Designator *NewDesignators
2325    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
2326  std::copy(Designators, Designators + Idx, NewDesignators);
2327  std::copy(First, Last, NewDesignators + Idx);
2328  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2329            NewDesignators + Idx + NumNewDesignators);
2330  DestroyDesignators(C);
2331  Designators = NewDesignators;
2332  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2333}
2334
2335void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2336  DestroyDesignators(C);
2337  Expr::DoDestroy(C);
2338}
2339
2340void DesignatedInitExpr::DestroyDesignators(ASTContext &C) {
2341  for (unsigned I = 0; I != NumDesignators; ++I)
2342    Designators[I].~Designator();
2343  C.Deallocate(Designators);
2344  Designators = 0;
2345}
2346
2347ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2348                             Expr **exprs, unsigned nexprs,
2349                             SourceLocation rparenloc)
2350: Expr(ParenListExprClass, QualType(),
2351       hasAnyTypeDependentArguments(exprs, nexprs),
2352       hasAnyValueDependentArguments(exprs, nexprs)),
2353  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2354
2355  Exprs = new (C) Stmt*[nexprs];
2356  for (unsigned i = 0; i != nexprs; ++i)
2357    Exprs[i] = exprs[i];
2358}
2359
2360void ParenListExpr::DoDestroy(ASTContext& C) {
2361  DestroyChildren(C);
2362  if (Exprs) C.Deallocate(Exprs);
2363  this->~ParenListExpr();
2364  C.Deallocate(this);
2365}
2366
2367//===----------------------------------------------------------------------===//
2368//  ExprIterator.
2369//===----------------------------------------------------------------------===//
2370
2371Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2372Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2373Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2374const Expr* ConstExprIterator::operator[](size_t idx) const {
2375  return cast<Expr>(I[idx]);
2376}
2377const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2378const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2379
2380//===----------------------------------------------------------------------===//
2381//  Child Iterators for iterating over subexpressions/substatements
2382//===----------------------------------------------------------------------===//
2383
2384// DeclRefExpr
2385Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2386Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2387
2388// ObjCIvarRefExpr
2389Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2390Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2391
2392// ObjCPropertyRefExpr
2393Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2394Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2395
2396// ObjCImplicitSetterGetterRefExpr
2397Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2398  return &Base;
2399}
2400Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2401  return &Base+1;
2402}
2403
2404// ObjCSuperExpr
2405Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2406Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2407
2408// ObjCIsaExpr
2409Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2410Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2411
2412// PredefinedExpr
2413Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2414Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2415
2416// IntegerLiteral
2417Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2418Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2419
2420// CharacterLiteral
2421Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2422Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2423
2424// FloatingLiteral
2425Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2426Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2427
2428// ImaginaryLiteral
2429Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2430Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2431
2432// StringLiteral
2433Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2434Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2435
2436// ParenExpr
2437Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2438Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2439
2440// UnaryOperator
2441Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2442Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2443
2444// SizeOfAlignOfExpr
2445Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2446  // If this is of a type and the type is a VLA type (and not a typedef), the
2447  // size expression of the VLA needs to be treated as an executable expression.
2448  // Why isn't this weirdness documented better in StmtIterator?
2449  if (isArgumentType()) {
2450    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2451                                   getArgumentType().getTypePtr()))
2452      return child_iterator(T);
2453    return child_iterator();
2454  }
2455  return child_iterator(&Argument.Ex);
2456}
2457Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2458  if (isArgumentType())
2459    return child_iterator();
2460  return child_iterator(&Argument.Ex + 1);
2461}
2462
2463// ArraySubscriptExpr
2464Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2465  return &SubExprs[0];
2466}
2467Stmt::child_iterator ArraySubscriptExpr::child_end() {
2468  return &SubExprs[0]+END_EXPR;
2469}
2470
2471// CallExpr
2472Stmt::child_iterator CallExpr::child_begin() {
2473  return &SubExprs[0];
2474}
2475Stmt::child_iterator CallExpr::child_end() {
2476  return &SubExprs[0]+NumArgs+ARGS_START;
2477}
2478
2479// MemberExpr
2480Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2481Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2482
2483// ExtVectorElementExpr
2484Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2485Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2486
2487// CompoundLiteralExpr
2488Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2489Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2490
2491// CastExpr
2492Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2493Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2494
2495// BinaryOperator
2496Stmt::child_iterator BinaryOperator::child_begin() {
2497  return &SubExprs[0];
2498}
2499Stmt::child_iterator BinaryOperator::child_end() {
2500  return &SubExprs[0]+END_EXPR;
2501}
2502
2503// ConditionalOperator
2504Stmt::child_iterator ConditionalOperator::child_begin() {
2505  return &SubExprs[0];
2506}
2507Stmt::child_iterator ConditionalOperator::child_end() {
2508  return &SubExprs[0]+END_EXPR;
2509}
2510
2511// AddrLabelExpr
2512Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2513Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2514
2515// StmtExpr
2516Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2517Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2518
2519// TypesCompatibleExpr
2520Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2521  return child_iterator();
2522}
2523
2524Stmt::child_iterator TypesCompatibleExpr::child_end() {
2525  return child_iterator();
2526}
2527
2528// ChooseExpr
2529Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2530Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2531
2532// GNUNullExpr
2533Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2534Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2535
2536// ShuffleVectorExpr
2537Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2538  return &SubExprs[0];
2539}
2540Stmt::child_iterator ShuffleVectorExpr::child_end() {
2541  return &SubExprs[0]+NumExprs;
2542}
2543
2544// VAArgExpr
2545Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2546Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2547
2548// InitListExpr
2549Stmt::child_iterator InitListExpr::child_begin() {
2550  return InitExprs.size() ? &InitExprs[0] : 0;
2551}
2552Stmt::child_iterator InitListExpr::child_end() {
2553  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2554}
2555
2556// DesignatedInitExpr
2557Stmt::child_iterator DesignatedInitExpr::child_begin() {
2558  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2559  Ptr += sizeof(DesignatedInitExpr);
2560  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2561}
2562Stmt::child_iterator DesignatedInitExpr::child_end() {
2563  return child_iterator(&*child_begin() + NumSubExprs);
2564}
2565
2566// ImplicitValueInitExpr
2567Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2568  return child_iterator();
2569}
2570
2571Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2572  return child_iterator();
2573}
2574
2575// ParenListExpr
2576Stmt::child_iterator ParenListExpr::child_begin() {
2577  return &Exprs[0];
2578}
2579Stmt::child_iterator ParenListExpr::child_end() {
2580  return &Exprs[0]+NumExprs;
2581}
2582
2583// ObjCStringLiteral
2584Stmt::child_iterator ObjCStringLiteral::child_begin() {
2585  return &String;
2586}
2587Stmt::child_iterator ObjCStringLiteral::child_end() {
2588  return &String+1;
2589}
2590
2591// ObjCEncodeExpr
2592Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2593Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2594
2595// ObjCSelectorExpr
2596Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2597  return child_iterator();
2598}
2599Stmt::child_iterator ObjCSelectorExpr::child_end() {
2600  return child_iterator();
2601}
2602
2603// ObjCProtocolExpr
2604Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2605  return child_iterator();
2606}
2607Stmt::child_iterator ObjCProtocolExpr::child_end() {
2608  return child_iterator();
2609}
2610
2611// ObjCMessageExpr
2612Stmt::child_iterator ObjCMessageExpr::child_begin() {
2613  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2614}
2615Stmt::child_iterator ObjCMessageExpr::child_end() {
2616  return &SubExprs[0]+ARGS_START+getNumArgs();
2617}
2618
2619// Blocks
2620Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2621Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2622
2623Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2624Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2625